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ABSTRACT

We measure macroeconomic uncertainty and study its link to asset returns via a

consumption-based model employing recursive preferences. We introduce a stochas-

tic volatility model with two asymptotic regimes and smooth transition. Smooth

transition in regimes produces sizable equity premiums for even a small amount

of consumption volatility if uncertainty unravels slowly. The relative risk aversion

is estimated around two, the estimated elasticity of intertemporal substitution is

greater than one, and the simulation suggests that our volatility channel matters in

explaining asset returns.

Next, we propose to use the Hodrick-Prescott filter to nonparametrically extract

the conditional mean and volatility process of a time series. We find an optimal

smoothing parameter for HP filter by minimizing the first order sample correlation

of the residuals. The process extracted from our HP filter is therefore defined as

the predictable component of the given time series, while the conventional HP filter

decomposes a time series into trend and cyclical components. By simulations, we

show that our HP filter performs better than the local linear estimator in terms of

average mean squared error for both discrete and continuous time models.

Finally, we develop a novel methodology to test for stock return predictability

using multiple predictors. It has been reported that the conventional least squares

approach has an unacceptable level of size distortions and over-reject the null hypoth-

esis of no predictability. Previous literatures which tried to resolve the Endogeneity

problem with a persistent predictor have failed to allow multiple covariates in the

predictive regression. We propose to apply Heteroskedasticity and Endogeneity cor-

rection sequentially to tackle the issue. Our approach not only makes it possible to
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correctly test for the predictability of stock returns by multiple predictors but also

reveals the marginal predictive power of each predictor. Using our new test, we find

strong evidence for joint return predictability by dividend-price ratio, earnings-price

ratio, short-term interest rates and term spread.
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1. INTRODUCTION

1.1 Time-varying Macroeconomic Uncertainty and Implication for Asset Pricing

In Section 2, we measure macroeconomic uncertainty and study its link to asset re-

turns via a consumption-based model employing recursive preferences. Time-varying

macroeconomic uncertainty can be an important ingredient for asset valuation. The

episode of great recession in 2008 shows that this is indeed a key link between macroe-

conomic variables and asset markets. When there exists a great deal of uncertainty

about how an economy will evolve over time, financial markets demand premiums for

bearing this uncertainty. Empirical studies often use volatility to gauge the degree of

uncertainty. However, the previous studies using macroeconomic models to explain

asset prices did not pay much attention to the macroeconomic volatility channel of

generating equity premiums.1

The standard macroeconomic asset pricing models identify consumption growth

as the link between macroeconomic variables and asset returns via a simple Euler

equation. But, the level of aggregate consumption behaves like a random walk, and

the sizes of unconditional and conditional volatilities of the consumption growth are

fairly modest, which makes measuring macroeconomic uncertainty using the con-

sumption growth volatility difficult. Moreover, the connections between consump-

tion and dividend growths are rather weak unlike the assumption typically made in

the literature. Thus, the standard consumption-based models fail to justify a high

average equity premium with low and stable interest rates because of the small con-

1Recently, there is a burgeoning literature on ambiguity aversion which is closely related to this
issue. Epstein and Schneider (2010) is a nice survey on this topic. However, there are very few
empirical studies on this and related, the measure of ambiguity is still not well defined. Please see
Jeong et al. (2015) for more details.
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sumption volatility.2 Overall, the role of the macroeconomic volatility related to the

aggregate consumption and dividend growths appears to be minimal in explaining

asset prices under this setting.

In Section 2, we tackle this issue by introducing a novel stochastic volatility

model within the consumption-based asset pricing framework. We set the volatility

processes for consumption and dividend growths to be driven by bounded, non-

linear functions of latent factors consisting of a common and idiosyncratic compo-

nents. Specifically, the volatility-generating common factor produces macroeconomic

volatility through a parametric logistic function. This setup yields volatility processes

having two asymptotic levels (the high and low volatility regimes) with smooth tran-

sitions between them. We show that the existence of smooth transition across the

high and low regimes of macroeconomic volatility produces an additional source of

uncertainty about which regimes an economy will end up with in the next period. In

this light, we call the common stochastic component “macroeconomic uncertainty”.

Epstein and Zin (1989) show that economic agents prefer early resolution of un-

certainty if the risk aversion parameter is greater than the reciprocal of the elasticity

of intertemporal substitution for the recursive utility function of Kreps and Porteus

(1978). Incorporating this utility function, our non-linear volatility setup can create

high expected returns even with a modest level of consumption volatility, because

economic agents dislike stochastic changes in regimes of volatility, especially if the

perceived macroeconomic uncertainty unravels slowly.

For the statistical analysis, we formulate our shock processes as a state space

model with stochastic volatility driven by persistent latent factors. Then, the result-

ing asset pricing model is expressed as the Euler equation with both observable macro

2These puzzles related to the consumption based asset pricing models have been one of the main
research questions in finance and macroeconomics since Hansen and Singleton (1983) and Mehra
and Prescott (1985).
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variables and latent factors. To estimate the model, we adopt a Bayesian approach

by developing an algorithm to filter the stochastic volatilities and the key preference

parameters. We use a Markov-Chain-Monte-Carlo (MCMC) method relying on the

Metropolis-Hasting algorithm within Gibbs sampler.

Regarding the stochastic volatility component, there exist several other non-linear

filtering techniques in the conventional approach that we may apply to estimate the

state space models with non-linear measurement equations, such as the extended

non-linear Kalman filter and the density-based filter as explained in Tanizaki (1996).

However, the extended Kalman filter is not working well in the presence of persistent

state variables, since the Kalman gain may vanish in case the latent factors diverge

without bounds. Kim et al. (2009) to develop a density-based filter for the estimation

of highly persistent stochastic volatility models. But, it is extremely difficult and

costly, if not impossible, to implement the density-based filter for large dimensional

models like ours. The MCMC method we use to estimate our Bayesian model is

significantly less prone to the problem of multi-dimensionality, because it utilizes a

uni-variate conditional density function in every step. Furthermore, it appears that

the Bayesian approach in general yields more stable estimates than the conventional

approach, especially in the presence of persistent latent factors.

With a sample of stochastic volatility and observables, we can draw a sample of

the preference parameters. Chernozhukov and Hong (2003) show that drawing sam-

ples of parameters from a conditional posterior distribution made out of the moment

condition is asymptotically equivalent to obtaining a sample from the asymptotic

distribution of the GMM estimator under mild conditions. Gallant et al. (2014)

show that the above procedure is valid with latent factors included in the moment

conditions. We exploit these theoretical results to develop our Bayesian economet-

ric method to produce a Markov chain. This approach is useful to econometrically

3



evaluate complex asset pricing models including highly non-linear latent factors.

With the goal of evaluating the empirical performance of the proposed asset pric-

ing model, we extract a common factor and idiosyncratic volatility factors from the

consumption and dividend growth rates. We find that the common factor delineat-

ing the macroeconomic uncertainty predicts post-war business cycle recessions quite

well. In addition, our common volatility factor captures the great moderation periods

beginning around 1984. Fama and French (1989) and many other studies report that

the expected returns on stocks and long-term bonds have counter-cyclical variations.

Thus, we believe that the close link between the estimated macro uncertainty and

business cycle can shed light on the dynamic behaviors of asset prices. According to

our results, the coefficient of relative risk aversion is estimated around two, and the

estimated coefficient of the intertemporal elasticity of substitution is greater than

one. This implies that the representative investor prefers early resolution of uncer-

tainty and requests a premium for bearing macroeconomic uncertainty that moves

slowly over time. Simulation results show that the model matches the first and the

second moments of the stock returns and the risk-free rate hence, it explains the

equity premium puzzle, the risk-free rate puzzle, and the volatility puzzle addressed

in the literature.

Section 2 is related to at least three strands of literature. First and most directly

related is the long-run risks asset price model. Bansal and Yaron (2004), and Hansen

et al. (2008) set consumption and dividend growth processes to contain a small, but

persistent process in their means, and show that they can explain many stylized

facts in asset market. In their papers they emphasize the long-run risks channel,

which is based on the common portion of the conditional expectations that vary

slowly over time. Due to the long-run risks channel together with the preferences

on the early resolution of uncertainty, these models can generate a sufficiently high

4



risk premium. Bansal and Yaron (2004) also added a stochastic volatility term to

their model, but its role is mostly confined to explaining time-variability of risk

premium. In the recent empirical paper by Bansal et al. (2007), the estimates of

risk aversion and the elasticity of intertemporal substitution are around 10-15, and

0.5-1.5 respectively. Their results including the simulations vary little regardless

of the existence of stochastic volatility. Thus, the role of stochastic volatility is

restricted in their models. Moreover, correlations between the consumption and

dividend growth rates are known to be small, which we confirm in our empirical

study. On the contrary, we focus on a realistic and flexible volatility setup to see

how the preferences on the timing of uncertainty resolution can produce a channel of

volatility premium. Our empirical results show that the time-varying macroeconomic

uncertainty matters to explain asset prices.

Another important class of asset pricing models uses the habit formation pref-

erences. For instance, Campbell and Cochrane (1999) can generate a high equity

premium with low and stable interest rates via time-varying risk aversion. A major

difference from our approach is that the habit formation emphasizes the near unit

root behavior of consumption and assumes the constant conditional volatility for

consumption growth. To produce time-varying expected returns, instead, relative

risk aversion is changing over business conditions.3

In addition, many papers consider relaxing other assumptions of the standard

consumption-based model to address various asset market behaviors. For example,

Constantinides et al. (2002) report that the existence of limited participation in the

asset market increases the equity premium. Our model can be extended to incorpo-

rate this feature without a major modification, but the availability of consumption

3Given that our empirical result shows existence of non-trivial time-varying stochastic volatilities
from consumption, it would be interesting to study the implications of our stochastic volatilities
under the habit formation. We leave this for future research.

5



data for asset market participants is somewhat limited.

Another related literature would be recent works on rare events. Barro (2006)

and Rietz (1988) report that the possibility of a rare disaster or event can make

equity riskier. This approach yields a fat-tail of asset returns by assigning small but

positive probabilities to extremely rare events. Our model can also generate fat-tails

due to the presence of persistent stochastic volatilities.4 In comparison, Section 2

differs from this literature in that our model focuses on small but persistent volatility

changes, while still allowing shifts between two extreme regimes. Related, Eraker

and Shaliastovich (2008) theoretically study asset pricing implications of Epstein-

Zin preferences with an affine jump diffusion. They emphasize the role of jumps

to generate a volatility channel, similar to the rare events. Analyzing the variance

premium using jumps or rare disasters is another related area, studied in Bollerslev

and Todorov (2011) and Eraker (2008).

1.2 Estimating the Conditional Mean Process Using the Hodrick-Prescott Filter

In Section 3, we consider to use the Hodrick-Prescott (HP) filter to estimate the

conditional mean process of a time series. We propose the use of a modified version

of the Hodrick-Prescott filter as an alternative way of estimating conditional mean

process nonparametrically. The HP filter in Economics was initially introduced by

Hodrick and Prescott (1980) and Hodrick and Prescott (1997). It conveniently de-

composes a time-series variable into trends and cycles and has been widely used as

a practical tool to study business cycles. Here we are suggesting to use the HP

approach for a new objective to filter out the conditional mean process, which is

the predictable part of the observed time series. For a given filtration, a time series

4The reader is referred to Park and Phillips (2001) and Park (2002) for the related asymptotic
results and more detailed explanations on how the presence of persistent stochastic volatilities can
generate fat-tails.
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can be decomposed into its conditional mean that includes both trend and cyclical

component, and a sequence of martingale difference unpredictable error component.

The key identifying characteristics of a martingale difference sequence is that it has

no serial correlation. Thus, if we apply HP procedure with an optimal smoothing pa-

rameter that produces the fitted residuals with the first-order sample auto-correlation

zero, then the fitted process will capture all of the predictable components of the

time series given the past information, and therefore may successfully filter out the

conditional mean process nonparametrically, leaving only the martingale difference

residuals.

Our HP estimator of the conditional mean process is therefore defined simply

as the predictable component of (yt) extracted using the HP filter with the penalty

parameter minimizing the first order sample correlation of the residuals. We also

show how we may use our approach of using the HP filter with such an optimal

smoothing parameter to estimate conditional variance process of the given time series.

Our HP approach can also be used to estimate the conditional mean and variance

processes in continuous time model. This approach is the first attempt to applying

HP filter to estimating conditional mean and variance processes.

For nonparametric estimation of the conditional mean of a time series, the Lo-

cal Linear estimator with a cross-validation bandwidth smoothing has been com-

monly used as a standard method. It is well known that such data-dependent cross-

validation method yields an asymptotically optimal bandwidth and the resulting

Local Linear estimator performs well in finite samples for a wide class of models. See

Li and Racine (2004) among others for more discussions. However, it has also been

reported that in some important cases the Local Linear estimator produces a less

than desirable fit for the conditional mean process. For example, Jeong et al. (2015)

estimate the time varying volatility process of the monthly US consumption over the
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period 1960-2006 using the Local Linear estimator with the bandwidth chosen by the

data-dependent cross-validation method, and report overly smoothed consumption

volatility process. It is shown clearly in Figure 1.2 which shows the time series of the

monthly consumption growth rates on the top panel, the time series of the realized

consumption volatility and the Local Linear estimator for this in the middle panel.

Figure 1.1: Monthly Consumption Growth Rates

Notes: Figure 1.1 displays a time series plot of monthly consumption growth rate
between February 1959 and December 2013. Aggregate consumption is defined as the
sum of personal consumption expenditure for the non-durable goods(PCEND) and
services(PCES). Our data is obtained from the Federal Reserve Banks of St. Louis
(FRED) (http://research.stlouisfed.org).

Precisely estimating the time-varying consumption volatility is crucial for explain-

ing risk premium for equity investment. As is well known, a simple consumption-

based Capital Asset Pricing Model(CAPM) yields

Et(Rm
t+1 −Rf

t+1) = γ Cov
(
Rm
t+1,

Ct+1

Ct

)
,
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Figure 1.2: Fitted Monthly Consumption Volatility

(a) Local Linear Estimator (b) HP Estimator

Notes: Figure 1.2 compares the fitted consumption volatilities using the Local Linear
estimator and our proposed HP estimator. In Panel (a), the thin solid line represents
squared consumption growth rates after it has been de-trended. The solid thick line
represents the fitted trends using the Local Linear method. We estimate the con-
sumption volatility nonparametrically as a function of time. In Panel (b), the solid
thick line represents the estimated consumption volatility using the HP filter.

where (Rm
t+1) is aggregate market return and (Rf

t+1) is risk-free rate, and the pa-

rameter γ measures investor’s constant relative risk aversion. The observed value

of the standard deviation of annual consumption growth is 1.2 % during the period

1960-2006, while that of excess market return is 14%. To match with the observed

6–7% of excess market return, investors’ risk-aversion parameter γ should be over

200, which is hard to rationalize, and this produces the well known risk-premium

puzzle.

Much effort has been devoted to better capture the time-varying nature of the

consumption volatility, but estimating consumption volatility remains a challenging

task since the annualized percentage change in aggregate consumption growth is

very small. This is indeed the main motivation for developing our new HP estimator

to nonparametrically fit the conditional mean process. It turns out that, as clearly

9



shown in the bottom panel of Figure 1.2, the fitted consumption volatility by our HP

estimator shows substantially more variability, and therefore captures the dynamics

of the original consumption volatility process significantly better than the standard

Local Linear estimator. The resulting larger variation in the consumption volatility

may provide an important channel in explaining the risk-premium puzzle.

By simulations, we show that our estimator performs better in general in both

discrete and continuous time models than the commonly used Local Linear estimator.

For the discrete time model, we consider a simple regression model with a regressor

generated as an AR(1) process for the discrete time model, and for the continuous

time model, we consider the commonly used Ornstein-Uhlenbeck process as a contin-

uous time analogue of our discrete time model. In both discrete and continuous time

models, our estimator performs better than the Local Linear estimator except when

the conditional mean component carries very little signal, i.e., when the regression

coefficient is extremely small, or excessively persistent, i.e., when the auto-regressive

coefficient for the regressor process in the discrete time model is close to 1 or when

the mean-reversion parameter of the Ornstein-Uhlenbeck process is too close to zero.

Finally, we demonstrate our new HP approach by applying it to fit conditional

mean process of the four key US macroeconomic variables - GDP growth rates, in-

flation rates, unemployment rates and short term interest rates at both monthly and

quarterly frequencies. We find that the values of the optimal smoothing parameter

for the quarterly series are substantially smaller than the value 1,600 recommended

for the quarterly US macroeconomic variables, and consequently the fitted mean

processes exhibit higher time varying volatilities for all macro time series considered.
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1.3 Stock Return Predictability with Multiple Predictors

In Section 4, we develop a new methodology for testing stock return predictabil-

ity with multiple predictors. The predictability of stock returns seems to be widely

accepted by both academics and practitioners. For instance, it was stated as new

facts in finance by Cochrane (1999, 2005) and reiterated also in Lettau and Ludvig-

son (2001), among many others, with dividend-price ratios and earnings-price ratios

suggested typically as common predictors. Moreover, there is clear and unambiguous

consensus in the financial industry that prediction based on such common predictors

is highly useful, see, e.g., Wilcox (2007) and Ferson et al. (2003). In fact, predictive

regressions seem to be routinely used in making financial decisions including tactical

asset allocation, active portfolio management, conditional performance evaluation,

and market timing, and others. From the theoretical point of view that stock prices

should reflect the discounted current value of future dividends, it of course natural

to expect that stock returns are predictable. Naturally, the return predictability

is supported by many economic models explaining various aspects of financial de-

cisions, including consumption smoothing in Balvers et al. (1990), habit formation

in Campbell and Cochrane (1999), heterogeneous preferences in Chan and Kogan

(2002), time-varying risk preferences in Menzly et al. (2004), and prior beliefs in

Avramov (2004).

Nevertheless, the empirical evidence of stock return predictability is mixed and

still far from being conclusive. Several authors including Bossaerts and Hillion (1999)

and Welch and Goyal (2008) show that the standard predictive regressions do not

provide any meaningful improvements in terms of predictive power compared to

simple statistical models. In contrast, however, many others also provide positive

evidence especially by adding a new set of predictors or employing a novel method-
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ology. For instance, Avramov and Chordia (2006) find evidence of out-of-sample

predictability of stock returns by the dividend yield, the term spread, the default

spread, and the Treasury bill yield, and Bollerslev et al. (2009), Bollerslev et al.

(2011), Drechsler and Yaron (2011) and Bollerslev et al. (2014) show that the return

predictability becomes stronger if the variance of risk premium is used as an addi-

tional predictor. Moreover, Avramov (2002) and Cremers (2002) each find in-sample

and out-of-sample stock return predictability using Bayesian model averaging. See

also Campbell and Thompson (2008) and Guo (2006, 2009). Ang and Bekaert (2007)

find that long horizon predictability to be statistically insignificant and not robust

across countries and sample periods. Though, at the same time, they still find that

stock return predictability is real, albeit at shorter horizons. See also Hjalmarsson

(2011), Moon et al. (2004), and Valkanov (2003).

In Section 4, we provide an in-depth empirical analysis of stock return predictabil-

ity. From an econometric point of view, testing for return predictability is extremely

challenging, and we should employ a robust as well as powerful methodology. It

has been known, widely and for long, that the usual least squares estimator yields

a test that is not controllable and acceptable level of rejection probabilities. There

are two important econometric issues involved in testing for return predictability:

persistent and endogenous predictors, and nonstationary stochastic volatility in re-

turns. The problem of having persistent and endogenous covariates has long been

well recognized and has been fully analyzed especially for the return predictability

regression by Stambaugh (1999), Campbell and Yogo (2006), Chen and Deo (2009)

and Phillips and Lee (2013). The presence of nonstationary stochastic volatilities

in stock returns have also been well demonstrated in Schaller and Norden (1997),

Jacquier et al. (2004) and Cavaliere (2004), among others. However, it has not been

considered specifically for the predictive regression of stock returns until recently
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Choi et al. (2016) show that it also poses a serious challenge in testing for stock

return predictability.

Now we are all very well aware of econometric challenges in return predictive

regression, and available are several methodologies we may use to effectively deal

with these challenges. In Section 4, we employ a novel methodology developed and

investigated in Chang et al. (2016) to test for return predictability using multiple

predictors. Very few existing methodologies, which are robust and valid against

the aforementioned two main challenges of return predictive regression, most allow

only for single predictor.5 It is therefore necessary to test the predictability of return

sequentially on each predictor. Needless to say, this is a serious drawback, which does

not permit many interesting joint hypotheses regarding on return predictability. Our

approach not only makes it possible to test for the predictability of stock returns

jointly by multiple predictors, but also reveals the marginal predictive power of

each predictor. Using a new methodology, we find some strong evidence for stock

return predictability jointly by dividend-price ratio, earnings-price ration, short-term

interest rates and term spread of interest rates.

5Amihud et al. (2009) demonstrated that the stock returns are predictable by two variables,
income-to-consumption and dividend yield. Recent development by Phillips and Lee (2013) and
Lee (2016) propose to use quantile regression in combination with IVX-filtering for a multivariate
predictability test.
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2. MACROECONOMIC UNCERTAINTY AND ASSET PRICES: A

STOCHASTIC VOLATILITY MODEL

Section 2 is organized as follows. In Section 2.1, we develop our asset pric-

ing model. A new stochastic volatility model is proposed and integrated into a

consumption-based asset pricing model. Section 2.2 develops our Bayesian econo-

metric methodology. Section 2.3 describes the data set, and Section 2.4 explains our

main quantitative result. Then, we conclude in Section 2.5. Appendix A contains

the derivations of theoretical results.

2.1 Asset Pricing with Time-Varying Uncertainty

2.1.1 Basic Model

We consider a simple closed economy in which the representative agent has a

recursive preference (Epstein and Zin (1989) and Weil (1989)) given by

Ut =
[
(1 − δ)C

1−γ

χ

t + δ(EtU
1−γ
t+1 )

1

χ

] χ

1−γ

,

where χ = (1 − γ)/(1 − 1/ψ), γ ≥ 0 is the coefficient of relative risk aversion (RRA),

ψ ≥ 0 measures the elasticity of intertemporal substitution (EIS), and 0 < δ < 1

is the time discount factor. Compared with a conventional power utility function,

Epstein-Zin-Weil utility function permits more flexibility in that it breaks the tight

link between the parameters of risk aversion γ and intertemporal substitution ψ. In

case of the power utility function, EIS is the reciprocal of the risk aversion parameter

so that χ = 1 should hold. Another useful property of this preference function is that

the decision maker cares about timing for the resolution of uncertainty. It is well

known that if γ > (<)ψ−1 holds, then economic agents prefer early (late) resolution
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of uncertainty.1 Thus, if both RRA and EIS parameters are greater than one, this

implies that the representative agent prefers early resolution, and χ < 0 holds.

The intertemporal budget constraint for the representative agent can be written

as At+1 = Ra,t+1(At − Ct), where At is the wealth at time t, and Ra,t+1 is the gross

return on the portfolio of all invested wealth on consumption claims between t and

t+ 1. Epstein and Zin (1989) derive an Euler equation

1 = Et

[
δχ
(
Ct+1

Ct

)− χ

ψ

Rχ−1
a,t+1Ri,t+1

]
(2.1)

for the gross rate of return Ri,t+1 on asset i between t and t+1. From the Euler equa-

tion (2.1), we have the logarithm of the intertemporal marginal rate of substitution

(IMRS)

mt+1 = χ log δ − χ

ψ
gc,t+1 + (χ− 1)ra,t+1, (2.2)

where ra,t+1 = logRa,t+1 is the log return on the portfolio of all invested wealth, and

gc,t+1 is the log consumption growth between t and t + 1. By defining Ra,t+1 as the

returns on holding the aggregate wealth that pays the consumption good (Ct) as

dividend, we can write it down as

Ra,t+1 =
Ct
Pa,t

(
1 +

Pa,t+1

Ct+1

)
Ct+1

Ct
,

where Pa,t+1 is the price of a consumption claim at t+ 1. Applying the log-linear

approximation as in Campbell and Shiller (1988), we find a theoretical relation among

1This result carries over to the case of general recursive preferences with minor modifications.
See Brown and Kim (2013) for more results.
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ra,t+1, the price-consumption ratio, and the consumption growth as

ra,t+1 = φ0,c + φ1,czc,t+1 − zc,t + gc,t+1, (2.3)

φ0,c = log(1 + exp(z̄)) − φ1,cz̄, (2.4)

φ1,c = exp(z̄)/(1 + exp(z̄)), (2.5)

where zc,t = log(Pa,t/Ct) is the log price-consumption ratio, and z̄ is a constant. They

show that the approximation is highly accurate. We assume that the consumption

growth (gc,t+1) and the dividend growth (gd,t+1) have a conditional mean component,

denoted as µj + νj,t, j = c, d, and a logistic volatility function f driven by scalar

processes xc,t and xd,t respectively.2 We have the following form.

gj,t+1 = µj + νj,t +
√
fj(xj,t) εj,t+1, (2.6)

νj,t+1 = ρjνj,t + ϕj
√
fj(xj,t) ηj,t+1, (2.7)

xj,t = λjwt + ej,t, (2.8)

wt = ρwwt−1 + ut, (2.9)

fj(xj,t) = αj +
βj

1 + exp [−(xj,t − κj)]
, (2.10)

with αj > 0, βj > 0 for j = c, d. We let the error terms be characterized as



εc,t

εd,t


 ∼ iid N (0,Σ) , Σ =




1 ρ

ρ 1


 (2.11)

and ej,t is i.i.d. N(0, σ2
j ) for j = c, d, and ut and ηj,t are i.i.d. N(0, 1). Moreover,

we assume that εj,t, ηj,t, ut and ej,t are mutually independent of each other. The

2From now on, subscripts c and d refer to consumption growth and dividend growth.
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variances of εj,t, ηj,t and ut are all set to be unity to identify the parameters αj, βj,

ϕj and λj. w0 is assumed to be independent of ut, ej,t and εj,t. In what follows, we

denote by θj = (αi, βj, κj) for j = c, d, mainly for our econometric analysis.

Equations (2.6) and (2.7) dictate that the conditional expectation of the consump-

tion growth contains a time-varying component νc,t, and shocks to this component

affect the future consumption profile. Therefore, if this shock is highly persistent,

it can have a long-run effect. For this shock to be transmitted to financial markets,

Bansal and Yaron (2004) and Hansen et al. (2008) additionally assume that the cor-

responding component of the dividend growth νd,t equals a constant multiple of νc,t,

and this common component turns out to play an essential part in generating equity

premium. This is so called the long-run risks channel following Bansal and Yaron

(2004). Unlike their case, however, we do not assume a common component between

νc,t and νd,t for the reasons we explain below.

First, it is one of our main objectives to examine whether the existence of the com-

mon volatility factor in consumption and dividend growth rates, which we interpret

as the macroeconomic uncertainty, alone may explain the equity premium. Imposing

the presence of commonality in the conditional means of consumption and dividend

growth rates has a potential to have a fatal impact on the validity of our results.

If either misspecified or imprecisely estimated, the common variation restriction on

conditional mean would introduce a spurious common factor in volatility. Such a

hazard is likely to occur in our analysis since it is well known to be hard to precisely

estimate the conditional mean components of consumption and dividend growth

rates. For this reason, we do not impose any restriction on the conditional means

of the consumption and dividend growths and leave their specifications as flexible as

possible.

Second, as mentioned above, the long-run risk models use a parameter, say Γ,
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connecting νc,t and νd,t (νd,t = Γνc,t) to make a common component in the conditional

mean of the consumption and dividend growths.3 These models need a counterfac-

tually large value, often greater than 2-3 to generate a sizable equity premium. We

later show that relaxing the assumption may produce even a negative relation be-

tween risk and return. Therefore, without a priori restriction on the commonality of

the conditional expectation processes, our model allows us to analyze how important

this macroeconomic volatility is as another source of long-run risk in explaining the

asset pricing anomalies, even if the conventional long-run risk channel is weak or not

working properly.

We now turn our attention to stochastic volatility. Equations (2.6) to (2.11)

state that the stochastic volatilities in our model are largely generated by the latent

common factor wt. The common factor is set to be an autoregressive model of order 1

(AR(1)), whereas the idiosyncratic factor is assumed to be i.i.d. Our volatility model

features two asymptotic levels of volatility with smooth transitions. It is regarded

as a generalization of a two-state Markov switching model, and our model identifies

smooth transitions as well as the two asymptotic levels of volatility generated by a

highly persistent common factor. This specification is motivated by the facts that

are well known in the literature on the stochastic volatilities of consumption growth,

dividend growth, and asset returns. The reader is referred to Park (2002), Jacquier

et al. (2004), Kim et al. (2009) and Jeong et al. (2015) for more details.

Equation (2.10) states that the logistic volatility function f has two asymptotes

αj and αj + βj, which represent the two extreme regimes, i.e., the low and high

volatility regimes for j = c, d. We impose the identifying restriction βj > 0, so

that a larger realized value of the latent volatility factor implies higher volatility.

3This is often called, consumption leverage parameter following Abel (1990) and Bansal and
Yaron (2004). More generic form includes an additional factor as well as consumption and dividend
growths. Menzly et al. (2004) find that this parameter may be close to 1 for some industry portfolios.
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Figure 2.1: Estimated Logistic Volatility Functions for Consumption Growth and
Dividend Growth

Notes: The figure displays the estimated volatility function f(xj) for j = c, d. The
estimated parameters are available in Table 2.2. The left panel is the estimated logistic
volatility for consumption growth (c), and the right panel is that of dividend growth (d),
respectively. The horizontal axis stands for the latent factor xj,t for j = c, d. The shaded
area refers to the transition period. The end points of the transition period are defined
by the points at which f ′′′(x) = 0 holds.

The parameters κj and λj in (2.8) characterize the transition between two regimes,

i.e., the location and speed of the transition. As λj gets larger, the transition speed

becomes faster and, to a larger extent, the actual volatilities are generated by one

of the two asymptotic regimes. Indeed, we may view the regime switching model

as the limiting case of our model with λ = ∞. Figure 2.1 plots the estimated

volatility function of consumption and dividend growth rates, showing the features

explained above. Finally, κ designates the location of the transition. Because wt is an

autoregressive model of order 1 (AR(1)) with the starting value w0 independent of all

other stochastic components in the model, κ and w0 are not individually identified.

We must therefore set either w0 = 0 or κj = 0.

The smooth transition combined with a common factor in our stochastic volatility

setup provides new insight into the relation between asset prices and macroeconomic

uncertainty. There exists little doubt that the amount of risk and uncertainty is
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larger in the high volatility regime compared with the low volatility regime, and

abrupt regime changes can create a sizable risk. However, low and stable con-

sumption volatility over time suggests that models relying on high volatility and

the possibility of sudden, big changes are not consistent with data. Instead, our

model emphasizes the transitions between regimes in macroeconomic volatility. If

the level of volatility is low and in between the two extreme regimes, it can create

a source of risk and uncertainty, because economic agents are unsure about future

volatility regimes they are heading toward. Intuitively, this effect becomes smaller

when the economy gets closer to either of the two asymptotic regimes. In particu-

lar, if the speed of volatility changes is time-varying, this effect can be significant.

Conventional regime shifting models allow only sudden changes and ignore the role

of transition states, and other stochastic volatility models have no boundaries, and

hence are subject to the possibility of explosive dynamics.

Our model overcomes the drawbacks and predicts that an economy with rela-

tively low-to-medium levels of the macroeconomic volatility can request a higher

premium than otherwise, due to the additional uncertainty different from the con-

ventional sources of risk, provided that economic agents prefer early resolution of

uncertainty. In sum, our stochastic volatility setup effectively prevents the volatility

from exploding over time, yet paves the way to generate a sufficient amount of risk

and uncertainty using the Epstein-Zin-Weil preferences.

We believe that this is a novel way of understanding the time-varying uncertainty

in macroeconomic variables. Similar to the conventional method of stochastic volatil-

ity, the level of volatility matters to measure the degree of uncertainty plagued in

an economy. However, our model says that the distance to either the maximum or

minimum uncertainty as well as the speed of changes in uncertainty are critical in

quantifying the effect of risk and uncertainty. To offer theoretical explanations on
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this channel, we follow Campbell and Shiller (1988) and Bansal and Yaron (2004) to

solve for the log price-consumption ratio zc,t.

zc,t = A0,c + A1,cνc,t + A2,cfc(xc,t) (2.12)

with

A0,c =
log δ + φ0,c +

(
1 − 1

ψ

)
µc + φ1,cA2,cζ0 + χ

2
(φ1,cA2,c)

2 λ2
cβ

2
c ζ1

(1 − φ1,c)
,

A1,c =
(1 − 1/ψ)

(1 − φ1,cρc)
,

A2,c =
(1 − φ1,cρω) +

√
(1 − φ1,cρω)2 − λ2

cβ
2
c ζ2 (φ1,c)

2
[
(1 − γ)2 +

(
(1−γ)φ1,cϕc
(1−φ1,cρc)

)2
]

λ2
cβ

2
c ζ2χ (φ1,c)

2 ,

where ζ0, ζ1, ζ2 are positive constants describing the conditional moments of fc,t

process defined in Appendix A.1.4 If γ > 1 and ψ > 1, then χ < 0, A1,c > 0 and

A2,c < 0 hold. This means that the representative investor prefers higher expected

future consumption growth, but does not like a rise in macroeconomic volatility. In

addition to the conventional channel of volatility (fc(xc,t)) in which a higher value

of xc,t means higher uncertainty, we can observe from the definition of A2,c that if

λc is small, i.e., when there exists a slow and smooth transition, the absolute value

of A2,c increases via decreases in λc. That is, given the traditional risk-return trade-

off relation, our model has an extra layer of the volatility channel: a low level of

macroeconomic volatility does not necessarily imply that economic agents perceive

the state of the economy as being safe. When uncertainty unfolds in a sluggish

fashion and is in transit, the representative investor dislikes the obscure nature of

4The derivations of A0,c, A1,c, and A2,c, and the accuracy of the approximations are discussed
in Appendix A.1.

21



macro volatility regime, and this amplifies the premium for bearing risks associated

with macroeconomic volatility.

Once all the coefficients are verified, we can derive the innovations in the stochas-

tic discount factor, or IMRS as

mt+1 − Et(mt+1) = −γ
√
fc(xc,t)εc,t+1 − Λm,η

√
fc(xc,t)ηc,t+1 − Λm,u(t)ut+1 (2.13)

with

Λm,η ≡ (1 − χ)φ1,cA1,cϕc

Λm,u(t) ≡ (1 − χ)φ1,cA2,c

√
V art (ft+1),

where the coefficient terms are derived in Appendix A.2. Here the risk sources are

represented by three terms, labeled as the short-run risk εt+1, the long-run risk ηt+1,

and the macroeconomic volatility risk ut+1. Similar to (2.12), positive innovations

in both short-term and long-term consumption growth lead to lower discount rates

for futures, while higher volatility innovations refer to higher discount for futures

again if A2,c < 0. Note that the conditional variance of macroeconomic volatility ft,

denoted as V art (ft+1) prevails in equation (2.13). Appendix A.1 derives the condi-

tional variance in terms of the conditional expectation of macroeconomic volatility

as follows:

V art(ft+1) =




√√√√
(
β

2λ

)2

− α (α+ β) + 2 (1 + α) βEt (ft+1) − [Et (ft+1)]
2 − β

2λ




2

.

(2.14)

V art (ft+1) is time-varying and stochastic, despite the fact that the common macroe-

conomic uncertainty process wt is a simple AR(1) process with i.i.d. shocks. As ex-
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plained early, this additional risk comes from the fact that macroeconomic volatility

is bounded and varies non-linearly over time between the two regimes. This risk is

priced via the uncertainty resolution channel (χ < 0), according to equation (2.13).

To describe equation (2.14), Figure 2.2 plots the relations between V art(ft+1) and

Et (ft+1) for consumption and dividend using the parameters estimated in the next

section. This shows that within the interval of [α, α + β], V art(ft+1) increases as

Et (ft+1) increases, yet the marginal effect becomes smaller in an accelerating fash-

ion.

Figure 2.2: Time-Varying Uncertainty of Volatility Regimes
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Notes: The figure displays the relation between the conditional expectation and the condi-
tional variance of the macroeconomic volatility for consumption (c) and dividend growths
(d), or fj,t+1, j = c, d. For parameters values, the estimation results in Table 2.2 are used.
The range of the horizontal axis is defined by the estimated minimum and the estimated
maximum of the macroeconomic volatilities for consumption and dividend growth rates,
respectively.
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With the IMRS, we can express the risk-free rate as

rf,t = − log [Et exp(mt+1)]

= − log δ +
1
ψ
Etgc,t+1 +

1 − χ

χ
Et [ra,t+1 − rf,t] − 1

2χ
Vart(mt+1). (2.15)

The negative relation between the risk-free rate and the intertemporal elasticity of

substitution is clear from the first term in (2.15). But as the risk aversion coefficient

becomes larger (i.e., χ being more negative), hence both the conditional mean of

risk premium on wealth and the conditional variance of IMRS increase, the effect

on the risk-free rate is not clear from equation (2.15) immediately because the last

two terms have opposite signs. If the third term dominates the fourth term, which

is usually the case, the risk-free rate decreases. We will verify this via simulations

later in Section 2.3.

2.1.2 Asset Returns Dynamics

In Section 2.1.2, we theoretically explain how the model produces equity premi-

ums. We begin with a consumption claim, earning ra,t in each period. Solving the

model with the consumption claim, we can show the following:

Et [ra,t+1 − rf,t] = γfc,t + Φ1fc,t + Φ2V art (fc,t+1) − 1
2
V art(ra,t+1) (2.16)

with

Φ1 =

(
γ − 1

ψ

)
φ1,cϕc

(1 − φ1,cρc)

Φ2 = (1 − χ)2 φ1,c (A2,c)
2 .
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The first term in the right hand side of equation (2.16) refers to the conventional risk

premium and is known to be very small. Φ1 is related to the long-run risk channel

of Bansal and Yaron (2004), and the coefficient depends on the speed of uncertainty

resolution. That is, if the investor prefers early resolution of uncertainty (γ > 1
ψ

),

Φ1 > 0 holds, and the risk premium is big, if ρc is close to 1. The third term

Φ2V art (fc,t+1) is the premium arising from the macroeconomic uncertainty channel

we explained early.

Now, we derive an expression similar to (2.16) for the market equity premium.

Firstly, we assume that νc,t and νd,t are uncorrelated to each other. As with equation

(2.3), we follow Campbell and Shiller (1988) to define the market rate of return as

rm,t+1 = φ0,m + φ1,mzm,t+1 − zm,t + gd,t+1 (2.17)

where zm,t is the log price-dividend ratio. Then, we have

Et [rm,t+1 − rf,t] = γρ
√
fc,t
√
fd,t + Φ1fc,t + Φ2V art (fc,t+1) − 1

2
V art(rm,t+1) (2.18)

with

Φ1 = −
(
γ − 1

ψ

)
φ1,cφ1,m (ϕc)

2

(1 − φ1,cρc) (1 − φ1,mρc)ψ

Φ2 = (1 − χ)φ1,cφ1,mA2,cA2,d,

where πd and A2,d are defined in Appendix A.3. The first term in the right hand

side is the conventional risk premium term found in consumption-based models. The

second term refers to the contribution by the long-run risks channel. However, note

that Φ1 < 0 with early resolution of uncertainty. This implies that this channel
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gives a negative risk-return trade-off with γ > ψ. This mainly comes from the zero

correlation of the conditional mean components between consumption growth and

dividend growth. If we instead assume a long-run relation as νd,t = Γνc,t as in Bansal

and Yaron (2004), we obtain

Et [rm,t+1 − rf,t] = γρ
√
fc,t
√
fd,t + Φ1fc,t + Φ2V art (fc,t+1) − 1

2
V artt(rm,t+1) (2.19)

with

Φ1 =

(
γ − 1

ψ

) (
Γ − 1

ψ

)
φ1,cφ1,m(ϕc)2

(1 − φ1,cρc)(1 − φ1,mρc)
,

and Φ2 is defined the same as for (2.18). In this case, Φ1 > 0 can hold if Γ > ψ−1

is satisfied. Existing studies use Γ greater than 2-3 to match the data. Recall

that we did not restrict the long-run common component between two conditional

expectations and solve our cases numerically. Further, we do not resort to either of

the above approximate solutions when we evaluate the empirical performance of the

model. Therefore our model allows cases in which the conventional long-run risks

channel is weak.

The main thrust of our model lies in the third term in equations (2.16), (2.18),

and (2.19). This term describes how the time-varying macroeconomic uncertainty

is related to the expected excess returns for holding equity. One can see from the

similarity of Φ2 that this channel is robust regardless of the conditional mean specifi-

cations. An interplay between χ < 0 (preference for early resolution of uncertainty)

and A2,c, A2,d < 0 produces this uncertainty premium (Φ2 > 0). Thus, even a fairly

modest amount of the macroeconomic volatility does not imply a small equity pre-

mium requested by investors, because there exists time-varying uncertainty about

the volatility regimes.
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2.2 Econometric Methodology

This section proposes an econometric procedure to estimate an asset pricing

model with both observables and latent factors. Our asset pricing model consists

of the moment condition (2.1) and the specification of economic variables, (2.3) to

(2.11). For the purpose of identifying models cast in moment conditions, the general-

ized method of moment (GMM) by Hansen (1982) is the standard method. However,

we need a new econometric methodology, because our setup contains latent factors of

a non-linear volatility function inside the Euler equation. The latent variables need

identifying, and the non-linearity makes worsen the curse of dimensionality. Further,

the estimation of the preference parameters depends upon the latent variables that

determine stochastic volatility. To overcome the difficulties, we extend a Bayesian

approach called Markov Chain Monte Carlo (MCMC) methods to incorporate the

GMM criterion. Our procedure is outlined as follows:

First, we begin by drawing samples for the nonlinear, stochastic volatility factors.

To this end, we select initial points for both latent factors and parameters. Then,

we obtain samples of the latent factors given the initial set of parameters. With the

latent factors in hand, samples of volatility parameters are drawn. We use a com-

bination of Gibbs sampling and Metropolis-Hastings (MH) algorithm to implement

this step.5 Although this is a common Bayesian approach, our algorithm is new be-

cause our non-linear volatility function is different from the conventional stochastic

volatility models.

The second step of this method is about sampling the preference parameters (γ

and ψ) given the sample of stochastic volatility and observables.6 We use the GMM

5For more details on the methods, see Chib and Greenberg (1995).
6In evaluating the moment condition, we compute the coefficients φ0,c and φ1,c using the defini-

tions, φ0,c = log(1 + exp(z̄)) − φ1,cz̄ and φ1,c = exp(z̄)/(1 + exp(z̄)) with the choice of z̄ = E(zt).
Specifically, equation (2.12) implies that z̄ = A0,c + A1,cE(vc,t) + A2,cE(fc,t) holds. By plugging
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criterion to draw samples. That is, we obtain a sample of preference parameters from

a quasi-posterior function based on the Euler equation (2.1) and previous draws of

latent factors and parameters to implement our MCMC method. Clearly, this step

is reminiscent of frequentist approach and pragmatically motivated. However, this

procedure turns out to be statistically sensible as well. Papers by Chernozhukov

and Hong (2003), and Gallant et al. (2014) show that drawing samples of param-

eters from a conditional posterior distribution made out of the moment condition

is asymptotically equivalent to obtaining a sample from the asymptotic distribution

of the GMM estimator under mild conditions. Thus, this step can be viewed as

a GMM within Gibbs sampling given observable data and previously drawn latent

factors and parameters.

Third, we repeat the first and the second steps to create a MCMC chain. Once we

have enough samples, then we use Monte Carlo integration to compute the moments

of interest. In the below, we explain our algorithm to identify stochastic volatility

function, followed by a Bayesian GMM procedure to draw a sample of the preference

parameters.

2.2.1 Stochastic Volatility

According to the asset pricing model developed in the previous section, asset

returns evolve over time because of the time-varying uncertainty inherent in the

consumption and dividend growth rates. For this purpose, we rewrite (2.6) as

yj,t+1 =
√
fj(xj,t) εj,t+1 (2.20)

with yj,t+1 = gj,t+1 − µj − νj,t for j = c, d. Note that yj,t+1 is a martingale difference

sequence defined from gj,t+1, net of its slow moving conditional mean component

the definitions of φ0,c and φ1,c into A0,c, A1,c, and A2,c, we solve for z̄.
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µj +νj,t. We use the Hodrick-Prescott (HP) filter to estimate the moving conditional

mean component of gj,t+1, which is subtracted from gj,t+1 to obtain the estimated

yj,t+1. In particular, to exploit the fact that yj,t+1 has no trend, we optimally select

a weight for the Hodrick-Prescott filter that makes yj,t+1 as close as possible to a

martingale difference sequence. We also experimented with the method suggested

by Bansal and Yaron (2004) and Bansal et al. (2007), which regress the consumption

growth onto the interest rate and the price-dividend ratio, exploiting the theoretical

structures. Although both results are compatible with each other, we find that the

statistical filtering seems to identify the long-run components better, especially with

monthly frequency data.7

Now with the estimates of yj,t in hand, one can easily see that (2.20) as well as

(2.7) to (2.10) form a usual state space model with latent factors. The resulting

state space model, however, is nonstandard in two aspects: It is non-linear, and

includes non-stationary latent factors. There are several methodologies that can be

used to statistically analyze non-linear state space models with latent factors. The

most conventional approach is to apply the extended Kalman filter for the linearized

version of the measurement equation (2.20) after taking squares and logs. However,

we find that the conventional extended Kalman filter performs rather poorly in the

presence of highly persistent latent factors.8 To avoid this difficulty, Kim et al. (2009)

developed a density-based filter, relying on the updates, predictions and smoothings

based on the estimated densities of latent factors, for the model similar to, but much

simpler than, what we consider in Section 2. At least in theory, it is straightforward

to extend their filter to make it applicable for our model. However, computationally it

7Therefore, we estimate ρc and ρd from the trend component of the consumption and dividend
growth rates. Our estimates are 0.993 and 0.992 respectively.

8This is well expected, since some of the partial derivatives of our volatility function are integrable
functions of highly persistent latent factors. Therefore, the Kalman gains get very close to zero,
when the extracted factors take large values, providing no further updates for the latent factors.
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seems extremely difficult and time demanding to use this approach for the estimation

of our model.

In Section 2, we take the Bayesian approach. To introduce our approach, it will

be convenient to define some additional notations. We let n be the sample size, and

define Y = (y1, · · · , yn) with yt = (yc,t, yd,t)′, and L = (X,W ) with X = (x1, · · · , xn),

xt = (xc,t, xd,t) and W = (w1, · · · , wn). Moreover, we define Ψ = (θ, ρ, λ, σ2, ρw)

with θ = (θc, θd), λ = (λc, λd) and σ2 = (σ2
c , σ

2
d).

9 Note that Y , L and Ψ denote

respectively the observed samples, latent factors and unknown parameters of our

model. Moreover, we let Dt = diag (
√
fc(xc,t),

√
fd(xd,t)), and signify the marginal

and conditional densities by p(·) and p(·|·) in what follows. Now we may easily

deduce that the joint posterior density of the latent factors and unknown parameters

is given by

p(L,Ψ|Y ) ∝ p(L, Y |Ψ)p(Ψ)

∝



n∏

t=1

p(yt|xt,Ψ)p(xc,t|wt,Ψ)p(xd,t|wt,Ψ)p(wt|wt−1)


p(Ψ). (2.21)

Following the usual Bayesian procedure, we will implement a Markov-Chain-Monte-

Carlo (MCMC) method to sample (L,Ψ) from the joint posterior density p(L,Ψ|Y )

in (2.21). Once the observations of (L,Ψ) are drawn, we may readily obtain any

posterior sample moments of L and Ψ using the standard Monte-Carlo numerical

integration.10

For our MCMC procedure, we use the Gibbs sampler and the Metropolis-Hastings

(MH) algorithm within the Gibbs sampler.11 The procedure allows us to effectively

9For the purpose of identification, ϕc and ϕd are assumed to be 1.
10For related Bayesian procedures, the reader is referred to Jacquier et al. (1994) Jacquier et al.

(2004), So et al. (1998) and Geweke and Tanizaki (2001). Our procedure follows Jacquier et al.
(2004) most closely.

11As explained in Chib and Greenberg (1995), we may regard our entire procedure as the MH
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deal with the multi-dimensionality of our latent factors and parameters and difficul-

ties in drawing samples from the complicated target densities. The Gibbs sampler

simplifies the required sampling procedure by reducing our multi-dimensional tran-

sition to the composition of a sequence of uni-dimensional transitions. This is very

helpful for the analysis of our model, which includes a large number of latent factors

and unknown parameters. Subsequently to the application of Gibbs sampler, we rely

on the MH algorithm in case it is difficult to proceed by sampling directly from the

required transition. The MH algorithm allows us to implement the required transi-

tion simply by drawing samples from a candidate-generating density, together with

a random selection rule. See Chib and Greenberg (1995) for a nice introduction of

the algorithm. For the choice of candidate-generating distributions, we follow the

suggestion by Geweke and Tanizaki (2001). For the candidate-generating distribu-

tions of latent factors, we use the distributions given by the transition equation of

our model. On the other hand, the prior distributions are used for the candidate-

generating distributions for the unknown parameters. As is well known, our MCMC

procedure is valid, since the underlying Markov chain is irreducible and aperiodic.

Now we derive the conditional posteriors and the required sampling methods to

implement the Gibbs sampler and MH algorithm, which are needed to execute our

MCMC procedure. For the common latent factor wt, we have for t = 1, . . . , n− 1

p(wt|X,W\t, Y,Ψ) = p(wt|xc,t, xd,t, wt+1, wt−1,Ψ)

∝ p(xc,t, xd,t|wt,Ψ)p(wt+1|wt,Ψ)p(wt|wt−1,Ψ)

= p(xc,t|wt, λc, σ2
c )p(xd,t|wt, λd, σ2

d)p(wt+1|wt, ρw)p(wt|wt−1, ρw),

(2.22)

algorithm applied in turn to one variable at a time.
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where W\t denotes W with wt deleted. We may readily deduce from (2.22) that the

conditional distribution of wt given X,W\t, Y , and Ψ is indeed N(RS−1, S−1), where

R =
∑

j

λjxj,t
σ2
j

+ ρw (wt+1 + wt−1) and S =
∑

j

λ2
j

σ2
j

+ 1 + ρ2
w.

Therefore, it is quite straightforward to draw samples for the common factor given

all values of other latent factors and unknown parameters.12

In case of the latent factor xj,t, the conditional posterior density is given by

p(xj,t|X\j,t,W, Y,Ψ) = p(xj,t|x\j,t, wt, yt,Ψ)

∝ p(yt|xt, wt,Ψ)p(xt|wt,Ψ) = p(yt|xt, θ, ρ)p(xj,t|wt, λj, σ2
j )

=
1

2π
det(DtΣDt)−1/2 exp

(
−y′

t(DtΣDt)−1yt
2

)
1√

2πσ2
j

exp

(
−(xj,t − λjwt)2

2σ2
j

)

∝ det(DtΣDt)−1/2 exp

(
−y′

t(DtΣDt)−1yt
2

− (xj,t − λjwt)2

2σ2
j

)
. (2.23)

Note that the conditional distribution of yt given xt, θ, ρ and that of xj,t given

wt, λj, σ
2
j are given by N(0, DtΣDt) and N(λjwt, σ2

j ) respectively. It is difficult to

directly draw samples from the conditional density in (2.23), and therefore, we use

the MH algorithm. In particular, we apply the algorithm with N(λjwt, σ2
j ) as the

candidate-generating density.

Finally, we derive the conditional posterior distributions of (θ, ρ, λ, σ2, ρw). The

12For t = n, we can similarly show that the conditional distribution of the common latent factor
is also N(RS−1, S−1) with R =

∑
j(λjxj,n/σ

2
j ) + ρwwn−1 and S =

∑
j(λ

2
j/σ

2
j ) + 1 + ρ2

w.
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conditional posterior density of θj, j = c, d, is given by

p(θj|X,W, Y,Ψ\θj) ∝ p(Y |X, θ, ρ)p(θj)

=
n∏

t=1

1
2π

det(DtΣDt)−1/2 exp

(
−y′

t(DtΣDt)−1yt
2

)
p(θj).

Similarly, the conditional posterior density of ρ is

p(ρ|X,W, Y,Ψ\ρ) ∝ p(Y |X, θ, ρ)p(ρ)

=
n∏

t=1

1
2π

det(DtΣDt)−1/2 exp

(
−y′

t(DtΣDt)−1yt
2

)
p(ρ).

Moreover, the conditional posterior densities of λj and σ2
j are given by

p(λj|X,W, Y,Ψ\λj) ∝ p(Xj|W,λj, σ2
j )p(λj)

=
n∏

t=1

1
2πσ2

j

exp

(
−(xj,t − λjwt)2

2σ2
j

)
p(λj),

p(σ2
j |X,W, Y,Ψ\σ2

j ) ∝ p(Xj|W,λj, σ2
j )p(σ

2
j )

=
n∏

t=1

1
2πσ2

j

exp

(
−(xj,t − λjwt)2

2σ2
j

)
p(σ2

j )

and

p(ρw|W,Ψ\ρw) ∝ p(wt|wt−1,Ψ)p(ρw)

= exp[−1
2

{(ρw)2(
n∑

t=1

(wt−1)2) − 2ρw(
n∑

t=1

wtwt−1)}]p(ρw)

for j = c, d. We apply the MH algorithm to sample from the conditional posterior dis-
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tributions of (θ, ρ, λ, σ2), using their prior distributions as the candidate-generating

densities. We use Gamma priors for the parameters α, β, σ2 and λ, and normal priors

for the parameters κ and ρ.

2.2.2 Bayesian GMM Estimator with Latent Factors

An appealing characteristic of GMM estimator is that non-linear structural mod-

els are estimable without knowing the exact form of conditional distribution by re-

lying only on moment conditions. The main issue of our moment condition (2.1) lies

in the existence of latent factors associated with stochastic volatility. Bayesian ap-

proach of identification is basically to apply Monte Carlo integration, after generating

a sequence of samples using posterior marginal densities of the model parameters.

However, it is often difficult to have an exact form of posterior densities with more

complex models, and Gibbs sampling and Metropolis-Hastings algorithms are helpful

tools to overcome this hardship. In a nut shell, this approach draws samples based on

the previous samples to produce a sequence of estimates. Chernozhukov and Hong

(2003) develop a Bayesian estimator using general statistical criterion functions, in-

stead of the conventional likelihood function. This allows the GMM criterion to be

applied in an MCMC framework. Specifically, they define transformations of statis-

tical functions as quasi-posterior distributions, then they form an MCMC chain to

draw samples. They show that this not only reduces computational burden, but also

this estimator is as efficient as the extremum estimators, consistent with the large

sample theory. Gallant et al. (2014) suggest that this Bayesian GMM approach can

be extended to incorporate latent factors under some mild conditions. The key point

is that drawing samples from the conditional posterior implied by the GMM criterion

function is equivalent to identifying a model using the conventional GMM estimator

when observable time-series data are sufficiently long. Following these papers, we
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estimate the preference parameters using an MCMC approach, as briefly explained

in the beginning of the section. To be concrete, we explain this procedure in the

below. Using the MCMC procedure developed in Section 2.2.1, we have a sample of

the volatility function f(x)̇. Then, together with the observable data Y , we form a

criterion function as

LT= −1
2

(
1√
T

T∑

t=1

Ωt (ς)

)′

HT (ς)

(
1√
T

T∑

t=1

Ωt (ς)

)
, (2.24)

where Ωt (ς) is a moment condition that satisfies equation (2.1), i.e., E [Ωt (ς)] =

0 holds, and ς = (γ, ψ) is the vector of preference parameters, and HT (ς) is a

weighting function. Equation (2.24) is the objective function to be maximized for a

GMM estimation. Following Chernozhukov and Hong (2003), quasi-posterior QT (ς)

is defined as

QT (ς) =
eLT (ς)

∫
ς e

LT (ς)dς.
(2.25)

Equation (2.25) states that QT (ς) is a normalized GMM criterion function. Note

also that equation (2.25) is not a true posterior, because it does not come from the

conditional likelihood. Chernozhukov and Hong (2003) and Gallant et al. (2014)

show that we can draw a Markov chain
(
ς(1), · · · , ς(n)

)
from a quasi-posterior Q

based on the GMM criterion function. They also show that this method is valid

regardless of the likelihood formulation, and it is basically identical to drawing from

the GMM estimation asymptotically.

2.3 Data and Summary Statistics

We use monthly consumption and dividend series from January 1959 to January

2013 to apply the method we developed. The consumption data for non-durable

goods and service expenditure series are obtained from the Federal Reserve Banks
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of St. Louis web site (http://research.stlouisfed.org) and the dividend, the stock

market index, and the risk-free rate data come from the Center for Research in

Security Prices (CRSP). Dividend growth is generated from the seasonally-adjusted

real dividend series, which is created using value-weighted returns with and without

dividend.13 Additionally, both series were adjusted as per capita values. There are

total 650 observations. Table 2.1 provides summary statistics for the consumption

and dividend growth rates, the market return, and the risk-free rate using monthly

data.

The annualized average consumption growth (gc) is around 1.8%, with the annu-

alized standard deviation of 1.42%, and the annualized equity premium is over 5.5%

with the annualized standard deviation of over 15%. Correlation between the con-

sumption growth and the excess market return is about 0.17. Thus, the covariance

between the two variables is much smaller compared to the size of equity premium,

and this is the essence of the prominent asset pricing puzzle. In addition, correlation

between consumption growth and dividend growth is around 0.033, which suggests

that the link between the two variables is rather tenuous. Instead, we focuses on the

common part of the stochastic volatility of consumption and dividend growth rates.

2.4 Quantitative Results

2.4.1 Macroeconomic Uncertainty

Top panels of Figure 2.3 display the monthly consumption and dividend growth

rates. Bottom panels show the estimated conditional mean components (µj + νj,t,

j = c, d). The estimated conditional mean components do not appear to move

13Real dividend is computed using (returns with dividend - returns without dividend) × market
price index / CPI, where CPI is the consumer price index from the St. Louis Fed. We use cash
dividends to measure dividend series and this may be insufficient to capture the total payouts
distributed by corporations. Since we want to compare our results with the existing studies, we
use the conventional definition of the dividend series. It would be interesting to analyze how the
volatilities of the total payouts differ from those of the cash dividends.
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Table 2.1: Summary Statistics

(a) Basic Stat.

mean std. max. min. skewness kurtosis

gc 0.0015 0.0041 0.0178 -0.0178 -0.0628 4.9741
gd 0.0012 0.1425 0.4868 -0.5373 -0.0061 4.3409
rm 0.0055 0.0449 0.1582 -0.2290 -0.4938 4.6704
rf 0.0009 0.0029 0.0182 -0.0109 0.0265 6.1380
rm − rf 0.0047 0.0446 0.1610 -0.5088 0.0557 4.8256

(b) Correlations

gc gd rm − rf rf
gc 1 0.033 0.166 0.327
gd 1 0.252 0.068
rm − rf 1 0.067
rf 1

Notes: Table 2.1 displays summary statistics of data used in Section 2. In panel
(a), presented are the mean, the standard deviation (std.), the maximum (max),
the minimum (min), the skewness, and the kurtosis. Panel (b) displays correla-
tions of these variables. In the table, gc, gd, rm, and rf refer to the consumption
growth, dividend growth, stock market return, and risk-free rate, respectively.
All the variables are at monthly frequency and adjusted in real terms. Both
consumption and dividend growth rates are per capita. For the market returns,
dividends and risk-free rate, the database from the center for research in security
prices (CRSP) is used, and the consumption data is from the St. Louis Federal
Reserve database (FRED). The period covered is from January 1959 to January
2013.

closely together, and the correlation between the components is around 0.103. When

νd,t is projected onto νc,t with a constant, the estimated coefficient is 0.45 with

a Newey-West corrected t-statistic of 1.73. Thus, the long-run risk channel from

the conditional mean growth component may exist, yet it is quantitatively weak to

generate a sizable equity premium, as explained in Section 2.2.

For our Bayesian estimation, we draw 120000 samples for each parameters and

latent variables by the Gibbs sampler and the MH algorithm, and discard the first

40000 samples, which are considered as samples in the burn-in period. Panel (a)

of Table 2.2 shows that the estimated parameters are well converged and mostly

significant. Standard errors are computed using the method of conventional Monte
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Figure 2.3: Consumption and Dividend Growth Rates
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Notes: The figures in the top panel present the consumption and dividend growth rates
(gc,t and gd,t) during the period of January 1959 to January 2013. The figures in the bot-
tom panel show the estimated conditional mean components of consumption and dividend
growth rates (νc,t and νd,t).
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Carlo standard error to adjust for possible autocorrelations in the MCMC samples.

Though λc has a relatively high value of convergence diagnostic, their small standard

errors show that sample series are quite concentrated after the burn-in period.14

We can see the αc and βc are smaller than αd and βd due to the volatile div-

idend process. The lower bounds of volatility for both consumption and dividend

growths are
√
α̂c = 0.2% and

√
α̂d = 4.24%, and the upper bounds of volatility are

√
α̂c + β̂c = 0.58% and

√
α̂d + β̂d = 24.35% in a month, respectively. The values

of λ̂c and λ̂d indicate that the volatility generating processes xc,t and xd,t are scaled

down compared to the magnitude of the macro uncertainty wt. As mentioned early,

Figure 2.1 displays the estimated volatility functions of the consumption and divi-

dend growths, and it shows that the volatilities in the macro level evolve over time

via neither an explosive process nor an abrupt regime-shifting process. Thus, when

there exists a shock to the macroeconomic uncertainty wt, this causes the volatilities

of the consumption growth and the dividend growth to migrate into a transition

period, and the uncertainty about the regimes of consumption and dividend growth

is likely to persist over time. This increases the equity premium. Regarding the

volatility of idiosyncratic component, σ̂2
c is larger than σ̂2

d, which implies that the

signal of the dividend process is stronger than that of consumption process such that

the dividend volatility generating process xd,t is closer to the common macro volatil-

14The measure of convergence diagnostic (CD) is given by

CD =
θA − θB√
ω̂2

A

nA
+

ω̂2

B

nB

,

where A is the set of Gibbs samples with nA iterations after burn-in period and B is the set of Gibbs
samples with last nB observations, and ω̂2

A and ω̂2
B are their HAC estimates obtained using Parzen

window. By the convention we set nA/n = 0.1 and nB/n = 0.5, where n denotes the number of
Gibbs samples after burn-in periods. As shown in Geweke (1992), CD converges to the standard
normal distribution as the number of samples goes to infinity, if the sequence of Gibbs samples
for a parameter is stationary. Jacquier et al. (2004) warn that one must perform careful sampling
experiments to establish convergence across a wide range of empirically relevant parameter values.
Our samples show that they wander a lot at the beginning, but converge after the burn-in period.
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Table 2.2: Estimation Results

Posterior

Parameters Mean Std. Err. 5% 95% Convergence

(a) Stochastic Volatility

αc 0.000004 0.0000006 0.000003 0.000005 -0.1742
βc 0.000030 0.000005 0.000022 0.000041 -0.3439
κc -1.1473 0.4529 -2.0349 -0.2597 -0.6198
λc 0.6181 0.0910 0.4397 0.7966 -1.8360
ρ 0.0394 0.0428 -0.0436 0.1232 0.8676
σc 2.6602 0.8205 1.0521 4.2683 -0.3369
αd 0.0018 0.0016 -0.0013 0.0050 0.2167
βd 0.0575 0.0191 0.0201 0.0949 0.2283
κd 0.5369 0.6406 -0.7186 1.7925 0.1306
λd 0.1087 0.0612 -0.0112 0.2286 -0.7868
σd 1.7705 0.9702 -0.1312 3.6721 0.0816
ρw 0.9940 0.0056 0.9831 1.0050 0.7509

(b) Preferences

γ 2.2957 1.0371 -0.7663 5.4948 -0.5720
ψ 7.6839 5.6899 -16.7343 36.9302 0.4702

Notes: This table presents the parameter estimates of the model using the
Bayesian estimation method developed in Section 2. Panel (a) displays the es-
timates of the stochastic volatility model for consumption growth and dividend
growth, and Panel (b) reports those of the preference function. Mean, Std. Err.,
5%, 95%, and Convergence refer to the sample means, the standard errors, the
5th quantiles, the 95th quantiles, and Geweke (1992)’s convergence diagnostics,
respectively. Conventional conjugate priors are used to draw samples in the be-
ginning of the estimation, and the first 40,000 samples out of 120,000 samples
are considered as the burn-in period and discarded.
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ity generating process wt. The estimated value of ρ̂ indicates that the correlation

between the short-run shocks is virtually zero.

Figure 2.4: Volatility Factors of Consumption and Dividend Growth Rates.
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Notes: The figures in the top panel show the estimated conditional variances (fc,t and fd,t)

in conjunction with y2
c,t and y2

d,t, where yj,t, j = c, d is defined as yj,t =
√
fj(xj,t) εj,t+1

in equation (2.20). The bottom panel displays the extracted common latent factor wt in
thick line and the estimated conditional variances of consumption and dividend growth
rates.

Figure 2.4 displays the estimated latent common macroeconomic uncertainty pro-

cess wt and the estimated volatility generating processes for the consumption and

dividend growth rates xc,t, xd,t. Volatility-generating processes of both consumption

growth and dividend growth are highly persistent, due to the common macroeco-
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nomic uncertainty process wt. In fact, the value of the AR(1) coefficient, ρw is

around 0.99. We believe that this is another long-run risk channel that affects both

the stochastic discount factor and the cash flow volatility.

Figures 2.1 and 2.4 allow us to think about thresholds for a regime change. To be

more specific, we define the transition period by selecting the endpoints of this inter-

val at f ′′′(x) = 0. Then the area above the upper boundary can be regarded as the

high volatility regime and the region below the lower boundary as the low volatility

regime. We can interpret that the fundamental factors that generate volatility stayed

in the transition regimes in the 1960s and 1970s, then entered into the high volatility

regime in the early 1980s. From the mid-1980s until the early 1990s the common fac-

tor remained again in the transition period with sharply decreasing trends. Except

for the 2001-2002 period and the 2008 financial crisis period, the US economy was in

the low volatility period, often referred to as the great moderation period. Notably,

during most of the post-war period, the macroeconomic volatility was in transition

periods. Thus, models without incorporating the intermediate regimes are likely to

be misspecified in capturing business cycles. At the same time, the existence of the

upper and lower boundaries is necessary to keep this volatility process from explod-

ing, given its strong persistence. Knowing the maximum distance of consumption

volatility from a current level of uncertainty, what matters to consumers would be

how fast news on uncertainty evolves over time and how closely the current level

of uncertainty approaches the maximum or the minimum level. In this regard, eco-

nomic agents’ preferences on different persistence of a fundamental shock are crucial

to account for the empirical evidence of high equity premium, despite the small level

of the consumption volatility.

Figure 2.5 shows the relation between the common macro uncertainty factor

wt and business cycle fluctuations recorded by the National Bureau of Economic
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Figure 2.5: Business Cycles and the Macroeconomic Uncertainty
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Notes: The solid line represents the common volatility generating process wt and
the shadow area stands for the recession period from the NBER.
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Research (NBER). We find that the recession periods are well-matched with the local

peaks of the common volatility generating process. In fact, the common volatility

factor reached its local peak just before the entry into the 1970s, 1980s, the 2001

recession, and the 2007-2008 financial crisis. Even the 1991 mini credit crunch was

predicted by a small, but a conspicuous increase in the macro uncertainty factor

wt. According to the previous literature, one of the most foundational links between

asset returns and macroeconomic variables is that the expected asset returns are

higher at business cycle troughs, reflecting the risk-return trade-offs with counter-

cyclical variations. Our macroeconomic uncertainty factor rises and reaches its local

maximum when a recession begins, i.e., an economic downturn starts around the time

of rising aggregate uncertainty, and the degree of the uncertainty becomes lower, as

the recession period is coming to an end. Thus, we expect that this is going to be

well-connected to a higher risk premium demanded by asset market participants. In

the next section, we discuss this link.

2.4.2 Asset Pricing Implications

In this subsection, we study the implications of our model on asset prices, using

numerical simulations. For this purpose, we focus on the roles played by two core

preference parameters (γ and ψ) as well as the parameters of the volatility function.

Panel (b) of Table 2.2 shows that the estimate of the relative risk aversion parameter

γ is around 2.3 and accurately measured. Mehra and Prescott (1985) consider that

a maximal level for relative risk aversion is around 10 and Barro (2006) argues that

the usual view in the related literature is between 2 and 5. In this light, our result for

the risk aversion parameter is reasonable and it is, in fact, a significant improvement

over the existing studies which reported the estimated values of 15 to over 100.15

15Although the external habit formation allows a low value of γ, the relative risk aversion in this
setup is not γ, but associated with γ/Xt, where Xtis a time-varying consumption surplus factor

44



For the elasticity of intertemporal substitution ψ, we have the estimates of 7.7, and

the measurement is somewhat noisy. Several papers consider that a plausible value

of ψ exceeds 1. For example, the benchmark value in case of Bansal and Yaron

(2004) is 1.5, and Hansen (1982), Attanasio and Weber (1989), Vissing-Jorgensen

(2002), Jeong et al. (2015), etc estimate the parameter in excess of 1.5. In most

studies, however, their estimates have large standard errors, and our case is not

an exception. At least, we confirm that our finding for the EIS is similar to the

results from the existing studies. One important point related to our estimates is

that γ̂ > 1/ψ̂ holds. This implies that early resolution is preferred in this economy.16

Thus, our volatility setup can generate a channel for risk premium as discussed in

the previous section.

To evaluate the performance of our asset pricing model, we simulate the 650 data

points series of consumption and dividend for 1000 times using the parameters in

Table 2.2 as our baseline case. From these simulated data, we generate asset returns,

which are reported as the baseline result in Table 2.3. Our simulated equity premium

is 5.35%, and the risk free rate is around 1.5% per year. This is consistent with most

of the empirical results. We match the second moments of the equity premium and

the risk free rate as well. When compared with the existing studies, our model

performs well. We believe that the results come from a realistic model of the time-

varying macroeconomic uncertainty, combined with the recursive preferences.

We run the sensitivity check to understand the roles of the risk aversion coefficient

and the EIS parameter. First, we increase the risk aversion coefficient from 1 to 10.

Not so surprisingly, larger values of the risk aversion parameter generate higher equity

premiums. In fact, the equity premium becomes too large compared with the actual

and the relative risk aversion is still very high.
16In a recent experimental study by Brown and Kim (2013), they show that most subjects prefer

early resolution and the risk aversion is greater than the reciprocal of the estimated EIS.
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Table 2.3: Model Implied Annual Asset Returns

RRA(γ) EIS(ψ) E(rf ) σ(rf ) E(rm) σ(rm) E(rm − rf )

Data 0.0108 0.0099 0.0660 0.1887 0.0552

Base Line 2.30 7.70 0.0147 0.0015 0.0682 0.2073 0.0535

Change in γ 1.1 7.70 0.0232 0.0017 0.0509 0.1682 0.0276
3 0.0131 0.0020 0.0790 0.3758 0.0659
5 0.0081 0.0025 0.1225 0.5554 0.1143
10 0.0003 0.0036 0.2805 0.9010 0.2802

Change in ψ 2.30 0.67 0.0579 0.0124 0.0757 0.0916 0.0178
1.5 0.0365 0.0055 0.0688 0.2066 0.0323
5 0.0185 0.0020 0.0688 0.2925 0.0503
10 0.0143 0.0014 0.0689 0.3132 0.0556

Notes: This table shows simulation results of the model, using the estimated
parameters. For simulation, 650 data points of the aggregate consumption and
dividend processes are generated for 1000 times, plugging the estimated param-
eters into the asset pricing model. Then, asset prices are numerically computed.
The first row (Data) refers to the sample moments from the data in annual terms,
the second row (Base Line) reports the simulation results with the estimated pa-
rameters. The third row (Change in γ) displays the simulation results when
different relative risk aversion (RRA)coefficients are used, holding constant the
coefficient of the elasticity of intertemporal substitution (EIS), and the fourth
row (Change in ψ) varies the EIS, fixing the RRA.

data when the risk aversion is over 5. Next, we change the EIS parameter. We vary

the EIS parameter between 0.67 and 10, holding the risk aversion parameter fixed at

the benchmark value. We borrow the range of the EIS parameter from the existing

studies, such as Bansal and Yaron (2004), Jeong et al. (2015) and Hansen et al.

(2007). According to the result, a low value of EIS decreases the equity premium by

increasing the risk-free rate. Once the EIS is greater than one, the equity premium

starts increasing significantly. However, as the EIS parameters reaches 5, the equity

premium barely increases. Therefore, one can infer that a weak identification problem

can exist in case of identifying the EIS parameter.17

Finally, we study in detail the volatility channel of our model in producing the key

17For a more discussion on the nature of the weak identification for the EIS in the context of
Epstein-Zin-Weil preferences, see Jeong et al. (2015).
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Table 2.4: Volatility Channel and Asset Returns: Robustness Check

Parameters E(rf ) σ(rf ) E(rm) σ(rm) E(rm − rf )

Changes in ρω 0.9 0.0164 0.0012 0.0610 0.2007 0.0446
0.7 0.0165 0.0013 0.0582 0.1203 0.0417
0.5 0.0131 0.0006 0.0529 0.1189 0.0398

Changes in λc, λd 0.1 0.1 0.0165 0.0012 0.0661 0.3044 0.0496
0.5 0.5 0.0159 0.0015 0.0682 0.3073 0.0523
100 100 0.0147 0.0018 0.0680 0.3130 0.0533

Notes: Table 2.4 reports simulation results when volatility parameters vary. The top panel
shows the moments of asset returns when the persistence of the volatility factor changes, and
the bottom panel refers to the case with different degrees of smooth transitions. That is,
the parameter ρω refers to the AR(1) coefficient for the latent volatility factor ωt (i.e., ωt =
ρωωt−1 + ut) and λj determines the slope of the transition as w changes. The conditional
volatilities for consumption and dividend (j = c, d) are defined as

fj(wj,t) = αj +
βj

1 + exp [−(λjωt + ej,t − κj)]
.

moments of asset returns by simulating the model with alternative parameter values

of the volatility setup. Table 2.4 tabulates the result. First, we simulate the model

with different values of the persistence of the latent volatility factor ωt denoted as ρω.

When the latent factor becomes less persistent, the model has difficulty in matching

data, especially in terms of the average equity premium and the average market

volatility. Since this parameter determines how slowly macroeconomic uncertainty

unfolds over time, a lower value of this parameter weakens the volatility channel.

For instance, with a value of ρω being 0.5, the model produces 3.98% of the equity

premium per year, and the volatility of the market return is low around 12%.

The second set of simulations try different values of the smooth transition param-

eter λ. As discussed early, this parameter has two effects on the conditional volatility

of consumption and dividend growth rates. From the definition of volatility function

f(λω), a lower λ decreases the level of volatility which reduces equity premium. At
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the same time, however, from equations (2.16) to (2.19), a lower λ creates a slower

and more dampened transition that leads to a higher premium from volatility risk.

Thus, if the second channel is quantitatively important, simulated equity premiums

is high, despite a small amount of volatility. Indeed, this is the case, according to the

bottom panel of Table 2.4. With the low value of both λc, λd at 0.1, the model can

generate an equity premium of 5%. Note that higher values of these parameters (λc

and λd) refer to stochastic volatility models close to a two-regime switching setup.

With counterfactual values of 100 for both λc and λd, the simulated equity premium

is around 5.33%, but the average variance of excess returns is much higher than the

empirical evidence. This again shows the importance of the smooth transition that

amplifies the uncertainty premium. Overall, our asset pricing model accounts for the

key characteristics of the asset return data with plausible values of the key preference

parameters.

2.5 Conclusion

Macroeconomic models have strong theoretical implications on asset prices. How-

ever, empirical links between macroeconomic and financial variables appear to be

weak according to the existing studies which report a small level of macroeconomic

volatility as the main suspect. Macroeconomic uncertainty is latent to econome-

tricians, and therefore, a measurement problem exists. Furthermore, a valid trans-

mission mechanism is required to amplify its small and smooth dynamics into large

fluctuations in financial variables. In Section 2 we addressed the issue by develop-

ing and estimating a consumption-based asset pricing model with an emphasis on

new stochastic volatility function. To quantify the macroeconomic uncertainty, we

introduce a non-linear stochastic volatility model with consumption and dividend

processes. In particular, we assume that the volatility function takes a logistic form
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with a common factor as well as a stationary idiosyncratic factor. That is, this

setup has two asymptotic regimes with a continuum of smooth transitions and the

fluctuations of the common latent factor. The main advantage of this setup is that

volatility can be persistent without explosive dynamics. This is not only realistic to

describe macroeconomic volatility but also relevant for producing uncertainty premi-

ums because it allows slow and potentially long transition periods, perceived to be

risky by consumers, even if the level of volatility is not high. We develop a Bayesian

algorithm and identify this model numerically to avoid the difficulties with multidi-

mensional integrations. We find that the extracted volatility factor explains well the

realized volatility series of both the consumption and the dividend data. In addition,

we see a counter-cyclical relation of the extracted macroeconomic uncertainty. To

make full use of our volatility setup, we then combine this volatility model with a re-

cursive utility function which has a preference ordering on the persistence of shocks.

Therefore, the key insight of our model is that news about how rapidly the macro

uncertainty reaches its highest or lowest point can also be a source of risk because

the future outlook on an economy is unknown, and this becomes riskier if the current

level of uncertainty is in transit.

We show that the estimated risk-aversion coefficient is around two, and the in-

tertemporal elasticity of substitution is greater than one. Recent works adopting

Epstein-Zin-Weil preferences report the relatively high estimates of the risk aversion

coefficient to generate high risk premium through the persistent long-run risk chan-

nel. However, our model produces a high equity premium even without resorting to

the common long-run risk component in the conditional means of consumption and

dividend growth rates. Based on our theoretical and empirical results, we argue that

the common, non-linear stochastic volatility of macroeconomic variables are crucial

in understanding business cycle fluctuations and the related asset return dynamics.
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3. USING HODRICK-PRESCOTT FILTER TO NONPARAMETRICALLY

ESTIMATE CONDITIONAL MEAN PROCESS

Section 3 is organized as follows. In Section 3.1, we introduce our model and

methodology where we compare it with the conventional HP filter and the Local

Linear estimator commonly used for fitting conditional mean nonparametrically. We

present our new approach in both discrete and continuous time models. Section

3.2 reports our simulation studies, which evaluate the performance of our new HP

estimator relative to the conventional Local Linear estimator in both discrete and

continuous time models considered in Section 3.1. The empirical illustrations pre-

sented in 3.3 consist of the analysis of the US GDP growth rates, inflation rates,

unemployment rates and short term interest rates at both quarterly and monthly

frequencies. Section 3.4 concludes this Section, and Appendix B collects additional

figures.

3.1 Model and Methodology

3.1.1 Discrete Time Model

We consider a time series (yt) defined as

yt = mt + ut, (3.1)

where (ut) is a martingale different sequence with respect to the filtration (Ft) sig-

nifying the information available at time t. It follows immediately that we have

mt = E(yt|Ft−1),
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since E(ut|Ft−1) = 0, and (mt) is the conditional mean process of (yt) with respect

to the filtration (Ft). Clearly, (mt) and (ut) in (3.1) represent respectively the

predictable and unpredictable component of (yt). Note that the conditional mean

process (mt) includes the cyclical component as well as the trend component of (yt),

i.e.,

mt = τt + ct,

where τt and ct signify the trend and cyclical components of yt.

In what follows, we assume that (yt) is observed for t = 1, . . . , n, where n denotes

the sample size.

3.1.1.1 Hodrick-Prescott Filter In Section 3, we propose to use the Hodrick-Prescott 

(HP) filter to estimate the conditional mean process mt of yt. We propose the use of a 

modified version of the Hodrick-Prescott filter as an alternative way of estimating 

conditional mean process mt nonparametrically. The conventional HP filter 

decomposes a variable into trend and cyclical component, and has been widely used as 

an effective tool to study business cycles.

Here we are suggesting to use the HP approach for a different objective and

use to filter out the conditional mean process mt, which is the predictable part of

the observed time series yt. For a given filtration Ft, yt can be decomposed of its

conditional meanmt = E(yt|Ft−1) that includes both trend τt and cyclical component

ct of yt, and a sequence of martingale difference unpredictable error component, ut.

One of the key characteristics of a martingale difference sequence is that it has

no serial correlation. Thus, if we apply HP procedure with an optimal smoothing

parameter λ∗ such that the filtered-out residuals’ sample auto-correlation to be zero,

then the fitted process m∗
t will capture all of the predictable components of the

time series given the past information and therefore may successfully filter out the
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conditional mean process nonparametrically.

To introduce our estimator, we let

m(λ) = min
m

(
n∑

t=1

(yt −mt)2 + λ
n−1∑

t=2

[
(mt+1 −mt) − (mt −mt−1)

]2
)

(3.2)

with m(λ) =
(
mt(λ)

)
for each λ > 0. The first term in the objective function is the

sum of squared residuals
∑n
t=1(ut)

2 that penalizes poor fit. The second term puts a

prescribed penalty to the lack of smoothness in mt. Note that we can allow for any

deterministic linear trend without penalty in HP filter. We define

λ∗ = argmin
λ>0

∣∣∣ρ(λ)
∣∣∣

where

ρ(λ) =

(
n∑

t=1

u2
t (λ)

)−1 n∑

t=2

ut(λ)ut−1(λ)

with ut(λ) = yt − mt(λ) is the first order sample auto-correlation of the residuals

from the trend extraction of a time series (yt) using the HP filter with the penalty

parameter λ. The estimator (m̂t) of (mt) we propose is then given by

m̂t = mt(λ∗). (3.3)

Therefore, our estimator (m̂t) of (mt) is defined simply as the predictable component

of (yt) extracted using the HP filter with the penalty parameter minimizing the first

order sample correlation of the residuals.

3.1.1.2 Choice of Smoothing Parameter λ Let ut(λ) = yt−mt(λ) be the residuals from 

yt after extracting mt(λ) using the HP smoothing parameter λ. In estimating 

conditional mean process, we use the optimal smoothing parameter λ∗ which makes
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the fitted residuals as close as possible to martingale difference sequence process

by minimizing the absolute value of the first order sample correlation of the fitted

residual process as described above.

Here we make two comments on the smoothing parameter λ used for the HP filter

and the bandwidth parameter h used for the Local Linear estimator. First, we note

that the HP filter smoothing parameter λ. As λ → ∞, m̂t approaches to the linear

trend. i.e.,

m̂t = α̂+ β̂(t/n),

where α̂ and β̂ are the least squares estimators for the intercept and slope parameters.

On the other hand, m̂t becomes equivalent to the process itself yt as λ → 0. We also

note that as the bandwidth parameter h for the Local Linear estimator increases to

infinity, m̃t approaches to the sample mean. i.e.,

m̃t =
1
n

n∑

t=1

yt.

However, for h = 0, m̃t becomes equivalent to yt.

As an illustration, Figure 3.1 present ρ(λ) for the quarterly US real GDP growth

rates as a function of 1/λ. Note that ρ(λ) is positive for 1/λ small, decreases mono-

tonically as 1/λ increases and crosses the horizontal axis to become negative even-

tually for 1/λ large. We have λ∗ given by λ∗ = 20.03. For the US quarterly macroe-

conomic data including GDP growth rates, it is recommended to use λQ = 1, 600.

It is natural and well expected that λ∗ ≪ λQ, since the HP filter is used originally

to extract only the persistent trend component, while we adopt it here to filter out

the transitory cyclical component as well, of a given time series. We have ρ(λ∗) = 0,

though ρ(λQ) = 0.278. For comparisons, we provide in Figure 3.2 the extracted
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Figure 3.1: Optimal Smoothing Parameter λ∗ for Quarterly GDP Growth Rates
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Notes: In this figure, we present ρ(λ) for the quarterly US real GDP growth rates as
a function of 1/λ. The x−axis is for inverse of λ so that the residual autocorrelation
starts from some positive value at the origin. The y−axis is for the residual sam-
ple autocorrelation rho(λ) after the estimated m̂t(λ) has been subtracted from the
quarterly GDP growth rates.

components with λ = λQ and λ∗. Also presented there are the original time series

and the fitted residual process obtained with λ = λQ and λ∗.

The pattern we observe in Figure 3.1 for the quarterly US real GDP growth rates

is typical for many economic time series. It is indeed well expected. Note that we

have

ut(∞) = yt −mt(∞) = yt − ȳn

for t = 1, . . . , n, where ȳn = (1/n)
∑n
t=1 yt. It follows that

ρ(∞) =

(
n∑

t=1

(yt − ȳn)2

)−1 n∑

t=2

(yt − ȳn)(yt−1 − ȳn),
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Figure 3.2: Real GDP Growth Rates (Quarterly)
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(b) Fitted GDP Growth Rates
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(c) Fitted Means with λQ and λ∗
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(d) Fitted Residuals: ut(λQ) and ut(λ
∗)

Notes: In this figure, we illustrate our empirical result using Quaternary real GDP
growth rates. In panel (a), time series of U.S. GDP growth rate is plotted. Panel
(b) and (c) compares the HP filtered trend with λQ and λ∗. Our optimal smoothing
parameter λ∗ is found at 20.03, which is well below the conventionally used 1600.
Panel (d) compares the fitted residuals ut(λQ) and ut(λ

∗) after subtracting τt(λQ)
and τt(λ

∗).

i.e., the usual sample autocorrelation of (yt), and therefore, we expect ρ(λ) > 0 at

1/λ = 0 for many economic time series as we have for the US GDP growth rates.

Moreover, we naturally expect that the positive first order sample autocorrelation

ρ(λ) of the residuals
(
ut(λ)

)
decreases as 1/λ increases from zero, since

(
mt(λ)

)
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becomes time varying and starts to explain some positive correlation ρ(λ) of (yt).

However, if 1/λ becomes too large,
(
mt(λ)

)
becomes too wiggly and generates spu-

rious negative sample autocorrelation ρ(λ) of the residuals
(
ut(λ)

)
.

3.1.1.3 Nonparametric Estimation of Conditional Variance We may use the HP filter 

to estimate the conditional variance process as well. To show this, we let

zt = σtwt

where it is assumed that (σt) is adapted to a filtration (Ft−1) such that E(wt|Ft−1) =

0 and E(w2
t |Ft−1) = 1. Under the assumption, (σ2

t ) is identified as the conditional

variance process of (zt), and we have

z2
t = σ2

t + σ2
t (w

2
t − 1),

which we may write as in (3.1) with

yt = z2
t , mt = σ2

t , ut = σ2
t (w

2
t − 1).

Note in particular that (ut) with ut = σ2
t (w

2
t − 1) is a martingale difference sequence

with respect to the filtration (Ft). Of course, it is also possible to estimate both

the conditional mean and conditional variance processes of a given time series by

applying the HP filter successively. We estimate the conditional mean process of a

given time series in the first step with our choice of the smoothing parameter λ∗,

and successively in the second step we get the estimated conditional variance of the

given time series by estimating the conditional mean of the squared residual process

obtained from the first step.
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3.1.1.4 Conventional HP filter The conventional HP filter decompose yt into trend and 

cyclical components:

yt = τt + ct

By taking derivatives of the objective function w.r.t (τt)nt=1 and rearranging them,

the solution can be written as following matrix form

y = (λF + In)τ.

The trend and cyclical component τ and c can be written as

τ = (λF + In)−1y

c = y − τ

If we assume that ct and △2τt are i.i.d N(0, σ2
1) and N(0, σ2

2), then the conditional

expectation of τt given the observations would be the solution to the program when
√
λ = σ1/σ2. Hodrick and Prescott (1980) and Hodrick and Prescott (1997) assume

5% variability in cyclical component and (1/8)% change in growth rate of trend

component in a quarter, and suggest to use λ = 1600, i.e.,
√
λ = 5/(1/8) = 40. King

and Rebelo (1993) discuss the properties of the filter in both time and frequency

domain. Ravn and Uhlig (2002) study how to adjust HP smoothing parameter when

changing the frequency of observations and suggest to use λ = 6.25 for annual data.

de Jong and Sakarya (2015) proposed a new representation for HP filter without

using ARMA based approximation.

3.1.1.5 Local Linear Kernel Estimator The conditional mean process (mt) of 

(yt) can also be estimated nonparametrically using the Local Linear kernel estimator
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(m̃t) with cross-validation bandwidth smoothing from the nonparametric regression

of (yt) on time t for t = 1, . . . , n, which is given by

m̃t = argmin
−∞<a<∞

n∑

s=1

(
ys − a− b(t− s)

)2

K
(
t− s

nh

)
(3.4)

for t = 1, . . . , n, where K is the kernel function and h is the bandwidth parameter.

The selection of bandwidth parameter h is critical for the finite sample performance

of (m̃t) as we discuss further below.

To more formally discuss the properties of estimators, we often assume that the

conditional mean process (mt) is generated from a function ω : [0, 1] → R as

mt = ω(t/n) (3.5)

for t = 1, . . . , n. Strictly speaking, the conditional mean process in this case should

be defined more formally as a triangle array of random variables and denoted by

(mn,t) instead of (mt). However, for notational simplicity, we continue to denote it

by (mt). This should cause no confusion.

If the conditional mean process (mt) is generated as in (3.5), we may define

ω̃ : [0, 1] → R correspondingly as

ω̃(r) = argmin
−∞<a<∞

n∑

s=1

(
ys − a− b(r − s/n)

)2

K

(
r − s/n

h

)
,

for r ∈ [0, 1], so that m̃t = ω̃(t/n). In this case, ω̃ reduces to a usual nonparametric

estimator of ω, for which all well known asymptotic properties of kernel estimator

hold under appropriate regularity conditions for the kernel function K, the band-

width parameter h and the regression function ω, as well as for the observed time

series (yt). Selection of bandwidth is critical for the performance of m̃t. We may
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use the data-dependent, leave-one-out cross-validation method, and search for the

bandwidth h = cn−1/5 over the range 0 ≤ c ≤ 10. It is well known that such data

driven cross-validation method yields an asymptotically optimal bandwidth, which

also performs well in finite samples, for a wide class of models. See Li and Racine

(2004) for more details.

3.1.2 Continuous Time Model

Our approach can also be used to estimate the conditional mean process in a

continuous time model

dY (r) = µ(r)dr + dU(r), (3.6)

where U is a martingale with respect to a filtration (F(r)) so that E(dU(r)|F(r)) = 0,

and µ(r)dr represents the instantaneous conditional mean of dY (r). To estimate µ

using the HP filter, we note

Y (tδ) − Y
(
(t− 1)δ

)
=
∫ tδ

(t−1)δ
µ(r)dr +

(
U(tδ) − U

(
(t− 1)δ

))

≈ δµ((t− 1)δ) +
(
U(tδ) − U

(
(t− 1)δ

))
,

and define yt = Y (tδ) − Y ((t− 1)δ), mt = δµ((t− 1)δ) and ut = U(tδ) −U((t− 1)δ)

to have

yt ≈ mt + ut (3.7)

for small δ > 0. If Y =
(
Y (r)

)
is observed at sampling interval δ > 0 over r ∈ [0, T ]

with T = nδ, then we have (yt) for t = 1, . . . , n, and therefore, we may estimate

(mt) using the HP filter for t = 1, . . . , n, from which we may obtain an estimate for

µ =
(
µ(r)

)
at r = 0, . . . , (n− 1)δ.
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If we have

dZ(r) = σ(r)dW (r) (3.8)

in continuous time, where W is the standard Brownian motion with respect to some

filtration
(
F(r)

)
, to which σ is adapted, we have

(
Z(tδ) − Z

(
(t− 1)δ

))2

=
∫ tδ

(t−1)δ
σ2(r)dr + 2

∫ tδ

(t−1)δ

(
Z(r) − Z

(
(t− 1)δ

))
dZ(r)

≈ δσ2
(
(t− 1)δ

)
+ 2

∫ tδ

(t−1)δ

(
Z(r) − Z

(
(t− 1)δ

))
dZ(r)

for small δ > 0. Therefore, we may let yt =
(
Z(tδ)−Z

(
(t−1)δ

))2

, mt = δσ2
(
(t−1)δ

)

and

ut = 2
∫ tδ

(t−1)δ

(
Z(r) − Z

(
(t− 1)δ

))
dZ(r)

to have (3.7). Therefore, we may estimate the conditional variance process σ2 from

the continuous time model (3.8) using the HP filter.

It is also obvious that we may estimate the conditional mean process µ and

variance process σ2 from the continuous time model

dY (r) = µ(r)dr + σ(r)dW (r) (3.9)

by successively applying the HP filter. The process Y specified as in (3.9) is often

referred to as an Ito process and used widely in economics and finance.

3.2 Relative Performance of HP Filter

Our simulations show the performance of the HP filter relative to the Local

Linear kernel estimator for two baseline models in discrete time and continuous time

considered in the previous section.
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3.2.1 Discrete Time Model

3.2.1.1 Model DT0 For the discrete time model (3.1), we consider (yt) generated 

as

yt = βxt−1 + ut with xt = αxt−1 + vt, (3.10)

where (ut) and (vt) are both i.i.d. standard normals with cor(ut, vt) = ρ. Clearly,

we may write (yt) as in (3.1) with mt = βxt−1. The regressor xt is generated as

an auto-regressive process with auto-regressive parameter α and the innovation vt

generating the regressor is allowed to correlated with the error process ut. In this

simple regression setup, the conditional mean of yt is βxt−1. The regression coefficient

β represents the magnitude of the conditional mean for a given noise level, and the

signal becomes clearer as β increases. On the other hand, the AR coefficient α

controls the persistency of the regressor xt, and therefore both α and β magnifies

mt.

3.2.1.2 Simulation Setup and Results In our simulations, we consider stationary xt 

with the values of the AR coefficient α that controls the persistency of the regressor 

are taken from the values starting from 0.1 to 0.9 with the increment of 0.1, excluding 

the unit-root case with α = 1. One period lagged xt−1 is then multiplied by β and 

the observed yt is a mixture of the conditional mean βxt−1 and an iid normal error 

process ut. The parameter β determining the magnitude of the conditional mean 

is chosen from the set of values (0.1, 0.5, 1, 5, 10, 20). We jointly generate the error 

process ut and the innovation for the regressor process xt as



ut

vt


 =d N







0

0


 ,




1 ρ

ρ 1






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with the endogeneity parameter ρ selected from (0, 0.5).

We simulated 10,000 sample paths of yt with two sample sizes n = 100 and

n = 500.1 For all our simulations, we use the leave-one-out cross-validation method,

we search for the bandwidth h = cn−1/5 over the range 0 ≤ c ≤ 10 to find the optimal

bandwidth for the Local Linear estimator.

3.2.1.3 Model DT1 To disentangle the joint effects of the two parameters β and α on 

the magnitude of the conditional mean, we slightly modify the data generation process 

given in 3.10 as

yt = β(xt−1

√
1 − α2) + ut (3.11)

xt = αxt−1 + vt (3.12)

where we normalize the regressor xt by the square root of its long-run variance 1/(1−

α2). Now only β controls the magnitude of the conditional mean, and increasing β

will increase the signal-to-noise ratio, and α controls only the persistency of the

regressor. We plot the relative efficiency of HP procedure against the standard non-

parametric Local Linear estimation procedure in Table 3.1 and Figure 3.1. In Table

3.1, the relative performance of the HP filter when there is no endogeneity with

ρ = 0 is presented in the upper panel, and those from the endogenous model with

ρ = 0.5 in the lower panels presented. For easier comparison, we present the same

results in the α − β plane in Figure 3.3 where the results from the exogenous and

endogenous models are show in the upper and lower panels respectively. It is shown

clearly that the relative performance of the HP filter improves as the signal from the

regressor measured by β gets stronger. This tendency is monotone for all the values

1We may generate yt and xt−1 either by staring from the stationary distribution of xt or dis-
carding burn-in periods after drawing more samples than the required sample size n initially.
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of β we considered for the exogenous cases. For the endogenous cases, however, the

monotonously improving pattern is reversed, though not by much, when the signal

is very large with β = 5, 10, 20.

The relative performance of the HP filter against the Local Linear estimator

improves as the persistence of the regressor α gets large until the value of α is

around 0.7 and becomes worse as it becomes more persistent. This is the case for all

values of the magnitude parameter β except when the signal is extremely low with

β = 0.1. This reversal in the relative performance across the values of the persistency

parameter α happens for both exogenous and endogenous model as can be seen in

the upper and lower panels of Table 3.1 and Figure 3.3.

Figure 3.3: Relative Performance of HP Estimator with ρ = 0.0 and 0.5
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Notes: In this figure, we report the relative performance of the HP estimator compared
to Local Linear estimator. Panel (a) shows the simulation results for ρ = 0 and panel
(b) is for ρ = 0.5 case. In both panel (a) and (b), the persistency parameter α is on
the x-axis and the relative performance on the y−axis where 100 represent equivalent
average Means Squared Error(MSE) with our bench-mark Local Linear estimator.
Here we consider the magnitude parameter β = [0.1, 0.5, 1.0, 5.0, 10.0, 20.0] and plot
the relative performance for each β. Sample size is n = 100.
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Table 3.1: Relative Efficiency of HP Filter against Local Linear Estimator

(a) ρ = 0.0

α
β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 111.6 111.7 111.6 111.4 111.0 110.3 109.2 107.2 103.8
0.5 101.0 100.9 100.4 99.5 97.8 95.4 92.9 92.2 95.6
1.0 98.8 97.5 95.6 93.2 90.8 89.1 88.8 90.9 95.1
5.0 96.7 93.4 90.0 87.1 84.4 82.6 81.5 82.1 84.4

10.0 96.6 93.1 89.7 86.7 84.0 81.9 80.7 81.0 83.1
20.0 96.5 93.1 89.7 86.6 83.9 81.7 80.5 80.8 82.8

(b) ρ = 0.5

α
β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 121.1 120.4 119.4 118.1 116.2 113.7 110.4 106.2 102.2
0.5 102.9 101.2 99.0 96.4 93.6 91.2 90.2 91.6 96.4
1.0 93.8 91.4 88.8 86.7 85.2 85.1 86.3 90.1 95.7
5.0 93.9 90.5 87.2 84.0 81.1 78.8 77.8 78.5 80.8

10.0 95.2 91.7 88.3 85.3 82.4 80.0 78.8 79.1 81.0
20.0 95.9 92.3 88.9 85.9 83.1 80.8 79.5 79.8 81.4

Notes: We simulated yt of sample size n = 100 with two values of the endogeneity
parameter ρ = (0.0, 0.5). The persistency parameter α is selected from a set of values
starting from 0.1 to 0.9 with the increment of 0.1, and the magnitude parameter β
from the set of values (0.1, 0.5, 1.0, 5.0, 10.0, 20.0) in the range (0, 20).
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Figure 3.4 shows in the α-β plane the performance of the HP filter relative to the

Local Linear estimator as we increase the sample size from n = 100 to n = 500. In

this case, we focus on the exogenous cases with ρ = 0, and continue to consider the

same set of values for the magnitude parameter β and the persistency parameter α.

As expected, the relative performance of the HP filter improves substantially. When

the sample size is small, the HP performs best when the regressor is not persistent

with the values of α around 0.3 − 0.5 as long as the signal is not too small with the

values of β greater than 2. However, when the sample size is large at n = 500, the

HP filter performs better when the regressors are more persistent with α > 0.7 and

with the signal relatively high with β > 5.

3.2.1.4 Model DT2 We also considered the models with linear time trend a + bt, where 

a and b are constants, to see how the performance of the HP filter against the standard 

nonlinear Local Linear estimation procedure may change in the presence of the linear 

trend.

yt = a+ bt+ β(xt−1

√
1 − α2) + ut

xt = αxt−1 + vt

For this model, we also focus on the exogenous model with ρ = 0 and sample sizes

n = 100 and 500. We set a = 0 and b = 1 and consider the same set of values for

the magnitude β and the persistency α parameters as for the models without linear

trend. As can be seen clearly the results presented in Figure 3.5, adding a linear

trend did not change the relative performance of the HP filter. The patterns of the

contours are almost identical to those presented in Figure 3.4 for the models without

linear trend.
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Figure 3.4: Relative Performance of HP Estimator with Sample Size n = 100 and
500
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Notes: In this figure, we report the relative performance of the HP estimator compared
to Local Linear estimator on α-β plane. We choose α between 0.05 and 0.95. For
β range, we consider [0.5, 10]. Panel (a) shows the simulation result with sample
size n = 100 and panel (b) reports the results for n = 500 case. In both panel (a)
and (b), the persistency parameter α is on the x-axis and the magnitude parameter
β is on the y−axis. The relative performance of 100 means that our HP estimator
performs equally well with Local linear estimator in terms of average Means Squared
Error(MSE). Contour regions under 100 means that the HP estimator performs better
than our benchmark.

3.2.2 Continuous Time Model

3.2.2.1 Model CT For (3.6), we consider the continuous time model

dY (r) = βX(r)dr + dU(r) with dX(r) = −αX(r)dr + dV (r),

where α and β are parameters, and U and V are standard Brownian motions with

cor(U, V ) = ρ.

As a continuous time analog of the discrete time model, we consider the Ornstein-
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Figure 3.5: Relative Performance of HP Estimator with Linear Trend
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Notes: In this figure, we report the relative performance of the HP estimator compared
to Local Linear estimator on α-β plane when the simulated series include a linear time
trend. We choose α between 0.05 and 0.95. For β range, we consider [0.5, 10]. Panel
(a) shows the simulation result with sample size n = 100 and panel (b) reports the
results for n = 500 case. In both panel (a) and (b), the persistency parameter α is on
the x-axis and the magnitude parameter β is on the y−axis. The relative performance
of 100 means that our HP estimator performs equally well with Local linear estimator
in terms of average Means Squared Error(MSE). Contour regions under 100 means
that the HP estimator performs better than our benchmark.

Uhlenbeck process. Our continuous time data generating process is given as

dYt = β(Xt

√
2κ)dt+ dUt

dXt = −κXtdt+ dVt,

where U and V are standard Brownian motions with corr(U, V ) = ρ. The mean-

reversion parameter κ plays a same role of α in discrete time model. Note that for

κ = 0, Xt becomes a Brownian motion. Xt has time invariant distribution N (0, 1/2κ)

and we normalize Xt by multiply
√

2κ. In continuous time models, we could have
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more observations either by increasing time span T or sampling frequency ∆. For

our simulations, we consider T = 10 and two sampling frequencies at monthly with

∆ = 1/12 and at weekly with ∆ = 1/52.

The values of the coefficient β determining the magnitude of the conditional

mean and therefore the signal-to-noise ratio of the model are selected from the range

(0, 10) of the values starting from 0.5 to 10 in the increment of 0.5. The values of the

mean-reversion parameter κ controlling the persistency of the regressor process xt

considered are also selected from the same set of values, but we additionally consider

κ = 0.1 to see how the HP filter performs when the regressor process is very close to

being non-stationary. For the simulations, focus on the exogenous model where the

error process ut and the regressor innovation vt are uncorrelated with the endogeneity

parameter ρ = 0.

We generate 10,000 simulation samples for yt, and the relative performance of our

HP estimator to the standard Local Linear estimator is summarized in the the κ-β

plane in Figure 3.6 below. The results obtained from the monthly observations are

presented in the upper while those from the weekly observations in the lower panel

of Figure 3.6. At both monthly and weekly frequencies, the HP filter performs better

than the Local Linear estimator in most of the cases except when the parameter β

determining the signal-to-noise ratio is very small. The HP filter performs better

than the Local Linear estimator for most of the values we considered for the mean-

reversion parameter κ. For the observations collected at the lower monthly frequency

as can be seen in the upper panel of Figure 3.6, the HP filter performs better for a

wide range of κ in the middle of the range (0.10). For the higher frequency at weekly,

on the other hand, the HP filter also performs well for a wide range of κ, but in the

right side the range (1,10). This is more apparent when the signal-to-noise ratio is

smaller as can be seen in the lower panel.
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Figure 3.6: Relative Performance of HP Estimator in Continuous Time
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(b) T = 10, Weekly Frequency

Notes: In this figure, we report the relative performance of the HP estimator compared
to Local Linear estimator on κ-β plane. We choose the mean reverting parameter κ
between 0.0 and 10. For β range, we consider [0.5, 10]. Panel (a) shows the sim-
ulation result with monthly frequency and panel (b) reports the results for weekly
frequency. In both panel (a) and (b), the persistency parameter α is on the x-axis
and the magnitude parameter β is on the y−axis. Considered sample span is T = 10.
The relative performance of 100 means that our HP estimator performs equally well
with Local linear estimator in terms of average Means Squared Error(MSE). Contour
regions under 100 means that the HP estimator performs better than our benchmark.

3.3 Empirical Illustrations

To illustrate our new HP estimator, we consider four key macroeconomic variables

- GDP growth rates, inflation rate, unemployment rate and 3 month Treasury Bill

(3MTB) rate - over the 67 years of time span covering the sample period 1948-01

to 2015-08 where data for all four variables exist at both quarterly and monthly

frequencies.

The data for GDP growth rate is obtained from the FRED Economic Data of

the Federal Reserve Bank of St. Louis - Series GDPC96 on Quarterly Real GDP
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Growth. The series is provided at quarterly frequency only, and seasonally adjusted

annual rate in percentage change units. Inflation measured by percentage change of

monthly Consumer Price Index for All Urban Consumers (CPIAUC). For quarterly

Inflation, monthly CPI was averaged in each quarter and percentage change was

calculated. CPI : FRED Series ID (CPIAUCSL), Seasonally adjusted, Monthly,

Units: Percent change, Whole Sample span: 1947-01 to 2015-08. For unemployment

rate, we use Monthly Civilian Unemployment Rate (FRED Series UNRATE) which is

also seasonally adjusted rate in percentage units, and provided at monthly frequency.

To get the quarterly unemployment rate, we take the simple average of the monthly

measures in each quarter. We obtain the 3MTB also from the FRED data base

(Series TB3MS). The series is not seasonally adjusted, and available at monthly

frequency. For the quarterly data, we again take the simple average of the monthly

measures in each quarter.

For the four key macro variables we consider - GDP growth rates, inflation rate,

unemployment rate and 3 month T-Bill rate, we first report the results the quarterly

data in Figures 3.1-3.2 and Figures B.3-B.5. We present the smoothing parameter

λ, the extracted components with λ = λQ and λ∗ along with the original time series

and the fitted residual process obtained with λ = λQ and λ∗ for all four time series.

We note that for all four quarterly series, ρ(λ) is positive for 1/λ small, decreases

monotonically as 1/λ increases and crosses the horizontal axis to become negative

eventually for 1/λ large.

The estimated values of the optimal smoothing parameter λ∗ are reported below

in Table 3.2. For the US quarterly macroeconomic data, it is recommended to use

λQ = 1, 600 for the HP filter. We have zero first-order autocorrelation, i.e., ρ(λ∗) = 0

for the fitted processes from our HP filter with the optimal smoothing parameter λ∗

for all four quarterly macro series; however, those fitted series from the conventional

70



HP with λQ exhibit significant amount of serial correlations with the estimate values

of the first-order autocorrelations varying from ρ(λQ) = 0.278 − 0.826.

Table 3.2: Optimal Smoothing Parameter λ∗ (Quarterly Frequency)

Variable Sample ut(λQ) Optimal ut(λ∗)
auto-corr auto-corr λ∗ auto-corr

GDP growth 0.372 0.278 20.03 0.00
Inflation 0.726 0.430 18.99 0.00
Unemployment 0.971 0.899 0.56 0.00
Interest rate 0.975 0.826 1.73 0.00

Notes: Table 3.2 report the values of optimal smoothing parameter λ∗ for quarterly
GDP growth, inflation, unemployment and interest rate. For quarterly frequency
data, Hodrick-Prescott filter’s penalty parameter λQ = 1600 is commonly suggested.
Here we compared the auto-correlation of residuals when λQ and λ∗ are applied.
We search the optimal λ∗ over [0, 107] range, thus we only impose non-negativity
restriction on λ.

We do the same analysis for the data at monthly frequency for the three macro

time series for which we obtain monthly frequency data - inflation, unemployment

and 3-month Treasury Bill rate.2 The results are report in Table 3.3 and Figures B.6

- B.8.

3.3.1 Extensions to More General Models

We may consider various models including threshold and smooth transition AR

models such as TAR and ESTAR. We may also study the effect of the endogeneity

parameter ρ on the performance of the HP filter. We could also try a different

objective function. Instead of minimizing the first order auto-correlation, we may

use a Portmanteau-type test that minimizes a weighted average of the first few

2For GDP growth, quarterly is the most high frequency data and omitted from this table.
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Table 3.3: Optimal Smoothing Parameter λ∗ - Monthly Frequency

Variable Sample ut(λM) Optimal ut(λ∗)
auto-corr auto-corr λ∗ auto-corr

Inflation 0.593 0.392 17.00 0.00
Unemployment 0.992 0.969 9.68 0.00
Interest rate 0.991 0.940 0.92 0.00

Notes: Table 3.3 reports the values of optimal smoothing parameter λ∗ and the
associated residual auto-correlation ut(λ

∗) for monthly inflation, unemployment
and interest rate. Ravn and Uhlig (2002) suggested λM = 129600 for monthly
frequency. Here we compared the auto-correlation of residuals when λM and λ∗

are applied. We search the optimal λ∗ over [0, 107] range, thus we only impose
non-negativity restriction on λ.

sample auto-correlations to find the penalty parameter λ. One of the widely used

Portmanteau tests is the Ljung-Box q-test. In continuous time models, the sample

size n depends on both time span T and sampling frequency δ, i.e. n = Tδ. We may

therefore further study the effects of the sampling frequency δ as well as time span

T on the performance of the HP filter.

We may try other measures to evaluate the performance of the HP filter. We

may estimate the spectral density of the fitted residual and compute the distance

between the estimated density and the constant function. This will reflect better

how close as a process the fitted residual is to the white noise process. The HP filter

is not concerned about obtaining the conditional mean that minimize the distance to

the true trend at each point, rather it tries to fit the mean as a process that leaves a

white noise residual. Hence the root mean square error measure favors such methods

as the Local Linear method that minimizes the aforementioned distance point-wise.

To more fairly evaluate the HP filter, we may consider an alternative measure which

reflects how closely the fitted trend preserves the dynamics of the original trend. If

the trend was generated as an AR(1) process as in our simulations, we may estimate
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the AR coefficient of the filtered trend and compare it with the original AR coefficient

to see how well the HP filter preserves the original dynamics.

We may view our simulation model as a state space model with only measurement

equation without specifying the transition equation. Hence we are estimating the

measurement equation without information about the dynamics of the state variable.

Hence our estimation of the conditional mean will be less efficient than the ideal,

well-specified state space model with both measurement and transition equation

well specified to be estimated by the Kalman Filter. However, the HP may serve as

an excellent alternative since it doesn’t require a transition equation to specify the

dynamic structure, if HP filter can estimate the conditional mean part similar to the

estimate by the Kalman Filter, albeit less efficient.

3.4 Conclusion

In Section 3, we explore the possibility of using the Hodrick-Prescott filter for

a new objective of extracting the conditional mean process of a time series in both

discrete and continuous time framework. While the HP filter is conventionally used to

decompose a time series into trend and cyclical components, our new approach aims

to filter out the conditional mean process of a given time series, which includes both

trend and cyclical components. To this end, our HP filter uses the penalty parameter

minimizing the first order sample correlation of the residuals. The process extracted

from our HP filter is therefore defined as the predictable component of the given

time series.

Our HP filter may also be used to estimate the conditional volatility of a time

series. We also show that our HP approach can also be used to estimate the con-

ditional mean and variance processes in continuous time model. This approach is

the first attempt to applying the HP filter to extracting the conditional mean and
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variance processes. By simulations, we show that our HP filter generally performs

better for both discrete and continuous time models than the commonly used Local

Linear estimator. Hence our new HP estimator may serve as a useful and effective

alternative to the conventional Local Linear estimator in nonparametric estimation

of both conditional mean and variance processes of a time series from a wide class

of models.
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4. TESTING FOR RETURN PREDICTABILITY WITH MULTIPLE

PREDICTORS

Section 4 is organized as follows. Section 4.1 introduces the model and main

econometric challenges with relevant backgrounds and statistical theory. Our novel

econometric methodologies based on endogeneity correction and Cauchy inference

are presented in Section 4.2, and simulations are reported in Section 4.3. Section 4.4

summarizes and interprets our empirical results on stock return predictability and

Section 4.5 concludes.

4.1 Model and Econometric Challenges

4.1.1 Model and Background

We consider a continuous time predictive regression of stock return, which is given

by

dYt =
(
α+ β′Xt

)
dt+ σtdWt, (4.1)

where α and β are respectively 1- and K-dimensional unknown parameters, X = (Xt)

is an K-dimensional covariate continuous time process, σ = (σt) is a stochastic

volatility process and W = (Wt) is a standard Brownian motion. In regression (4.1),

we set dY = (dYt) to be the excess log returns of stock, i.e., the log return of stock

net of risk free rate. Clearly, the hypothesis

H0 : β = 0 (4.2)

implies no predictability of stock return.
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Throughout the Section 4, we assume that

(Yi∆, Xi∆)

are available for i = 1, . . . , N in time intervals of length ∆ over the time span [0, T ]

with T = N∆. 1 This provides a discrete time approximation of our model as

Yi∆ − Y(i−1)∆ ≈
(
α+ β′X(i−1)∆

)
∆ + σ(i−1)∆

(
Wi∆ −W(i−1)∆

)

for i = 1, . . . , N , which corresponds to the usual predictive regression in discrete

time used to test the null hypothesis of the unpredictability of stock returns. If stock

returns are not predictable, clearly we will have that β = 0. The most commonly used

covariates are those which make the most economic sense, such as the dividend-price

ratio and the earnings-price ratio.

The two econometric challenges for the test of hypothesis (4.2) in regression (4.1)

are

(a) persistence and endogeneity of X, and

(b) nonstationarity in σ,

which will be discussed subsequently in detail.

The covariate process X, commonly used in the predictive regressions all show

strong persistency. This is easily observable and has been well noted by many authors

in discrete time framework. For instance, see Goyal and Welch (2003) or Torous

et al. (2004). Indeed, it is routinely modeled as an autoregressive process with the

autoregressive parameter that is close to one, or more rigorously as a local-to-unity

process with autoregressive parameter approaching unity as the sample size increases.
1The assumption that our discrete time observations (Yi∆) are given in an equi-spaced time

intervals is made simply for expositional convenience and entirely inconsequential.
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As long as the predictors are exogenous and independent of the error process, the

persistency of predictors does not matter and the limit distribution of standard t-

statistics is given by standard normal distribution. However, in case it has nonzero

correlation with the error process, the limit distribution of standard t-statistics is no

longer normal and the test relying on the standard t-test yield a considerable size

distortion.

This problem has been clearly demonstrated by Campbell and Yogo (2006). In

particular, they note that the size distortion is quite severe when the predictor is

generated as a near-unit root process from innovations that are heavily correlated

with regression errors. For instance, if there is an exact unit root in the covariate and

perfect long-run correlation between the innovations of the covariate and regression

errors, they find that the asymptotic size of the one-sided t-test at a 5% significance

level test is as large as 46%. The reality of the data does not seem to be far from

this worst case scenario. Upon examination, one can easily see that the predictors

are highly persistent. More formally, Campbell and Yogo (2006) report that for the

commonly used predictors such as dividend-price ratio and earnings-price ratio, unity

lies outside the 95% confidence interval for only ten out of twenty eight data combi-

nations. Even when a unit root may be rejected, the predictors are highly persistent.

Of the ten for which unity lies outside the 95% confidence bounds, seven include an

autoregressive parameter above 0.95. Moreover, innovations of the predictors seem

to be highly correlated with stock returns in the long-run. For instance, the empirical

long-run correlation between differences in the dividend-price ratio and stock returns

is -0.98.

The volatility in stock returns, which is clearly stochastic in nature, shows a

strong tendency to be time varying and nonstationary. Though it fluctuates within

a bounded range, its time series behavior is rather nonstationary showing some clear
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evidence of clusterings. Naturally, various nonstationary stochastic volatility models

have been considered for stock returns in the literature. Indeed, many authors have

found that the AR parameter for the volatility process is close to unity under some

appropriate functional transformations. See, for instance, Jacquier et al. (2004), who

provide convincing evidence that the log of volatility process follows a near-unit root

process for a very wide range of equity and exchange rate time series. We may then

conclude that the true volatility process is highly nonstationary, since it will be the

exponential of a near-unit root process. See also Cavaliere (2004) or Cavaliere and

Taylor (2007), who studied the unit root test in the presence of stochastic volatility

in the innovations.

The limit null distribution of the standard t-statistic is non-normal, even when

the innovations of the covariate and those of the volatility factor are completely in-

dependent of the innovations of errors. How far it is away from the standard normal

depends on many factors including the volatility function, asymptotic covariances

of the innovations, and local-to-unity parameters. Given the previous simulation

studies by Chung and Park (2007) and Cavaliere and Taylor (2007), we may ex-

pect substantial size distortion from using the standard normal critical values in the

predictive regression setting.

In the presence of time varying stochastic volatility σ, the ordinary least squares

(OLS) estimator is generally inefficient. Furthermore, we have

d[Y ]t = σ2
t dt,

and therefore, the volatility process σ in our model is consistently estimable by the

realized volatility of stock returns, which implies that the generalized least squares

(GLS) is always feasible using high frequency observations of stock returns. Con-
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sequently, we will not consider the OLS estimation except in our simulation study,

where we use it as a benchmark to compare with the GLS estimation and our new

methodologies. To implement the GLS procedure, we use the realized volatility as

an estimate for the volatility process σ, i.e.,

σ̂2
i∆ =

∑

(i−1)∆≤jδ<i∆

(
Yjδ − Y(j−1)δ

)2
, (4.3)

where δ = o(∆). In what follows, we call δ and ∆ the sampling frequency and

the regression frequency respectively. Chang et al. (2016) show that the use of

the realized volatility, in place of the true volatility process, does not affect the

asymptotics as long as δ/∆ → 0.

4.1.2 Statistical Theory

For the expositional convenience, we redefine X and β so that we write (4.1)

more compactly as dYt = β′Xtdt+σtdWt, and its continuous-time GLS transform as

1
σt
dYt = β′Xt

σt
dt+ dWt. (4.4)

Clearly, the discrete time analogue of the continuous-time GLS in (4.4) is given by

1
σ(i−1)∆

∆iY = β′

(
∆
X(i−1)∆

σ(i−1)∆

)
+ ∆iW, (4.5)

where and hereafter we write ∆iZ = Zi∆ −Z(i−1)∆, i = 1, . . . , N , for any continuous-

time process Z = (Zt). In our subsequent discussions, we mainly consider regression

(4.5) with σ(i−1)∆ replaced by σ̂(i−1)∆ defined in (4.3), and denote by β̂T the GLS

estimator of β.

To discuss the distributional aspects of our testing procedures in predictive re-
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gressions, we introduce some high level assumptions. The reader is referred to Chang

et al. (2016) and the references cited there for the discussions on more precise tech-

nical conditions required for our subsequent assumptions to hold. In particular, we

let

c−1
T

(
∆

N∑

i=1

Xi∆X
′
i∆

σ2
i∆

)
c−1′
T ∼d c

−1
T

(∫ T

0

XtX
′
t

σ2
t

dt

)
c−1′
T (4.6)

and

c−1
T

N∑

i=1

Xi∆

σi∆

(
Wi∆ −W(i−1)∆

)
∼d c

−1
T

∫ T

0

Xt

σt
dWt (4.7)

as T → ∞ for some non-stochastic and invertible sequence (cT ) of matrices such that

cT → ∞ as T → ∞, where and elsewhere in Section 4 AT ∼d BT implies that AT

and BT have the same limit distributions as T → ∞ with ∆ fixed or ∆ → 0.

Our assumptions in (4.6) and (4.7) are very mild and expected to hold widely. If

∆ is given as a function of T such that ∆ → 0 sufficiently fast as T → ∞, they are

generally satisfied as long as the Riemann integral
∫ T

0 (XtX
′
t/σ

2
t ) dt is well defined

a.s. However, it is not necessary to require ∆ → 0 as T → ∞. As we discuss in more

detail later, if X/σ is either nonstationary or stationary with infinite second moment,

they hold also with fixed ∆ > 0 for a large class of diffusion and jump-diffusion type

models.

Under assumptions in (4.6) and (4.7), for the GLS estimator β̂T of β, we have

c′
T

(
β̂T − β

)
∼d

[
c−1
T

(∫ T

0

XtX
′
t

σ2
t

dt

)
c−1′
T

]−1

c−1
T

∫ T

0

Xt

σt
dWt, (4.8)

and therefore, the limit distribution of β̂T can be easily obtained from the asymptotics

of
∫ T

0

XtX
′
t

σ2
t

dt and
∫ T

0

Xt

σt
dWt. (4.9)

The asymptotics for the additive functional and martingale transform in (4.9) are
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provided by Kim and Park (2016a) and Jeong and Park (2016) respectively for the

diffusion and jump-diffusion type processes.

If X/σ is stationary and has finite second moment, we have

1
T

∫ T

0

XtX
′
t

σ2
t

dt →a.s. E

(
XtX

′
t

σ2
t

)

1√
T

∫ T

0

Xt

σt
dWt →d N

(
0,E

(
XtX

′
t

σ2
t

))

by the standard LLN and CLT for continuous time processes, and therefore, we may

easily deduce from (4.8) that

√
T
(
β̂T − β

)
→d N


0,

[
E

(
XtX

′
t

σ2
t

)]−1



as T → ∞, assuming that E (XtX
′
t/σ

2
t ) is nonsingular. In this case, therefore, the

standard tests are valid.

However, in case that X/σ is either nonstationary or stationary with infinite sec-

ond moment, the asymptotics for the additive functional and martingale transform

in (4.9) are generally nonstandard and non-normal. Consequently, the limit distri-

bution of the GLS estimator β̂T is generally nonstandard and non-normal, and the

standard tests based on the t-ratio and Wald statistics are invalid. Since it is widely

agreed in the literature on testing for return predictability that the aforementioned

two econometric challenges make the standard inferences in predictive regressions are

invalid, we focus on the case that β̂T has non-standard and non-normal distribution,

so that the t-test and Wald test are invalid asymptotically. Therefore, for the rest

of the Section 4, we let X/σ be either stationary without finite second moment or

nonstationary.

There is a very important exception. If X/σ is asymptotically independent of
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W , the limit distribution of the GLS estimator β̂T is mixed-normal and the standard

tests become valid. This is well expected from (4.8) since, conditional on X/σ, we

have

c−1
T

∫ T

0

Xt

σt
dWt =d N

(
0,

[
c−1
T

(∫ T

0

XtX
′
t

σ2
t

dt

)
c−1′
T

])

in this case. Of course, it is highly unrealistic to assume that X/σ is asymptotically

independent of W in predictive regressions, and also we may hardly expect that the

condition holds for actual predictive regressions. However, it provides an obvious and

strong motivation for the endogeneity correction methodology developed by Chang

et al. (2016), on which our empirical study heavily relies. This will be explained in

detail later.

4.2 New Econometric Approaches

To test for the predictability of stock returns using multiple predictors, we use

two different novel approaches: the direct endogeneity correction developed in Chang

et al. (2016) and the multivariate modification of Cauchy estimation studied in Choi

et al. (2016). Both of them are highly robust against the two econometric challenges

we have in testing for return predictability.

4.2.1 Endogeneity Correction

As in Chang et al. (2016), we assume that individual components of X/σ be given

as general Ito processes, so that we may specify the k-th component (X/σ)k of X/σ

as

d(X/σ)kt = µkt dt+ νkt dV
k
t (4.10)

with two processes µk = (µkt ) and νk = (νkt ) representing the drift and volatility

of (X/σ)k for each k = 1, . . . , K. If V , V = (V1, . . . , VK)′, is observable, we may
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consider

dY ∗
t =

(
α+ β′Xt

)
dt+ σtdW

∗
t (4.11)

with

dY ∗
t = dYt − σt

(
ρ′dV

)
,

in place of (4.1), where ρ = E
(
dVtdWt

)
. In the continuous-time regression (4.11),

note that dW ∗
t = dWt − ρ′dVt and W ∗ is independent of V .

Following our earlier convention, we redefine X and β so that we may write (4.11)

simply as dY ∗
t = β′Xtdt+ σtdW

∗
t , which yields the continuous-time GLS transform

1
σt
dY ∗

t = β′Xt

σt
dt+ dW ∗

t (4.12)

as in (4.4). The discrete time analogue of the continuous-time GLS in (4.12) is given

by
1

σ(i−1)∆

∆iY − ρ′∆iV = β′

(
∆
X(i−1)∆

σ(i−1)∆

)
+ ∆iW

∗, (4.13)

which is in contrast with (4.5). In regressions (4.5) and (4.13), we have error terms

∆iW and ∆iW
∗ = ∆iW − ρ′∆iV , respectively.

Now we may well expect that the GLS estimator β̂∗
T from the modified regression

in (4.13) for the continuous-time regression in (4.12) has the limit distribution

c′
T

(
β̂T − β

)
∼d

[
c−1
T

(∫ T

0

XtX
′
t

σ2
t

dt

)
c−1′
T

]−1

c−1
T

∫ T

0

Xt

σt
dW ∗

t , (4.14)

which is always mixed normal since, conditional on X/σ,

c−1
T

∫ T

0

Xt

σt
dW ∗

t =d N

(
0,

[
c−1
T

(∫ T

0

XtX
′
t

σ2
t

dt

)
c−1′
T

])
.
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Note that the limit distribution of the modified GLS estimator β̂∗
T of β is mixed

normal, though we allow X/σ and W to be dependent each other. The modification

we introduce here is completely analogous to Phillips and Hansen (1990) and Park

(1992).

Clearly, it is not feasible to run regression (4.13), since ρ and
(
∆iV

)
, as well

as
(
σi∆

)
, are not directly observable. As discussed earlier, we may simply replace

(
σi∆

)
with

(
σ̂i∆

)
defined in (4.3). Though the required procedure is more involved

and should be followed with much caution, it is also possible to replace ρ and
(
∆iV

)

with their estimates without affecting the limit distribution of the infeasible GLS

estimator β̂∗
T introduced above. The actual procedure we use to estimate ρ and

(
∆iV

)
will be given subsequently.

By estimating each component of
(
∆iV

)
separately, we may assume without loss

of generality that K = 1 and
(
∆iV

)
is univariate. Our estimate of ∆iV is given by

∆̂iV =
(X/σ̂)i∆ − (X/σ̂)(i−1)∆

ν̂(i−1)∆

, (4.15)

where

ν̂2
i∆ =

∑

(i−1)∆≤jδ<i∆

(
(X/σ̂)jδ − (X/σ̂)(j−1)δ

)2

with δ = o(∆), analogously as in (4.3). Moreover, we define an estimate for ∆iW as

∆̂iW =
Yi∆ − Y(i−1)∆

σ̂(i−1)∆

,

similarly as ∆̂iV , and use

ρ̂ =
1
T

N∑

i=1

∆̂iV ∆̂iW (4.16)

as an estimate for ρ. The feasible GLS estimator β̂∗
T we use in this Section is defined
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from regression (4.13) with
(
1/σ(i−1)∆

)
∆iY − ρ′∆iV replaced by

1
σ̂(i−1)∆

∆iY − ρ̂′∆̂iV ,

and ∆X(i−1)∆/σ(i−1)∆ by ∆X(i−1)∆/σ̂(i−1)∆, where σ̂i∆, ∆̂iV and ρ̂ are defined re-

spectively in (4.3), (4.15) and (4.16).

As shown in Chang et al. (2016), the approximation errors in replacing ρ and
(
∆iV

)
by their estimates are asymptotically negligible and do not affect the limit

distribution of the GLS estimator β̂∗
T of β under very general set of technical condi-

tions. There is only one critical condition. It is well expected from (4.10) and (4.15)

that

∆̂iV ≈ µ(i−1)∆

ν(i−1)∆

+ ∆iV,

and therefore, we should require that µ/ν be negligible asymptotically for our feasible

GLS estimator β̂∗
T to perform properly. We believe that the required condition is met

widely in the predictive regressions of stock returns, since all commonly used pre-

dictors appear to have the volatilities that are of much bigger stochastic magnitudes

than those of their drifts.

4.2.2 Cauchy Inference

Cauchy inference suggested by Choi et al. (2016) is extremely simple and just

uses as instruments the sign functions of the predictors themselves. More precisely,

if we let X̃ be the recursively demeaned X defined as

X̃t = Xt − 1
t

∫ t

0
Xsds,
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which has the discrete time analog

X̃i∆ = Xi∆ − 1
i

i∑

j=1

Xj∆

for i = 1, . . . , N , then the Cauchy estimator β̃T of β in regression (4.5) is defined as

the simple IV estimator using
(

sgn(X̃(i−1)∆)
)

as instruments.

If there is a single regressor without a constant term, the Cauchy estimator β̃T

has standard normal distribution as shown in Choi et al. (2016) for a very broad

class of predictors including both stationary and nonstationary processes possibly

with jumps, structural breaks, regime switching and many other possible aberrant

characteristics. This is because

1√
T

N∑

i=1

sgn(X̃(i−1)∆)∆iW ∼d
1√
T

∫ T

0
sgn(X̃t)dWt =d N(0, 1). (4.17)

Note that, if we define a process U by dU = sgn(X̃t)dWt, then U is a continuous

martingale such that d[U ]t = dt, and therefore, U becomes Brownian motion. There-

fore, in particular, normality in (4.17) holds even for finite T as long as ∆ is small. It

is possible to allow for the presence of a constant term in regression while preserving

the nice property of the Cauchy estimator, if we recursively demean both the regres-

sor
(
X(i−1)∆/σ(i−1)∆

)
and the regressand

(
∆iY/σ(i−1)∆

)
in regression (4.5) and fit

the regression without the constant term.

If we use the Cauchy estimator in regressions with multiple regressors, it no

longer has the robustness and asymptotic normality discussed above. To see why,

we suppose that there are two regressors X1 and X2, and define U1 and U2 by

dU1
t = sgn(X̃1

t )dWt and dU2
t = sgn(X̃2

t )dWt.
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Clearly, U1 and U2 are individually Brownian motions. However, they are not joint

Brownian motions. Indeed, we have

d[U1, U2]t = sgn(X̃1
t ) sgn(X̃2

t )dt,

and therefore, U = (U1, U2)′ is not a bivariate Brownian motion. Consequently,

(
1√
T

N∑

i=1

sgn(X̃1
(i−1)∆)∆iW,

1√
T

N∑

i=1

sgn(X̃2
(i−1)∆)∆iW

)

∼d

(
1√
T

∫ T

0
sgn(X̃1

t )dWt,
1√
T

∫ T

0
sgn(X̃2

t )dWt

)

is generally not bivariate normal for any fixed T . Of course, we have asymptotic

bivariate normality, if X1 and X2 are stationary and

1
T

[U1, U2]T =
1
T

∫ T

0
sgn(X̃1

t ) sgn(X̃2
t )dt

converges to a non-random constant as T → ∞. It is now clear that the Cauchy

estimator β̃T permits normal inference only asymptotically and only when predictors

are stationary. Of course, they allow X/σ to have infinite second moments as long

as they are stationary.

It is straightforward to modify the Cauchy estimator β̃T to deal with nonstation-

arity of predictors. We let

∆iX̃ = ∆iX − Xi −X0

i
, (4.18)

and define β̃∗
T to be the IV estimator using

(
sgn(∆iX̃)

)
as instruments, which is

called the modified Cauchy estimator. Note that the heteroskedasticity correction

is unnecessary in (4.18), and note in particular that sgn(∆iX̃) = sgn(∆iṼ ), where
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∆iṼ =
(
∆iX − (Xi − X0)/i

)
/ν(i−1)∆. It is well expected that the modified Cauchy

estimator is asymptotically normal for a large class of nonstationary predictors, since
(
∆iṼ

)
is asymptotically stationary for a variety of nonstationary processes.

4.3 Monte Carlo Simulations

In this section, we examine by simulation the finite sample performances of the

endogeneity correction and the Cauchy inference, which are introduced to deal with

the two econometric challenges discussed earlier.

4.3.1 Simulation Model

The performance of our testing procedure depends critically on the specification

of our model. For our simulation, we consider X defined as the solution of the

stochastic differential equation

dXt =
acXt

(1 + cX2
t )1−b

dt+ (1 + cX2
t )b/2dVt (4.19)

with appropriately chosen parameters a, b and c ≥ 0, where V is Brownian motion.

The process X defined in (4.19) is a slightly modified version of the generalized

Höpfner-Kutoyants (GHK) diffusion introduced earlier in Kim and Park (2016b).

The GHK diffusion is quite flexible and generates diffusions with very diverse char-

acteristics, including stationary and nonstationary, and mean-reverting and non-

mean-reverting processes, depending upon the values of parameters a, b and c ≥ 0.

The scale density s′ and speed density m of the GHK diffusion X in (4.19) are

given explicitly as s′(x) =
(
1 + cx2

)−a
and m(x) =

(
1 + cx2

)a−b
. Therefore, we

may easily see that X is recurrent if a ≤ 1/2, and stationary if a − b < −1/2. The
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endogeneity correction we employ is expected to work properly only when

µt
νt

=
acXt

(1 + cX2
t )1−3b/2

is small, where µ and ν denote respectively the drift and volatility components of

X. If a− b > −1/2 and X is nonstationary, the normalized process XT , defined by

XT
t = c−1

T XTt with cT = T 1/2(1−b), converges weakly to a skew Bessel process. Finally,

X becomes mean-reverting if and only if either a ≤ −1/2 or a − b ≤ −1/2. In our

simulation, we set various combinations of the values of a and b for a = −1/4, 0, 1/4

and b = −1/4, 0, 1/4, and c = c−2
T using the normalizing sequence cT = T 1/2(1−b) so

that the stochastic volatility term cX2 is stochastically bounded.

Furthermore, we set

σt = (1 + (1/T )Z2
t )1/2

with

dZt = −0.5dWt +
√

1 − 0.52dUt,

where U is a standard Brownian motion independent of W . Our specification of

σ implies that the Brownian motions generating returns and return volatilities are

correlated to yield the leverage effect observed in actual stock returns.

In our simulations, we consider X to be both one dimensional and two dimen-

sional. For one dimensional X given by (4.19), we set the correlation coefficient ρ

between V and W , denoting respectively the Brownian motions driving the regressor

X and the error process U , to be −0.95, approximately as the sample correlation

between the excess returns and dividend-price ratio after heterogeneity correction.

For two dimensional X, X = (X1, X2), with X1 and X2 generated individually as

(4.19) from two Brownian motions V 1 and V 2, we set the correlation coefficients ρ1
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and ρ2 between V = (V 1, V 2) and W to be −0.95 and −0.10. We choose the corre-

lation coefficient −0.10 for the additional regressor to make it roughly the same as

the actual sample correlation coefficient between the Brownian motions driving the

T-bill rate. Note that the endogeneity of the first regressor is much stronger than

that of the second regressor.

Throughout our simulations, we look at the 5% t and Wald tests respectively for

the predictability of a single and multiple predictors. We consider the tests based on

the OLS, GLS, GLS with endogeneity correction (GLS-EC), Cauchy and modified

Cauchy estimators. To obtain the actual finite sample sizes of the tests, we let β = 0.

On the other hand, for the finite sample powers of the tests, we specify

β =
β̄

T

for β̄ fixed at 0 ≤ β̄ ≤ 10, and use the critical values that are size-adjusted. Therefore,

all tests have exact 5% power in case β̄ = 0. Of course, the powers of the tests are

expected to increase as β̄ deviates from 0. The time span T in our simulations are

set to be T = 10 and 50. Finally, the number of iterations is 10,000 in all our

simulations.

4.3.2 Simulation Results

Our simulation results are summarized in Tables 4.1-4.2 and Figures 4.1-4.4. The

actual finite sample sizes of the 5% t- and Wald tests are reported in the tables and

their size corrected powers are presented in the figures.

In terms of finite sample size, the tests based on the Cauchy and modified Cauchy

estimators perform best. Under the null hypothesis of no predictability, both of them

produce the actual rejection probabilities that are quite close to the nominal 5% size

in all cases we consider here. This is true for both T = 10 and T = 50. However,
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the finite sample size of the tests based on the modified Cauchy estimator becomes

virtually identical to the 5% nominal size in every case when T = 50. It appears that

the size performance of the tests based on the modified Cauchy estimator is truly

good if the same size is moderately large. In contrast, the performances of the tests

based on the OLS and GLS estimators are unacceptable. The actual sizes of the

5% tests are over 30% and can be well above 40%. Therefore, they are expected to

severely over-reject the null hypothesis. Clearly, the evidence for return predictability

from these tests should not be taken seriously.

Our new tests based on the GLS-EC perform reasonably well. The actual finite

sample sizes of the tests are not as accurate as the tests based on the Cauchy and

modified Cauchy estimators. However, they are acceptably close to the 5% nominal

size in all cases considered in our simulations. In some cases their actual rejection

probabilities are around 4% and below 5%, but in other cases they become 7% or

slightly larger and above 5%. There is no systematic tendency to under-reject or

over-reject the null hypothesis of no return predictability.

The comparison based on the size-adjusted finite sample powers is clear and

unambiguous. The new tests based on the GLS-EC outperform, unanimously and

significantly, all other tests in all model parameters and time spans used in our

simulations. It is obvious that the tests based on the GLS-EC are generally more

effective than all other tests in terms of discriminatory powers.

The discriminatory powers of the tests based on the OLS, GLS and Cauchy

estimators are roughly comparable. In regressions with a single regressor, the tests

based on the GLS are indeed not clearly better than the tests based on the Cauchy

estimator. Indeed, the latter even outperform the former in some range of β̄ and

other model parameter values. This is contradicting to what we may expect from the

asymptotic theory, since the Cauchy estimator, being an IV estimator, is less efficient
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than the GLS estimator. However, these anomalies generally disappear, though not

entirely, for the tests in regressions with two regressors. The tests based on the GLS

and OLS generally outperform the tests based on the Cauchy estimator.

Unfortunately, the tests based on the modified Cauchy estimator perform very

poorly in terms of power. Recall that they perform best in terms of size. The

discriminatory power increases as β̄, but only very slowly. The tests do not seem to

be useful at all for practical applications. We may say that the evidence of return

predictability is very strong, if it is supported by the tests based on the modified

Cauchy estimator.

4.4 Empirical Results

4.4.1 Description of Data

We borrow commonly used predictors from the Welch and Goyal (2008)’s data

library. Our monthly frequency data spans from January 1954 to December 2014.

January 1954 is the earliest month that daily 3 Month T-bill rate is available. We use

daily 3 Month T-bill rate to measure interest volatility. Dividend are a twelve month

moving sum of dividends paid on the S&P 500 Index. Prices from S&P 500 index

prices from CRSP’s month end values. The log of dividend-price ratio log(D/P )

is the difference between log of dividend and log of price. Likewise, earnings are

twelve month moving sum of earnings paid on the S&P 500 Index. Dividend Payout

ratio (log(D/E)) is the difference between log of dividend and log of earnings. Book

to Market ratio(BM) is the ratio of book value to market value for the Dow Jones

Industrial Average. Default Yield Spread (DFY) is the difference between BAA-

and AAA- rated corporate bond yields, and yields on AAA- and BAA-rated bonds

are from the economic research database at Federal Reserve Bank at St. Louis

(FRED). T-bill rates are the 3-Month Treasury Bill: Secondary Market Rate from
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Table 4.1: Actual Sizes of 5% of t-Test

(a) T = 10

Modified
b a OLS GLS GLS-EC Cauchy Cauchy

-0.25
-0.25 40.6 41.0 3.6 4.2 6.9

0 42.2 41.8 4.8 4.3 6.8
0.25 42.5 43.5 6.3 4.7 6.7

0
-0.25 40.6 41.1 4.5 4.5 6.5

0 42.1 41.5 5.3 4.4 6.9
0.25 42.5 43.0 7.3 4.3 6.6

0.25
-0.25 40.8 41.3 5.0 4.4 6.8

0 41.9 41.5 5.5 4.5 6.8
0.25 42.1 42.0 6.9 4.7 6.9

(b) T = 50

Modified
b a OLS GLS GLS-EC Cauchy Cauchy

-0.25
-0.25 41.4 41.8 3.6 4.0 5.2

0 43.4 43.4 5.2 3.9 4.8
0.25 44.4 44.9 7.3 4.2 5.1

0
-0.25 41.6 41.9 4.3 4.3 5.1

0 43.5 43.1 5.2 4.2 5.3
0.25 44.4 43.5 7.2 3.9 4.8

0.25
-0.25 42.6 42.3 5.0 4.0 5.1

0 43.6 43.0 5.3 4.5 5.3
0.25 44.0 43.6 5.9 4.0 5.4

Notes: Table 4.1 reports the simulated sizes of 5% t-Test for the
OLS, GLS, GLS-EC, Cauchy and Modified Cauchy tests. Simula-
tion sample scan we consider here is a T = 10 and 50. The value
of endogeneity parameter ρ is −0.95. Table 4.1 considers different
combination of the GHK parameter value b = [−1/4, 0, 1/4] and
a = [−1/4, 0, 1/4].
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Table 4.2: Actual Sizes of 5% Wald Test

(a) T = 10

X1 X2
OLS GLS GLS-EC Cauchy

Modified
b a b a Cauchy

-0.25 -0.25

0.25 0.25 29.4 32.5 7.4 6.9 5.8
0 0 30.3 33.4 5.6 6.5 5.4

-0.25 -0.25 30.5 33.2 5.7 6.6 5.4

0 0

0.25 0.25 31.3 34.0 5.4 6.5 5.5
0 0 31.3 33.9 5.4 6.4 5.5

-0.25 -0.25 31.2 33.7 5.3 6.6 5.4

0.25 0.25

0.25 0.25 31.7 34.3 5.7 6.4 5.5
0 0 31.7 34.3 5.6 6.4 5.5

-0.25 -0.25 31.5 34.0 5.5 6.5 5.3

(b) T = 50

X1 X2
OLS GLS GLS-EC Cauchy

Modified
b a b a Cauchy

-0.25 -0.25

0.25 0.25 28.7 31.4 5.7 5.4 5.7
0 0 30.4 32.5 6.2 6.0 4.6

-0.25 -0.25 30.2 32.7 6.3 5.7 4.9

0 0

0.25 0.25 31.3 33.6 6.0 5.7 4.8
0 0 31.2 33.7 6.0 5.7 4.9

-0.25 -0.25 30.9 33.4 6.1 5.8 4.9

0.25 0.25

0.25 0.25 31.7 33.8 6.0 5.7 4.9
0 0 31.7 33.9 6.0 5.7 4.9

-0.25 -0.25 31.0 33.8 6.0 5.8 5.0

Notes: Table 4.2 reports simulated sizes of 5% Wald Test for the OLS, GLS, GLS-
EC, Cauchy and Modified Cauchy tests. We consider the sample span of T = 10
and T = 50. The values of endogeneity parameter ρ1 and ρ2, which is respectively
for the first and second covariate X1 and X2, are considered at −0.95 and −0.1.
Table 4.2 report the simulated sizes of tests with different combinations of GHK
parameter b = [−1/4, 0, 1/4] and a = [−1/4, 0, 1/4] for first and second covariates.
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Figure 4.1: Simulated Power Function for t−Tests: T = 10
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Notes: Figure 4.1 reports the simulate power functions of 5% t−Tests with a sample
span of T = 10. The considered value of endogeneity parameter ρ is 0.95. For values
of GHK parameters, we consider b, a = [−1/4, 0, 1/4] and compare the size adjusted
power function of the OLS, GLS, GSL-EC, Cauchy and Modified Cauchy tests. The
dash-dot lines represent the power of OLS test and the solid line with square marks
represent the GLS test. The thick solid lines represent the power function of our
GLS-EC test. The solid line with + marks and dashed lines represent the Cauchy and
Modified Cauchy tests, respectively.
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Figure 4.2: Simulated Power Function for t−Tests: T = 50
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Notes: Figure 4.2 reports the simulate power functions of 5% t−Tests with a sample
span of T = 50. The considered value of endogeneity parameter ρ is 0.95. For values
of GHK parameters, we consider b, a = [−1/4, 0, 1/4] and compare the size adjusted
power function of the OLS, GLS, GSL-EC, Cauchy and Modified Cauchy tests. The
dash-dot lines represent the power of OLS test and the solid line with square marks
represent the GLS test. The thick solid lines represent the power function of our
GLS-EC test. The solid line with + marks and dashed lines represent the Cauchy and
Modified Cauchy tests, respectively.
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Figure 4.3: Simulated Power Function for Joint Wald Tests: T = 10
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Notes: Figure 4.3 reports the simulated power functions of joint Wald Test with
T = 10. The considered values of endogeneity parameter ρ1 and ρ2 are 0.95 and 0.10,
respectively. For values of GHK parameters, we choose b, a = [−1/4, 0, 1/4] for both
X1 and X2 and compare the size adjusted power function of the OLS, GLS, GSL-EC,
Cauchy and Modified Cauchy tests. The dash-dot lines represent the power function
of OLS test and the solid line with square marks represent the power function of
GLS test. The thick solid lines represent power function our GLS-EC test. The solid
line with + marks and dashed lines represent the Cauchy and Modified Cauchy tests,
respectively.
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Figure 4.4: Simulated Power Function for Joint Wald Tests: T = 50
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Notes: Figure 4.4 reports the simulated power functions of joint Wald Test with
T = 50. The considered values of endogeneity parameter ρ1 and ρ2 are 0.95 and 0.10,
respectively. For values of GHK parameters, we choose b, a = [−1/4, 0, 1/4] for both
X1 and X2 and compare the size adjusted power function of the OLS, GLS, GSL-EC,
Cauchy and Modified Cauchy tests. The dash-dot lines represent the power function
of OLS test and the solid line with square marks represent the power function of
GLS test. The thick solid lines represent power function our GLS-EC test. The solid
line with + marks and dashed lines represent the Cauchy and Modified Cauchy tests,
respectively.
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the FRED. Long-term government bond returns for the period 1926 to 2013 are from

IbbotsonâĂŹs Stocks, Bonds, Bills and Inflation Yearbook. The Term Spread (tms)

is the difference between the long term yield on government bonds and the T-bill.

Table 4.3 describes our predictors for return predictability along with the esti-

mated ρ̂ for each predictor. The commonly used dividend-price(dp) and earnings-

price(ep) ratios are highly correlated with the heteroskedasticity-corrected regression

errors and their correlation coefficients are estimated as ρ̂ = −0.95 and −0.82, re-

spectively. The book-market ratio(bm) has moderate endogeneity with −0.69. Other

variables has low correlation with the heteroskedasticity-corrected regression errors.

For example, the estimated ρ̂ for Three month T-bill rate(tbl) is −0.13.

Table 4.3: Estimated ρ̂ for Predictors

Predictors ρ̂ Description

dp -0.95 log of the Dividend-Price ratio
ep -0.82 log of the Earnings-Price ratio
bm -0.69 log of the Book-Market ratio
de 0.02 log of the Payout ratio
tbl -0.13 3 Month T-bill rate
tms 0.04 Term Spread between long-term Government Bond

and 3 Month T-bill rate
dfy 0.11 Default Credit Spread between BAA- and

AAA- rated corporate bond yield

Notes: Table 4.3 reports the estimated endogeneity parameter ρ for each predictor.
We use data from the Welch and Goyal (2008)’s data library.

4.4.2 Testing for Predictability of Stock Returns

We summarize our test results for return predictability in Tables 4.4, 4.5 and 4.6.

In general, our tests support return predictability, and suggest that stock returns are
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predictable if we choose relevant predictors. In the univariate predictive regression,

our results show that three predictors have predictive powers: earnings-price ratio,

interest rates and term spread. Seemingly more robust tests based on the Cauchy

estimator only picks term spread only as a relevant predictor. As expected, the

tests based on the modified Cauchy estimator find no evidence of return predictabil-

ity. In the univariate predictive regression, though we see some evidence of return

predictability, the evidence is not strong and robust.

The evidence for return predictability is much stronger in regressions with mul-

tiple predictors. In regressions with dividend-price ratio included as a key predictor,

stock returns are mostly predictable with various choices of other predictors. More

precisely, the regressions with interest rates, with default credit spread, with inter-

est rates and term spread, and with interest rates, term spread and default credit

spread, as additional predictors all yield strong evidence for the predictability of

stock returns. Amongst them, the evidence from the regression with interest rates

and term spread as additional predictors seem to yield the strongest evidence for

return predictability.

The results from regressions including earnings-price ratio as a key predictor are

also supportive of return predictability, though the evidence in these regressions

is generally somewhat weaker than those including dividend-price ratio as a key

predictor. All regressions including earnings-price ratio and other sets of predictors

we consider show a positive evidence of the predictability of stock returns. Relatively,

it seems that the evidence from the regression with interest rates and term spread

as additional predictors is relatively stronger than that from other regressions. This

is in parallel to the regressions with the dividend-price ratio as a key predictor.

In sum, it seems to be fair to say that there is a strong evidence of return pre-

dictability, with the dividend-price ratio, the earnings-price ratio, interest rates and

100



term spread as most relevant predictors. Our finding is consistent with Ang and

Bekaert (2007) who report that stock returns are predictable using the short rate

and dividend yield.

Table 4.4: Univariate Predictive Regression

Predictor OLS GLS GLS-EC Cauchy Modified Cauchy

dp

β̂ 0.08 0.07 -0.01 0.00 0.00
s.e. 0.05 0.05 0.01 0.00 0.01
t-value 1.69 1.48 -1.02 -0.02 0.11

ep

β̂ 0.05 0.08 -0.11 0.00 -0.01
s.e. 0.05 0.05 0.03 0.00 0.01
t-value 0.99 1.51 -3.52 -0.05 -0.62

bm

β̂ 0.03 0.00 -0.03 0.00 0.00
s.e. 0.04 0.04 0.03 0.00 0.01
t-value 0.71 0.05 -1.24 -1.31 -0.19

de

β̂ 0.05 0.00 -0.01 0.01 0.02
s.e. 0.06 0.07 0.07 0.01 0.03
t-value 0.81 -0.02 -0.19 1.03 0.71

tbl

β̂ -1.43 -1.53 -1.69 -0.08 0.00
s.e. 0.63 0.59 0.59 0.06 0.25
t-value -2.26 -2.58 -2.86 -1.46 0.00

tms

β̂ 2.95 2.72 2.84 0.29 1.32
s.e. 1.33 1.16 1.16 0.12 1.75
t-value 2.21 2.35 2.45 2.38 0.75

dfy

β̂ 4.80 4.47 4.97 0.42 5.40
s.e. 4.31 4.18 4.18 0.43 13.76
t-value 1.11 1.07 1.19 0.97 0.39

Notes: In this table, we report the univariate predictive regression results for OLS,
GLS, GLS-EC, Cauchy and Modified Cauchy test. For each predictors, we report the
estimated coefficient β̂, standard error and t− value and compare our test results.
Bold faced t−values represent that the null of no predictability is rejected at a 5%
significance level.
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Table 4.5 and 4.6 report multivariate predictability regression result for dividend-

price and earnings-price ratio using tbl, tms and dfy as the control variables. Our

multivariate regression setup is similar to Ang and Bekaert (2007) who show con-

vincing evidence of return predictability with bivariate regression using the short

rate and dividend yield.

4.5 Conclusion

Though there has been much debate for over several decades, it remains to be

still an open question whether stock returns are predictable. In Section 4, we apply

a novel approach to empirically test the predictability of stock returns rigorously

and effectively in a multivariate setting. It has long been recognized that there are

some prominent features in the time series of stock returns and predictive ratios that

can seriously distort the standard testing procedures, which can be summarized as

the persistence and endogeneity of predictors and the nonstationarity of stochastic

volatilities. There are some methodologies available in the existing literature that

make it possible to do robust inferences on return predictability. Unfortunately,

however, all existing methodologies we may use to efficiently deal with these two

problems only allow for single predictor. Therefore, the test should be done succes-

sively for each single predictor. This is a serious limitation. Not only it is impossible

to test for the predictability of stock returns jointly by a set predictors, but also we

cannot measure the marginal predictive power of each predictor in the presence of

other predictors.

In this section, we introduce a novel methodology to test for stock return pre-

dictability. The methodology is based on a simple endogeneity correction procedure

and modified Cauchy inference, together with a basic heteroskedasticity correction.

Through simulations, we show that our methodology is very robust against both per-
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Table 4.5: Multivariate Predictive Regression with the Dividend-Price Ratio

dp tbl tms dfy Wald
β̂ t-value β̂ t-value β̂ t-value β̂ t-value Statistics

OLS 0.19 3.31 -2.64 -3.64 16.15
0.11 2.25 3.64 2.67 10.00
0.07 1.43 2.93 0.65 3.29
0.18 3.27 -2.21 -2.73 1.78 1.17 17.56
0.18 3.07 -2.56 -2.89 0.98 0.56 4.99 0.96 18.51

GLS 0.16 2.90 -2.35 -3.59 15.15
0.10 1.92 3.10 2.65 9.23
0.06 1.25 3.09 0.71 2.71
0.16 2.96 -2.01 -2.95 2.04 1.67 18.01
0.15 2.76 -2.86 -3.41 0.58 0.39 9.84 1.74 21.10

GLS-EC 0.04 3.31 -1.47 -9.57 92.54
-0.01 -1.06 -0.07 -0.23 1.13
0.01 0.58 -6.29 -6.09 38.21
0.04 3.23 -1.63 -10.21 -0.89 -3.14 105.40
0.04 3.39 -1.65 -8.35 -0.81 -2.33 -0.05 -0.04 106.40

Modified 0.00 0.11 0.02 0.06 0.01
Cauchy 0.01 0.73 0.66 0.67 0.57

0.00 0.40 0.94 0.26 0.16
0.01 0.82 0.46 0.85 0.97 0.77 0.74
0.01 0.80 0.37 0.71 0.47 0.47 1.83 0.60 0.92

Notes: In this table, we summarize the multivariate predictive regression results for OLS, GLS,
GLS-EC, Cauchy and Modified Cauchy test using dividend-price(dp) in combination with T-
bill rate(tbl), term spread(tms) and default spread(dfy). Bold faced t−values represent that
the null of no predictability is rejected at a 5% significance level. Wald statistics for each
regression is reported in the last column.
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Table 4.6: Multivariate Predictive Regression with the Earnings-Price Ratio

ep tbl tms dfy Wald
β̂ t-value β̂ t-value β̂ t-value β̂ t-value Statistics

OLS 0.16 2.80 -2.65 -3.47 13.04
0.09 1.87 3.86 2.72 8.42
0.04 0.90 4.47 1.03 2.06
0.16 2.93 -2.17 -2.63 2.33 1.53 15.41
0.17 3.08 -2.98 -3.16 0.88 0.51 9.06 1.77 18.60

GLS 0.20 3.37 -2.74 -3.97 18.09
0.10 1.96 3.12 2.66 9.38
0.07 1.21 2.54 0.57 2.60
0.20 3.37 -2.41 -3.34 1.94 1.59 20.68
0.18 3.05 -3.06 -3.59 0.72 0.49 8.22 1.44 22.80

GLS-EC -0.01 -0.31 -2.17 -5.05 37.83
-0.09 -2.79 2.91 4.03 28.82
-0.09 -2.80 -3.24 -1.17 13.28
-0.01 -0.32 -1.81 -4.07 2.04 2.73 45.73
-0.01 -0.14 -1.57 -2.98 2.38 2.61 -2.94 -0.83 44.52

Modified -0.01 -0.62 -0.11 -0.34 0.39
Cauchy 0.00 -0.27 1.49 0.91 0.90

0.00 0.28 2.04 0.70 0.51
0.00 -0.05 0.38 0.78 1.92 0.95 1.12
0.01 0.66 0.26 0.60 0.40 0.42 3.18 1.08 1.29

Notes: In this table, we summarize the multivariate predictive regression results for OLS, GLS,
GLS-EC, Cauchy and Modified Cauchy test using earnings-price(ep) in combination with T-bill
rate(tbl), term spread(tms) and default spread(dfy). Bold faced t−values represent that the
null of no predictability is rejected at a 5% significance level. Wald statistics for each regression
is reported at the last column.
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sistent and endogenous predictors and nonstationary stochastic volatilities. More-

over, it allows for multiple predictors, as well as it effectively deals with the two

econometric challenges in testing for the predictability of stock returns. Our novel

approach not only makes it possible to test for the predictability of stock returns

jointly by multiple predictors, but also reveals the marginal predictive power of each

predictor. Using a new methodology, we find some strong evidence for stock re-

turn predictability jointly by dividend-price ratio, earnings-price ration, short-term

interest rates and term spread of interest rates.
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5. SUMMARY

In Section 2, we develop and estimate a consumption-based asset pricing model

with a stochastic volatility function. We assume that the volatility function takes a

logistic form with a common factor as well as a stationary idiosyncratic factor. Our

logistic volatility function has two asymptotic regimes with a continuum of smooth

transitions and the fluctuations of the common latent factor. The main advantage

of this setup is that volatility can be persistent without explosive dynamics. We

find that the extracted volatility factor explains well the realized volatility series of

both the consumption and the dividend data. In addition, we see a counter-cyclical

relation of the extracted macroeconomic uncertainty.

We show that the estimated risk-aversion coefficient is around two, and the in-

tertemporal elasticity of substitution is greater than one. Our model produces a high

equity premium even without resorting to the common long-run risk component in

the conditional means of consumption and dividend growth rates.

In Section 3, we explore the possibility of using the Hodrick-Prescott filter for

a new objective of extracting the conditional mean process of a time series in both

discrete and continuous time framework. Our HP filter uses the penalty parameter

minimizing the first order sample correlation of the residuals. The process extracted

from our HP filter is therefore defined as the predictable component of the given

time series.

By simulations, we show that our HP filter generally performs better for both

discrete and continuous time models than the commonly used Local Linear estimator.

Hence our new HP estimator may serve as a useful and effective alternative to the

conventional Local Linear estimator in nonparametric estimation of both conditional
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mean and variance processes of a time series for a wide class of models.

In Section 4, we apply a novel approach to empirically test the predictability of

stock returns in a multivariate setting. Our methodology is based on a simple endo-

geneity correction procedure and modified Cauchy inference, combined with a simple

heteroskedasticity correction. Through simulations, we show that our methodology

is very robust against both persistent and endogenous predictors and nonstationary

stochastic volatilities. Moreover, it allows for multiple predictors, as well as it ef-

fectively deals with the two econometric challenges in testing for the predictability

of stock returns. Using a new methodology, we find some strong evidence for stock

return predictability jointly by dividend-price ratio, earnings-price ration, short-term

interest rates and term spread of interest rates.
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APPENDIX A

APPENDIX TO SECTION 2

A.1 Conditional Mean and Variance of the Logistic Volatility Function

In Appendix A.1, we compute the conditional mean and variance of the logistic

volatility function. The key component of the stochastic volatility setup is given as

ft+1 = α+
β

1 + exp (−λwt+1)
, (A.1)

wt+1 = ρwwt + ut+1,

where ut follows an i.i.d. standard normal distribution and 0 < ρw < 1 holds. The

conditional mean and the conditional variance of the stochastic volatility are de-

noted as Et (ft+1) and V art (ft+1), respectively. For future reference, we write down

Et (ft+1) as

Et (ft+1) = α+ βEt (Gt+1) , (A.2)

Gt =
1

1 + exp (−λwt)
. (A.3)

Although the numerical integration of this moment is easy and accurate, this type of

integral does not have a closed-form solution. Instead, we compute an approximate

closed-form solution as follows. First, we can show that

Gt+1 exp(−λωt+1) = (1 −Gt+1) ,

Gt
ρω exp(−λρωωt) = (1 −Gt)

ρω .
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Figure A.1: Accuracy of Approximations
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Notes: The figure displays comparisons between the true and approximated moments of the

baseline logistic function Gt defined in equation (A.3) . Dotted lines refer to the true moments

and the straight lines represent the approximated moments. All the moments are computed

using the estimated parameters. Panel (a) reports the true and approximated functions of

G/(1 − G), Panel (b) depicts the conditional expectation of Gt, and Panel (c) describes the

conditional variance of Gt, respectively.

Then, by making a ratio of the two equations at t and t+ 1, we have

(
Gt+1

1 −Gt+1

)
=
(

Gt

1 −Gt

)ρω
exp (λut+1) .

Now, we use a logarithmic linear approximation for
(

Gt+1

1−Gt+1

)
as

(
Gt+1

1 −Gt+1

)
= exp

[
ln

(
Ḡ

1 − Ḡ

)
+
( 1
Ḡ

+
1

1 − Ḡ

)(
Gt − Ḡ

)]
,

for some Ḡ. Then, the law of motion for Gt becomes

exp

[
ln

(
Ḡ

1 − Ḡ

)
+
( 1
Ḡ

+
1

1 − Ḡ

) (
Gt+1 − Ḡ

)]

= exp

[
ρω ln

(
Ḡ

1 − Ḡ

)
+ ρω

( 1
Ḡ

+
1

1 − Ḡ

) (
Gt − Ḡ

)
+ λut+1

]
.
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To check the accuracy of this approximation, we compare ln
(

Gt+1

1−Gt+1

)
with its

approximation by plugging the estimated parameters. Panel (a) of Figure A.1 shows

that the approximation is highly accurate for most of the range of G.

Using this result, we can compute the conditional expectation of G as follows:

Et (Gt+1) = ζG0 + ρωGt,

with

ζG0 = (1 − ρω)

(
Ḡ−

( 1
Ḡ

+
1

1 − Ḡ

)−1

ln

(
Ḡ

1 − Ḡ

))
.

We verify whether or not the approximate closed form given above is close to the

true solution. For the true solution, we use a numerical method to compute the

conditional expectation, and Panel (b) of Figure A.1 displays the result. According

to the comparison, the approximate solution is slightly upward biased for the lower

range of w and downward biased for the higher values of w, but it is clear that the

overall quality of approximation is very good. Using this, we can compute Et (ft+1)

as

Et (ft+1) = α+ β
(
ζG0 + ρωGt

)
(A.4)

= ζ0 + ρωft. (A.5)

where ζ0 = βζG0 + α (1 − ρω).

Now for the conditional variance, we can show the following relation using Stein’s
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lemma:

V art (ft+1) = β2V art (Gt+1) (A.6)

=

[
βEt

(
∂Gt+1

∂wt+1

)]2

(A.7)

= β2λ2
[
Et (Gt+1) − Et

(
G2
t+1

)]2
(A.8)

= β2λ2
[
[Et (Gt+1)]

2 − 2Et (Gt+1)Et
(
G2
t+1

)
+
[
Et

(
G2
t+1

)]2]
(A.9)

In addition, from the definition of the variance, we have

V art (ft+1) = β2V art (Gt+1) (A.10)

= β2
[
Et

(
G2
t+1

)
− (Et (Gt+1))

2
]
. (A.11)

Thus, putting equations (A.9) and (A.11) together, we have

λ2
[
Et

(
G2
t+1

)]2 −
(
1 + 2λ2Et (Gt+1)

)
Et

(
G2
t+1

)
+
(
1 + λ2

)
[Et (Gt+1)]

2 = 0

Et

(
G2
t+1

)
=

(1 + 2λ2Et (Gt+1)) ±
√

(1 + 2λ2Et (Gt+1))
2 − 4λ2 (1 + λ2) [Et (Gt+1)]

2

2λ2

This leads to the following equation.

V art(Gt+1) = Et

(
G2
t+1

)
− [Et (Gt+1)]

2 (A.12)

=



√

1
4λ2

+ Et (Gt+1) − [Et (Gt+1)]
2 − 1

2λ




2

. (A.13)

The above equation is the key ingredient to derive equation (2.14), and we use
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this to numerically evaluate the Euler equation for our estimation and simulation.

Finally, recall that, in Section 2.1.2, we illustrated asset return dynamics of this

model using an approximate formula of the equity premium. To derive this formula,

we approximate the conditional variance of Gt using the relation, Et (Gt+1) = ζG0 +

ρωGt.

V art(Gt+1) ≈ ζ1 + ζ2Gt,

where

ζ1 =



√

1
4λ2

+ ζG0 + ρωḠ−
[
ζG0 + ρωḠ

]2 − 1
2λ




2

−

(√
1

4λ2 + ζG0 + ρωḠ−
[
ζG0 + ρωḠ

]2 − 1
2λ

)(
1 − 2

[
ζG0 + ρωḠ

]) (
ζG0 + ρωḠ

)

√
1

4λ2 + ζG0 + ρωḠ−
[
ζG0 + ρωḠ

]2

ζ2 =

(√
1

4λ2 + ζG0 + ρωḠ−
[
ζG0 + ρωḠ

]2 − 1
2

)(
1 − 2

[
ζG0 + ρωḠ

])

√
1

4λ2 + ζG0 + ρωḠ−
[
ζG0 + ρωḠ

]2 .

Then, the conditional variance of ft+1 is computed by β2V art(Gt+1), and denoted

V art (ft+1) = λ2β2 (ζ1 + ζ2Gt)

= ξ1 + ξ2ft,

ξ1 = λ2β2ζ1,

ξ2 = λ2β2ζ2
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Again in order to check the accuracy of the approximation, we compare the true

and approximate solution for the conditional volatility with the estimated parame-

ters. Panel (c) of Figure A.1 shows that the approximated conditional variance of G

captures well the true variance.

A.2 Pricing a Consumption Claim

In this subsection, we derive the price of a consumption claim that pays aggregate

consumption (Ct) as dividend each period t. Using equations (2.1) to (2.11), we can

solve for the price of the consumption claim by conjecturing zc,t as equation (2.12).

Plugging zc,t into the Euler equation (2.1), we can show

1 = Et




exp





χ log δ − χµc
ψ

+ χ (φ0,c + φ1,cA0,c − A0,c + µc)

+χ
(
1 − 1

ψ
+ φ1A1,cρc − A1,c

)
vc,t − χA2,cf(λcωt)

+
(
χ− χ

ψ

)√
f(λωt)εc,t+1 + χφ1A1,cϕc

√
f(λcωt)ηc,t+1

+χφ1,cA2,cf(λcωt+1)








Taking a logarithmic transformation to the equation above, we can use the

method of undetermined coefficients to identify A0,c, A1,c, and A2,c.

Solving for A1,c, we collect the terms related to vc,t to obtain

A1,c =
1 − γ

χ(1 − φ1,cρc)
.

For A2,c, terms related to ft are

ξ2 (χφ1,c)
2 (A2,c)

2 − 2χ (1 − φ1,cρω)A2,c +


(1 − γ)2 +

(
(1 − γ)φ1,cϕc
(1 − φ1,cρc)

)2

 = 0
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Then, we compute A2,c as

A2,c =
(1 − φ1,cρω) +

√
(1 − φ1,cρω)2 − ξ2 (φ1,c)

2
[
(1 − γ)2 +

(
(1−γ)φ1,cϕc
(1−φ1,cρc)

)2
]

χ (φ1,c)
2 ξ2

Similarly for A0,c, we have

A0,c =
log δ + φ0,c +

(
1 − 1

ψ

)
µc + φ1,cA2,cζ0 + χ

2
(φ1,cA2,c)

2 ξ1

(1 − φ1,c)
.

A.3 Equity Premium

Now we compute the equity premium of the model. The basic derivation is the

same as that of the price of the consumption claim, except for the additional process

of dividend d. We first have a conjectured form of zm as

zm,t = A0,d + A1,dvd,t + Am1,cvc,t + A2,df(λdωt).

Because A0,c, A1,c, and A2,c were determined in the previous case, we only need to

pin down the coefficients associated with zm, which are
(
A0,d, A1,d, A

m
1,c, A2,d

)
. First,

it is easy to show that the following relations hold.

A1,d =
1

1 − φ1,mρd
,

Am1,c =
− 1
ψ

1 − φ1,mρc
.

Second, for all the terms related to volatility, we need to compute the following
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part:

Et




(χ− 1) (φ1,cA2,cf(λcωt+1) − A2,cf(λcωt))

+
(
A1,dϕd

√
f(λdωt)ηd,t+1 + A2,df(λdωt+1)

)
− A2,df(λdωt)




+
1
2
V art




−γ
√
f(λcωt)εc,t+1 +

√
f(λdωt)εd,t+1

+φ1,mA
m
1,cϕc

√
f(λcωt)ηc,t+1 + (χ− 1)φ1,cA1,cϕc

√
f(λcωt)ηc,t+1

+(χ− 1) (φ1,cA2,cf(λcωt+1))

+A1,dϕd
√
f(λdωt)ηd,t+1 + A2,df(λdωt+1)




.

The first component, or the conditional expectation, can be re-expressed as fol-

lows:

Et




(χ− 1) (φ1,cA2,cf(λcωt+1) − A2,cf(λcωt))

+A2,df(λdωt+1) − A2,df(λdωt)




= A2,c [(χ− 1)φ1,cEt [f(λcωt+1)] − f(λcωt)] + A2,d [Etf(λdωt+1) − f(λdωt)]

Similarly for the conditional variance term, we have

V art




−γ
√
f(λcωt)εc,t+1 +

√
f(λdωt)εd,t+1

+φ1,mA
m
1,cϕc

√
f(λcωt)ηc,t+1 + (χ− 1)φ1,cA1,cϕc

√
f(λcωt)ηc,t+1

+(χ− 1) (φ1,cA2,cf(λcωt+1))

+A1,dϕd
√
f(λdωt)ηd,t+1 + A2,df(λdωt+1)




=
(
γ2 +

(
φ1,mA

m
1,cϕc + (χ− 1)φ1,cA1,cϕc

)2
)
f(λcωt) +

(
1 + (A1,dϕd)

2
)
f(λdωt)

+ V art ((χ− 1)φ1,cA2,cf(λcωt+1) + A2,df(λdωt+1)) .
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Now, we approximate fd(λdwt) in terms of fc,t at fd,0

fd(λdwt) ≈ αd +
βd (fd,0 − αc)

λ exp (λκc − κd)

(fd,0 − αc)
λ exp (λκc − κd) + (αc + βc − fd,0)

λ

+
λβcβd (fd,0 − αc)

λ−1 (αc + βc − fd,0)λ−1 exp (λκc − κd)[
(fc,0 − αc)

λ exp (λκc − κd) + (αc + βc − fd,0)λ
]2 (fc,t − fd,0)

= π0 + πd (fc,t − fd,0) = (π0 − πdfd,0) + πdfc,t,

where λ = λd/λc and π0 and πd are defined from the above equation.

With some algebra, we can show that the term purely related to f(λωt) is zero.

That is,




γ2 +
(
φ1,mA

m
1,cϕc + (χ− 1)φ1,cA1,cϕc

)2

+πd
(
1 + (A1,dϕd)

2
)

+ ξ2 ((χ− 1)φ1,cA2,c + A2,dπd)
2


 = 0

A2,d =

ξ2(1 − χ)φ1,cA2,cπd −

√√√√√√√√√
(ξ2(χ− 1)φ1,cA2,cπd)

2 − ξ2π2
d




ξ2 ((χ− 1)φ1,cA2,c)
2

−πd
(

1 + (A1,dϕd)
2
)

− γ2

−
(
φ1,mA

m
1,cϕc + (χ− 1)φ1,cA1,cϕc

)2




ξ2 (πd)
2

For the constant term A0,d, the following relation holds.

A0,d =




χ log δ + φ0,m − χ
ψ
µc + (χ− 1) (φ0,c + (φ1,c − 1)A0,c + µc)

+µd +A2,c(χ− 1)φ1ξ
0

+ 1

2

[(
1 + (A1,dϕd)

2
)
π0,c + ((χ− 1)φ1,cA2,c +A2,dπd)

2
ξ1

]




1 − φ1,m

.
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Innovation to the return rm,t+1 is derived as

rm,t+1 − Et (rm,t+1) = φ1,mzm,t+1 + gd,t+1 − Et (φ1,mzm,t+1 + gd,t+1)

=
√
f(λdωt)εd,t+1 + φ1,m


 A1,dvd,t+1 +Am1,cvc,t+1 +A2,df(λcωt+1)

−Et
(
A1,dvd,t+1 +Am1,cvc,t+1 +A2,df(λcωt+1)

)




=
√
f(λdωt)εd,t+1 + φ1,mA1,dϕd

√
f(λdωt)ηd,t+1 + φ1,mA

m
1,cϕc

√
f(λcωt)ηc,t+1

+ φ1,mA2,d

√
vart (ft+1)ut+1.

Innovation in the stochastic discount factor is

mt+1 = χ log δ − χ

ψ
gc,t+1 + (χ− 1) ra,t+1

= χ log δ − χ

ψ
gc,t+1 + (χ− 1) (φ0,c + φ1,czc,t+1 − zc,t + gc,t+1) ,

with zc,t = A0,c +A1,cvt +A2,cf(λωt). Then, the conditional expectation of mt+1 is

Et+1 (mt+1) = χ log δ + (χ− 1)φ0,c + (−γ) (µc + vc,t)

+ (χ− 1)


 φ1,c (A0,c +A1,cρcvc,t +A2,c (ζ0 + ρωft))

−zc,t


 .

Thus, the innovation to the stochastic discount factor is computed as

mt+1 −Et+1(mt+1) = −γ
√
ftεc,t+1 − Λm,η

√
ftηc,t+1 − Λm,u(t)ut+1,

where Λm,η = (1 − χ)φ1,cϕcA1,c, and Λm,u(t) = (1 − χ)φ1,cA2,c

√
vart (ft+1).

Then, the equity premium can be computed as

Et (rm,t+1 − rf,t) − 1

2
V art (rm,t+1)

= −Covt [lnmt+1, rm,t+1]

= γ
√
ft
√
f(λdωt)ρ+ Λm,ηφ1,mA1,cϕcft + (1 − χ)φ1,mφ1,cA2,cA2,dvart (ft+1) .
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APPENDIX B

APPENDIX TO SECTION 3

B.1 Bernanke et al. (2005) Data

Bernanke et al. (2005) (BBE) dataset contains a wide range of 129 macroeconomic variables

over the sample period 1959:01 - 2001:07. The original dataset used in Bernanke et al. (2005)

contains the 129 variables at quarterly frequency. The original data are then transformed according

to the suggestions given in the transformation codes provided (tcodes): For tcode value 1, no

transformation is necessary. If tcode is 2, first difference is taken, and if it is 4, the transformed

series is logarithm of an original series. Finally, for the value of 5, log difference of the original data

is taken. The Monthly BBE data became available and are already transformed. We calculated

sample auto-correlations of 129 variables and reported their minimum, mean, median and maximum

values.

Table B.1: Sample Auto-correlation of Bernanke et al. (2005) Data

Auto-correlation Min. Mean Median Max.

Original data (quarterly) 0.62 0.97 0.99 1.00
Transformed data (quarterly) -0.11 0.64 0.71 1.00
Transformed data (monthly) -0.41 0.49 0.47 0.99

Notes: Table B.1 reports the minimum, maximum, mean and median values of sample
auto-correlation for the Bernanke et al. (2005) (BBE) data variables. The original
BBE dataset contains 129 macroeconomic variables.

B.2 Boivin et al. (2009) Data

We also try another macroeconomic dataset BGM dataset considered in Boivin et al. (2009).

They considered 111 out of 120 variables in the BBE dataset for 1976.Jan-2005.Oct only, but they

provide the original as well as the transformed series according to the same transformation codes
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Figure B.1: Histogram of the Bernanke et al. (2005) Data’s Sample Auto-correlation
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Notes: Figure B.1 displays the histogram plot of the Bernanke et al. (2005) variables’
sample auto-correlation. Panel (a) displays the distribution of sample auto-correlation
of original BBE variables. Panel (b) and (c) display the histogram plot of transformed
quarterly and monthly BBE data, respectively.
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used in BBE. We compute the autocorrelations of the original and transformed variables, and

compare them to learn about how their serial dependence structures.

Table B.2: Sample Auto-correlation of Boivin et al. (2009) Data

Auto-correlation Min Mean Median Max

Monthly Original Data 0.54 0.97 1.00 1.00
Monthly Transformed Data -0.40 0.52 0.58 1.00

Notes: Table B.2 reports the minimum, maximum, mean and median values of sample
auto-correlation for the Boivin et al. (2009) (BGM) data variables. The original BGM
dataset contains 111 macroeconomic variables.

Figure B.2: Histogram of the Boivin et al. (2009) Data’ Sample Auto-correlation
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Notes: Figure B.2 displays the histogram plot of the Boivin et al. (2009) variables’
sample auto-correlation. Panel (a) displays the distribution of sample auto-correlation
of original BGM variables. Panel (b) displays the histogram plot of transformed
monthly BGM data.
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B.3 HP Estimated Trends for Key Macroeconomic Variables

Figure B.3: Quarterly Inflation
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Notes: Figure B.3 reports our empirical result using the Quarterly Inflation. In Panel
(a), a time series plot of U.S. Consumer Price Index is displayed. Panel (b) and (c)
compare the HP filtered trend with the λQ and λ∗. Our optimal smoothing parameter
λ∗ is found at 18.99. Panel (d) compares the fitted residuals ut(λQ) and ut(λ

∗) after
subtracting the trend components τt(λQ) and τt(λ

∗) from data,respectively.
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Figure B.4: Quarterly Unemployment Rates
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(b) Fitted unemployment rates
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(c) Fitted trends with λQ and λ∗
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(d) Fitted Residuals: ut(λQ) and ut(λ
∗)

Notes: Figure B.4 reports our empirical result using the quarterly unemployment rate.
In Panel (a), a time series plot of U.S. quarterly unemployment rate is displayed.
Panel (b) and (c) compare the HP filtered trend with the λQ and λ∗. Our optimal
smoothing parameter λ∗ is found at 0.56. Panel (d) compares the fitted residuals
ut(λQ) and ut(λ

∗) after subtracting the trend components τt(λQ) and τt(λ
∗) from

data,respectively.
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Figure B.5: Quarterly 3 Month T-bill Rate
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(a) 3 Month T-bill Rate (quarterly)
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(b) Fitted short-term interest rate
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(c) Fitted trends with λQ and λ∗
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(d) Fitted residuals: ut(λQ) and ut(λ
∗)

Notes: Figure B.5 reports our empirical result using the quarterly 3 month T-bill rate.
In Panel (a), a time series plot of quarterly 3 month T-bill is displayed. Panel (b) and
(c) compare the HP filtered trend with the λQ and λ∗. Our optimal smoothing pa-
rameter λ∗ is found at 1.73. Panel (d) compares the fitted residuals ut(λQ) and ut(λ

∗)
after subtracting the trend components τt(λQ) and τt(λ

∗) from data,respectively.
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Figure B.6: Monthly Inflation
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(a) Monthly CPI
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(b) Fitted monthly inflation
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(c) Fitted trends with λM and λ∗

1950 1960 1970 1980 1990 2000 2010
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
u

t
(λ=129600)

u
t
(λ*=17.00)

(d) Fitted residuals: ut(λM ) and ut(λ
∗)

Notes: Figure B.6 reports our empirical result using the monthly inflation. In Panel
(a), a time series plot of monthly CPI is displayed. Panel (b) and (c) compare the
HP filtered trend with the λM and λ∗. Our optimal smoothing parameter λ∗ is found
at 17.00. Panel (d) compares the fitted residuals ut(λM ) and ut(λ

∗) after subtracting
the trend components τt(λM ) and τt(λ

∗) from data,respectively.
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Figure B.7: Monthly Unemployment Rate
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(a) Unemployment rates (monthly)
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(b) Fitted monthly unemployment rates
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(c) Fitted trends with λM and λ∗
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Notes: Figure B.7 reports our empirical result using the monthly unemployment rate.
In Panel (a), a time series plot of monthly unemployment rate is displayed. Panel (b)
and (c) compare the HP filtered trend with the λM and λ∗. Our optimal smoothing pa-
rameter λ∗ is found at 9.68. Panel (d) compares the fitted residuals ut(λM ) and ut(λ

∗)
after subtracting the trend components τt(λM ) and τt(λ

∗) from data,respectively.
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Figure B.8: Monthly 3 Month T-bill Rate
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(a) 3 month T-bill rate (monthly)
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(b) Fitted monthly interest rate
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(c) Fitted trends with λM and λ∗
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(d) Fitted residuals: ut(λM ) and ut(λ
∗)

Notes: Figure B.8 reports our empirical result using the monthly short-term interest
rate. In Panel (a), a time series plot of monthly 3 month T-bill rate is displayed.
Panel (b) and (c) compare the HP filtered trend with the λM and λ∗. Our optimal
smoothing parameter λ∗ is found at 0.92. Panel (d) compares the fitted residuals
ut(λM ) and ut(λ

∗) after subtracting the trend components τt(λM ) and τt(λ
∗) from

data,respectively.
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