
NEURAL NETWORK APPROACH TO

FEATURE SENSITIVE MOTION PLANNING

An Undergraduate Research Scholars Thesis

by

JOSE ANDRES MEDINA VARGAS

Submitted to Honors and Undergraduate Research
Texas A&M University

in partial fulfillment of the requirements for the designation as

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Research Advisor: Nancy Amato

May 2014

Major: Computer Engineering

TABLE OF CONTENTS

Page

ABSTRACT . 1

ACKNOWLEDGMENTS . 2

I INTRODUCTION . 3

II BACKGROUND . 6

Preliminaries . 6

Related Work . 7

Adaptive Methods . 7

III METHODS . 10

Roadmap Construction . 10

Training the Neural Network . 11

Create the Training Map . 11

Neural Networks . 12

Forward Propagation . 14

Visibility Approximation . 14

Back-propagation and Weight Updates . 15

Choosing a Sampler . 17

Example . 18

IV RESULTS . 20

Visibility Distribution using Neural Networks 20

Experimental Setup . 21

Page

Results . 23

V CONCLUSION AND FUTURE WORK . 26

REFERENCES . 28

ABSTRACT

Neural Network Approach to
Feature Sensitive Motion Planning. (May 2014)

Jose Andres Medina Vargas
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Nancy Amato
Department of Computer Science and Engineering

Motion planning (MP) is the problem of finding a valid path (e.g., collision free) from a

start to a goal state for a movable object. MP is a complex problem with a myriad of

applications, ranging from robotics, to computer-aided design, to computational biology.

Sampling-based planning deals with MP’s complexity by constructing a graph which ap-

proximates the planning space. Different sampling based planners have been developed to

tackle specific scenarios, but none of these is best for every scenario, e.g., cluttered vs. free

space vs narrow passage. Thus, adaptive methods were created to combine different samplers

effectively to solve more complex and heterogeneous environments.

Adaptive methods have been proposed that learn the best sampler for the entire space or

that partition the space into simple and discrete region types, which are suited for particular

samplers. These methods do not solve the problem of environments containing multiple

complex areas that are difficult to automatically partition. In this thesis, we propose an

alternative approach using neural networks to create an adaptive method that does not

require regions. We replace the concept of regions with a visibility distribution, how “free” a

node is, allowing our method to work for a wider range of interesting problems. Experiments

show significant improvement in speed compared to methods that attempt to use a single

sampler for a complex environment.

1

ACKNOWLEDGMENTS

I would like to thank my faculty mentor Dr. Nancy M. Amato and my graduate adviser Jory

Denny for guiding me and helping me through the completion of this thesis. Without their

continuous support and help this past year I would have not been able to start, progress,

and complete this thesis.

2

CHAPTER I

INTRODUCTION

Motion Planning (MP) is the problem of finding a valid (e.g., collision free) path for a movable

object, referred to as a robot, from an initial state to a goal state. MP is used in multiple

fields, including robotics, game design [10], virtual prototyping [8], and bioinformatics [2].

However, the complexity of Motion Planning is exponential in the degrees of freedom, or the

number of independent parameters that represent the robot’s state [23].

Sampling-based methods [14, 17] have been developed to overcome this exponential com-

plexity, with one common solution being the Probabilistic Roadmap Method (PRM) [14].

PRM creates a graph, called a roadmap, representative of the problem space with the help

of a given sampling technique. Many good sampling techniques have been developed, each

with a different bias and meant for specific scenarios. For example, while a uniform random

distribution works well in free regions, there are others that are better suited to cluttered

regions [1], or narrow passages [11]. These samplers all have unique strengths, but none are

able to solve every type of scenario efficiently [13]. Furthermore, in heterogeneous environ-

ments, i.e., a mix of cluttered, free, and/or narrow passages, no single sampler would work

best for the whole environment [21]. In Figure I.1, one can observe a cluttered area in the top

center, followed by narrow passages through the middle and a free space on the bottom. This

seemingly simple environment cannot be solved efficiently by any single sampler. Adaptive

methods were developed to tackle these challenges in MP by combining different sampling

methods, and using the sampler best suited for each region.

Current adaptive methods have been limited to learning the “best” method for the entire

environment [13] or dividing the map into simple regions [21] and mapping one sampler per

region. By learning only one sampler for the entire environment, an assumption is made that

the entire environment can be mapped effectively with the use of only a single sampler. In

environments similar to Figure I.1, this assumption does not hold, thus making the adaptive

3

Fig. I.1. Sample environment with cluttered areas, free space regions and narrow
passages

method ineffective. Other proposed methods partition the environment into regions. By

assuming that every point in an environment can be easily classified as part of a region of a

particular region type, these methods end up classifying a significant number of regions into

a default non-homogeneous type in which a default sampler is used. Additionally, once the

regions are created, another layer of difficulty appears in connecting those disjoint regions.

This illustrates that for interesting environments, it is rather hard to define such regions.

Motivated by the above limitations, we propose a neural network approach to feature sen-

sitive motion planning that uses the features of the environment to create a continuous

distribution function of the visibility (e.g., connectivity) of each point across the environ-

ment. A neural network is an interconnected group of nodes, inspired by the human’s

nervous system [20]. Neural networks are a powerful tool in pattern recognition and feature

extraction applications. By using this more advanced learning technique we can compute a

distribution function that appropriately represents the visibility of the environment. Unlike

previous attempts to adaptive MP, our approach will not separate the map into discrete

4

regions. Instead, we will distribute appropriate samplers throughout the environment based

on a continuous visibility distribution, thus allowing for more complex environments where

regions are not easily determined by alternative approaches. In summary, our contributions

are:

• Neuron Feature Sensitive Motion Planning (NeuronFSMP) algorithm. A novel adap-

tive sampling strategy capable of assigning samplers to configurations, rather than

regions, by learning the visibility distribution of the environment

• Experimental analysis shows that neural networks are capable to approximate the

visibility distribution of an environment

• Show through experimental analysis that by using a learned visibility distribution one

can adaptively combine sampling methods to achieve faster solving of a query, less

collision detection calls, fewer nodes required to solve a query, and a higher node

creation success rate

In Chapter II, we describe important MP concepts and relevant MP algorithms. In Chapter

III, we show our proposed method and explain our algorithm and the training of the neural

network. We give an example of how our algorithm would work in a simple environment to

better to show how our algorithm works at each step. In Chapter IV, we show the results

of our algorithm in different environments and compare it to other methods. In Chapter V,

we discuss how our method contributes to the MP field and mention some future work to

improve our method.

5

CHAPTER II

BACKGROUND

In this chapter, we will define relevant terms and concepts to MP as well as give a brief

overview of several related adaptive MP algorithms. We present only the work which is

most relevant to our method, but note that there are other MP work not mentioned in this

paper which are tangentially related to our approach.

Preliminaries

A robot is a movable object whose position and orientation can be fully described through n

parameters or degrees of freedom (DOFs), each corresponding to an unique factor affecting

the robot’s state (e.g., object positions, link angles, link displacements). Hence, a robot’s

placement, or configuration, can be uniquely described by a point X = 〈x1, x2, ..., xn〉 in an n

dimensional space (xi being the ith DOF). This space, consisting of all robot configurations

(feasible or not) is called configuration space (C-Space) [19]. The subset of all feasible

configurations is the free space, C-free, while the union of the unfeasible configurations is

the blocked space, C-obst. Thus, MP becomes the problem of finding a continuous trajectory

in C-free connecting the start and goal configurations. Although it is intractable to compute

the C-space [23], we can often determine the feasibility of a configuration quite efficiently,

e.g., by testing for collision in the workspace, the robot’s natural space.

Randomized planners exploit these feasibility tests to produce an approximate representation

of the connectivity of C-free. One of these, the Probabilistic Roadmap Method [14], builds a

roadmap (graph) in C-free. First, collision-free configurations are sampled and added to the

roadmap. Then, a simple local planner (e.g., straight-line) attempts to connect neighboring

nodes; of which only successful connections become edges of the roadmap. Once the roadmap

has been built, the roadmap can be queried for a path between start and goal configurations

by connecting them to the roadmap and using a simple graph search technique, e.g, A*,

6

to extract a path. A benefit of PRMs is that once the roadmap is built, you can query it

multiple times without having to rebuild your roadmap. Uniformly Random PRMs have a

low chance of yielding nodes in narrow passages [12]. This means that a lot of iterations are

needed to successfully connect two components separated by a narrow passage due to the

low probability of creating nodes in such passage.

Related Work

Many variants of PRM have been introduced that sample using different biases. Unlike

uniform sampling, which samples the environment completely randomly, other techniques

are developed to sample towards or away from obstacles. For example, Obstacle-based PRM

(OBPRM) [1], Uniform OBPRM (UOBPRM) [27], and Gaussian PRM [3] generate samples

near C-obst surfaces. OBPRM works by pushing samples toward C-obst surfaces. UOBPRM

guarantees uniform node distribution around obstacles by sampling and analyzing random

line segments for intersections with C-obst boundaries. Gaussian PRM generates pairs of

samples that are a distance d apart according to a Gaussian distribution and if one and

only one sample is in C-free it retains the free sample. There are also samplers designed

for narrow passages, such as Medial Axis PRM (MAPRM) [26] [18] and Bridge Test PRM

[11]. MAPRM works by pushing sampled configurations (free or not) to the medial axis

of the free space. MAPRM theoretically guarantees higher density of sampling in narrow

passages. Bridge Test PRM creates two samples that are a distance d apart (similar to

Gaussian), and if they are both in collision, it checks the validity of their midpoint. If the

middle configuration is valid, the midpoint is added to the roadmap. None of these methods

are able to efficiently solve every scenario, thus adaptive methods have been introduced to

combine these sampling methods.

Adaptive Methods

Hybrid PRM [13] uses reinforcement learning to find the most effective sampler for an entire

environment or space. Simple methods (e.g., uniform sampling) initially produce high re-

7

wards. However, these rewards decrease as the environment becomes oversampled, at which

point more complex samplers tend to be preferred as their samples become more important

to discovering areas of the environment and merging portions of the map. The downside

of Hybrid PRM is that the samples are done globally and thus it tends to converge into a

single sampler for the whole environment instead of using the features of the map to use

specific samplers in certain areas. Adaptive Rapidly-Exploring Random Trees [6] and the

Adaptive Connection Strategy [7] apply this technique to learn the best RRT [17] method

or connection strategy respectively.

The concept of workspace importance [15] has been introduced in many methods to exploit

the geometric features of the workspace to guide sampling. The workspace is generally a

good approximation of C-Space for in many robotic systems such as a simple robot traveling

in a room. Thus, using information from the workspace to guide sampling in the C-Space

helps as a good starting place for adaptive methods. This was applied to Hybrid PRM in

[16] to extract workspace information from cell decompositions to define locations where

samplers should be applied.

Feature Sensitive Motion Planning (FSMP) [21] uses machine learning in a divide-and-

conquer approach to MP. The planning space is recursively subdivided into regions until

the regions can be classified as appropriate for a specific planning strategy from a set of

planners. This method allows for multiple samplers to be used in the regions where they

are expected to be the most efficient. This method does not adaptively learn which sampler

would be the most efficient in which region. Instead, a large and extensive study was done

to map samplers to their defined regions. This long study would have to be repeated as new

planners are developed instead of the method being able to adapt to the benefits of a new

planner. Other subdivision strategies have been proposed in [22].

RESAMPL [24] uses local region information (e.g., entropy of neighboring samples) to decide

how and where to sample, which samples to connect, and how to find paths through the

8

environment. This use of spatial information enables RESAMPL to increase or decrease

sampling depending if the regions are narrow or free.

Unsupervised Adaptive Strategy (UAS) [25] combines FSMP and Hybrid PRM by apply-

ing Hybrid PRM to regions divided by FSMP. This method uses unsupervised learning to

minimize user intervention typically required for manual training and parameter tuning. Al-

though greatly reducing user intervention, UAS is still bounded to the use of discrete regions

that cannot always be easily classified into a specific homogeneous type.

Information Theory Approaches. Burns and Brock [4, 5] used the ideas from information

theory to guide a sampler towards a region where it is predicted to be useful. Through this

guidance, the spatial constraints are explored and an approximate modeling of C-obst helps

guide future sampling.

These methods have shown the potential of using adaptive methods for MP. Many of these

methods still rely on dividing the environment into specified regions or adapting to one

sampler. In the following section, we will explain our approach which does not require

dividing an environment into homogeneous regions based on the features of that region.

9

CHAPTER III

METHODS

We propose a novel approach to adaptive sampling that removes the need of regions and

instead assigns samplers based on the learned visibility of each configuration. By removing

the regions, each node becomes the centric part of our learning algorithm rather than some

region which may or may not be easily classified into a homogeneous class. In this chapter,

we will further describe our method, the training of the neural network, and finally show a

small example to explain the intuition of our algorithm.

Roadmap Construction

Algorithm 1 NeuronFSMP

Input: Environment env, Samplers S

1. NeuralNetwork NN ← TrainEnv(env)
2. Roadmap R = (V,E)← (∅, ∅)
3. repeat
4. c← RandCfg(env)
5. v ← NN.Predict(c)
6. s← MapVisibility(S, v) // Maps v to its respective sampler chosen from S
7. s.ApplySampler(c)
8. if c is valid then
9. R.AddAndConnect(c)
10. until done

In our algorithm, outlined in Algorithm 1, we start by first training the neural network to our

input environment. TrainEnv(), outlined in Algorithm 2, will return a Neural Network that

has been trained to the features of our environment. From there, we begin to construct a

roadmap by retrieving a random configuration and estimating its visibility using the trained

neural network. MapVisibility() then returns a sample from the Sampler Set S which

matches the configuration’s visibility. The sampler will then be applied to the configuration

and if the resulting configuration passes a validity test it will be added and connected to the

10

roadmap. The process of getting configurations and applying a sampler to it will be repeated

until the problem is completed, e.g., the roadmap reaches a desired coverage or contains a

maximum number of nodes.

Training the Neural Network

Algorithm 2 TrainEnv
Input: Environment env
Output: NN trained for Environment env

1. Roadmap R = (V,E)← TrainingMap(Env)
2. NeuralNetwork NN ← InitializeNetwork()
3. repeat
4. error2 = 0
5. for each v ∈ V do
6. predicted← NN.Predict(v) // Forward-pass to predict visibility
7. actual← ComputeVisibility(v)
8. error2 ← error2 + (predicted− actual)2
9. NN.Backpropagation(predicted− actual)
10. NN.UpdateWeights()
11. until error2/||V || < threshold
12. return NN

Algorithm 2 trains a neural network to guess the visibility value at different locations

throughout the input environment. The first step is to create a small training roadmap

from the input environment by using a mixture of different samplers. The appropriate size

for the of our training roadmap can be approximated by using the features of the workspace,

e.g., obstacle vs. free workspace ratio. A larger map will represent the map better but

it will also be more computationally expensive as you must do more collision detections,

connections, and visibility approximations.

Create the Training Map

The first step to training the neural network is to create the training data, the training

roadmap. To create the training map we use a mixture of uniform and obstacle-based

sampling. We combine these two sampling methods to get a better approximation of our

11

Fig. III.1. A feedforward neural network with 2 inputs, 3 layers and one output.

environment. We start by creating n uniform nodes and calculate the ratio of invalid and

valid nodes, multiplied by a constant α:

pobst = α invalidUniformNodes
totalUniformNodes

(III.1)

where pobst is the probability of using an obstacle-based sampler (e.g., OBPRM [1])

We show the effects of α to our visibility distribution in Chapter IV. Using pobst we continue

creating nodes using both uniform and obstacle-based samplers. Everytime we create uniform

nodes we update pobst. We stop when the desired size of our training map is reached. We

connect the valid nodes and return our training map, including the invalid nodes.

Neural Networks

In our algorithm, we train a neural network to approximate the visibility of a configuration

based on its features (e.g., DOF values). A neural network is a combination of artificial neu-

rons connected in some way. Figure III.1 shows a feedworward neural network. A feedfoward

neural network is divided into layers, where the neurons in each layer serve as an input to

the next layer, thus sending the information from the first (input) to the last (output) layer.

Each input into the neuron has a weight associated with it, shown in Figure III.2. The

following formula describes the summing junction of a neuron, in which the product of each

12

Fig. III.2. A single neuron with two inputs showing its input weights

input and its weight is summed together to create an activation value.

activation =
n∑

i=1

xiwi

(III.2)

where n is the number of inputs, xi : is input i, and wi is weight i.

The activation value gets subtracted with the threshold (also called a bias) and fed into a

sigmoid function which will output a number between 0 and 1.

a =
n∑

i=1

xiwi + (−1)t

(III.3)

output =
1

1 + e−a/p

(III.4)

where t is a threshold value and p determines the curve of the function. A smaller p produces

a function more similar to a step function.

In the beginning, we create a neural network with random weights and thresholds. The next

step in Algorithm 2 (lines 3-11) will train the neural network by modifying the weights and

13

Fig. III.3. Forward propagating from input layer to output layer

thresholds of the neurons until the sum of the squares of all the errors between the predicted

and computed visibilities is smaller than some given threshold.

Forward Propagation

We begin training the data by forward propagating the configuration parameters along the

neural network which returns a predicted visibility using the current weights. At each step

we sum the product of the weights and inputs and subtract a threshold value, Equation III.3

and feed it into the sigmoid function, Equation III.4.

The output of the sigmoid function above is then fed as an input to the next layer in the

network. Forward propagating one piece of data with 2 parameters is shown in Figure III.3.

The result of feed forwarding the configuration is saved as a visibility prediction, which will

be then compared to the “actual” visibility approximated in the next step.

Visibility Approximation

In order to train our neural network to correctly guess the visibility of configurations based

on the configuration’s parameters, we must train it on known examples. This means we need

to compute the visibility of the nodes in our training roadmap and compare it to what the

neural network predicts, and adjust our weights accordingly.

14

Fig. III.4. Error in output of neural network

For every node in our training roadmap, we attempt a connection to its k-nearest neighboring

nodes using a simple local planner (e.g., straight line). The visibility then becomes the ratio

between successful connection attempts and total connection attempts.

v =

 0 if not valid

1+connSuccess
1+connAttempts

if valid

(III.5)

We use Equation III.5 instead of the simple ratio of successful and total connection nodes

to differentiate between invalid nodes and valid nodes with no connections.

Back-propagation and Weight Updates

The next step in the training of our neural network is to back-propagate our error from the

output layer to the input layer. Where the error is calculated as,

δ = z − y

(III.6)

where δ is the error on the output neuron, z is the calculated visibility, and y is the visibility

estimated by the neural network.

15

Fig. III.5. Back propagating δout to calculate the δi of each neuron i

Figure III.4 shows the first step in back-propagating the error, which is to calculate said error

by subtracting the calculated visibility from the predicted visibility. The error then back-

propagates itself in a similar way as forward-propagation except that the error propagates

from the output to the input layer, Figure III.5.

δi =
n∑

j=0

δjwij

(III.7)

where δk is the error in neuron k and wij is the weight from neuron i to neuron j.

Once all the errors have been back-propagated properly, we update the weights of each

neuron:

w′ij = wij + µδj
∂fj(a)

∂a
outputi

(III.8)

where i is the input neuron, j is the output neuron, wij is the old weight, w′ij is the new

weight, and µ is the learning rate.

It is important to note the effect of µ to the learning speed. µ affects the learning speed

by acting as a multiplier to the change in weight at each step. A common method to set

µ is to start with a large value and decrease it as the neural network begins to converge.

Back-propagation is shown in Figure III.6.

16

Fig. III.6. Updating the weights coming into neuron i using δi

Once the weights have been updated, a new example data is taken from the training roadmap

and the process repeats itself until all the data has been used. Once a loop through the data

is done, the error is calculated for each example configuration and if the mean squared error

(MSE) is less than some given threshold, we allow the program to exit the loop. If the MSE

is still too large, we go through all the data again, updating the weights again until the MSE

is less than the threshold or a maximum number of iterations is reached.

Choosing a Sampler

With the neural network trained, we are able to predict the visibility of nodes outside our

training roadmap by feeding in the features of the configuration (e.g., x,y,z,clearance). In the

last step of our algorithm, we select a sampler from our list of samplers using the predicted

visibility of a configuration. The visibility is predicted same as we did in the training section,

by using forward propagation. Different ranges of visibilities are mapped to certain samplers,

i.e., a high visibility implies that this configuration has a fairly large free-space around it,

and therefore uniform sampling will work well on it.

17

(a) (b)

(c) (d)

Fig. III.7. Example of our NeuralFSMP algorithm solving a simple environment.
(a) Example environment. (b) Small training map. Successful and failed connec-
tions are shown in dark and light lines respectively. (c) Original configurations
(shown in red) are used to guess the visibility and select a sampler, producing
final configurations (shown in white). (d) Roadmap on example environment
with start and goal configurations. Extracted path is shown using a red, thick
line.

Example

In this section, we will show the intuition of how our algorithm creates a roadmap in a

simple environment, Figure III.7(a). In this environment, we can observe a narrow passage

connecting the top and bottom areas, and a cluttered area directly above the narrow passage.

This simple environment (and a list of samplers) is passed to our main algorithm.

18

The first step in our algorithm is to train the neural network (Algorithm 2) using a small

training roadmap. We calculate the visibility for each node in the training roadmap. In

figure III.7(b) we see such a training roadmap as well as the attempted connections done

for each node. We use these connections to calculate the approximated visibility of each

node, feed the visibility to the neural network, and train it to predict the visibility of future

configuration samples.

After a neural network has been trained, we begin the construction of our roadmap by

randomly sampling configurations, assigning a sampler to it, and applying the rules of the

chosen sampler to the configuration. Figure III.7(c) shows example configurations and how

our algorithm will choose a sample depending on the approximated visibility of them. The

configuration on the top of the map had a “cluttered” visibility, so our algorithm chooses

OBPRM, thus creating a sample near the surface. The configuration in the center-left

obstacle had a “narrow passage” visibility, so we choose Bridge sampling, thus creating a

sample in the narrow passage. The sample at the bottom has a “free region” visibility which

is mapped to Uniform Sampling which keeps the valid configuration.

The process of getting random configurations and selecting a sampler is continued until we

reach an end condition, e.g., a query is solved. When our roadmap is queried with start

and goal configurations, Figure III.7(d), they are added and connected to our roadmap and

using a graph search technique, e.g., A*, we extract a path that solves the query.

19

CHAPTER IV

RESULTS

In this chapter, we will show through experimental analysis the ability of neural networks

to represent the distribution of an environment.

Visibility Distribution using Neural Networks

In this section, we will show the effects of the neural networks hidden units (only 1 hidden

layer used) on the learned visibility distribution of the environment in Figure IV.1. We will

also show the effects of α, discussed in Chapter III. In table IV.1 you can see the visibility

distribution as both of these values change.

All of these experiments were run using a training map of 100, and 1000 neural network

learning iterations. These results show how the probability of using an obstacle-based sam-

pler in the training roadmap helps learn a better distribution of the environment. If α is 0,

the narrow passage and cluttered areas are not well represented, and if α is too large then it

thinks of the cluttered area as a semi-open area as it was able to do many connections. Also

a higher number of hidden neurons allows for more complexity in the learned distribution,

but a number that is too high can also lead to over-fitting to the training data. These results

Fig. IV.1. Heterogeneous 2D environment

20

α
0.0 0.2 0.5 0.6 0.9

of
Hidden
Neurons

2

10

16

18

Visibility Gradient

Table IV.1
Learned visibility distribution of environment in Figure IV.1

show that neural networks are able to appropriately learn the visibility distribution of an

environment given a small training roadmap. I used these results to guide my experiments

in the next section by having a good starting point for α and the number of hidden neurons.

Experimental Setup

We implemented all the sampling methods using the C++ motion planning library developed

by the Parasol Lab at Texas A&M University. The experiments are all conducted on an Intel

Core 2 CPU 2.13GHz x 2 processor with 5.8 GiB of physical memory running Linux 3.9.10-

21

2D Heterogeneous 2D Maze 3D Walls 3D L-tunnel
α 0.3 0.4 0.4 0.5

Hidden Neurons 8n 6n 5n 20n
Training map size 60 200 200 250

Initial Uniform nodes 20 30 50 50

Table IV.2
Environment-specific parameters for NeuronFSMP. n is the robot’s number of
degrees of freedom

100. RAPID [9] is used for collision detection computations. Connections are attempted

between k “nearby” nodes according to some distance metric; here we use k = 7, C-space

Euclidean distance, and a simple straight-line local planner. We map visibilities to samplers

as follows: for high visibility (v ≥ 0.7) we use uniform random sampling, elsewhere we

use OBPRM. The neural network was allowed to run for up to 500 learning iterations.

Figure IV.2 shows the environments used in the experiments (two 2D environments (2 DOFs)

and two 3D environments (6 DOFs). Table IV.2 shows some parameters that were set-up

differently in each environment. A lot of hidden neurons were used for the 3D L-tunnel

because we were already aware of the complexity of the problem and were therefore willing

to spend more time training to get a better approximation of the visibility distribution and

spend less time building the final roadmap.

We use four different comparison metrics. Time, how long does each method take to solve

the given query. The smaller the better as it implies the method is faster for the given

environment. Collision Detection (CD) calls, how many times is the validity function called.

Collision detection is usually considered the bottleneck in PRMs. The smaller the better

as it implies it is less expensive than other methods when talking about collision detection

calls. Node creation success rate, what is the probability of a created node to be valid and

therefore kept in the roadmap. The higher the better as it means each node is more likely

to be kept and therefore waste less time creating invalid nodes. Nodes generated, how many

nodes did it need to create to solve the query. The smaller the better as it each node was

more valuable to the total roadmap.

22

(a) 2D Heterogeneous (b) 2D Clut-
tered Maze

(c) 3D Walls (d) 3D L-Tunnel

Fig. IV.2. Environments for experiments. Green and orange contours are start
and goal respectively

Results

The results of the experiments outlined in the previous section are summarized in Figure

IV.3 except for the 3D L-Tunnel environment as no method but NeuronFSMP was able to

finish it within reasonable time. All of these experiments were run 10 times using different

random seeds, and averages (after exclusion of outliers) were calculated.

NeuronFSMP performed faster than all the methods in all the environments. In the 2D

cluttered maze, it did not significantly outperform HybridPRM as it is to be expected as

it is a mostly homogeneous environment (all cluttered). Another important result is that

23

(a) Time (b) CD calls

(c) Node Success Ratio (d) Nodes generated

Fig. IV.3. Results of the 2D Simple, 2D Cluttered Maze, and 3D Walls environ-
ment.

using NeuronFSMP consistently resulted in a higher chance of creating a valid node. This is

because we purposefully use samples in the regions we know the sample is likely to succeed

and be useful (e.g., use uniform sampling around Cfgs with high visibility).

In the 3D L-tunnel environment, NeuronFSMP took an average of 2.75 hrs to complete

and no run took longer than 4.82 hrs. OBPRM was given over 12 hours without finishing.

HybridPRM could not complete the environment due to the strictly increasing method of

calculating the weights and reaching a float point error. This is a hard problem, thus making

the time the weights are increasing for longer than for other problems. The weights eventually

reached a number the C++ implementation of the algorithm could not hold, thus crashing

the program. This limitation on HybridPRM makes it unusable in this type of environment

24

without some kind of variable that resets the weights when they get too big or cap the weight

at some large value.

25

CHAPTER V

CONCLUSION AND FUTURE WORK

From the results in the first section of Chapter IV, we can see that neural networks are a

good tool to learn the visibility distribution of an environment. By learning the visibility

distribution of the environment, the neural network implicitly learn an approximation of

the C-Space (which is exponentially hard to compute explicitly). In the future, we would

like to run more experiments to see the distribution on different environments, and how

the number of hidden neurons and α affect the distribution on different environments with

different obstacle/free space ratio. The method used to show the learned visibility distri-

bution works well for 2-dof environments but it would get more difficult as the number of

DOF increase. In the future we would like to experiment with other methods of showing the

learned distribution that may work for more complex problems.

Our current implementation requires the visibility ranges that are mapped to each Sampler

to be an input to the algorithm. This limits the adaptability of the algorithm as the user must

already be knowledgable on what sampling method may work best for what visibility numbers

on some specific environment. In the future, we would like to implement an adaptive method

to learn the appropriate sampling methods for each visibility interval. We would also like

to implement more complex neural network structures to learn more complex distributions

and compare the results to see the benefits of potentially increasing the training cost for a

better approximation of the visibility distribution.

In conclusion, we have shown that neural networks are a good tool to approximate the vis-

ibility distribution of an environment, which implicitly also learns an approximation of the

C-Space. Using this method we have introduced NeuronFSMP, a novel variant to feature

sensitive motion planning, capable of assigning different samplers around different configura-

tions based on the learned visibility of that configuration. It is important to note that once

the visibility distribution is learned, it can be applied to multiple parts of the PRM, not only

26

sampling. Similarly to how HybridPRM was applied to connectivity, you can apply different

connection methods (including component connection methods) at different visibility ranges.

More experiments are needed to prove how far can we take the idea of a learned visibility

distribution but our preliminary results are promising and we plan to continue researching

on this topic.

27

REFERENCES

[1] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. OBPRM: an
obstacle-based PRM for 3d workspaces. In Proceedings of the third workshop on the
algorithmic foundations of robotics on Robotics : the algorithmic perspective: the algo-
rithmic perspective, WAFR ’98, pages 155–168, Natick, MA, USA, 1998. A. K. Peters,
Ltd.

[2] N. M. Amato and G. Song. Using motion planning to study protein folding pathways.
J. Comput. Biol., 9(2):149–168, 2002. Special issue of Int. Conf. Comput. Molecular
Biology (RECOMB) 2001.

[3] V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling strategy
for probabilistic roadmap planners. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
volume 2, pages 1018–1023, May 1999.

[4] B. Burns and O. Brock. Sampling-based motion planning using predictive models. In
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 3313–3318, 2005.

[5] B. Burns and O. Brock. Toward optimal configuration space sampling. In Proc. Robotics:
Sci. Sys. (RSS), pages 105–112, 2005.

[6] J. Denny, M. Morales, S. Rodriguez, and N. M. Amato. Adapting RRT growth for
heterogeneous environments. In Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), pages
1772–1778, Tokyo, Japan, November 2013.

[7] C. Ekenna, S. A. Jacobs, S. Thomas, and N. M. Amato. Adaptive neighbor connection
for prms: A natural fit for heterogeneous environments and parallelism. In Proc. IEEE
Int. Conf. Intel. Rob. Syst. (IROS), pages 1–8, November 2013.

[8] M. Garber and M. C. Lin. Constraint-based motion planning for virtual prototyping. In
Proc. ACM Symp. Solid Phys. Modeling, pages 257–264, Saarbrücken, Germany, 2002.
poster session.

[9] S. Gottschalk, M. Lin, and D. Manocha. Obb-tree: A hierarchical structure for rapid
interference detection. Technical Report TR96-013, University of N. Carolina, Chapel
Hill, CA, 1996.

[10] J. P. Hespanha, H. J. Kim, and S. Sastry. Multiple-agent probabilistic pursuit-evasion
games. In Proceedings of the IEEE Conference on Decision and Control, pages 2432–
2437, 1999.

[11] D. Hsu, T. Jiang, J. Reif, and Z. Sun. Bridge test for sampling narrow passages with
probabilistic roadmap planners. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
4420–4426, 2003.

[12] D. Hsu, J.-C. Latombe, and H. Kurniawati. On the probabilistic foundations of proba-
bilistic roadmap planning. Int. J. Robot. Res., 25:627–643, July 2006.

[13] D. Hsu, G. Sánchez-Ante, and Z. Sun. Hybrid PRM sampling with a cost-sensitive
adaptive strategy. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 3885–3891,
2005.

28

[14] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Au-
tomat., 12(4):566–580, August 1996.

[15] H. Kurniawati and D. Hsu. Workspace importance sampling for probabilistic roadmap
planning. In Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), volume 2, pages 1618 –
1623 vol.2, sept.-2 oct. 2004.

[16] H. Kurniawati and D. Hsu. Workspace-based connectivity oracle - an adaptive sampling
strategy for prm planning. In Algorithmic Foundation of Robotics VII, pages 35–51.
Springer, Berlin/Heidelberg, 2008. book contains the proceedings of the International
Workshop on the Algorithmic Foundations of Robotics (WAFR), New York City, 2006.

[17] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Int. J. Robot.
Res., 20(5):378–400, May 2001.

[18] J.-M. Lien, S. Thomas, and N. Amato. A general framework for sampling on the medial
axis of the free space. In Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE
International Conference on, volume 3, pages 4439 – 4444, sept. 2003.

[19] T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM, 22(10):560–570, October
1979.

[20] J. Mao and A. Jain. Artificial neural networks for feature extraction and multivariate
data projection. Neural Networks, IEEE Transactions on, 6(2):296–317, 1995.

[21] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato. A machine learning
approach for feature-sensitive motion planning. In Algorithmic Foundations of Robotics
VI, pages 361–376. Springer, Berlin/Heidelberg, 2005. book contains the proceedings
of the International Workshop on the Algorithmic Foundations of Robotics (WAFR),
Utrecht/Zeist, The Netherlands, 2004.

[22] M. A. Morales A., L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato. C-space
subdivision and integration in feature-sensitive motion planning. In Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), pages 3114–3119, April 2005.

[23] J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc. IEEE
Symp. Foundations of Computer Science (FOCS), pages 421–427, San Juan, Puerto
Rico, October 1979.

[24] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato. (RESAMPL): A region-sensitive
adaptive motion planner. In Algorithmic Foundation of Robotics VII, pages 285–300.
Springer, Berlin/Heidelberg, 2008. book contains the proceedings of the International
Workshop on the Algorithmic Foundations of Robotics (WAFR), New York City, 2006.

[25] L. Tapia, S. Thomas, B. Boyd, and N. M. Amato. An unsupervised adaptive strategy for
constructing probabilistic roadmaps. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 4037–4044, May 2009.

[26] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic roadmap
planner with sampling on the medial axis of the free space. In Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), volume 2, pages 1024–1031, 1999.

29

[27] H.-Y. C. Yeh, S. Thomas, D. Eppstein, and N. M. Amato. UOBPRM: A uniformly
distributed obstacle-based PRM. In Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS),
pages 2655–2662, Vilamoura, Algarve, Portugal, 2012.

30

