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ABSTRACT 

Shale Gas/Oil reservoirs have emerged as an important reserve in global energy markets in 

the last decade. Oil and gas production from shales has been possible due to horizontal 

drilling and multiple-stage fracturing. 

Shale has low permeability, in the range of nano-darcy’s. To increase flow from such 

reservoirs the only known solution is to increase the area for flow, which can be done by 

Hydraulic Fracturing. This gives an optimum solution for economically producing 

hydrocarbon from these reservoirs.  

It is very important to find a way to quantify reservoir and fracture permeability, and the 

extent of the hydraulic fractures that have been created.  

In this research, the focus is on a method of analysis which can give information on the 

propagation of pressure waves as well as on the properties of the reservoir. These 

techniques gives us two approaches. In the first, the reservoir and fracture model is fixed 

and the pressure wave propagation and the reservoir performance is predicted. In the 

second approach, performance is measured and then inverted for the area of the 

propagating pressure wave. This interpretation technique does not involve any assumed 

model but is developed directly from production data. 

The current research approach is based on the concept of the diffusive time of flight and 

drainage volumes. The diffusive time of flight is derived from the high frequency 

asymptotic limit of the diffusivity equation.  
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For the first approach, we have assumed different wave propagation geometries. Analytical 

solution for these geometries were validated with synthetic simulation case and by 

comparing it with other well testing equations. 

The second approach is a novel method of interpretation of performance data in which we 

try to evaluate a model without using any pre-assumed geometry of the fracture or pressure 

wave propagation. This approach gives the new way to interpret field data and to compare 

the well performance based on the propagation area.  

Our second approach for the analysis of the production data is more promising than other 

approach as the requirement for the predefined model was eliminated. 
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NOMENCLATURE 

 

r Radius of investigation 

k  Permeability  

t  Time 

𝜙 Porosity 

tc  Total compressibility  

  Fluid viscosity 

  Diffusive time of flight 

u Darcy’s velocity 

)(tVp
 Drainage volume 

)(pV  Pore volume contained within a   contour 

)(w  Derivative of pore volume with respect to  

q  Flux 

p  Pressure 

IRR  Instantaneous Recovery Ratio 

𝑞𝑤 Flux through well  

𝑟𝑤 Wellbore radius 

x,y Variables for Cartesian coordinate system 

𝜉, 𝜂 Variables for Elliptical coordinate system 

L Fracture half length 

𝑝𝐷 Dimensionless pressure 
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α Diffusivity 

𝑥𝑓 Fracture half length 

h Thickness of reservoir  

𝑡𝐿𝑓𝐷 Dimensionless time 

wfp  Bottom hole pressure 

ip  Initial pressure 

)(tWp
 Cumulative production 

𝜌 Density of fluid 

g Acceleration of gravity 

𝑓𝑓 Friction factor 

𝑉𝑙𝑖𝑞,𝑟𝑒𝑠 Total fluid volume 

𝑉𝑜,𝑟𝑒𝑠 Oil volume  

𝑉𝑔,𝑟𝑒𝑠 Gas volume 

𝑉𝑤,𝑟𝑒𝑠 Water volume 

𝐵𝑜 Formation volume factor, oil 

𝐵𝑤 Formation volume factor, water 

𝐵𝑔 Formation volume factor, gas 

𝑅𝑠 Gas oil ratio 

𝑁𝑅𝑒 Reynolds number 
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1. INTRODUCTION 

Unconventional Shale gas/oil reservoirs have become an important reserve for the US 

energy supplies. The production is mainly because of the advanced technology in the 

horizontal well completion. 

Unconventional Shale gas/oil reservoirs are characterized by very low permeability (nano-

darcy). Techniques such as decline curve analysis [4-6] and pressure/rate transient analysis 

[7-9] are generally applied for the reserve and property estimation. Even though these 

techniques are easy to apply, they have limitations of homogeneous media and simple 

systems assumptions.  

The research presented here is based on the asymptotic limit of the diffusivity equation for 

impulse source/sink [10, 11]. Resulting Eikonal equation gives the relationship between 

the spatial coordinate DTOF and diffusivity.  

The relationship between the spatial distribution of drainage volume 𝑉𝑝(𝜏) and drainage 

volume propagation with time 𝑉𝑝(𝑡) could be established [12].This relationship could be 

used to get the analytical formulation of drainage volume 𝑉𝑝(𝑡). The only limitation is that 

we must know the geometry of the drainage volume in the spatial coordinate as input to 

the calculation, i.e. 𝑉𝑝(𝜏).  

When talking about our novel method for the analysis of production data, the relationship 

of 𝑉𝑝(𝜏) and 𝑉𝑝(𝑡) is very important. The drainage volume, 𝑉𝑝(𝑡), can be directly calculated 

from the production data. The relationship between the two allows us to invert for the 
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drainage volume,
 
𝑉𝑝(𝑡), to calculate the derivative of 𝑉𝑝(𝜏) with τ, which is proportional 

to the cross-sectional area of the pressure wave in the reservoir. This inversion technique 

is novel and basically gives us an idea of the spatial distribution of the drainage volume in 

τ. Thus this method gives the spatial distribution of drainage volume merely from the 

production data of the well, which in turn gives the idea of the hydraulic fracture 

effectiveness and reservoir properties.  

Here this research work will be focused into two parts. First is the development of 

analytical formulation of the drainage volume by assuming pressure wave propagation 

geometry for homogeneous reservoir, which is based on fracture models. Second is the 

development of the method for analysis of the production data to get the derivative of 𝑉𝑝(𝜏) 

with τ, which is a model free analysis. 
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2. LITERATURE REVIEW 

This section contains the literature review in the following pattern. First part will give the 

overview of the methodology. Second part will give the overview of the approach for the 

analytical solution of the diffusivity equation for infinite conductivity fracture.  

2.1 Methodology 

2.1.1 Diffusive time of flight  

Lee [13] defined the radius of investigation as the distance of peak pressure disturbance 

from an impulse source or sink. 

  

Figure 1 Wave front propagation[14]  

For a 2D homogeneous reservoir,  

 
948 t

kt
r

c
   (1) 

The Diffusive Time of Flight (DTOF), 𝜏, is derived from the high frequency asymptotic 

limit of the diffusivity equation for heterogeneous porous media [10, 11].  
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The asymptotic limit of the diffusivity equation leads to the Eikonal equation which is[15]:  

 ( ) ( ) ( ) ( ) tx k x x x c          (2) 

The variable 𝜏(𝑥⃗) is associated with the propagation of the peak of the pressure pulse for 

an impulse source. This mathematical statement is for a full tensor permeability, while 

isotropic media with scalar permeability is more frequently used. For the isotropic case 

with scalar permeability, Eikonal equation relates incremental 𝜏 to distance in the following 

finite differential formula.  

 tc
r

k


     (3) 

2.1.2 Diffusivity and 𝒘(𝝉) formulation 

The starting point of our methodology is the diffusivity equation in heterogeneous porous 

media [10, 11, 16]. 

Diffusivity equation can be written in terms of pressure and Darcy velocity (for slightly 

compressible fluids)  

  
 ,

0t

p x t
x c u

t



 


  (4) 

Where, 

  
1

u k x p


     (5) 

Above equation can be written in 1D by coordinate transformation .  
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 

 
1

0
p p

w
t w


  

   
  

   
  (6) 

Where, 

 
( )

( )
pdV

w
d





   (7) 

Here w(τ) is the differential of the drainage volume which implies that it is related to the 

surface area of the drainage volume. Also it is a function of τ, which indicates that it is 

related to the geometry of the drainage volume. This 1D diffusivity equation includes the 

heterogeneity and the physical properties in w(τ). This relationship is very important as it 

relates the pressure, rate and drainage volume. 

 

Figure 2. Analogy between the w(τ) formulation in heterogeneous reservoirs and the 

circular drainage volume in a homogeneous reservoir [15] 
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2.1.3 Asymptotic solution to the diffusivity equation 

The exposition presented in this section closely follows what was presented in Yang, C., 

et al (2015).  

Diffusivity equation for slightly compressible fluid can be transformed in terms DTOF, τ, 

by coordinate transformation to obtain single dimensional diffusivity equation 

(Eq.(8))[16]. 

 
1

( ) 0
( )

p p
w

t w


  

   
  

   
  (8) 

Total flux over a τ contour can be calculated by writing the Darcy’s law in τ coordinate 

system (Eq. (9). 

 ( )t

p
q c w 







  (9) 

We can write the diffusivity equation in terms of total flux (Eq.(10)). 

 
1

( ) 0
( )

q q
w

t w


  

   
  

   
  (10) 

For a fixed flow rate drawdown in an infinite domain, the initial and boundary conditions 

are  

 

0 0

0

0

init

w

init

t p p q

q q

p p q





  

 

  

  (11) 
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Well is specified at 𝜏 = 0, which may be at 𝑟 = 0, for fault surface or for the line source 

approximation, or at a finite wellbore radius, 𝑟𝑤. For our case at 𝜏 = 0 we have the 

boundary of a single infinite conductivity fracture.  

w(τ) is derivative of pore volume with spatial coordinate (τ), it is the wave propagation 

surface area. We can consider w(τ) as power-law in τ (linear, radial and spherical cases) 

and it will include all solution for diffusivity equation. Our equations are linear in flux and 

pressure and dimensional analysis tells that dimensionless flux function will depends on 

the ratios of τ and t.  

We can work with Boltzmann variable (𝜉). 

 
2

4t


    (12) 

Now,  

 
2

q dq

t d



 





  (13) 

  
2 2

2 2

2

4 4 2

q dq t q q

t t d t t

  

   

  
     

  
  (14) 

Hence from diffusivity equation we have 

 
1 1

0
2 ( ) ( )

dq dq

t w d w d



    

   
    
   

  (15) 

On integration 
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2

4
1

( ) ( )

w t

p

qdq
e

w d V t



 



    (16) 

Flux, 𝑞(𝜏, 𝑡), and the drainage volume, 𝑉𝑝(𝑡), depend upon 𝑤(𝜏). On integration we get 

the flux. 

 

2 2

4 4

0 0

( , ) . ( ). ( ).
( ) ( )

w wt t
p

p p

q q
q t d w e dV e

V t V t

 

   
 

 

     (17) 

Now, 𝑉𝑝(𝑡), for τ=0 is calculated for 𝑞(𝜏, 𝑡) = 𝑞𝑤 as is determined from the boundary 

condition at τ=0. 

 

2 2

4 4

0 0

( ) ( ). ( )t t
p pV t dV e w e d

 

  
 

 

     (18) 

The last equation is one of the most important equations which will be used for finding 

analytical solution for the drainage volume and for the production data analysis. 

2.2 Solution to diffusivity equation for infinite conductivity fracture 

Solutions for the diffusivity equation for an infinite conductivity fracture are not new. 

There has been a lot of work which has been done for the diffusivity equation solution for 

fracture system. Diffusivity equation can be solved numerically in Cartesian system with 

the use of different numerical techniques i.e. finite difference, finite element etc. Here the 

main focus of the literature review are the analytical solutions for the same.  

Fracture in a low permeability matrix acts as a highway where the flow of the hydrocarbon 

takes place. Hydrocarbon flows into the fracture from the reservoir rock and from there it 
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flows to the well if the fracture is connected to the well. The flow inside the fracture is 

considered with no restrictions, an assumption for infinite conductivity.  

Most of the models assumed for the derivation for single infinite conductivity fracture is 

based on the fact that a surface is created by the slitting of the rock in rectangular shape to 

reservoir rock and has infinite flow capacity within it [13, 17-21].  

When the flow in the fracture starts different flow patterns take place. Initially it acts as 

formation linear flow with most of the flow is in the fracture directly from the surface. In 

the later stage once the pressure wave starts moving into the reservoir, the flow transitions 

to elliptical in nature. For very late time the flow is radial. Fig. 3 shows the different flow 

types. 

 

 

 

 

 

 

 

 

 

(a) 

(b) (c) 

Figure 3 (a) Linear flow regime (b) Elliptical flow (c) Radial flow[1] 
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Although our discussion is solely for infinite conductivity fracture but for finite 

conductivity fracture we will see fracture linear and bilinear flow pattern before formation 

linear flow.  

For solving the diffusivity equation for fracture system elliptical coordinate system is used 

[3, 20, 22]. The same method is used while solving for a horizontal well of infinite 

conductivity or for elliptical bounded reservoirs [23-25].  

In almost all the literature available for elliptical flow system, first the diffusivity equation 

is transformed into the elliptical coordinate system i.e. the Cartesian system is transformed 

into the sets of hyperbolas and ellipses. Now these equations are solved using Laplace 

transformation and the method of separation of variables. With this method we reached to 

a solution in Laplace Space and that to a series functions called Mathieu Functions. This 

solution in Laplace Space could be reversed back by using a numerical inversion 

techniques like Stehfest [26]. 

A summary for the solution of the diffusivity equation for an infinite conductivity fracture 

is summarized below. 

For single phase, slightly compressible fluid  

Diffusivity Equation: 

 
2 tc p
p

k t

 
 


  (19) 

In a Cartesian coordinate system: 

http://www.mathworks.com/matlabcentral/fileexchange/9987-gaver-stehfest-algorithm-for-inverse-laplace-transform
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2 2

2 2

tcp p p

k tx y

  
 

 
  (20) 

Elliptical Coordinates Transformation 

 
x=L. cosh . cos

y=L. sinh . sin 

 

 
  (21) 

Here L is the fracture half length. 

Elliptical coordinate system is the series of the confocal hyperbolas and ellipses which are 

normal to each other.  

 

 

 

 

  

 

2 2

2 2

x y
Ellipse Eqn, 1

L cosh L sinh

x y
Hyperbola Eqn, 1

L cos L sin

 

 

   
    

   

   
    

   

  (22) 

Cartesian form of diffusivity equation is transformed in terms of elliptical coordinate 

system (Eq.(23)). 

Figure 4 Elliptical coordinates and elliptical system after transformation[3]  
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  
22 2

2 2
cosh(2 ) cos(2 )

2

tc Lp p p

k t


 

 

  
  

  
  (23) 

The Laplace transform is taken for Eq.(23) with dimensionless variables and the method 

of separation of variables is applied as shown in Eq.(24),(25). We get the set of equations 

Eq.(26),(27). These equations have series solution in the form of Mathieu Function [3, 24]. 

Following is the summary of the equations.  

  
2 2

2 2
cosh(2 ) cos(2 )

2

D D
D

p p s
p 

 

 
  

 
  (24) 

 ( , ) ( ). ( )Dp X H      (25) 

 
2

2
( cos(2 ))

2

H s
a H




 


  (26) 

 
2

2
( cosh(2 ))

2

X s
a X




 


  (27) 

Our main concern is to use the Eq.(23) from this development and to combine our 

methodology of the diffusive time of flight to find the analytical solution for the drainage 

volume. 
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3. ANALYTICAL SOLUTION FOR THE DRAINAGE VOLUME FOR INFINITE 

CONDUCTIVITY FRACTURE 

 

As indicated in the literature review, the current research is concentrated into two parts. 

First part of the research will concentrate on the analytical solution of the drainage volume 

for an infinite conductivity fracture. The second part will be concentrated on the method 

of analysis of production data. Here we discuss the analytical solution for the drainage 

volume.  

For the analytical solution of the drainage volume for the infinite conductivity fracture, our 

methodology using the Diffusive Time of Flight is applied to the earlier developed method 

for solution of the diffusivity equation for the infinite conductivity fracture.  

3.1 Drainage volume for infinite conductivity fracture 

Our starting point equation for the derivation of analytical solution for drainage volume is 

2 2

4 4

0 0

( ) ( ). ( )t t
p pV t dV e w e d

 

  
 

 

   .The most important quantity that is needed for our 

derivation is the knowledge of 
( )

( )
pdV

w
d





 .𝑤(𝜏) is the derivative of the drainage 

volume with respect to the diffusive time of flight. This quantity basically gives 

information on the geometry of pressure wave propagation. Here we are assuming that 

 inside the hydraulic fracture is 0 as fracture is infinite conductivity and the drainage 

volume is constant for the fracture cavity. The reason for this is that the pressure wave 

propagation in the infinite conductive fracture will be so fast that we can say that the 

)(w
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impulse disturbance is the same inside the fracture. Now the pressure wave propagation 

will start all around the fracture at the same time and starting point will be whole fracture 

boundary.  

The initial value of the derivative of the drainage volume gives us the idea of the fracture 

area which has been created for the hydrocarbon flow. The assumption of a fracture as a 

simple rectangular shape is a simplified description of the overall surface area which has 

been created. We accommodate the whole geometry in a very simple model. 

Different geometric shapes for the pressure wave propagation are assumed for the 

derivation of the solution. Derivations are shown in the following subsections for the 

different geometries. 
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3.1.1 Pill box model 

Here we consider a fracture which is created vertically and is fully completed throughout 

the formation layer of the reservoir. The fracture is fully completed and is of infinite 

conductivity throughout. Here we have assumed the homogeneous reservoir throughout for 

the derivation of our model. 

 

 

As we have assumed that the fracture is of the infinite conductivity, so throughout the 

fracture our Diffusive Time of Flight DTOF is zero.  

As the production through well starts, we can assume that pressure wave will be traveling 

with the same speed as our diffusivity i.e.
𝑘

𝜙𝜇𝑐𝑡
  is same for the formation (homogeneous 

condition). So a pressure wave will be equidistant from the fracture whether it is the surface 

of the fracture or the end points of the fracture.  

 

Figure 5 Lateral and top view of single fully completed fracture[2] 
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In the following Fig.6,7 the geometry assumption is shown clearly.  

 

 

 

 

 

 

 

Eikonal Equation (Eq.(2)), when written for isotropic case comes up as , 

where  or diffusivity.For homogeneous media,   

Integrated form:  or  

Now, for this geometry  

 2( ) ( 4 ). .p fV r r x r h     (28) 

1)(  x

tc

k
x


 )( r

k

ct 


 

r
k

ct 


 r

Figure 6 Lateral and Radial distance of the pressure front 

      
2 x

f
 

r 

r 

Figure 7 Geometry of pressure wave propagation for pill box Shape 
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Now substituting  

 2( ) ( 4 ). .p fV x h       (29) 

 
( )

( ) (2 4 ). .
p

f

dV
w x h

d


   


     (30) 

2 2 2

4 4 4

0 0 0

( ) ( ). ( ) (2 4 ). . .t t t
p p fV t dV e w e d x h e d

  

      
  

  

       

On integration,  

 ( ) . .(4 . . 4 . . )p fV t h t x t        (31) 

 
4

( ) . .( . . 4 .( . ). )p f

t t

V t h k t x k t
c c

 


 
    (32) 

Here, we have the final equation Eq.(32) for the drainage volume. The first part of the 

equation is linear with time and the other part of the equation is linear with square root 

time. 

Here for the very small time the square root time terms are more influential and for the 

large value of time linear terms are more influential. Plot of the drainage volume versus 

time gives a half-slope for the early times and for the later times the slope is of unit value. 

The half slope in the drainage volume signifies the linear formation flow. The unit slope 

signifies the radial flow, which is at the later time.  

r
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The information that we get from these two parts of the plots is the coefficients 
4

. .
t

h k
c




 

from the unit slope part and 4. . .( . )f

t

h x k
c




 from the half slope part.  

 

Figure 8 Drainage volume type curve 

If the permeability is increased, drainage volume curve shifts to the left, refer Fig. 9. If the 

fracture length is changed, curve shifts in the upward direction with increase in length, in 

the region where flow is linear in nature, but for the later time it converges to the same as 

for long time fracture of different length acts radially, refer Fig. 10. 
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Figure 9 Drainage volume plot with variation in permeability 

 

Figure 10 Drainage volume plot with variation in fracture length 
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3.1.2 Approximate elliptical model 

The assumption for this case is the same as the earlier derivation. The fracture is considered 

to be fully completed throughout the formation and is of infinite conductivity. Reservoir is 

homogeneous in nature.  

Here the diffusivity is the same throughout as the reservoir is homogeneous in nature. For 

the drainage volume geometry we are considering an elliptical shape as shown in the 

analytical solution for diffusivity equation [3, 19, 22]. The two focal points for the ellipse 

are the end points of the fracture and the major and minor axis are shown in Fig. 11. Here 

it is assumed that the pressure wave has moved to the same radial distance of r from the 

end points as well as from the center of the fracture. Following Fig. 11 shows the shape of 

the pressure wave propagation.  

 

 

 

 

 

It is assumed that the fracture is of the infinite conductivity so throughout the fracture our 

DTOF is zero. Drainage volume in elliptical shape is actually a combination of the radial 

and the linear flow. For the initial time the ellipse converges to a very thin line i.e. the 

fracture and the flow is linear formation in nature. For the later stage it is radial in nature.  

Figure 11 Approximate ellipse as pressure front 

  

2.x
f
 

r 

r 
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Now following the same sequence for the derivation as earlier.  

We have, for homogeneous media, or  or  

Now, for this geometry, 

Major axis: 𝑟 + 𝑥𝑓 

Minor axis:  

Drainage Volume (geometrically), 

 2( ) . .( ). . ( . . . ). .p f fV r r r x h r r x h          (33) 

Now substituting , 

2( ) ( ). .p fV x h       

 
( )

( ) (2 . ). .
p

f

dV
w x h

d


    


     (34) 

 

 

2

4

0

( ) (2 . ). . . . . .(4 . . . . . )t
p f fV t x h e d h t x t



          
 

      (35) 

 
4

( ) . .( .[ ]. . .( . ). )p f

t t

V t h k t x k t
c c

 
 

 
    (36) 

r
k

ct 


  r
k

ct 


 r

r

r




 

dewe
d

dV
tV ttp

p 








0

4

0

4

22

).(.
)(
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Similar to pill box case this case also has the drainage volume equation which has one part 

linear to the time and the other part to the square root of time. For the small time the 

coefficient of square root of time is more significant and for the large time the coefficient 

of linear time is more significant. This results only differs from the pill box in terms of the 

effective fracture area. For earlier case it is  

On the log-log plot we have the drainage volume which has half slope for small time and 

for large time we have unit slope. Here, for this case we get the information for 
4

. .
t

h k
c




 

from the unit slope part and . . .( . )f

t

h x k
c





  from the half slope part.  

 

Figure 12 Drainage volume plot 
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Following are the plots for the variation in the Permeability and Fracture length. 

 

Figure 13 Drainage volume plot with variation in permeability 

 

Figure 14 Drainage volume plot with variation in fracture length 
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3.1.3 Exact ellipse 

Here for this case we have assumed perfect elliptical pressure wave propagation. For this 

derivation we have started from the basic diffusivity equation. Like in the earlier literature 

starting point is the diffusivity equation and later we combine our methodology with it to 

get the relationship for the drainage volume.  

Now the starting point is the Diffusivity Equation, 

Diffusivity Equation: 

 
2 tc p
p

k t

 
 


  (37) 

For Cartesian Co-ordinate System: 

 
2 2

2 2

tcp p p

x y k t

  
 

  
  (38) 

Elliptical Coordinates Transformation 

 
x=L. cosh . cos

y=L. sinh . sin 

 

 
  (39) 

Here L is the fracture half length. 

Now, writing the Eikonal Equation in Elliptical Coordinate System. 

 
2

.tc

k

    
    

   

      
         

      
  (40) 
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2 2

2 2 2

1

.(sinh sin )L
 

 
   


  (41) 

and  

 . 0      (42) 

Hence,  

 

2 2

2

2 2 2

1

.(sinh sin )

tc

k L

  


   

     
              

  (43) 

Since ours terms in 𝜂 are negligible as compared to the other terms in the equation i.e 

𝑠𝑖𝑛2𝜂 ≪ 𝑠𝑖𝑛ℎ2𝜉, so we can make an assumption that 
𝜕𝜏

𝜕𝜂
= 0.  

Now,  

 2 2. . (sinh sin )tc
L

k


 




 


  (44) 

We can neglect  with respect to  or take an average value for the function 

because when value of  increases hyperbolic function will become bigger than the 

trigonometric function. 

The average value for the  is . Now the Diffusive Time of Flight is related to the 

elliptical coordinates in the following formula. 

2sin 2sinh



2sin
2

1
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 2 1
. . sinh . . cosh 2

2 2

t tc c L
L

k k

 
 




  


  (45) 

This could be simplified and integrated. The solution to the integral is in the form of the 

Hypergeometric function[27]. 

τ = √
ϕμct

k
.
L

2
.  (−e−ξ√e4ξ + 1

+ 2. (e3ξ.  Hypergeometric (
1

2
,
3

4
;
7

4
, e−4ξ)

−
1

3
.  Hypergeometric (

1

2
,
3

4
;
7

4
, −1 ))) 

Now the Drainage Volume for an elliptical geometry may be obtained. 

 
21

( ) . . . . .sinh(2 )
2

pV L h      (46) 

 

2

4

0

( ) . . .
p t

p

dV d
V t e d

d d





 

  
  

 
   (47) 

Eq.(47) can be integrated numerically and the expression within the integration can be 

evaluated based on the relationship by Eq.(46),(47).  

This solution is numerically very extensive in nature. In addition to this, a better solution 

is discussed next. 
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This is another way of formulation for elliptical drainage volume geometry. Here the 

pressure wave is assumed to be propagating as an ellipse. A minor modification in the 

derivation is made as compared to the earlier derivation where we used the basic solution 

of diffusivity equation in elliptical coordinate system. In the following Fig. 15 the pressure 

wave is at the distance r from the fracture. 

 

 

 

 

Elliptical Coordinates Transformation 

 

When  we have, , which is the minor axis of the ellipse. 

When  we have, , which is the major axis of the ellipse. 

Now, R could be written in terms of the r, 

 

Now,  





sin  .sinh L.=y

cos .cosh L.=x

 90  sinh L.=r

 0  cosh L.=R

22

2

22

L
L

 L.=R r
L

r




22

p L.r.h..r.R.h.=(r)V r 

2L 

r 

R 

Figure 15 Pressure wave front geometry 
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We have from the earlier derivation for the elliptical system, 

 

Since ours terms in 𝜂 are negligible as compared to the other terms in the equation i.e 

𝑐𝑜𝑠2𝜂 ≪ 𝑐𝑜𝑠ℎ2𝜉, so we can make an assumption that 
𝜕𝜏

𝜕𝜂
= 0.. 

Now we have, . Again, since : 

 . .coshtc
L

k










  (48) 

By integration,  or  or  where  

 

 
2 2

p p

2 2

V ( ) V ( ) r L 2
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w
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  

    
   

    
  (49) 

We know that,  
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On integration [27], 

 

2
2 2

8
. . .

( ) . . [1, ]
2 8

L

t
p

h L L
V t e BesselK

t


 


   (50) 

Where   

Plot of the above Drainage Volume is as follows: 

 

Figure 16 Drainage volume plot 
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Drainage Volume plots for the variation in the permeability and fracture length are shown 

below. 

 

Figure 17 Drainage volume plot with variation in permeability 

 

Figure 18 Drainage volume plot with variation in fracture length 
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3.1.4 Comparison of the analytical models 

Following are the plots for drainage volume of three models combined together.  

 

Figure 19 Drainage volume vs tau (DTOF)  

 

Figure 20 Drainage volume vs time 
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From Fig. 19, we can say that the drainage volume for the pill box shape is more as 

compared to that of the elliptical shapes for small τ values. There may be a possibility that 

drainage volume from the pill box shape is an overestimate of actual situation. Moreover 

when transition from the linear to radial is taking place, i.e. when the slope is changing, we 

see that  approximate ellipse is higher than the estimate of the exact elliptical solution. That 

leads to the conclusion that the assumption of the same growth in the minor and major axis 

of the ellipse for approximate ellipse solution may not be correct.  

Now in Fig. 20, which is the estimate of the drainage volume as function of time, we see 

the same nature of the difference in estimates of the drainage volume as we have seen in 

Fig. 19. That is due to the fact that the integration which is evaluated over a function (𝑤(𝜏)) 

which itself is more.  

Now the question arises which of the three models is correct and more applicable? Answer 

to this question is explored by a synthetic case and welltest derivative theory. 

3.1.4.1 Comparison based on simulation study 

A simple model of fully completed single infinite conductivity fracture is taken for the 

analysis. Water is used as fluid for running the flow simulation. Production was simulated 

for 16,916 days. Parameters for simulation are shown in the following table. 
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Table 1 Parameter for single infinite conductivity fracture 

Parameter Value 

Reservoir size 
2005×2005×205 

ft3 

Initial pressure 5000 psi 

Flow rate 0.5 stb/day 

Matrix porosity 0.01 

Matrix permeability 0.0001 mD 

Hydraulic fracture porosity 0.001 

Hydraulic fracture 

permeability 
10000 mD 

Hydraulic fracture width 0.2 ft 

Hydraulic fracture half-

length 
252.5 ft 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 Simulation data for single infinite conductivity fracture 
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Based on the simulation data, drainage volume was calculated. Drainage volume from the 

fixed parameters of simulation were used for plotting drainage volume for the three models. 

All plots are shown together below. 

 

Figure 22 Drainage volume for simulation data and three models 

As shown in the Fig. 22 for early time, the pill box model is more accurate as it matches 

with the plot of the simulation case. For later time, the drainage volume is more consistent 

with the exact ellipse model. It can be hence inferred that the pill box model is more 

consistent for the formation linear case as we know the pressure propagation is more in the 

lateral direction as compared to the elliptical case. For the later time pressure wave more 

turned into the elliptical shape which is the reason for the matching of the model for the 
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later time. Late time performance is consistent with the definition of well productivity for 

flow around an infinite conductivity fracture. 

3.1.4.2 Comparison based on the welltest derivative 

Welltest derivative is used in the pressure transient analysis for a fractured well. Welltest 

derivative plots are used for the identification of the flow regime for transient data. Here 

we have compared our models based on the welltest derivative theory.  

Welltest derivative plots and the limits for the different flow are explained in the 

available literature. Welltest derivative is a log-log plot of 
f

f

D
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
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On combining the welltest derivative equations and our methodology of the drainage 

volume we have 

141.2 ( )f

f

D
L D

L D t p

p kh t
t

t B cV t


 


 (51) 

For comparison we have assumed fixed parameters and compared the three models 

together. The parameters which were used are in the below table. 

Table 2 Parameters for generating curves 

Parameter Value 

Porosity 0.01 

Viscosity (cp) 1 

Permeability (md) 0.0001 

Compressibility (psi-1)  1.00E-05 

Fracture Half Length (ft) 500 

Height (ft) 200 
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Welltest derivative plot based on above parameters is plotted below. 

 

Figure 23 Welltest derivative plots for the different models 

From this plot we can infer that for lower 𝜏 values our pill box model is more accurate (𝜏 <

0.25 𝜏𝑋𝑓
 ). For early time the pill box model for the drainage volume is applicable.  

For the higher 𝜏 values (𝜏 > 3.5 𝜏𝑋𝑓
), when pseudo radial flow takes place, all models 

converge to the same results. Thus for later time all models start behaving identically when 

comparing flow behaviors.  

Application of the pill box model is justified when we use it for a case where we do not 

reach very high 𝜏 values.  
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3.1.5 Observation and recommendation 

Three models were used for the derivation of the analytical solution of drainage volume 

for infinite conductivity fractured well. Our assumption for defining the drainage volume 

geometry was justified for derivations. The most accurate model out of the three models 

cannot be judged without considering its application.  

The pill box model is most accurate when the pressure wave is near the fracture, while all 

models converge to the same results for larger values. In the two comparison studies it is 

clear that the pill box model is most applicable for the earlier time frames than the other 

model.  

Question is do we really reach to a point of larger values in 𝜏 when actually producing from 

the low permeability regions? For shale gas we do not reach to such extent. Moreover for 

horizontal well with multiple fractures generally the fracture spacing is maintained below 

half of the fracture half length. Thus for  the application to practical cases  use of the pill 

box Model is more justified and applicable. 
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4. NEW APPROACH FOR PRODUCTION ANALYSIS 

There are multiple analytical techniques for the analysis of the production data. These 

techniques, however, are model based and can be mostly applied in conventional scenarios. 

These analytical techniques are limited to homogeneous cases. Here a new technique has 

been developed which works directly on the field data, i.e. production and pressure data.  

In Fig. 24 we can see that when the propagation of fracture takes place it is not sure that it 

will follow particular model. Due to this we need a model free analysis technique. 

 

Figure 24 Hydraulic fracture propagation with natural fractures [29] 

This approach for the analysis is based on the drainage volume. A new variable of the 

Instantaneous Recovery Ratio (I.R.R) which is the ratio of total produced volume to the 

drainage volume is defined. In addition, 𝑤(𝜏) function is calculated. The 𝑤(𝜏) function is 

related to the area of fracture and reservoir properties.  

In order to determine drainage volume from the production data, this approach uses the 

Rate Normalized Pressure (RNP) and pressure transient concepts. 
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 4.1 New method for production data analysis 

New method for the production data analysis consists of determination of three plots: 

1. Drainage Volume vs Time 

2. Instantaneous Recovery Ratio (IRR) 

3. 𝑤(𝜏) vs 𝜏 

All these plots can be directly estimated from the production data for the well. In the next 

section it will be explained how these plots can be estimated from the production data 

theoretically.  

4.1.1 Drainage volume from production data 

The exposition presented in this section closely follows what was presented in Yang, C., 

et al (2015).  

Asymptotic solution to the diffusivity equation is shown in the literature review. For fixed 

rate drawdown and infinite domain we have: 

 
2 41

( ) ( )

tw
t

p

qp q
c e

t w V t



 

 
  

 
  (52) 

Above equation is the starting point for our method for analysis. From this equation we can 

directly get the drainage volume estimates. However this equation can only be applied for 

a fixed flow rate.  



 

41 
 

For slowly varying flow rate, we can use instantaneous flow rate 𝑞𝑤(𝑡) despite the fixed 

flow rate. For our usage we have modified Eq.52 as:   
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When dealing with the pressure transient analysis, we can link the welltest derivative with 

the drainage volume with help of the following equation:  
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If we have the well production data with the variable flow and pressure data, we can 

calculate the drainage volume by the following equation, 
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As per the earlier work for unconventional reservoir, the use of rate normalized pressure is 

recommended. Here the rate normalized pressure concept is being used but in a modified 

form. We considered calculation of derivative in terms of the cumulative volume produced 

rather than working in terms of time.  
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   ( )p wdW t q t dt   (57) 

Now,  
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4.1.2 Instantaneous Recovery Ratio (IRR) from the production data   

Instantaneous Recovery Ratio (IRR) is the ratio of hydrocarbon produced at any time to 

the drainage volume at that time. IRR shows instantaneous recovery, it is not to be confused 

with the ultimate recovery of the reservoir. IRR gives an indication of how fast the 

production is as compared to the increase in drainage volume. The IRR plots for the 

production data shows a change whenever there is change in the rate of change of drainage 

volume expansion i.e. when a flow regime changes.  

Whenever a fracture job is done, it creates a fracture area or area for flow of the 

hydrocarbon to the fracture from the rock. This creates a pressure wave propagation which 

is the basis of our methodology. The pressure wave propagates and creates drainage 

volume. It is always possible that the pressure wave increases faster as compared to the 

production being taken out. This IRR estimate gives a comparative view when plotted for 

different wells together.  
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From the production data, IRR can be directly calculated like the drainage volume 

calculations. 

  
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W t d p t
IRR t c

V t d W t
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4.1.3 𝒘(𝝉) from the production data 

From the production data, as specified earlier, we can get the drainage volume. Now this 

drainage volume data can be used for the 𝑤(𝜏) estimation.  

𝑤(𝜏) is an important function as it relates to the spatial distribution of the drainage volume. 

It is indirectly related to the surface area of the drainage volume in the spatial coordinate 

τ, DTOF. 𝑤(𝜏) function is defined as the derivative of the drainage volume in spatial 

coordinate i.e. . 

The main equation which relates the drainage volume, 𝑉𝑝(𝑡) to the 𝑤(𝜏) function is 

2 4
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( ) ( ) t
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  . This equation is inverted to get the estimates of 𝑤(𝜏). Two 

techniques can be used for the inversion. 

4.1.3.1 𝒘(𝝉) inversion by piecewise constant representation 

Here, 𝑤(𝜏) function is assumed to be piecewise constant. The integral which relates 𝑤(𝜏) 

to 𝑉𝑝(𝑡) is approximated by a finite integral with small intervals within which a constant 

value of 𝑤(𝜏) is assumed. This piecewise constant value is then estimated.  
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Our basic main equation is  
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This equation is divided into finite intervals as: 
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Here intervals of 𝜏𝑗𝑎to 𝜏𝑗𝑏 where 𝑤𝑗(𝜏) is considered as piecewise constant are used. This 

is a good assumption if a sufficient number of intervals are taken. This equation can be 

written in terms of the error function for each interval. 
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This can be established as a combination of linear equations. It can be expressed as a linear 

matrix equation Ax=b  

where,  ,  and   

This equation could not be solved directly as matrix A turns out to be singular. The reason 

is that the error function reaches close to unity once argument value is near to 2.5. Once 

the coefficient matrix becomes singular it is hard to solve this system of equation. It could 

be said very clearly that beyond this value, coefficient will reduce to zero or very small 

values and does not contribute to the results. Upper limit can be set for anytime t to be 5√t. 













































i

ja

i

jb

iij
t

Erf
t

Erfta
22


 )( ii wx  )( ipi tVb 



 

45 
 

For the first step or the smallest time value we can direct calculate the value of (𝜏1) . Now 

for any nth value, n-1 values of 𝑤(𝜏) have already been solved and these values can be 

used to calculate the nth value in the interval [2√𝑡𝑖−1, 2√𝑡𝑖]. 

   

  

  

From this we can get the estimate of 𝑤(𝜏) for the different 𝜏 intervals. 

For testing, data for one well is inverted and shown below: 

 

Figure 25 w(τ) inversion by a piecewise constant representation 
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4.1.3.2 𝒘(𝝉) inversion by Stehfest 

Here, we are trying to express our function in the form of Laplace transform. Our starting 

point equation is  

 

So we can say,  

Now, 
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Here, Laplace space is 
1

4𝑡
= 𝑠 and original space is 𝜏2 = 𝑢 

From field data we have numerical value of 𝑉𝑝(𝑡) vs t, i.e. F(s) vs s. Now we can use 

Stehfest technique for the numerical inversion. 

Stehfest is a well-known method for numerical inversion of the Laplace. But this method 

works only if we know the analytical form of the function in Laplace space. Here we know 
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the values and they are based on the production data. So there is a high probability that 

there will be multiple problems in the accuracy of the estimates. 

For testing, data for one well is inverted and shown below: 

 

Figure 26 w(τ) Inversion by Stehfest 

Our inversion from the Stehfest techniques is not very accurate as it show instability 

throughout the plot. For field applications we will follow the piecewise inversion 

technique. 

4.2 Application of method for production analysis 

Approach described in the previous section consists of the estimation of 𝑉𝑝(𝑡), IRR and 

𝑤(𝜏). Equations described in the previous section will be used for the estimation of the 

variables. 
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To illustrate these calculations, first a demonstration will be done based on the simple 

synthetic model. Then it will be applied to the field production data. Methodology 

described over here is model free and is developed completely from the data.  

4.2.1 Synthetic case: single fracture  

Here for synthetic case a very simple model of single infinite conductivity fracture in a 

homogeneous reservoir is taken. Model used here is ‘tartan’ grid for a shale gas reservoir. 

It is a single hydraulic fracture. The fracture is fully completed i.e. completely penetrates 

the reservoir. The mesh size is 241 × 189 × 21. The grid size is uniform in X and Z 

directions, i.e. DX = DZ = 10ft. In Y direction the grid size is logarithmic near the fracture. 

Minimum DY is 0.2 inch which is fracture width and maximum DY is limited to 50 ft. The 

reason for this is to provide better resolution near the fracture. Initial gas viscosity and 

compressibility are 0.03 cp and 1.212 × 10−4 𝑝𝑠𝑖−1. The well is placed at the center of 

this single fracture and is produced with a constant bottom-hole pressure of 1000 psi. 

Table 3 Parameter for single infinite conductivity fracture 

Parameter Value 

Reservoir size 2410×2000×210 ft3 

Initial pressure 5470 psi 

Bottom-hole pressure 1000 psi 

Matrix porosity 0.046 

Matrix permeability 0.0001 mD 

Hydraulic fracture porosity 0.046 

Hydraulic fracture permeability 1000 mD 

Hydraulic fracture width 0.2 in. 

Hydraulic fracture half-length 400 ft 
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Figure 27 Single fracture on tartan grid and pressure distribution at 1000 days  

 

Figure 28 Production rate and cumulative production for the single fracture model 

(1000days)  

This grid model was simulated with a commercial simulator (Eclipse). The rate and 

cumulative production are shown in the previous Fig.28. For showing varying effects, the 

model is simulated for a very long time i.e. 1.2E+05 days. In an actual field such a long 

production will not occur. 
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Figure 29 Analysis results for single fracture model: a) Drainage volume; b) I.R.R 

curve; c) w(τ) function  

 

From the equations and methodology described in the earlier section, drainage volume, 

IRR and 𝑤(𝜏) functions were calculated as shown in the previous Fig. 29. We already 

know that the flow regime is going to be linear flow, then radial and then boundary 

dominated flow. From our analysis we can see these regimes very clearly.  

For linear flow we know that the cross section for the flow is the fracture area through 

which the flow occurs and that the drainage volume will increase proportionally with the 

square root of time. In the 𝑤(𝜏) perspective we know that for the linear part we will have 

a value which is constant and it actually signifies the effective area of the fracture.  

For radial flow regime the drainage volume is proportional to time and at the same time 

𝑤(𝜏) is proportional to τ. This is clearly seen in the 𝑤(𝜏) plots of Fig. 29c.  
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At the very late time when our pressure wave hits the boundary, our drainage volume 

reaches the pore volume of the reservoir and effective cross-section for the flow should 

reduce to zero. This could be seen here as our drainage volume plot fall down towards the 

end. 𝑤(𝜏) plot shows sudden downfall in the end when boundary is hit by the pressure 

wave. 

The IRR plots shown are on the semi-log axes. Early time recovery reaches a maximum 

value. This maximum value occurs when there is a shift from the linear flow to the radial 

flow. IRR is ratio of the production to the drainage volume. It gives us the view of how 

fast is the production done compared to the speed of drainage volume expansion. The 

increase in IRR initially is because of the fact that our flow regime is linear and production 

is at a much faster rate than the rate at which the drainage volume is increasing. But in the 

later stage, once the drainage volume starts expanding radially, our production speed is 

much less than that of the drainage volume expansion. Once the boundary has been hit then 

our drainage volume reaches the ultimate value, i.e. the pore volume. Then our IRR will 

keep on increasing as our production increases.  

4.2.2 Field case application 

Field case is not the same as the synthetic model. In the field case we have many 

irregularities in the production data. There are many shut downs and in addition, the flow 

rate and pressure are not very smooth like they are in the synthetic case. For application to 

the field production data we need to smooth the data and then apply the methodology. The 

procedure for application is explained in the next subsection. 
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4.2.2.1 Field application procedure 

Field production data is very discontinuous in nature. While applying this methodology it 

is required to take the derivatives. Also for such data the derivatives calculation is not very 

easy and does not yield reasonable values. Thus the drainage volume and IRR estimation 

cannot be done directly. The variations in the data may be due to planned or unplanned 

shutdowns. Our procedure resolves this issue by neglecting build-up data and by taking 

derivatives with respect to the cumulative produced volume, rather than working in time. 

More smoothing of the data is required so that the outliers can be removed. This smoothing 

can be done either by local linear estimation in span throughout the data or by directly 

fitting a function which captures the trend of BHP and production rates. For unconventional 

reservoirs initial time period of 18 months is the most important data and this data conveys 

a lot about the reservoir behavior. Usage of cumulative production instead of time for 

smoothing will capture trends about the data and reservoir behavior.  

For illustration let’s see what happens when we do not apply the procedure for smoothing 

and directly calculate derivative from the data. Here we are calculating the derivative in 

two ways. 
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Figure 30 Drainage volume calculation without smoothing 

 

In Fig. 30 we can see that if we do not pay attention to the shutdowns and irregularities in 

data then we are not able to capture any trend. 

Now, a step by step procedure using data from one of the gas wells of Canada area is 

shown. This is just to show the steps of the analysis procedure. The next part after this will 

be the analysis for the two fields and subsequently the results will be discussed. 

Here is the step by step procedure for analysis. 

Step-1: Calculate cumulative production from the data 

Well production data consists of production rate and surface pressure. Cumulative 

produced volume is used instead of time as explained earlier. So we need to calculate the 

cumulative produced volume at every time point which will account for the shut-in and the 

variable production rates.  
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Step-2: Bottom Hole Pressure calculation 

Surface pressure requires to be converted to the bottom-hole pressure (BHP). This is done 

by pressure drop calculation throughout the vertical length of the well. Tubing pressure 

and production rate data is used for performing this calculation. These calculations are done 

based on the calculations shown in Chapters 6 & 7 of the Petroleum Production Systems . 

Step-3: Calculation of Adjusted pressure (for gas wells, only) 

For gas production, we will be using the pseudo pressure for analysis. Pseudo time and 

pseudo pressure need to be calculated. The calculation is based on the following equations: 

𝑃𝑎 =
𝜇𝑔̅̅ ̅. 𝑍𝑔

̅̅ ̅

𝑃̅
∫

𝑃. 𝑑𝑃

𝜇𝑔𝑍

𝑃

0

 

𝑡𝑎 = (𝜇𝑔̅̅ ̅𝑐𝑡̅) ∫
𝑑𝑡

𝜇𝑔𝑐𝑡

𝑡

0

 

Step-4: Smoothing of data for adjusted BHP 

BHP and Production Rate are plotted against the cumulative produced volume. This data 

is fitted with a smooth curve with sufficient number of points to capture the trend of the 

data. The important point here is to get the trend of the data in the smoothed curve. In Fig. 

32 the data points selected and not selected both are shown in different colors.  

Step-5: Calculation of Drainage Volume, and I.R.R 
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The smooth curve fit is used to represent the adjusted pressure for data analysis. The 

derivative for the smoothed curve is calculated to get the drainage volume and IRR.  

Step-6: Calculation of w(τ) function 

Drainage volume calculated in the previous step gives us the data of drainage volume vs 

time. From this data the w(τ) function can be calculated as described previously. 
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Following plots show steps of the procedure: 

 

Figure 31 a) Pressure versus time; b) Adjusted pressure versus adjusted time  
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Figure 32 a) Adjusted pressure versus cumulative production Wp b) Production 

rate versus cumulative production Wp  
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Figure 33 a) Drainage volume; b) I.R.R curve; c) w(τ) function  
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4.2.2.2 Field cases 

Here an analysis technique which was discussed earlier is applied to two field data sets. 

First one is the data from a gas field and second one is the data from an oil field. Following 

are the two field data applications: 

4.2.2.2.1 Field 1: application to shale gas production analysis  

Description of the Field 

Gas wells under consideration are the wells from the field which is located in the Lower 

Halfway River (LHR) basin in British Columbia, Canada. Porosity of the rock is 4.5%, 

permeability range given by the operator is 100-5000 nd, initial reservoir temperature 190 

oF, initial reservoir pressure is about 4630 psi and formation thickness 200ft. 

Table 4 Fixed parameters for the gas field. 

Fixed Parameter Value 

Porosity 0.045 

No. of Fractures 30 

Initial Res. Pressure 4620 psi 

Res. Temperature 190 ℉ 

Lateral Length 5000 ft 

Sw 0.25 

Net Pay 200 ft 
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 For this gas field we have the production data for 2 gas wells, named as 1D and 2D. 

Production history of the wells is shown below. The production history consists of the 

surface pressures (tubing and casing) and flow rates. 

 

Figure 34 Geographic location of field 
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Figure 35 Production data (a) Gas rate (b) Casing pressure (c) Tubing pressure 
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From the field data the BHP of the well is calculated. 

 

Figure 36 BHP vs time 

 

Since the fluid is gas, so we need to deal with the pseudo pressure or adjusted pressure and 

time.  

 

Figure 37 Adjusted pressure vs adjusted time 
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In Fig. 38 we show the results calculated according to the earlier mentioned method for the 

two different gas wells, Well-1D and Well-2D.  

 

Figure 38 Analysis results for well-1D and well-2D: a) drainage volume; b) I.R.R 

curve; c) w(τ) function  
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Over here we can see from the drainage volume plot that Well-2D has better drainage 

characteristics. Although Well-1D has been flowing for a long time, still the expansion of 

the drainage volume for Well-2D is higher than Well-1D. Observation of drainage volume 

plot gives the overall picture but it would be more interesting if we put our observation 

window to other plots. 

Further details can be seen in 𝑤(𝜏) plots. At early τ, both curves have similar values of 

𝑤(𝜏), which indicates similar fracture areas. Moreover both the wells show faster than 

linear increase. 𝑤(𝜏) is derivative of drainage volume with spatial coordinate, so linear 

increase indicates radial flow and quadratic increase indicates spherical flow. An 

intermediate trend may indicate a partial completion with the drainage volume increasing 

both vertically and laterally. For late τ, both curves have similar values of 𝑤(𝜏), which 

again indicates similar drainage area at late time. For intermediate values of τ, Well-1D 

shows a linear trend while Well-2D is expanding more rapidly. Eventually Well-2D shows 

linear trend for radial flow, but consistently has larger values for 𝑤(𝜏). There can be 

various reasons for such trends such as partial completions, three dimensional flow or 

interference between the faults. 

When we see IRR curve, it shows different trends for the wells. Well-1D has lower increase 

in drainage volume than Well-2D, for the production taken out of the well. Thus IRR value 

of Well-1D is higher as production/ drainage ratio is much more as compared to the Well-

2D. It reached maximum value for Well-1D as soon as the drainage volume expansion 

increases faster than the production taken out. While for Well-2D the drainage volume is 

expanding in three dimensions and expansion is at a much faster rate than the production, 
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but at later stage when drainage volume is expanding in 2 dimensions (i.e. laterally) then 

the IRR curve reaches its peak. 

4.2.2.2.2 Field 2: application to shale oil production data from the Eagle Ford field 

Description of the field 

Wells that are considered here are from the Eagle Ford field. There are 8 wells which are 

included within the analysis. The depth of the wells is approximately 11,000 ft. Initial 

reservoir pressure is 8,125 psi, temperature is 270 oF, porosity is 8.2% and permeability is 

in the range of 100-2,000 nD. The flow is mainly of oil with some gas and water. All fluids 

are converted to reservoir conditions and all phases are combined to get the production in 

reservoir barrels[30].  

 

Table 5 Fixed parameters for the Eagle Ford field. 

Fixed Parameter Value 

Porosity 0.082 

No. of Fractures 20-22 

Initial Res. Pressure 8125 psi 

Res. Temperature 270 oF 

Lateral Length 11000 ft 

So 0.4 

 

For this field we have the production data for 8 oil wells, named as 1H-4H and 9H-12H. 

The production history consists of the surface pressures (tubing and casing) and flow rates. 
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BHP for the well is also calculated based on pressure drop calculation for the fluids. All 

components of the fluid were combined together to get the overall properties of the fluid. 

Friction loss is calculated based on these properties of the fluid and the available well data. 

Primary fluid from the data is oil, and BHP is calculated by adding the pressure drop to the  

tubing head pressure. The data points where tubing pressure in not available are considered 

as unavailable data points. 

Table 6 Data for the BHP calculation 

Data for BHP Calculation 

Casing Diameter (inch) 2.441 

Depth (ft) 11100 

Viscosity _oil (cp) 0.327 

Density _oil 0.659 

Viscosity_water (cp) 1 

Density_water 1 

Roughness  0.0006 

 

Fluid recombination is described over here. 

Total fluid volume:  

Oil volume:  

Gas volume:  

Water volume:   

Total:  

Pressure drop is calculated based on the following equations and assumptions: 

Viscosity and density for the fluid are calculated based on the volumetric weights. 

Potential pressure drop: ∆𝑃 = 𝜌. 𝑔. 𝑙 

reswresgresoresliq VVVV ,,,, 

ostdoreso BVV ,, 

gsstdostdggstdfreegresg BRVVBVV )( ,,),(, 

wstdwresw BVV ,, 

wstdwgsstdostdgostdoresliq BVBRVVBVV ,,,,, )( 



 

67 
 

Frictional pressure drop: ∆𝑃 =
2.𝑓𝑓.𝜌.𝑢2.𝑙

𝐷
 

 Where 𝑓𝑓 is friction factor, 𝑓𝑓 =
16

𝑁𝑅𝑒
, 𝑁𝑅𝑒 < 2100 

1

√𝑓𝑓 

= −4 𝑙𝑜𝑔 {
∈

3.7065
−

5.0452

𝑁𝑅𝑒
𝑙𝑜𝑔 [

∈1.1098

2.8257
+ (

7.149

𝑁𝑅𝑒
)

0.8981

], turbulent  

BHP for the 8 wells is calculated and production data is plotted with the cumulative 

production for each well.  

 

Figure 39 Production history of 8 wells 1,2,3,4 H and 9,10,11,12 H 

In above plots production rate and calculated BHP is plotted against the cumulative 

produced volume. 
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Next are the analysis plots for the wells according to the method described in earlier 

section. 

 

Figure 40 Eagle Ford well analysis (a) Drainage volume (b) I.R.R. curves (c) w(τ) 

function 
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For the above analysis of 8 wells, we have 3 plots (Fig. 40). When we see the drainage 

volume vs time plot we see a similar nature for all 8 wells. Drainage volume is increasing 

faster initially and starts to flatten up for later time. Possible reason could be the pressure 

wave is reaching to maximum value or a boundary effect. We can’t reach to conclusion 

based on this.  

IRR plots for 8 wells also show same type of nature. IRR reaches to maximum value and 

then start decreasing slowly. The reason for this is that drainage volume is not increasing 

at fast enough rate.  

𝑤(𝜏) plot for all 8 wells also have the same type of signature. It increases for small value 

of τ and then reaches to constant level and then starts decreasing for larger values of τ. 

Since 𝑤(𝜏) is dervative of drainage volume in spatial coordinate system τ which says that 

initially the drainage volume is increasing fast and then there is a constant increase and 

after that a small increase. This trend also supports drainage volume vs time plot. 

If we directly do our analysis based on the data i.e. 𝑤(𝜏) plot , we can say that intially flow 

is developing towards linear, after that there is a constant area of wave propagation which 

is only possible when all fractures are acting separately. Once competition between 

fractures starts then there is decrease in 𝑤(𝜏) values. This is indicated in different region 

on 𝑤(𝜏) plot in Fig. 40 c. 
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Lets group some of the wells together i.e. WELL-11 and 12H; WELL-10 and 12H. 

 

Figure 41 Analysis results for well-11H and well-12H: a) Drainage volume; b) I.R.R 

curve; c) w(τ) function 
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 In Fig. 41 wells 11H and 12H are grouped together because they have similar response for 

drainage volume vs time i.e. Fig. 41a. When we see plot of 𝑤(𝜏) in Fig. 41c, we can notice 

that for 12H we have faster increase than 11H for initial τ values. For middle values of τ 

we have similar level of 𝑤(𝜏) for the two wells. The possible reason could be that the well 

12H is partially completed and drainage volume is expanding very fast. This could be the 

reason why IRR for 12H reaches to maximum values much before than 11H. 



72 

Figure 42 Analysis results for well-10H and well-12H: a) Drainage volume; b) I.R.R 

curve; c) w(τ) function 
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In Fig.42 wells 10H and 12H are grouped together. These wells are grouped together 

because they have similar response for IRR plot. Drainage volume vs time plot i.e. Fig.42a 

shows a big difference between the response of the two wells. Well 10H has higher 

drainage throughout the plot than 12H. 𝑤(𝜏) plots for the two wells also show that 10H 

has much higher 𝑤(𝜏) values than 12H which explains why drainage volume response for 

10H is more than 12H. Hence we can infer that 10H well is more upscale version of 12H 

well. 
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5. CONCLUSION AND RECOMMENDATION

This thesis is focused on exploring the application of the methodology of the drainage 

volume. This methodology was further applied to derive the model based drainage volume 

curves for an infinite conductivity fracture. Apart from this application a novel approach 

for the analysis of production data for shale gas/oil reservoir was also explored and applied. 

The main findings drawn from this research are summarized below: 

 For transient flow in a reservoir, we have used the  concept of Diffusive Time of

Flight. Diffusivity equation is transformed into 1D in DTOF as spatial coordinate. 

This transformation accommodates the diffusivity information within the 𝑤(𝜏) 

function. 

 The relationship between the pore volume in spatial coordinates  and the 

drainage volume in time is useful for derivation of type curves. Three 

models were explored based on this relationship. The application of these models 

depends on whether we are dealing with early time or later time. The pill box model 

is applicable for early time and for later time all the models behave the same. 

But when dealing with the actual field data, we can safely say that we never reach 

to very late time scenarios. So the application of pill box model is justified for 

multiple fracture horizontal well. 

 Our novel approach for analysis helps us to interpret the production data and

evaluate the pressure wave geometry directly from production data (without any 

model) by evaluating 

 )(pV

 )(tVp
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 Drainage Volume vs Time 

 Instantaneous Recovery Ratio vs Time 

 Drainage Volume Geometry: 𝑤(𝜏) 

The drainage volume gives a description of how fast the drainage is growing with 

the time but it does not give a description of the geometry of the drainage volume 

in spatial coordinates. This information is obtained from the plot of 𝑤(𝜏). The IRR 

curve gives a strong indication of the change in the flow. All the three plots give a 

better insight to the flow behavior when looked together. 

 Drainage Volume curve and 𝑤(𝜏) could be used for estimation of the properties of 

the fracture and reservoir. This will require a model for fitting the data and needs 

to be explored further in future research. 

 Our new method works on the basic equation for a fixed flow rate production from 

a well. However, in the field, the slowing of instantaneous flowrate is the case. This 

assumption is not adequately justified and should be explored further in future 

research. However deconvolution technique can be explored but it also requires 

data smoothing. 

 The smoothing technique which is used over here is fitting a smooth curve in order 

to catch the overall trend of the production data. More efficient techniques can be 

applied for the same.  
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