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ABSTRACT

We use both analytical and numerical approaches based on the Nambu-Jona-

Lasino (NJL) or the Polyakov-Nambu-Jona-Lasino (PNJL) model to investigate the

spinodal instability of a baryon-rich quark matter. In the analytical approach, we

obtain via the linear response theory the boundaries of the spinodal region and

calculate the growth rate of unstable modes during the early stage. We find that

at the mean-field level, the boundaries of spinodal instabilities shrink with the wave

number of unstable modes. Both the vector interaction and quantum effect suppress

the spinodal instability. And the critical temperature Tc in the PNJL model is

almost twice as large as in the NJL model. The collisional effects are then studied

by solving the linearized Boltzmann equation, and are found to reduce the growth

rate of unstable modes by an amount given by the inverse of the relaxation time.

Numerically, we solve the transport equations by the test-particle method and study

the phase separation for a quark matter in both a static box and an expanding

fireball. We have calculated the higher-order density moments of the quark matter in

a box and found them to increase and saturate at large values after phase separation,

making them possible signals for a first-order phase transition in baryon-rich quark

matter. The skewness of the quark number event-by-event distribution in a small

sub-volume of the system is also found to increase, but this feature disappears if the

subsystem is large. In the expanding quark matter, we find the expansions to be

slowed by the presence of a first-order phase transition. Also, density clumps are

found to appear and lead to an anisotropy in the momentum space, which can be

characterized by the scaled density moments and the anisotropic elliptic (v2) and

quadrupolar (v4) flows. An enhancement in the dilepton yield is also observed.
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1. INTRODUCTION

The confinement of color charges is one of the most mysterious features in the

standard model. Due to their strong attractions through colored gluons, quarks in

vacuum are bound in hadrons, so their color charges are not visible. However, it

has been suggested that for a hadronic matter at sufficient high temperature and/or

density, quarks and gluons inside the hadrons can become deconfined and form a

soup of quarks and gluons called the quark-gluon plasma (QGP). This confinement-

deconfinement transition was first found by Polyakov from the lattice calculations

based on the SU(2) gauge theory by considering the so-called Polyakov loops [2]:

Φ(x) ≡ 1

Nc

Tr

[
P exp

(
i

∫ β

0

dτA4(x, τ)

)]
,

Φ̄(x) ≡ 1

Nc

Tr

[
P exp

(
−i
∫ β

0

dτA4(x, τ)

)]
, (1.1)

where A4 is the time component of the gauge field in the Euclidean space, P refers

to path-ordering of the Euclidean time τ , and β is the inverse of the temperature.

Both Φ and Φ̄ can be regarded as the order parameters for the color and anti-color

confinement-deconfinement phase transition, respectively. Physically, the Polyakov

loops Φ and Φ̄ are measures of e−βF±(x), where F±(x) is the free energy of a pure

gluon system with a static color (’+’ sign) or anti-color (’-’ sign) source located at

x [3]. In the confined phase, which requires an infinite amount of free energy to add a

static color or anti-color source in the system, F± →∞, and the Polyakov loops are

zero, while they are finite in the deconfined phase as it costs only finite free energy

to add a static color or anti-color source.

Some interesting features of the confined quarks can be derived from the Polyakov
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loop. One of them is the the reduction of color degrees of freedom, that is, the

thermodynamics of confined quarks at temperature T behave as the thermodynamics

of free quarks at temperature T/Nc (see Appendix A for details). This effect leads

to a larger critical temperature Tc in the PNJL model than that in the NJL model,

which does not include the effect of confinement, as discussed in Section 3.

Figure 1.1: An illustration on the order of a phase transition in the temperature and
chemical potential plane.

The behavior of the order parameter near the transition temperature determines

the order of the phase transition. If the order parameter jumps from 0 to some finite

value, it is a first-order phase transition. If it varies continuously but not smoothly,

the phase transition is a second-order one. If it varies smoothly from 0 to some

finite value, the transition is called a crossover, and no phase transition occurs. In

general, the first and second-order phase transitions as well as the crossover transition

can coexist in a phase diagram, and this is illustrated in Fig. 1.1. The solid curve
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represents the phase boundary where the first-order phase transition occurs. The

effective potential of the order parameter ϕ changes from a ”V” shape (minimized at

ϕ = 0) at T = T0 − 0+ to a ”W” shape (minimized at ϕ = ϕ∗ > 0) at T = T0 + 0+.

The order parameter thus jumps from 0 to ϕ∗ when the first-order phase transition

occurs. As the transition temperature T0 rises, the two minima of ”W” get closer,

and finally merge at T0 = Tc, where Tc, represented by the solid dot with baryon

chemical potential µ = µc, is the so-called the critical end point. For a second-order

phase transition, the effective potential jumps to a ”U” shape instead of the ”W”

shape at T = Tc, and the order-parameter goes through a kink at T = Tc. For baryon

chemical potential µ < µc, there is a crossover transition, and the order parameter

changes smoothly from 0 to a finite value.

According to lattice QCD calculations, the phase transition in a QGP is a smooth

crossover if it has zero baryon chemical potential [4]. However, due to difficulties

in treating the fermion sign problem [5], lattice QCD has not provided definitive

information on the order of the phase transition in QGP at finite chemical baryon

potential and on the location of the critical end point.

Although information on the equation of state of baryon-rich quark matter has

not been obtained from lattice QCD, studies based on various theoretical models have

indicated that the quark-gluon plasma to hadronic matter transition changes to a

first-order one when its baryon chemical potential is larger than a critical value [6, 7,

8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. A possible signal for such a critical

end point, at which the crossover transition changes to a first-order one, is the large

higher moments in the net baryon or proton number event-by-event distributions in

heavy ion collisions as suggested in Refs. [22, 23, 24, 25]. To determine if the critical

end point exists and where it is located in the QCD phase diagram, the STAR

Collaboration has carried out the beam energy scan (BES) program at RHIC to look

3



for this signal in collisions at nucleon-nucleon center of mass energies
√
sNN ranging

from 7.7 to 39 GeV [26, 27, 28], which is expected to produce a baryon-rich QGP with

baryon chemical potential in the range where a first-order QGP to hadronic matter

transition is likely to appear. Although no definitive conclusion has been obtained

from these experiments on the existence or the location of the critical point, the

STAR Collaboration has observed many interesting phenomena that are different

from those at higher collision energies. Among them is the increasing splitting of the

elliptic flows of particles and their antiparticles with decreasing collision energy [29].

Based on an extension of a multiphase transport (AMPT) model [30] by including

mean-field potentials from the Nambu-Jona-Lasinia (NJL) model [31, 32] for the

partonic phase [33] and from empirical extracted values for the hadonic phase [34], a

plausible explanation for this experimental observation has been achieved in Ref. [35],

i.e., quarks and anti-quarks or hadrons and anti-hadrons are affected differently by

the vector mean-field potentials in baryon-rich matter. Since a unique feature of

a first-order phase transition is the large density fluctuations due to the spinodal

instability that leads to the phase separation, we here extend the above study by

using both the NJL model and its extension, the Polyakov-Nambu-Jona Lasinio

(PNJL) model to investigate the spinodal instability of a baryon-rich QGP in the

linear response theory as well as its semiclassical approximation, i.e., the linearized

Boltzmann equation. We note that there already exist several studies in the literature

on this interesting phenomenon and its possible signals based on the hydrodynamic

approach [36, 37, 38, 39].

The remaining sections are organized as follows. A brief review on the Lagrangian

and thermodynamic features of the NJL and PNJL models is given in Section 2. This

is followed in Section 3 by an analytical calculation on the small amplitude spin-

odal instabilities by both using the linear response theory and solving the linearized

4



Boltzmann equations. The transport equation is solved by the test-particle method

in Section 4 to study both the short and long time behavior of the spinodal insta-

bility of a quark matter in a periodic box. The same method is applied in Section 5

to an expanding quark matter to study how the density fluctuations are affected by

the expansion of the system as in heavy ion collisions. Finally, a summary is given

in Section 6.

Parts of the results from this dissertation have been published in Ref. [1]
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2. THE NJL AND PNJL MODELS

In this section, we give a brief review on both the NJL and PNJL models, de-

rive the gap equations, introduce the major features of chiral symmetry restora-

tion and confinement-deconfinement transition, and most importantly, the thermo-

dynamic properties of a quark matter. In all formulas shown in the following, we use

i, j, k, l,m, n to label flavors, and a, b, c, d, e, f to label colors. Repeated indices are

not summed unless indicated by a summation symbol.

2.1 The NJL and PNJL Lagrangians

The NJL model is an effective model of QCD for low-energy phenomena. It

contains only the quark degrees of freedom as the gluon degrees of freedom are

integrated out. Therefore, instead of being mediated by gluons, quarks interact by

contact interactions characterized by a coupling constant GS. The NJL Lagrangian

containing only the scalar interaction for three quark flavors has the form [21]:

LS
NJL = q̄(i ̸ ∂ −M)q +

GS

2

8∑
a=0

[
(q̄λaq)2 + (q̄iγ5λ

aq)2
]

−K
[
detf

(
q̄(1 + γ5)q

)
+ detf

(
q̄(1− γ5)q

)]
, (2.1)

where q = (u, d, s)T , M = diag(mu,md,ms) is the quark mass matrix and λa are

the Gell-Mann matrices with λ0 being the identity matrix multiplied by
√

2/3. The

Lagrangian preserves U(1)×SU(Nf )L×SU(Nf )R symmetry. The axial symmetry is

broken due to axial anomaly in QCD. In the NJL model, this symmetry is explicitly

broken by the Kobayashi-Masakawa-t’Hooft (KMT) interaction given by the last

term in Eq. (2.1) [40]. The detf denotes the determinant in the flavor space [41],
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that is

detf (q̄Γq) =
∑
i,j

εij(ūΓqi)(d̄Γqj) (2.2)

in the case of SU(2) and

detf (q̄Γq) =
∑
i,j,k

εijk(ūΓqi)(d̄Γqj)(s̄Γqk) (2.3)

in the case of SU(3), where Γ denotes either a Dirac gamma or the identity matrix.

The KMT interaction gives rise to four-point interactions in two flavors and six-point

interactions in three flavors. In the two flavor case, the sum of scalar and pseudo-

scalar interactions and the KMT interaction with K=-G reduces to the original NJL

model [6, 31]. In the three flavor case, the determinantal term is responsible for

obtaining the correct splitting in the masses of η and η′ mesons.

A flavor-singlet vector interaction can also be added to the NJL Lagrangian as

follows:

LV
NJL = −GV (q̄γ

µq)2, (2.4)

where the coupling constant GV is assumed to be independent of T and µ. By

adjusting the value of GV , we can obtain an equation of state with or without a

first-order phase transition.

Because the NJL model is not renormalizable, a regularization scheme is required

to remove infinities in the momentum integrations. In this work, we assume that all

interactions are among quarks of 3-momentum with magnitude below the cutoff

momentum Λ.

By fixing the parameters GS, K and Λ from the pion mass mπ and decay con-

stant fπ, and the kaon mass mK , the NJL model gives reasonable constituent quark
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masses, i.e. 367 MeV for u, d quarks and 549 MeV for s quarks, and also repro-

duces the Gellmann-Oakes-Renner relation m2
πf

2
π = (mu + md)⟨qq̄⟩ [42], where mu

and md are the bare up and down quark masses, respectively, and ⟨qq̄⟩ is the quark

condensate in vacuum. The model further predicts that chiral symmetry is restored

at high temperature [43] and high net baryon density [6] as expected from the QCD.

More importantly, the NJL model gives a pressure in a quark matter that decreases

isothermally with the net quark density within a certain region of temperature and

density (or chemical potential) in the QCD phase digram, indicating the existence of

a spinodal region and thus the possibility to use it to study the spinodal instabilities

in QGP.

Due to the three and four-gluon self-interactions, quarks can also couple to gluon

loops in the QGP. By integrating out the gluon degrees of freedom, quarks are then

also affected by a background field due to their interactions with gluons [44, 45]. This

effect is not included in the NJL model, which only includes the effective contact

interactions among quarks. As a result, the NJL model fails to describe the equation

of state obtained from the lattice QCD for QGP at high temperature and zero baryon

chemical potential. To include the effect of quark interactions with gluons, the NJL

model was extended to the PNJL model [46, 47] by taking into consideration the

contribution from the Polyakov loop mentioned in Section 1, where quarks of different

color are affected by different imaginary potentials. The NJL action is then modified

as follows:

SPNJL[q, q̄, ϕ] = βV U(Φ, Φ̄, T )−
∫ β

0

d4x
{
q̄(−γ0(∂τ + iϕ̄) + iγ · ∇ −m0)q

+
GS

2

8∑
a=0

[
(q̄λaq)2 + (q̄iγ5λ

aq)2
]
−GV (q̄γµq)

2

−K
[
detf

(
q̄(1 + γ5)q

)
+ detf

(
q̄(1− γ5)q

)]}
, (2.5)
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where ϕ̄ = diag(ϕ̄1, ϕ̄2,−ϕ̄1 − ϕ̄2) is the background gauge field with ϕ̄a defined in

Eq. (A.2), and U(Φ, Φ̄, T ) is the effective potential for the Polyakov loops defined in

Eq. (1.1), i.e.,

U(Φ, Φ̄, T )
T 4

= −1

2
a(T )Φ̄Φ + b(T ) ln[1− 6Φ̄Φ + 4(Φ̄3 + Φ3)− 3(Φ̄Φ)2], (2.6)

with

a(T ) = a0 + a1

(
T0
T

)
+ a2

(
T0
T

)2

, b(T ) = b3

(
T0
T

)3

. (2.7)

In order to ensure that the lattice QCD results for the thermodynamics of the pure

gauge theory are reproduced for T up to twice the critical temperature T0 for the

deconfinement transition, we follow Ref. [48] to take a0 = 3.51, a1 = −2.47, a2 = 15.2,

and b3 = −1.75. For T0, there are two possible values being considered in literatures.

In one case with T0 = 270 MeV, the deconfinement transition temperature at µ = 0

is 210 MeV and is almost the same as the chiral transition temperature of 222 MeV in

this model [49], and both are higher than the result from recent lattice calculations,

which ranges from 145 to 163 MeV [50, 51, 52]. In the other case with T0 = 210 MeV,

the transition temperatures become 171 MeV for the deconfinement and 203 MeV

for the chiral restoration transitions, and their average value TX = 187 MeV [49] is

closer to the result from lattice calculations.

2.2 The gap equations

The gap equations are the self-consistent equations that determine the effective

(or constituent) quark masses. They are obtained from the NJL Lagrangian (or ac-

tion) in the mean-field approximation by replacing the interactions among quarks

with interactions between a single quark and a background field. In this approxima-

tion, the modified Lagrangian becomes bilinear in quark fields. As an example, we
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consider terms such as
∑

a
GS

2
(q̄λaq)2 and

∑
a

GS

2
(q̄iγ5λ

aq)2. Since,

∑
a

(q̄Γλaq)2 = 2
∑
ij

q̄iΓqj q̄jΓqi, (2.8)

where Γ is some operator defined in the Clifford space, i.e., the identity and gamma

matrices and their productions. In the mean-field approximation, they become

∑
ij

q̄iΓqj q̄jΓqi ≈ 2
∑
ij

⟨q̄iΓqj⟩q̄jΓqi −
∑
ij

⟨q̄iΓqj⟩⟨q̄jΓqi⟩, (2.9)

where ⟨· · ·⟩ indicates taking the expectation value. Keeping only the Hartree terms,

namely, neglecting terms including ⟨q̄iΓqj⟩ with i ̸= j that contribute only to the

residual interactions [53], we then have:

∑
a

(q̄Γλaq)2 ≈ 4
∑
i

⟨q̄iΓqi⟩q̄iΓqi − 2
∑
i

⟨q̄iΓqi⟩2. (2.10)

Similarly, we have by keeping only Hartree terms,

(q̄Γq)2 ≈ 2⟨
∑
j

q̄jΓqj⟩
∑
i

q̄iΓqi − ⟨
∑
i

q̄iΓqi⟩2, (2.11)

det
f
(q̄Γq) ≈ ūΓu⟨d̄Γd⟩⟨̄sΓs⟩+ ⟨ūΓu⟩d̄Γd⟨s̄Γs⟩+ ⟨ūΓu⟩⟨d̄Γd⟩s̄Γs

−2⟨ūΓu⟩⟨d̄Γd⟩⟨s̄Γs⟩. (2.12)

By denoting σi = ⟨q̄iqi⟩, θi = ⟨q̄iγ5qi⟩, and jµ = ⟨
∑

i q̄iγ
µqi⟩, the orginal action

becomes:

SPNJL[q, q̄, ϕ] ≈ βV U(Φ, Φ̄, T )−
∫ β

0

d4x
{ ∑

i,j,k;cyclic

q̄i

(
− γ0(∂τ + iϕ̄− µ− iu · ∇)

+ iγ · ∇ −m0i + 2GSσi − 2GSγ5θi − 2K(σjσk + θjθk)− 2Kγ5(σjθk + θjσk)

10



− 2GV γ
µjµ

)
qi +

∑
i

GS(σ
2
i − θ2i )− 2K

∏
i

(σi + θi)− 2K
∏
i

(σi − θi)−GV j
2
}
.

(2.13)

Eq.(2.13) is bilinear in the quark (q) field, with σi, θi,ϕ̄ and j being background fields

that act on q. To evaluate them, we minimize the thermodynamic potential defined

as follows:

Ω(T, µ) ≡ −(βV )−1 lnZ

= U(Φ, Φ̄, T ) +
∑
i

GS(σ
2
i − θ2i )− 2K

∏
i

(σi + θi)− 2K
∏
i

(σi − θi)

−GV j
2 − T

V
lnDet[βS̃−1

p<Λ]−
T

V
lnDet[βS̃−1

p>Λ], (2.14)

where the Matsubara propagator of a constituent quark can be read explicitly from

Eq. (2.13) as:

(S̃−1
p<Λ)

ab
il (iωn,p) = δabδil[γ

0(−iωn + iϕ̄a − µ+ u · p) + γ · p+m0i − 2GSσi

+2GSγ5θi + 2K(σjσk + θjθk) + 2Kγ5(σjθk + θjσk) + 2GV γ
µjµ], (2.15)

and

(S̃−1
p>Λ)

ab
il (iωn,p) = δabδil[γ

0(−iωn + iϕ̄a − µ+ u · p) + γ · p+m0i]. (2.16)

We first evaluate the last two terms in Eq. (2.14). Evaluating the determinants in

the color, flavor and spinor spaces results in:

ln det[βS̃−1
p<Λ] = 2

∑
a,i

ln det β2[−(iωn − iϕ̄a + µ− u · p− 2GV j
0)2 + (p− 2GV j)

2

+ (m0i − 2GSσi + 2K(σjσk + θjθk))
2 − 4(GSθi +K(σjθk + θjσk))

2], (2.17)
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and

ln det[βS̃−1
p>Λ] = 2

∑
a,i

ln det β2[−(iωn − iϕ̄a + µ− u · p)2 + p2 +m2
0i]. (2.18)

Introducing

Mi = m0i − 2GSσi + 2K(σjσk + θjθk), (2.19)

µ̃a = µ− iϕ̄a − 2GV j
0, (2.20)

Epi =
√
M2

i + (p− 2GV j)2 − 4(GSθi +K(σjθk + θjσk))2, (2.21)

where the subscripts i ̸= j ̸= k, and applying the equality tr ln[A] = ln det[A], the

determinant is then

ln det[βS̃−1
p<Λ] = 2

∑
a,i

tr ln β2[−(iωn + µ̃a − u · p)2 + E2
pi]

= 2V
∑
a,i,ωn

∫ Λ

0

d3p

(2π)3
ln β2[−(iωn + µ̃a − u · p)2 + E2

pi]

= 2V
∑
a,i

∫ Λ

0

d3p

(2π)3

{
βEpi + ln(1 + e−β(Epi+µ̃a−u·p))

+ ln(1 + e−β(Epi−µ̃a+u·p))
}

= 2V
∑
i

∫ Λ

0

d3p

(2π)3

{
3βEpi + ln(1 + 3Φ̄ξ−1

i + 3Φξ−2
i + ξ−3

i )

+ ln(1 + 3Φξ′−1
i + 3Φ̄ξ′−2

i + ξ′−3
i )
}
, (2.22)

where ξi = exp(β(Epi−µ+u ·p+2GV j
0)) and ξ′i = exp(β(Epi +µ−u ·p−2GV j

0)).

Similarly, we have

ln det[βS̃−1
p>Λ] = 2V

∑
i

∫ ∞

Λ

d3p

(2π)3

{
3βE0

pi + ln(1 + 3Φ̄ξ−1
0i + 3Φξ−2

0i + ξ−3
0i )
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+ ln(1 + 3Φξ′−1
0i + 3Φ̄ξ′−2

0i + ξ′−3
0i )
}
, (2.23)

where E0
pi =

√
m2

0i + p2, ξ0i = exp(β(E0
pi
−µ+u·p)), and ξ′0i = exp(β(E0

pi
+µ−u·p))

The thermodynamic potential is minimized if 0 = ∂Ω/∂θi = ∂Ω/∂σi = ∂Ω/∂jµ =

∂Ω/∂Φ = ∂Ω/∂Φ̄, which leads to:

θi = 0, (2.24)

σi = 6

∫ Λ

0

d3p

(2π)3
Mi

Epi

(f0(ξi; Φ, Φ̄) + f0(ξ
′
i; Φ̄,Φ)− 1), (2.25)

j0 = 6
∑
i

∫ Λ

0

d3p

(2π)3
(f0(ξi; Φ, Φ̄)− f0(ξ′i; Φ̄,Φ)), (2.26)

j = 6
∑
i

∫ Λ

0

d3p

(2π)3
(f0(ξi; Φ, Φ̄) + f0(ξ

′
i; Φ̄,Φ)− 1)

p− 2GV j

Epi

, (2.27)

and

∂ΦU(Φ, Φ̄, T )

= 6T
∑
i

∫ Λ

0

d3p

(2π)3

{ ξi
ξ3i + 3Φ̄ξ2i + 3Φξi + 1

+
ξ′2i

ξ′3i + 3Φξ′2i + 3Φ̄ξ′i + 1

}
+6T

∑
i

∫ ∞

Λ

d3p

(2π)3

{ ξ0i
ξ30i + 3Φ̄ξ20i + 3Φξ0i + 1

+
ξ′20i

ξ′30i + 3Φξ′20i + 3Φ̄ξ′0i + 1

}
,(2.28)

∂Φ̄U(Φ, Φ̄, T )

= 6T
∑
i

∫ Λ

0

d3p

(2π)3

{ ξ2i
ξ3i + 3Φ̄ξ2i + 3Φξi + 1

+
ξ′i

ξ′3i + 3Φξ′2i + 3Φ̄ξ′i + 1

}
+6T

∑
i

∫ ∞

Λ

d3p

(2π)3

{ ξ20i
ξ30i + 3Φ̄ξ20i + 3Φξ0i + 1

+
ξ′0i

ξ′30i + 3Φξ′20i + 3Φ̄ξ′0i + 1

}
,(2.29)

where

f0(ξi; Φ, Φ̄) =
Φ̄ξ2i + 2Φξi + 1

ξ3i + 3Φ̄ξ2i + 3Φξi + 1
(2.30)

is the color-averaged equilibrium quark distribution. Details of the derivation of
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Eq. (2.30) are given in Appendix A. Eq.(2.30) reduces to the normal Fermi-Dirac

distribution for Φ = Φ̄ = 1. The above equations together with Eq.(2.19) are called

the gap equations, from which we can calculate Mi, j
0, j, Φ and Φ̄ self consistently.

From Eqs. (2.28) and (2.29), we have Φ = Φ̄ in the case of µ = u = 0, and they

differ slightly for finite µ.

Figure 2.1: Average (left window) and difference (right window) of Polyakov loops
Φ and Φ̄ as functions of T and µ.

The average and the difference of Φ and Φ̄ are shown as functions of T and µ

in the left and right windows of Fig. 2.1, respectively. They are calculated from the

PNJL Lagrangian with model parameters taken from Ref.[48], i.e., Λ = 0.6023 GeV,

GS = 3.67Λ2, and K = 12.36Λ5. The average of Polyakov loops shows a smooth

transition from the confined phase (dark area) to the deconfined phase (bright area).

The transition temperature, defined by Φ + Φ̄ = 1, is about 170 MeV at µ = 0

and decreases as µ increases. There is also a less conspicuous at µ ≈ 350 MeV,
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beyond which the transition temperature drops suddenly. This corresponds to the

transition to the so-called quarkyonic phase that is confined, but chirally restored

[54] as shown in Fig. 2.2 by the small light quark masses above this value of baryon

chemical potential. The difference of Polyakov loops (the Φ − Φ̄) shows that it

almost vanishes at both low and high temperatures, and is much smaller than the

average of Polyakov loops, implying that the confinement-deconfinement transition

is indistinguishable between color and anti-color charges even in baryon rich quark

matter.

Figure 2.2: Effective u and d quark masses as functions of T and µ calculated from the
NJL model (left window) and the PNJL model (right window) with model parameters
Λ = 0.6023 GeV, GS = 3.67Λ2, and K = 12.36Λ5.

The effective quark masses Mu,d calculated from the NJL and PNJL models are

shown in the left and right windows of Fig. 2.2, respectively. The chiral restoration,

described by the drop of Mu,d from the constituent mass to the bare mass, is seen

for large µ or T . The transition along the T axis is smooth. At µ = 0, the chiral
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transition temperatures from the NJL and PNJL models are about 170 and 240 MeV,

respectively, andMu,d drops more rapidly in the PNJL than in the NJL model. While

along the µ axis, Mu,d jumps from 367 MeV to the bare mass at µ ≈ 350 MeV in the

low temperature region, and this is the first-order phase transition we are interested

in.

Figure 2.3: Effective s quark mass as a function of T and µ calculated from the NJL
model (left window) and the PNJL model (right window) with model parameters
Λ = 0.6023 GeV, GS = 3.67Λ2, and K = 12.36Λ5.

The change in Ms, which is shown in Fig. 2.3, is more complicated at low tem-

perature. As µ increases, Ms first jumps from 550 MeV to 462 MeV at µ ≈ 350

MeV, and remains constant until µ ≈ 500 MeV, when it changes smoothly to the

bare mass.

2.3 Equation of state

The equation of state of quark matter gives the relation among its energy density,

pressure, net quark density and temperature. For describing a first-order phase tran-
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Figure 2.4: Pressure as a function of temperature T and net quark density n from the
NJL model (left window) and the PNJL model (right window) with model parameters
Λ = 0.6023 GeV, GS = 3.67Λ2, and K = 12.36Λ5.

sition, pressure plays an important role. In Fig. 2.4, we show the pressure calculated

from both the NJL and PNJL models in the left and right windows, respectively.

They are obtained by simply taking the negative of the thermal potential given by

Eq.(2.14). We note that for temperatures below 70 MeV in the NJL model and 120

MeV in the PNJL model, the pressure first increases, then decreases, and finally

increases again with the net quark density. The decreasing part, i.e., (∂P/∂n)T < 0,

corresponds to the isothermal spinodal instability, which can be understood as fol-

lows. Consider a gas of particles in a box that is separated into two parts by a

partition in the middle. In the normal case of (∂P/∂n) > 0 , pushing the partition

slightly leftward compresses the left part of the gas and increases its pressure, which

then pushes the partition back to the middle. However, if the pressure decreases

with density, the pressure difference between the two parts of the gas will drive the

partition further to the left until gases in both sides are outside the spinodal insta-
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bility region and reach a new equilibrium state with a dense phase on the left side

and a dilute phase on the right side. If such a process happens isothermally, namely

the system keeps in contact with a heat bath of constant temperature T , the crite-

rion for spinodal instability is ( ∂p
∂n
)T < 0. If the process is adiabatic, the criterion is

( ∂p
∂n
)S < 0, where the subscript S denotes the entropy per net quark number.

Figure 2.5: Square of the speed of sound (v2) as a function of temperature T and
net quark density n from the NJL model, in the isothermal (left window) and the
isentropic (right window) cases. Contours where v2 = 0 are shown by dashed curves,
inside which is the spinodal instability region.

The above behavior of a system is called ”instability” because a small deviation

from equilibrium, such as pushing the partition slightly leftward, will be amplified and

lead to a phase separation. Consider the Fourier expansion of the density fluctuation,

δn(t,x) =
∑

k δnk exp(iωkt − ik · x). When the frequency ωk is imaginary, the

fluctuation then grows exponentially with time. According to Ref.[55] based on an

ideal hydrodynamic model, ωk = vSk if the growth of the instability is adiabatic,
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Figure 2.6: Square of the speed of sound (v2) as a function of temperature T and
net quark density µ from the PNJL model for the isothermal (left window) and the
isentropic (right window) cases. Contours where v2 = 0 are shown by dashed curves,
inside which is the spinodal instability region.

and ωk = vTk if it is isothermal, where v2S = n
ϵ+p

(
∂p
∂n

)
S
and v2T = n

ϵ+p

(
∂p
∂n

)
T
are

the square of the isentropic and the isothermal speed of sound, respectively. The

above two criteria are thus equivalent to v2T < 0 and v2S < 0. The more negative

the v2 is, the faster the fluctuations grow. The v2T and v2S calculated from the NJL

model are shown in the left and right windows of Fig. 2.5, respectively. The contours

that v2T = 0 and v2S = 0 are drawn by white dashed curves, inside which are the

isothermal and isentropic spinodal instability regions of the NJL model. It is seen

that the isothermal instability region is larger than the isentropic one. The critical

temperature, corresponding to the highest temperature in the spinodal instability

region, is aout 70 MeV in the isothermal case, consistent with the results in Fig.

2.4, while it is about 40 MeV in the isentropic case. A similar feature is seen in

the PNJL model (see Fig. 2.6), where the isothermal critical temperature in the
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PNJL model is about 120 MeV and the isentropic critical temperature is about 80

MeV. These results indicate that an isolated system is less likely to go through a

first-order phase transition than an opened one. Nevertheless, the minimum v2 in

both cases is about −0.1, which is larger than that in Refs.[39, 55, 56], and this is

the reason for the slower growth rate of unstable modes in our study than in theirs.

Our results could become similar to theirs if we increase the attractive interactions

among quarks by using large values for GS and K. A more detailed discussion on the

dispersion relation of unstable modes in baryon-rich quark matter will be given in

Section 3 by using the linear response theory, which also allows the quantum effects

to be included.
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3. SPINODAL INSTABILITIES IN BARYON-RICH QUARK MATTER*

In systems that have a first-order phase transition, large density fluctuations

can appear as a result of spinodal instabilities. Various methods have been used in

studying the growth rate of such instabilities in a variety of systems. For example,

this has been investigated for the liquid-gas phase transition in asymmetric nuclear

matter by solving the linearized Dirac equation [57] or Vlasov equation [58] in the

mean-field approximation. In this section, we study the development of spinodal

instabilities in baryon-rich quark matter by using the linear response theory and its

semi-classical limit, the linear Boltzmann equation. We will see that both approaches

agree if the wavelength of the density fluctuation is large.

3.1 The linear response theory

Linear response theory has been widely used in calculating the transport coef-

ficients, such as the electric conductivity and viscosity, of many-body systems. It

describes how an equilibrium system responds to certain perturbations. Although

the perturbations are in general external, such as an external electric field or the

gradient of an external flow field, the perturbation for studying spinodal instabilities

is generated internally from the fluctuations that drive the system away from equi-

librium. In Section 3.1.1, we describe the theoretical framework on which the linear

response theory is based. The matrix elements of the retarded correlator, which are

needed for describing the response of a system, are then calculated in Section 3.1.2.

*Reprinted from Feng Li and Che-Ming Ko, 2016, Spinodal instabilities of baryon-

rich quark-gluon plasma in the Polyakov–Nambu–Jona–Lasinio model, Phys. Rev.

C 93:035205
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Several results, such as the spinodal instability region and the growth rate of unsta-

ble modes, are shown in Section 3.1.3. Although the long-time behavior of spinodal

instabilities will be studied in Sections 4 and 5 by numerically solving the semiclas-

sical transport equation, it is still useful to first examine their early time behavior.

Also, analytic results presented in this section can be used to check the accuracy

of numerical calculations. Furthermore, the linear response theory allows the inclu-

sion of quantum effects on spinodal instability, which is absent in the semi-classical

transport approach.

3.1.1 Theoretical framework

When a many-body system is slightly perturbed, the deviation of a physical

observable from its equilibrium value is linearly proportional to the perturbation.

Since spinodal instabilities are self-induced, an observable will deviate further from

its equilibrium value once the deviation starts. Therefore, the perturbation is pro-

portional to the fluctuation itself with the proportionality coefficient given by the

retarded correlator between this observable and the perturbation that is evaluated

in the equilibrium state [59]. These coefficients can be calculated by applying the

Kubo-Martin-Schwinger (KMS) condition [60], i.e., the retarded correlator is the an-

alytical continuation of the Matsubara correlator in energy and can be calculated in

the imaginary time approach.

Such a system can be described by the Hamiltonian: H = H0 +H ′, where H0 is

its Hamiltonian at equilibrium, and H ′ is the perturbation driving the system away

from equilibrium. In the Schroedinger picture, the density matrix of the system,

defined as ρ ≡ pi|ψi⟩⟨ψi| with pi denoting the probability of the system in state |ψi⟩,
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evolves in time according to

ρ(t) = U(t, t0)ρ(t0)U †(t, t0), (3.1)

where

U(t, t0) ≡ Te
−i

∫ t
t0

dt̄H(t̄)

=
∞∑
n=0

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnH(t1)H(t2) · · ·H(tn) (3.2)

is the time evolution operator from the initial time t0 to time t. Since

U †(t, t0)U(t, t0) = 1, (3.3)

and

U(t2, t0) = U(t2, t1)U(t1, t0) (3.4)

for t2 > t1 > t0, we can expand U(t, t0) in terms of the perturbation H ′:

U(t, t0)

=
∞∑
n=0

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn(H0(t1) +H ′(t1))(H0(t2) +H ′(t2))

× · · · (H0(tn) +H ′(tn))

=
∞∑
n=0

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnH0(t1)H0(t2) · · ·H0(tn)

+
∞∑
n=0

n∑
k=1

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tk−1

t0

dtk · · ·
∫ tn−1

t0

dtnH0(t1)H0(t2) · · ·H ′(tk)

× · · ·H0(tn) +O(H ′2)

= U0(t, t0)− i
∫ t

t0

dt′
∞∑

m=0

(−i)m
∫ t

t′
dt1

∫ t1

t′
dt2 · · ·

∫ tm−1

t′
dtmH0(t1)H0(t2) · · ·H0(tm)
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×H ′(t′)
∞∑
n=0

(−i)n
∫ t′

t0

dt̄1

∫ t̄1

t0

dt̄2 · · ·
∫ t̄n−1

t0

dt̄nH0(t̄1)H0(t̄2) · · ·H0(t̄n) +O(H ′2)

= U0(t, t0)− i
∫ t

t0

dt′U0(t, t′)H ′(t′)U0(t′, t0) +O(H ′2),

(3.5)

where

U0(t, t0) ≡ Te
−i

∫ t
t0

dt̄H0(t̄) (3.6)

is the time evolution operator in the absence of perturbations. Therefore, the density

matrix of the system at time t is

ρ(t) = U(t, t0)ρ(t0)U †(t, t0)

=

(
U0(t, t0)− i

∫ t

t0

dt′U0(t, t′)H ′(t′)U0(t′, t0)
)
ρ(t0)

×
(
U †
0(t, t0) + i

∫ t

t0

dt′U †
0(t

′, t0)H
′(t′)U †

0(t, t
′)

)
O(H ′2)

= U0(t, t0)
(
ρ(t0)− i

∫ t

t0

dt′
(
U †
0(t

′, t0)H
′(t′)U0(t′, t0)ρ(t0)

−ρ(t0)U †
0(t

′, t0)H
′(t′)U0(t′, t0)

))
U †
0(t, t0)O(H ′2)

= ρ0(t)− i
∫ t

t0

dt′U0(t, t0)[H ′
I(t

′), ρ(t0)]U †
0(t, t0) +O(H ′2), (3.7)

where

ρ0(t) = U0(t, t0)ρ(t0)U †
0(t, t0) (3.8)

is the density matrix of the system at time t in the absence of perturbations, and

H ′
I(t

′) = U †
0(t

′, t0)H
′(t′)U0(t′, t0) (3.9)
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is the perturbation expressed in the interaction picture. The third equality in Eq.

(3.7) is obtained by using the unitarity (Eq.(3.3)) and the composition property (Eq.

(3.4)) of the time evolution operator U .

The time dependence of the expectation value of a physical observable A is then

given by

⟨A(t)⟩ = tr[ρ(t)AS]

= tr

[
ρ0(t)AS − i

∫ t

t0

dt′[H ′
I(t

′), ρ(t0)]AI(t)

]
+O(H ′2)

= ⟨A0(t)⟩+ i

∫ t

t0

dt′tr [ρ(t0)[H
′
I(t

′), AI(t)]] +O(H ′2), (3.10)

where the subscript S refers to the Schroedinger picture. The second and third

equalities in Eq. (3.10) are obtained by employing the cyclic property of trace.

Without loss of generality, we assume that the system is initially at equilibrium,

namely, ρ(t0) = ρ0, then

δ⟨A(t)⟩ = i

∫
dt′θ(t− t′)⟨[H ′

I(t
′), AI(t)]⟩0, (3.11)

where the right hand side is the retarded correlator evaluated with the system in an

equilibrium state. Although the correlator generally depends on both t and t′, it can

be reduced to a function of t− t′ for an equilibrium system.

Since spinodal instabilities are self induced, the perturbation H ′
I is just composed

of the fluctuations of the mean fields, that is

H ′
I =

∫
d3x

[
ūuδMu + d̄dδMd + s̄sδMs + 2GV δjµ(ūγ

µu+ d̄γµd+ s̄γµs)
]
, (3.12)
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where the mass fluctuations given by

δMu = −2GSδ⟨ūu⟩ − 2K⟨s̄s⟩δ⟨d̄d⟩ − 2K⟨d̄d⟩δ⟨s̄s⟩,

δMd = −2GSδ⟨d̄d⟩ − 2K⟨s̄s⟩δ⟨ūu⟩ − 2K⟨ūu⟩δ⟨s̄s⟩,

δMs = −2GSδ⟨s̄s⟩ − 2K⟨ūu⟩δ⟨d̄d⟩ − 2K⟨d̄d⟩δ⟨ūu⟩. (3.13)

The fluctuations in the condensates ⟨ūu⟩, ⟨d̄d⟩ and ⟨s̄s⟩ as well as in the current

density jµ can then be obtained from Eq. (3.11), and they are

δ⟨q̄q⟩x = −i
∫
d4x′

{
χσσ(x− x′;Mu)[(−2GS − 2K⟨s̄s⟩x′)δ⟨q̄q⟩x′

− 2K⟨q̄q⟩x′δ⟨s̄s⟩x′ ] + 2GV χ
µ
σj(x− x′;Mu)δjµ(x

′)
}
,

δ⟨s̄s⟩x = −i
∫
d4x′

{
χσσ(x− x′;Ms) [−4K⟨q̄q⟩x′δ⟨q̄q⟩x′ − 2GSδ⟨s̄s⟩x′ ]

+ 2GV χ
µ
σj(x− x′;Ms)δjµ(x

′)
}
,

δjµ(x) = −i
∫
d4x′

{
[2χµ

σj(x− x′;Mu)(−2GS − 2K⟨s̄s⟩x′)

− 4Kχµ
σj(x− x′;Ms)⟨q̄q⟩x′ ]δ⟨q̄q⟩x′

+
[
−4Kχµ

σj(x− x′;Mu)⟨q̄q⟩x′ − 2GSχ
µ
σj(x− x′;Ms)

]
δ⟨s̄s⟩x′

+ 2GV (2χ
µν
jj (x− x′;Mu) + χµν

jj (x− x′;Ms))δjν(x
′)
}
, (3.14)

where

χσσ(x) ≡ θ(t)⟨[q̄(x)q(x), q̄(0)q(0)]⟩0,

χµ
σj(x) ≡ θ(t)⟨[q̄(x)γµq(x), q̄(0)q(0)]⟩0,

χµν
jj (x) ≡ θ(t)⟨[q̄(x)γµq(x), q̄(0)γνq(0)]⟩0, (3.15)

and ⟨q̄q⟩ ≡ ⟨ūu⟩ = ⟨d̄d⟩ represents the light quark condensates, since we have taken
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u and d quarks to have the same bare mass and assumed that the quark matter is

isospin symmetric.

Taking the Fourier transformation of the equations in Eq. (3.14) and moving all

terms on the left side to the right side, we obtain

0 = (1− iχ̃σσ(k;Mu)(2GS + 2K⟨s̄s⟩)) δ⟨q̄q⟩k

−2Kiχ̃σσ(k;Mu)⟨q̄q⟩δ⟨s̄s⟩k + 2GV iχ̃
µ
σj(k;Mu)δjµ(k),

0 = −4Kiχ̃σσ(k;Ms)⟨q̄q⟩δ⟨q̄q⟩k + (1− 2GSiχ̃σσ(k;Ms)) δ⟨s̄s⟩k

+2GV iχ̃
µ
σj(k;Ms)δjµ(k),

0 = −i
(
2χ̃µ

σj(k;Mu)(2GS + 2K⟨s̄s⟩) + 4Kχ̃µ
σj(k;Ms)⟨q̄q⟩

)
δ⟨q̄q⟩k

−i
(
4Kχ̃µ

σj(k;Mu)⟨q̄q⟩+ 2GSχ̃
µ
σj(k;Ms)

)
δ⟨s̄s⟩k

+
(
gµν + i2GV (2χ̃

µν
jj (k;Mu) + χ̃µν

jj (k;Ms))
)
δjν(k), (3.16)

with

χ̃(k) =

∫
d4xχ(x)eikx. (3.17)

The equations in Eq.(3.16) have non-zero solutions if and only if

det

∣∣∣∣∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣∣∣∣∣
= 0, (3.18)

where

A11 = 1− iχ̃σσ(k
0,k;Mu)(2GS + 2K⟨s̄s⟩),

A12 = −2iKχ̃σσ(k
0,k;Mu)⟨q̄q⟩,
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A13 = 2iGV χ̃
µ
σj(k

0,k;Mu),

A21 = −4iKχ̃σσ(k
0,k;Ms)⟨q̄q⟩,

A22 = 1− 2iGSχ̃σσ(k
0,k;Ms),

A23 = 2iGV χ̃
µ
σj(k

0,k;Ms),

A31 = −2iχ̃µ
σj(k

0,k;Mu)(2GS + 2K⟨s̄s⟩) + 4iKχ̃µ
σj(k

0,k;Ms)⟨q̄q⟩,

A32 = −4iKχ̃µ
σj(k

0,k;Mu)⟨q̄q⟩+ 2iGSχ̃
µ
σj(k

0,k;Ms),

A33 = gµν + i2GV (2χ̃
µν
jj (k

0,k;Mu) + iχ̃µν
jj (k

0,k;Ms)) (3.19)

Details on the calculation of quark correlators χ̃(k) in the above equation are given

in Section 3.1.2 and Appendix B. Since the quark correlators are either even or odd

functions of ω as discussed in Section 3.1.2, the determinant in Eq. (3.18) is even in

ω, i.e., both ω = ωk and ω = −ωk are solutions. For unstable modes, corresponding

to imaginary ω, i.e., ωk = iΓk, the imaginary frequency ω = iΓk and ω = −iΓk

then correspond to unstable modes that grow and decay exponentially in time with

a growth or decay rate Γk.

3.1.2 The correlators

In this subsection, we calculate the correlators χs defined in Eq. (3.15) in the

leading order. The retarded correlator χ̃ is related to the Matsubara correlator Π by

the Kubo-Martin-Schwinger (KMS) condition [60] χ̃(k) = −iΠ(k0 + i0+,k), where

in the leading order,

Πσσ(iνn,k) = −T
3∑

a=1

∑
ωn

∫ |k+p|<Λ

|p|<Λ

d3p

(2π)3
Tr[S̃a(iωn,p)S̃a(iωn + iνn,k+ p)],

Πµν
jj (iνn,k) = −T

3∑
a=1

∑
ωn

∫ |k+p|<Λ

|p|<Λ

d3p

(2π)3
Tr[γµS̃a(iωn,p)γ

νS̃a(iωn + iνn,k+ p)],
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Πµ
σj(iνn,k) = −T

3∑
a=1

∑
ωn

∫ |k+p|<Λ

|p|<Λ

d3p

(2π)3
Tr[S̃a(iωn,p)γ

µS̃a(iωn + iνn,k+ p)],

(3.20)

with the Matsubara frequency ωn = (2n + 1)πT , νn = 2nπT , and S̃a is the quark

propagator in the imaginary time formalism. The subscript a is the color index, and

each color is treated separately as the background color field in the PNJL model

contributes differently to the chemical potentials of quarks of different colors. Eq.

(3.20) can be expressed in a more compact form as

Π(iνn,k) = T
3∑

a=1

∑
ωn

∫ |k+p|<Λ

|p|<Λ

d3p

(2π)3
Tr[O1S̃a(iωn,p)O2S̃a(iωn+ iνn,k+p)], (3.21)

where O1,2 are unit or gamma matrices.

According to the KMS condition, the quark propagator S̃a(iωn,p) is written in

terms of the quark spectral function Ãa(p),

S̃a(iωn,p) = −
∫
dp0

2π

Ãa(p)

iωn − p0
, (3.22)

where

Ãa(p) ≡
∫
d4xAa(x)e

ipx/~ ≡
∫
d4x{qa(x), q̄a(0)}eipx/~. (3.23)

Under the quasi-particle approximation, the quark spectral function can be written

as

Ãa(p) = π[∆+(p)δ(p
0 + µ̃a − Ep)−∆−(p)δ(p

0 + µ̃a + Ep)], (3.24)

where

∆±(p) = ±γ0 −
p

Ep

· γ +
M

Ep

, (3.25)
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and µ̃1,2 = µ − 2GV j
0 ± iϕ3 and µ̃3 = µ − 2GV j

0 are effective chemical potentials.

We therefore have

Π(iνn,k) =
3∑

a=1

∫ |k+p|<Λ

|p|<Λ

d3p

(2π)3

∫
dp0

2π

dp0′

2π
Tr[O1Ãa(p

0,p)O2Ãa(p
0′,k+ p)]

× T
∑
ωn

−1
(iωn − p0)(iωn + iνn − p0′)

. (3.26)

The summation over the Matsubara frequency ωn can be evaluated as follows:

T
∑
ωn

−1
(iωn − p0)(iωn + iνn − p0′)

=
−1

p0′ − p0 − iνn

(
T
∑
ωn

1

iωn + iνn − p0′
− T

∑
ωn

1

iωn − p0

)

=
−1

p0′ − p0 − iνn
1

2πi

∫ i∞+0+

−i∞+0+
dz
( 1

z + iνn − p0′
+

1

−z + iνn − p0′

− 1

z − p0
− 1

−z − p0
)
×
(
1

2
− f0(z)

)
=

f0(p
0)− f0(p0′)

p0′ − p0 − iνn
, (3.27)

where f0(x) = (exp(x/T )+1)−1 is the Fermi-Dirac distribution function. In obtaining

the second equality in Eq. (3.27), we have used the fact that the function 1/2−f0(z)

has simple poles at z = (2n + 1)πiT with the same residue T . The third equality

follows after using the relation f0(x+ iνn) = f0(x).

In all above equations, we have taken the Plank constant ~ = 1. Including

explicitly ~, Eq. (3.26) can be rewritten as

iχ̃(ω,k) = Π(~ω + i0+, ~k)

=
1

4

3∑
a=1

∫ |~k+p|<Λ

|p|<Λ

d3p

(2π)3
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{
Tr[O1∆+(p)O2∆+(~k+ p)]

f0(Ep − µ̃a)− f0(Ep+~k − µ̃a)

Ep+~k − Ep − ~ω − i0+

+ Tr[O1∆−(p)O2∆−(~k+ p)]
f0(Ep+~k + µ̃a)− f0(Ep + µ̃a)

Ep − Ep+~k − ~ω − i0+

− Tr[O1∆+(p)O2∆−(~k+ p)]
f0(Ep+~k + µ̃a) + f0(Ep − µ̃a)− 1

−Ep − Ep+~k − ~ω − i0+

− Tr[O1∆−(p)O2∆+(~k+ p)]
1− f0(Ep+~k − µ̃a)− f0(Ep + µ̃a)

Ep + Ep+~k − ~ω − i0+
}
.

(3.28)

After making the variable change p′ = −p− ~k in terms containing f0(Ep+~k± µ̃a),

which also satisfies |p′| < Λ and |p′ + ~k| < Λ, and writing p′ again as p, Eq. (3.15)

becomes

iχ̃(ω,k)

=
1

4

3∑
a=1

∫ |~k+p|<Λ

|p|<Λ

d3p

(2π)3{(Tr[O1∆+(p)O2∆+(~k+ p)]

Ep+~k − Ep − ~ω − i0+
+

Tr[O1∆+(−p− ~k)O2∆+(−p)]
Ep+~k − Ep + ~ω + i0+

+
Tr[O1∆+(p)O2∆−(~k+ p)]

Ep + Ep+~k + ~ω + i0+
+

Tr[O1∆−(−p− ~k)O2∆+(−p)]
Ep + Ep+~k − ~ω − i0+

)
f0(Ep − µ̃a)

+
(Tr[O1∆−(−p− ~k)O2∆−(−p)]

Ep+~k − Ep − ~ω − i0+
+

Tr[O1∆−(p)O2∆−(~k+ p)]

Ep+~k − Ep + ~ω + i0+

+
Tr[O1∆−(p)O2∆+(~k+ p)]

Ep + Ep+~k − ~ω + i0+
+

Tr[O1∆+(−p− ~k)O2∆−(−p)]
Ep + Ep+~k + ~ω + i0+

)
f0(Ep + µ̃a)

−Tr[O1∆−(p)O2∆+(~k+ p)]

Ep + Ep+~k − ~ω + i0+
− Tr[O1∆+(−p− ~k)O2∆−(−p)]

Ep + Ep+~k + ~ω + i0+

}
. (3.29)

We note that if O1,2 are such that Tr[O1∆±(p)O2∆±(~k + p)] = Tr[O1∆±(−p −

~k)O2∆±(−p)] and Tr[O1∆±(p)O2∆∓(~k + p)] = Tr[O1∆∓(−p − ~k)O2∆±(−p)],

then χ̃(ω,k) = χ̃(−ω,k). On the other hand, if Tr[O1∆±(p)O2∆±(~k + p)] =

−Tr[O1∆±(−p−~k)O2∆±(−p)] and Tr[O1∆±(p)O2∆∓(~k+p)] = −Tr[O1∆∓(−p−

~k)O2∆±(−p)], then χ̃(ω,k) = −χ̃(−ω,k). Furthermore, taking the fluctuation in
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the current density as a longitudinal wave, i.e., δj = δjzk̂, then terms such as χ̃0x
jj

vanish. The expressions for remaining χ̃s and their semi-classical approximations are

given in Appendix B. Among them, χ̃σσ(ω,k), χ̃
0
σj(ω,k), χ̃

00
jj (ω,k), and χ̃

zz
jj (ω,k) are

even in ω, while χ̃z
σj(ω,k) and χ̃

0z
jj (ω,k) are odd in ω. The determinant in Eq. (3.18)

is thus even in ω, i.e., both ω = ωk and ω = −ωk are solutions.

3.1.3 Results

Figure 3.1: Spinodal boundaries of unstable modes of different wave numbers in the
temperature and net quark density plane from the NJL model (left window) and the
PNJL model (right window) with GV = 0. Taken from Ref. [1]

In this subsection, we show the results obtained from Eq. (3.18) for the spinodal

boundaries of longitudinal unstable modes of different wave numbers. Since the

determinant in Eq. (3.18) is even in k0, it has a minimum at k0 = 0. Therefore, for

a given wave number k, temperature T , and net baryon density nq, Eq. (3.18) can
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be solved if and only if the determinant is negative or zero when k0 = 0. We can

thus obtain the boundaries of the spinodal instability region for different values of k

by solving Eq. (3.18) with k0 = 0, and they are shown in the left and right windows

of Fig. 3.1 with GV = 0 but with (PNJL) and without (NJL) the Polyakov loop,

respectively. It is seen that for unstable modes of a given wave number, the spinodal

instability region is larger in the PNJL than in the NJL model due to the effect of

the Polyakov loop. The highest temperature Tc of the spinodal instability region is

about 68 MeV in the NJL model and 120 MeV in the PNJL model. Comparing these

results with the dashed lines shown in Figs. 2.5 and 2.6 based on the thermodynamic

approach, we find that the spinodal boundary of unstable modes of k = 0 coincides

with the boundary determined from vT = 0 but is different from that determined

from vS = 0. Therefore, unstable modes in the long wavelength limit correspond to

the isothermal spinodal instability, and this is because the time evolution operator

U(t, t0) in the linear response theory, as shown in Eq. (3.5), becomes non-unitary

after linearization, and the entropy of the system no longer remains constant. Our

result is different from that in Refs. [55, 61], where the spinodal boundary obtained

from solving the linearized hydrodynamic equations in the long wavelength limit

is the same as the isentropic one from the thermodynamic approach. On the other

hand, the spinodal region in the long wavelength limit in our study coincides with that

from the linearized ideal hydrodynamic approach that includes an infinite thermal

conductivity [55]. The latter is not surprising since in the linear response approach,

the system is not isolated but rather in contact with a thermal bath at constant

temperature. However, for a more realistic expanding scenario, this may well be

different.

Figure 3.1 also shows that the spinodal instability region shrinks as the wave

number of an unstable mode increases or its wavelength becomes shorter. This

33



indicates that clumps of quark matter or the high density regions are more likely

to merge into larger clumps, which correspond to modes of smaller wave number

or longer wavelength, and this effect is larger at higher temperatures. According to

Refs. [55, 61] based on the linearized ideal hydrodynamic approach, the suppression

of high k unstable modes is due to the finite-range interaction between quarks, which

leads to a finite surface tension in the interface of two separated phases [62]. As a

result, the surface energy of the system is lowered by the merge of density clumps.

Although the inter-quark interaction in the PNJL model is zero range, such a surface

energy effect is present in the linear response approach as a result of the quantum

effect, which leads to a smearing of the particle distribution in space that allows

distant particles to interact even if their interaction is of zero range. As shown in

Section 3.2 using the linearized Boltzmann equation by taking the classical limit of

the quantum linear response theory, the suppression on the growth rate of high k

unstable modes indeed goes away.

We have also studied the effect of the vector interaction on the spinodal bound-

aries of unstable modes of different wave numbers by using GV = 0.2 GS in the PNJL

and NJL models, and the results are shown in the left and right windows of Fig. 3.2,

respectively. It is seen that the vector interaction shrinks the unstable region, partic-

ularly for unstable modes of large wave number or shorter wavelength. For example,

the left window of Fig. 3.2 shows that unstable modes with k ≥ 0.2 fm−1 disappear

for the NJL model with GV = 0.2 GS. The shrinking of the spinodal region or the

phase coexistence region, thus the decrease of the growth rates of unstable modes,

with increasing vector coupling, is well-known in NJL type models [21]. It also agrees

with the expectation that a repulsive interaction drives particles away from density

clumps and thus destroys the unstable modes.

We further show in Fig. 3.3 the dispersion relation of unstable modes in the PNJL
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Figure 3.2: Spinodal boundaries of unstable modes of different wave numbers in the
temperature and net quark density plane from the NJL model (left window) and the
PNJL model (right window) with GV = 0.2 GS. Taken from Ref. [1]

model, i.e., its growth rate Γk as a function of the wave number k, in quark matter

of net quark density nq = 0.7 fm−3 and at temperature T = 70 MeV, for the cases

of GV = 0 (dashed line) and GV = 0.2 GS (solid line). The vector interaction is

seen to dramatically reduce the growth rate of unstable modes. For GV = 0, the

growth rate peaks at k = 0.15 fm−1, implying that the size of the most likely quark

clumps due to density fluctuations is about 2π/kmax ∼ 40 fm. The typical growth

rate is 0.01fm−1, indicating that it takes about 100 fm for the fluctuations to grow.

This time duration is an order of magnitude longer than typical lifetime of a heavy-

ion collision, which is about 10 fm, making the effect of instabilities hardly visible.

The instabilities can be enhanced by increasing the attraction interaction between

quarks, namely increasing the values of GS and K. The latter then requires a larger

cutoff parameter Λ in order to reproduce the correct meson masses in vacuum. Also,
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Figure 3.3: Growth rate of unstable modes in quark matter of net quark density
nq = 0.7 fm−3 and temperature T = 70 MeV for both GV = 0 and GV = 0.2 GS

based on the PNJL model. Taken from Ref. [1]

nonlinear effects, which are neglected in the linear response theory, may enhance the

growth rate of unstable modes and result in appreciable density fluctuations in a

much shorter time.

The above growth rate of unstable modes is significantly smaller than that ob-

tained in Ref. [36] based on an ideal fluid dynamics using an equation of state con-

structed from both hadron and quark phases. As argued in Ref. [39], the growth rate

is very different in the Polyakov Quark-Meson (PQM) model [56], which is similar

to the PNJL model used in the present study, as a result of drastic differences in
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the thermodynamics at the phase boundary between the quark and hadron phases.

However, these studies are based on the semi-classical approach and their predictions

can be affected by quantum effects as included in the present study.

3.2 Linearized Boltzmann equation

Higher-order corrections, i.e. the collisional effect, to the correlators in Eq.(3.15)

obtained in the linear response theory can in principle be included but it is much

more involved. For simplicity, we study their effects on the growth rate of unstable

modes by using the linearized transport (or Boltzmann) equation, which agrees with

the linear response approach in the semiclassical limit. Another advantage of this

approach is that the transport equation can be solved by the test-particle method

and thus easily used for studying unstable modes of large amplitude, which is the

content of Sections 4 and 5. In the present study, we consider the case of the NJL

model with vanishing vector interaction, as we already know from Section 3.1 that

the vector interaction suppresses spinodal instabilities. The reason for not studying

the collisional effect based on the PNJL model is because a consistent treatment of

collisional terms in the transport equation is currently not available.

3.2.1 Theoretical framework

The Boltzmann equation for the quark phase space distribution function fa(x,p)

can be written in a concise form [33],

D[fa] = C[fz], (3.30)

in terms of the drift term

D[fa] ≡ ∂tfa + v · ∇rfa +
Ma

Ea

∇rV
S∇pfa, (3.31)
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where v = p/Ep is the velocity, V S defined in Eq. (C.30) is the scalar potential, and

the collision term

C[fa] ≡
∑
bcd

1

1 + δab

∫
d3pb

(2π)32Eb

d3pc

(2π)32Ec

d3pd

(2π)32Ed

(2π)4

2Ea

δ4(pa + pb − pc − pd)

×|Mab|2 [fcfd(1− fa)(1− fb)− fafb(1− fc)(1− fd)] (3.32)

that describes scatterings among quarks. In the above, the subscripts a, b, c, and d

denote the spin, flavor, color, and baryon charge of a quark or anti-quark.

Expanding the distribution function f around its equilibrium value f 0, which

satisfies the condition D[f 0
a ] = C[f 0

a ] = 0, by writing f = f 0 + δf and keeping only

terms linear in δf , we obtain

D[fa] ≈ ∂tδfa + v · ∇rδfa +
Ma

Ea

∇rδV
S∇pf

0
a , (3.33)

where we have introduced V S = V S
0 + δV S and used the fact that ∇rV

S
0 = 0 at

equilibrium. Similarly, the collision term becomes

C[fa] ≈
∑
bcd

∫
d3pbd

3pcd
3pd

(2π)−5δ4(pa + pb − pc − pd)
(1 + δab)2Ea2Eb2Ec2Ed

|Mab|2f 0
af

0
b (1− f 0

c )

(1− f 0
d )

[
− δfa
f 0
a (1− f 0

a )
− δfb
f 0
b (1− f 0

b )
+

δfc
f 0
c (1− f 0

c )
+

δfd
f 0
d (1− f 0

d )

]
. (3.34)

Using the relaxation-time approximation to the collision term, we neglect the

contributions from δfb, δfc, and δfd in Eq.(3.34) and rewrite the collision integral as

C[fa] ≈ −
1

τa
δfa (3.35)
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in terms of the relaxation time τa,

1

τa
=
∑
bcd

∫
d3pbd

3pcd
3pd

(2π)−5δ4(pa + pb − pc − pd)
(1 + δab)2Ea2Eb2Ec2Ed

|Mab|2
f 0
b (1− f 0

c )(1− f 0
d )

1− f 0
a

,

(3.36)

which characterizes the time for the system to evolve from a non-equilibrium state

to an equilibrium one.

After changing variables according to P = pa + pb, P′ = pc + pd, and p =

pc−pd, and using the relation d3pbd
3pcd

3pd = 2−3d3Pd3P′d3p andP = P′, Eq.(3.36)

becomes

1

τa
=
∑
bcd

∫
d3Pd3p

(2π)−5δ(Ea + Eb − Ec − Ed)

(1 + δab)232Ea2Eb2Ec2Ed

|Mab|2
f 0
b (1− f 0

c )(1− f 0
d )

1− f 0
a

. (3.37)

Writing

δ(Ea + Eb − Ec − Ed) =

∫
dEδ(Ea + Eb − E)δ(Ec + Ed − E), (3.38)

it is then easy to show that for the first δ function, we have

δ(E − Ea − Eb) =
Eb

Ppa
δ

(
x− p2a − p2b + P 2

2Ppa

)
, (3.39)

where x denotes cos∠(P,pa). The second δ function is tedious to evaluate unless

the colliding particles have same mass. Since we are interested in a quark matter

that has temperatures below the critical temperature Tc and net baryon chemical

potentials smaller than 1 GeV, very few strange (anti-)quarks are present and the

scatterings are mostly among light u and d quarks of similar masses. Taking the
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equal mass limit, the second δ function can be expressed as

δ(Ec + Ed − E) = δ

(
p− E

√
s− 2m2

E2 − P 2x′2

)
4EEcEd

p(E2 − P 2x′2)
, (3.40)

with x′ = cos∠(P,p) and s = (pa+pb)
2. Assuming that the scattering cross sections

are isotropic, then |Mab|2 = 16πsσab
CM, this leads to

1

τa
=
∑
bcd

1

(1 + δab)2(2π)2paEa(1− f 0
a )

∫
dEdPdx′sσab

CM

PE2

E2 − P 2x′2

√
s− 2m2

E2 − P 2x′2
f 0
b (1− f 0

c )(1− f 0
d ). (3.41)

For collisions of u and d quarks only, the summation in the above equation be-

comes a constant factor:
∑

bcd(1 + δab)
−1 = 2 (spins) × 3 (colors) × 2 (flavors) −

1/2 (identical particle) = 11.5 [63].

The linearized transport equation can now be expressed as

∂tδfa + v · ∇rδfa +
Ma

Ea

∇rδV
S
a ∇pf

0
a + τ−1

a δfa = 0. (3.42)

Introducing the Fourier transform of δf and δV S,

δf̃(k,p, ω) =

∫
dtd3xδf(x,p, t) exp(iωt− ik · x),

δṼ S(k, ω) =

∫
dtd3xδV S(x, t) exp(iωt− ik · x),

(3.43)

Eq. (3.42) can be rewritten as

(ω + iτ−1
a − k · va)δf̃a +

Ma

Ea

δṼ S
a k · ∇pf

0
a = 0. (3.44)
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Since V S
i = 2GS⟨q̄q⟩i + 2K⟨q̄q⟩j⟨q̄q⟩k with i, j, k indicating the quark flavors and

i ̸= j ̸= k as in Section 3.1, their variations are given by

δV S
q = (2GS + 2K⟨s̄s⟩)δ⟨q̄q⟩+ 2K⟨q̄q⟩δ⟨s̄s⟩,

δV S
s = 4K⟨q̄q⟩δ⟨q̄q⟩+ 2GSδ⟨s̄s⟩, (3.45)

with q denoting u or d quark. For an isospin symmetric quark matter considered in

the present study, u and d quarks have same mass and condensate, we then obtain

from Eq. (3.44) the following:

δfq,q̄ =
2k · ∇pf

0
q,q̄(Mq/Eq)[(GS +K⟨s̄s⟩)δ⟨q̄q⟩+K⟨q̄q⟩δ⟨s̄s⟩]

ω + iτ−1
q − k · v

,

δfs,s̄ ≈
2k · ∇pf

0
q,q̄(Mq/Eq)[2K⟨q̄q⟩δ⟨q̄q⟩+GSδ⟨s̄s⟩]

ω + iτ−1
q − k · v

. (3.46)

In the above, we have taken the relaxation time of strange quarks to be the same as

that for light quarks for simplicity. Expressing both δ⟨q̄q⟩ and δ⟨s̄s⟩ in terms of δfq,q̄

and δfs,s̄ according to

δ⟨q̄q⟩ = 2Nc

∫
d3p

(2π)3

(
Mq

Eq

(δfq + δfq̄) +
p2

E3
q

(f 0
q + f 0

q̄ − 1)δMq

)
,

δ⟨s̄s⟩ = 2Nc

∫
d3p

(2π)3

(
Ms

Es

(δfs + δfs̄) +
p2

E3
s

(f 0
s + f 0

s̄ − 1)δMs

)
, (3.47)

and substituting δf̃q,q̄, δf̃s,s̄, δMq, and δMs in Eq.(3.47), we obtain after some sim-

plifications the following result:

 1− 2(GS +K⟨s̄s⟩)(χq − ξq) −2K⟨q̄q⟩(χq − ξq)

−4K⟨q̄q⟩(χs − ξs) 1− 2GS(χs − ξs)


 δ⟨q̄q⟩

δ⟨s̄s⟩

 = 0, (3.48)
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where

χa = 2Nc

∫
d3p

(2π)3

(
Ma

Ea

)2
k · ∇p(f

0
a + f̄ 0

a )

ω + iτ−1
a − k · v

=
NcM

2
a

π2T

∫
dEav

[
f 0
a (f

0
a − 1) + f̄ 0

a (f̄
0
a − 1)

](τ−1
a − iω
kv

arctan
kv

τ−1
a − iω

− 1

)
,

(3.49)

and

ξa =
Nc

π2

∫
dEa

p3

E2
a

(f 0
a + f̄ 0

a − 1). (3.50)

Comparing Eqs.(3.49) and (3.50) with the χσσ in Eq. (B.14), we find they agree

if τ−1 = 0. We note that Eq.(3.28) for the the quark correlator in the quantum

treatment reduces to Eq.(3.49) in the limit ~ = 0. Since δ⟨q̄q⟩ and δ⟨s̄s⟩ can be of

any value, Eq. (3.48) is satisfied if and only if:

∣∣∣∣∣∣∣
1− 2(GS +K⟨s̄s⟩)(χq − ξq) −2K⟨q̄q⟩(χq − ξq)

−4K⟨q̄q⟩(χs − ξs) 1− 2GS(χs − ξs)

∣∣∣∣∣∣∣ = 0. (3.51)

By solving Eq.(3.51), we can obtain the relation between the frequency and wave

number of collective modes in quark matter, i.e., its dispersion relation ω(k). These

collective modes become unstable and grow with time if their frequencies are imag-

inary, i.e., ω = iΓk, which can occur in quark matter for some temperatures and

densities as discussed in Section 2. Since χ(ω, k) = χ(ω/k) when τ−1 = 0, the

growth rate Γk is thus proportional to k in the absence of collisions. This is in con-

trast to the results obtained in the quantum linear response theory, where the growth

rates of unstable modes of larger wave numbers are suppressed.
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Figure 3.4: Growth rates of unstable modes in a quark matter of net quark density
0.7 fm−3 and temperature 45 MeV without and with the collisional term using a
light quark scattering cross section that has a value of 3 mb and is isotropic. Taken
from Ref. [1]

3.2.2 Results

In Fig. 3.4, we show by dashed and solid lines the dispersion relation or growth

rate of unstable modes in a quark matter of net quark density 0.7 fm−3 and temper-

ature 45 MeV with and without the collisional effect, respectively, using an isotropic

light quark scattering cross section of 3 mb. The collisional effect is seen to reduce Γk

by almost a constant value for all wave numbers k. Although the reduction is small,

its effect is important for soft unstable modes. In this particular example, unstable
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modes with k < 0.005 fm−1 disappear after the inclusion of collisional effects. As

a result, the spinodal instability regions for unstable modes of longer wavelength

become smaller than those of shorter wavelength as shown in Fig. 3.5 by dotted,

dashed, and dash-dotted lines for the spinodal boundaries of unstable modes of dif-

ferent wave numbers of 0.001, 0.01, and 0.1 fm−1, respectively. Compared to the

entire spinodal instability region shown by the solid curve, the area of the spinodal

region in the temperature and density plane shrinks as the wave number of the un-

stable mode k decreases. This behavior is opposite to that shown in Section 3.1,

where the high k modes disappear due to quantum effects, and the spinodal region

shrinks as k increases. Such a behavior is also observed in Ref. [55] based on the

linearized hydrodynamical approach with a finite viscosity, where it is found that

the spinodal region shrinks and the growth rates of unstable modes decrease in the

presence of viscosity. However, while the growth rate vanishes at k = 0 in Ref. [55],

it is negative in our study based on the linearized Boltzmann equation. The latter

is due to the factor ω + iτ−1 that always appears together in the relaxation-time

approximation. In this case, the growth rate is given by −τ−1 in the long wavelength

limit and vanishes only in the limit of infinite scattering cross section.
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Figure 3.5: The spinodal region calculated with the inclusion of the collisional term
using an isotropic quark scattering cross section of 3 mb for the different wave num-
bers of unstable modes. The solid line denotes the boundary of the entire spinodal
instability region.
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4. QUARK MATTER IN A BOX

This section serves as a bridge between the studies of the spinodal instabilities

in the small and large amplitude limits. Although the small amplitude case has

already been discussed in Section 3, we will develop an intuitive picture to show how

an initial sinusoidal fluctuation grows during the early stage of its time evolution

by solving the Boltzmann equation numerically. The latter is done by using the

test particle method, in which the time evolution of the one-particle phase-space

distribution function f(x,p, t) is described by the motions of many classical particles

as discussed in detail in Appendices C and D. For the large amplitude case, which

also includes the growth of instabilities during the late stage, we will follow the whole

phase separation process to see how dense clusters develop inside a box of initially

uniform quark matter and finally lead to the formation of a large scale structure.

Some observables will be studied to characterize this structure.

4.1 Small amplitude density fluctuations

We consider a quark matter that is confined in a cubic box with periodic boundary

conditions. The system is prepared by uniformly distributing many test particles

inside the box according to the density of the system with their momenta given

by the Fermi-Dirac distribution at certain temperature. We then study the growth

of density fluctuations from an initial distribution with density and temperature

corresponding to that inside the spinodal region. Results obtained from solving the

Boltzmann equation by following the classical motions of these test particles will

then be compared with those obtained from the linear response theory. Specifically,

we introduce an initial density fluctuation that has a sinusoidal oscillation in the z

direction, ρini = ρ0(1+0.1 sin(2πz/L)), where ρ0 is the average initial density and L is
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Figure 4.1: Time evolution of a unstable density mode of wave number k = 0.31
fm−1.

the length of the box with L = 10, 20, 30, 40, 50 fm corresponding to wave numbers

k = 0.63, 0.31, 0.21, 0.16, 0.13 fm−1, respectively. As an example, Fig. 4.1 shows

how the amplitude of the sinusoidal wave grows with time in the case of L = 20 fm,

the average density ρ0 = 0.7 fm−3, and an initial temperature T = 45 MeV. Since

the amplitude of density fluctuation at early times is expected to grow exponentially,

it can be approximated by a hyperbolic cosine function of time, i.e.,

δρ(t) = δρ0cosh(Γkt), (4.1)
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where Γk is the growth rate and can be extracted directly from the numerical results,

and they are shown in Fig. 4.2 by solid circles. They are seen to agree very well

with those obtained from the analytical results based on the linearized Boltzmann

equation (see Appendix D.1), shown by solid and dashed curves for the cases with

and without the collision term in the Boltzmann equation, respectively, in the small

k region, although they differ slightly at k = 0.63 fm−1 but still within the numerical

error bar.

Figure 4.2: Growth rates extracted from numerically solving the Boltzmann equation
for unstable modes of wave numbers k = 0.63, 0.31, 0.21, 0.16, 0.13 fm−1 for quark
matter of density ρ = 0.7 fm−3 and temperature T = 45 MeV. Analytical results
from the linearized Boltzmann equation are shown by solid and dashed curves for
the cases with and without the collision term, respectively.
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4.2 Large amplitude desnity fluctuations

Figure 4.3: Time evolution of density distribution in a quark matter of initial net
quark density n = 0.5 fm−3 and temperature T = 20 MeV for the cases of GV = 0
(upper row) and GV = GS (lower row).

To study how density fluctuations emerge and grow, we compare results from two

calculations based on the same initial conditions but with and without the spinodal

instability in the equation of state. This is achieved by introducing a vector inter-

action in the NJL model, which is known to move a quark matter from inside the

spinodal region to the outside if its strength is sufficiently large. As shown in Section

3, the spinodal region disappears if the vector coupling GV has the same value as GS
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Figure 4.4: Cross sectional view of density distribution on the z = 0 plane at t =
40 fm/c for the case GV = 0 with a first-order phase transition.

for initial temperature T0 = 20 MeV and net quark density ρ0 = 0.5 fm−3, although

the latter is well inside the spinodal instability region for GV = 0. Figure 4.3 shows

the time evolution of the density distribution in a box of size 20 × 20 × 20 fm3 for

the two cases of GV = 0 (upper row) and GV = GS (lower row), with the darker

color denoting higher density regions and the lighter color denoting lower density

regions. Although the system is initially uniform in space, some dense spots are

present due to statistical fluctuations because of finite number of test particles used

in the calculation. In the case of GV = GS without a first-order phase transition

or spinodal instability, the density distribution in the box remains unchanged with

time as shown in the lower row. This changes dramatically, however, for the case

of GV = 0. Due to the spinodal instability, the initial dense spots act like ”seeds”,
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which create several small low pressure centers and attract nearby partons, leading to

the formation of many clusters at t = 20 fm/c. These clusters further grow, connect

with each other, and form stable large structures at t = 40 fm/c, when the system

clearly separates into two phases of matter with one of high density and the other

of low density. A clearer picture can be obtained by taking a cross sectional view

Figure 4.5: Demonstration of the phase separation on the phase diagram.

on the z = 0 plane as shown by the density distribution contours in Fig. 4.4. The

two phases are now distinguishable with the dilute phase having a density of about

0.25 fm−3 and the dense phase having a density of about 1.0 fm−3. According to the

phase diagram in Fig. 4.5, the initial location of the system is indicated by the circle

inside the spinodal region. During the phase separation, the location of most part of

the system moves towards the left boundary of the spinodal instability region that

has a density of about 0.2 fm−3, while that of the small part of the system moves

towards the right boundary of the spinodal instability region that has a density of
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about 0.9 fm−3, consistent with the picture shown by the density evolution. As

Figure 4.6: Time evolution of the density-density correlation function in a quark
matter of temperature T = 20 MeV and average net quark density n = 0.5 fm−3

inside the spinodal region.

the large scale structure forms, we expect the density-density correlation ρ(r)ρ(0) to

get stronger and the correlation length to become larger. This is indeed the case as

shown in Fig. 4.6, where it is seen that both the amplitude of the correlation function

and the correlation length increases with time.

The density fluctuations can be quantified by the scaled density moments ⟨ρN⟩/⟨ρ⟩N [56],

where

ρN ≡
∫
d3rρ(r)N+1∫
d3rρ(r)

. (4.2)

This quantity is scale invariant since its value remains unchanged under a scale
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Figure 4.7: Time evolution of scaled density moments in a quark matter of temper-
ature T = 20 MeV and average net quark density n = 0.5 fm−3 inside the spinodal
region.

transfomation r → λr, where λ can be any positive number. The scaled density

moments are all equal to one for a uniform density distribution but become greater

than one as density fluctuations grow. In Fig. 4.7, we show by dotted, dashed, and

solid lines the scaled density moments for N = 2, 4 and 6, respectively. Our results

show that the scaled moments increase during the phase separation and saturate at

about t = 40 fm/c, when the phase separation almost ends. Also, moments with

larger N increase faster and saturate at larger values. The final saturation values

can be estimated as follows. For a system of an initial density ρ0 that separates into

two phases of density ρ1 and ρ2 with volumes V1 and V2, respectively, the scaled
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density moments are then

⟨ρN⟩
⟨ρ⟩N

=
ρN+1
1 V1 + ρN+1

2 V2

(ρ21V1 + ρ22V2)
N
/ (ρ1V1 + ρ2V2)

N−1
. (4.3)

Using the condition of particle number conservation

ρ1V1 + ρ2V2 = ρ0(V1 + V2), (4.4)

the scaled density moments after the phase separation is thus

⟨ρN⟩
⟨ρ⟩N

=
[ρN+1

1 (ρ2 − ρ0) + ρN+1
2 (ρ0 − ρ1)][ρ0(ρ2 − ρ1)]N−1

[ρ21(ρ2 − ρ0) + ρ22(ρ0 − ρ1)]N
. (4.5)

For our case of ρ0 = 0.5 fm−3, ρ1 ≈ 0.25 fm−3, and ρ2 ≈ 1.0 fm−3, we have

⟨ρ2⟩/⟨ρ⟩2 → 1.22,⟨ρ4⟩/⟨ρ⟩4 → 2.11, and ⟨ρ6⟩/⟨ρ⟩6 → 3.75, which are close to the

final saturation values shown in Fig. 4.7.

Other quantities of interest are the skewness and kurtosis of the particle multi-

plicity distribution, which were proposed as possible signals for the critical phenom-

ena [23] and have been studied in the beam energy scan experiments at RHIC[26, 27].

They are defined as follows:

skewness ≡
⟨δN3

q ⟩
⟨δN2

q ⟩3/2
,

kurtosis ≡
⟨δN4

q ⟩
⟨δN2

q ⟩2
− 3. (4.6)

Both quantities characterize how far an event-by-event multiplicity distribution de-

viates from a normal distribution. A positive skewness means a long tail on the

right side of the distribution, i.e., most events have the net quark number below the
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mean value, while some events have an extreme high net quark number. A posi-

tive kurtosis implies a sharper peak than the peak in a normal distribution, while

a negative kurtosis corresponds to a flatter one. Theoretical calculations based on

the grand canonical picture predict that both quantities diverge with the correlation

length when a system approaches its critical point [23], with the kurtosis diverging

faster than the skewness. Therefore, they can be viewed as signals for the critical

end point.

Figure 4.8: Time evolution of event-by-event distribution of the number of quarks
in a sub-volume of size 0.6 fm3 (left window) and 30 fm3 (right window) in a quark
matter of temperature T = 20 MeV and average net quark density n = 0.5 fm−3

inside the spinodal region. The total number of events is 1000.

To be consistent with the grand canonical picture, we consider quarks in a sub-

volume of the box in our study, such as its central cell, and treat the remaining part

as the reservoir. When the system is initially inside the spinodal instability region,

the sub-volume can take quarks from the reservoir in some cases, and in most cases
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quarks are taken away from it. So the quark number inside this sub-volume varies

dramatically from event to event and thus generates the skewness and kurtosis. In

Figs. 4.8, we show the event-by-event distribution of the number of quarks in the

central cell from 1000 events at t = 0, 20, and 40 fm/c by the solid, dashed and

dotted lines, respectively, for the two cases of sub-volume of size 0.6 fm3 (the left

window) and 30 fm3 (the right window). The left window of Fig. 4.8 clearly shows

that the distribution for the small sub-volume becomes asymmetric as time increases,

starting with an initial skewness of 0.11 and increasing to 0.60 at 20 fm/c and 0.75

at 40 fm/c. This feature is absent in the right window of Fig. 4.8 for the larger sub-

volume, where the distribution remains essentially symmetric with increasing time,

with the skewness changing slowly from -0.001 (t=0) to 0.086 (t=20 fm/c) and 0.132

(t=40 fm/c), and there is no apparent increase or decrease in the kurtosis.

In summary, we have analyzed the phase separation of a quark matter in a box.

The growth rates of unstable modes extracted from numerically solving the Boltz-

mann equations are compared and found to agree with the analytical results in

Section 3. The high-order density moments in the system are seen to increase and

saturate at large values after the phase separation and can be considered as signals

for a first-order phase transition. The skewness of the quark number event-by-event

distribution in a small sub-volume of the system also increases, but this feature be-

comes absent if the subsystem is large. In both cases, there is no appreciable kurtosis

in the distribution.
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5. EXPANDING QUARK MATTER

5.1 Blast wave initial conditions

To study how large density fluctuations due to the spinodal instability as a result

of a first-order phase transition obtained from the box calculation in Section 4 are

affected by the expansion of the system as in a heavy ion collision, we carry out

a dynamical calculation using the transport model that includes parton scatterings

besides the mean-field potentials (see Appendix C and D for details). For the initial

parton distributions, their positions are taken to follow that of a spherical Wood-

Saxon form:

ρ(r) =
ρ0

1 + exp((r −R)/a)
(5.1)

with a radius R = 5 fm and a surface thickness parameter a = 0.5 fm, similar to that

expected from a central Au+Au collisions. Momenta of the patons are again taken

to be that of a Fermi-Dirac distribution at certain temperature. Calculations are

then carried out with two different equations of state with and without a first-order

phase transition, which can be realized by adjusting the coupling strength of the

vector interaction. To see how the expanding system goes into the spinodal region

in the QCD phase diagram, we first study the time evolution of the temperature and

density in the central cell of the system, which has an initial density ρ0 = 1.5 fm3

and temperature T = 70 MeV, and trace its trajectory as shown in Fig. 5.1 for the

two cases with (solid line) and without (dashed line) a phase transition. Although

a system described by the transport model may not always be in perfect thermal

equilibrium, we approximate its temperature by that of an equilibrated quark matter

that has the same energy density and net quark density in the NJL model. As
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Figure 5.1: Phase trajectories of the central cell of an expanding quark matter with
(solid line) and without (dashed line) a first-order phase transition using the blast
wave initial conditions. The spinodal region is shown by gray color.

expected, the solid curve enters the spinodal instability region, which is shown by

the gray color, at about 6.5 fm/c and leaves the region at about 17.4 fm/c after

spending about 10 fm/c inside this region. How the central density decreases with

time is shown by the solid line in Fig. 5.2, which is seen to decrease slower than in

the case without a first-order phase transition shown by the dashed line obtained

with GV = GS

The density fluctuations can be seen via the density distribution on a plane such

as the one at z = 0 shown in Fig. 5.3. The left window shows the density distribution
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Figure 5.2: Time evolution of the density of the central part of an expanding quark
matter with (solid line) and without (dashed line) a first-order phase transition.

at t = 20 fm/c for the case with a first-order phase transition, while the right window

shows that at t = 10 fm/c for the case without a first-order phase transition, when

the density of the central cell is about 0.2 fm−3 in both cases. Although density

clumps appear in both cases, those in the one with a first-order phase transition are

significantly larger. As in the case of a quark matter in a box, we can quantify the

density fluctuations by studying the scaled density moments [55]. They are shown

in Fig. 5.4 by the black and red lines for the cases with and without a first-order

phase transition, respectively. The dotted, dashed, and solid lines are for N = 2,

4, and 6 respectively. In both cases, the scaled density moments first increase and

then decrease with time. In the case without a first-order phase transition, this is
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Figure 5.3: Density distributions of an expanding quark matter on the z = 0 plane
at t = 20 fm/c for the case with a first-order phase transition (left window) and at
t = 10 fm/c for the case without a first-order phase transition (right window).

caused by an increased surface and deviation from the smooth Wood-Saxon density

distribution that disappear quickly in time from their initial values. To the contrary,

the scaled density moments in the case with a first-order phase transition becomes

much larger with time and only decreases very little afterwards, reflecting the effect

due to density clumps that distribute randomly inside the expanding quark matter.

Therefore, the saturated scaled density moments, which are larger for larger N , can

be regarded as signals for a first-order phase transition in a baryon-rich quark matter.

Since density fluctuations can lead to spatial anisotropy even in central heavy

ion collisions, it has been suggested that they may affects the anisotropic flows in

the transverse plane [38, 39]. The latter are defined by expanding the transverse
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Figure 5.4: Scaled density moments as functions of time for the cases with (black
lines) and without (red lines) a first-order phase transition.

momentum distribution f(pT , ϕ) as a Fourier series in the azimuthal angle ϕ,

f(pT , ϕ) =
N(pT )

2π
{1 + 2

∞∑
n=1

vn(pT ) cos[n(ϕ− ψn)]} (5.2)

in terms of the event plane angle ψn [64] and the anisotropic flow coefficient vn.

To calculate the anisotropic flow coefficients, we use the two particle cumulant

method [65, 66], namely, vn{2} =
√
⟨cos(n∆ϕ)⟩ by averaging over all particle pairs

in an event. We have calculated v2{2} and v4{2} for 100 events, and their final event

distributions are shown, respectively, in the left and right windows of Fig. 5.5 with

the solid and dashed lines for the cases with and without first order phase transition,
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Figure 5.5: Final anisotropic flow coefficients v2 (left window) and v4 (right window)
distributions for 100 events.

respectively. Both distributions peak at a larger value for the case with a first-order

phase transition, particularly for v4, thus providing a plausible signal for the first-

oder phase transition. Unfortunately, the values of the fluctuation induced v2 and

v4 are much smaller than those in non-central heavy ion collisions.

We have also studied the effect of density fluctuations on dilepton production.

Since the dilepton production rate is proportional to the square of parton density,

more dileptons are produced when the density fluctuation is large. Also, a longer

partonic phase as a result of a first-order phase transition would increase the depletion

yield as well. As usually done in studying depletion production in heavy ion collisions,

we use the perturbative approach to calculate the dilepton yield from the quark-

antiquark scattering in the expanding quark matter by neglecting its effect on the
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Figure 5.6: Dilepton yield as a function of the invariant mass
√
s for the cases with

(solid line) and without (dashed line) a first-order phase transition.

collisional dynamics. Their cross sections are given by

σqq̄→e+e− =
4πα2

3s

√
1− 4m2

e/s

1− 4m2
q/s

(
1 + 2

m2
e +m2

q

s
+ 4

m2
em

2
q

s2

)
, (5.3)

where s = (pe− + pe+)
2 is the square of the invariant mass of the dilepton and

α = 1
137

is the fine-structure constant. The dilepton invariant mass spectrum from

the expanding quark matter are shown in Fig. 5.6 by the solid and dashed lines for the

cases with and without first-order phase transition, respectively. As expected, more

dileptions are produced from the quark matter with a first-order phase transition.

We note the dilepton invariant mass spectrum peaks at
√
s ≈ 0.5 GeV with the peak
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value being about 3.5 × 10−4 GeV−1, which is comparable with the result obtained

from a hadronic transport model [67]. This enhancement in dilepton production may

thus be detectable in experimetns. We also note that most dileptons are produced

from quark-antiquark annihilation as very few pions are present in the system due

to the low phase transition temperature Tc predicted by the SU(3) NJL model.

In summary, we have studied in this subsection the spinodal instability of an

expanding quark matter that are initially smoothly distributed in a sphere with

a diffused surface. We have found that its expansion is slowed by the presence

of a first-order phase transition and it develops at same time density clumps and

momentum anisotropy. These features are studied via the scaled density moments

and anisotropic flows v2{2} and v4{2} as possible signals of the phase transition.

Also, an enhanced production of dileptons is predicted as a result of the density

fluctuations.

5.2 Realistic initial conditions from the AMPT

In this subsection, we use a more realistic initial parton distributions for heavy

ion collisions. Specifically, the initial partons are obtained from a multiphase trans-

port (AMPT) model with string melting [30] that uses a heavy ion jet interaction

generator (HIJING) [68, 69, 70] as the input. In this model, not only the mini-jet

partons from initial hard collisions are included but also hadrons produced from

excited strings, which are neither projectile nor target nucleons without any inter-

actions, are converted to partons according to the flavor and spin structures of their

valence quarks. In particular, a meson is converted to a quark and an anti-quark,

while a baryon is first converted to a quark and a diquark, and the diquark is then

decomposed into two quarks. The quark masses are taken to be mu = 5.6, md = 9.9,

and ms = 199 MeV/c2 as in the PYTHIA program [71]. The above two-body decom-
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position is isotropic in the rest frame of the parent hadron or diquark. These partons

are produced after a formation time of tf = EH/m
2
T,H , with EH and mT,H denoting,

respectively, the energy and transverse mass of the parent hadron. We obtain these

partons as the initial conditions of out study of an expanding quark matter by run-

ning the AMPT program with vanishing parton scattering cross sections in Zhang’s

parton cascade (ZPC)[72] and with the hadronic afterburner based on a relativistic

transport (ART) [73, 74] turned off. Using the partons from Au+Au collisions at

zero impact parameter and a center-of-mass collisional energy
√
sNN = 2.5 GeV as

the initial distribution, we have found that some parts of the system go through

the spinodal region when the SU(3) NJL model with GV = 0 is used in the Boltz-

mann equation and in constructing the phase diagram. As shown by the solid line

in Fig. 5.7, the trajectory of the central part of the system moves into the spinodal

instability region at about 4.4 fm/c after expansion, and goes out of this region at

about 5 fm/c. Although 0.6 fm/c is too short for the spinodal instability to develop

in the central part of the quark matter, its other parts may stay longer in the spin-

odal instability region due to both the geometry of initial parton distributions and

the correlations between the parton rapidities and longitudinal (z) coordinates.

Figure 5.8 shows the rapidity and longitudinal coordinate correlation of ini-

tial partons from a typical AMPT event for central Au+Au collisions at
√
sNN =

2.5 GeV. This correlation can be quantified as follows:

ryz ≡
∑

i(yi − ȳ)(zi − z̄)√∑
i(yi − ȳ)2

∑
i(zi − z̄)2

= 0.355. (5.4)

This positive correlation means that partons initially in the front are more likely

to have momenta pointing forward, while partons initially in the back are more likely

to have momenta pointing backward. This correlation helps the initially disc-shaped
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Figure 5.7: Phase trajectories of the central part of an expanding quark matter with
(solid trajectory) and without (dashed trajectory) a first-order phase transition using
initial parton distribution from the AMPT model. The spinodal region is shown by
gray color.

quark matter to expand, leading to a fast decrease of the density in the center of

the quark matter, as shown in the upper row of Fig. 5.9. Here, the quark matter

is initially largely confined in a thin disk of thickness less than 0.5 fm. When it is

allowed to free streaming without any interactions, there appear two high density

clumps that fly apart in the opposite directions. This feature becomes less prominent

after the inclusion of quark mean-field potentials but without a phase transition in

the quark matter, i.e., taking GV = GS, as shown in the middle row of Fig. 5.9.

With a first-order phase transition in the quark matter by setting GV = 0, the
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Figure 5.8: Rapidity and longitudinal coordinate correlations of initial partons from
AMPT for central Au+Au collisions at

√
sNN = 2.5 GeV.

lower row of Fig. 5.9 shows that the initial central disk evolves into three disks of

dense matter with one in the middle due to the strong attractions that keep some

partons to coalesce, besides the two forward and backward moving disks. As the

quark matter expands, these disks become rings and finally turn into disjointed

clumps. Furthermore, the density distribution of the quark matter in the reaction

plane (y = 0) shown in Fig. 5.10 indicates that the quark matter with a first-order

phase transition expands twice as slow as that without a first-order phase transition.

Because of the non-trivial spatial distribution even in the case of free-streaming quark

matter, the scaled density moments are no longer useful quantities to characterize
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Figure 5.9: Time evolution of density distributions in central Au+Au collisions at√
sNN = 2.5 GeV using initial conditions from the AMPT for the cases of free

streaming (upper row) and including mean fields from the SU(3) NJL model with
GV = GV (middle row) and GV = 0 (lower row).
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Figure 5.10: Density distribution of an expanding quark matter on the y = 0 plane
at t = 10 fm/c with (left window) and without (right window) a first-order phase
transition using the AMPT initial conditions.

the density fluctuations of an expanding quark matter due to its spinodal instability

or a first-order phase transition. On the other hand, the different density variations

along the beam (z) axis shown in Fig. 5.10 are expected to affect the parton rapidity

distribution. This is because partons in the middle disc, which is present only in

the case with a first-order phase transition, have a small rapidity and due to the

attractive quark interactions, they attract partons from the other two discs and slow

down their expansion in the longitudinal direction, thus restricting their rapidities to

a narrow region around the midrapidity. As shown by the solid line in Fig. 5.11, the

parton rapidity distribution in the case with a first-order phase transition is indeed

much narrower than that in the case without a first-order phase transition, shown

by the dashed line. This effect can be regarded as a possible signal of a first-order

phase transition and is worth studying in experiments.

We have also studied the dilepton invariant mass spectrum from an expand-

ing quark matter with initial conditions from the AMPT model. This is shown in
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Figure 5.11: Final rapidity distribution of quarks for the cases with (solid curve)
and without (dashed curve) a first-order phase transition from an expanding quark
matter using the AMPT initial conditions.

Fig. 5.12 by solid and dashed lines for the cases with and without a first-order phase

transition, respectively. As in the Section 5.1 using the blast-wave initial conditions,

the presence of a first-order phase transition enhances the dilepton yield as a result

of density fluctuations and longer partonic phase. However, the dilepton yield is

lower than that obtained from the calculation with the blast wave initial condition

by two orders of magnitude because there are very few antiquarks in the partonic

matter produced in heavy ion collisions at such a low energy and also because we

have not included the bremsstrahlung contribution to dilepton production from the

quark-quark scattering.
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Figure 5.12: Dilepton yield as a function of invariant massM for the cases with (solid
curve) and without (dashed curve) a first-order phase transition from an expanding
quark matter using the AMPT initial conditions.

In summary, we have introduced the AMPT initial conditions to the transport

model with mean fields. In this case, the quark matter does not expand isotropically.

Instead, the initial disc-like distribution splits into two discs, moving along the beam

axis in opposite directions for both cases of free streaming and with mean fields but

without a first-order phase transition. If the expanding quark matter undergoes a

first order-phase transition, a third disc appears in the middle and pull the other

two back towards it, resulting in a narrower rapidity distribution. Also, a first-order

phase transition leads to an enhancement in the dilepton yield in a heavy ion collision.
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6. SUMMARY

The spinodal instability is a thermodynamic feature of a first-order phase tran-

sition in a many-body system. It occurs when its pressure in some parts decreases

with increasing density. This can amplify the density fluctuations and leads to a

phase separation in the system. We have studied this phenomenon using both ana-

lytical and numerical approaches based on the NJL and PNJL models, which have

been shown to give good descriptions of the properties of baryon free quark-gluon

plasma and also predicts the existence of a first-order phase transition in baryon

rich quark matter. Analytically, we have obtained the boundaries of the spinodal

region and calculated the growth rate of unstable modes during the early stage. We

find that at the mean-field level, the boundaries of spinodal instabilities shrink with

the wave number of unstable modes. Both the vector interaction and quantum ef-

fects suppress the spinodal instability. For the former, the suppression is seen for all

unstable modes, while for the latter, it acts only those of short wavelength. Also,

we find the critical temperature Tc in the PNJL model is almost twice as large as

in the NJL model, which can be understood as a result of the reduction of degrees

of freedom below Tc due to confinement. Numerically, we have solved the Boltz-

mann equations by the test-particle method and obtained some intuitive pictures

on the phase separation for a quark matter both in a static box and undergoing

expansion. For the case of a static box, we find the growth rates extracted from the

early growth of a sinusoidal density fluctuation to agree with the analytical results.

We have also calculated the higher-order density moments of the quark matter and

found them to increase and saturate at large values after phase separation, making

them possible signals for the first-order phase transition. The skewness of the quark
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number event-by-event distribution in a small sub-volume of the quark matter is also

found to increase, but this feature disappears if the sub-volume is large. As for the

expanding quark matter, two cases have been studied. One is based on the blast-

wave initial conditions, while the other using the AMPT initial conditions, which

are disc-like. In both cases, we find that the expansions are slowed down by the

presence of a first-order phase transition. Density clumps are found to appear and

lead to an anisotropy in the momentum space, which can be characterized by the

scaled density moments and the anisotropic flows v2 and v4. An enhancement in the

dilepton yield is also observed. The expansion of the quark matter with the AMPT

initial conditions is more complex. Normally, the initial disc-like quark matter splits

into two discs, moving along the beam axis in opposite directions. If the expanding

quark matter undergoes a first order-phase transition, a third disc appears in the

middle and pulls the other two discs back towards it, resulting in a narrower rapidity

distribution.

In the future, we plan to develop a more consistent transport model, in which all

cross sections are calculated self-consistently from the NJL model, so that the tem-

perature and density dependence of the collisional effect can be taken into account.

The dilepton production through the qq → qqe+e− process will also be included,

since it could be the main contribution to the dilepton yield from a quark matter of

high baryon chemical potential. We also plan to extend the transport model using

the PNJL model, which is more realistic and agrees better with the lattice results

for quark matter low baryon chemical potential. We hope that our study will help to

understand the phase transition in the baryon-rich matter by comparing theoretical

predictions with available and future experimental data.
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[50] S. Borsányi, et al., J. High Energy Phys. 2010, 1 (2010).

[51] T. Bhattacharya, et al., Phys. Rev. Lett. 113, 082001 (2014).

[52] A. Bazavov, et al., Phys. Rev. D 90, 094503 (2014).

[53] T. Hatsuda, T. Kunihiro, Phys. Rept. 247, 221 (1994).

[54] M. Dutra, O. Lourenço, A. Delfino, T. Frederico, M. Malheiro, Phys. Rev. D

88, 114013 (2013).

76



[55] J. Randrup, Phys. Rev. C 82, 034902 (2010).

[56] J. Steinheimer, J. Randrup, Phys. Rev. C 87, 054903 (2013).

[57] O. Yilmaz, S. Ayik, F. Acar, S. Saatci, A. Gokalp, Eur. Phys. J. A 49, 33

(2013).

[58] S. Ayik, O. Yilmaz, N. Er, A. Gokalp, P. Ring, Phys. Rev. C 80, 034613 (2009).

[59] J. Rammer, Quantum field theory of non-equilibrium states (Cambridge, UK:

Univ. Pr. (2007) 536 p, 2007).

[60] P. C. Martin, J. S. Schwinger, Phys. Rev. 115, 1342 (1959).

[61] J. Randrup, Phys. Rev. C 79, 054911 (2009).

[62] M. B. Pinto, V. Koch, J. Randrup, Phys. Rev. C 86, 025203 (2012).

[63] P. Chakraborty, J. I. Kapusta, Phys. Rev. C 83, 014906 (2011).

[64] B. H. Alver, C. Gombeaud, M. Luzum, J.-Y. Ollitrault, Phys. Rev. C 82, 034913

(2010).

[65] S. Wang, et al., Phys. Rev. C 44, 1091 (1991).

[66] N. Borghini, P. M. Dinh, J.-Y. Ollitrault, Phys. Rev. C 64, 054901 (2001).

[67] T. Galatyuk, P. M. Hohler, R. Rapp, F. Seck, J. Stroth (2015).

[68] X.-N. Wang, Phys. Rev. D 43, 104 (1991).

[69] X.-N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991).

[70] M. Gyulassy, X.-N. Wang, Comput. Phys. Commun. 83, 307 (1994).

[71] T. Sjstrand, Comput. Phys. Commun. 82, 74 (1994).

[72] B. Zhang, Comput. Phys. Commun. 109, 193 (1998).

[73] B.-A. Li, C. M. Ko, Phys. Rev. C 52, 2037 (1995).

77



[74] B.-A. LI, A. T. Sustich, B. Zhang, C. M. Ko, Int. J. Mod. Phys. E 10, 267

(2001).

[75] S. P. Klevansky, A. Ogura, J. Hufner, Ann. Phys. 261, 37 (1997).

[76] J. S. Schwinger, J. Math. Phys. 2, 407 (1961).

[77] L. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964).

[78] C.-Y. Wong, Phys. Rev. C 25, 1460 (1982).

78



APPENDIX A

STATISTICS OF CONFINED QUARKS

In this appendix, we discuss in detail the statistics of confined quarks, especially

the effect of reduced color degrees of freedom below the confinement-deconfinement

temperature due to the Polyakov loop. This effect can be seen explicitly in the

expression shown below.

Since the background gauge field A4 in Eq. (1.1) is traceless, it can be diago-

nalized in the color space and rewritten as A4 = Udiag{ϕ1, ϕ2, · · · , ϕNc}U−1 with∑Nc

a=1 ϕ
a = 0. The Polyakov loop then becomes

Φ(x) =
1

Nc

Tr
[
U exp

(
iβdiag{ϕ̄1, ϕ̄2, · · · , ϕ̄Nc}

)
U−1

]
=

1

Nc

Nc∑
a=1

exp(iβϕ̄a), (A.1)

where

ϕ̄a =
1

β
P

∫ β

0

ϕa(x, τ)dτ (A.2)

is the τ averaged background field. In the confined phase, Φ = 0, which means∑Nc

a=1 exp(iβϕ̄
a) = 0, a symmetric solution is exp(iβϕ̄a) = (−1)2a/Nc . Acting the ϕ̄a

on free quarks, the quark sector of the QCD action in the S1 × E3 space is then

Sq = −
∫ β

0

dτdx3q̄a(−γ0∂τ + iγ · ∇ −m+ γ0(µ+ iϕ̄a))qa. (A.3)

ϕ̄a can thus be absorbed in the chemical potential µ by redefining µ̃a = µ+ iϕ̄a. The

quark equilibrium distribution is thus

fa
0 (E) =

1

e
E∓µ̃a

T + 1
=

1

(−1)2a/Nce
E∓µ
T + 1

. (A.4)
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Defining ξ ≡ e
E∓µ
T and za ≡ exp(iβϕ̄a) = (−1)2a/Nc , and using

∑Nc

a=1 z
n
a = Ncδn,(kNc),

where k ∈ Z, the color average of Eq. (A.4) is then

f̄0 =
1

Nc

Nc∑
a=1

1

zaξ + 1
=

1

Nc

Nc∑
a=1

∞∑
k=0

zka(−ξ)k =
∞∑
k=0

(−ξ)kNc

=
1

−(−ξ)Nc + 1
=

1

(−)Nc+1e
E−µ
T/Nc + 1

. (A.5)

The above equation shows that the color-averaged distribution of confined quarks is

same as the distribution of a free quark gas, but with the temperature being 1/Nc of

the original one. Physically, the quark degrees of freedom are reduced by 1/Nc due

to confinement. As a result, confined quarks take only 1/Nc energy from the heat

bath as free quarks would take, which makes them appear ”cold”.

Eq. (A.5) also shows that the distribution looks bosonic if Nc is even. In fact,

the statistics of confined quarks is neither fermionic nor bosonic, but Nc-anyonic.

This can be seen by applying the gauge transformation qa(τ,x) → qa′(τ,x) =

exp(−iτ ϕ̄a)qa(τ,x), so that the coupling term iq̄aγ0ϕ̄aqa in Eq. (A.3) vanishes.

Quarks are then free under the new gauge. The price paid is that the anti-periodic

boundary condition on τ axis is broken: qa(β,x) = (−1)1−2a/Ncq(0,x). The equilib-

rium distributions are thus different.

In a more general case, quarks are neither perfectly confined nor completely free,

which means the Polyakov loop |Φ| is between 0 and 1. In the case of Nc = 3, the

color-averaged quark distribution is

f̄0 =
1

3

(
1

z1ξ + 1
+

1

z2ξ + 1
+

1

z3ξ + 1

)
=

1

3

(z−1
1 + z−1

2 + z−1
3 )ξ2 + 2(z1 + z2 + z3)ξ + 3

ξ3 + (z−1
1 + z−1

2 + z−1
3 )ξ2 + (z1 + z2 + z3)ξ + 1
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=
Φ̄e

E∓µ
T/2 + 2Φe

E∓µ
T + 1

e
E∓µ
T/3 + 3Φ̄e

E∓µ
T/2 + 3Φe

E∓µ
T + 1

, (A.6)

where the second equality follows from z1z2z3 = 1, as ϕ̄ is traceless. Compared to

the Fermi-Dirac distribution at same temperature and baryon chemical potential, fΦ

is larger for low-energy states and smaller for high energy states.
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APPENDIX B

EXPRESSIONS FOR QUARK CORRELATORS AND THE SEMICLASSICAL

APPROXIMATION

B.1 Explicit form for the quark correlator

In this Appendix, we give the explicit expressions for the correlators iχ̃s used in

our calculations:

iχ̃σσ(iγ, k) = −NF

π2

∫ Λ−k

0

dp
p2

4Ep

A(p;T, µ)
[
4− 1

pk

(
γ2 + k2

2
+ 2M2

)
F1(p, γ, k)

]
−NF

π2

∫ Λ

Λ−k

dp
p2

4Ep

A(p;T, µ)
[
Λ2 − (p− k)2

kp

+
1

pk

(
γ2 + k2

2
+ 2M2

)
G1(p, γ, k,Λ)

]
, (B.1)

iχ̃0
σj(iγ, k) = −NFM

π2

∫ Λ

Λ−k

dp
p

2k
B(p;T, µ)

[
− G1(p, γ, k,Λ) +

γ

Ep

G2(p, γ, k,Λ)
]

−NFM

π2

∫ Λ−k

0

dp
p

2k
B(p;T, µ)

[
F1(p, γ, k) +

γ

Ep

F2(p, γ, k)

]
, (B.2)

iχ̃3
σj(iγ, k) = −NFMi

π2

∫ Λ−k

0

dp
p

2Ep

B(p;T, µ)
[
− γEp

k2
F1(p, γ, k) +

γ2

k2
F2(p, γ, k)

]
− iNFMγ2

π2k2

∫ Λ

Λ−k

dp
p

2Ep

B(p;T, µ)
[
Ep

γ
G1(p, γ, k,Λ) + G2(p, γ, k,Λ)

]
,

(B.3)

iχ̃00
jj (iγ, k) =

NF

π2

∫ Λ−k

0

dp
p2

4Ep

A(p;T, µ)

×
[
4E2

p − γ2 − k2

2kp
F1(p, γ, k) + 4− 4Epγ

kp
F2(p, γ, k)

]
+
NF

π2

∫ Λ

Λ−k

dp
p2

4Ep

A(p;T, µ)
[
−

4E2
p − γ2 − k2

2kp
G1(p, γ, k,Λ)

+
Λ2 − (p− k)2

kp
− 4Epγ

kp
G2(p, γ, k,Λ)

]
, (B.4)
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iχ̃03
jj (iγ, k) =

NF i

π2

∫ Λ−k

0

dp
p2

2k
A(p;T, µ)

×
[
γ(4E2

p − γ2 − k2)
4Epkp

F1(p, γ, k) +
2γ

Ep

− 2γ2

kp
F2(p, γ, k)

]
+
NF i

π2

∫ Λ

Λ−k

dp
p2

2k
A(p;T, µ)

[
−
γ(4E2

p − γ2 − k2)
4Epkp

G1(p, γ, k,Λ)

+
γ

Ep

Λ2 − (p− k)2

2kp
− 2γ2

kp
G2(p, γ, k,Λ)

]
, (B.5)

iχ̃33
jj (iγ, k) = −NF

π2

∫ Λ−k

0

dp
p2

2Ep

A(p;T, µ)

×
[
γ2(4E2

p − γ2 − k2)
4pk3

F1(p, γ, k) +
2γ2

k2
− 2γ3Ep

k3p
F2(p, γ, k)

]
−NF

π2

∫ Λ

Λ−k

dp
p2

2Ep

A(p;T, µ)
[
−
γ2(4E2

p − γ2 − k2)
4pk3

G1(p, γ, k,Λ)

+
γ2

k2
Λ2 − (p− k)2

2kp
− 2γ3Ep

k3p
G2(p, γ, k,Λ)

]
, (B.6)

where

A(p;T, µ) = 3−
3∑

i=1

f0(p;T, µ̃i)−
3∑

i=1

f0(p;T,−µ̃i), (B.7)

B(p;T, µ) =
3∑

i=1

f0(p;T, µ̃i)−
3∑

i=1

f0(p;T,−µ̃i), (B.8)

F1(p, γ, k) = ln

∣∣∣∣(γ2 + k2 + 2kp)2 + 4γ2E2
p

(γ2 + k2 − 2kp)2 + 4γ2E2
p

∣∣∣∣ , (B.9)

F2(p, γ, k) = arctan

(
2γEp

γ2 + k2 − 2kp

)
− arctan

(
2γEp

γ2 + k2 + 2kp

)
, (B.10)

G1(p, γ, k,Λ) = ln

∣∣∣∣(γ2 + k2 − 2kp)2 + 4γ2E2
p

(Λ2 + γ2 − p2)2 + 4γ2E2
p

∣∣∣∣ , (B.11)

G2(p, γ, k,Λ) = arctan

(
2γEp

γ2 + k2 − 2kp

)
− arctan

(
2γEp

Λ2 + γ2 − p2

)
(B.12)

with µ̃1,2 = µ−2GV j
0±iϕ3 and µ̃3 = µ−2GV j

0 are the effective chemical potentials.

83



B.2 Semiclassical approximation to the quark correlator

In the classical limit, namely ~ → 0, the correlators χ̃s can be simplified. Ex-

panding each term to the order of ~ by using Ep+~k = Ep + ~k · p/Ep +O(~2) and

f(Ep+~k ± µ̃a) = f(Ep ± µ̃a) + ~k · ∇pf(Ep ± µ̃a) +O(~2), we then have

f0(Ep − µ̃a)− f0(Ep+~k − µ̃a)

Ep+~k − Ep − ~ω − i0+
=

k · ∇pf0(Ep − µ̃a)

ω − p · k/Ep

+O(~),

f0(Ep+~k + µ̃a)− f0(Ep + µ̃a)

Ep − Ep+~k − ~ω − i0+
=
−k · ∇pf0(Ep + µ̃a)

ω + p · k/Ep

+O(~),

f0(Ep+~k + µ̃a) + f0(Ep − µ̃a)− 1

−Ep − Ep+~k − ~ω − i0+
=

1− f0(Ep + µ̃a)− f0(Ep − µ̃a)

2Ep

+O(~),

1− f0(Ep+~k − µ̃a)− f0(Ep + µ̃a)

Ep + Ep+~k − ~ω − i0+
=

1− f0(Ep + µ̃a)− f0(Ep − µ̃a)

2Ep

+O(~),

(B.13)

and

Tr[∆+(p)∆+(~k+ p)] = Tr[∆−(p)∆−(~k+ p)] = 8
M2

E2
p

+O(~2),

Tr[∆−(p)∆+(~k+ p)] = Tr[∆+(p)∆−(~k+ p)] = 8
p2

E2
p

+O(~),

Tr[∆+(p)γ
0∆+(~k+ p)] = −Tr[∆−(p)γ

0∆−(~k+ p)] = 8
M

Ep

+O(~),

Tr[∆−(p)γ
0∆+(~k+ p)] = −Tr[∆+(p)γ

0∆−(~k+ p)] = O(~),

Tr[∆+(p)γ
3∆+(~k+ p)] = Tr[∆−(p)γ

3∆−(~k+ p)] = 8
Mp · k̂
E2

p

+O(~),

Tr[∆−(p)γ
3∆+(~k+ p)] = Tr[∆+(p)γ

3∆−(~k+ p)] = 8
Mp · k̂
E2

p

+O(~),

Tr[γ0∆+(p)γ
0∆+(~k+ p)] = Tr[γ0∆−(p)γ

0∆−(~k+ p)] = 8 +O(~2),

Tr[γ0∆−(p)γ
0∆+(~k+ p)] = Tr[γ0∆+(p)γ

0∆−(~k+ p)] = O(~),

Tr[γ3∆+(p)γ
3∆+(~k+ p)] = Tr[γ3∆−(p)γ

3∆−(~k+ p)] = 8
(p · k̂)2

E2
p

+O(~2),
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Tr[γ3∆−(p)γ
3∆+(~k+ p)] = Tr[γ3∆+(p)γ

3∆−(~k+ p)]

= 8

(
(p · k̂)2

E2
p

− 1

)
+O(~),

Tr[γ0∆+(p)γ
3∆+(~k+ p)] = −Tr[γ3∆−(p)γ

3∆−(~k+ p)] = 8
p · k̂
Ep

+O(~2),

Tr[γ0∆−(p)γ
3∆+(~k+ p)] = −Tr[γ3∆+(p)γ

3∆−(~k+ p)]

= −8p · k̂
Ep

+O(~). (B.14)

Using the above results, the correlators in the classical limit are

iχ̃σσ(ω,k) ≈ 2
3∑

a=1

∫
|p|<Λ

d3p

(2π)3

{ p2

E3
p

(1− f0(Ep + µ̃a)− f0(Ep − µ̃a))

+
M2

E2
p

k · ∇p(f0(Ep − µ̃a) + f0(Ep + µ̃a))

ω − p · k/Ep

}
,

iχ̃0
σj(ω,k) ≈ 2

3∑
a=1

∫
|p|<Λ

d3p

(2π)3
M

Ep

k · ∇p(f0(Ep − µ̃a)− f0(Ep + µ̃a))

ω − p · k/Ep

,

iχ̃z
σj(ω,k) ≈ 2

3∑
a=1

∫
|p|<Λ

d3p

(2π)3

(
Mp · k̂
E2

p

)
k · ∇p(f0(Ep − µ̃a) + f0(Ep + µ̃a))

ω − p · k/Ep

,

iχ̃00
jj (ω,k) ≈ 2

3∑
a=1

∫
|p|<Λ

d3p

(2π)3
k · ∇p(f0(Ep − µ̃a) + f0(Ep + µ̃a))

ω − p · k/Ep

,

iχ̃0z
jj (ω,k) ≈ 2

3∑
a=1

∫
|p|<Λ

d3p

(2π)3

(
p · k̂
Ep

)
k · ∇p(f0(Ep − µ̃a) + f0(Ep + µ̃a))

ω − p · k/Ep

,

iχ̃zz
jj (ω,k) ≈ 2

3∑
a=1

∫
|p|<Λ

d3p

(2π)3

{((p · k̂)2

E2
p

− 1

)
(1− f0(Ep + µ̃a)− f0(Ep − µ̃a))

+

(
(p · k̂)2

E2
p

)
k · ∇p(f0(Ep − µ̃a) + f0(Ep + µ̃a))

ω − p · k/Ep

}
. (B.15)

Comparing above χ̃s with Eqs. (3.49) and (3.50), we find that they are the same as

those obtained by solving the linearized Boltzmann equations without the collisional

term. Since Eq. (B.15) shows that all correlators in the classical limit are functions

of ω/k, the solution to Eq. (3.18) in the classical limit should be ωk = Ck, where C
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is some constant. Furthermore, since ~ always comes with k and ω, the growth rates

calculated in both quantum and classical case should agree in the long wavelength

(small k) limit, although the quantum correction is significant in the short wavelength

(large k) limit.
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APPENDIX C

TRANSPORT EQUATIONS

C.1 Derivation of transport equations

The transport equations based on the SU(2) NJL model without the vector in-

teraction were previously derived in Ref. [75] from the non-equilibrium Green’s func-

tions. In this appendix, the same method is used to derive the transport equations

for the SU(3) case with the vector interaction for quarks and antiquarks. Since the

collisional terms in this case are of the same form as in the SU(2) case, only the

mean-field or Vlasov part of the transport equations is derived to take into account

the effect due to the additional quark vector interaction that leads to a Lorentz-like

force.

Figure C.1: The τ path, on which the non-equilibrium Green’s function is defined, is
composed of a forward path directing to the future and a backward path directing to
the past, leading to the path-dependent times (t,−) and (t,+) on these two paths,
respectively.

The dynamics of a quark in a quark matter can be described by its non-equilibrium

Green’s function G(1, 1′), where 1 = (τ1,x1, s1, c1, · · ·) denotes the time, position,

spin, color, and other quantum numbers of the quark, defined on a path-dependent
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time as shown in Fig. C.1 with the forward path directing to the future and the

backward path directing to the past. The Green’s function then satisfies the Dyson

equations [59]:

G(1, 1′) = G0(1, 1
′) +G0(1, 2)⊗ Σ(2, 3)⊗G(3, 1′), (C.1)

G(1, 1′) = G0(1, 1
′) +G(1, 2)⊗ Σ(2, 3)⊗G0(3, 1

′). (C.2)

Although the above two equations are the same in the equilibrium case, they become

different in the non-equilibrium case and their difference describes how the system

deviates from equilibrium. Labeling the path-dependent times by (t,−) and (t,+)

for the time on the forward and backward paths, respectively, the Green’s functions

can then be decomposed into 2 × 2 matrices defined in the (−,+) space, which is

called the Schwinger-Keldysh space [76, 77]:

G =

 GF G>

G< GAF

 , (C.3)

where

G>(1, 1
′) ≡ ⟨q(1)q̄(1′)⟩,

G<(1, 1
′) ≡ −⟨q̄(1′)q(1)⟩,

GF (1, 1
′) ≡ θ(t′ − t)G>(1, 1

′) + θ(t− t′)G<(1, 1
′),

GAF (1, 1
′) ≡ θ(t′ − t)G<(1, 1

′) + θ(t− t′)G>(1, 1
′), (C.4)

with 1 = (t1,x1, s1, c1, · · ·), since the additional path information is expressed through

the indices in the Schwinger-Keldysh space.
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The free Green’s function G0 in Eqs.(C.1) and (C.2) satisfies the relations

Ĝ−1
0 (1)G0(1, 1

′) = G0(1, 1
′)Ĝ′−1

0 (1′) = iδ(1− 1′)τ3, (C.5)

with

Ĝ−1
0 (1) ≡ i∂/1 −m0 and Ĝ′−1

0 (1′) ≡ −i←−∂/ 1′ −m0, (C.6)

where
←−
∂ means that the derivative acts on the left. The third Pauli matrix τ3 in Eq.

(C.5) is defined in the Schwinger-Keldysh space. It appears because t and t′ in the

θ step functions in GAF have the opposite order compared to those in GF , resulting

in an opposite sign in front of δ(t− t′) after ∂t or ∂t′ acts on the θ functions in GAF

compared with that in GF .

Multiply Ĝ−1
0 and Ĝ′−1

0 on Eq. (C.1) and (C.2) respectively, we have

Ĝ−1
0 (1)G(1, 1′) = iδ(1− 1′)τ3 + iτ3Σ(1, 2)⊗G(2, 1′), (C.7)

G(1, 1′)Ĝ′−1

0 (1′) = iδ(1− 1′)τ3 + iG(1, 2)⊗ Σ(2, 1′)τ3. (C.8)

For the self energy Σ(1, 2) in above equations, we show explicitly in the following

the contribution from the Hartree term for the u quark for illustrations as it is

straightforward to extend to the Fock term and other quarks. Including the diagrams

shown in Fig. C.2, the Hartree self energy can be expressed as

Σu(1, 2) = iδ(1− 2)

 V u
F (1) 0

0 −V u
AF (1)

 , (C.9)
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Figure C.2: Dyson equations for the u quark. Only Hartree diagrams are included
in the self energy.
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where

V u
F (1) = −2GSTrG

u
F (1, 1)− 2KTrGd

F (1, 1)TrG
s
F (1, 1)

+2GV γ
µ
∑

q=u,d,s

Tr[Gq
F (1, 1)γµ],

V u
AF (1) = −2GSTrG

u
AF (1, 1)− 2KTrGd

AF (1, 1)TrG
s
AF (1, 1)

+2GV γ
µ
∑

q=u,d,s

Tr[Gq
AF (1, 1)γµ]. (C.10)

We note that the fermion loop contributes an additional minus sign in above equa-

tions. The self energy is diagonalized in the Schwinger-Keldysh space, since the

off-diagonal terms must connect the two points with different path indices, which is

excluded by δ(1 − 2). The negative sign in front of V u
AF comes from the backward

integration path:

∫
C

dτV (τ)G =

∫ ∞

0

dt (VF (t)G−± − VAF (t)G+±) , (C.11)

where the subscripts + and − labels the components in the Schwinger-Keldysh space.

Introducing the Keldysh Green’s Function GK = (G> +G<)/2 = (GF +GAF )/2,

Eq.(C.7) and Eq.(C.8) then become

(i∂/1 −m0 + V u
K(1))G

u
K(1, 1

′) = 0,

Gu
K(1, 1

′)
(
−i←−∂/ 1′ −m0 + V u

K(1
′)
)

= 0, (C.12)

where V u
K can be decomposed into a scalar and a vector part:

V u
K(x) ≡ (V u

F (x) + V u
AF (x))/2 = V S(x) + V V

µ (x)γµ, (C.13)
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leading thus to an effective or constituent mass for both the u and anti-u quark:

M = m0 − V S. (C.14)

Taking the difference between Eq.(C.12) and Eq.(C.12) results in

i∂/1G
u
K(1, 1

′) + iGu
K(1, 1

′)
←−
∂/ 1′ + V u

K(1)G
u
K(1, 1

′)−Gu
K(1, 1

′)V u
K(1

′) = 0. (C.15)

Introducing the mixed or Wigner coordinates X ≡ (x1+x1′)/2 and x ≡ (x1−x1′),

and Fourier transforming all the functions with respect to the relative coordinates x

according to

G̃u
K(X, p) ≡

∫
d4xeipxGu

K(X +
x

2
, X − x

2
), Ṽ u

K(p) ≡
∫
d4xeipxV u

K(x), (C.16)

we can rewrite Eq.(C.15) in the (X, p) representation as

i

2
∂Xµ{γµ, G̃u

K(X, p)}+ [p/, G̃u
K(X, p)]

+

∫
d4l

(2π)4

(
Ṽ u
K(l)G̃

u
K(X, p−

l

2
)− G̃u

K(X, p+
l

2
)Ṽ u

K(l)

)
e−ilX = 0. (C.17)

Taylor expanding G̃u
K(X, p± l/2) at l = 0 and truncating to terms of order O(l2) as

follows:

G̃u
K(X, p± l/2) ≈ G̃u

K(X, p)±
lµ
2
∂pµG̃

u
K(X, p) +O(l2), (C.18)

we obtain from Eq. (C.17)

i

2
∂Xµ{γµ, G̃u

K(X, p)}+ [p/+ V u(X), G̃u
K(X, p)]−

i

2
{∂XµV u(X), ∂pµG̃

u
K(X, p)} = 0.

(C.19)
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To proceed further, we make the quasi-particle approximation by Fourier expand-

ing the quark and antiquark fields as follows:

q(x) =
∑
s

∫
d3k

2Ek(2π)3

(
bs(k)us(k)e

−iE−
k−

t+ik−·x
+ (d†s(k)vs(k)e

iE+
k+

t−ik+·x
)
,

q̄(x) =
∑
s

∫
d3k

2Ek(2π)3

(
b†s(k)ūs(k)e

iE−
k−

t−ik−·x
+ (ds(k)v̄s(k)e

−iE+
k+

t+ik+·x
)
,

(C.20)

where k± ≡ k ±VV and E±
k ≡ Ek ± V V

0 , b and d are the annihilation operators of

the dressed (or constituent) quark and anti-quark, respectively, and u and v are the

corresponding Dirac spinors. The quark Green’s function is then

G̃>(X, p) =

∫
d4xeipx⟨q(X +

x

2
)q̄(X − x

2
)⟩

=
∑
s,s′

∫
d3k

2Ek(2π)3
d3k′

2Ek′(2π)3
⟨bs(k)b†s′(k

′)⟩us(k)ūs′(k′)e
−i(Ek−−Ek′− )T

ei(k−k′)·X

×
∫
d4xe

i(2p0+2V V
0 −Ek−−Ek′− )x0/2

ei(−2p+k−+k′−)·x/2

+
∑
s,s′

∫
d3k

2Ek(2π)3
d3k′

2Ek′(2π)3
⟨d†s(k)ds′(k′)⟩vs(k)v̄s′(k′)e

−i(Ek+
−Ek′+ )T

ei(k−k′)·X

×
∫
d4xe

i(2p0+2V V
0 +Ek+

+Ek′+ )x0/2
ei(−2p−k+−k′

+)·x/2

=
∑
s,s′

∫
d3k

2Ek(2π)2
1

2E2p+−k

⟨bs(k)b†s′(2p
+ − k)⟩us(k)ūs′(2p+ − k)

×e−i(Ek−−E2p−k− )T e2i(k−p+)·Xδ(p0 + V V
0 − Ek−/2− E2p−k−/2)

+
∑
s,s′

∫
d3k

2Ek(2π)2
1

2E−2p+−k

⟨d†s(k)ds′(−2p+ − k)⟩vs(k)v̄s′(−2p+ − k)

×e−i(Ek+
−E−2p−k+

)T e2i(k+p+)·Xδ(p0 + V V
0 + Ek+/2 + E−2p−k+/2), (C.21)
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where p± ≡ p±VV . In terms of the quark and antiquark distributions,

⟨bs(k)b†s′(2p
+ − k)⟩ = (2π)32Ep+δ3(2p+ − 2k)δss′(1− fq(X,p)),

⟨d†s(k)ds′(−2p+ − k)⟩ = (2π)32E−p+δ3(2p+ + 2k)δss′fq̄(X,−p),

(C.22)

the Green’s function G̃>(X, p) in Eq.(C.21) can be written in a simple form as

G̃>(X, p) =
π

Ep+

(1− fq(X,p))
∑
s

us(p
+)ūs(p

+)δ(p0 + V V
0 − Ep+)

+
π

E−p+

fq̄(X,−p)
∑
s

vs(−p+)v̄s(−p+)δ(p0 + V V
0 + E−p+)

= π
(
γ0 +

p+i γ
i

Ep+

+
M

Ep+

)
δ(p0 + V V

0 − Ep+)(1− fq(X,p))

+π
(
γ0 − p+i γ

i

Ep+

− M

Ep+

)
δ(p0 + V V

0 + E−p+)fq̄(X,−p). (C.23)

Similarly, we have for other Green’s fucntions

G̃<(X, p) = −π
(
γ0 +

p+i γ
i

Ep+

+
M

Ep+

)
δ(p0 + V V

0 − Ep+)fq(X,p)

−π
(
γ0 − p+i γ

i

Ep+

− M

Ep+

)
δ(p0 + V V

0 + E−p+)(1− fq̄(X,−p)), (C.24)

and

G̃K(X, p) = π
(
γ0 +

p+i γ
i

Ep+

+
M

Ep+

)
δ(p0 + V V

0 − Ep+)(
1

2
− fq(X,p))

−π
(
γ0 − p+i γ

i

Ep+

− M

Ep+

)
δ(p0 + V V

0 + E−p+)(
1

2
− fq̄(X,−p)). (C.25)

Substituting G̃u
K in Eq. (C.19), taking the trace, and integrating over p0 from 0
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to infinity, we obtain the following Vlasov equation for the u quark:

∂X0fu(X,p) +
pi+

Ep+

∂Xifu(X,p)− ∂XiV S(X)
M

Ep+

∂pifu(X,p)

−∂XiV V
0 (X)∂pifu(X,p)− ∂XiV V

j (X)
pj+

Ep+

∂pifu(X,p) = 0. (C.26)

If the integration is over p0 from −∞ to 0, we then obtain the following Vlasov

equation for the anti-u quark:

∂X0fū(X,p) +
pi−

Ep−
∂Xifū(X,p)− ∂XiV S(X)

M

Ep−
∂pifū(X,p)

+∂XiV V
0 (X)∂pifū(X,p) + ∂XiV V

j (X)
pj−

Ep−
∂pifū(X,p) = 0. (C.27)

The scalar mean field V S and the vector mean field V V in the above equation are

given by

V S(x) = −2GSTrG
u
K(x, x)−K(TrGd

>(x, x)TrG
s
>(x, x) + TrGd

<(x, x)TrG
s
<(x, x)),

V V
µ (x) = 2GV

∑
q=u,d,s

Tr[Gq
K(x, x)γµ], (C.28)

where

trGq
K(x, x) =

∫
d4p

(2π)4
trG̃q

K(x, p) = 2

∫
d3p

(2π)3
M

Ep

(1− fq(x,p)− fq̄(x,p))

= trGq
>(x, x) = trGq

<(x, x),

tr[Gq
K(x, x)γ0] =

∫
d4p

(2π)4
tr[G̃q

K(x, p)γ0] = −2
∫

d3p

(2π)3
(fq(x,p)− fq̄(x,p)) ,

tr[Gq
K(x, x)γi] =

∫
d4p

(2π)4
tr[G̃q

K(x, p)γi] = −2
∫

d3p

(2π)3
pi
Ep

(fq(x,p)− fq̄(x,p)) ,

(C.29)
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can be interpreted as the negative quark condensate −⟨q̄q⟩, density ρ0, and current

density j, respectively, and the factor 2 in above equations is due to the spin degen-

eracy of quark and antiquark. The scalar and vector mean fields can thus be written

as

V S(x) = 2GS⟨ūu⟩+ 2K⟨d̄d⟩⟨s̄s⟩,

V V
µ (x) = −2GV jµ. (C.30)

Similar derivations can be used for d and s quarks and their antiquarks, and their

transport equations are similar to those for the u and ū quarks.

C.2 Test particle method on solving the Boltzmann equations

For large amplitude density fluctuations or their long time behavior, one needs to

solve the time evolution of the density matrix via either the time-dependent Hatree-

Fock (TDHF) or the Dyson-Schwinger equation. In this work, we solve instead the

classical Boltzmann equation by using the test particle method. In this approach,

the one particle phase-space distribution function f(x,p) is replaced by N classical

particles, i.e., f(x,p, t) =
∑

i δ(x− xi(t))δ(p− pi(t))/N [78]. Since

∂tf(x,p, t) = −
N∑
i=1

(ẋi · ∇x + ṗi · ∇p)f(x,p, t), (C.31)

we obtain from Eqs. (C.26) and (C.27)

0 =
N∑
i=1

((
− ẋi +

p+
i

Ep+
i

)
· ∇x +

(
− ṗi +∇xV

S(xi)
M

Ep+
i

+∇xV
V
0 (xi) +∇xV

V
j (xi)

pj+i
Ep+

i

)
· ∇p

)
1

N
δ(x− xi(t))δ(p− pi(t)) (C.32)
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for quarks, and

0 =
N∑
i=1

((
− ẋi +

p−
i

Ep−
i

)
· ∇x +

(
− ṗi +∇xV

S(xi)
M

Ep−
i

−∇xV
V
0 (xi)−∇xV

V
j (xi)

pj−i
Ep−

i

)
· ∇p

)
1

N
δ(x− xi(t))δ(p− pi(t)) (C.33)

for antiquarks, where the index i denotes different particles, while the index j refers to

the spatial components of the vector mean field V and momentum p. The equations

of motion are thus

ẋi =
p+
i

Ep+
i

,

ṗi = ∇V S(xi)
M

Ep+
i

+∇V V
0 (xi) +∇V V

j (xi)
pj+i
Ep+

i

(C.34)

for quarks and

ẋi =
p−
i

Ep−
i

,

ṗi = ∇V S(xi)
M

Ep−
i

−∇V V
0 (xi)−∇V V

j (xi)
pj−i
Ep−

i

(C.35)

for anti-quarks. The momentum part of Eqs. (C.34) and (C.35) can be rewritten as

ṗ± = ∇V S(x)
M

Ep

∓ ẋ×B± E, (C.36)

where B = ∇×VV is the strong magnetic field and E = ∂tV
V +∇V S is the strong

electric field, and in the∓, the − sign is for quark and the + sign is for antiquark.

For the mean-field potentials in the above equations of motion, they are functions
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of densities and are calculated from the latter by dividing the space into 3-dimensional

grids and then counting the number of particles in a grid. For example, the scalar

potential V S
i = 2GS⟨q̄q⟩i+2K⟨q̄q⟩l⟨q̄q⟩k is calculated by summing up the ratioMi/Ei

of particles in each grid and the vector potential V V µ(x) = −2GV j
µ is calculated

from the sum of bpµi /Ei of these particles with their baryon charge denoted by b.

In the above, the subscripts i, l, and k with i ̸= l ̸= k label the flavors. Since the

quark mass is given by M = m0 − V S, it is determined self-consistently. To ensure

the accuracy in the calculation of densities, many test particles are usually used.

However, the finite grid size used in the calculation leads to a grid effect for zero-

range interactions as in the NJL and PNJL model. In Appendix D, we discuss this

effect and show that it suppresses the spinodal instability compared to that based

on the analytic solution of the linearized Vlasov equation.

For the collisional terms in the transport model, they are usually treated by using

the geometric method based on the two conditions of whether the impact parameter

between two colliding particles is smaller than
√
σ/π, where σ is the total scattering

cross section of the two particles, and if the two colliding particles pass through

each other at the next time step in the evolution of the system. In Appendix D, we

describe in detail the treatment of the collision term, including the methods used to

ensure Lorentz invariant and to take into account the Pauli-blocking effect.
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APPENDIX D

NUMERICAL IMPLEMENTATIONS OF THE TRANSPORT MODEL

D.1 Finite grid size effects

Counting partons in a grid of finite size in evaluating the mean fields effectively

allows the partons in the grid interact with each other, thus modifying the contact

interactions in the NJL model to finite-range ones. To study this effect, we need to

calculate the probability for two partons in the same grid to have a separation ∆x.

Given a parton located at x ∈ [0, a] in a 1-dimensional grid [0, a], the probability to

find another parton located at x+∆x in the same grid is

P (∆x) =
1

a

∫
dxθ(x)θ(a− x)θ(x+∆x)θ(a−∆x− x) = tri

(
∆x

a

)
, (D.1)

where

tri(x)
∆
= max(0, 1− |x|). (D.2)

The above expression can be straightforwardly generalized to the 3-dimensional case

to give

P (∆x) =
∏
i

tri

(
∆xi

ai

)
, (D.3)

where {a1, a2, a3} is the grid length. The interaction between the two partons at x

and y is then replaced by

GSδ
3(x− y) → GS∏

i a
i

∏
i

tri

(
xi − yi

ai

)
,

Kδ3(x− y) → K∏
i a

i

∏
i

tri

(
xi − yi

ai

)
. (D.4)
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Transforming Eq. (D.4) from x-space to k-space gives

GS → G̃S = GS

∏
i

2 cos(aiki)− 2

aiki
,

K → K̃ = K
∏
i

2 cos(aiki)− 2

aiki
. (D.5)

Note that in the limit that aiki → 0 for all the i, G̃S → GS and K̃ → K, which

means the modification does not affect the long wavelength modes. Replacing GS

Figure D.1: Growth rate of unstable modes in the presence of finite grid effect with
(dashed line) and without (solid line) the collisional term for isotropic parton scatting
cross section of 3 mb in a quark matter of net quark density 0.7 fm−3 and temperature
45 MeV. The grid size is taken to be 2/3 fm.

and K in Eq.(3.51) with G̃S and K̃, respectively, and solving the resulting equation,

we obtain the modified dispersion relation, and they are shown in Fig. D.1 for a grid

size ai = 2/3 fm. As expected, the growth rate Γk is not much affected in the small k
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region but is significantly suppressed in the large k region. The finite grid size effect

is thus opposite to that due to collisions but similar to the quantum effect shown in

the Section 3. Using a finite grid size essentially allows partons to interact at finite

separation, resulting in an effective finite-range interaction.

Figure D.2: Spinodal instability boundary for different values of unstable mode wave
number after including both the collisional effect using an isotropic cross section of
3 mb and the effect due to a finite grid size of 2/3 fm.

Since unstable modes of long wavelength are affected by the collisional effect

and those of shorter wavelength are affected by the finite grid size effect, including

these effects makes the spinodal instability region of all unstable modes smaller than

that obtained based on the consideration of thermodynamic instability. In Fig. D.2,

we show the spinodal instability boundaries for unstable modes of wave numbers
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k = 0.01 fm−1, k = 0.1 fm−1, k = 0.2 fm−1, and k = 0.3 fm−1, given by the dotted,

dashed, solid and dot-dashed lines, respectively. The critical temperature Tc reaches

a maximum value of about 60 MeV for k = 0.2 fm−1 and becomes smaller for unstable

modes with either larger or smaller k, compared to the critical temperature of 70

MeV in the thermodynamic limit.

D.2 Two-body collisions and the Pauli effect

Two issues need to be considered in the treatment of the collision term in the

Boltzmann equations. First, cross sections are not Lorentz invariant quantities. Since

dσ =
1

4EAEB|vA − vB|

(∏
f

d3pf

2Ef (2π)3

)
|M(pA, pB → {pf})|2(2π)4δ4(pA+pB−

∑
pf ),

(D.6)

with A and B denoting two colliding particles, and f denoting the final states, the

cross section transforms as (EAEB|vA−vB|)−1. For pA and pB parallel to each other,

such as in their center of mass frame, boosting along the direction of pA or pB does

not change the cross section. However, the momenta of two colliding particles in

the lab frame are generally not parallel, we need to determine their scattering cross

section from that in their center of mass frame according to

σlab = σCM

√
(s− (mA +mB)2)(s− (mA −mB)2)

2EAEB|vA − vB|
, (D.7)

where s = (pA + pB)
2 is the square of their invariant mass.

Another effect need to be taken into account in the transport model is the Pauli

blocking effect, which prevents two fermions from occupying the same quantum state.

Here, we estimate the importance of this effect, introduce an algorithm to include

this effect, and check the reliability of the algorithm.
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The collision rate of a gas of identical particles in a fixed volume is given by

R =
1

2

∫
d3p1

2E1

d3p2

2E2

d3p3

2E3

d3p4

2E4

1

(2π)8
|M|2δ4(p1+p2−p3−p4)f1f2(1−f3)(1−f4), (D.8)

where the factor 1/2 is for collisions of identical particles. In terms of the center

of mass and relative momenta of initial particles P and p as well as those of final

particles P′ and p′, defined by p1 = P + p/2, p2 = P − p/2, p3 = P′ + p′/2,

p4 = P′ − p′/2 and using the transformation measures d3p1d
3p2 = d3Pd3p and

d3p3d
3p4 = d3P′d3p′, the integral over P′ can be eliminated by the δ function,

δ3(p1 + p2 − p3 − p4) = δ3(2P− 2P′) = δ3(P−P′)/8. (D.9)

Expressing the energies in terms of P, p, and p′ according to

E1 =
√
P 2 + p2/4 + xPp,

E2 =
√
P 2 + p2/4− xPp,

E3 =
√
P 2 + p′2/4 + x′Pp,

E4 =
√
P 2 + p′2/4− x′Pp′, (D.10)

where P , p, and p′ denoting the magnitude of P, p, and p′, respectively, and x and

x′ denoting cos(P,p) and cos(P,p′), respectively, the collision rate can be rewritten

as

R =
1

2

∫
dPP 2dpp

2dxdϕ

4E1E2

dp′p′2dx′dϕ′

4E3E4

4π

8(2π)8
|M|2δ(E1+E2−E3−E4)f1f2(1−f3)(1−f4).

(D.11)

For scatterings that are isotropic, the invariant amplitudeM is independent of x, ϕ,
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x′, and ϕ′, and the collision rate can be further simplified to

R =
1

2

∫
dPP 2dpp

2dx

4E1E2

dp′p′2dx′

4E3E4

2

8(2π)5
|M|2δ(E1+E2−E3−E4)f1f2(1−f3)(1−f4).

(D.12)

The remaining Dirac δ function can be written as

δ(E1 + E2 − E3 − E4) =

∫
dEδ(E1 + E2 − E)δ(E − E3 − E4), (D.13)

with

E = |p1|+ |p2| > |p1 + p2| = 2P. (D.14)

Since

δ(E1 + E2 − E) = δ

(
p− E

√
E2 − 4P 2

E2 − 4x2P 2

)
1

|∂(E1 + E2 − E)/∂p|

= δ

(
p− E

√
E2 − 4P 2

E2 − 4x2P 2

)
4E1E2E

p(E2 − 4x2P 2)
,

δ(E3 + E4 − E) = δ

(
p− E

√
E2 − 4P 2

E2 − 4x′2P 2

)
4E3E4E

p(E2 − 4x′2P 2)
, (D.15)

we can eliminate the integrations over p and p′ and obtain

R =
1

2

∫
dEdPdxdx′

2

8(2π)5
|M|2 E4P 2s

(E2 − 4x2P 2)3/2(E2 − 4x′2P 2)3/2
f1f2(1−f3)(1−f4),

(D.16)

where s ≡ (p1 + p2)
2 = (E2 − 4P 2). The invariant scattering amplitude M in the

above equation can be expressed in terms of the cross section via the following well

known relation:

|M|2 = 64π2s
dσ

dΩCM

= 16πsσCM, (D.17)
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where σCM is the cross section evaluated in the center of mass frame and the second

equality follows from the assumption that the scattering cross section is isotropic.

The collision rate is therefore given by

R =
1

2

∫
dEdPdxdx′

2

(2π)4
σCM

E4P 2(E2 − 4P 2)2

(E2 − 4x2P 2)3/2(E2 − 4x′2P 2)3/2
f1f2(1−f3)(1−f4).

(D.18)

For systems in thermal equilibrium, all fs in Eq. (D.18) are Fermi-Dirac distri-

bution functions, which have the property

(1− f3)(1− f4) = f3f4e
E/T z−2, (D.19)

with z = eµ/T . Defining the scaled energy ξ = E/T and momentum η = 2P/T , Eq.

(D.18) can be rewritten as

R =
1

2

T 6

4(2π)4

∫ ∞

0

dη

∫ ∞

η

dξσCMη
2ξ4(ξ2 − η2)2F 2(ξ, η)eξz−2, (D.20)

where

F (ξ, η) =

∫ 1

−1

dx(ξ2 − x2η2)−3/2f(ξ, η, x)f(ξ, η,−x), (D.21)

and

f(ξ, η, x) =
1

z−1 exp(1
2
(ξ + xη

√
ξ2−η2

ξ2−x2η2
)) + 1

. (D.22)

In terms of the particle density

n = −T
3

π2
Li3(−z), (D.23)

where Li3 is the polynomial logarithm function, the collision rate can be simply
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expressed as

R =
1

2
⟨σv⟩Fn2, (D.24)

with

⟨σv⟩F =
1

64Li23(−z)

∫ ∞

0

dη

∫ ∞

η

dξσCMη
2ξ4(ξ2 − η2)2F 2(ξ, η)eξz−2. (D.25)

We note that the cross section σ can be taken out of the integral if it has a constant

value.

For comparison, we have also considered the collision rate of classical particles,

which are not affected by the Pauli blocking effect. The rate can be obtained from Eq.

(D.18) by dropping the factor (1− f3)(1− f4) and using the Boltzmann distribution

for f1 and f2, i.e., f1f2 = z2e−E/T . In this case, the collision rate becomes

RB =
1

2

∫
dEdPdxdx′

2

(2π)4
σCM

E4P 2(E2 − 4P 2)2

(E2 − 4x2P 2)3/2(E2 − 4x′2P 2)3/2
e−E/T z2. (D.26)

Carrying out the integration over x and x′ using

∫ 1

−1

dx
1

(E2 − 4x2P 2)3/2
=

2√
sE2

, (D.27)

we find

RB =
1

2

∫
dEdP

8

(2π)4
σCMP

2(E2 − 4P 2)e−E/T z2. (D.28)

Changing variables according to E =
√
s cosh y, 2P =

√
s sinh y, where y is the

rapidity, and using the relation dEdP =
√
s/2d
√
sdy, the collision rate becomes

RB =
1

2

z2

(2π)4

∫
d
√
sdyσs5/2 sinh2 ye−

√
s cosh y/T
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=
1

2

z2T

(2π)4

∫
d
√
sσs2K1(

√
s/T )

=
1

2

z2T 6

(2π)4

∫
dmσm4K1(m), (D.29)

where m =
√
s/T is the reduced energy. For isotropic and constant scattering cross

section, i.e., σCM has no y dependence, and using the density of classical particles

nB =
zT 3

π2
, (D.30)

the collision rate can be further simplified to

RB = σCMn
2
B

1

32

∫
dmm4K1(m) =

1

2
σCMn

2
B. (D.31)

Apparently, we have ⟨σv⟩ = σCM in this case. In Fig. D.3, we shown ⟨σv⟩ as a

Figure D.3: Collision rates in systems of massless fermions (solid line) and classical
particles (dashed line).
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function of e−µ/T for both systems consisting of fermions (solid line) and classical

particles (dashed line). It is seen that at µ = T about 30% collisions are blocked, so

the blocking effect is quite important.

Figure D.4: Numbers of collisions per fm/c for 400 massless fermions (open circles)
and classical particles (crosses) in a box of 1000 fm3 at temperature of 200 MeV.

To implement the Pauli blocking effect in numerical calculations, we first esti-

mate the size of the phase space occupied by partons of different flavors by con-

sidering the spatial volume (−max({|xi|}),max({|xi|})) and the momentum volume

(−3{|pi|}, 3{|pi|}), where the subscription i labels different particles. Although some

high momentum particles may be outside above phase space, their density in the mo-

mentum space is very small as they are from the tail of the momentum distribution,

the Pauli blocking effect on these particles is thus negligible. We then divide the

above phase space volume into 106 cells and locate each particles in each cell, cal-
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culate the phase space distribution by counting the number of particles in each cell,

and block the collisions according to the probability f of the final state. We have

checked this algorithm for the case of 400 massless particles in a box of 1000 fm3 and

at temperature T = 200 MeV. For a scattering cross section of 1 mb, there should

be 4.59 collisions per fm/c if the particles are fermions and 8 collisions per fm/c if

they are classical particles. Numerical results shown by open circles for fermions and

by crosses for classical particles in Fig. D.4 agree perfectly with the expected values,

indicating that our algorithm for treating the Pauli effect is almost perfect.
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