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ABSTRACT 

Climate change projections have predicted more frequent and severe droughts 

that may lead to major loss of trees and subsequent range shifts. Drought-induced tree 

mortality leaves both dead & live trees intermixed that remain standing rather than 

leaving clearings that result from acute disturbances such as fire. Thus this disturbance is 

difficult to detect at a regional scale, but is a harbinger of range shifts so its detection is 

high priority. During the summer of 2011, the southwestern US including Texas was 

impacted by an extreme drought. Statewide tree mortality was observed and thus 

provided an opportunity to test the efficacy of moderate to coarse resolution remotely-

sensed indicators to detect, map and enumerate drought-induced tree mortality. 

Calibration models of 250-m ΔNDVI and 1-km VegDRI with 599 field data plots of tree 

mortality were developed to produce predictive maps. ΔNDVI, ΔPV, and NPV mortality 

indices were derived from 30-m Landsat 7 and compared to each other and 250-m 

ΔNDVI. ΔNDVI predicted tree mortality best (Khat = 0.15), with an estimate of 9% 

mortality that was primarily concentrated in East and Central Texas. However at 30-m 

resolution for East Texas, ΔPV matched the validation data best (Khat = 0.21). 

Maximum entropy models were used with the field data to test the relative 

importance of 2011 drought conditions versus historical climate drivers of the 

distribution of drought-induced tree mortality. 2011 drought conditions explained 57% 

of the resulting model (AUC = 0.84) and bioclimate variables explained 43%. Mean 

annual precipitation explained 17% of tree mortality, followed by 2011 isothermality 



iii

(16%). Models were run to test the contribution of edaphic, biotic, and climatic factors 

toward explaining dead tree distribution, and also test of effects of scale and location 

(East vs. Central Texas). Climate was the highest contributor at the state scale (42%) and 

also in Central Texas (48%). In East Texas, edaphic factors were the major driver (47%). 

As drought frequency and intensity increase as predicted, a refinement of detection 

techniques and understanding of the drivers of tree mortality are needed to understand 

and predict the nature of drought consequences for forests. 
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1. INTRODUCTION AND LITERATURE REVIEW

Global climate change is projected to produce warmer, longer, and more frequent 

droughts that have the potential to trigger widespread tree die-offs (Bernstein et al. 2007; 

Breshears et al. 2005).  These predicted changes in climate suggest droughts may 

become more common and/or more intense in some regions of the world (Bernstein et al. 

2007). Larger and more frequent drought-related tree mortality events can alter: 

biogeochemical cycling (McKinley et al. 2011; Moore et al. 2016), energy balance 

(Royer et al. 2011), and distributions of faunal and floral species within terrestrial 

ecosystems (Parmesan and Yohe 2003). Indirect effects can be just as or more 

devastating than the drought itself. For example, insect and pathogen outbreaks can be 

extensive, with bark beetle outbreaks being the most important agent of tree mortality; 

and wildfire risk greatly increases with drought (Vose 2016). Widespread tree die-offs 

have been observed across the western United States and this has been attributed to an 

increase in mortality rates due to regional warming in the past decade and consequent 

decreases in water availability (Breshears et al. 2005; van Mantgem et al. 2009). 

1.1. The global trend of drought mortality 

Future climate change is predicted to bring increases in mean temperature (2-4 

°C globally), and altered precipitation regimes which will together produce an increase 

frequency and severity of drought events and conditions (Bernstein et al. 2007; Sterl et 

al. 2008). Understanding and forecasting how these changes will impact our ecosystems 
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is emerging as a major challenge for global change scientists (Allen et al. 2010; 

Boisvenue and Running 2006; Bonan 2008). Climate change effects on forests are of 

particular concern due to their direct value to society (e.g. timber and watershed 

protection) and as habitat for much of the earth’s biodiversity. Recent die-offs have 

raised the alarm on the vulnerability of forests to changing climate and there has been an 

increase in the documentation of these events that may have a loose association with the 

increase of warming temperatures (Allen et al. 2010). Allen et al. (2010) compiled all 

recent major drought-related forest mortality events from 1970 to 2010, finding 88 

events in each wooded continent across multiple forest types and climatic zones.  

 The mechanisms of drought-related mortality can be very complex as there can 

be multiple abiotic and biotic factors that interact, weakening and eventually causing 

death of a tree. These factors depend on the environmental and climatic conditions of the 

mortality event and each factor can have any range of contribution both direct and 

indirect to the death of a tree. Ecological and landscape variables such as soils, elevation, 

aspect, slope, and topographic position could potentially interact with density-dependent 

processes such as insect outbreaks, competition, or facilitation, which creates the spatial 

pattern of mortality that is ultimately produced (Allen et al. 2010; Fensham and Holman 

1999; Lloret et al. 2004). However, if severe enough, the drought alone can drive 

extensive forest mortality independent of tree density (Allen et al. 2010; Floyd et al. 

2009).  

 Other factors that weigh heavily into the vulnerability to mortality include 

species and associated life-history traits and tolerances, leading to differential rates 
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between co-occurring species. Size and age are a factor as well, with larger and/or older 

having been repeatedly found to be more vulnerable to drought-induced mortality 

(Moore et al. 2016; Mueller et al. 2005; Nepstad et al. 2007). 

A source of complication for interpreting die-off events are lagged responses, 

where mortality can sometimes occur years after drought stress (Bigler et al. 2007; 

Pedersen 1998, 1999). Also, the ability of trees to respond to stress through adaptations 

such as reallocation of resources, modification of root structure, or dormancy, can lead 

to non-linear responses to drought stress in both space and time (Allen et al. 2010; Miao 

et al. 2009). 

1.2. The 2011 Texas Drought 

In October 2010, a La Niña event occurred resulting in record low rainfall and 

extreme drought in Texas until September 2011. This was the driest 12-month period 

recorded in Texas with statewide precipitation totaling 287 mm (Hoerling et al. 2013). 

This dearth of precipitation coincided with record high temperatures in the summer. The 

mean temperature for June through August, 30.4°C, was warmer than any previous 

single month in the instrumental record and 2.9°C above the long term mean (Hoerling 

et al. 2013). The combination of conditions ranked Texas in extreme to exceptional 

drought from June-September 2011 (Dawson 2011; NOAA National Centers for 

Environmental Information 2011). Severe drought continued throughout 50% or more of 

Texas forests in both 2012 and into 2013. The Palmer Drought Severity Index (PDSI, 

Alley 1984; Palmer 1965) is a standardized meteorological drought index used to 
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estimate relative dryness and spans from -10 (dry) to +10 (wet).  The soil moisture 

algorithm uses a supply-and-demand concept of the water balance equation, using local 

temperature and precipitation inputs as well as available water content of the soil. PDSI 

in Texas was a record low of -7.93 in September 2011. The next lowest was -7.80 which 

occurred in September 1956 (Hoerling et al. 2013).  For June through August 2011, 

PDSI was -5.37, the lowest value for those dates since 1789 (Dawson 2011; NOAA 

National Centers for Environmental Information 2011) (Figure 1). This drought has 

resulted in the death of an initial estimated 300 million trees. 

1.3. Approaches for estimating ecologic effects of drought 

Metrics derived from satellite imagery, e.g. , the normalized difference 

vegetation index (NDVI) have been used successfully to show and quantify change in 

vegetation condition in different ecosystems (Washington-Allen et al. 2006). Satellite 

remote sensing NDVI and similar indices have been used to detect ecological 

disturbances such as drought, fire, and hurricanes. The enhanced vegetation index (EVI) 

optimizes the vegetation signal with improved sensitivity in high biomass regions and 

reduces the canopy background signal and atmospheric influences (Huete et al. 2002). 

Mildrexler et al. (2007) created a Disturbance Index (DI) that is based on MODIS-

derived land surface temperature (LST) and the EVI. By detecting changes in 

temperature and vegetative condition, The DI provides information on large-scale 

ecosystem disturbances such as disturbance location, area, intensity, and recovery. 

Archibald et al. (2009) assessed the environmental factors that are determinants of burnt 
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area using satellite-derived burned area maps, correlating burn area with other remotely 

sensed data on environmental factors such as land cover and topographic roughness. 

Remote sensing has also helped to quantify number of trees impacted by a major 

hurricane (Chambers et al. 2007).  Moore et al. (2016) generated regional-level estimates 

of dead trees from the 2011 drought using ForWarn’s MODIS NDVI change product, 

exploitingan exponential relationship found between numbers of dead in the field plots 

and the NDVI change value. Results from this study found that about 6.2 million trees 

died from 2011 to 2012. Using the same data, the current study creates a continuous 

(per-pixel) estimation of mortality and explores and compares different ways of 

calibrating a tree mortality model. 

1.4. Dissertation overview 

This document explores questions related to both the detection and predictability 

of drought-related mortality.  Chapter 2 examines a suite of indices derived from 

moderate- to coarse- resolution imagery and tests their ability to model and determine 

the biogeography of tree mortality from the 2011 Texas Drought. Objectives were to 1) 

Determine the mortality detection threshold for each index, 2) Assess the ability of each 

index to estimate tree mortality relative to that of Moore et al. (2016), and 3) Compare 

and contrast the strengths and weaknesses of each index. 

 Chapter 3 examines the relative role of long-term average climate conditions 

(environmental states) vs. time-of-drought weather conditions in determining drought-

related mortality. A species distribution modeling approach was used to accomplish this 
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objective and also to determine which long-term and/or immediate condition best 

explains mortality patterns. Lastly, chapter 4 considers edaphic, biological, and climatic 

variables and weighs their relative contribution to drought mortality, examining the 

relationship of each important driver to dead tree prediction. It also examines 

contribution differences between scales and locations in different climate zones. Chapter 

5 presents final conclusions for the study. 
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2. MODELLING DROUGHT-RELATED TREE MORTALITY WITH MODERATE 

TO LOW RESOLUTION IMAGERY 

 

2.1. Introduction 

Over the last several hundred years, significant areas of the southwestern United 

States have experienced intense and, in some cases, unprecedented drought that has led 

to widespread tree mortality (Allen et al. 2010; Breshears et al. 2005; Swetnam and 

Betancourt 2010). Texas and much of the southwestern US have been in an extended 

drought since 2000 (Hoerling et al. 2013; Overpeck and Udall 2010). In the recorded 

climate history of Texas, the 2011 drought was comparable in severity only to a drought 

that occurred in 1789 (PDSI value of -5.37) (Dawson 2011; NOAA National Centers for 

Environmental Information 2011). By mid-September of 2011, 88% of the state 

experienced 'exceptional' conditions, with the rest experiencing 'extreme' or 'severe' 

drought. Widespread tree mortality was observed by the general public and led to a 

request from the state legislature to the Texas A&M Forest Service for an estimate of the 

number of trees that were dead and dying from the drought (Moore et al. 2016). 

Consequently, this exceptional to extreme drought provided a rare opportunity to test 

different remote sensing methodologies for evaluating the regional (State-level) 

consequences of drought induced-tree mortality.  

Satellite-based remote sensing technology provides an excellent means of 

quantifying patches of disturbance, and can also be used to measure biophysical 

characteristics of vegetation that are sensitive to drought including vegetation canopy 
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cover, biomass (Washington-Allen et al. 2006), and net primary productivity (NPP, 

Running and Zhao 2015). A commonly used remote sensing-based proxy for these 

measurements is the normalized difference vegetation index (NDVI, Rouse Jr et al. 

1974) that is approximately equal to the fraction of photosynthetically active radiation 

(FPAR, Running et al. 2004).  NDVI is calculated from the surface reflectance of red (R) 

and near infra-red (NIR) radiation as: 

NDVI = NIR – red / NIR + red 

NDVI as indicator of vegetation sensitivity including mortality to drought was 

illustrated in Breshears et al. (2005) where in 2002 and 2003 areas of drought-induced 

mortality in piñion pine (Pinus edulis) were delineated in a four state region of the US 

southwest using 1 km
2 
mean late May to June NDVI that was derived from the National

Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer 

(NOAA AVHRR). High-resolution aerial photographs of stand-level mortality were 

used to verify areas of drought mortality in the satellite imagery. AVHRR data has been 

available since 1978, with 4 (TIROS-N) to 6 (NOAA-15, AVHRR/3) spectral bands or 

channels at ~1.1-km pixel resolution. AVHRR was designed as a weather sensor to 

specifically monitor clouds and surface temperatures. However, AVHRR sensors have 

been useful in other applications including the mapping and monitoring of global 

vegetation dynamics (e.g., Nemani et al. 2002; Pinzon and Tucker 2014) and drought 

dynamics using the Vegetation Drought Response Index (VegDRI, Brown et al. 2008). 
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VegDRI was designed to quantify the response of vegetation to drought by 

incorporating two AVHRR-derived observations of vegetation condition with the PDSI, 

the 36 week Standard Precipitation Index (SPI), climatic inputs, and other biophysical 

information such as land cover/land use type, soil characteristics, and ecological setting 

to monitor vegetation response to drought conditions (Brown et al. 2008). VegDRI maps 

were created by 1) processing data for eight variables across 776 weather station 

locations across the United States, 2) generating an empirically derived model by 

applying a supervised classification and regression-tree analysis to information in the 

database, and 3) applying the models to the geospatial data to produce a 1 km resolution 

map for the study area (Brown et al. 2008). 

Drought-related tree mortality poses a particular challenge for remote sensing 

because unlike other catastrophic disturbances such as fire and hurricane damage where 

massive treefall or stand clearance is evident, the impacts from drought are rarely 

spatially discreet but rather are diffuse across a landscape as dead and dying trees remain 

standing. As a result, confirmatory visual detection of tree mortality requires that the 

spatial resolution of the image pixel be high enough to resolve individual dead tree 

canopies (e.g., Breshears et al. 2005). Although ideal, the acquisition of high-resolution 

imagery at the state and larger spatial scales is expensive and the processing and analysis 

of this dataset will also be time-consuming and computationally intensive making it 

more feasible for detection of disturbances that occur at small spatial scales. Therefore, 

remote sensing analysis of large-scale drought mortality must deal with a tradeoff 
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between the expense of data acquisition and processing, spatial resolution, spatial extent 

and in some cases, temporal extent and frequency. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments 

aboard the Terra and Aqua satellite platforms provide global coverage with 36 spectral 

bands and pixel spatial resolutions of 250-m, 500-m, and 1-km. The MODIS sensor 

passes overhead daily, increasing the likelihood that there will be an unobscured view of 

an area of interest every few weeks. Daily passes also provide the ability to view within-

season phenology of vegetation and therefore the ability to monitor possible disturbances 

making it useful for forest health monitoring (Lutz et al. 2008). Many forest assessment 

programs utilize MODIS products including the Eastern Forest Environmental Threat 

Assessment Center (EFETAC, http://www.forestthreats.org) that uses an ongoing web-

based early warning monitoring system called ForWarn to detect impacts to forests from 

hurricanes, wildfire, insect damage, and other disturbances (Hargrove Jr et al. 2009). 

Mildrexler et al. (2007) used a combination of the MODIS enhanced vegetation index 

(EVI) and land surface temperature (LST) products to develop a continental scale 

disturbance index (GDI) that detects the location, spatial extent, and duration of 

disturbances such as fire, insect epidemics, flooding, climate change, and land use. 

At finer pixel resolutions varying from 15-m panchromatic to 120-m thermal, the 

series of Landsat satellites and sensors from 1-5, 7 and 8 (Multispectral Scanner (MSS) 

Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+), Operational Line Imager 

(OLI), and Thermal Infrared system (TIRS) have been used extensively to monitor forest 

disturbances (e.g., Hansen et al. 2013, Macomber and Woodcock (1994). Macomber and 
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Woodcock (1994) used Landsat to examine drought-related tree mortality using an 

unsupervised classification method. Landsat is still the primary sensor used today and 

improved computational algorithms and hardware computing technologies are allowing 

processing of decadal time series of datasets at global spatial scales. Hansen et al. (2013) 

quantified global forest change using parallel computing to process over 650,000 

Landsat scenes from 2000 to 2012. However, the higher spatial resolution of Landsat is a 

tradeoff with its temporal sampling interval of every 14 to 16-days, thus reducing the 

likelihood of obtaining cloud-free images, whereas the daily AVHRR & MODIS 

overpasses offer a higher likelihood of cloud-free observations for a larger area, albeit 

with coarser spectral resolution.  

Studies examining change detection of vegetation at regional to continental 

scales using coarse resolution data are less prevalent than those using fine resolutions 

(Coppin et al. 2004). Coarse scale products have been used to look at changes in primary 

productivity (Zhao and Running 2010), large natural disturbances (Tansey et al. 2004), 

climate-driven phenology (Moody and Johnson 2001), and deforestation (Malingreau et 

al. 1989; Zhan et al. 2002). These studies use diverse techniques and use multi-date 

differencing (Kasischke and French 1995), logistic regression, multi-temporal change 

vector analysis (Lambin and Strahlers 1994), decision trees (Borak and Strahler 1996) 

principal components analysis (Eastman and Fulk 1993; Young and Wang 2001), and 

hybrid methods (Zhan et al. 2000). 

Another alternative for detection of diffuse drought-induced tree mortality is a 

sub-pixel analysis method that would be able to detect the fraction of the spectral 
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response that is indicative of mortality within a pixel. Sub-pixel analyses use 

multivariate discriminant analysis statistical techniques including principle components 

analysis, multiple regression, and factor analyses or some other spectral mixture analysis 

(SMA) technique to generate fractional components of a pixel that correspond to ground 

objects that are either linearly or non-linearly combined. Linear unmixing assumes that 

the pixel-level spectral reflectance is the linear combination of endmember spectra or 

fractions; however, there are a number of endmember combinations that can produce a 

particular spectral signal (Asner et al. 2000). To account for this variability, Asner and 

Lobell (2000) developed the Automated Monte Carlo Unmixing (AutoMCU) algorithm 

that uses an iterative random selection of endmember reflectance combinations (Asner 

and Lobell 2000; Bateson et al. 2000). Huang et al. (2010) correlated change in PV with 

field measures of above ground biomass (AGB) to examine the effects of widespread 

piñon-juniper mortality on carbon stocks. Similarly, Huang and Anderegg (2012) used 

NPV derived from SMA analysis and field measures of above ground biomass (AGB) to 

estimate the carbon footprint of Aspen dieback. 

The fractional components within a pixel of a forested ecosystem include 

photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and bare ground.  

SMA can detect widespread as well as diffuse disturbance impacts (McDowell et al. 

2014) because it is capable of detecting sub pixel cover. However, one of the problems 

associated with detecting NPV is the greening up of the understory following canopy 

dieback that results in underestimation of tree death. This impact can be mitigated with 



13 

SMA because canopy mortality can be quantified as an increase in NPV rather than an 

increase in PV (Adams et al. 1995; McDowell et al. 2014). 

Consequently, using the 2011 drought as our experimental backdrop, I aimed to 

assess the ability of three vegetation indices, NDVI, VegDRI, and NPV, that were 

derived from publicly available moderate (Landsat) to coarse (AVHRR and MODIS) 

resolution satellite technology to detect diffuse tree mortality and determine which 

methods are most promising for use in regional to global detection of drought mortality. 

Extensive tree mortality field data collected after the 2011 drought allowed the following 

objectives to be addressed: 1) Determine the mortality detection threshold for each 

index, 2) Assess the ability of each index to estimate tree mortality relative to that of 

Moore et al. (2016), and 3) Compare and contrast the strengths and weaknesses of each 

index. 

2.2 Methods 

2.2.1. Field data collection 

The Texas A&M Forest Service conducted a statewide rapid damage assessment 

of tree mortality during the summer of 2012 that resulted in the collection of 599 plots 

distributed across 10 regions in Texas:  the Panhandle, Trans Pecos, North, Central, 

South, Brazos Valley, Southeast East, Southwest East, Northeast East, and Northwest 

East (Fig. 1). Within each region, two-stage unequal probability samples with 

replacement were conducted (Lohr 1999). A 10 km × 10 km grid was overlaid on a 

forest distribution map that was prepared using techniques developed by (Wilson et al. 
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2012) from Forest Inventory & Analysis (FIA) datasets for Texas (Wilson et al. 

unpublished data) creating a list of primary sample units (PSUs) of known forest area. 

PSUs were then selected with a probability proportional to forest area. In each sampled 

PSU, seven secondary sample units (SSUs) consisting of 0.16 ha circular plots were 

selected at random.  

 

 
Fig. 1. FIA Regions and distribution of field plot locations. 

 

 

This sampling procedure, described in Moore et al. (2015) recorded dead trees 

≥12.7 cm in diameter, size (diameter), and identification to at least the genus level were 

recorded. Mortality from insects and disease was observed and noted, as were any other 

causes besides drought, if known. Because mortality from Hypoxylon canker (common 
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in Quercus) and Ips beetles (common in Pinus) is accelerated during drought, trees thus 

diagnosed were considered drought-killed.  This dataset was used to both calibrate and 

validate the satellite remote sensing-based biophysical products used in the techniques 

described in this section. 

2.2.2. Data acquisition and processing of ΔNDVI and VegDRI 

The data sets used in this analysis are listed in Table 1. Only forested area 

was analyzed, which was defined using the FIA forest proportion map (Fig. 2a), creating 

a mask consisting of pixels with 50% or greater forest proportion. ΔNDVI data layers 

produced for the EFETAC ForWarn system (Hargrove Jr et al. 2009) were acquired to 

test its usefulness as a drought mortality index. ForWarn uses an 8-day MODIS-derived 

NDVI time series with a moving window that is 24 days long to increase the likelihood 

of a cloud- and smoke-free image. The image I analyzed was the percent change NDVI 

between April 30 and May 23 of 2012 (after the drought) window and the same window 

in 2011 (prior to the onset of acute mortality) (Fig. 3a). The growing season was selected 

in order to have leaf-out images to make tree death apparent in the forest area. 

VegDRI was obtained from the National Drought Mitigation Center (NDMC) in 

the Center for Advanced Land Management Technologies (CALMIT) at the University 

of Nebraska-Lincoln. The image date analyzed was August 27, 2011 (Fig. 3b) because it 

coincided with the peak of the drought. Important components of the VegDRI index are 

the atmospheric drought indices, which are captured in real time during the drought 
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event itself. This image date best captured immediate tree mortality because it was taken 

within the growing season when deciduous trees should not have been dormant.  

 

 

Table 1 
Spatial data and indices used to generate models of percent dead trees. 
Data Units Resolution 

(m) 
Satellite Source/attributes 

Forest density live trees > 5 in. 
DBH acre-1

 

250 MODIS FIA (Wilson et al 2012) 

Forest proportion Fraction forest per 
pixel 

250 MODIS FIA (Wilson et al 2012) 

NPV and PV % non 
photosynthetic 
vegetation and % 
Photosynthetic 
vegetation 

30 Landsat USGS Earth Explorer. Index 
derived from Landsat 7 TM 
using ClasLite (Asner et al 2009)  

ΔNDVI % change in NDVI 
from 2012 to 2011 

232 MODIS EFETAC ForWarn (Hargrove et 
al 2009) 

 change in NDVI 
from 2011 to 2012 

30 Landsat USGS Earth Explorer. Index 
derived from Landsat 7 TM  

VegDRI model-derived 
index describing 
vegetative drought 
condition 

1000 AVHRR NDMC CALMIT at UN-Lincoln 
(Brown et al 2008) 

 

 

The FIA density dataset (Fig. 2b) was used to account for live trees prior to the drought, 

which allowed the determination of the percent dead in each plot. Plot level estimates 

were then used to develop the best-fit model of percent mortality for each index, and this 

relationship was used to estimate continuous tree mortality throughout the state (Fig. 4). 

The total number of calibration plots differed for each because some plots fell within 

pixels with index values that were out of normal range. In each case, thirty percent of the 

plots were withheld for model validation.  
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a.  

b.  

Fig. 2. FIA maps (Wilson et al 2012) depicting a) forest proportion and b) forest density 
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a. 

b. 

Fig. 3. Original maps of a) dNDVI and b) VegDRI 



19 

Fig. 4. General methods for mapping mortality with ΔNDVI and VegDRI. 

Multiple variations of calibration plot locations were tested for model 

improvement (Fig. 5). I first regressed ΔNDVI with all usable field plots across the state 

(n=419). Plots were not used if the ΔNDVI value was highly negative (< -20), which 

corresponded with a large proportion of water in the particular pixel. Next I attempted to 

account for physiographic differences between East and West Texas by stratifying the 

calibration between the two areas, creating separate mortality models for each part of the 

state.  Another strategy was used to test for model improvement, in which only plots 

located in high density forest were used for calibration. In this case the assumption was 

that sparse tree canopies masked mortality if understory greened up after the drought. 

Plots located in the overlap of 75% forest proportion and the upper 75
th

 percentile of

forest density were used for calibration. These totaled 85 plots located in East and 
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Fig. 5. Flow chart showing the location of calibration plots used to create each model, 

and the area of application. 

 

Central Texas. Only one VegDRI model was examined in which calibration plots 

consisted of those within 75% or more forest proportion. To test the VegDRI model as a 

continuous dataset, I regressed the withheld validation data against the predicted percent 

dead tree values to get measures of agreement, evaluating the RMSE, which is the 

standard deviation of the differences between the predicted and observed values and the 

R
2 
of the linear relationship, which explains the proportion of variability in the dataset 

that can be explained by the model. This value shows how well future outcomes can be 

predicted by the model and is more conducive for model comparison. These statistics 

were found using the R programming language (R Core Development Team). 

Binary classification maps of predicted dead and no predicted dead were 

produced for each model variation, where the classification of each pixel was based on 
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the whether the respective model predicted 0 or greater than 0 percent dead. For these 

classifications, accuracy was quantified using overall % accuracy and the Kappa statistic 

(k-hat), which measures the improvement in classification over that of pure chance by 

accounting for omission and commission error (Congalton and Green 1998). The model-

derived classifications were cross-validated using the validation plots. 

For the ΔNDVI models, a different binary classification was assessed in which 

the NDVI change value determined the predicted presence (ΔNDVI < 0) or absence 

(ΔNDVI > 0) of dead trees. For these index-based classifications, no data was withheld 

for validation, but all of the plots within the calibration area were used for accuracy 

assessment. Two different thresholds were used for assessing the accuracy of the index-

based classification: One in which an observed (field-derived) percent dead value of 1% 

or greater in the validation dataset indicated the presence of dead trees, and another 

threshold in which an observed 6.2% dead value indicated the presence of dead trees, 

based on the best-estimate of actual percent mortality from this drought event (Moore et 

al 2015). Everything below the thresholds indicated that no observed dead trees were 

present and included in the “live” category. The index-derived classifications were 

validated with a confusion matrix (Stehman 1997) using all of the available field plots as 

ground truth. 

For each of the classifications, commission and omission errors are reported for 

the live and dead classes. Commission errors represent pixels that belong to another 

class that are incorrectly labeled as belonging to the class of interest. Errors of omission 



 
22 

 

are pixels that belong to the ground truth class but the classification failed to classify 

them into the correct class. 

The detection threshold of each model was determined by the y-intercept of the 

model. This is the predicted percent of dead trees where ΔNDVI = 0, or the minimum 

percent of dead trees present in which the model correctly identifies the presence of dead 

trees, assuming that a negative change in NDVI occurs only if trees had died. A raising 

of the observed dead threshold for validating the index-based classifications was to 

acknowledge the high detection thresholds of each of the models (13-28% dead for 

ΔNDVI), and the fact that it was common for dead tree plots to fall within area with 

positive ΔNDVI values. The value of 6.2% was chosen because this is the overall 

estimated percent of drought-related tree mortality in Texas using design-based 

estimators as well as a similar calibrated remote sensing approach to obtain per-region 

estimates (Moore et al. 2016). Using this as a threshold should give an idea of the 

accuracy of that estimation. 

Finally, I determined the sensitivity for each model that was derived, which in 

this case represents the response of percent dead trees to the change in the index. A 

similar statistical approach was performed by Reichmann and Sala (2014). The 

sensitivity of the models was determined by comparing the averages of percent dead 

observed in plots on both sides of a given threshold index value. Two dividing 

thresholds were used: one at a ΔNDVI of 0, where ideally there would be a large 

difference between the averages, and another at the x intercept where percent dead = 

6.2%.  
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2.2.3. Landsat ΔNDVI and ΔNPV processing  

 A Landsat 7 Enhanced Thematic Mapper plus (ETM+) from May 7, 2011 and 

one from June 26, 2012 located in East Texas were acquired from Earth Explorer 

(http://earthexplorer.usgs.gov/) (Fig. 6). The dates were chosen to closely correspond 

with dates used for MODIS ΔNDVI and the most cloud-free image of the season was 

used. This particular scene was selected because that region was known to have 

relatively high levels of mortality and a relatively high extent of forest cover. All images  

 

 

 

Fig. 6. Location of Landsat 7 ETM+ time series images. 

http://earthexplorer.usgs.gov/
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were composited, stacked, and atmospherically corrected before further processing. In 

May 2003, the Landsat 7 ETM sensor scan line corrector (SLC) failure caused gaps 

throughout the scenes, resulting in approximately 22% data loss. As a result, less than 

half of the field plots that overlaid the scene location coincided with spectral data. A 

technique was developed by Scaramuzza et al. (2004) to fill gaps in one scene with data 

from another Landsat scene using a linear transform, adjusting the “filling” image based 

on the standard deviation and mean values of each band of the scene. This gap filling 

process was implemented using an add-on module in ENVI software 

(http://www.yale.edu/ceo) using cloud-free imagery as close in date as possible. The 

May 2011 image was filled with an image from April 5, 2011 and the June 2012 image 

was filled with an image from July 28, 2012 (Fig. 7), increasing the plot sample size 

from 33 to 84. Visual examination of the fill revealed that the land types were restored 

adequately in the gap-filled image.  

Band math was used to create NDVIs for both images and to subtract the May 

2011 NDVI from the June 2012 NDVI (Landsat 7 ΔNDVI). Two additional indices were 

derived: change in photosynthetic vegetation between 2011 and 2012 (ΔPV), and non- 
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Fig. 7. Results of image gap filling on near infrared color composite. a) 26 June 2012 

image b) Filled with 28 July 2012 image. 

 

photosynthetic vegetation from the 2012 image (NPV). PV and NPV were calculated 

from the Landsat images using the Carnegie Landsat Analysis System (Claslite) (Asner 

2009; CLASlite Team 2013), which performs a Spectral Mixture Analysis (SMA) using 

an automated Monte Carlo unmixing approach (Asner and Heidebrecht 2002) to 

deconvolute spectral profiles into sub-pixel fractional cover of PV, NPV, and bare soil.  

Claslite can classify forest using the fractional cover, where a pixel is labeled 

forest if PV ≥ 80 AND S < 20. To get an idea of the accuracy of the forest classification, 

it was compared to the FIA forest proportion data used to classify forest in the coarse 

resolution imagery where a pixel was labeled forest when the proportion was 50% or 

greater. The software was used to detect forest change between the 2011 and 2012 as 

multi-image analysis is the most accurate approach for detection of forest change. The 

expressions below were derived from extensive field testing and validation to identify 

forest change (Asner et al. 2005; Oliveira et al. 2007) 

A pixel was labeled as deforested if:  
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 (((PV1 – PV2) ≥ 25) [a pixel loses 25% or more of its PV fraction]

 OR ((S1 ≤ 5) AND ((S2 – S1) ≥ 15)) [S increase captures deforestation followed by

early regrowth] 

 OR ((PV2 < 80) AND ((NPV2 – NPV1) ≥ 20))) [a large spike in NPV signals

deforestation. This encompasses deforestation caused by a lot of green vegetation 

dying.] 

Where: 

PV1 = 1st Image photosynthetic vegetation fraction 

NPV1 = 1st Image non‐photosynthetic vegetation fraction 

S1 = 1st image bare substrate fraction 

PV2 = 2nd image photosynthetic vegetation fraction 

NPV2 = 2nd Image non‐photosynthetic vegetation fraction 

S2 = 2nd image bare substrate fraction 

The decision tree for disturbance pixels is similar to deforestation regarding expected 

shifts in PV, S, and NPV values: 

((((NPV2‐NPV1) ≥ 10) AND ((PV1‐PV2) > 10)) OR ((S1 ≤ 5) AND ((S2‐S1) > 10) 

AND (S2 ≤ 15))). 

The main difference between the deforestation and disturbance decision trees is that the 

thresholds for disturbance encompass many more pixels since disturbance is a more 

subtle form of forest loss. Drought mortality would be considered “disturbance”; 
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however, very few pixels were labeled as disturbance and Texas did not undergo 

expansive deforestation from 2011-2012.Deforestation and disturbance pixels were 

therefore combined and considered most likely to be drought-related tree mortality.  

For Landsat ΔNDVI and ΔPV, the live and dead threshold was placed at a 

ΔNDVI value of 0. For NPV, a value of 25% or greater was chosen as the cutoff of 

where the sensor would expect to pick up at least 1 dead tree. As with the coarse-

resolution imagery, the ability of each index to capture dead trees was tested by 

calculating a confusion matrix (Stehman 1997) for a binary classification of dead 

presence (dead) vs. non presence (live) in a pixel using all of plots present in the scene.  

A sensitivity analysis was performed to get an idea of the response of dead trees to each 

index, as described above in Section 2.2. 

 

2.3. Results 

2.3.1. Continuous estimation with NDVI change and VegDRI 

 The relationship between index value and observed mortality was best fit using a 

negative exponential decay model with highest mortality associated with lower index 

values. The fitted regression models for each index variation are shown in Fig. 8. The 

predicted vs. observed plots of the validation data shown in Fig. 9 indicated that all 

models tended to under predict mortality for plots with the greatest proportions of dead 

trees.  Among the ΔNDVI models, high proportion forest ranked the highest, followed 

by East Texas, West Texas, then All Forest. High forest proportion ΔNDVI model had 

the highest R
2
 value by far (0.3) despite the fact that it had the fewest validation plots. 
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VegDRI and East Texas ΔNDVI shared the same low value of 0.03 and West Texas 

ΔNDVI had a R
2
 value of 0, showing that none of the variability is explained by the 

model. VegDRI had the lowest RMSE, however, the range of values is different from 

those of the ΔNDVI models making them incomparable. Considering the low R
2
 value 

and an unrealistic predicted percent dead, this model ranks low compared to the others.  

There were inherent tradeoffs between estimating mortality over larger areas (with 

greater numbers of plots) and with a more conservative approach using fewer plots that 

only considered dense forest (Table 2). Nevertheless, the high forest proportion had high 

agreement, R
2
, and the highest classification accuracy (k-hat = 0.31); however, it 

predicted the most unrealistic percent dead (49.9%). All the other models showed close 

to random (50%) overall accuracy and very low k-hat values (Table 2). The low k-hat 

values are due to the very high omission errors (> 75%) for the “live” class and high 

commission errors (> 45%) for the “dead” class for every model besides the high 

proportion and density forest model (Table 3), indicating a high overprediciton of pixels 

that contain dead trees. Conversely, the low commission errors of the live class and low 

omission of the dead class indicate that the majority of dead pixels were correctly 

identified. 
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a. y = 21.28 * exp(-0.05 * x)

 

b. y = 12.66 * exp(-0.14 * x)

 

c. y = 27.81 * exp(-0.05 * x)

 

d. y = 19.59 * exp(-0.06 * x)

 

e. y = 1.28 * exp(-0.01 * x) 

 
 

 

Fig. 8. Negative exponential regression models and scatter plots using NDVI change as 

an independent variable to estimate percent dead in plots within a) All Forested area, b) 

high density and forest proportion, c) West Texas, and d) East Texas; and e) regression 

model and scatter plot using VegDRI as an independent variable to estimate percent 

dead in plots within 75% forest proportion 
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a. b.

c. d. 

e.

Fig. 9. Predicted vs. observed plots for validation data for ΔNDVI calibration models 

located in a) All Forest, b) high density forest, c) West Texas, and d) East Texas; and 

e)VegDRI in 75% forest
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Table 2 

Results of model-estimated percent dead and model validation. Note that higher density 

forests were predicted to have higher proportions of dead trees. 
predicted v. 
observed 

model-based 
binary 
classification 

Index Location of 
calibration 
plots 

Calib. 
plots 

Area of 
estimation 
(ha) 

Estim. 
% dead 

Valid. 
plots 

R2 RMSE % 
accuracy 

K-hat 

MODIS 
ΔNDVI 
(250 m) 

All plots 417 25,176,282 9.1 179 0.08 25.54 57.5 0.15 

East Texas 239 12,055,675 11.0 103 0.03 24.11 52.4 0.02 

West Texas 180 13,120,607 9.8 77 0.00 25.39 53.3 0.16 

High 
prop./dens. 
forest 

60 25,176,282 49.9 25 0.30 15.33 64.0 0.31 

Veg DRI 
(1000 m) 

75% forest 
proportion 

94 25,205,000 27.1 40 0.03 14.00 47.5 0.04 

Table 3 

Commission and Omission errors for model-based binary classifications. 

Model Class Commission Error (%) Omission Error (%) 

All Forest live 15.8 82.0 

dead 45.6 3.3 

High proportion forest live 20.0 46.7 

dead 46.7 20.0 

East TX live 0.0 98.0 

dead 48.0 0.0 

West TX live 15.4 75.6 

dead 53.1 6.3 

VegDRI live 0.0 95.5 

dead 53.8 0.0 

2.3.2. Index-based binary classifications, sensitivity, and detection thresholds 

Because of the high errors and over-prediction of the models (Fig. 10), additional 

classifications were done based on the index itself as the predictor of dead and live rather 
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than the model-derived values (Table 4). An index-based classification was not done 

based on VegDRI values because there was no clear or theoretical cut-off at which to 

separate dead and live. First a threshold was set at 1%, which is an extremely low 

detection limit, given noise and error. This was done to determine the lowest level of 

mortality that may be perceived by these indices. Using 1% as the threshold, overall 

accuracies were still only about 50% for All Forest and East Texas models, and around 

61% for West Texas and high proportion forest. K-hats remained extremely low, not 

going above 0.13. This is partially due to the very high omission errors for the “dead” 

class, where all are over 83% (Table 5). However, increasing the threshold to 6.2%, 

corresponding with the reported estimate of actual mortality from this drought event 

(Moore et al 2015), raised all of the accuracy statistics. High proportion forest 

classification accuracy increased the most (34% overall, 172% for k-hat) while West 

Texas accuracy increased the least (about 6% for both overall and k-hat). Setting the 

threshold at 6.2%, the k-hats rose by 62% and 45% for East Texas and , respectively and 

commission errors generally decreased at this threshold. This suggests that these indices 

were modestly reliable at detecting mortality at levels similar to that observed in the 

2011 Texas Drought. 
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a.   

b.  

Fig. 10. a) All Forest model-based classification and b) ΔNDVI index-based 

classification 

 

live 

dead 

live 

dead 
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Table 4 

Index-based binary classification accuracy and sensitivity analysis. Overall accuracy and 

k-hat for two classifications: one using 1% as the threshold for constituting an observed 

“dead” pixel, and other using 6.2%. Sensitivity analysis is average % dead on “live” and 

“dead” sides with two thresholds: one using ΔNDVI of 0, and the other using the 

ΔNDVI value of the respective model corresponding to 6.2% dead. 
Accuracy Sensitivity (Average % dead) 

% k-hat "live" side 
"dead" 

side 

Threshold Threshold 

Detection 
Threshold 

Index Location of 
calibration 
plots 1% 6.2% 1% 6.2% 

0 
ΔNDVI 6.2% 

0 
ΔNDVI 6.2% 

ΔNDVI All Forest 55.4 64.8 0.09 0.14 11.64 8.3 33.8 15.7 21.3 

ETX 51.5 63.7 0.10 0.17 12.17 13.9 30.8 14.3 19.6 

WTX 61.6 65.5 0.09 0.09 10.74 7.8 42.1 19.1 27.8 

high density 61.2 82.4 0.13 0.36 3.36 2.7 30.7 11.5 12.7 

VegDRI 75% forest 
proportion 

- - - - - 3.5 - 9.8 1.3 

Table 5 

Commission and Omission errors for index-based binary classifications with 1% dead 

and 6.2% dead thresholds. 

1% Threshold 6.2% Threshold 

Model Class 
Commission 

Error (%) 
Omission Error 

(%) 
Commission Error 

(%) 
Omission Error 

(%) 

All Forest Live 46.5 4.9 35.6 4.9 

dead 26.8 86.0 32.1 83.5 

ETX Live 52.1 4.6 37.7 4.5 

dead 18.9 84.1 24.3 80.4 

WTX Live 38.1 6.6 15.8 82.0 

dead 41.2 85.9 45.6 3.3 
high 
density Live 40.3 4.2 16.9 3.0 

dead 25.0 83.8 25.0 68.4 
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While accuracy rose with the 6.2% dead threshold, sensitivity decreased (Table 

4). The average difference between the average % dead between ΔNDVI > 0 (“live” 

side”) and ΔNDVI < 0 (“dead” side) was 24.8%. When changing the dividing threshold 

from 0 to the corresponding ΔNDVI value at 6.2% dead, the average difference between 

the values dropped to 6.9% (this average includes VegDRI). Sensitivity was 31.4% 

greater in West Texas with the ΔNDVI 0 threshold and 11.3% greater with the 6.2 dead 

threshold. East Texas had the lowest sensitivity at both thresholds, improving by only 

18.6 and 0.41%, respectively. Consistent with lower forest densities in drier regions, 

West Texas had the highest detection threshold (27.8% dead). VegDRI had the lowest 

(1.3 % dead) detection threshold, but this was likely due to the consistently low VegDRI 

across all plots. All Forest had the next highest threshold, followed by East Texas and 

high forest proportion. 

Examining the relative mortality predictions spatially (Figs. 11 – 15), the NDVI 

change models all predict higher mortality in East Texas and in Central Texas northeast 

of the Balcones Escarpment. In the high density model prediction map, there were more 

extreme values (shown as colors at either end of the spectrum) although it showed the 

same patterns as the All Forest model. All the ΔNDVI models additionally showed high 

mortality in the West Texas mountain range and an area in south Texas and just south of 

the panhandle (Figs. 11 - 14). VegDRI predicts higher numbers overall (darker colors) 

(Fig. 15) and shows some differences in pattern compared to ΔNDVI. It does not predict 

high numbers northeast of the Escarpment, but seems to increase westward with long 

stretches of uniform high mortality prediction. 
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Fig. 11. Resulting maps of percent dead trees from modeling ΔNDVI with percent dead 
in plots within all forested area 

 

 

 
Fig. 12. Resulting maps of percent dead trees from modeling ΔNDVI with percent dead 

in plots within high density and forest proportion 
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Fig. 13. Resulting maps of percent dead trees from modeling ΔNDVI with percent dead 
in plots within West Texas 

Fig. 14. Resulting maps of percent dead trees from modeling ΔNDVI with percent dead 

in plots within East Texas. 
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Fig. 15. Resulting map of percent dead from modeling VegDRI with percent dead in 

plots within 75% forest proportion. 

 

2.3.3. Landsat indices 

 A visualization of the dominant cover type after undergoing spectral unmixing is 

seen in Fig. 16. When plotting the index values against the number dead per plot the 

Landsat-derived  ΔNDVI and ΔPV (Fig. 17 a and b) show similar patterns, as would be 

expected. Both show a bell-shaped curve, where low numbers of dead are seen in the 

negative range, peaks at a value close to but less than 0, then drops precipitously as 

values increase. NPV does not follow the expected  positive relationship (Fig. 17 c), but 

instead is slightly negative. Because of the small sample size and the weak and 

unexpected relationships to the field data, the data was not used to calibrate models of 

mortality in the image as with the coarse resolution imagery. Rather, the indices were 

used for classification of dead trees and fractional cover was used to predict potential  
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Fig. 16. Sub-pixel unmixing results of gap-filled images for a) May 2011 and b) June 

2012. 

tree mortality. A visual assessment showed that the area of forest classification derived 

using Claslite in the Landsat time series images were reasonably close to that of FIA 

forest proportion, with expected differences in precision due to the difference in 

resolution (Fig. 18). This is a rough visual assessment of the accuracy of the fractional 

cover and the algorithms used to produce the forest map. 

The binary classification accuracies for Landsat indices were around 60% for 

ΔNDVI and ΔPV and 42% for NPV (Table 6). K-hats were 0.21, 0.11, and -0.06 for 

ΔPV, ΔNDVI, and NPV, respectively. ΔNDVI and ΔPV had high omission errors for the 

live class (77% and 57%) and NPV had a 81% omission error of the dead class, 

contributing to the low k-hat values (Table 7). The ΔNDVI index was most sensitive to 

dead trees, with a difference of only 2.4 dead trees between a negative and positive index 

value. The NPV index was reversed, with an average of 3.2 dead at the “live” side of the 

NPV range of less than 25% and 2.4 average dead at ≥ 25% NPV. 
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a. b.

c.

Fig. 17. Scatter plots of Landsat-derived index values with number dead in a plot. 

Combined “deforestation” and “disturbance” (forest loss) pixels totaled 48,512 

ha which is less than 1% of the entire scene. Only 5 of the 83 plots overlaid a forest loss 

pixel so these cannot be used to validate the prediction. But of these, the number dead in 

these plots were 10, 7, 6, 2, and 0. A visual assessment of the forest loss pixels over the 

All Forest model’s estimated dead map found that the forest loss did pick up burned 

areas (which were excluded from the coarse-resolution analysis) and coincided with the 
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areas of high predicted dead (Fig. 19). Though promising, more processing is needed to 

quantify the accuracy of the forest loss pixels. 

Fig. 18. Comparison of forest area distribution depicted between a) FIA forest 

proportion (≥50%) and b) Classification of June 2012 Landat ETM+ image using 

fractional cover of PV and S. 

Table 6 

Accuracy statistics of binary Landsat derived index-based classification, and sensitivity 

calculated as the average dead on the “live side” (positive NDVI & PV change or < 25% 

NPV) and the “dead side” (negative NDVI & PV change or  ≥ 25% NPV). 

Accuracy Sensitivity (Average % dead) 

Overall (%) K-hat "live side" "dead side" 

ΔNDVI 60.24 0.11 1.07 3.48 

ΔPV 62.65 0.21 1.62 3.74 

NPV 42.17 -0.06 3.26 2.39 
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Table 7 

Commission and Omission error for Landsat-derived index classifications. 

Index Class Commission Error (%) Omission Error (%) 

ΔNDVI live 42.86 77.14 

dead 39.13 12.50 

ΔPV live 42.31 57.14 

dead 35.09 22.92 

NPV live 60.00 25.71 

dead 50.00 81.25 

Fig. 19. Zoomed-in view of Landsat fractional cover-derived forest loss (black) overlaid 

on the All Forest model mortality prediction and burned areas in 2011 (light blue). 
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2.4. Discussion 

            While in most cases observed dead trees coincided with lower index values, the 

ability of a large pixel to precisely detect diffuse mortality is problematic and the reason 

few studies have attempted to use coarse resolution imagery for that purpose. A few 

dead trees in a 0.16 ha plot could be surrounded by green forest and vice versa. 

Therefore the high errors and low accuracies were expected. However by testing and 

comparing variations in the models it is possible to see what can be done to improve the 

methodology, should the use of finer resolution not be feasible. In all cases, low index 

values were associated with higher mortality rates and there were consistent 

relationships between indices and observed mortality. 

 The use of coarse-resolution models to estimate tree mortality requires 

consideration of many factors to determine the best approach for a given forest 

condition. Among the variations of coarse-resolution models, there were no clear 

“winners” or “losers”, nor were there consistent rankings among evaluation criteria. The 

VegDRI model, as being based on the coarsest resolution, did tend to rank low on most 

counts where the criteria was comparable. This includes the low R2, low model-based 

accuracy, the high estimated percent dead, and low sensitivity. Although very low, 

VegDRI’s detection threshold is a product of its overestimation of dead trees. The spatial 

application of the VegDRI model shows that VegDRI predicts an increase of mortality 

westward. This is likely due to the incorporation of climatic variables such as PDSI.  

 Among the ΔNDVI models, high proportion/density forest stands out in model 

and classification accuracy, sensitivity, and low detection threshold. However this model 
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by far overestimated percent dead. This may be related to the low number of calibration 

plots in the more restricted sampling area. Evidenced by this and VegDRI where 

calibration plots were taken only from 75% forest, restricting the calibration plots to 

areas of higher amounts of forest leads to overestimation, and there is a tradeoff between 

detection and estimation accuracy, particularly when applying the model to lower and 

heterogeneous forest density areas. The separation of east and West Texas was an 

attempt to “normalize” this phenomenon by applying more uniform forest density 

associated calibration models to only that area from which the calibration data was 

taken. For example, although East Texas calibration plots were, like the high forest 

model, taken from high proportion/density forest, it does not have the same level of 

overestimation due to its application to only highly forested areas. Intuitively, the more 

specialized the calibration to an area, the more accurate; the tradeoff, however, is 

limiting the area of analysis. 

East and West Texas models did not stand out as particularly accurate or poor, 

although West Texas showed a markedly high dead tree sensitivity. This may be related 

to the overall lower tree density in this portion of the state. The All Forest model might 

be considered the overall winner for application to a large area. Its inclusiveness and 

high sample size help to moderate the estimations to realistic levels, and the accuracies 

were generally high relative to the others. 

As seen in the map on Fig. 10, the models far over predicted the presence of one 

dead tree. This is reflected in the high omission errors for the live class and the 

commission errors for the dead class (Table 5.). In contrast, the index classifications 
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underpredicted pixels with at least one dead tree, indicated by the high omissions of the 

dead class. Raising the threshold to 6.2% dramatically increased accuracies (171% for 

high density/proportion forest model), as it imposes expectations that are closer to the 

indices’ actual detection thresholds. However, these classifications also underpredicted 

dead, with the exception of West Texas. 

It is important to note that a large amount of error was introduced by using 

MODIS-derived live tree density to calculate percent dead in each plot. The field data 

collection took place without these particular research questions in mind. Live tree data 

from a 250-m (6.25 ha area) pixel was used with data from a 0.16 ha plot, adding to the 

inherent error of a large pixel’s ability to detect diffuse mortality. However it was 

deemed necessary to try to account for density differences in such a heterogeneous 

landscape. 

The Landsat binary classification accuracies did not appear to stand out above 

the coarser-resolution classifications.  Overall accuracy was slightly higher on average 

though k-hats remained in the 0.1 - 0.2 range (Table 6.).  Compared to the MODIS 

ΔNDVI index-derived classification, accuracies were higher and errors were lower with 

the exception of the Landsat commission errors of the dead class, meaning that the 

Landsat classification had more incorrectly-labeled “live” pixels. However, it should be 

noted that these classifications are not directly comparable because the Landsat 

classification was based on number dead and the MODIS classifications were based on 

percent dead. 
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The ΔNDVI classification omitted 77% of live pixels and the NPV, with a 

negative k-hat, omitted 81% of dead pixels. The spectral unmixing-derived forest loss 

area totaled less than 1% of the Landsat scene which is lower than expected. Visually, 

this method looks promising, but at present, the field plots cannot be used to quantify its 

accuracy. Although there is very weak agreement with the field data, this is not 

dismissive of the potential of the spectral mixture analysis method for determining 

mortality. 

For the Landsat classifications, the low numbers in the negative range of the 

change indices were not consistent with the understanding of how the indices pick up the 

dead tree signal, though may be indicative of other problems or signals. Since density 

was not accounted for in this analysis, these are likely to be plots where very few dead 

trees were found but were surrounded by dead vegetation or substrate within the 30-m 

pixel area. This may also be the case with NPV which showed the inverse relationship 

than was expected with high numbers of dead seen in the low range of NPV and low 

numbers of dead in the higher range (Fig. 16, Table 6). In addition to density and grain 

size effects, the relationship may also have to do with the endmembers used by Claslite 

to calculate presence of NPV which may not be calibrated well to the particular areas. 

The detection threshold should also be considered, though it was not calculated due to 

the high errors. With many possible explanations, the next recommended step would be 

to account for density in the plots, ideally in the field. 
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2.5. Conclusions 

 This exercise found that time-series indices work best for capturing drought-

related mortality, and it worked best in areas of denser forest cover. Isolating the change 

in the pixels helps to reduce the signal-to-noise ratio especially in low density areas 

where a lot of S and NPV are present. If estimating mortality in a large heterogeneously 

forested area such as the state of Texas, it is recommended to have a large sample size 

with calibration plots that are inclusive of the various types of forested areas of 

estimation. However, this coarse-resolution modeling method is best for estimating 

mortality in large areas of relatively uniform forest density and forest type and where the 

estimated percent mortality is close to or greater than the index detection threshold. It is 

also highly recommended to record live tree estimation from the field plots along with 

mortality. 

 In order for Landsat estimations to be compared with that of MODIS and 

AVHRR, the next steps of the analysis are to calculate subpixel fractions for MODIS 

and AVHRR and/or use the Landsat-derived indices to calibrate models of mortality. 

Future studies can utilize US Forest Service FIA data. In the next sections, abiotic and 

biotic variables are assessed as drivers of drought mortality. 
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3. THE CONTRIBUTION OF CLIMACTIC AND DROUGHT CONDITIONS TO

DROUGHT-RELATED TREE MORTALITY 

3.1. Introduction 

3.1.1. Ecological description of Texas 

Texas has been described as a major biological crossroads of North America 

because  it is the meeting ground of diverse flora and fauna of the eastern deciduous 

forest, the tall, mixed, short and desert grasslands, the southwestern deserts and the 

southern Tamaulipan shurblands, as well as having its own unique components (Smeins 

2004). Because of its size and geographic location, Texas is unique in its variation in 

climate, topography, and soils; all of which influence habitat and species diversity. 

Climate varies from warm temperate in the north to subtropical in the south. Mean 

annual precipitation varies 1524 mm in the eastern Pineywoods region to less than 203 

mm in the Chihuahuan Desert of West Texas, while annual temperature varies from 

12°C in the northwest to 23°C in the south. The frost-free period ranges from 180 days 

in Amarillo to over 330 days in the Rio Grande Valley. These parameters can experience 

considerable intra- and interannual variation in any part of the state, particularly 

precipitation (Smeins 2004). 

Ecoregions are defined as geographical areas of similar type, quality, and 

quantity of environmental resources (Griffith et al. 2004). The regions are broadly 

distinguished by the climate and geography of the region. Below is a brief description of 
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the vegetation regions as outlined by Gould et al. (1960) and their vegetation 

communities (Fig. 20). 

Fig. 20. Vegetation regions of Texas from Gould et al. (1960) 
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The Trans-Pecos in the extreme western part of the state contains diverse 

vegetation, due to diversity of soils and elevations. Trans-Pecos contains desert valleys, 

plateaus, and mountain slopes. Elevations range from 762  to over 2667 m at Guadalupe 

Peak. Over most of the area, average annual rainfall is less than 12 in, but with high 

intra-annual variability. Plant communities found here are creosote-tarbush desert scrub, 

desert grassland, yucca and juniper savannahs, and mountain forests of pinon pine and 

oak. The Sand Hills subregion consists of shin oak and mesquite. Desert Scrub has 

creosote bush flats with yucca, lechuguilla, and other small-leafed plants. The mountain 

ranges with higher rainfall contain woody vegetation such as junipers, oaks, pinon pine, 

ponderosa pine, and Douglas fir. 

The High Plains are the southern extent of the Great Plains of the central United 

States. Elevation ranges from 914 to 1372 m above sea level and annual rainfall is 381 to 

559 mm. Extended droughts have been common in this region in the last century. 

Vegetation consists of shortgrass prairie dominated by buffalo grass. Although 

historically a grassland, many other species have encroached in the region including 

mesquite, yucca, shinnery oak, sand sage, and juniper. 

The Rolling Plains, so-called because of the rivers and numerous tributaries in 

the region which cause a rolling pattern, have canyons that create a sheltered habitat. 

Rainfall is 508 to 711 mm. The original prairie grasslands featured tall and mid-grasses 

such as bluestems and gramas, with an increase of buffalo grass and shortgrasses with 

heavy grazing. The most common vegetation community is described as mesquite-
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shortgrass savannah. The stream floodplains feature various hardwood species and 

juniper. 

The Edwards Plateau is characterized by springs, stony hills, and steep canyons. 

Annual rainfall ranges from 381 to 864 mm. The Edwards plateau contains shallow soils 

underlain by limestone and the Edwards Aquifer which creates unique aquatic cave 

habitats. Historically, vegetation was primarily open grassland and savannah, but now 

includes juniper/oak woodlands, plateau live oak, and mesquite savannah. 

The South Texas Plains, also known as South Texas Brush Country, is known for 

its plains of thorny shrubs and trees with patches of palms and subtropical woodlands in 

the Rio Grande Valley. Historically, the area was primarily open grasslands and the 

valley woodlands were more extensive. Average annual rainfall is 508 to 813 mm. and 

summer temperatures are high. The deeper soils support taller trees such as mesquite and 

spiny hackberry, and the shallow caliche soils support short, dense brush. The Southern 

plains are a meeting point of semi-tropical species that occur in Mexico, grassland 

species in the north, and desert species found in the Trans-Pecos. 

The Blackland Prairies are characterized by their dep, fertile soils. These soils 

once supported tallgrass prairie dominated by big bluestem, little bluestem, indiangrass, 

and switchgrass, though much of this land was converted for agriculture. Mesquite, 

huisache, and oaks have invaded abandoned fields and pecans, oaks, elms, and 

cottonwood occur in riparian areas. Average annual rainfall rangers from 711 – 1016 

mm. 
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The Cross Timbers located in North Central Texas contains dense stands of trees 

and irregular plains. Savannah and woodlands are found in the east and south, and 

shorter mixed-grass prairie in the west. A combination of fire, topography, and drought 

have determined the location of grassland and woodland. Post oak and blackjack oak are 

the dominant woody plant species and bottomlands contain hackberry, elm, and pecan. 

The Post Oak Savana is a transitional area for many species ranges that move north to 

the Great Plains or East into the Pineywoods. Annual rainfall averages 711 to 1016 mm. 

The oak savannah is characterized by patches of post oak and blackjack oak interspersed 

with tallgrass prairie herbaceous species. 

The Gulf Prairies and marshes region is a low-lying coastal plain dissected by 

streams and river flowing into the Gulf of Mexico and includes barrier islands along the 

coast, salt grass marshes surrounding bays and estuaries, remnant tallgrass prairies, oak 

mottes scattered along the coast, and tall woodlands in the river bottomlands. Average 

rainfall varies from 762 to 1270 mm. Native vegetation consists of tallgrass prairies and 

live oak woodlands, with more current encroachment of brush such as mesquite and 

acacias. 

The Piney Woods ecoregion is distinguished by pines and oaks, rich bottomlands 

and tall hardwoods. This biome extends into Louisiana, Arkansas, and Oklahoma. 

Average rainfall is 914-1270 mm, distributed fairly uniformly throughout the year.  The 

main vegetation assemblages can be described as pine and pine-hardwood forest, which 

now has cropland and planted pastures among native pasture. Loblolly pine is the most 

common species and shortleaf pine is found in drier areas. Longleaf pine is found in the 
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southeastern portion. Slash pine is used in pine plantations. Major hardwoods are oaks, 

hickories, red maple, and sweetgum. Bottomland forests contain various oaks including 

swamp chestnut, overcup, and water oak. 

The variety of habitats and conditions has lent different types of evolutionary 

pressure. Some of these will be more conducive to future climate than others. With the 

precipitation gradient, more drought tolerant species are found as one moves west, as 

droughts are a regular occurrence in arid and semi-arid lands (Le Houérou 1996). As 

Texas is predicted to become hotter and drier, and droughts continue on a trajectory of 

longer duration and higher intensity, drought-tolerance will determine survivability of 

species and the future of the landscape (McDowell et al. 2008). 

3.1.2. Drought adaptation 

Climate is a driver of biotic systems, affecting individual fitness, population 

dynamics, distribution and abundance of species, and ecosystem structure and function. 

Regional variation in climate creates selective pressures for locally adapted physiologies 

and morphological adaptations (Parmesan et al. 2000). For instance, a known response to 

increases in mean temperature would be for different tree species to shift their range 

poleward and to higher elevations, thus affecting species composition, and therefore 

forest structure (Barry et al. 1995; Grabherr et al. 2009; Hersteinsson and Macdonald 

1992; Parmesan 1996; Parmesan et al. 2000; Parmesan et al. 1999; Pounds et al. 1999; 

Sagarin et al. 1999; Thomas and Lennon 1999). However, there are more indirect effects 

on forest composition that could act through changes in disturbance regime. There is 
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evidence that extreme weather events can be implicated as mechanistic drivers of broad 

ecological responses to climate trends. Models by Miller and Urban (1999) suggest that 

there can be profound effects from small changes in temperature (2°C) and precipitation 

(20%) on forest structure and function. They found that depending on elevation, total 

woody biomass could decrease by more than an order of magnitude. 

These large-scale range shifts take place because of differential survivability to 

drought stress caused by genetic variations between species but also within species. For 

example, Pines in Bastrop County located within Central Texas, considered the most 

arid natural loblolly pine habitat have been found to be more drought tolerant than those 

in eastern Texas (Van Buijtenen 1966; Van Buijtenen et al. 1976). Some of the drought 

tolerant strategies involved are more extensive root systems and rapid reductions in leaf 

conductance as soil moisture is depleted (Bilan et al. 1977; Van Buijtenen et al. 1976). 

In oaks (Quercus spp.), drought tolerance characteristics involve deep roots, effective 

water transport, xeromorphic leaves, and osmotic and elastic adjustments. Osmotic 

potentials are greater in oaks in more arid regions of North America (Abrams 1990). 

Desert vegetation found in the Trans Pecos region and surrounding regions are 

highly adapted to high evaporation and low moisture. The general strategy of xerophytes 

is to promote uptake and reduce water loss. A plant can do this through drought evasion 

or drought resistance. The short-lived annuals are an example of evasions, where they 

evade drought in seed from, then emerge after precipitation and set seed quickly. These 

are characterized by a low root/stem ratio and short life cycle (Wu et al. 2002). 
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The large perennial plants, including the succulents (e.g. yucca) and non-

succulents, are examples of drought resistors. Succulents are specially designed for 

water storage and retention. They store water in their tissues, have shallow but extensive 

roots systems, and engage in nighttime gas-exchange. Woody plants such as the honey 

mesquite and huisache have deep extensive roots systems and have high root/stem ratio. 

They have small leaves with waxy or pubescent cuticles which reflect heat and in the 

later case, hold moisture close to the plant surface to increase evaporative resistance. 

Deciduous xerophytes lose leaves during drought periods (Wu et al. 2002). 

A conceptual diagram by Anderegg et al. (2013) (Fig. 21) shows the process by 

which precipitation deficit eventually leads to physiological damage and ultimately 

mortality. It is a good illustration of where different mortality drivers fit into the process 

that ultimately leads to death. This begins with drought translating to soil moisture 

deficit, the rate of which depends on climatic and edaphic factors that influence soil 

infiltration and evaporative demand and the plant characteristics that determine plant 

water uptake. The soil moisture deficits then leads to plant water stress, which is 

influenced by the plant’s evaporative demands plus other physiological characteristics, 

processes and feedbacks that are dependent on seasonality and duration of the plant 

water stress. With sufficient physiological damage, the plant can no longer function and 

dies (Anderegg et al. 2013). 
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Fig. 21. Conceptual diagram by Anderegg et al. (2013) describing the process by which 

water deficit translates to plant mortality. Large numbered arrows represent the 

transition from one box to another while small arrows indicate factors that influence 

large arrows. 

3.1.3. Species distribution models 

Species distribution models (SDMs) are correlative models that use 

environmental and/or geographic information to explain observed patterns of species 

occurrences (Elith and Graham 2009) by exploiting the statistical association between 

spatial environmental data and the occurrences to capture processes limiting distribution 

(Kearney et al. 2010). They rely on a complex interdependency between theory, data, 
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and statistics and have been shown to perform well in characterizing natural 

distributions, providing useful ecological insight and strong predictive capability 

(Huston 2002). SDMs have been applied to a wide variety of questions, such as potential 

location of a known or unknown species. The answer of which is important for purposes 

like restoration or reintroductions. A popular use for SDMs is to determine potential 

climate change impacts on a particular species or on biodiversity, in which either the 

presently occupied area is in question or potentially suitable areas that are being 

predicted (Araújo and Pearson 2005; Hijmans and Graham 2006; Kearney et al. 2010; 

Thuiller et al. 2008). 

Ranking environmental models is not usually the primary use of SDMs. 

However, variable importance is either built-in or can be derived from many SDMS and 

can be used for this purpose successfully with careful implementation and interpretation. 

Random forests (Breiman 2001) are the most common machine learning technique to 

assess variable importance. This technique is widespread in geospatial modeling and 

analysis in ecology, remote sensing, and carbon cycling in a number of environment 

types (Asner et al. 2015). For example, they have been used to determine ecological 

drivers of fire (Archibald et al. 2009) and treefall rate (Asner et al. 2015).  

 Maximum entropy modeling (Maxent) is a machine learning method that 

calculates the most uniform distribution with the constraint that the expected value for 

each variable should match the average value of a set of sample points taken from the 

target-species distribution (Phillips et al. 2006). One advantage of Maxent is that it is 

capable of dealing with continuous and categorical variables. Probability distribution is 
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exponential, ranging from 0 to 1. Maxent indicates probability of presence using gain, 

which is the average log probability of the presence samples, minus a constant that 

makes the uniform distribution have 0 gain. The gain indicates how closely the model is 

concentrated around, or a measure of likelihood of the samples. The model begins with a 

uniform probability distribution (gain = 0) and a weight is altered at each iteration until 

the probability of occurrence of the source data is maximized, increasing the gain 

towards an asymptote during a run. For example, a gain of 2 means the model is exp(2) 

or about 7.4 times higher than that of a random background pixel (Phillips et al. 2006). 

Despite limitations of being a presence-only model, it has been shown to 

outperform established techniques such as regression-based approaches (Elith et al. 

2006; Guisan et al. 2007). In a study comparing 6 different modeling techniques 

including random forest and boosted regression trees, Maxent performed consistently 

high in modeling geology, calibration, and when comparing its results to truth (Elith & 

Grahm 2009).  

 

3.1.4. Climatic factors and ecological niche modeling 

 Maxent is often associated with climate envelope modeling. Climate envelope 

models are useful tools in biodiversity conservation as they can assess species 

vulnerability to climate change. The general approach is to circumscribe the range of 

climate conditions currently experienced by a species (the climate envelope) and forecast 

the future spatial distribution of the climate envelope according to projections of climate 

change, assuming the contemporary species-climate relationship will hold true (Franklin, 
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2009). In this study, however, we are interested only in how climate variables predict 

current distribution. They are constructed either from recent climate or “bioclimate 

variables” derived from seasonal relationships between precipitation and temperature 

(Table 8). Since these describe seasonal conditions and climate extremes, these are 

thought to be directly limiting to species, possibly more than monthly climate variables. 

Climate can impose physiological constraints on species and therefore helps to shape 

species distributions. The degree to which it does this depends on local adaptation and 

factors such as dispersion constraints related to habitat availability. Bioclimatic 

predictors are designed to better represent the types of seasonal trends pertinent to the 

physiological constraints of different species (Hijmans 2004; Nix 1986). For example, 

wettest month and seasonal anomalies will generally capture broader biological trends 

better than the temperature or the amount of precipitation for a given day due to the 

inherent variability associated with weather. 

A few studies compared long-term (climate) and short-term (weather) variables 

in their performance in species distribution models. Watling et al. (2012) compared 

model performance between climate envelope models created with bioclimate variables 

and models created from monthly variables, finding no difference in performance. They 

concluded that when using a high performance algorithm such as random forests, using 

bioclimate or monthly variables for modeling does not significantly alter spatial 

predictions,  Stankowski and Parker (2010), with GLMs, however, found that monthly 

variable- produced models outperformed those made with bioclimate variables. 

Similarly, Reside et al. (2010) argue that SDMs require an organism-relevant temporal 
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scale to optimally model the species and that weather models largely outperform climate 

models. Even for sedentary species which may shift due to local weather events or 

whose distribution may be limited by extremes, these two factors that are better 

explained by weather models than climate (Reside et al 2010).The conflicting results of 

these variables on model performance are likely due to modeling technique and 

parameters used for each. 

Few studies have closely considered the ecological implications behind the 

relative importance of variables for driving distributions. Use of weather and use of 

climate data to model distributions, besides causing (or not causing) differences in 

predictive capability, answer different questions related to potential vs. realized niche. It 

is a premise of biogeography that climate exerts dominant control over the distribution 

of species, as seen in the fossil record (Davis and Shaw 2001; Huntley 1999; Woodward 

1987) and observed trends (Hughes 2000; McCarty 2001; Walther et al. 2002). 

Therefore, long-term climate envelopes would be more descriptive of a fundamental 

niche, or the set of resources a population is theoretically capable of using under ideal 

conditions, given that the species of interest have the potential to exist at these climatic 

locations and given assumptions of niche conservatism. Because long-term climate is to 

varying degrees associated with ecoregions and species biogeography, it is somewhat 

descriptive of the adaptive characteristics. Modeling distributions with shorter term 

climate or weather conditions puts more constraining assumptions on a species 

distribution as it assumes that their present locations are related to relatively recent 

conditions. As you shorten the length of time of the average conditions, the conditions 
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become less descriptive of biogeography related to long-term climate and more about the 

weather conditions at hand. Short-term climate has also been found to be useful in 

determining the types of variables with which organisms associate themselves, but 

represent short-term conditions at the geographic locations so these may be more suited 

for answering question related to species responses to short-term events. When using 

short-term climate to model distribution, you assume the species of interest are able 

respond to the conditions within time interval from which the weather conditions were 

averaged. 

If climate can be effectively used to describe the geographic limits of an 

organism’s existence, it stands to reason that the inverse is true - that the same abiotic 

conditions can be used to explain where an organism cannot exist, the limits of 

mortality, when training a model with locations of dead. In fact, modeling the response 

of tree species to a short-term disturbance is only possible if using dead trees rather than 

live trees as indicators. In this study, a species distribution modeling approach was used 

to model drought-killed trees due to the 2011 Texas Drought throughout the state with 

the of aims of determining 1) which type of climatic variables are the more important 

drivers of mortality distribution: the extreme conditions during the year of drought, or 

long-term average climatic conditions; and 2) which long-term and/or immediate 

condition best explains mortality patterns? Answering this question should provide 

information on whether it was adaptive characteristics which predispose trees to 

mortality that better predict dead tree distribution, or whether it was the extremity of the 

conditions themselves that explained the distribution of mortality in this drought. 
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Though both are important for determining whether a plant will ultimately die from 

drought, I test the hypothesis that the drought conditions of 2011 were extreme enough 

that it was these short-term conditions that were the dominant drivers on the regional 

scale. 

 

3.2. Methods 

3.2.1. Occurrence data 

The same field plot data described in Chapter 2 was used to train a model of dead 

trees based on short- and long-term climate conditions. Briefly, extensive field sampling 

across Texas was conducted in June of 2012, ultimately producing 599 plots which 

tallied trees ≥12.7 cm that died due to the drought (Moore et al. 2016). Texas was 

divided into 10 regions, then plots were selected within each using a two-stage unequal 

probability sampling with replacement (Lohr 1999). A 10 km x 10 km grid was overlaid 

on a forest distribution map (Wilson et al. 2012) creating a list of primary sample units 

(PSUs). PSUs were selected from these using an unequal probability sample design. 

Within each selected PSU, seven 0.16 ha circular plots were randomly selected. This 

data provided the occurrence locations of 1800 identified drought-killed trees used to 

produce the tree mortality model. 

 

3.2.2. Bioclimate variables 

The contributions of climatic variables were derived from the 30 arc-second (~1 

km) WorldClim database version 1.4. These so-called “bioclimatic variables” were 
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derived from the monthly temperature and rainfall values (~1950-2000) in order to 

generate more biologically meaningful variables (Hijmans et al. 2005). Highly correlated 

variables can confound interpretations of contributions of individual variables. 

Therefore, a Pearson’s correlation test was run on all 19 bioclimatic variables (Table 8) 

to ensure a degree of independence of each variable being used to explain dead tree 

distribution. Prior to the correlation test, each climate variable was checked for 

normality and log transformed if necessary. Variables were considered highly correlated 

if the coefficient was ≥ 0.65. When deciding between two correlated factors to keep in 

the model, variables were kept that represented different kinds of information that could  

 

Table 8 

Nineteen bioclimatic variables derived from the WorldClim database. 

Bioclim 
abbreviation Variable description 

BIO1 Annual Mean Temp (C) 

BIO2 Mean Diurnal Range (C)  

BIO3 Isothermality (100 * BIO2 /  BIO7) 

BIO4 Temp Seasonality (100 * SD) 

BIO5 Max Temp of Warmest Month (C) 

BIO6 Min Temp of Coldest Month (C) 

BIO7 Temp Annual Range (C) (BIO5-BIO6) 

BIO8 Mean Temp of Wettest Quarter (C) 

BIO9 Mean Temp of Driest Quarter (C) 

BIO10 Mean Temp of Warmest Quarter (C) 

BIO11 Mean Temp of Coldest Quarter (C) 

BIO12 Annual Precip (mm) 

BIO13 Precip of Wettest Month (mm) 

BIO14 Precip of Driest Month (mm) 

BIO15 Precip Seasonality (CV) 

BIO16 Precip of Wettest Quarter (mm) 

BIO17 Precip of Driest Quarter (mm) 

BIO18 Precip of Warmest Quarter (mm) 

BIO19 Precip of Coldest Quarter (mm) 
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explain distribution. These included: a long-term average trend, temperature “evenness”, 

seasonal variation, an extreme, an interaction variable, and a precipitation variable. 

3.2.3. 2011 variables 

In order to do a direct comparison between long-term and short-term climate, the 

same precipitation and temperature-related variables were calculated for 2011 only, the 

year of the drought (also referred to here as “weather” variables). The six variables that 

were calculated were chosen based on the correlation results. Monthly mean, maximum, 

and minimum temperature values; and annual precipitation were downloaded for 2011 

from the PRISM climate group website (http://prism.oregonstate.edu). These spatial 

climate datasets are 4-km grids. PRISM (Paratmeter-elevation Regressions on 

Independent Slopes Model) is a climate-mapping technology that uses point 

observational data, a digital elevation grid, and other spatial data sets to generate 

estimates of climatic variables on a grid. The model is a climate-elevation regression 

calculated for each DEM grid cell, and stations surrounding the grid cell are entered in 

the regression and are assigned weights based on the physiographic similarity of the 

station to the grid cell. Location, elevation, coastal proximity, topographic facet 

orientation, vertical atmospheric layer, topographic position, and orographic 

effectiveness of the terrain were among the factors considered in the weighting (Daly et 

al. 2008). 

ArcGIS raster calculator was used to compute 2011 variables with PRISM that 

corresponded to the selected long-term average bioclimatic variables (Table 8). All data 



65 

were extracted within the bounds of Texas, precisely coregistered, and projected in GCS 

North American 1983 coordinate system. The raster data products were reprojected with 

nearest neighbor resampling to maintain the pixel values, and resampled to 250-m output 

pixel dimensions. Although the smallest pixel size in this analysis is 1 km, 250 m 

dimensions were used in order to match dimensions in the next analysis. 

3.2.4. Analysis 

Conventional statistical models cannot be used for investigating the drivers of 

tree mortality in the context of this study because many of the relationships were 

nonlinear, with non-additive predictor-response interactions. Therefore, a habitat 

suitability approach was used to predict areas most likely to contain drought-related tree 

mortality. The Maxent algorithm constructs a habitat suitability model using dead tree 

occurrence data and environmental variables to predict geographic areas where there are 

likely to be other occurrences and calculates a percent contribution for each of the 

variables and their percent contributions (Phillips et al. 2006). 

A model was trained with 70% of the occurrences and tested with the remaining 

30%, which were randomly assigned from the original plot-level observations. 

Background points are random samples from the environmental data that are used by 

Maxent as “pseudo-absences” for model evaluation. To ensure that these were taken 

from forested areas similar to the locations from which the samples were taken, the 

training area was limited to 78.5-km
2
 circular areas around each of the field sampling

locations. The model was then applied only to areas where values of the environmental 



66 

variables were within their respective range of values within the training area. The 

models were evaluated using receiver operating characteristic (ROC) analyses and 

binomial tests of omission. The ROC curve describes the sensitivity of the model, the 

increase of occurrence data that is predicted as area of prediction increases. The area 

under the receiver curve (AUC) is the probability that a randomly chosen presence site 

will be ranked above a randomly chosen background site. A perfect model would have 

an AUC of 1.0 and a random model would have an AUC close to 0.5 (Phillips and Dudík 

2008). Models with an AUC greater than 0.75 are considered potentially useful (Elith 

2000). 

First, I ranked 2011 and bioclimatic variables separately to control for those 

factors and see how each type of variable would influence the dead tree distribution 

independently.  Then to test the ranking between drought year conditions and bioclimatic 

conditions, both were put into the model and percent contribution of each variable was 

compared. Variable importance is calculated by adding/subtracting the increase/decrease 

in regularized gain to the contribution of the variable for each iteration of the training 

algorithm. Jacknife tests in Maxent calculate gain of the training data, gain of the held 

back test data, and the AUC of test data for each variable. These give the variable with 

the highest gain or AUC when used in isolation and which variables decrease the gain or 

AUC the most when omitted. All of these measures of variable importance were 

evaluated in the models. 

One concern for including too many variables to model distributions is 

overfitting the model to the data; however, in this case, the data were not being used as 
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independent variables in a statistical model with the aim of explaining variance in the 

independent data. Rather, the purpose was to rank variables by using them to 

characterize a multivariate environmental space of high probability of dead tree 

occurrence. The idea is that the variables that were most closely associated with the dead 

tree distribution will be those that emerge as influential in the habitat suitability model, 

whereas the ones that were not associated with the geographic distribution will have 

little or no effect on the model. 
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Table 9 

Correlations between the 19 bioclimactic variables. Highly correlated variables are in bold. 

bio1 

bio2 -0.59 bio2 

bio3 -0.01 0.59 bio3 

bio4 -0.58 0.27 -0.51 bio4 

bio5 0.33 -0.02 -0.31 0.33 bio5 

bio6 0.93 -0.74 -0.09 -0.67 0.08 bio6 

bio7 -0.68 0.58 -0.19 0.90 0.30 -0.84 bio7 

bio8 0.44 0.07 0.43 -0.32 0.26 0.28 -0.18 bio8 

bio9 0.53 -0.58 -0.30 -0.23 0.08 0.62 -0.45 -0.12 bio9 

bio10 0.69 -0.49 -0.42 -0.02 0.79 0.54 -0.17 0.36 0.31 bio10 

bio11 0.96 -0.53 0.16 -0.72 0.15 0.94 -0.78 0.46 0.50 0.52 bio11 

bio12 0.34 -0.70 -0.44 -0.16 -0.26 0.57 -0.48 -0.29 0.63 0.04 0.35 bio12 

bio13 0.39 -0.74 -0.48 -0.17 -0.15 0.58 -0.47 -0.22 0.56 0.17 0.37 0.91 bio13 

bio14 0.40 -0.71 -0.40 -0.20 -0.23 0.62 -0.53 -0.26 0.65 0.09 0.42 0.99 0.89 bio14 

bio15 -0.35 0.65 0.41 0.14 0.21 -0.57 0.45 0.32 -0.71 -0.05 -0.37 -0.97 -0.84 -0.97 bio15 

bio16 0.28 -0.72 -0.47 -0.16 -0.31 0.52 -0.49 -0.32 0.57 0.02 0.28 0.98 0.93 0.95 -0.91 bio16 

bio17 0.39 -0.69 -0.40 -0.20 -0.22 0.61 -0.51 -0.27 0.66 0.07 0.41 0.99 0.90 0.99 -0.98 0.95 bio17 

bio18 0.27 -0.62 -0.23 -0.33 -0.45 0.53 -0.60 -0.21 0.43 -0.10 0.33 0.89 0.81 0.87 -0.82 0.91 0.86 bio18 

bio19 0.38 -0.68 -0.40 -0.19 -0.23 0.60 -0.50 -0.29 0.70 0.06 0.40 0.99 0.88 0.98 -0.98 0.95 0.99 0.85 
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3.3. Results 

3.3.1. Correlation results and variables used 

Based on the correlation results (Table 9) and hypotheses on what climate factors 

would influence drought-related tree mortality, the model was reduced to 6 relatively 

uncorrelated climate variables.  These included mean average temperature, 

isothermality, temperature seasonality, maximum temperature of warmest month, mean 

temperature of wettest quarter, and annual precipitation. Mean average temperature 

represented a long-term average trend. Isothermality is the average monthly diurnal 

range divided by the mean annual temperature range (O’Donnell and Ignizio 2012). This 

can be thought of as temperature evenness or variability over the course of a year. It 

quantifies how large the day-to-night temperatures oscillate relative to summer-to-winter 

(annual) oscillations. An isothermal value of 100% indicates that the diurnal temperature 

range is equivalent to the annual temperature range. Including this variable in the model 

will see if the dead tree distribution was influenced by larger or smaller temperature 

fluctuations within a month relative to the year. Temperature seasonality is calculated as 

the standard deviation of the mean monthly temperatures over the year and represents 

average seasonal variation. Isothermality and temperature seasonality are measures of 

weather variation.  The amount of temperature variability in a location, assuming that the 

trees present within those locations are adapted to the temperature variability at the 

location, may play a role in vulnerability of some tree species to drought. For example, 
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trees that are adapted to more variable environments may be better equipped to deal with 

the extreme conditions of a drought.  

Maximum temperature of warmest month represents an extreme environmental 

factor. This variable in a model would tell us whether species distributions are affected 

by ranges of extreme temperature conditions. Extreme variables are often found to be the 

limiting factors for species ranges (Oliver et al. 2009). The mean temperature of wettest 

quarter is the calculated average temperature for the three months with the highest 

cumulative precipitation total. This variable is a combination or interaction between 

temperature and precipitation, which could potentially offer an element of variability not 

found in temperature and precipitation variables in isolation. Annual precipitation was 

included as the representative precipitation variable. 

 

3.3.2. Bioclimate and 2011 variables modeled in isolation 

 The 2011 variables model had a test AUC of 0.86. Annual precipitation 

contributed the most (26%) followed by isothermality (23%) and temperature 

seasonality (Table 10). Probability of dead tree presence generally declined with 

increasing precipitation (Fig. 22) and increasing isothermality (Fig. 23). The bioclimate 

variables model had a test AUC of 0.79. The top three variables were annual 

precipitation, temperature seasonality, and mean temperature of wettest quarter. Here, 

dead tree probability also showed a general decline with increasing annual precipitation. 
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3.3.3. Relative contributions of bioclimate and 2011 variables 

 The resulting model with all twelve (climate and temperature) variables had an 

AUC of 0.84. Variable rankings found that 17% of the variability of dead tree  

 

Table 10 

Contribution  rankings of models separated by variable type. 

2011 variables % contribution Bioclimatic variables % contribution 

Annual precip 26.1 Annual precip 47.5 

Isothermality 22.6 Temp seasonality 17.9 

Temp seasonality 16.1 
Mean temp of wettest 
quarter 

17.2 

Max temp of warmest 
month 

14.4 
Max temp of warmest 
month 

8.1 

Annual mean temp 12.1 Annual mean temp 5.3 

Mean temp of wettest 
quarter 

8.7 Isothermality 4.0 

 

 

occurrence could be explained by long-term annual precipitation (Table 11). 2011 

isothermality was the next most important variable, contributing 16%. This was followed 

by two more short-term variables: 2011 annual precipitation and 2011 temperature 

seasonality, which contributed between 13 and 11%, respectively. Altogether, climatic 

variables explained 43% and 2011 variables explained 57% of dead tree distribution. 

Long-term averages of isothermality and annual mean temperature ranked the lowest 

(<3%). The probability of dead tree occurrences generally declined with annual 

precipitation, which follows a strong east-to-west gradient in Texas (Fig. 24). The 

highest ranking 2011 variable, isothermality, showed a general decline with increasing 

seasonality (Fig. 25).  



72 

Fig. 22. The 2011 climate variables model prediction probability response of dead trees 

as function of 2011 precipitation when keeping other variables at average value. 

A comparison of each variable between long-term average and 2011 revealed 

that isothermality had the highest discrepancy between the two conditions in predictive 

ability (14%, Table 12), followed by annual mean temperature (6%). The map shown in 

Fig. 26 shows the spatial prediction of dead tree probability of occurrence. White 

indicates areas where no prediction occurred, due to being defined as non-forest, an area 

of 2011 fire occurrence, or an area that was masked out because of the presence of one 

or more variables with values outside of those within the model training range and 
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Fig. 23. The 2011 climate variables model prediction probability response of dead trees 

as function of 2011 isothermality when keeping other variables at average value. 

therefore would be an unreliable prediction. The prediction map shows high probability 

throughout the eastern regions of Texas, the Brazos Valley, and hotspots located in the 

Panhandle and eastern and western portions of Central Texas (Figs. 26 and 27). The 

model predicts the highest mean probability of occurrence in the Southeast-west region 

and lowest probability in the neighboring Southeast-East region (Fig. 27). 
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Table 11 

An estimate of relative contributions of environmental variables to the Maxent model. 

Variable Percent contribution 

Annual precip 17.1 

2011 isothermality 16.3 

2011 annual precip 13.0 

2011 temp seasonality 11.2 

Temp seasonality 10.2 

Mean temp wettest quarter 9.1 

2011 mean temp 7.3 

2011 mean  temp wettest quarter 4.6 

2011 max temp warmest month 4.3 

Max temp warmest month 3.3 

Isothermality 2.7 

Annual mean temp 1.0 

 

 

 
Fig. 24. The combined model prediction probability response of dead trees as function of 

annual precipitation when keeping all other variables at their average value. 
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Fig. 25. The combined model prediction probability response of dead trees as function of 

2011 isothermality when keeping other variables at average value. 

Table 12 

Difference in percent contribution between the bioclimatic variable and corresponding 

2011 variable. Negative values indicate that the 2011 variable contribution was higher. 

Variable Percent difference 

Annual precipitation 4.2 

Isothermality -13.6 

Temperature seasonality -1.0 

Mean  temp of wettest quarter 4.5 

Annual mean temperature -6.4 

Max temperature of warmest month -1.0 



76 

Fig. 26. Spatial representation of Maxent model prediction of dead tree occurrence using 

bioclimatic and 2011 weather conditions. 
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Fig. 27. Mean predicted probability of dead tree occurrence by FIA region. 

3.4. Discussion 

By separating the variable types into different models, a few insights were gained 

prior to directly comparing one variable type against the other. The model using only 

2011 variables explains which drought factors play a role in mortality distribution if 

there were no long-term climate effect, i.e., all vegetation in Texas had the same 

characteristics and life histories. In this hypothetical scenario, not surprisingly 

precipitation had the greatest contribution to drought mortality. When examining the 

relationship of dead tree occurrence probability with 2011 precipitation, there is a 
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general downward trend indicating that drought-killed trees were more likely to be in 

areas that received less precipitation, which leads to the natural assumption that water 

deficiency leads to evaporative stress, ultimately leading to mortality. Isothermality, or 

daily temperature oscillation relative to annual temperature oscillation, was the second 

highest contributor at 23%. The relationship of probability dead tree presence with 

isothermality shows a steep downward trend, indicating that, in a uniform climate 

environment, trees in regions that had average daily temperature isolation that were 

much different from the average temperature range of 2011, were more likely to be 

killed by drought. Put another way, trees that experienced erratic fluctuations throughout 

the year as opposed to those in regions where fluctuation was more even, were more 

susceptible to drought. As a measure of variability, it is not surprising that this may play 

a role in drought mortality. More studies would be needed to firmly place a link between 

isothermality and drought vulnerability.  

Modeling the bioclimate variables in isolation gave information on which climate 

variables are most important in determining dead tree distribution in the absence of any 

short-term climate variability. Here, annual precipitation was the highest contributor to 

the model, but by a much wider margin than in the 2011 model. Though less of a clear 

pattern, the relationship is also generally negative, showing higher probability of 

mortality in regions with less precipitation. Isothermality had a notable difference in 

percent contribution between the 2011 and long-term versions (14%, Table 12). 2011 

isothermality ranked second, and long-term isothermality ranked last. This discrepancy 
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may be a result of the departure from average temperature oscillations of 2011, which 

would have exposed trees to temperature oscillations outside of their normal range. 

The combined model allowed the comparison of long-term variables and 

corresponding drought variables. Two out of the six different climate variables had their 

long-term version out-contribute the short-term version, including annual precipitation 

and mean temperature of wettest quarter (Table 12). That the long-term climate rather 

than the condition during the time of drought was more dominant in the model may be 

an indication that for these variables, it was the response of the species of those 

particular climate regions to extreme conditions, rather than the intensity of the 

conditions themselves, that indicated risk. The dominance of annual precipitation is a 

possible indication that trees adapted to high rainfall are more vulnerable to drought, up 

to a particular threshold.  

The combined model predicted areas of high mortality in both wet and dry areas 

of the state and areas in-between  (Fig. 26). One reason for this is differential survival of 

tree species within their communities. A genus-level evaluation of tree mortality from 

the 2011 Texas Drought using all of the same plot data used in this modeling exercise 

found that different types of genera from different areas of the state suffered 

disproportionately from others (Moore et al. 2016). They also found apparent spatial 

thresholds of survival of genera associated with the dominant species of the genera in the 

area. Oaks suffered high mortality overall, but particularly in the eastern regions, where 

the dominant species is Quercus nigra, compared to the Brazos Valley to west where the 

dominant species are Q. fusiformis and Q. Stellata. Elm mortality was much higher in 
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the Brazos Valley compared to Central Texas, where the dominant species shifts to 

Ulmus crassifolia. For junipers, survival was high in North Texas and Panhandle regions 

where Juniperus pinchotii dominates, but disproportionately high in Central Texas 

where most are J. ashei.  

Overall, Moore et al. (2016) found a generally uniform rate of mortality across 

the regions. This agrees with the Maxent results when looking at how the bioclimatic 

variables predicted spatial mortality, and the fact that these variables were less dominant 

drivers than the 2011 drivers. Despite the fact that Texas has such a pronounced 

precipitation gradient, it could be the adaptations of the taxa to their environment that 

produced an equalizing effect on the distribution of mortality caused by this drought.  

Contribution of both variable types came out to be roughly even, showing that 

both are important for predicting dead tree distribution. Likely, it is the severity of the 

drought at hand that would influence predictive contribution. In the case of the 2011 

drought, precipitation deficits were so high that it is not surprising that these variables 

contributed more to the model. However, bioclimatic variables played a significant role 

as well, meaning that the local adaptation of the trees was important in determining if 

and where they died. In a hypothetical situation where species distributions were 

uniform across the state, it would be easier to get a clear picture of where the drought 

had the most effect. This not being the case, the bioclimatic variables give us general 

vegetation zones that tell us where some species can survive well in one region versus 

another, and see how these adaptations play a role in drought mortality. It is this type of 

differential survival probability to varying conditions that drives range shifts (Davis and 
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Shaw 2001) and extreme events or conditions, such that the 2011 variables represent, 

drive these changes, putting vegetation  in an immediate “live or die” situation.  

Movement of ranges with climate change has always occurred and is evident in 

the fossil record. For example, through radiocarbon dating, scientists have reconstructed 

the northern tree line shifts in Russia that correspond with climate changes in the region 

(Kremenetski et al. 1998). In North America, there is paleoecological evidence for 

changes in terrestrial vegetation during an episode of climate warming between 5,000 

and 4,000 years ago at the boreal treeline in central Canada as the tundra transformed to 

forest-tundra (MacDonald et al. 1993). What is less understood is how climate extremes 

and their increasing frequency affects range shifts. In the quaternary, there is evidence 

that adaptation and migration have played important roles in how species respond to 

climate change, however, rapid climate change can interrupt this process by not allowing 

for adaptation. Instead of steady migrations of woody species as were observed as 

climate warmed at the end of the last glacial interval (Davis and Shaw 2001), extreme 

events cause massive die-offs (Allen et al. 2010), which can cause extirpation, 

extinction, and an uncertain future for the landscape. 

Range limits are often determined using mean values of climatic variables, 

however, with increasing frequency of climate extremes, it is important to further 

investigate the role these play in influencing range limits. Species distribution models 

were found to improve with the inclusion of measures of extremes (Zimmermann et al. 

2009). By looking at mortality from a specific event, this study was able to, to some 

degree, determine how range limits were enforced by this particular extreme event and 



 
82 

 

determine the relative role of long-term factors vs. the extreme event factors. The finding 

that the contribution of bioclimate and 2011 variables were roughly even, but 2011 

variables came out slightly ahead (57% vs. 43%), confirms the hypothesis that, although 

species distributions play a significant role, it was the 2011 departures from normal 

conditions put trees under extreme conditions outside their tolerance for drought, 

ultimately driving the distribution of mortality. 
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4. THE RELATIVE CONTRIBUTION OF CLIMATIC, EDAPHIC, AND BIOTIC 

DRIVERS TO RISK OF TREE MORTALITY FROM DROUGHT 

 

4.1. Introduction 

 It is well known that species responses to drought differ (Engelbrecht et al. 2007; 

Lei et al. 2006; Peñuelas et al. 2007), the duration and severity of drought impacts plant 

survival (Adams et al. 2009; Mafakheri et al. 2010; McDowell et al. 2008), and edaphic 

conditions control the relative amount of water available to plants during drought 

(Baldocchi and Xu 2007; Seyfried et al. 2005; Svenning and Skov 2005). However, 

models that incorporate biotic, climatic, and edaphic drivers have not been extensively 

tested. As discussed in the previous section, long-term average climate defines general 

vegetation boundaries. However, edaphic factors likely influence tree range limits in a 

way that imposes even sharper gradients and boundaries than those imposed by climate 

alone because of the scale at which these factors are distributed in the landscape; for 

example, soil composition and source and sink zones which directly control water 

availability. Lastly, biotic factors determine how the plants deal with soil water deficit 

and in the case of forest density, water availability.  

Actual drought mortality events are the ideal testbed for better understanding the 

relative contribution of known drivers of mortality. The 2011 drought may show that 

widespread drought has varying effects of tree mortality across the landscape. 

Understanding the cause of this variation is not simple because tree mortality is 

influenced by multiple factors including long-term climate trends (Luo and Chen 2013),  
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Fig. 28. Theoretical model of the biotic, edaphic, and climatic factors affecting tree 
mortality. Items in boxes are indirect factors that can be measured. Items on the right are 

direct drivers of drought-related mortality. 

 

timing and duration of local drought conditions, functional type, position on the 

landscape, predation, and competition with other vegetation among other possibilities. 

Additionally, the importance of these factors is dependent on the scale of observation. 

Quantitative methods can now be applied to address these questions that previously 

relied on anecdotal information or local studies.  

For this study, I tested known drivers of drought stress that could lead to 

mortality. In the precipitation deficit to plant death continuum (Fig. 21), the test 

variables fall under climate and edaphic features, which drive soil moisture deficit; and 
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species factors, which influence plant water stress. Selection of appropriate 

environmental factors was based on a conceptualization of the drivers of mortality from 

drought (Fig. 28). The biotic factors selected for the model were forest type and density. 

The edaphic factors selected for the model were wetland soil, topographic wetness 

index, available water storage in the root zone, percent clay content, slope, and aspect. 

The climatic factors selected for the model were long-term annual total precipitation, 

average temperature of the wettest quarter, and maximum temperature of the warmest 

month. The following section provides further justification for the use of these variables 

in the model. 

 

4.1.1. Forest density and forest type 

Forest density is widely associated with risk of mortality from competition for 

resources. Areas with denser vegetation have higher soil water depletion rates due to 

increased competition for the resource. In oak forests it has been shown that thinning 

stands lead to higher predawn leaf water potential; and decreases in interception and 

transpiration leading to increased water availability (Bréda et al. 1995). However, there 

is threshold for which low density leads to greater water availability. In an experiment 

using tree density gradients, it was found that the least dense stand was not the most 

ideal due to low water retention (Gouveia and Freitas 2008).  

Species composition differs greatly with ecoregion and management regime, 

which is represented by the variable “forest type”. A species may have a competitive 

advantage over another for water by 1) acquiring a greater proportion of available soil 
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water, 2) using water and nutrients more efficiently in producing biomass, or 3) 

allocating in ways that maximize survival and growth (Nambiar and Sands 1993). In the 

face of water limitation, plants have developed different physiological strategies for 

coping. For example, two widespread species in central Texas, live oak and Ashe 

juniper, have contrasting strategies. Isohydric species close stomata to reduce risk of 

catastrophic hydraulic failure, but in doing so risk the consequences of carbon starvation 

which ultimately causes mortality (McDowell et al 2008). Anisohydric species in 

contrast do not risk carbon uptake with stomatal closure, making them more prone to 

mortality via hydraulic failure. 

 

4.1.2. Soils 

During the 2011 drought, it was observed that deeper-rooted trees on deep soils 

were experiencing relatively higher mortalities than those constrained by shallow soil. 

One localized investigation following the 2011 Texas Drought found significantly higher 

tree mortality in deep soils than in shallow soils or rock draws (Twidwell et al. 2013). 

Deeper – rooted plants that are dependent on groundwater  during season drought are 

more able to tolerate moderate drought but are likely more vulnerable to extreme or 

sustained drought as their groundwater source is depleted (Froend and Drake 2006). 

Visual evidence for this has been observed throughout the state, but a large scale study is 

needed to test whether trends are widespread. Since 2010 was a wet year for Texas, this 

may have contributed to the high mortality response to the 2011 drought as some plants 



 
87 

 

in may have responded to the wet year with increased aboveground biomass 

disproportionately to belowground root growth (Lytle et al. 2004). 

Available water storage at the root zone (AWSrz) is hypothesized to be a 

dominant factor that determines the survivability of trees during drought. Low soil water 

potential can kill or weaken a plant by constraining carbon assimilation, causing 

desiccation to the point of catastrophic cavitation, or both (McDowell et al. 2010). 

AWSrz is controlled by soil texture and rooting depth.  More AWSrz give plants an 

advantage during light to moderate dry periods; e.g., trees in topographic sinks are 

relatively protected from stress and mortality (Breshears and Barnes 1999). However, in 

prolonged or severe drought, plants adapted to grow in high AWSrz conditions may be 

more vulnerable as water availability declines to unprecedented levels or as water tables 

fall below root zones (Breshears et al. 2005). Clay is also thought to play a role in plant 

survivability. It is shown to be important for plant function during drought because of its 

water retention properties (Cosby et al. 1984; Williams et al. 1983).  

 

4.1.3. Topography 

Across the landscape, topography defines the pattern, number, and frequency of 

source and sink zones, which in turn, control the spatial distribution of vegetation and 

water availability (Ludwig et al. 1995; Thompson et al. 2011). In terms of the influence 

of slope on tree mortality, it has been hypothesized that soil moisture is higher in flat 

benches and bottom slopes during normal years; therefore, rooting is relatively shallow 

and clones are more susceptible to drought mortality (Worrall et al. 2008). Aspect has 
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direct and indirect influence on solar radiation, surface temperature, evaporation, soil 

moisture, and precipitation of an area. North-facing aspects are generally considered to 

generate wetter and cooler micro-climates in the northern hemisphere and south-facing 

aspects form drier and hotter climates with higher soil water depletion rates.  The 

topographic wetness index quantifies topographic control on hydrological processes an 

indicates water availability as a function of upstream contributing area and slope 

(Sörensen et al. 2006).  

 

4.1.4. Possible effects of scale and location 

 This study will look at the effects of both scale and location. Climate is more 

likely to drive mortality on a regional scale because climate determines broad ecological 

regions which in turn define general vegetation zones. Studies have found that ecotones 

separating vegetation zones are sensitive to climatic conditions (Brubaker 1986; Houle 

and Filion 1993; Loehle 2000; Schwarz 1997).  However, on a finer scale, within climate 

zones, edaphic factors are likely to play an important role because within climate zones 

or ecoregions, soil composition and topography will ultimately determine available 

water storage at the community and individual level, which determines plant water 

deficit then death. This is why I hypothesize that AWSrz which should be a direct 

determinant of that would be a driving variable. When it comes to location, it is likely 

that mortality in mesic areas more driven by biotic factors. If the mesic regions have 

more water storage and water than the xeric regions, it may be that the biotic, or physical 

characteristics of the trees and the way in which they deal with water scarcity, may be 
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what drives mortality. Conversely, xeric regions were influenced by edaphic factors. In 

dry regions, where water limitation is more of a problem compared to East Texas, it may 

be edaphic factors such as soil capacity and topography - that control water storage that 

make a difference in which trees survive. 

 The objectives of this study were to 1) determine the relative contribution of 

edaphic, climatic, and biotic variables to drought-related mortality, and 2) examine the 

relationship of each important driver to mortality prediction. Additionally, I look at how 

these contributions differ with scale, and how they differ by region. Specific hypotheses 

tested were 1) At the state scale, climate is the dominant driver of mortality, 2) At a 

smaller scale, edaphic factors drive mortality, particularly available water storage, 3) 

Mortality in mesic areas are more driven by biotic factors, and 4) Xeric regions are more 

influenced by edaphic factors. 

 

4.2. Methods 

4.2.1 Data 

Potential wetlands soil landscape (PWSL) and available water storage at root 

zone (AWSrz) are “ready to map” attributes that are part of the National Value Added 

Look Up Table database (Soil Survey Staff 2012) available from the USDA Natural 

Resource Conservation (NRCS) Gridded Soil Survey Geographic (gSSURGO) database 

(Table 13). AWSrz is based on soil layering, soil texture, and the root limiting horizon. 

PWSL is expressed as the percentage of the map unit that meets PWSL criteria. Hydric  
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Table 13 

Spatial data on environmental drivers used as inputs to the Maxent model. 

Variables Units 
original 
resolution (m) source/attributes 

forest type Categorical 250 FIA (Wilson et al. 2012) 

forest density live trees > 5 in 
DBH/acre  

250 FIA 

AWSrz Mm 10 NRCS SSURGO 

PSWL % of soil map unit that 
meets PSWL criteria 

10 NRCS SSURGO 

Percent clay % average value for the 
soil range in clay 
content 

10 NRCS STATSGO 

Slope unitless (m/m) 30/250 NED/GMTED DEM from USGS. 
Converted in ArcMap 

Topographic 
wetness index 

unitless  30/250 NED/GMTED DEM from USGS. 
Converted in ArcMap 

Aspect categorical (N, NE, E, 
SE, S, SW, W, NW) 

30/250 NED/GMTED DEM from USGS. 
Converted in ArcMap 

2011 
temp/precip 

°C/mm 4000 PRISM Climate Group 

bioclim 
variables 

°C/mm 1000 WorldClim (Highmans et al 
2005) 

 

 

soils were considered PWSL, as well as those considered as “poorly drained”, 

“undrained”, or other descriptive words indicating a current or originally wet soil. 

Percent clay was obtained as a shapefile form the NRCS State Soil Geographic 

(STATSGO) data base (Soil Survey Staff). Average percent clay was calculated and the 

layer was rasterized in ArcGIS. The topographic variables of aspect, slope, and 

topographic wetness index (TWI) were calculated from the 2010 USGS Global Multi-

resolution Terrain Elevation Data (GMTED) digital elevation model (DEM) Resolution 

was 250-m (7.5 arc seconds at equator). Aspect degree values were reclassified into 8 

categories representing each cardinal direction and resulting layer was input into Maxent 
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as a categorical variable. For the smaller scale models, the same topographic variables 

were calculated using elevation data from the USGS National Elevation Dataset (NED) 

with a resolution of 30-m.  

 

4.2.1.1. Climatic variables  

Bioclimatic variables from the WorldClim database version 1.4 are derived from 

the monthly temperature and rainfall values (~1950-2000) in order to generate more 

biologically meaningful variables (Hijmans et al. 2005). The top 3 bioclimatic variables, 

determined from Ch. 3 analysis, were used as input to represent long-term average 

conditions that are most likely to be important drivers of mortality.  As long-term 

variables, these were included to see how they ranked in comparison to the biological 

and edaphic factors. The 2011 variables from the previous analysis were not included 

because unlike all of the other variables, these represent more temporary conditions. 

 

4.2.2. Analysis  

As with Chapter 3, analyses were performed using Maxent, a habitat suitability 

approach that predicts areas most likely to contain drought-related tree mortality. 

Briefly, Maxent is a machine learning method that calculates the most uniform 

distribution with the constraint that the expected value for each variable should match 

the average value of a set of sample points taken from the target distribution (Phillips et 

al. 2006). The Maxent algorithm constructs a habitat suitability model using dead tree 

occurrence data and environmental variables to predict geographic areas where there are 
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likely to be other occurrences and calculates a percent contribution for each of the 

variables and their percent contributions. All data were extracted within the bounds of 

Texas, precisely coregistered, and projected in GCS North American 1983 coordinate 

system. The raster data products were reprojected with nearest neighbor resampling to 

maintain the pixel values, and resampled to 250-m output pixel dimensions. As with the 

previous analysis, the training area was limited to 78.5-km
2
 circular areas around each of 

the field sampling locations then applied only to areas where values of the environmental 

variables were within their respective range of values within the training area. 

Although Maxent is generally stable with correlated variables (Elith et al. 2011), 

highly correlated variables can confound the percent contributions of individual 

variables and interpretations of how each variable affects the model prediction. All 

variables that were run in the same model were transformed if necessary and run through 

a Pearson’s correlation test. Variables were removed if highly correlated using threshold 

coefficient of 0.65.  First, only edaphic variables were run through the Maxent model, 

then biotic factors (forest density and forest type), and lastly, the 3 top bioclimatic 

variables were added (total of 11 variables). Improvement to the model and relative 

contributions were compared.  

This process was repeated for two smaller areas in Texas, one in the East and 

another in Central Texas (Fig 29). Each area is a Landsat footprint - path 26 row 38 in 

the east, path 29 row 39 in the west – measuring 170 x 185 km; though no reflectance 

data was used in this analysis. The East Texas area is located southwest of Dallas and  
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Fig. 29. Study area: forested non-burned areas of the state and two Landsat footprints in 
East and Central Texas. 

 

traverses the Piney Woods, Post Oak Savanah, and Blackland prairie vegetation regions. 

The Central Texas area includes the Edwards Plateau and the southeastern section of the 
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Trans Pecos region and includes the city of Sonora. A small part of this scene in the 

southwest corner is not within the state and was not analyzed.  

The data used for the statewide analysis was also used for the smaller areas, with 

the exception of the DEMs used to derive slope, aspect and TWI. The elevation data 

used were 30-m DEMs from the USGS 3D Elevation Program (3DEP), downloaded 

from the National Map Viewer (Dollison 2010). All data were extracted within the 

respective footprint, precisely coregistered, and projected in GCS North American 1983 

coordinate system. The raster data products were reprojected with nearest neighbor 

resampling to maintain the pixel values, and resampled to 30-m output pixel dimensions.  

 

4.3. Results 

4.3.1. Statewide models 

Model accuracy as measured by the AUC increased incrementally with the 

addition of more variables (Fig. 30). The model containing all three variable types had 

an AUC of 0.86. The edaphic model (AUC = 0.74) had AWSrz as the highest 

contributor (26%) followed by slope (22%, table 14). With the addition of biotic 

variables, forest density was most important (39%), followed by an edaphic factor, slope 

(15%). After adding the climatic variables, annual precipitation contributed the most 

(29%), then forest density (27%). Considering relative contributions of the variable types 

grouped together (Fig. 31), the edaphic and biotic factors model showed a close to equal 

contribution to explaining mortality distribution, with edaphic factors explaining only  
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Fig. 30. AUC of test data for Maxent models created with different variables. 

 

10% more than biotic variables. When combining all three variable types, climatic 

factors drive the model, contributing 42%.  

Next the relationships of predicted dead tree occurrence with the top contributing 

variable in the model were examined. Within the edaphic model, probability of dead 

trees showed a few peaks of occurrence at low water storage (0 – 25mm), and peaks at 

high water storage (around 200 and 275 mm, Fig. 32). In the edaphic and biotic model, 

occurrence probability in relation to forest density was high between 25 – 150 trees/acre 

(Fig. 33). In the edaphic, biotic, and climatic model where annual precipitation was the 

top contributor, mortality occurrence probability generally decreased with increasing 

precipitation. This is seen particularly between precipitation levels between 1100 and 

1400 mm, where probability drops from 0.33 to 0.02% (Fig. 34). 
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Table 14 

An estimate of relative contributions of environmental variables to the statewide Maxent 

models. Top 2 contributing variables are in bold.  

 
Percent contribution 

Variable Edaph, biotic, & climatic Edaph & biotic Edaphic 

Annual precip 29.5 - - 

Forest density 27.3 39.1 - 
Mean temp of wettest 
quarter 8.7 - - 

Available water storage 7.9 9.9 26.3 

Slope 6.7 14.6 21.5 
Topographic wetness 
index 6.4 10.0 18.7 

Potential wetland 4.0 7.5 10.5 
Max temp of warmest 
month 3.4 - - 

Forest type 3.3 6.1 - 

Aspect 2.6 3.5 5.0 

Clay 0.3 9.2 18.0 

 

 

 

 
Fig. 31. Percent contributions of edaphic, biotic, and climatic variables to statewide 

Maxent models created using varying combinations of each. 
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Fig. 32. Response of dead tree probability of occurrence to AWSrz in edaphic variable 

model when all other variables are held constant. 

 

The results reported involving individual strata comparisons do not include the 

Trans-Pecos or the South FIA regions because of sparse plot coverage in these areas. 

Also, very little of the Trans-Pecos was defined as forested area. In all cases, the 

variation of the models using only edaphic variables predicted the most mortality (Fig. 

35). This can be seen in the maps of the statewide model by the lighter colors that 

progressively dominate from the edaphic to the “full” model (Figs. 36 - 38). There are 

only two regions within the statewide model in which the edaphic, biotic, and climatic 

model predicted a slightly higher mean mortality than the edaphic and biotic model: the 

North and Northeast-West regions (Fig. 35). The all-inclusive model showed the highest 

mean mortality in the Northeast-West and the Brazos Valley regions 
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Fig. 33. Response of dead tree probability of occurrence to forest density in edaphic and 
biotic variables model when all other variables are held constant. 

 

(34 and 33%, respectively), followed by the Southeast-West region (Figs. 35 and 38). 

The Southeast-East region averaged the least predicted mortality (10%). The edaphic 

and biotic model showed the highest mean mortality in the Northeast-West and 

Southeast-West regions (33%) and lowest in the Panhandle (17%). The edaphic only 

model had the same regions with highest mortality but both averaged 42%. The region 

with the lowest mortality was the Southeast-East at 32%. 
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Fig. 34. Response of dead tree probability of occurrence to annual precipitation in the 

edaphic, biotic, and climatic model when all other variables are held constant. 
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Fig. 35. Mean predicted probability of dead tree occurrence by FIA region for all three 

models.  
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Fig. 36. Predicted probability of dead tree occurrence with Maxent model using only 

edaphic variables.  
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Fig. 37. Predicted probability of dead tree occurrence with Maxent model using edaphic 

and biotic variables. 
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Fig. 38. Predicted probability of dead tree occurrence with Maxent model using edaphic, 

biotic, and climatic variables. 

 

 

4.3.2. Local models 

 As with the statewide models, the local models’ AUCs increased as variables 

were added (Fig. 30). Starting with Central Texas and the edaphic only model (AUC = 

0.92), AWSrz contributed overwhelmingly at 44% followed by slope (Table 15). In the 

edaphic and biotic model (AUC = 0.95), forest density and AWSrz contributed over 

60%. When adding bioclimatic variables (AUC = 0.97), annual precipitation contributed 
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the most at 31% followed by forest density. In East Texas, the edaphic only model and 

the edaphic and biotic models (AUC = 0.77 and 0.91, respectively) were also driven by  

 

Table 15 

An estimate of relative contributions of environmental variables to the Maxent models in 

Central Texas. Top 2 contributing variables are in bold.  

 
Percent contribution 

Variable Edaph, biotic, & climatic Edaph & biotic Edaphic 

Annual precip 30.6 - - 

Forest density 22.5 33.4 - 
Max temp of warmest 
month 11.3 - - 

Available water storage 10.7 31.3 43.6 

Aspect 8.3 10.7 17.5 

Slope 8.1 14.6 28.3 
Mean temp of wettest 
quarter 5.7 - - 
Topographic wetness 
index 1.5 4.7 10.4 

Potential wetland 0.7 0.1 0.1 

Forest type 0.5 5.1 - 

Clay 0.0 0.0 0.1 

 

 

AWSrz and slope (Table 16). The all-inclusive model (AUC = 0.92) is different than 

Central Texas in that it was driven most by forest density then mean temperature of 

wettest quarter. Annual precipitation, which dominated every other model in which it 

was included, contributed only 4% in East Texas. 

 With variable types grouped together, the edaphic and biotic models in Central 

and East Texas contributed similar proportions: 60% edaphic, 40% biotic. The addition 

of the climate variables causes the proportions to differ much more from each other. In 

Central Texas, bioclimatic variables as a whole contributed 48%, followed by edaphic 
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(29%), then biotic (23%). Edaphic variables contributed the most in East Texas (47%), 

followed by biotic (32%), and lastly climatic variables (21%, Fig. 39).  

  

 

Table 16 

An estimate of relative contributions of environmental variables to the Maxent models in 

East Texas. Top 2 contributing variables are in bold.  

 
Percent contribution 

Variable Edaph, biotic, & climatic Edaph & biotic Edaphic 

Forest density 22.3 29.4 - 
Mean temp of wettest   
quarter 15.1 - - 

Clay 12.8 12.4 6.4 

Available water storage 11.7 17.6 33.3 

Slope 10.8 14.8 29.8 

Forest type 9.9 10.5 - 

Aspect 5.4 6.8 10.9 

Annual precip 4.2 - - 
Topographic wetness 
index 3.4 4.7 19.4 

Potential wetland 3.1 3.8 0.2 
Max temp of warmest 
month 1.3 - - 
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Fig. 39. Percent contributions of edaphic, biotic, and climatic variables to the all-

inclusive statewide, Central, and East Texas Maxent models. 

 

The Central Texas edaphic model showed a few high peaks of dead tree 

occurrence with low AWSrz, between approximately 10 and 30 mm (Fig. 40). In the 

East Texas edaphic model where AWSrz is also the top driver, probability of dead trees 

is high at low AWSrz values, but the decline with increasing water storage is much more 

gradual and a consistent decline in dead tree probability is not seen until 225 mm (Fig 

41). In the Central Texas edaphic and biotic model, mortality prediction generally rose 

with forest density, with a peak at about 70 trees/acre and probability remains at about 

11% throughout the high densities (Fig. 42). The corresponding model in East Texas 

also show peaks between 10 – 130 trees/acre, but thereafter gradually declines to zero 

probability with increasing density (Fig. 43). In the all-inclusive model of Central Texas, 

the relationship of mortality to annual precipitation is less clear, but there is a peak of 

dead tree occurrence at 440 mm, a gradual increase in mortality to 560 mm, and a 



 
107 

 

subsequent sharp decrease (Fig. 44). The all-inclusive model for East Texas was driven 

by density, which shows the same pattern seen in the edaphic and biotic model (Fig 45).  

 As with the statewide models, the edaphic models predict the highest mortality, 

followed by the edaphic and biotic models, and then the all-inclusive model (Fig. 46 – 

49). Note that the maps depict different areas with white indicating no prediction, 

because different areas were masked with each model depending on the presence of any 

variable values outside of those within the training range. In all variations, East Texas 

averaged higher mortality than Central Texas, particularly in the edaphic models where 

the difference is 21%. 

 

 
Fig. 40. Central Texas response of dead tree probability of occurrence to AWSrz in 

edaphic variable model when all other variables are held constant. 
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Fig. 41. East Texas response of dead tree probability of occurrence to AWSrz in edaphic 

variable model when all other variables are held constant. 
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Fig. 42. Central Texas response of dead tree probability of occurrence to forest density 

in edaphic and biotic variables model when all other variables are held constant.   
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Fig. 43. East Texas response of dead tree probability of occurrence to forest density in 

edaphic and biotic variables model when all other variables are held constant. 
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Fig. 44. Central Texas response of dead tree probability of occurrence to 2011 

precipitation in edaphic, biotic, and climatic variables model when all other variables are 

held constant.   
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Fig. 45. East Texas response of dead tree probability of occurrence to forest density in 

edaphic, biotic, and climatic variables model when all other variables are held constant. 
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Fig. 46. Maxent-predicted probability of dead tree occurrence in Central TX (left) and 
East TX (right) using only edaphic variables. 
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Fig. 47. Maxent-predicted probability of dead tree occurrence in Central TX (left) and 

East TX (right) using edaphic and biotic variables. 
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Fig. 48. Maxent-predicted probability of dead tree occurrence in Central TX (left) and 

East TX (right) using edaphic, biotic, and climatic variables. 
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Fig. 49. Mean predicted probability of dead tree occurrence in Central and East TX for 

all three models. 

 

4.4. Discussion 

Maxent was able to identify and rank important drivers of tree mortality at two 

different spatial scales and ecosystem types. Large proportions of the spatial variation in 

tree mortality could be explained using a combination of biotic, edaphic, and climate 

drivers. When combined, the rank order of variables shifted and adjusted to the addition 

of new variables, which produces a set of probable models that can be used to predict 

mortality in future droughts. The addition of environmental variables increased the 
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prediction accuracy, which is normally the case. This means that each type of variable 

had explanatory power not present in the other variable types.  

In the statewide edaphic model, the dominance of AWSrz confirms its 

importance in plant survivability. It’s direct relationship to water avaialability makes the 

relationship intuitive. Forest density being a dominant driver in both the edaphic & 

biotic model as well as the all-inclusive model may be related to sample bias in dense 

forests. However, at least part of this result may be due to the fact that there are more 

dead trees where there are more trees. In addition, trees in dense forests have increased 

competition for resources including water. It may also be an indication of adaptation, as 

dense forests are found in mesic areas where trees are less likely to be adapted to water 

limitation. The importance of slope is also intuitive, ranking high in all of the statewide 

models. Probability of dead trees increased with increasing slope, which may indicate 

that gravitational runoff on high slopes caused increased water stress in plants (Burt and 

Butcher 1985). 

After adding the three climatic variables annual precipitation comes out on top as 

forest density remains close behind. While it is not surprising that precipitation would be 

a driver of mortality, the relationship is not entirely consistent – presence of mortality 

was seen in many ranges of annual precipitation. The general trend, however, was a 

decrease of mortality with precipitation, after a sharp rise between 200 and 400 mm. The 

downward trend may indicate that water availability for the state, while record low in all 

areas, may have been spatially in proportion to the average annual rainfall in those areas; 
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i.e. mesic areas still received relatively more rainfall than dry areas, making survival 

higher in those regions. Inspection of 2011 precipitation shows that this is the case.  

Potential wetland soils landscape showed minimal contribution in all models. 

This may imply that the potential presence of wetlands might not be an adequate 

predictor of dead trees or this may be a scaling issue, and the phenomena may not be 

well detected at coarse resolution if the wetland units were too few, small, or otherwise 

isolated from the occurrence data. One way a model may better account for this variable 

is through plant characteristics like root depth and plasticity of root depth which are 

likely important predictors of drought vulnerability (Jackson et al. 1996; Rodríguez-

Iturbe and Porporato 2004). 

As the models increase in variables and accuracy, mortality prediction decreases, 

showing more “realistic” probabilities. Spatially, they all show high mortality in the 

Eastern regions, the Brazos Valley, the North, and hot spots in the panhandle. There are 

some regions that show some variation between models. The Central region shows high 

mortality throughout the entire region in the edaphic model, likely driven by the low 

AWSrz in these shallow, rocky soils. Adding the biotic factors decreased prediction of 

mortality which is likely due to forest density variable and the fact that most of the 

ground data had dead trees found in high density areas, thereby lowering the prediction 

in Central Texas where density is low. Adding the bioclimatic factors caused prediction 

to decline further, but there are hot spots in the east and west. The high mortality in the 

eastern part of the region appears to be mostly caused by annual precipitation. The cause 

of mortality in the east is less clear by viewing spatial overlays, but seems to be a 
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combination of the annual precipitation and density. The fluctuating predictions in the 

southeast-east region seemed influenced primarily by forest density. Though these 

models are useful, it is important to keep in mind the spatial bias of this particular field 

data, because the clustering of plots affects the spatial prediction.  

Another notable spatial observation is that mortality seems to be concentrated on 

the western edge of some major forest types groups: The Loblolly/shortleaf pine group 

to the east, the Pinyon/Juniper group, and the Oak/hickory group in the west. These areas 

can also be considered the eastern pine-deciduous forest and the oak-juniper savanna. It 

is likely that the western edge will be the trailing edge of range migrations, if this were 

to take place. As climate becomes hotter a drier, ecotones in Texas are likely to move 

eastward if given the ability to migrate and edaphic characteristics allow. This drought 

and the subsequent mortality show how extreme events can lead to range shifts in in 

relatively short time scales. 

The high importance of the bioclimatic variables seen in the statewide and 

Central Texas models show that for the variables considered presently, bioclimate can be 

as useful for predicting mortality as biophysical variables. Knowing that they can predict 

present mortality is useful because they represent average conditions over approximately 

50 years not including the decade in which the drought took place. This means that to a 

certain degree, probability of mortality can be predicted without having to wait for data 

from the year of the onset of the drought. 

In Central Texas, the 44% of the edaphic model is explained by AWSrz, which 

shows the expected relationship with spikes of mortality probability where storage is 
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low. The map shows sharp transitions in mortality that coincide with county lines. This 

is a common problem in using NRCS SSURGO data, which was collected by individual 

counties and many counties list different soil types and characteristics that are different 

than that of a neighboring county. The hot spot of mortality seen in the middle of the 

study area shows a relatively straight boundary to the west which is a result of this 

county data discrepancy - particularly that of the driving factor, AWSrz. The graph 

showing East Texas mortality with AWSrz shows sustained high mortality at low 

AWSrz with a more gradual decline. This contrast compared to West Texas is likely due 

to the few numbers of trees found at all at higher AWSrz values. 

In the edaphic and biotic model, Central Texas shows peaks at mid-densities and 

a sustained mortality probability at high densities, which is in contrast to East Texas 

which shows a decline at high densities. Since East Texas has uniformly dense forests, 

the decline may simply represent all those trees that did survive (non-presence, 

according to the model); whereas in Central Texas, where high densities are scarce, the 

model predicted about 10% chance of mortality in all dense stands above 90 trees/acre. 

The maps show that the predictions are generally decreased and the sharp discrepancies 

across county lines are smoothed out. In the East, the effect of density can be seen in the 

high mortality predictions along water ways with presence of dense riparian and 

bottomland forests. 

In the all-inclusive models for East and West Texas, different top contributing 

variables emerge. In the east, density remained at the top and showed an almost identical 

pattern with mortality, except for the probability numbers themselves, where in the all-
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inclusive models, the values were about 3% higher than that of the edaphic and biotic 

model corresponding to the same density value. Even though density contributed less to 

the all-inclusive model, the model predicted higher mortality with density. The spatial 

distribution appears similar with both maps, but more concentrated in the all-inclusive 

model. This implies that the bioclimatic variables predict similar distributions as the 

other variables, showing the coupling of climate with biotic and edaphic factors (Van der 

Putten et al. 2010). 

In Central Texas where climatic factors dominate, annual precipitation is again 

the driving factor. The relationship is not a clear positive or negative; like the statewide 

model, high mortality was found in a range precipitation levels. In this case, however, 

there is 100-mm range of precipitation values that show a gradual incline. If not purely 

random, this could again be representative of trees in higher precipitation zones being 

more susceptible to mortality. Overlays show that high mortality was seen in the 

pinyon/juniper forest type group. There is also anecdotal evidence that many junipers 

were affected during this drought. As mentioned in the previous chapter, Moore et al. 

(2016) found disproportionately high mortality of J. asheii in Central Texas. This was 

unexpected because they are considered drought-resistant species. Although additional 

studies are needed to confirm that trees have not resprouted, it’s possible that this that 

the drought conditions exceeded a particular threshold for this species, especially in the 

western part of its range.  
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The first hypothesis stated that climate was a more dominant driver at the 

regional compared to local scale. This was found to be true only in comparison to East 

Texas (Fig. 39). The bioclimate variables contributed a slightly larger proportion to dead 

tree distribution in Central Texas (48 vs. 42%). Climate may have played an 

unexpectedly large role in Central Texas because of annual precipitation, which 

explained 31% of the model, had a large precipitation gradient in the area, a range of 

about 365 mm. Maximum temperature of warmest month contributed 11%, a variable 

that ranked low in the East Texas and statewide models, showing the high maximum 

temperatures may have played more of a role in determining mortality in the drier 

regions.. 

The second hypothesis, that edaphic factors drive mortality more at a local scale 

relative to the statewide scale, was certainly more clearly confirmed in East Texas than 

in Central Texas where edaphic variables explained close to half of the mortality model.  

Clay, AWSrz, and slope explained over 35%. In Central Texas, however, edaphic factors 

contributed only 1% more than they did in the statewide model because of the 

dominance of climatic variables discussed earlier. The importance of AWSrz was also 

confirmed. It was the top driver in all edaphic models, second in both of the local 

edaphic and biotic models, and fourth in all of the all-inclusive models. With the 

exception of the all-inclusive model for East Texas where AWSrz contributed 1% less 

than percent clay, it was the top edaphic variable in every other model. 

In comparing the two smaller-scale models, I hypothesized that mortality in 

mesic areas were driven most by biotic factors and mortality in xeric regions would be 
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driven most by edaphic factors. The former was somewhat confirmed in this analysis in 

that in the East Texas model, the biotic contribution was greater than that of the climate 

contribution as well as the biotic contribution in Central Texas. However, the biotic 

contribution was less than edaphic in the East. With regards to Central Texas, the results 

lead to the rejection of the hypothesis that edaphic factors drive mortality in this region. 

These variables contributed slightly more than biotic, but clearly not as important as the 

climatic variables. 

As a whole, Central Texas relative contributions by variable type more closely 

mirror that of the statewide model.  The East and West Texas areas examined represent 

very different environments and ecological profiles. Interestingly, the edaphic and biotic 

models of both areas show almost identical contribution proportions of both variables 

types: 60% edaphic and 40% biotic. It is the addition of the biolimate variables that 

caused the proportions to vary vastly from each other. 

There are many other drought mortality factors that should be considered in 

future studies. All of the variables listed in Anderegg’s plant death continuum (Fig. 21) 

could be tested and each could have multiple indices that represent them. For example, 

there are a number other edaphic variables to consider. Although in no way exhaustive, 

this exercise was useful in that it allowed us to rank variables in relation to each other. It 

has also generated many hypotheses regarding the specific relationships of the tested 

variables to tree mortality.  
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5. CONCLUSIONS 

 

 This study has shown how much information can be gleaned from coarse-

resolution satellite detection, drought indices, and environmental factors in their ability 

to detect and predict drought-related tree mortality. Given that these resolutions cannot 

detect individual trees, indices at this level still give us useful estimations of location, 

magnitude, and quantification of mortality. By separating calibration data, it is seen that 

uniform tree density plays a large role in prediction accuracy and that calibration data 

should be representative of the area of prediction application. For future applications, it 

is important to be mindful of detection threshold. By raising the threshold from 1 to 6% 

mortality, below which there are no expectations for the indices to accurately quantify 

mortality, model accuracy increased dramatically. Therefore, when deciding on a 

modeling strategy, it is helpful to have an initial estimation of the mortality to determine 

a model’s potential utility. There were not clear advantages or large increases in 

accuracy when going from 250- to 30-m resolution to derive indices. Although moderate 

resolution can detect finer detail, it is still susceptible to the effects of tree density and 

other signal noise. 

 In this study, drought-mortality was modeled using current and time-series 

biophysical indicators; 2011 weather conditions; climate, biotic, and edaphic variables, 

each offering very different but useful information for prediction. Ranking 

environmental factors gives information on how they might contribute to mortality 

relative to each other in a given drought. In the 2011 Texas Drought, it was seen that the 
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climate variables for that year were more instrumental in driving mortality than long-

term climate, likely because they were severe enough to push many trees beyond their 

drought adaptation limits. Differences were seen when comparing mortality drivers 

between different regions where climate contributed to half of the model prediction in 

Central Texas and edaphic variables also contributed nearly half in the East Texas 

model. This highlights the fact that there are major differences between how these 

regions will react to drought and climate change.  

Although modeling and extrapolation from models is risky, it is up to the 

ecologist and the question at hand to decide how to choose and “design” the seemingly 

endless amounts of relevant information, modeling techniques, resolutions, etc. to 

answer questions about complex processes. It is because of this necessary creativity that 

modeling is sometimes called an “art” (Elith et al. 2010).  

 Drought is certainly one of those complex processes that spans multiple time 

scales, spatial scales (molecular to regional), and disciplines. Anderegg et al. (2013) laid 

out a useful conceptual framework of drought mortality that can help piece together past 

work and inform future studies of drought mortality and where information fits within 

the precipitation deficit - to- plant death continuum (Fig. 25). For example, in this study 

our look into meteorological indices (chapter 3) and edaphic features (chapter 4) goes 

into explaining how precipitation deficit leads to soil moisture deficit. The examination 

of biotic variables (chapter 4) goes into explaining how soil moisture deficit translates to 

plant water stress. When that stress leads to physiological damage, the changes in 
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biophysical properties can be picked up by remote sensors and incorporated into indices 

that detect mortality (chapter 2). 

Future research should go into synthesizing what is already known about 

drought-mortality in order to set recommendations for managing forest ecosystems in the 

face of climate change. This research also generated hypotheses that can be further 

investigated. For example, the role of isothermality has brought up the question of 

whether trees more adapted to variable environments are better equipped to deal with 

drought. Other questions raised were whether adaptation of taxa to their environments 

helps to produce an equalizing effect on the distribution of mortality, and whether tree 

ranges in Texas and the Southwest are likely to move eastward with climate change. It is 

also interesting that the VegDRI performed poorly in predicting mortality according to 

accuracy assessments, when many of the variables that contribute to this index 

successfully predicted mortality within Maxent. This may reflect inherent differences in 

the techniques used to assess accuracy. However, if possible it would be worthwhile to 

calculate the VegDRI index for the state at a finer resolution in order to have a fair 

comparison with the predictive power of ΔNDVI. 

Ecologists are still uncovering of the drivers of drought-related tree mortality at 

the precipitation deficit-to-mortality continuum and these can be represented by a 

number of spatial datasets that either already exist or are yet to be created. As more years 

of drought mortality data become available and with continual testing of models, 

variables, and combinations of variables, the ability to predict vulnerable landscapes will 

be further refined. As catastrophic events like the 2011 Texas Drought continue to 
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increase in frequency, being able to detect and predict forest die-offs can help mitigate 

the consequences. 
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