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ABSTRACT

Geodesic Equivalence in Sub-Riemannian Geometry. (May 2014)

Andrew Zane Castillo
Department of Mathematics

Texas A&M University

Research Advisor: Dr. Igor Zelenko
Department of Mathematics

Sub-Riemannian geometry is an intensively developing field of Mathematics lying at the

intersection of Differential Geometry, Control Theory with application to Robotics, Hamil-

tonian dynamics and PDEs.

Our research is devoted to the geodesic equivalence of sub-Riemannian metrics, when one

wants to study the metrics not up to isometries but up to the group of transformations

preserving all their geodesics considered as unparametrized curves. In Riemannian geometry

this equivalence problem is well understood thanks to the classical works of Beltrami, Dini,

Levi-Civita. The existence of nontrivial pairs of geodesically equivalent metrics is related to

the Liouville integrability of the corresponding geodesic flows with integrals of special type

and the separability of the corresponding Hamilton-Jacobi equations.

For proper sub-Riemannian metrics only few classification results are known up to now,

mainly concerning sub-Riemannian metrics on generic corank 1 distributions. However,

there is strong evidence that a general classification theorem on geodesic equivalence of sub-

Riemannian metrics defined on a very general class of distributions exists and it includes the

classical Levi-Civita theorem as a particular case. The presented research is a step forward

to discovering such a theorem.
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CHAPTER I

INTRODUCTION

In the last two decades, Sub-Riemannian metrics have attracted substantial attention of

researchers in Differential Geometry, Control Theory, Hamiltonian dynamics and PDE’s.

In contrast to the Riemannian case, in the proper sub-Riemannian case the inner product

is defined not at the whole tangent space at a point but on a distinguished subspace of the

tangent space at a point. A field of such distinguished subspaces is called a distribution.

Sub-Riemannian metrics appear naturally in Robotics as systems describing car-like robots

(cars with trailers) and, more generally, nonholonomic robots [9], when the motion in the

configuration space are allowed only in certain direction at any point (belonging to a subspace

of a tangent space at this point), and also models of visual perception [16]. Another natural

appearance of sub-Riemannian structures are isoperimetric problems [1, 6] and gauge fields

in Physics, where they are naturally defined by principal connections on principal bundles

over Riemannian manifolds. [15, 11].

Two Riemannian or sub-Riemannian metrics are called (locally) geodesically equivalent if

there is a (local) diffeomorphism between the ambient manifolds sending geodesics of one

metric, considered as unparametrized curves, to geodesics of another metric, considered as

unparametrized curves. We are interested in a local version of this equivalence. For example,

the local geodesic equivalence of a metric to the flat one will mean that there is a local change

of coordinates such that all geodesics became straight lines after this change.Informally

speaking, by studying geodesic equivalence one wants to understand the property of the

whole “web” of geodesics forgetting about the metric itself.
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The simplest way to produce a metric, which is geodesically equivalent to another given

metric, is to multiply it by a constant. We then say that these metrics are geodesically

equivalent in a trivial way and are called ,unsurprisingly, trivial. It was the goal of our

research to study not these types of metrics but the nontrivial pairs, which are much less

understood then their trivial counterparts. The simplest example of nontrivial pairs of locally

geodesically equivalent Riemannian metrics are the flat metric and the standard Riemannian

metric on a hemisphere via the stereographic projection from the center of this hemisphere.

Fig. I.1. Stereographic Projection

These are both classical problems that one can encounter while enjoying a standard Differ-

ential or Riemannian Geometry course. There, one can begin to understand the pertinence

of these metrics in standard applications and begin relating it to our special case. Rie-

mannian metrics and their equivalent geodesics have been well understood by the classical

works of Beltrami, Dini, and finally of Levi-Civita.[3, 7, 10, 8]. Levi-Civita [10]In fact, it

was Levi-Civita who gave an explicit description of all nontrivial pairs of locally geodesically

equivalent metrics and discovered that if a given metric g admits a geodesically equivalent

metric in a nontrivial way then the geodesic flow of g is Liouville integrable with integrals

of some special type depending polynomially on the impulses. In reference to our current

project, the existing results suggests that there is a general classification theorem on the ex-

istence of nontrivial pairs of geodesically equivalent sub-Riemannian metrics, which includes
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the classical Riemannian ones as a particular case. In retrospect, the current research in the

subject suggest that there exists two ”worlds” for these different types of metrics, i.e. one for

the Riemannian Case, which was done by Levi-Civita [10], and one for the sub-Riemmanian

case, which as just mentioned is the goal of the current paper. Also, recently V.Matveev

and his collaborators [5, 13, 14, 12] shed a new light to this relation with integrability and

used it for the study of global geodesic equivalence. Other recent related development is the

study of separability of Hamilton-Jacobi equations [4].

The notion of geodesic equivalence of sub-Riemannian metrics can be defined completely

in the same way as for the Riemannian metrics replacing Riemannian geodesics by sub-

Riemannian ones, again recalling that the sub-Riemmanian metrics are defined on a subspace

of the tangent space of the Riemannian manifold, and studying such equivalence is important

in the same way for understanding the geometric properties of the “web” of sub-Riemannian

geodesics. As of today, the only known classification result about the geodesic equivalence of

proper sub-Riemannian metrics was obtained by I. Zelenko [17] for the first nontrivial case

of sub-Riemannian metric on distributions of corank 1 (i.e., fields of hyperplanes),satisfying

a certain generic assumption, namely, of being contact or quasi-contact for the ambient

manifold of odd and even dimensions, respectively. These two cases are essentially different,

for the case of contact distributions, all pairs of geodesically equivalent metrics are trivial, i.e.

constant multiples of one another. However, in the case of quasi-contact distributions there

are nontrivial pairs of geodesically equivalent metrics which are described in terms of Cauchy

Characteristics. Which are the infinitesimal symmetries of the underlying distributions being

also horizontal vector fields. On the other hand, when we consider contact distributions we

can see that there are no Cauchy Characteristics.

In the thesis we have sought out to prove the conjecture of Zelenko: the existence of nontrivial

pairs of geodesically equivalent sub-Riemannian metrics on general distributions depends on
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whether or not this distribution possesses Cauchy characteristics and such pairs can be

explicitly described using some differential equations along this Cauchy characteristic. The

first result of the thesis required the validation of the conjecture for uniformly non-contact

sub-distributions of Cauchy Characteristics of rank equal to two and then the classification

all pairs of geodesically equivalent distributions in this case, generalizing Zelenko’s theorem

on the quasi-contact case. The method of the proof is a careful examination of conditions for

geodesic equivalence given in terms of the Hamiltonian formalism of the Pontrygin Maximum

Principle. The second directions that was partially investigated is the case of rank two

distributions on any dimension, as before it was only known for dimension three.

Another objective of the current research thesis is to investigate the relationship between non-

trivial pairs of geodesically equivalent metrics and the Liouville integrability of their geodesic

flows, by analogy with the Riemannian case. This was done primarily in the Riemannian

case by the works Topalov and Mateev [13], where they acquired information regarding the

classification of the Liouville Integrability for non-trivial geodesic equivalent metrics. They

did this through the formulation of the Levi-Civita integrals acquired through the coordinate

version of the Levi-Civita theorem for Riemanninan metrics and the functional independence

of certain integrals for the geodesic flow of the Riemannian metrics. It was another goal of

this research project to understand these situations in the sub-Riamannian case as it is not

yet understood even in the simplest quasi-contact case.
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CHAPTER II

METHODS

The main tool in our project is the Pontryagin Maximal Principal of Optimal Control

which provides a convenient uniform framework to describe the Hamiltonian flows of sub-

Riemannian extremals. The conditions for geodesic equivalence in this language reduce to

the orbital equivalence problem of these Hamiltonian flows, which can be rewritten in term

of some overdetermined system of PDEs. Solvability of this system implies certain very

restrictive algebraic conditions on a pair of metric under consideration (for example, divisi-

bility of certain polynomials associated with a pair of sub-Riemannian metrics), which often

significantly restrict the search for a pair of non-trivial geodesically equivalent pairs. This

tool proved to be quite efficient. For example, as was shown in [17] it gives an elementary

new proof of the classical Levi-Civita theorem.

As preliminary results of the research we examined the case of corank one distributions

D with rank 2 subdistributions C of Cauchy characteristic vector fields. We showed that

the subdistribution C⊥ of D, which is the orthogonal complement to C (with respect to

both sub-Riemannian metrics) is not bracket generating, more precisely (C⊥)2 = [C⊥, C⊥]

is integrable and has a rank one more than the distribution C⊥. Further, we were able to

describe all nontrivial pairs of sub-Riemannian metrics in terms of the foliation of integral

submanifolds of (C⊥)2 as two distinguished vector fields spanning C.

Our method is a generalization of the methods of [17]. First, we compare the coefficients

of polynomials in the algebraic part of the mentioned overdetermined system of equations

describing our equivalence problem and use the classical Frobenius Theorem on involutive

distributions. Second, we analyzed the differential equations along distinguished character-

istic vector fields in order to understand the evolution along the flows of these vector fields
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of the restriction of the metrics to the above mentioned foliation and to these vector fields

themselves.This methodology confirmed Zelenko’s conjecture in this particular case.

10



CHAPTER III

RESULTS

We begin by stating and proving a proposition that generalizes a result seen in [17]. In

particular, we will show that in the case of a corank one distributions with the subdistribution

C of Cauchy characteristic having rank 2 subdistributions , the orthogonal complement of

this subdistribution is not bracket generating. Before we do this, lets state a few definitions

that will be important for the remainder of the paper.

Definition III.0.1 (Transition Operator) For a given ordered pair of sub-Riemannian met-

rics G1, G2 and a point p lets can define the following linear operator Tp : D(p) 7→ D(p):

G2p(v1, v2) = G1p(Tpv1, v2),∀v1, v2 ∈ D(p). Tp is called the transition operator from the sub-

Riemannian metric G1 to the sub-Riemannian metric G2 at the point p.

Definition III.0.2 (Frame for the pair (G1, G2)) Let G1 and G2 be sub-Riemannian metrics

on an n-dimensional manifold M . Let p0 be a regular point w.r.t these metrics. We will

say that (X0, X1, . . . , Xm−1, Xm) is a frame adapted to the ordered pair (G1, G2) in some

neighborhood of p0 and the transition operator Tp from the metric G1 to G2 has a diagonal

matrix representation. In other words, the local frame (X1, X2, . . . , Xm−1, Xm) consists of

the eigenvectors of the transition operator.

Proposition III.0.1 The fiber C(p) of the Cauchy characteristic distribution C is an in-

variant subspace of the transition operator Tp for any p in a neighborhood of p0.

The proof of this proposition follows the lines of in [17, Proposition 9].

Assume that (X0, X1, . . . , Xm−1, Xm) is the frame adapted to the pair of sub-Riemannian

metrics (G1, G2). By the previous Proposition without loss of generality we can assume that
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C = span(Xm−1, Xm). Let C⊥ be the orthogonal complement of C with respect to the given

metrics spanned by the vector fields in the frame. Then

(C⊥) = span (X0, X1, . . . , Xm−3, Xm−2).

Proposition III.0.2 The distribution (C⊥)2 = [C⊥, C⊥] is integrable. Moreover, the eigen-

values of the transition operator are constant on each integral submanifold of the distribution

(C⊥)2 . Equivalently, the flows of vector fields Xm−1 and Xm preserve the foliation of these

integral submanifolds.

Proof Using identities (2.60) and (4.1) of [17] we can compare coefficients of uium for

1 ≤ i ≤ m− 2 to both sides of identity (4.6) of [17] to yield the following equations:

(α2 − α2
m)cmji = rmc

m+1
ji + ric

m+1
jm

(α2 − α2
m−1)c

m−1
ji = rm−1c

m+1
ji + ric

m+1
j(m−1)

∀1 ≤ i 6= j ≤ m− 2.

By hypothesis Xm and Xm−1 are Cauchy Characteristic, so that cm+1
jm = 0 and cm+1

j(m−1) = 0,

resulting in the following identities:

cmji =
rmc

m+1
ji

(α2 − α2
m)

(III.1)

cm−1ji =
rm−1c

m+1
ji

(α2 − α2
m−1)

. (III.2)
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This then results in the following observation: ∀1 ≤ i ≤ m− 2

[Xi, Xj] ∈ span({Xk}m−2k=1 ,
rm−1

(α2 − α2
m−1)

Xm−1,
rm

(α2 − α2
m)
Xm, Xm+1).

To prove the proposition it is enough to show the involutivity of the vector fields i.e ∀1 ≤

i, j ≤ m− 2

[Xi,
rm−1

(α2 − α2
m−1)

Xm−1,
rm

(α2 − α2
m)
Xm, Xm+1] ∈ span(D,

rm−1
(α2 − α2

m−1)
Xm−1,

rm
(α2 − α2

m)
Xm,Xm+1).

(III.3)

By basic calculations one can show that the previous equation is in fact equivalent to the

following three conditions:

Xi(rm−1)

(α2 − α2
m−1)

+
rm−1c

m−1
(m−1)i

(α2 − α2
m−1)

+
rmc

m−1
mi

(α2 − α2
m)

+ cm−1(m+1)i − rm−1c
m−1
(m−1)i (III.4)

(rm−1)c
m
(m−1)i

(α2 − α2
m−1)

+
Xi(rm−1)

(α2 − α2
m)

+
rmc

m
mi

(α2 − α2
m)

+ cm(m+1)i − rmcmmi (III.5)

cm+1
(m+1)i = γ(t) (III.6)

where gamma is a function of one variable.

The duration of the proof will be devoted to showing that the previous identities (III.4 &

III.5) indeed do hold.

Using identities (4.11) from [17] we can rewrite the identities for Xm and Xm−1 in the

following way:
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~h(
m+1∑
i=m−1

riui)−
1

2
(
m+1∑
j=m−1

Xj(α
2
j )uj

α2
j

)
m+1∑
i=m−1

riui −Qm+1,m+1

m+1∑
i=m−1

riui =
m∑
k=1

Qm+1,kαuuk.

(III.7)

Note that we made use of the fact that ri = 0 ∀1 ≤ i ≤ m− 2.

Expanding the previous equation results and comparing the coefficients of identity (2.19) of

[17] results in:

~h(
m+1∑
i=m−1

riui)−{
1

2
(
Xm−1(α

2
m−1)um−1

α2
m−1

+
Xm(α2

m)um
α2
m

)
m+1∑
i=m−1

riui}−(rm−1c
−(m−1)
(m−1)i αm−1+rmc

−m
mi αm)

=
m∑
k=1

Qm+1,kαuuk.

We can then define

βm := −1

2

Xm(α2
m)

α2
m

βm−1 := −1

2

Xm−1(α
2
m−1)

α2
m−1

, (III.8)

so that the previous expression can be rewritten as:

~h(
m+1∑
i=m−1

riui)−{βm−1um−1+βmum
m+1∑
i=m−1

riui}−(rm−1c
−(m−1)
(m−1)i αm−1+rmc

−m
mi αm) =

m∑
k=1

Qm+1,kαuuk.

(III.9)

We can now expand the term (III.9) involving the βiui and rjuj and then compare with the

coefficients from (2.24) of [17] which will result in:
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rm{cmmi + cm−1mi }+ rm−1{cm(m−1)i + cm−1(m−1)i}+ rm−1{c(m+1)(m+1)i + ci(m+1)m}. (III.10)

We now now take care of the ~h(
∑m+1

i=m−1 riui) term by comparing these coefficients to that of

(2.24) of [17] resulting in:

{Xi(rm) +Xi(rm−1)}. (III.11)

Finally, after comparing coefficients of our
∑m

k=1Qm+1,kαuuk term, we get:

(c−i(m+1)(m−1) + c
−(m−1)
(m+1)i )αm−1α + (c−i(m+1)m + c−m(m+1)i)αmα. (III.12)

From the calculations getting from (III.8) to (III.9) and using the fact that c
−(m−1)
(m−1)i =

cm−1
(m−1)i

αm−1

we have that

−(rm−1c
−(m−1)
(m−1)i αm−1 + rmc

−m
mi αm) = −rm−1c(m−1)(m−1)i − rmc

m
mi (III.13)

After combining (III.10), (III.11), (III.13) and gathering all coefficients results in:

Xi(rm−1) + rmc
m−1
mi + rm−1c

m−1
mi + rm+1c

i
(m+1)(m−1) − rm−1cm−1(m−1)i (III.14)

Xi(rm) + rmc
m
mi + rm−1c

m
(m−1)i + rm+1c

i
(m+1)(m) − rmcmmi. (III.15)

Moreover, from (III.12) we have the following identities:

c−i(m+1)(m−1) =
α

αm−1
ci(m+1)(m−1), c

−(m−1)
(m+1)i =

αm−1
α

cm−1(m+1)i (III.16)
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c−i(m+1)m =
α

αm
ci(m+1)(m), c−m(m+1)i =

αm
α
cm(m+1)i, rm+1 = α2. (III.17)

Using (III.16) and (III.17), (III.12) becomes:

α

αm−1
ci(m+1)(m−1) + cm−1(m+1)i

αm−1
α

αm−1α, (“m− 1”terms) (III.18)

α

αm
ci(m+1)(m) + cm(m+1)i

αm
α
αmα, (“m”terms). (III.19)

Lastly, “placing” (III.18) and (III.19) on the right hand sides of (III.14) and (III.15) respec-

tively, we get:

Xi(rm−1) + rm−1c
m−1
(m−1)i + rmc

m−1
mi + ci(m−1)i(α

2 − α2
m−1)− rm−1cm−1(m−1)i (III.20)

and

Xi(rm) + rmc
m
(m−1)i + rmc

m
mi + cm(m−1)i(α

2 − α2
m)− rmcmmi (III.21)

which is indeed equivalent to (III.4) and (III.5). Thus it follows that (III.3) holds so that it

now follows from Frobenius Theorem that (C⊥)2 = [C⊥, C⊥] is integrable.

Let k0 = dim(M) − 2. Also let k1 = k2 = 1, which are the multiplicities of the eigenvalues

of Sp different from the eigenvalue corresponding to C⊥.

Theorem III.0.1 Let (M,D, g1) and (M,D, g2) be two sub-Riemannian structures on a

corank 1 distribution with dim(M) being odd and rank(C) = 2. Then the sub-Riemannian

structures are geodesically equivalent if and only if there exists a local coordinate system
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x̄ = (x̄0, . . . , x̄m), where x̄i = (x1i , . . . , x
ki
i ) such that the quadratic forms of the inner products

g1 and g2 have the form

g1( ˙̄x, ˙̄x) =
2∑
s=0

γs(x̄)bs( ˙̄xs, ˙̄xs),

g2( ˙̄x, ˙̄x) =
2∑
s=0

λs(x̄)γs(x̄)bs( ˙̄xs, ˙̄xs)

where the velocities ˙̄x belong to D,

λs(x̄) = βs(x̄s)
2∏
l=0

βl(x̄l),

γs(x̄) =
∏
l 6=s

∣∣∣ 1

βl(x̄l)
− 1

βs(x̄s)

∣∣∣,
{βs(p0) 6= βl(p0) for all s 6= l and β0 is constant.

The proof of this theorem follows the general lines of the Levi-Civita Theorem as seen in

[17]. The details and generalization of this theorem will be left for a future paper.
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CHAPTER IV

CONCLUSION

The results of this project were interesting, indeed we were not able to generalize our main

theorem to general ranks of Cauchy Characteristic subdistributions, but we were able to

generalize a result found ten years ago to the case of rank 2 subdistributions. In other words

we can say that our work agrees nicely with the work found in [17], and that the ideas

were very similar. In addition, our main result does indeed confirm our conjecture that a

generalized theorem for geodesic equivalence on general subdistributions does exist, but due

to time constraints and other unprecedented issues, were not able to pursue this formulation

in full generality. In the near future we will continue working on this problem and it is our

hope that we can find this theorem in that the classical Levi CIvita theorem seen in [17]

is a particular case. Recall that the Levi-Civita theorem described all pairs of geodesically

equivalent Riemannian metrics. Moreover we will like for our theorem to hold for contact

distributions i.e the case when: rankD = dim M − 1, dimM is odd, and rankC = 0. Lastly,

the theorem will also hold for the case of quasi-contact (even-contact) distributions, i.e. when

rankD = dim M − 1, dimM is even , and rankC = 1 is again a particular case.
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