
A COLLATION PANEL FOR HUMANISTS

An Undergraduate Research Scholars Thesis

by

RYAN CHRISTOPHER OLIVIERI

Submitted to Honors and Undergraduate Research
Texas A&M University

in partial fulfillment of the requirements for the designation as

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Research Advisor: Richard Furuta

May 2014

Major: Computer Engineering

TABLE OF CONTENTS

Page

ABSTRACT . 1

DEDICATION . 2

ACKNOWLEDGMENTS . 3

I INTRODUCTION . 4

Background . 4

Problem . 4

Previous solutions . 5

Our approach . 6

II METHODOLOGY . 7

Approach . 7

Finding the correct number of clusters . 9

Deciding if two words match . 9

Position matching . 12

III COLLATION TOOL ADDED TO CRITSPACE 14

CritSpace . 14

Collation tool . 14

Control panel . 14

Collation modes . 14

How the matching algorithm is executed . 20

Testing material . 20

Page

IV CONCLUSION . 21

V FUTURE WORK . 22

Supporting multiple editions . 22

New novels . 22

REFERENCES . 23

ABSTRACT

A Collation Panel for Humanists. (May 2014)

Ryan Christopher Olivieri
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Richard Furuta
Department of Computer Science and Engineering

Comparing a set of similar texts, often called collation, gives a scholar insight into the

author’s thoughts and motives and into the culture of the time period. Multiple editions

can be published by an author for a diverse number of reasons such as political pressure or

to further character development. Collating a set of editions can help discover the author’s

motives, but involves methodically comparing text to find minute differences. This task,

which is currently done by hand due to unstandardized printing practices in historic novels,

is time consuming, and prone to human error due to fatigue. We propose a Virtual Hinman

Collator that automates the comparison process and highlights the differences between a

set of pages. This is done through an image processing approach that is less susceptible

to the issues of optical character recognition on poor quality images. This tool saves the

user an immense amount of time which allows more time to focus on analyzing the text and

drawing conclusions instead of finding the differences. With this increased productivity, a

better understanding of past cultures can be found through recognizing the motivation and

thoughts behind the author’s works.

1

DEDICATION

This thesis is dedicated to my parents, Lisa and Mark Olivieri, for their continued encour-

agement and inspiration.

2

ACKNOWLEDGMENTS

I would like to thank Dr. Richard Furuta for the opportunity to conduct my research. I would

also like to thank Gaurav Kerjiwal, a graduate student, for his guidance and his knowledge

of the project.

3

CHAPTER I

INTRODUCTION

Background

Humanists play an important role in society by understanding the culture of the past. Some

humanists do this through creating witnesses and critical editions of novels. When an author

is collating a set of novels, they go through the copies word by word looking for differences.

Then once the differences are found notes on the differences are made. Once the whole novel

is finished, notes are compiled into one copy. Finally, the work is published in a journal or

peer reviewed outlet. Humanists are able to use their knowledge of the era and context to

understand why a change was added. Then the decision can be made if it was due to political

pressure or if the author wanted to change the view of a character to the reader, or a variety

of other reasons. This information can help our generation have a better understanding of

the past by better understanding the motives behind the authors novels.

Problem

The main issue with the task of creating a witness or critical edition of a novel is the time

it takes to complete. A great amount of experience is needed to analyze the differences

between editions of a novel. This leaves a limited number of people that are capable of

coming to educated conclusion about the differences in the editions. With this in mind, it

does not make sense to have these bright minds completing a time consuming and mechanical

task of finding the differences. This mundane task exists, because printing standards in the

17th and 18th century were in their infancy compared to today. Currently, this process

cannot be automated with OCR (Optical Character Recognition) because the margins are

not consistent, the font sizes differ from edition to edition, some pages have splotches and

other defects not present today. Also in some editions the words on the backside of the page

bleed through. Further whole sentences can be omitted or altered between editions, which

4

causes the words on each edition to be offset from each other. All of these factors and many

others make this task difficult to automate, and this is precisely why many humanists today

still use the traditional way of comparing printed out copies of each novel. To convince

humanists to change to a new method it needs to be more efficient, easy, to use, accurate,

and reliable. Current attempts have not been able to satisfy all of these requirements for

widespread adoption.

Previous solutions

This problem has been addressed a multitude of times, but while each solution may solve a

particular area each has limitations. The Hinmann Collator [2] was one of the first solutions

to this problem and was invented in the 1940’s. This machine works by having two books to

be collated placed in the machine. Then the pages are superimposed over each other. The

user only sees one copy of the page if they are exactly the same, and any differences between

the pages shows up blurry. The Hinman collator is useful when comparing the same editions

for typeface changes. This works to the Hinman Collator’s strengths. When the editions

have differences the Hinman Collator is not useful because of different font sizes, added text

in a page, or other vast differences. These strengths and weaknesses make the Hinmann

Collator great at a small subset of books, but not practical for collating the majority of

novels.

Another attempt is with OCR. This technique takes the images of the books and converts

them to a text file. Once the pages are made into text files, the comparison is made with

commonly available text comparison tools. The problem comes when the image quality of

the book is too poor to work properly. If this is the case the result of the OCR conversion is

a useless text file and inaccurate results are given. Unfortunately, many of the novels written

in an earlier time period suffer from early printing practices. Splotches and misaligned text

can be troublesome for OCR to decipher correctly, which makes OCR not a valid option

for many novels. OCR also strips the words from the page and correspondingly the font

used, the colorations of the paper, and all of the other important aspects of the page.

5

These aspects give the humanists context and a glimpse into the life at the time the book

was written. Currently, the technical issues that OCR is facing limit the usefulness of the

approach because of the need of accurate results.

Another variation of this approach involves one person reading the novel to a person who

copies the novel to a text document. This task still takes a large amount of time and can

suffer from the inaccuracies of humans reading the novel out load. If a good text version

of a set of novels is produced then text comparison tools can be used to quickly find the

differences. Some novels are digitized through manually going through and typing the whole

novel. This technique also suffers from human error and involves a large amount of work.

Our approach

Taking all of this information into consideration we propose a Virtual Hinman Collator

(vHinman) to find the differences between the set of novels. This digital collator will work

with facsimiles in order to preserve the pages of the books. Instead of using OCR to find

the differences an image processing approach will be used that is less susceptible to many

of the problems OCR is afflicted with. This tool will also be integrated into CritSpace [1] a

web application that creates an environment specifically for humanist to analyze facsimiles of

novels. A CritSpace workspace allows the user to move panels containing images of the novels,

a text editor, and a filmstrip to select which images to view. This environment promotes the

collaboration of the humanists with their peers by using a web platform. By integrating the

collator into CritSpace it will benefit from the existing support environment as opposed to

being a stand alone tool. This tool is able to accurately and conveniently find the differences

between the pages selected by the user. This takes the most time consuming part of collation

out of the equation and lets humanists spend their limited time analyzing differences and

collating new novels instead of finding the differences hidden among thousands of words.

6

CHAPTER II

METHODOLOGY

Approach

Our tool uses an image processing approach similar to the work of Dr. Yalniz and Dr.

Manmatha at the University of Massachusetts [6]. It involves taking an image of a novel

and separating it into the different words. Currently, the image is separated into words

with ABBYY FineReader, a commercial OCR engine. We are using the word segmentation

from the OCR output, which is not affected as much by the image quality as the rest of

the OCR process. Word segmentation is one of the first steps in the OCR process and

produces a set of coordinates describing the location of the words on the page. Then the

FAST algorithm [4] is used to find keypoints on each letter. A keypoint is a pixel that

is unique and is able to describe the characteristics of the curve. An example of one can

been seen in Figure II.1 where a keypoint has been identified on the curve of the letter b.

Keypoints are generally found on the edges and at the corners of a letter. Then SIFT [3] is

used to find the descriptors of each keypoint. This provides the context that the keypoint

was in and identifies a characteristic of the letter. Then a hierarchal k-means is used to

cluster the thousands of keypoints into several hundred clusters. This allows similar curves

and characteristics to be labeled with the same identifier. Then each word is comprised of a

series of identifiers called cluster ids. Each word is identified by the cluster ids sorted from

left to right. Finally words are matched by comparing their string of cluster ids by using

longest common subsequence (LCS). A probability is produced for each word compared to

every other word and the highest one is deemed the match. Then the results from the

matching are fed into our position matching algorithm that takes into account the context

of each word to correctly match the words.

7

Fig. II.1. A keypoint that has been identified on the letter b that is marked
by a green circle.

8

Finding the correct number of clusters

The way the algorithm works currently requires an optimal number of clusters to work

accurately. The correct number is affected by a variety of factors. The type of language,

quality of the image, font, and font size can all change the number of keypoints. Ideally, all

the same type of keypoints would be in their own cluster. Originally, the correct number of

clusters was not known, so trial and error was used starting at 4096 clusters. To aid finding

the correct number of clusters, a tool was made that displays all of the points in a cluster on

a page. Sample output from this tool can be seen in Figure II.2. This helps greatly because

a page can have more than 40,000 keypoints on it and it becomes hard to distinguish the

keypoints. The tool allows the grouping of the key points to be evaluated and if too many

keypoints in a cluster were different then more clusters are needed to allow each cluster to

have only the keypoints describing a unique characteristic. However, if the keypoint that

describes the same unique characteristic is in different clusters then the number of clusters

needs to be reduced. We found that with the poor printing practices of the books we are

working with the scanned images have splotches and the type face is grainy. This affected

the number of keypoints on the page resulting in less accurate results. To alleviate this the

FAST algorithm [4] to find the keypoints was executed before a threshold, which is used to

remove background noise, was applied. This prevented the threshold from taking to much

of the detail from the image resulting in less keypoints. The SIFT algorithm [3] was then

used to find the descriptors like before. After using the debugging tool to find where the

keypoints were correctly distributed we found that 350 clusters was accurate for the novels

being used.

Deciding if two words match

Our first step is to compare each word on the first page with all of the words from the second

page. This ensures that every combination is taken into account. A top coverage score is

calculated for each word from the first page.

9

Fig. II.2. Output from the clustering tool that shows the keypoints in cluster 3.

10

TopCoverageScore =
matches
size1

+matches
size2

2
∗ widthS

widthL

Matches is the size of the intersection of the two words. Size refers to the number of keypoints

each word has. Width is how wide each word is in pixels.

This score is used to filter the number of words each word could match. It does this by

giving word sets that do not have many cluster ids in common a low score. The low score

is essentially the same as throwing the word out. The word sizes of the words is also taken

into account. The equation always has the smaller word’s pixel width divided by the larger

word’s pixel width. This ratio will give a low score to words with largely different widths

and an almost unchanged score to similar width words. The width in pixel of the two words

is also scaled to the dimensions of each page. This ensures that differing qualities of the

scanned images or different font sizes is taken into account when comparing the widths. This

helps prevent the algorithm from matching words together that are similar, but completely

different. For example “the” and “thesaurus” are alike since “the” is present in both, but

they are not the same and shouldn’t match. With the length of the word taken into account

these words will not match.

Once all of the scores have been computed a sorted list with the highest scores first is

compiled. A list of the top twenty matches is then used to calculate the LCS score. By only

comparing a word to the top twenty matches a vast amount of time is saved considering that

there can be anywhere between 200 and 500 words on a page depending on the font size.

This greatly speeds the matching up as the LCS function is a bottleneck. After the LCS

score is calculated a final weighted score is made.

ProbabilityWeighted = LCSScore ∗ LAMBDA + topcoveragescore ∗ (1 − LAMBDA)

This final score is used to determine the match for each word. The score will range from 0

to 1 and the higher is better. This is the first step of the matching algorithm. The problems

this step still has not addressed are dealing with multiple occurrences of the same word,

small words, and similar words. These problems require a more in depth solution. Our first

step is accurate for longer, more unique words.

11

Position matching

To increase the accuracy and thus the usefulness of our tool we decided to implement position

based matching. Different approaches were tried including finding the offset between two

pages and using a one to one matching from there. This approach could not handle added

text between the two editions. Another way attempted involved taking the words around

the word to be matched and comparing the top twenty matches of each of the surrounding

words. This approach was abandoned due to the extensive time require to compute the

thousands of potential matches. The time constraint of the data being available in minutes

and the inaccuracy of the first approach led us to take a multi-step approach.

Small words are particularly difficult to match since they have very few keypoints and are

often found inside other words. For example the letter “a” is a commonly used vowel that

appears often in words. Finding the correct match for these words requires a different

approach. Currently, words one or two letters in length are ignored by the algorithm and

will not be highlighted.

We chose to use the context matching approach in the first step, but this time only the top

five matches for each word will be considered instead of the top 20 matches. This greatly

reduces the amount of time it takes to be computed. In this step we first take six words

and find the smallest two words and set them to −1. Setting them to −1 means that we do

not know the match currently and will find the match later once we have more information.

Then two more words are added to the group that are bigger than the threshold set by the

smallest words. Any words that are found that are smaller than the current threshold are

set to −1. Then all of the possible sequences of the six words each with the top five matches

is computed. The sequence that represents a linearly increasing model the best is selected as

the correct pattern. Every pattern is checked by a function that sets values that are twenty

indexes aways from the median of the sequence to −1. This allows outliers, which are most

likely errors to be corrected later in the process. Once all the sequences have been considered

12

the pattern with the most number of matches is selected. Then the process is started over

with the next set of words until all of the words have been completed.

The next step addresses the words with “−1” as their matching word. In this step we find

the sections that have “−1” and take the words before and after’s match that is not “−1”

and set these as anchors. The anchors are checked to make sure they are not outliers. Then

the “−1” matches are filled with the linearly increasing index. This sequence is then checked

to see if it is a valid sequence and if it isn’t the result is set “−1”. This step relies on being

able to accurately find anchors. From the testing we have done on the novels we have been

pleased with the accuracy. The anchors are larger words that are more unique. The previous

step has set smaller words to “−1”, so an anchor should not be a small word, which are more

likely to be incorrectly matched.

13

CHAPTER III

COLLATION TOOL ADDED TO CRITSPACE

CritSpace

CritSpace is a creativity support environment, previously developed in our lab, that uses

spatial information management strategies to help increase the users productivity. The

usefulness of CritSpace comes from being able to move a panel that can contain an image,

a text editor, or a facsimile viewer that lets one select the next image anywhere on the web

page. An example layout of CritSpace can be seen in Figure III.1. This custom layout

combined with multiple tools in one platform cater to the process of collation. We decided

to incorporate our collation tool into CritSpace to add the flexibility that CritSpace provides

to our collation tool.

Collation tool

Control panel

Our Collation tool is comprised of a control panel and image panels that are created by the

control panel. The control panel allows the user to select what page for each book they wish

to compare. This is done by rotating the dial as seen in Figure III.2 to the desired page

number. After the page numbers are set the user clicks the first button called Collation. This

will create two image panels in the workspace. Since the tool is integrated into CritSpace

the user is able to enlarge/shrink the images and order the images to their preference. Also

multiple collation panels can be open simultaneously allowing greater flexibility.

Collation modes

The collation tool currently supports three different modes to aid in the collation process.

The first mode, seen in Figure III.3, is the differences that displays the differences between

the two pages from each edition in green. This mode is the main collation mode and allows

14

Fig. III.1. An example of the Critspace environment with an image viewer
panel, text editor panel and a facsimile viewer panel to select images.

the user to quickly identify differences between two pages. In Figure III.3 the orange, red,

and blue boxes point out the differences found between the two editions of the novel. The

words in the first book are hyphenated where as the second book omits hyphens. Also the

maroon box shows that the first page is offset from the second page.

The next mode is the tracking mode which, when chosen, allows the user to move the mouse

over a word in the first image and its matching word will be highlighted on the second book.

This can been see in Figure III.4 where the user moved his mouse over the words on the left

page and the matches were highlighted on the second page. The words on the first book are

highlighted blue first and then changed to black after a new word is chosen to empathize the

currently selected word. The words on the second page are highlighted red instead of blue.

15

Fig. III.2. Control Panel for the collation tool that lets the user select the
page numbers and mode.

16

Fig. III.3. The differences between two pages are shown.

17

Fig. III.4. Tracking feature displayed on the Donne Poems.

This feature is helpful to easily find the offset between the two pages as well as verifying

that the tool is matching words correctly.

The last mode is the annotation mode and can be used in conjunction with the other modes.

When the annotation mode button is clicked a text box appears at the top of the control

panel as seen in Figure III.5. The user simply types the note into the text box and then

clicks on a word on the second page to add the note to the selected word. To use this mode

in conjunction with the tracking and differences mode the user needs to already be in either

the tracking or differences mode.

18

Fig. III.5. Annotation feature

19

How the matching algorithm is executed

Users require a quick and responsive interface that serves data in a timely manner. The

definition of timely can vary vastly, but for this project the goal is to have a match show

up in a few seconds. Currently, from start to finish finding the differences between two

pages can take several hours. Fortunately, the difference computation does not need to be

computed in real time like other applications may call for. To meet the time requirements

of the project the segmentation and clustering process with k-means is computed for each

pair of editions when they are added to the program. The results are stored in text files

that are read in by the matching portion of the program. When the user selects the pair

of pages to be computed and clicks the create button a message is sent to a servlet written

in Java. This servlet takes the page numbers and forwards them to the matching program,

that is then executed. After it is finished the results text file and other supporting text files

are loaded into a JSON structure by the servlet and are sent back to CritSpace. Then, the

message is parsed and used to display the results on the images.

Testing material

Currently, the collation tool has been tested on The Adventures of Sherlock Holmes and

the Donne Poems written in 1633 and 1635. The Sherlock Holmes set of editions was used

during the development of the tool because of the high resolution facsimiles available and

the notable differences between the editions. One edition has a larger font size ,which results

in an offset between the pages, and there are different words and capitalizations throughout

the novels. The Donne Poems show the tools ability to work on less than desired printing

conditions. The text is bled through from the other side and splotches and random marks

are rampant.

20

CHAPTER IV

CONCLUSION

The vHinman tool addresses many of the problems that previous solutions have yet to solve

by using the elegance and strength of technology. It is able to automate the process of

finding the differences between editions and is wrapped into an interface that supports the

user throughout the collation process. Also, the vHinman can be used on a wider set of novels

than other techniques with the flexibility from the image processing approach. Humanists

now have more time to decipher the differences, and come to conclusions that will help

understand why the changes were made. Also more collations will be able to be completed

with the increased speed. With integration into CritSpace the collation tool is in a platform

that supports collaboration which will be helpful in larger collation efforts. Ultimately, this

tool will help humanists complete their tasks easier and more efficiently.

21

CHAPTER V

FUTURE WORK

Supporting multiple editions

With the current configuration of the collation tool, comparing three or more editions to

each other would be difficult. Since it is set up for two editions, the three novels would have

to be split into pairs to collate which results in added work. Luckily, with the customizable

panel layout of CritSpace adding another image panel to support more editions to be col-

lated at once would not be difficult. With multiple copy collation the user would need to

select which text to be the baseline that all of the others would be compared to. The combi-

nations between the baseline copy and each additional copy could be precomputed to have

quick results for the user. Adding this to the collation tool would help greatly in collating

Shakespeare’s First Folio which has have multiple different editions. Some of the editions

had corrections made during the print runs [5]. This tool would be helpful in quickly finding

the differences between the editions.

New novels

The collation tool could be expanded to new novels that are in different languages than

English. The image processing approach [6] has been shown to work with the Telugu lan-

guage, which is not based on a Latin alphabet, but a Brahmi alphabet. This is a significant

advantage over OCR because our collation tool can be much more language independent

than OCR which needs to support each language. This can open up a vast number of novels

to be collated that previously would need to be done by hand. In order to work with a new

novel the number of clusters may need to be adjusted depending on the uniqueness of the

alphabet, but this is an easy calibration task.

22

REFERENCES

[1] Michael Neal Audenaert. CritSpace: An Interactive Visual Interface to Digital Collections
of Cultural Heritage Material. PhD thesis, Texas A&M University, 2011.

[2] Gordon Lindstrand. Mechanized textual collation and recent designs. Studies in Bibli-
ography, pages 204–214, 1971.

[3] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[4] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection.
In Computer Vision–ECCV 2006, pages 430–443. Springer, 2006.

[5] Alice Walker. Textual problems of the First Folio. CUP Archive, 1953.

[6] Ismet Zeki Yalniz and R Manmatha. An efficient framework for searching text in noisy
document images. 2011.

23

