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ABSTRACT

In this dissertation, we present novel schemes for a static simulation of a buckled

Euler beam with curve channel constraints in two dimensional space and simulation

of the dynamic response of a soft Kirchhoff rod in three dimension space at real time

rate. The aim of this model is to provide a robust and fast means for simulating en-

doscopes and surgical threads for training and surgical simulation purposes. Finding

a static configuration of a buckled cantilever elastic beam constrained in a curved

solid channel subject to end forces is a simple model of endoscopy and it is posed

as the minimization of an energy functional. We solve it by a novel technique, a

variant of a dynamic programming approach called the Viterbi algorithm. The core

idea of this approach is to discretize the variables describing the potential energy

and to construct a set of admissible configurations of the beam. The Viterbi algo-

rithm is then employed to search through the set of possible beam configurations

and locate the one with the minimum potential energy in a very computationally

efficient way. The new approach does not require any gradient computations and

could be considered as a direct search method, and thus can be guaranteed to find

the global minimum potential energy. Also the constraints can be automatically sat-

isfied by constructing the proper set of all the possible configurations. The approach

can also be used to find feasible starting configurations associated with conventional

minimizing algorithms.

We also discuss a novel scheme based on discrete variational integrators to study

the dynamics of an inextensible thin Kirchhoff rod which is a model for a surgical

thread. The benefits of such approach are that it is a very efficient scheme that

guarantees conservation of momentum and energy over very long times so that a real
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time simulator can be operated over long periods of time. In addition, we report on an

innovative technique to capture the inextensibility as well as the internal dissipation

of the rod efficiently. Finally, a new collision avoidance scheme based on a continuous

penalty force is employed to simulate the interaction of the rod with the surrounding

medium. The simulations performed capture the formation of plectoneme, i.e. a loop

of helices twisted together. Lastly, the scheme is employed to simulate the tying of a

square knot. This model can be used to simulate surgical threads at real time rate.
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1. INTRODUCTION

1.1 Motivation

Among many surgical tasks, suturing and knotting are considered particularly

challenging for medical school students. It is not atypical for a student to take up

to one minute to tie a knot compared to the five or seven knots per minute an

experienced surgeon will be able to achieve and at that rate, the four hundred knots

needed for an organ surgery will require six hours of surgical time devoted to that.

Achieving a high level of competency in suturing requires a significant amount of

practice. However, there is a consensus in the medical community that the traditional

surgical training methods that rely on practicing on animals or human corpse or on

plastic and foam models have limitations and have become slightly obsolete in the

light of the 21th century (see Figure 1.1). These traditional methods are known

to have limitations because [1]: i) dead tissues do not exhibit the same response

as healthy ones, ii) humans and animals have different physiologies, iii) plastic or

foam models lack realism, iv) novice trainees have a higher risk of being exposed

to contaminated blood while manipulating sharp instruments, v) experiments on

animal raise ethical considerations and vi) students of Muslim or Jewish faith may

have religious conflicts in practicing on porcine tissues. In addition, there has been

raising pressure from animal right activists and religious groups having conflicts

touching porcine tissues [1].

Moreover, advanced surgery techniques, such as robotic surgeries and minimally-

invasive surgeries (MIS) as shown in Figure 1.2 and 1.3, have played a more and more

important role in modern medicine. According to Dr. Fabrizio Michelassi, MD [2],

Surgeon-in-Chief at NewYork-Presbyterian Hospital / Weill Cornell Medical Center,

1



"Modern surgery is minimally invasive, and that speaks to the approach, but has also

become more organ-saving and maximally restoring. Thirty years ago, a patient with

a tumor of the leg would undergo an amputation. Today, with minimally invasive and

maximally saving procedures, the leg is preserved. There has been an evolution of

surgery approaches from just removing to curing without destroying.". The benefits

of MIS can include small incisions, few incisions, less pain, low risk of infection, short

hospital stay, quick recovery time, less scarring, reduced blood loss, etc. [3]. And

MIS has become the most common method of repairing abdominal aortic aneurysms

in 2003 in the United States [4]. However, traditional training method s such as that

shown in Figure 1.1 can not satisfy the requirements of advanced surgical technologies

developed recently.

To address these problems, efforts have taken place over the last twenty years to

introduce virtual reality as part of the clinical training [5]. This is in great contrast to

other industries that have fully enjoyed the benefits of computer simulations. Take for

instance pilots training, that has heavily relied on flight simulators for many decades.

Of course, the simulations introduced in the medical field have been intended to

enhance, not replace the traditional methods but even so, they are yet to penetrate

the main stream medical community. Note that among medical simulations, the

modeling of tissues and organs (in particular heart and brain) has received more

attention than the modeling of surgical instruments and devices. And most of these

simulations are only visually correct.

So we want to develop a user-friendly, physically based surgery simulation soft-

ware that provide an alternative to traditional surgical training methods. As shown

in Figure 1.4, the software is composed of three major parts, user interface, simu-

lator engine, and haptic device, which provide interface between user and software,

simulate the suture according to operations by the user, and provide force feedback
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Figure 1.1: Traditional surgical training methods that include kit with plastic foam,
fruit such as orange, and practicing on pig’s foot.

Figure 1.2: Robotic suturing [6]

respectively. The simulator engine can be further consist of three parts which are

used to simulate the dynamic motion of guide wire used in minimally invasive surgery,

surgical thread, and tissue material at real time rate.

We should notice that during the process of minimally invasive surgery, the

guidewire moves very slowly [8], and thus we assume the simulation of guidewire

is a static problem. Since the guidewire is mainly subject to end force load [8] and

we focus on the effects of the constraints on the configurations of a buckled beam (i.e.

3



Figure 1.3: Illustration of a guide wire inserting into blood vessel [7].

User
User

interface

Simulator

engine

Haptic

device

Simulator of

guide wire

Simulator of

surgical thread

Simulator of

tissue

Figure 1.4: The structure of our surgery simulation software.

the deformation of tubes passing through the esophagus or the like-organs during en-

doscopic operations shown in figure 1.5), we consider a simplified buckling problem of

a two-dimensional (2D) beam constraint between two parallel curved walls as shown

in Figure 3.1. Comparing with the stiffness of the human tissue material, the guide

wire is very soft [8], and therefore the constrained channel is assumed to be solid.

Furthermore, the friction between the beam and solid curved walls is neglected due

to the low friction between guidewire and the tissue material of human body. So the

simulation of guidewire is assume to be a problem of static buckling of Euler beam

constrained by solid frictionless curved channels.
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oesophagus

Endoscope

Force Load

Figure 1.5: Right: The figure shows the endoscope passing through oesophagus.
Left: the planar beam buckling problem we are interested.

For the simulator of surgical thread, the surgical thread should be stiff enough

to hold steadily the knot avoiding slacking, so the surgical thread is often considered

to be either an inextensible or a very stiff rod. The research on surgical thread with

high stiffness have been done by Hüsken [9]. Thus we will focus on the simulation of

inextensible surgical thread in this dissertation.

The real-time simulation of rope, thread or rod, and knot tying in particular (see

Figure 1.6), raises a lot of difficult issues. A lot of research works have been done in

this area. One of the major challenges to simulate the thread is its physical model.

Despite the fact that the configuration space of the rod has only one dimension,

its mathematical representation is difficult. This comes from the observation that

an elastic rod cannot only bend, but also twist around its centerline. Thus, the

configuration of a deformed rod cannot be described in terms of the position of

its centerline alone. Instead, the orientation of each cross-section introduces an

additional degree of freedom. Since the positions and orientations are mechanically

coupled and the inextensibility of the rod should also be considered, the rod is
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an intrinsically constrained system. Additionally, when tying a knot, the thread

will collide itself, so management of self-collisions should be take into consideration

during the simulation. When two segments of the thread are close to each other and

self-collision is going to happen in continuous time, we should notice that in discrete

time of the numerical simulation, the diameter of the thread is so small that it may

result in the situation that the two segments are separated without collision at a time

step; while at the next time step, the two segments of the thread may cross each other

without detect the self-collision actually happed in continuous time. This is because

the relative distance between the two segments changed during the current time step

is larger than the original distance between these two segments in previous time

step. This tunnel effect raise the challenges in the collision detection and response.

Moreover, surgery always takes a long time, which requires long time simulation.

Particularly, it may take more than 10 minutes for a novice student to tying one knot,

which results in another challenge, the stability of long time simulation. Challenges

associated with the real time simulation of deformable objects in a three-dimensional

space have been recognized by the computer animation industry [10].

Figure 1.6: Surgical thread knot tying [11].
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1.2 Objectives

The objective of this dissertation is to develop novels techniques for modeling the

static buckling of Euler beam with circular channel constraints subject to end forces

load which is core model of the guidewire simulator, and the dynamic response of

inextensible elastic Kirchhoff rods which can be served as a surgical thread simulator

of the user-friendly, physically based surgery simulation software as shown in Figure

1.4.

In the following part of the dissertation, we first discuss the related works on

the simulation of beam and rod in the past; then we develop the models for static

simulation of Euler beam in two dimensional space and the dynamic simulation of

Kirchhoff rod in three dimensional space. Additionally, we attach the simulation

codes for these two models in the appendix.
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2. RELATED WORK

Various kinds of techniques have been developed to simulate the static and dy-

namic response of beam or rod in the past. In this section, we will first discuss

the research on the static buckling of constrained Euler beam and then review the

dynamic response of elastic rod.

2.1 Static simulation of a buckled Euler beam with constraints

Beams with various boundary conditions have been reported in the literature.

In particular, when we consider laterally constrained beams, Feodosyev, V.I. [12]

investigated the buckling configuration of a beam constrained by a narrow straight

channel. The critical forces and the corresponding stable deformation patterns are

analyzed with the assumption of small deflection in this work.

Domokos et al. [13] have researched on the buckling configuration of a beam

with large deflection constrained by a frictionless wide straight channel (see Figure

2.1). The procedure of their work is first conduct experiment and observe the de-

formation patterns; then all deformation patterns are treated independently and the

corresponding governing equations are developed and cataloged; lastly the final solu-

tion is obtained through combing all these independent governing equation together.

Chai [14] has shown the buckling configurations of a simply supported beam with

the constraints of parallel straight solid walls by assuming point/line contact regions

and computing the reaction forces in these regions to find the buckled shape. Later

Holmes et al. [15] consider elastic buckling of an inextensible beam with hinged ends

and fixed end displacements, confined to the plane, and in the presence of rigid,

frictionless sidewalls which constrain overall lateral displacements. They formulate

the geometrically nonlinear (Euler) problem and develop global search and path-
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following algorithms to find equilibrium in various classes satisfying different contact

patterns and hence boundary conditions. They derive complete analytical results for

the case of line contacts with the sidewalls, and partial results for point contact and

mixed cases.

Figure 2.1: Some typical buckled shapes research in the work by Domokos et al. [13].
Left column: pinned-pinned beam; right column: clamped pinned beam.

Chen et al. [16, 17] has investigated the 2D beam buckling problem of in a chan-

nel with symmetric boundary conditions, as shown in Figure 2.2. In their work, both

the inside and outside channel walls were assumed to be circular. They first carried

out a sequence of experiments and then identified different deformation patterns of

the beam, i.e., segments of beams in contact with the channel walls. Based on the
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observed patterns, each segment of the beam was listed independently, and the cor-

responding differential equations together with boundary conditions were developed.

The full solution resulted in combining all solutions associated with the different

patterns. The technique by Chen et al. has the advantage to be straight forward

and easy to solve 2D beam buckling problems in a circular channel with symmetric

boundary conditions. However, the approach requires experimentations for each ge-

ometry and boundary conditions to identify deformation patterns, which can then

be incorporated into the segments of the differential equation. This is because the

solution method depends upon knowing the type of contacting and non-contacting

regions in priori. This severely limits the application of the approach since each

geometry and boundary conditions have to be reinvestigated.

Figure 2.2: Two buckled patterns in the work by Chen et al. [16]. Left: the middle
point of the deformed wire is elevated from the inner radius a small distance ε. Right:
the deformed wire is in point contact with the inner radius of the tube at the middle
point C.

Later, Narayanan et al. [18, 19] develop an innovative model to find the config-

uration of a buckled Euler beam with straight channel constraints based on energy

minimization method, which allows to find regions of contact without the need to

resort to experiments or assuming deformation patterns priori the simulation. In
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Narayanan’s work, the beam is discretized in both domain and range, and the dis-

crete minimization of an energy functional has a special Markov structure that can

be exploited by means of the well known Viterbi algorithm to find the minimum.

The core idea of this method is that, a discrete set of finite admissible configurations

of the beam is first constructed, and then the Viterbi algorithm is employed to search

one configuration of the beam with minimum potential energy among all the discrete

admissible configurations constructed. Our approach to simulate the buckled Euler

beam with circular channel constraints is based on this model, and the advantages

of this method, without the need to resort to experiments or assuming deformation

patterns priori the simulation, has also been kept. The details of our work is shown

in Section 3.

2.2 Dynamic simulation of elastic rods

The limitation of computational power of early years meant that physical accu-

racy had to be sacrificed to generate visually plausible simulations quickly. So we

will first discuss the purely geometry-based simulation techniques wherein the models

focus only on visual accuracy and not force feedback have been developed.

2.2.1 Purely geometry-based simulations

Many early efforts in modeling surgical thread are devoted on the model of spline

[20]. Generally, the curves are represented by a set of control points. These control

points are used to weight a linear sum of basis functions associated with each spline

type. The parametric curve C(u) is defined by

C(u) =
n∑
i=0

PiBi(u) (2.1)

11



where Pi are the control points and Bi(u) are the basis functions, see Figure 2.3. The

designer adjusts the shape of the curve by moving control points to new positions,

by adding or deleting control points, or by changing their weights. Terzopoulos et al.

[21] simulate elastically deformable objects by employing spline model. While they

focus on a general model for elastically deformable objects, one of the examples they

mention is a telephone cord.

Figure 2.3: Two types of spline model: interpolating curve (passing all the control
points); approximating curve (not necessarily passing all the control points) [20].

Phillips et al. [22] apply the model of splines to simulate tying knot, as shown

in Figure 2.4. In their work, the rope is modeled as a spline of linear stretching

springs, with spheres placed on the control points to represent the rope volume. The

spheres tend to stretch apart or bunch up and thus insert or delete the control point

of the curve respectively, which make the control points adaptive with respect to

the inter-points distance during the simulation. The collision handling based on an

impulse model allows to preserve the topological properties of the thread. However,

this system does not operate in real time, as it takes several minutes of computation
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to simulate the gravity effect of rope with two end pinned to a fixed point. Moreover,

the bending and twisting properties of the thread are not considered.

Figure 2.4: Tying a square knot based on the model of spline in the work by Phillips
et al. [22]. The rope is modeled as a spline of linear stretching springs, with spheres
placed on the control points to represent the rope volume. The bending and twisting
properties of the thread are not considered.

Lenoir et al. [23, 24] create a real-time spline based simulator, in which the

stretching and bending behavior are achieved through the springs distributed over

the spline representing the surgical thread (see Figure 2.5). They are also able to

simulate knots by handling self-collisions with penalty methods. However, torsion is

not included.

To simulate the torsional behavior, Theetten et al. [25] introduce an additional

degree of freedom, the rotation field, for each control point of the spline, see Figure

2.6. The rod centerline positions r = (x,y, z), and a rotation field θ representing the

orientation of the cross-section. They then express the rod through a set of polyno-

mial spline curves: q = (r, θ) = (x,y, z, θ); and each resulting spline is expressed as

q(u) = ∑n
i=1 bi(u)qi, where bi(u) is the the ith spline function for the control points
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Figure 2.5: Spring distribution over a spline in the work by Lenoir et al. [24]. The
stretching and bending behavior are achieved through the stretching springs and
bending springs. Twisting are not considered.

qi. The model is then developed from the Lagrangian equation, in which the poten-

tial energy and kinetic energy of the system are derived based on both the positional

and torsional degree of freedom.

Figure 2.6: Scheme of a rod with its geometrical parameters and local frame in the
work by Theetten et al. [25]. Torsion are considered through the introduction of
rotation field θ.

Brown et al. [26] develop a simulator based on the model of Follow the Leader

(FTL) that firstly enables realistic interactive simulations of complex knot tying

operations at real-time rates. In their work, The thread is discretized into N nodes.

When one control node is grasped, the motion occurs and the rest of the thread

is propagated to follow the control node according to the algorithm of FTL, such
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that the inextensibility of the thread and some of the most important properties

of tying knots (namely, that objects do not pass through or penetrate each other

but rather slide with some friction) are maintained (see Figure 2.7). This approach

is computationally efficient and allows hard constraining of the total length of the

thread. However, it is also very limited. Bending and torsion, which can be essential

for correct thread behavior in a suturing situation, are not supported. In general due

to its non-physical nature, it is difficult to model force based effects such as gravity.

Later, Müller et al. [27] extend the algorithm FTL to Dynamic Follow-The-Leader

(DTFL) for hair simulation, allowing a more dynamic behavior of the hair strands.

Figure 2.7: If we move node 2 (left), nodes 1 and 3 follow, then 4, then 5 (in the
work by Theetten et al. [25]).

One of the most successful purely geometry-based model is Position-based dy-

namics (PBD) developed by Müller et al. [28] to efficiently and robustly simulate

clothing. PBD has primarily been used to simulate various physical phenomena as-

sociated with solid and thin-shell deformations in many game engines and visual

effects, where speed and controllability is crucial. Umetani et al. [29] extend the
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application of PBD to rod like one dimensional object. PBD requires an object’s

deformations be characterized with discrete positions of points. However twist of a

rod cannot be directly specified with only positions of the rod center line, because

twist requires angular information - rather than positional - which describes how

much the material is twisted around the centerline. Ghost points are introduced and

placed on edges to represents material points distributed around the edge, and the

orientation of material frame naturally follows the rods’ tangential direction, leading

to an efficient formulation. However, due to the adoption of Rodrigues’ rotation

to represent the material frame, the relative rotation angle for each two connective

segments is limit to π.

Figure 2.8: Configuration of edges, nodes points (red) and ghost points (cyan) (in
the work by Umetani et al. [29]). The discrete centerline is expressed through the
nodes points and the orientation is represented by the ghost points.

With purely geometry-based methods, the systems require the prior knowledge of

the objects being manipulated and deformations must be explicitly specified, since no

constitutive relation or balance law is used to predict the motion, which indicate that

modeling is dependent on the expertise of the user. This has prompted the graphics

community to begin exploring physically-based methods for animation as computing

power and graphics capabilities boost during recent decades. These methods rely
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on physical principles and computational power to simulate complex processes that

would be difficult or impossible to model with purely geometric techniques [30].

2.2.2 Physically based simulations

Mass-spring systems are one physically based technique that has been used

widely and effectively for modeling deformable objects. Mass-Spring-Damper mod-

els are dynamic models. The spring forces acting on each node, Fs, are usually

considered to be linear (Hookean’s Law). This means that the spring force has a

magnitude directly proportional to the displacement of the spring from its rest posi-

tion and acts to restore the spring to its initial position.

The earliest mass spring model for rod-like one dimensional objects known to

the author of this thesis is introduced by Rosenblum et al. [31]. To simulate large

quantities of hair, they employ a very simple model of mass points connected by

springs. Additional hinge springs provide bending resistance, as shown in the Figure

2.9.

Figure 2.9: Dynamic model for a single strand of hair in the work by Rosenblum et
al. [31]). The hinge springs provide bending resistance.
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Several techniques have been developed to improve the mass spring system to

simulate the torsional behavior. In the work by Wang et al. [32, 33], the bending

and torsion behaviors are considered by introducing angular spring and torsion spring

and measured according to the relation among the adjacent points.

Choe et al. [34] develop a new hybrid model based on mass spring system to

simulate hair. They treat hair as a collection of wisps, which are discretized into

several segments. The segments of a wisp are represented as rigid bodies with a center

of mass and connected as a serial chain by linear and angular springs. The orientation

of the segment is represented by quaternions, which is employed to measure the

bending and twisting of the hair.

To simulate torsion, Selle et al. [35] introduce torsion spring and tetrahedral

altitude springs (to prevent the collapse of the hair model where all the springs and

masses are in the plane) to the mass spring system, see Figure 2.10. For curly hair

(left), the altitude springs are connecting each discrete nodes and the one three nodes

away from it; for straight hair, perturbed points are introduced so that the altitude

springs can still be applied to represent the twist. Also, the inextensibility of the

hair is achieved by strain limiting approaches[36][37].

Kubiak et al. [38] have improved the mass-spring model to simulate the bending

and twisting effect of thread by adding bending springs and torsion parameter 2.11.

The bending stiffness is based on the distance between two different ends of two

continuous segments. The torsion is evaluated by torsion angle, the angle difference

between the material frame and the Bishop frame [39], which is the same as our

model to measure torsion and the details is shown in our part.

Mass-spring systems are intuitive, generally easy to implement, and are com-

putationally efficient, making real time animations possible. Such systems handle

even large topological deformations with relative ease. They are also well suited to
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Figure 2.10: The mass spring model of hair in the work by Selle et al. [35].

parallel computation due to the local nature of interactions. The main drawback

associated with using Mass-spring systems is that the discrete model imposes signifi-

cant approximations of the true physics that would occur in a continuous body. This

approximation of elasticity theory means that it can be difficult to define the spring

parameters that result in convincing simulations. Mass-spring systems also suffer

from a problem known as stiffness, where large spring constants lead to poor system

stability. To ensure stability, the system must be integrated over small time-steps,

resulting in very slow simulations. On a more general note, the local nature of in-

teractions means that for global deformations, there is a delay in the propagation of

force effects through a given system. Finally, Mass-spring systems have a tendency

to oscillate due to their iterative basis [30] .

In the work by Anjyo et al., a simplified linear cantilever beam model based on

Euler beam theory is employed for hairstyle modeling (see Figure 2.12), which allows

hairdressing variations with volumetric and realistic appearance [40]. In order to
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Figure 2.11: The model of thread in the work by Kubiak et al. [38]. The straight rod 
segments connecting two continuous nodes are the stretching spring. The springs 
connecting a node and the node two points away provide bending resistance. The 
torsion is calculated through the angle difference between the material frame and the 
Bishop frame [39].

describe the dynamical behavior of hair in an animation, one-dimensional projective

differential equations of angular momenta for linked rigid sticks are also derived.

The pliability of hair can be controlled by using a set of stiffness parameters in the

method. The same deformation model has been used by Daldegan et al. [41] to

develop a framework for the simulation of hair. However, the nonlinear behavior of

large deformed hair is modeled based on linear Euler beam theory. Moreover, the

twist effect is still not considered.

Figure 2.12: The model of hair based on the theories of Euler beam in the work by 
Anjyo et al. [40].
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Lenoir et al. [42] developed a simulator based on finite beam element model to

simulate extensible guidewire. The model is defined as a set of beam elements. Each

element has 6 degrees of freedom, 3 degrees of freedom in translation and 3 in rota-

tion, which allow that the elements can model bending, twist and other deformations.

By avoiding resolving the global stiffness matrix, it reduced the computational time

significantly and made real-time interaction possible.

A common starting point for physically based simulation of rods or threads which

includes torsion behavior is the Cosserat rod [43]. The core idea of the model is

that the centerline of the rod is represented by a curve, and the orientation of the rod

is described through material frame, which is Seret-Frenet frames assigned to each

point of the curve 2.13. Pai [44] have developed a model only allow for simulating

the static deformation of a strand and introduced the Cosserat theory in the fields of

computer graphics. Bertails et al. [45] provide a robust solution for simulating the

dynamics of hair strand based on theory of Cosserat rod. Their approach is able to

simulate natural curly hair strands. The advantage of the model based on Cosserat

rod theory is the consistently handling of bending and torsional effects. However,

the implicit representation of the centerline complicates the handling of collisions.

d2(s1)

d3(s1)

d1(s1)

r(s1)

r(s2)

d3(s2)

d1(s2)

d2(s2)

s = 0 s = L

Figure 2.13: Representation of Cosserat rod [46]. The curve represent the centerline
of the rod. The material frame [d1,d2,d3] represent the orientation of the rod.
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An improvement over Pai’s model is contained in the work of Spillmann et al.

[46]. They developed a deformation model called ’CoRdE’ to address the contact

handling problems most Cosserat models have due to the lack of an explicit represen-

tation for the center line. They express the rod centerline using an explicit scheme

and introduce additional constraints to relate the implicit (orientation of rod cross

section) and explicit schemes (rod centerline). They have discretized the rod into

elements, and derived the Lagrange equations for each element. By numerically com-

bining all these equations, the rod is evolved in time. In their later work [47], they

extend their approach with a method for adaptively subdividing the rod depending

on the local curvature, allowing them to build knots with short segments while not

reducing performance with a high number of vertices. Punak et al. [48] have op-

timized the performance of the ’CoRdE’ model by neglecting internal friction and

other dissipate effect as well as kinetic effects of the rod. These simplifications result

in an increase of computational speed while keeping the model relatively accurate.

Bergou et al. [49] developed a model for a discrete elastic rod with an explicit

scheme for the rod centerline based on theKirchhoff theory of elastic rods [50, 51]

to simulate inextensible thread like object. Torsion is measured by the difference of

angles between the material frame and the Bishop frame of the rod [39] so that

no additional degree of freedom needs to be introduced to represent the torsional

behavior. In addition, torsion is assumed to propagate instantaneously because the

rod has a very small polar moment of inertia and this reduces the computation

time needed to capture the temporal evolution of torsional waves. Representing the

centerline with an explicit scheme and handling the torsional behavior easily make

this model computationally-efficient while physical accuracy is respected. However,

the inextensibility of the thread is achieved through a manifold projection method,

which is not a physical based techniques. Compared with models based on Cosserat
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rod theory, this model is extremely suitable to simulate the dynamic behavior of one

dimensional rod like object due to explicit representation of centerline, low degree

of freedom (only four) but still keeping the benefit of models based on Cosserat rod

theory-naturally handling bending and torsion.

Maisheng Luo et al. [49] have been inspired by the model of discrete elastic rod

and develop a model to real-time simulate the guidewire of vascular intervention

based on Kirchhoff rod [52]. In their work, the long slender bodies of guidewire is

simulated by using more efficient special case of naturally straight, isotropic Kirchhoff

rods. The inextensible constraint of the guidewire is achieved by fast projection

algorithm [53]. They derive the equations of motion for guidewire with continuous

elastic energy and discretize these equations using a linear implicit scheme that

guarantees stability and robustness. In addition, the system is further augmented

by the force sensing device as input. Other similar noteworthy articles report on

modeling discrete elastic rods based on the work by Bergou et al. has also been done

by Tang et al. [54, 55] and Huang et al. [56].

Nathan Hüsken [9] have also been inspired by Bergou et al.’s work [49] and develop

a model to real time simulate the behavior of stiff surgical thread. In his work, the

surgical thread is assumed to be very stiff, and implicit integrator is employed to

reduce the instability caused by the stiff springs. Collision are managed through

constraints.

There also exists many other schemes to model the dynamics of thin rods. For

example, Grégoire and Schömer [57] propose a novel hybrid model that combines

mass-spring system and Cosserat rod. In it, the rod is modeled as a mass-spring

system but bending and torsion follow the Cosserat theory. From the above review,

we find that the discrete elastic model developed by Bergou et al. [49] based on

the theories of Kirchhoff rod is one of the best physical based approach to simulate
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the rod like one dimensional object in three dimensional space. since the model is

naturally handling the bending as well as twisting, and its degree of freedom are only

four (three for position, and one for torsion). Our work for the dynamic simulation

of rod is also based on this model, the details are shown in Section 4.
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3. SIMULATION OF STATIC BUCKLING OF EULER BEAM SUBJECT TO

ONE SIDED CONSTRAINTS∗

To study the configurations of a buckled beam with constraints, we will first

conduct qualitative experiments.

3.1 Qualitative experimental observations

Qualitative experiments have been used by Chen et al. [16, 17] to visualize the

possible buckled shapes of a beam with symmetric boundary conditions (i.e. the two

ends of the beam are either free to move or clamped) and constrained by a circular

channel.

In contrast, this work is broader in the sense that we seek to study problems

with non-symmetric boundary conditions such as those with one end clamped and

one end pined. Thus the experimental results by Chen et al. can not be used to

serve as direct comparison with our simulations, which leads us to conduct our own

experiments (see figure 3.1) to be used as benchmark.

In order to illustrate the technique we developed in this dissertation, we first

consider the case of a circular channel (we stress that the technique is not limited

to circular channels. The generalization to non-circular channels is shown in the

results of this section). Figure 3.1 depicts the set-up. Poster-board type paper is

bent to form a quarter circular channel with outer radius Ro = 20cm and inner

radius Ri = 18cm. A plastic strip initially straight is inserted into the channel to

simulate the planar deformation of the beam. Referring to Figure 3.1, the boundary
∗Reprinted with permission from "A direct minimization technique for finding minimum energy

configurations for beam buckling and post-buckling problems with constraints" by Zhujiang Wang,
Annie Ruimi, A.R. Srinivasa, 2015. International Journal of Solids and Structures, Volume 72,
Pages 165-173, Copyright 2015 by Elsevier Ltd.
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conditions are that the left end (A) is clamped and that the right end (B) is pinned to

a cube made of paper free to move along the channel, and thus a compressive load is

applied at B and subsequent buckling shapes are observed. As the load is increased,

the corresponding progressive stable configurations of the strip (in equilibrium state)

are shown from Figure 3.1a to 3.1c. These qualitative observations are compared to

our simulation results (see Figure 3.17).

(a) Pattern 1 (b) Pattern 2 (c) Pattern 3

Figure 3.1: Experimental observations of deformation of an elastic strip in a quarter 
circular channel. The left end of the beam is clamped and the the right is pinned to 
a small piece of paper compressed into a cube. Note that the progressive appearance 
of buckled patterns are compatible with simulations in the figure on p. 47.

3.2 Simulation

Traditional methods used to solve the buckling problem of beams relies on the

solution of the differential equation or on finding the minimum potential energy

[58]. For the latter methods, the resulting minimization problem is very challenging

to solve when the beam is geometrically constrained in a curved channel. In this

work, we will solve the problem by employing a new technique based on a Dynamic

Programming Approach (Bellman, 1954) [59] called the Viterbi algorithm [60]. While
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this algorithm is well known in the information theory literatures. The fact that it

can be used for the solution of constrained beam buckling problems was already

noted in the work by Narayanan et al. [18, 19]. For the cantilever beam problem,

the differential equation together with the initial conditions has a special Markov

structure that can be gainfully exploited. The Markov structure makes the dynamic

programming approach suitable for this problem and allow us to sequentially optimize

it. To better understand the how Viterbi algorithm works on beam buckling problem,

we will first introduce Viterbi algorithm through a simple path optimization example

and then make a brief introduction to the work by Narayanan et al. [18].

3.2.1 Introduction to the Viterbi algorithm

Assume that four persons want to traverse a suspension bridge at night (see

Figure 3.2) [61]. The four persons A, B, C, and D, take 5, 10, 20 and 25 minutes

respectively to cross the bridge. There are two constraints here: 1. the bridge can

carry no more than two persons at a time; 2. each party must carry a torch while

crossing the bridge. We need to find a optimization path to cross the bridge that

costs minimum time.

To employ Viterbi algorithm solve this problem, we first construct the solution

space of all the possible paths as shown in Figure 3.3. And the time cost for each

path are shown in Figure 3.4. We take bottom path 0 → AB → A → ABC →

AB → ABCD as an example: 1. initial state (no body cross the bridge); 2. A&B

together cross the bridge and take 10 minutes (the slower one B dominates the time

cost); 3. B then takes 10 minutes to go back and A stay in the other end of bridge

now (A have crossed the bridge); 4. B&C together cross the bridge which takes

20 minutes (C dominates this action) and A,B,C reach the other end of bridge;

5. C takes 20 minutes to go back and A&B stay on the other end of the bridge
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Figure 3.2: Optimization of the path problem. Four persons, A, B, C, and D, want
to cross the bridge during night. They are required to carry a torch (only one) and
no more than two person can cross together at a time. The initial state is empty
indicating that no persons have cross the bridge; the goal state shows that all the
four persons have crossed the bridge. How to choose a path that costs minimum
time for the four persons to cross bridge?

now; 6. C&D then takes 25 minutes to cross the bridge and all the four persons

A,B,C,D cross the bridge (reach the goal state). The total time taken by this path

is 10 + 20 + 20 + 25 = 75 minutes.

We will employ Viterbi algorithm to efficiently search the optimum path that

costs minimum time from all the total 6 × 2 × 3 × 3 × 1 = 108 possible paths (see

Figure 3.5). All the optimum possible states in each stage have been searched, and

the search on current stage only depends on the previous stage. For example, in

the first stage, all the possible states AB, AC, AD, BC, BD, and CD are searched

and the corresponding time cost are 10, 20, 25, 20, 25, and 25 minutes. In the

second stage, all the possible states are A, B, C, and D. Let’s take state A as an

example. To reach state A, there are three possible sub-paths AB → A, AC → A,

and AD → A, and the corresponding total time cost for each path are 20, 40, 50

minutes. So we keep the sub-path AB → A, which takes minimum time 20 minutes

( = 10 minutes to reach AB + 10 minutes for the sub-path AB → A) to reach

A, and kill the paths AC → A (total 20 + 20 = 40 minutes) as well as AD → A
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(total 25 + 25 = 50 minutes), which cost more time. In this way, all the optimum

paths to the other states B, C, and D in the second stage are searched, which costs

minimum 15, 25, and 30 minutes respectively. In the third stage, The optimum paths

to four possible states ABC, ABD, ACD, and BCD only depends on the previous

stage. For example, to find the optimum paths to ABC, we only need to consider

the sub-paths starting from the second stage, which are A→ ABC, B → ABC, and

C → ABC, but not the whole paths starting from initial condition. We find that

two sub-paths B → ABC and C → ABC cost the same minimum time 35 minutes

to reach ABC, so we keep both of the two sub-path, and kill the sub-path A→ ABC

which takes 40 minutes. In a similar way, we search all the optimum possible state

in each stage, and then find that it optimum path to reach goal state ABCD takes

60 minutes. We only need to search 6+12+12+12+6 = 48 times (smaller than the

total 108 possible paths) to find the optimum path. The last step is to trace back

and find the whole optimum paths as shown in Figure 3.6, where two paths exist

and the minimum time take is 60 minutes.

Figure 3.3: The solution space of all the possible paths. The number of total possible
paths is 6× 2× 3× 3× 1 = 108.
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Figure 3.4: The time cost for each sub-path.

Now we will give an introduction to the application of Viterbi algorithm to find

the configuration of a buckled beam constrained by straight channel in the work by

Narayanan et al. [18] with a very rude or coarse discretization strategy. As shown

in Figure 3.7, the problem can be expressed as,

Find X(s), Y (s), θ̂(s) such that

θ̂(s) = arg min F (θ (s) , Tx, Ty)

= arg min
∫ L

0

EIb
2

(
dθ

ds

)2

− Ty sin θ (s) + Tx [1− cos θ (s)]
 ds (3.1)

subject to the constraints

− ylimit ≤ Y (s) ≤ ylimit ∀s ∈ [0, L]; dY

ds
= sin θ and dX

ds
= cos θ (3.2)

Before introducing the application of Viterbi algorithm to beam problem, we

should notice that, in the crossing bridge problem (see Figure 3.2), the goal is to
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Figure 3.5: Search the optimum local path for all the stages.

Figure 3.6: Trace back to find the optimum path that take minimum time.

optimize the path to find the minimum time cost; in the beam problem, the goal

is to optimize the configuration of the beam to find the minimum potential energy.

Since the crossing bridge problem is a discrete one, we should discretize (domain

discretization here) the continuous problem (3.1), which is (see Figure 3.8),
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Figure 3.7: The cantilever beam is clamped at A, constrained to deform within two
walls separated by a distance of 2ylimit. Forces Tx and Ty act at the free end B as
shown.

Find θ̂ such that

θ̂ = arg min f (θ, Tx, Ty)

= arg min
N−1∑
i=0

EIb
2

(
θi − θi−1

∆s

)2

− Ty sin θi + Tx [1− cos θi]
∆s

(3.3)

subject to

− ylimit ≤ Yi ≤ ylimit i = 1, . . . , N and Yi+1 − Yi
∆s = sin θi (3.4)

According to the application of Viterbi algorithm in the crossing bridge problem, the

first step is to construct the solution space (see Figure 3.3). For the beam problem,

we first discretize the range to restrict the possible positions of the beam nodes in Y

direction belong to a set Z =
{
Y 1, . . . , Y P

}
, which satisfies the channel constraints

(3.4), max(Z) ≤ ylimit and min(Z) ≥ −ylimit. In this way, the beam solution space is

constructed, and we name the solution space as the set of discrete admissible beam
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Figure 3.8: The figure shows the discretized version of the beam, with the dots
representing the nodes of the discretized beam.

configurations. The beam problem with domain and range discretization can be

expressed as,

Find θ̂ such that

θ̂ = arg min f (θ, Tx, Ty)

= arg min
N−1∑
i=1

EIb
2

(
θi − θi−1

∆s

)2

− Ty sin θi + Tx [1− cos θi]
∆s

(3.5)

subject to

Yi ∈ Z =
{
Y 1, . . . , Y P

}
,

Yi+1 − Yi
∆s = sin θi (3.6)

To illustrate how Viterbi algorithm search the optimum the beam configurations, we

show a simple example with a very coarse domain discretization (the beam is equally

discretized into 4 elements) and range discretization (the possible vertical position

can only take three values Yi ∈ Z = {−ylimit, 0, ylimit}). Compared to the optimum

path in crossing bridge problem, a minor difference existing in beam problem is that
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we search the optimized sub-configurations from stage 2 but not stage 1, since the

beam is clamped at A and has only one sub-configuration in first stage, as show in

Figure 3.9. The symmetric beam configurations have the same potential energy (-1).

We then search the possible sub-configurations in stage 3 and stage 4 as shown in

Figure 3.10 and 3.11. We should notice that searching the optimum sub-configuration

in each stage is the same as that in crossing bridge problem in Figure 3.5, and the

potential energy in each stage only depends the previous stage.
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1 2 3

3

2

1

–

-1.0

–

–

0.0

–

–

-1.0

–
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range

Current
range

Stage 2

Range
discretization

3

2

1

Potential energy

Figure 3.9: Right: the possible sub-configurations in first two stages. Left: the
corresponding potential energy of the sub-configurations.

After finishing the search for all optimum sub-configuration in all stages through

Viterbi algorithm, following the procedure of the path optimization in crossing bridge

problem, we need to trace back to find the beam configurations (two symmetric) with

the minimum potential energy (−6.0) as shown in Figure 3.12. We can choose either

one of them as the final result as shown in Figure 3.13.

One should notice that the example illustrated here has a very crude domain and

range discretization strategy. If we discretize the domain and range very fine, we can

get the result shown in Figure 3.14. Up to now we finish the introduction to Viterbi
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Figure 3.10: Right: the possible sub-configurations in first tree stages. Left: the
corresponding potential energy of the sub-configurations.

Previous

Current
1 2 3

3

2

1

Previous
range

Current
range

Stage 4

Range
discretization

3

2

1

-5.0

-6.0

-4.0

-3.0

-4.0

-3.0

-4.0

-6.0

-5.0

Potential energy

Figure 3.11: Right: the possible sub-configurations in all the four stages. Left: the
corresponding potential energy of the sub-configurations.

algorithm.

To summarize, the key idea of the Viterbi algorithm is to efficiently search the set

of possible configurations of the beam and locate the configuration with minimum

potential energy. The major advantage of this technique is that, since it is based on a

global search and not on a calculus based approach, it is guaranteed to find the most

probable configuration among all the admissible possibilities. However, for non-linear

elastic problems, there may exist many different equilibrium states for the system as

long as the potential energy reaches a local minima [58]. Although we are finding the
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Figure 3.12: Two symmetric beam configuration with minimum potential energy
(−6.0).
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Figure 3.13: The configuration of the constrained beam.

lowest energy state among many possible configurations, we should observe that the

Viterbi algorithm can be extended to find all local minima by employing a technique

called list Viterbi [62]. Rather than keeping the lowest energy states, the list Viterbi

algorithm can find a given number of lowest energy states[18].

Unlike calculus based methods, the Viterbi method can only search through a

finite number of possible configurations. Thus the challenge here is not only to

discretize the beam but also quantize the possible configurations of the discretized

beam so that we arrive at a very large but finite number of possible configurations

that represent the beam shape. Given these limitations, the Viterbi algorithm can

be used as a means for identifying good initial configuration for subsequent gradient
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Figure 3.14: The beam configuration with a fine discretization strategy in the work
by Narayanan et al. [18].

search algorithm [18].

3.2.2 Continuous problem

Figure 3.15 illustrates the geometry of the problem. we consider a beam AC that

confined between the curved channel composed of walls EF and GH. The beam is

assumed inextensible and frictions between the beam and the walls are neglected.

The beam of length L is clamped at end A, and subject to load T = (Tx, Ty) at end

C .

The configuration of the beam is represent by three variables X(s), Y (s), and

θ(s) as shown in Figure 3.15. The buckled configuration of the beam can be found

by solving the following constrained energy minimization problem.

Find X(s), Y (s), θ̂(s) such that

θ̂(s) = arg min F (θ (s) , Tx, Ty)

= arg min
∫ L

0

EIb
2

(
dθ

ds

)2

− Ty sin θ (s) + Tx [1− cos θ (s)]
 ds (3.7)
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Figure 3.15: A cantilever beam AC clamped at A, constrained to deform within a
quarter circular channel of radius ri = R − Rlimit and ro = R + Rlimit respectively.
The curve line AC represents the current configuration of the beam. The load with
components Tx and Ty acts at the free end C.

subject to the constraints

ri ≤ r (s) ≤ ro γ (s) > 0 ∀s ∈ [0, L]; dY

ds
= sin θ and dX

ds
= cos θ (3.8)

where E is the Young’s Modulus; Ib is the second moment of area of the beam cross

section; s is the arc length parameter along the curve; X(s), Y (s) are the current

position of a point of the beam with respect to the global coordinate system (X, Y );

θ(s) is the angle made by the tangent of the curved AC with respect to the axis X

(see Figure 3.15).
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3.2.3 Discretized form of the problem

According to the same scheme of Viterbi algorithm to solve beam buckling prob-

lem in the work by Doraiswamy et al. [18], we first discretize the beam problem at

hand represented by eq. (3.7) with a finite difference scheme (domain discretization).

We assume that, the beam is assumed to be made of N links with equal length ∆s.

The ends of each link are named as nodes and labeled Nodei, i = 0, 1, . . . , N . The

links are assumed to be rigid and are allowed to only rotate about the Z-axis. Let θi

denote the angle between the X-axis and the link joining Nodei and Nodei+1. Let

the position of Nodei be denoted by {Xi, Yi}. The set of angles of this discretized

beam is represented by an N dimensional vector θ = [θ0, . . . , θN−1] corresponding to

the N links. Similarly, the positions of the nodes are represented by {X,Y }, where

X = [X0, X1, . . . , XN ] and Y = [Y0, Y1, . . . , YN ]. Based on such a scheme, eq. (3.7)

can be restated as,

Find θ̂ such that

θ̂ = arg min f (θ, Tx, Ty)

= arg min
N−1∑
i=0

EIb
2

(
θi − θi−1

∆s

)2

− Ty sin θi + Tx [1− cos θi]
∆s

(3.9)

where
Yi+1 − Yi

∆s = sin θi (3.10)

subject to the constraints

√
(Xi+1 −Xi)2 + (Yi+1 − Yi)2 = ∆s i = 0, . . . , N − 1

ri ≤ Ri ≤ ro where Ri =
√
X2
i + Y 2

i i = 1, . . . , N
(3.11)

where θ0 = 0 has been assumed. It is possible to eliminate θi by using the requirement
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θi = sin−1
(
Yi+1 − Yi

∆s

)
. We choose to write the equations as in (3.9), because it is

cumbersome to represent the discrete functional f in terms of Xi and Yi.

For conventional numerical techniques to solve the problem (3.7), usually only

the domain is required to be discretized in a finite difference scheme and then solve

the discretized problem (3.9), and the argument vector X or Y is allowed to take

any value from RN while the other argument vector is obtained from the constraints

(3.11), i.e. we can get X through constraints if Y is known. While, the method

based on the Viterbi algorithm also requires to discretize the range [18]. To that end,

we will carefully restrict the elements of the vector Y to belong a finite subset Z ={
Y 1, . . . , Y P

}
, which satisfy the constrains given by Eq. (3.11). Then there would

be a finite number of admissible beam configurations that satisfy the constraints

constructed by the finite subset Z.

However, we note that the algorithm in the work by Doraiswamy et al.[18] pertains

to a straight channel constrains. So to accommodate the case of a curved channel

constraints, we first discretize the curved channel constraints into several straight

channels constraints.

Constraints discretization Figure 3.16 shows that the curved channel is dis-

cretized into S straight channels (also referred as sections). The local coordinate

system
(
x(k), y(k)

)
is set for the kth section (Sk); let the position of original point

(O(k)) of the local coordinate system be (Xk
o , Y

k
o ) with respect to the global coor-

dinate system (X, Y ); let Lks denote the length of the section Sk and βk denote the

angle made by the Sk with respect to the X-axis, where k = 1, 2, . . . , S. At this

point, we can do local range discretization for each straight section, and thus we can

construct a local subset of admissible beam configurations for each section (see Eq.

(3.13)). Combining all the local subsets obtained, we can created a subset including
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a finite number of admissible beam configurations. For better illustrate the Viterbi

Algorithm, domain discretization is introduced before the range discretization.
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Figure 3.16: The discretized beam (the red dots in the lines AC) is constrained
between several continuous straight parallel walls (the discrete curved channel con-
straints), and subjected to a load T = (Tx, Ty) at its free end C. The blue trapezoid
represents the kth section, and a local coordinate systems is assigned to each section.

Domain discretization in local coordinate system The domain discretiza-

tion is the same as that in the work [18]. As shown in Figure 3.16, the beam itself is

discretized into N equal links. The length of each link is given by

∆s = L

N
(3.12)

The location of Nodei in Sk is referred as xi
(k) =

(
x

(k)
i , y

(k)
i

)
with respect to the local

coordinate system, where i = 1, 2, . . . , N , k = 1, 2, . . . , S.

Range discretization in local coordinate system In each straight section,

the local range discretization is the same as that in the work by Doraiswamy et al.

41



[18]. As shown in Figure 3.16, we restrict the possible y-displacement of nodes in the

kth section with respect to its local coordinate system
(
x(k), y(k)

)
belong to a finite

subset Z(k) =
{
y

(k)
1 , y

(k)
2 , . . . , y

(k)
M

}
, where max

(
y(k)

)
= Rlimit, min

(
y(k)

)
= −Rlimit.

In this paper, we choose

y(k)
m = −Rlimit+(m−1)∆y, where ∆y = 2Rlimit

M
,m = 1, 2, . . . ,M , M ∈ N+ (3.13)

for the subset Z(k) in the kth section. It can be seen that in the kth section, the

straight constraints of Sk are completely eliminated due to the choice of the range

discretization (3.13). Then a finite number of admissible beam configurations in

Sk that satisfy the discretized constraints are constructed. Combining the range

discretization in all the sections, we can construct the finite number of admissible

beam configurations for the discretized problem (3.9).

Now that the geometric constraints, domain, and range have been discretized,

the problem expressed by Eq. (3.7) can be restated into the following discretized

energy minimization form:

Find θ̂ such that

θ̂ = arg min f (θ, Tx, Ty)

= arg min
N−1∑
i=1

EIb
2

(
θi − θi−1

∆s

)2

− Ty sin θi + Tx [1− cos θi]
∆s

(3.14)

where

θi = θ
(ki)
i + βki

, sin θ(ki)
i = y

(ki+1)
i+1 − y(ki)

i

∆s (3.15)

subject to (ki is the section location of the ith node)

−Rlimit ≤ y
(ki)
i (s) ≤ Rlimit, i = 1, 2, . . . , N , ki ∈ (1, 2, . . . , S) (3.16)
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The relationship between the global version stated in Equations (3.9-3.11) and the

local version in Equations (3.14-3.16) can be seen by the fact that


Xi = Xki

o + x
(ki)
i cos βki

− y(ki)
i sin βki

Yi = Y ki
o + x

(ki)
i sin βki

+ y
(ki)
i cos βki

(3.17)

One can notice in Figure 3.16 that for the ith link, ãĂŰNodeãĂŮi (start point)

is located in Sk, but ãĂŰNodeãĂŮi+1 (end point) belongs to the section Sk+1. In

order to calculate the angle θi, the position of Nodei (which was first labelled with

respect to section Sk) should be labelled with respect to the section Sk+1. In this

paper, the conversion is carried by the following equation.


x

(ki+1)
i = +

(
x

(ki)
i − Lki

s

)
cos ∆β + y

(ki)
i sin ∆β

y
(ki+1)
i = −

(
x

(ki)
i − Lki

s

)
sin ∆β + y

(ki)
i cos ∆β

(3.18)

where ∆β = βki+1 − βki
. Then θi can be calculated through the equation

θi = θ
(ki+1)
i + βk+1, where θ(ki+1)

i = sin−1

y(ki+1)
i+1 − y(ki+1)

i

∆s

 (3.19)

3.2.4 Principle of discretization

As described in detail in [18], the Viterbi algorithm searches for the configuration

with the minimum potential energy from the admissible beam configurations we

constructed and finding a global minimum of the discretized problem is guaranteed

(3.14). Thus, the accuracy of the result by Viterbi algorithm is mainly determined

by the construction of the set of the admissible beam configurations. Therefore the

discretization strategy directly decides the accuracy of the application of Viterbi

algorithm to solve the beam deformation problem.
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A proper discretization structure can be constructed by referring the following

ideas:

1. A heuristic approach for the discretization strategy is that when carrying out

the domain and range discretization, for most of buckling and post buckling

problem, there are few cases that the beam is buckled backward; therefore it’s

better to construct a subset Z(k) =
{
y

(k)
1 , y

(k)
2 , . . . , y

(k)
M

}
for section Sk, which

makes the angles of all possible configuration of segments equally distributed

among a certain set, and in this set θ(ki)
i ∈

[
−π2 ,

π

2

]
, where max

(
θ

(ki)
i

)
= π

2
and min

(
θ

(ki)
i

)
= −π2 .

2. The length of the segment should neither be too large nor too small. For most

buckling problem of Euler beam, the length of each segment

∆s ≈ 2Rlimit

3 (3.20)

is a good choice for the first attempt to get the solution.

3. If there exist many large angle changes between two connective links in the

beam configuration by Viterbi algorithm, we can decrease the length of segment

and increase the number of elements of subset Z(k) under the above two steps.

However, we should notice that the discretization should not be too much fine

especially for Range discretization; otherwise it will dramatically increase the

cost of computation [18].

3.3 Markov structure

The discretized form of cantilever beam problem with constraints has a special

discrete Markov structure that can be exploited by means of the well known Viterbi
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algorithm to find the minimum, which have been detailed in the work by Narayanan

et al. [18, 19]. The Markov structure for this problem (3.14) is the same as that

in the work by Narayanan et al. [18, 19]; therefore we will provide only a brief

discussion about it.

Let Smni be the state of the y displacements of the Nodei and the Nodei+1 with

respect to the local coordinate system. Then, the discretized problem (3.14) can be

restated as:

Find θ̂ such that

θ̂ = arg min
N−1∑
i=1

{
EIb
2
[
f (Smni )− f

(
Slmi−1

)]
− Tyg1 (Smni ) + Txg2 (Smni )

}
∆s

(3.21)

This Markov structure (dependence of g on Si−1, Si) can be exploited in the Viterbi

algorithm. And in the following part, we will show the simulation results searched

by Viterbi algorithm.

3.4 Results

Here we present various results of the beam buckling problem with the constraints

of a quarter circular channel by Viterbi algorithm. The geometries of beam and the

curved constraints were set at R = 1.0, Rlimit = 0.05, ro = 1.05, ri = 0.95, L = π

2R.

The channel was discretized into S = 10 sections; for domain discretization the

beam was divided into N = 60 equal links; in each section, the range was discretized

according to equation (3.13) where M is taken as 300. Figure 3.17 shows the results

obtained for 4 different load cases. Note that the end loads and the potential energy

have been non-dimensionalized according to

T ? =
(
T ?x , T

?
y

)
=
(
TxL

2

EIb
,
TyL

2

EIb

)
, U = FL

EIb
(3.22)
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Figures 3.17a - 3.17c represent configurations subject to the compressive end

load. The configurations agree very well with those observed with the qualitative

experiment 3.1. Increasing the loads (in the negative direction) moves the right

end of beam to the left and bottom, and the beam was buckled into the different

patterns which agree with the patterns in experiment as shown in Figure 3.1. Figure

3.17d shows that the Viterbi algorithm can also work in the problem of pulling beam

outside of the channel.

We note that the boundary conditions (BCs) at the right end of the beam in the

qualitative experiment and in the simulation are different. In the experiment part,

the BCs at right end are displacement with pinned end; while in simulation, the BCs

at right end are forces. However, we should notice that any displacement boundary

conditions in this paper can be consider as corresponding force (no moment) by

applying forces until the appropriate displacement is obtained. So the results of

the qualitative experiment can be used to qualitatively verify the validation of the

technique based on Viterbi algorithm. The proof is shown in the following part.

Let δR be the distance from the right end of the beam to the centreline of the

channel; let Ld be the displacement of the right end of the beam moving along the

centreline of channel (we define when Ld = 0, the beam lies along the centreline of

the channel). In this way, the load for the beam in the qualitative experiment is

the displacement Ld with additional boundary condition δR = 0; while the BC in

the simulation is the end force T. However, we should notice that in the qualitative

experiment, only reaction force T can be created for the pinned boundary condition.

Then we assume that a force Tp = (T px , T py ) was carefully chosen, which makes the

beam buckled exactly the same as that in the experiment; we name the beam buckling

problem with end force Tp as equivalent buckling problem. Thus, the governing

equation for the cantilever beam buckling problem in the equivalent buckling problem
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(a) T = (−350.0,−350.0), PE = 67.201
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(b) T = (−500.0,−500.0), PE = 93.760
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(c) T = (−700.0,−700.0), PE = 119.76
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Load Directions

(d) T = (0.0;−10.0;−50.0; 100.0)

Figure 3.17: The configurations of bucked beam calculated by Viterbi algorithm, for
the case R = 1, Rlimit = 0.05, L = π

2R, S = 10, N = 60, M = 300. The arrow
represents the load direction. Figures (a), (b), (c) are for compressive loads (compare
with experiment in Figure 3.1). Figure (d) is for tensile load (notice the contact with
inner wall).
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Figure 3.18: The configurations of bucked beam calculated by Viterbi algorithm, for
the case R = 1, Rlimit = 0.01, L = π

2R, S = 20, N = 45, M = 100. The arrow
represents the load T = (−2500.0,−2500.0). The potential energy is PE = 621.56;
the violation of the constraints is Constrainmax = 3.327E − 4.
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Figure 3.19: The configurations of bucked beam calculated by Active Set method
with the initial condition obtained by Viterbi algorithm, for the case R = 1, Rlimit =
0.01, L = π

2R, N = 45. The arrow represents the load T = (−2500.0,−2500.0). The
potential energy is PE = 636.27; the violation of the constraints is Constrainmax =
1.095E − 20.
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and simulation part should be the same in nature [13]: EIb
d2

ds2Y (s) − TyY (s) +

TxX(s) = 0, where the differences only lie in the material properties of the beam, the

value of the end force at the right end of the beam and the parameters representative

of the channel geometry. It means that both the problem in experiment and the

problem in simulation have the same physical nature. So, we can conclude that the

results of the experiment can be used to qualitatively verify the results by Viterbi

algorithm in the simulations part.

Comparison with conventional minimization techniques The properties

of Viterbi algorithm for beam deformation problem (independent of initial guesses)

make it complementary to traditional algorithms (i.e. gradient descent method which

is very dependent on initial guesses). According to the work by Doraiswamy et al.

[18], conventional minimization techniques, such as active set method for constrained

optimization [63], can further optimize the solution with initial condition got by

Viterbi algorithm. In this paper, the solutions of the buckling problem (3.7) was

also compared with an approach based on the active set method as implemented

in Matlab (fmincon). Figure 3.18 shows the configuration of beam constrained in

a narrow channel of width 0.02 under end load T = (−2500.0,−2500.0) by Viterbi

algorithm. Figure 3.19 shows the result of the beam configuration got by active-

set method under the same end load with the initial guess-the configuration got by

Viterbi algorithm. The maximum of violation of constraints of Viterbi algorithm

is Constrainmax = 3.327E − 4; while for active-set method with Viterbi initial

guess, The maximum of violation of constraints is Constrainmax = 1.095E − 20.

It is because the discretization error was introduced by discretization of range and

constraints, and the active-set method further optimized the solution. However, this

optimization of active-set method only works for the narrow channel; for the wide
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channel with width of ∆R = 0.1, the active-set method fails to converge to the

solution with the initial guess of the result by Viterbi algorithm, not to mention the

random initial guess.

3.5 Convergence of the results to the continuous case

The method presented here, is based on a global search for the actual minimum

of the energy, hence issues of whether or not it has converged to a global minimum

do not arise. In other words, the Viterbi algorithm, by construction, is guaranteed

to find a global minimum of the discretized problem (3.14). The only question of

convergence that remains is whether will the discretized problem (3.14) converge to

problem (3.9) and whether problem (3.9) converges to problem (3.7). Before we

address these convergences, the following key was pointed out to help in identifying

the different problem statements compared in this section.

• Equation (3.7) is the original statement of the problem with no discretization.

• Equation (3.9) is the statement of the problem with discretized domain.

• Equation (3.14) is the statement of the problem with discretized domain, range,

and constraints.

It needs to emphasized that problem (3.14) was obtained from (3.7) by carrying out

three kinds of discretization: discretization of domain, discretization of range, and

discretization of constraints. Thus all these convergences should be established.

As shown in Figure 3.16, let the areas of the union, intersection of discretized

channel constraints and the continuous channel constrains be C, D respectively. Then

the discretization error introduced by the discretizing constraints are the areas of

E = C − D, such as the area Aabc (eliminated from continuous constraints) and

Adef (added to the continuous constraints). As the number of discretized sections S
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increases, the areas E will decrease; specially, when S goes to infinite, the areas of E

goes to zero, lim
S→∞

E = 0. For the range discretization, it is exactly the same as that

in the work [18]. Assume that the number of elements in the set Z(k) (k = 1, . . . , S)

increase, the range is discretized finer; if Z(k) is selected as equation3.13, in the

limit (limM →∞), it can take any value between −Rlimit to +Rlimit, and the range

discretization can be taken as continuous. Thus, if both the number of sections S and

the number of elements in the set Z(k) go to infinite (limS →∞ and limM →∞),

problem (3.14) will be identical to problem (3.9). Hence, convergence of (3.14) to

(3.9) is established. In a similar manner we note that as ∆s → 0 and N → ∞, the

term θi+1 − θi
∆s tends to dθ

ds
by definition of derivatives, and hence (3.9) converges to

(3.7). These two step convergence process guarantee that the solution of the Viterbi

algorithm converges to the solution of (3.7) as the constraints, range and domain

are refined. A detailed convergence study has been carried out by Narayanan et

al.[18][19] and therefore will not be pursued in detail here.

3.6 Simulation of static buckling of Euler beam subject to non-circular channel

constraints

In this part, we will expand the application of Viterbi algorithm to the beam

buckling problem with general channel constraints through an illustration of solving

the problem shown in figure 3.20. The procedure to solve this problem is almost the

same as that with circular channel constraints, and can be summarized as,

1. Design discretization strategies: (a) Discretizing the constraints. (b) Discretiz-

ing domain locally. (c) Discretizing range locally.

2. Construct the discretized problem in the form of Markov structure.

3. Employee the Viterbi algorithm to search the configuration of beam with lowest
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energy.

There are only two differences in details for the above procedure. The first difference

exist in the discretization of constraints, which are shown in figure 3.16 and figure

3.21. We should notice that the details of constraints discretization are pure geo-

metric problems, and will not be discussed here. The second difference is the range

discretization strategy- the finite subset Z(k) =
{
y

(k)
1 , y

(k)
2 , . . . , y

(k)
M

}
for the possible

y-displacement of nodes in the kth section will not be expressed by the equation

(3.13) for circular channel, but expressed by the following equation,

y(k)
m = Wk

M
,m = 1, 2, . . . ,M (3.23)

where Wk is the width of kth section.

C Tx

Ty

A

Y

X

γ(s)
R = 1.0

Ri(γ)

Ro(γ)

Figure 3.20: The figure shows a cantilever beam AC clamped at A, constrained
to deform within a curve channel of radius ri = R − Ri(γ) and ro = R + Ro(γ)
respectively. The curve line AC represents the current configuration of the beam.
Loads Tx and Ty act at the free end C as shown.
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Figure 3.21: The discretized beam (the red dots in the lines AC) is constrained
between several continuous straight parallel walls (the discrete curved channel con-
straints), and subjected to a load T = (Tx, Ty) at its free end C. The blue trapezoid
represents the kth section, and a local coordinate systems is assigned to each section.

The geometrics of the problem are set as R = 1.0, Ri(r) = 0.05 + 0.025πγ,

L = π

2R for the problem with divergent channel constraints (figure 3.22a); R = 1.0,

Ri(r) = 0.1− 0.025πγ, L = π

2R for the problem with convergent channel constraints

(figure 3.22b). The discretization strategies for both the problems are the same: the

channels are discretized into S = 8 sections; for domain discretization the beam was

divided into N = 50 equal links; in each section, the range was discretized according

to equation (3.23) where M = 40. The results are shown in figure 3.22.

The simulation results are shown in figure 3.22 for the convergent and the diver-

gent channel constraints. We can see that the buckling configurations as well as the

potential energy of the beam differ from those obtained in a circular channel(figure

3.17b), with same load T = (−500,−500) acting at the right end of the beam.
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(a) T = (−500.0,−500.0), PE = 77.2783
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(b) T = (−500.0,−500.0), PE = 94.4431

Figure 3.22: The configurations of bucked beam with the constraints of (a) divergent
(b) convergent curve channels.

3.7 Conclusions

In this chapter, a direct search algorithm based on the Viterbi algorithm was

presented to solve buckling of elastic beams with constraints of a curved channel by

gainfully exploiting the Markov structure of the problem. The technique searched

for the configuration with minimum potential energy among a set of admissible con-

figurations for the beam. Accuracy of the Viterbi algorithm applied to the solution

of beam bucking depends on the way that domain, range and constraints are dis-

cretized. The method presented here can easily be extended to any curved channels,

as long as the constraints are discretized into pieces of straight channel constraints

and the ranges for each discretized section are properly discretized.

Since the method base on Viterbi algorithm searches all the discrete admissible

configurations we constructed and store all the possible configurations with minimum
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potential energy at each stage, both the computation cost (for searching) and mem-

ory (for storing all possible configurations) are very high. Particularly, an increase

on dimension can cause exponential growth on the computation cost and memory

requirement. We are still exploring the limits of this novel (to us) approach. For the

3-D case presently we are facing the "curse of dimensionality" and our simple imple-

mentation seems to be too slow. Moreover, the incapability of handling with torsion

behavior is a factor that limits the application of Viterbi algorithm to simulate rod

like object.
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4. SIMULATION OF DYNAMIC RESPONSE OF KIRCHHOFF RODS AT

REAL-TIME RATE

In this chapter, we report on results obtained with the model based on a dis-

cretized elastic rod [49] based on Kirchhoff theory of elastic rods, which overcome

many of the limitations of the current physics based approaches especially with regard

to long term stability, inextensibility, collision detection and response, and internal

dissipation, in the dynamic simulation of thread. The uniqueness of our approach

stems from the fact that we

i) Overcome the long term stability issues by adapting the discrete variational

integrator technique to develop an explicit time integration scheme that is fast

but is stable over over long times.

ii) Develop a new technique based on Picard iterations to enforce inextensibility

exactly at every time step without sacrificing speed and without the need for

penalty function (i.e. stiff extension springs)

iii) Introduce a new technique for dealing with string entanglement to prevent inter-

penetration and pass through that does not suffer from "bounceback" or "jitter"

by using continuous penalty force. This is a difficult problem for one dimensional

models (with zero thickness) since , within a single time step a portion of the

rod can pass thorough a different portion and collisions or inter-penetration may

not be detected at all.

iv) Develop a new way of incorporating internal string inelasticity as well as external

air damping, which is critical for simulating realistic motions with rapid cessation

of motion
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A key element of the work is that rather than working with directors that are

constrained in lengths and relative angles, or in terms of Seret-Frenet Frames, we

work with the Bishop or untwisted frame, following the work by Bergou et al. [49].

Also we eliminate the torsional dynamics since it is much faster than the dynamics

due to bending, so that the resulting equations are entirely in terms of the positions

of the nodal points only this is a huge advantage in speeding up the computations

since we are not dealing with 15 equations for the 15 unknowns [64] (as is conven-

tional in Cosserat rod theories). We illustrate these capabilities by considering the

dynamics of the formation of plectonemes wherein the bend-twist coupling as well

as self interaction are critical.

4.1 Mathematical model

A thread can be modeled as a circular rod with a diameter much smaller than

its length and is termed a one-dimensional object. When subjected by input forces

and/or moments, the rod takes on three-dimensional configurations. To describe the

configurations of the rod in space and time requires the knowledge of the position of

the rod centerline and the orientation of the cross section. The rod may bend, twist

or assume a distinct coiling effect but it cannot stretch (constraint of inextensibility).

4.1.1 Continuous model

Since this work is inspired by the work of Bergou et al.[49], our notation mainly

follow their work.

Framed-curve representation The geometric dimension of the cross section

of the Kirchhoff rod with mass M is very small compared with its length; thus

we assume it is an one dimensional elastic object, which configuration is described

by its centerline. Following the Kirchhoff theory of elastic rods, the configuration
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Figure 4.1: The configuration of an Kirchhoff rod is represented by a curve γ(s) and a
material frame {T(s),M1(s),M2(s)}. The twist can be measured through the angle
difference θ(s) between the material frame and the Bishop frame {T(s),U(s),V(s)}.

of the rod is represented by an adapted framed curve Γ = {γ; T,M1,M2} over a

parameter s ∈ [0, L], where L is the length of the rod (see Fig. 4.1). Here γ(s) is an

arc length parameterized curve in R3 describing the rod’s centerline; a right-handed

orthonormal coordinate system {T(s),M1(s),M2(s)} is assigned to each point on the

centerline and named as material frame. The material frame satisfies T(s) = d
ds
γ(s),

i.e., it is adapted to the centerline such that the first material axis is tangent to the

curve; T contains the bending information and M1 (or M2) contains the twisting

information. In the following part, more details about the material frame will be

given.

Darboux Vector Because the orthonormal material frame {T(s),M1(s),M2(s)}

is normalized, the derivative of its components (i.e. T) with respect to arc length

s ∈ [0, L] must be orthogonal to the component itself (i.e. T). Thus the derivative
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can be represented by the other components (i.e. M1 and M2),

∂T(s)
∂s

= aM1(s) + bM2(s) (4.1)

∂M1(s)
∂s

= cT(s) + dM2(s) (4.2)

∂M2(s)
∂s

= eT(s) + fM1(s) (4.3)

with appropriate values for a, b, c, d, e and f . Since

∂

∂s
(T(s) ·M1(s)) = 0

∂

∂s
(M1(s) ·M2(s)) = 0
∂

∂s
(M2(s) ·T(s)) = 0

⇒

∂T(s)
∂s

M1(s) = −∂M1(s)
∂s

T(s)

∂M1(s)
∂s

M2(s) = −∂M2(s)
∂s

M1(s)

∂M2(s)
∂s

T(s) = −∂T(s)
∂s

M2(s)

it is quite straight to find that the constants a, b, c, d, e and f in equations (4.1)-(4.3)

can be reduced to three variables, ω1, ω2 and mt, such that

∂T(s)
∂s

= ω1M1(s) + ω2M2(s) (4.4)

∂M1(s)
∂s

= −ω1T(s) +mtM2(s) (4.5)

∂M2(s)
∂s

= −ω2T(s)−mtM1(s) (4.6)

Therefore, we can define a Darboux vector, Ω(s) := mtT(s) − ω2M1(s) + ω1M2(s),

such that the equations (4.4)-(4.6) can be rewrite as,

∂T(s)
∂s

= Ω(s)×T(s) (4.7)

∂M1(s)
∂s

= Ω(s)×M1(s) (4.8)

∂M2(s)
∂s

= Ω(s)×M2(s) (4.9)
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Substituting Ω(s) into the above equations, we can get

ω1 = T′ ·M1, ω2 = T′ ·M2 and mt = M1
′ ·M2 (4.10)

Notice that the prime y′ = y(s, t) denotes spacial derivative ∂y
∂s
, while the dot ẏ(s, t)

denotes the temporal derivative ∂y
∂t
. Since T′ is the centerline’s curvature vector,

ω = [ω1, ω2] = [T′ ·M1,T′ ·M2] represents the rod’s curvature vector expressed in

material coordinates and measure the bending of material frame. Also, the equation

(4.5) shows that M1
′ exist in two directions, T and M2, so mt = M1

′ ·M2 measures

the rotation rate of M1 around the tangent T with respect to the arc length s and

thus measure the twist of material frame [49].

We can now obtain a more explicit conclusion, the space propagation of the

material frame along the centerline of the rod can be described in terms of the

Darboux vector, Ω := mtT− ω2M1 + ω1M2, by the equations T′ = Ω×T, M1
′ =

Ω ×M1, M2
′ = Ω ×M2, where mt measures the twist, ω1 and ω2 measure the

bending.

Elastic energy The Kirchhoff theory of elastic rods assigns an elastic energy,

E(Γ) to any adapted frame curve Γ. Since we assume that the rod is inextensible,

we do not consider the stretching energy and the total elastic energy are contributed

by bending and twisting energy,

E(Γ) = Ebend(Γ) + Etwist(Γ) (4.11)

The inextensibility of the rod is achieved by Lagrangian multipliers. Of course, it

is straightforward to drop this assumption by also including a stretching term to

simulate extensive elastic rod.
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In this dissertation, we assume that the rod is naturally straight and isotropic.

Therefore, the bending energy takes the simple form [49],

Ebend(Γ) = 1
2

∫ L

0
kbω

Tω ds = 1
2

∫ L

0
kbκ

2 ds (4.12)

where the ω = (ω1, ω2)T represents the centerline curvature vector expressed in the

material frame coordinates; κ = |ω| is the curvature of the centerline; and kb is the

bending stiffness of the rod.

Sincemt denote the twist of the material frame about the centerline, the twisting

energy is given by [49],

Etwist(Γ) = 1
2

∫ L

0
ktmt(s)2 ds (4.13)

where kt is the rod’s torsional stiffness. The formula mt = M1
′ · M2 gives an

expression for the twist in terms of material vectors immersed in ambient space.

According to the discrete elastic model based on the theory of Kirchhoff rod[49], the

torsion is measured through the angle difference between material frame and Bishop

frame, we now seek this equivalent expression measuring twist.

Bishop frame The Bishop frame {T(s),U(s),V(s)} for the given centerline is an

adapted frame with zero twist uniformly, i.e., mt(s) = 0, s ∈ [0, L]. Therefore the

Bishop frame for a given rod is equivalent to a material frame of a curve, which has the

same position of the given rod’s centerline, with zero twist. The space propagation

of the Bishop frame along the arc length of the centerline can be described in terms

of its Darboux vector with twisting set to zero, Ω = −ω2U + ω1V, through the

equations

T′ = Ω×T, U′ = Ω×U and V′ = Ω×V.
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So if a rod is not twisted with mt(s) = 0, s ∈ [0, L], then its material frame and

Bishop frame are the same. We should notice that the assignment of an adapted

frame to one point on the curve uniquely fixes the Bishop frame throughout the

curve. Usually the Bishop frame is assigned at the start point (s = 0) of the curve.

Since T′ = Ω×T, we know

T×T′ = T× (Ω×T) = Ω (T ·T)−T (T ·Ω) = 1 ·Ω− 0 ·T = Ω.

Recall that T′ is the centerline’s curvature vector; thus, we can get Ω = κb, where

κb = T×T′ is the curvature binormal along the centerline.

The Darboux vector of the Bishop frame serves to define parallel transport. We

parallel transport a vector x from one point on the centerline to another by integrat-

ing the equation x′ = κb × x. Thus, infinitesimally, parallel transport corresponds

to a rotation about the binormal, an important concept that we will use in our dis-

crete model. Parallel transport keeps the tangential component of x tangential, and

evolves the cross-sectional component of x via a tangential velocity, in particular

without rotating the cross-section about the centerline.

The Bishop frame allows for a simple parameterization of the material frame[51].

Let θ(s) be the scalar function that measures the rotation about the tangent of the

material frame relative to the Bishop frame (see Fig. 4.1). The following relation

between Bishop frame and material frame must exist,

M1(s) = R(θ(s))U(s)
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where R(θ(s)) ∈ R3 × R3 is the rotation around T(s) with angle θ(s). This implies

∂M1(s)
∂s

=
(
∂

∂s
R(θ(s))

)
U(s) + R(θ(s))∂U(s)

∂s
(4.14)

Since the Darboux vector for the Bishop frame implies mt = 0, recalling the equation

(4.10), we can get
∂U(s)
∂s

·V = 0

Therefore the second summand of equation (4.14) is aligned to T(s) and does not

contribute to the twist mt for material frame. The first summand can be reformed

as,

(
∂

∂s
R(θ(s))

)
U(s) = ∂θ(s)

∂s

∂R
∂θ

U(s)

= ∂θ(s)
∂s

R(θ(s))R(π/2)U(s)

= ∂θ(s)
∂s

R(θ(s))V(s) = ∂θ(s)
∂s

M2

(4.15)

Substituting equations (4.14) and (4.15) into the equation (4.10), we can get,

mt = ∂θ(s)
∂s

(4.16)

Hence, we can write the twisting energy as

Etwist(Γ) = 1
2

∫ L

0
kt

(
∂θ(s)
∂s

)2

ds (4.17)

Observe that we have expressed the elastic energy of Kirchhoff rods by two dominant

players: the position of the centerline, γ(s), and the angle of rotation, θ(s), between

the Bishop and the material frame.
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4.1.2 Discretized model

Discrete framed curves The centerline of the rod is discretized along γ(s)

into NL ∈ N segments, and the masses (mi) are concentrated on each vertices.

Therefore the discrete framed curve, Γ, consists of a centerline comprised of (NL+1)

vertices x = (x1 . . .xN+1) and NL straight edges e1 . . . eN such that ei = xi+1 − xi,

together with an assignment of material frames Mi = {Ti,Mi
1,Mi

2} and Bishop

frames Bi = {Ti,Ui,Vi} per edge (see Fig. 4.2), where Ti = ei/|ei| is the unit

tangent vector per edge. We naturally assign frames to edges, rather than to vertices.

The inextensibility constraints of the discrete surgical rod then can be expressed by

x1

x2

x3

x4 xNL

xNL+1

e1 e2 e3 eNL

xi−1

xi

xi+1

π − φi

θi

ei−1
Ti−1

ei

Mi
1

Mi
2

Ti

θi

Ui

Vi

Vi−1

Ui−1

Mi−1
1

Mi−1
2

θi−1

θi−1

Figure 4.2: Discrete framed curves.
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the following equation,

Ψ(x) =



(x2 − x1)2 − l21

(x3 − x2)2 − l22
...

(x(NL+1) − xNL
)2 − l2NL


=



0

0
...

0


(4.18)

where li = |xi+1 − xi| is the length of the ith discrete straight segment, i =

(1, 2, . . . , NL − 1, NL).

Discrete bending energy When deriving the discrete bending energy, we adopt

the same guiding principle as Bergou et al.[49], which is to seek a viewpoint that

builds on the same geometric principles as the corresponding smooth theory, though

we want to simulate the behavior as physical as possible. Since each edge is straight,

it follows that discrete curvature is naturally associated with vertices. Letting φi

denote the turning angle between two consecutive edges (see Fig. 4.2). We define

(integrated) curvature by

κi = 2 tan φi2

We now have all the pieces to assemble the bending energy of a discrete naturally

straight, isotropic rod:

Ebend = 1
2

NL∑
i=1

kb

(
κi

l̄i/2

)2
l̄i
2 =

NL∑
i=1

kb(κi)2

l̄i

where l̄i = |ei−1|+ |ei|. Since

(
tan φi2

)2

= sin2(φi/2)
cos2(φi/2) = 1− cos2(φi/2)

cos2(φi/2) = 1
cos2(φi/2) − 1

= 1
(2 cos2(φi/2)− 1) /2 + 1/2 − 1 = 2

cosφi + 1 − 1
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The bending elastic energy can be further simplified as

Ebend =
NL∑
i=1

kb(κi)2

l̄i
=

NL∑
i=1

4kb
l̄i

(
2

1 + cosφi
− 1

)
(4.19)

Notice that κi −→ inf as incident edges bend toward each other (φi = π), so this

measure of curvature will penalize sharp kinks in the rod. In this sense, the discrete

bending energy is properly defined.

Discrete twist energy Finding a discretized energy based on the continuous one

(4.17) is quite straight. Here we directly adopt the discrete twist energy by Bergou

et al.[49],

Etwist = 1
2

NL∑
i=1

kt
(θi − θi−1)2

l̄i/2
=

NL∑
i=1

ktm
2
ti

l̄i
(4.20)

where the scalar mti = θi − θi−1 is the discrete twist. The variable mti measures the

angle between the result frame of parallel transporting the material frame from edge

ei−1 to ei and the material frame at edge ei itself.

Discrete elastic energy Since we assume that the rod is a naturally straight

and isotropic rod, the twist energy by equation (4.20) can be further simplified. In

the work by Bergou et al.[49], they observe that the twist waves propagate much

faster than bending waves and thus assume that twist waves propagate instantly.

Therefore they get the conclusion that at any instant in time, the material frames

are the minimizer of elastic energy, subject to any given boundary conditions on the

material frame,
∂E(Γ)
∂θj

= 0 (4.21)

The elastic energy of the rod include two parts, bending energy and twist energy, as

shown in equation (4.11). While only twist energy depends on θj variables, according
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to the equations (4.11), (4.20), and (4.21), it is quite straight to get,

mti

l̄i
= θNL

− θ1

2L̄
= constant (4.22)

where 2L̄ = ∑NL
i=1 l̄i, the point-wise twist mti/li depends only on the boundary condi-

tions: the difference of angles of the end edges, θN −θ1. Therefore, the elastic energy

for our discrete rod model is

E(Γ) =
NL∑
i=1

kb

l̄i

(
1

1 + cosφi
− 1

2

)
+ kt(θNL

− θ1)2

2L̄
(4.23)

4.1.3 Air drag

Because the density of the surgical thread is very small, one must take into

account the drag caused by the motion of rod in air. Here (as in [65]), we assume

that the air drag is an external force proportional to the rod velocity,

Fa(vi) = −kair(vi
Tvi)v̂i (4.24)

where kair is the drag coefficient, and v̂i = vi

|vi|
.

4.1.4 Internal dissipation

Even though the structure is assumed elastic, the dissipation caused by the in-

ternal friction of the rod may not be neglected. In [46], Spillmann et al. calculate

the relative angular velocity of each vertex to account for the dissipation, a method

that requires a lengthy computation. In this paper, since we assume the rod is inex-

tensible and the evolution of the twist of the rod is instantaneously, we neglect the

dissipation caused by stretch and torsion, and only consider the dissipation due to
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bending,

Pd(Γ) =
NL∑
i=2

1
2kdβ̇

2
i (4.25)

where βi = cosφi measures the bending of the discrete rod (see Figure 4.2). Then

the force caused by the bending dissipation is expressed as,

Fb = ∂Pd(Γ)
∂ẋ

(4.26)

To find the expression of forces caused by internal dissipation Fb, we first derive

the individual summands,

SWi := kdβ̇i−1
∂β̇i−1

∂ẋi
= kdβ̇i−1

∂βi−1

∂xi
= kdβ̇i−1

xi−1 − xi−2

li−2 · li−1

SOi := kdβ̇i
∂β̇i
∂ẋi

= kdβ̇i
∂βi
∂xi

= kdβ̇i
xi+2 − 2xi + xi−1

li−1 · li

SEi := kdβ̇i+1
∂β̇i+1

∂ẋi
= kdβ̇i+1

∂βi+1

∂xi
= kdβ̇i+1

xi+2 − xi+1

li · li+1

(4.27)

With the definition of above terms, the forces obtained through equation (4.26) can

be as,

Fb =
[
Fb

1,Fb
2, . . . ,Fb

N

]T
(4.28)

where

Fb
1 = SE1 ; Fb

2 = SO2 + SE2

Fb
i = SWi + SOi + SEi , i = 3 . . . N − 2

Fb
N−1 = SON−1 + SWN−1; Fb

N = SWN
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4.2 Variational integrator

Since the material frame is always updated to be in quasi-static equilibrium (equa-

tion 4.21), we only need to update the centerline based on the forces derived above.

The equations of motion can be constructed like this

Mẍ = −dE(Γ)
dx

, where M is a 3(NL + 1)× 3(NL + 1) mass matrix associated to vertices of discrete

rod. Usually, this equation is first discretized and then solved by explicit or implicit

integrators. The simulations are expected to run for a relatively long period of time

so it is essential that the algorithm is able to conserve energy. However, the explicit

integrator require small time step; implicit integrator is robust but require complex

computation of Jacobi matrix of forces [9]; most importantly, none of the explicit

or implicit integrator can guarantee the conservation of energy and momentumy[66].

The discrete variational integrators derived from Lagrangian mechanics have the

property of being symplectic and thus guarantee the conservation of energy and

momentum [67, 66]. This indicates that discrete variational integrators can be well

suited to develop robust algorithms for a system required long run stability [68]. So

we employ variational integrator to simulate the rod and the details about variational

integrator will be shown in the following part. A scheme to obtain the numerical

solution for the deformations in space and time of a very thin and long circular rod

(i.e. a thread) is presented in the following part.

4.2.1 Advantages of variational integrator

Our object of this dissertation is to develop a simulator that can be used to

train surgeons’ suture skills. A beginner may take several minutes or even more
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than ten minutes to tie a knot. Therefore to avoid unexpected behavior in the

simulation, long time stability of the simulation is very important, which requires the

energy and momenta conservation are considered. The variational integrator exactly

preserve momenta and have excellent longtime energy stability. These properties

make them ideal for simulating physical systems which are either conservative or

near-conservative. In addition, the variational methodology allows one to easily and

cleanly derive good integrators. Moreover, by employing variational integrator, it

is very straightforward to derive the constrained discrete equations to achieve the

inextensibility of the rod through Lagrangian multipliers, while still maintaining

the conservation properties as the unconstrained discrete equations[66]. Hence, the

variational integrator is an ideal tool to solving the discrete rod.

4.2.2 Continuous time Lagrangian mechanics

Any integrator which is the discrete Euler-Lagrange equation for some discrete

Lagrangian is called a variational integrator[66]. To better explain the implications of

discrete Euler-Lagrange equation, in the following we briefly review the Lagrangian

formulation of the mechanics of a conservative system, and then we mimic this process

at the discrete level to construct variational integrators.

Consider the Lagrangian system L(q, q̇), where q = (q1, q2, . . . , qn) is a point in

the configuration space Q. In Lagrangian mechanics the trajectories of the system

should obey Hamilton’s principle, namely, we seek paths q for which the action

functional

S(q(t)) =
∫ tb

ta
L(q, q̇)dt

is stationary when compared with other paths with the same endpoints at times ta
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and tb. This gives that,

δS(q) = δ
∫ tb

ta
L(q, q̇)dt =

∫ tb

ta

(
∂L
∂q
· δq + ∂L

∂q̇
· δq̇

)
dt

=
∫ tb

ta

(
∂L
∂q
− d

dt

(
∂L
∂q̇

))
· δq dt+

[
∂L
∂q̇
· δq

]tb
ta

where we have used integration by parts. The final term is zero because we assume

that δq(a) = δq(b) = 0. Requiring that the variations of the action be zero (δS(q) =

0) for all δq implies that the integrand must be zero for each time t, giving the well-

known Euler-Lagrange equations,

∂L
∂q

(q, q̇)− d

dt

(
∂L
∂q̇

(q, q̇)
)

= 0

4.2.3 Discrete time Lagrangian mechanics

We will now see how discrete variational mechanics (including the inextensibility

constraints) performs an analogue of the above derivation. We now consider a dis-

crete Lagrangian L̄d(xk, ẋk), approximating the action integral during time period

of [k · h, (k + 1)h],

L̄d(xk, ẋk) = hL̄(xk, ẋk) ≈
∫ (k+1)h

k·h
L̄(x, ẋk) dt

Notice that the superscripts denote the variables associated with time, while the

subscripts denote the variables associated with geometric position in this section.

To reduce the order of the discrete Lagrangian L̄d(xk, ẋk), we take the velocity of

discrete rod’s vertices vk =
(
vk1,vk2, . . . ,vkNL

)
as a new degree of freedom. Coupling

the velocity vk with geometric position of each vertices xk =
(
xk1 ,xk2 , . . . ,xkNL

)
and
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xk−1 is realized through the constraints

gk = g(xk−1,xk,vk) = (xk − xk−1)
h

− vk = 0 (4.29)

Here h ∈ R is the time step, such that a continuous time period [0, T ] is discretized

as [0, h, 2h, 3h, . . . , (Nt − 1)h,Nth] (Nt ∈ N is the total number of time steps).

Then the discrete Lagrangian L̄d(xk, ẋk) can be reformed as Ld(xk,vk+1),

Ld(xk,vk+1) = hL(xk,vk+1) ≈
∫ (k+1)h

k·h
L(x,v) dt

where

L(xk,vk+1) = T − V (4.30)

T is the kinetic energy T = 1
2vk+1TMv + 1k; V is the potential energy V = E(Γ(xk)).

Thus

Ld(xk,vk+1) = h
[1
2vk+1TMvk+1 − E(Γ(xk))

]
(4.31)

Next consider a discrete path of points
{
xk
}Nt

k=0
and calculate the discrete ac-

tion along this sequence by summing the discrete Lagrangian on each time step,

Sd(
{
xk
}

) = ∑Nt
k=0 Ld(xk,vk+1). Following the continuous derivation above, we com-

pute variations of this action sum with the boundary points x0, xNt held fixed. Com-

bining the inextensibility constraints (4.18) and the constraints for coupling velocity
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and position (4.29), we can get

δSd(
{
xk
}

) = δ
Nt−1∑
k=0

[
Ld(xk,vk+1) + Pk+1 · gk+1 + λk+1 ·Ψ(xk+1)

]

=
Nt−1∑
k=1

(
∂Ld
∂xk

+ ∂gk

∂xk
Pk + ∂gk+1

∂xk
Pk+1 + ∂Ψ

∂xk
λk
)
· δxk

+
Nt−1∑
k=0

[(
∂Ld
∂vk+1 + ∂gk+1

∂vk+1 Pk+1
)
· δvk+1 + gk+1 · δPk+1 + Ψ(xk+1) · δλk+1

]

+
(
∂Ld
∂x0 + ∂g1

∂x0 P1
)
· δx0 +

(
∂gNt

∂xNt
PNt

)
· δxNt = 0

Since the variations of the action be zero for any choice of δxk, δvk, δP k, and δλk with

δx0 = δxNt = 0, then we obtain the constrained discrete Euler-Lagrange equations,

∂Ld
∂xk

+ ∂gk

∂xk
Pk + ∂gk+1

∂xk
Pk+1 + ∂Ψ

∂xk
λk = 0

∂Ld
∂vk+1 + ∂gk+1

∂vk+1 Pk+1 = 0

gk+1 = g(xk,xk+1,vk+1) = 0

Ψ(xk+1) = 0

(4.32)

Substituting equations (4.29) and (4.31) into equation (4.32), we can get,

−h dE
dxk
− Pk+1 −Pk

h
+ ∂Ψ
∂xk

λk = 0

hMvk+1 −Pk+1 = 0

(xk+1 − xk)− hvk+1 = 0

Ψ(xk+1) = 0

(4.33)

The above equations can be further simplified by eliminating the terms Pk+1 and

Pk. From the second equation in (4.33), we know Pk+1 = hMvk+1 and Pk = hMvk.

Substitute these two terms into the first equation in (4.33), we can get a new formed
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constrained discrete Euler-Lagrange equations,



vk+1 = vk + hM−1
[
− dE
dxk

+ 1
h

∂Ψ
∂xk

λk
]

xk+1 = xk + hvk+1

Ψ(xk+1) = 0

(4.34)

Assume there is a rigid object of mass mo at speed vb(t) under a constant load Fc. It

is well know that the speed of the object at time t+∆t is vb(t+∆t) = vb(t)+∆tFc/mo

according to the Newton’s second law. Comparing this with the first equation in

(4.34), we can reasonably consider the term − dE
dxk

+ 1
h

∂Ψ
∂xk

λk as the load applied at

the vertices of discrete rod at time step k + 1,

Fk+1 = − dE
dxk

+ 1
h

∂Ψ
∂xk

λk (4.35)

where

Fk+1
inext = 1

h

∂Ψ
∂xk

λk (4.36)

can be taken as the force that guarantee the inextensibility of rod.

The conservative force Fe
i obtained through the elastic energy is[49],

Fe
i = −dE(Γ)

dxi
= −∂E(Γ)

∂xi
− ∂E(Γ)

∂θNL

∂θNL

∂xi
(4.37)

The term −∂E(Γ)
∂xi

is contributed by the bending elastic energy and can be expressed
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as,

∂E(Γ)
∂xi

= kb

l̄i−1

1
(1 + ei−2 · ei−1)2

xi−1 − xi−2

li−2 · li−1

+kb
l̄i

1
(1 + ei−1 · ei)2

xi+1 − 2xi + xi−1

li−1 · li

− kb

l̄i+1

1
(1 + ei · ei+1)2

xi+2 − xi+1

li · li+1

The term −∂E(Γ)
∂θNL

∂θNL

∂xi
is contributed by the twisting elastic energy. Following the

work by Bergou et al.[49], we know

− ∂E(Γ)
∂θNL

∂θNL

∂xi
= kt(θNL

− θ1)
L̄

(
−(kb)i−1

2|ei−1|
− (kb)i

2|ei−1|
+ (kb)i

2|ei|
+ (kb)i+1

2|ei|

)
(4.38)

where we choose

(kb)i = ei−1 × ei

To calculate the total twisting angle θNL
− θ1, we adopt a new accumulative

technique. The angular velocity of ith segment can be expressed as [69]

ω̂i = φ̇in̂i + sinφ ˙̂ni + (1− cosφi)n̂i × ˙̂ni (4.39)

where n̂i = (kb)i
|(kb)i|

is the unit vector along (kb)i. Thus, the twisting angle change

along each segment during each time step can be given by (details are given in the

Appendix A)

∆θi = h(ω̂i · ei) = − h

1 + ei−1 · ei
(ei−1 × ei) · (ẋi+1 − ẋi−1) (4.40)
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Thus, the total twisting angle is

θNL
− θ1 = θin + h

NL∑
i=2

(ei−1 × ei) · (ẋi+1 − ẋi−1)
1 + ei−1 · ei

(4.41)

where θin is the input twisting angle for the rod.

Up to now, we have completely set up the time evolution of the discrete rod.

Given xk and vk (time step k), we can employ some favorite nonlinear equation

solver to find the unknowns xk+1, vk+1, and λk (time step k + 1).

4.2.4 Picard iteration

To solve the discrete Euler-Lagrange equations (4.34), we employ Picard iteration.

In the algorithm of Picard iteration, the inextensible constraints will be considered

implicitly at the last step, so we can further simplify the equations (4.34) by elimi-

nating the variable vk+1,

xk+1 = xk + hvk + h2M−1
[
− dE
dxk

+ 1
h

∂Ψ
∂xk

λk
]

(4.42)

Let x̄ = xk + hvk + h2M−1
(
− dE
dxk

)
, then the above equation becomes

xk+1 = x̄ + h2M−1
[

1
h

∂Ψ
∂xk

λk
]

(4.43)

Substituting the equation (4.18) into above equation, we can get,

xk+1
i = x̄i + h2

mi

(1
h

(−2λki eki + 2λki−1eki−1)
)

(4.44)
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Let αi = −2hλi

mi
, such that

xk+1
i = x̄i + αki eki − αki−1eki−1 (4.45)

Let ēi = x̄i+1 − x̄i. Since ek+1
i = xk+1

i+1 − xk+1
i , we can get,

ek+1
i = ēi + αki+1eki+1 − 2αki eki + αki−1eki−1 (4.46)

Let αi = [αi−1, αi, αi+1]T and ei = [ei−1,−2ei, ei+1]. The above equation can be

reformed as

ek+1
i = ēi + ekiαki (4.47)

Now considering the inextensible constraints (4.18), we know that ek+1
i should satisfy

[ek+1
i ]Tek+1

i = l2i (4.48)

where li is the original length of the segment of discrete rod. Since

[ek+1
i ]Tek+1

i = [ēi]T ēi + 2[ēi]Tekiαki + [αki ]T [eki ]Tekiαki

substitute equation (4.48) into the above equation, we know,

[
2[ēi]Teki + [αki ]T [eki ]Teki

]
αki = l2i − [ēi]T ēi (4.49)

Assemble the above equation, we can get,

[A + B(α)]α = R (4.50)
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where

Aij =



[ēi]Teki−1 if j = i− 1

−2[ēi]Teki if j = i

[ēi]Teki+1 if j = i+ 1

0 if j = others.

Bij =



[
αi−1(eki−1)T − 2αi(eki )T + αi+1(eki+1)T

]
eki−1 if j = i− 1

−2
[
αi−1(eki−1)T − 2αi(eki )T + αi+1(eki+1)T

]
eki if j = i[

αi−1(eki−1)T − 2αi(eki )T + αi+1(eki+1)T
]
eki+1 if j = i+ 1

0 if j = others.

R =
[
l21 − [ē1]T ē1, l22 − [ē2]T ē2, . . . , l2i − [ēi]T ēi, . . . , l2NL

− [ēNL
]T ēNL

]T
To solve the equation (4.50), we first assume a value for α = αold and substitute the

value into B(α); then the equation (4.50) becomes

[A + B(αold)]α = R

Solving the above equation, we can get a new value for α = αnew. We assign the

value of αnew to αold, substitute αold into the above equation, and solve the above

equation again. Repeat the process until α get convergent, then we get the solution

for α.

Now the procedure for solving the discrete Euler-Lagrange equations by the al-

gorithm of Picard iteration should be clear. We make a conclusion in the following,

i) Solve the equation (4.50) to obtain the value of α using Picard iteration.

ii) Substitute α into the equation (4.45) to update xk+1 the position information
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of vertices of discrete rod at the k + 1th time step .

iii) Substitute xk+1 into equation (4.29) to update vk+1 the velocity of vertices at

the k + 1th time step.

iv) Repeat i), ii) and iii) until the final time step is reached.

4.3 Collision detection and response

The slenderness of the rod allows for very large bending and torsion leading to

the possibility of self intersection. This is particularly true when tying knots, where

the rod often collides with itself. This collision of portions of the rod with itself raises

difficulties in collision detection and response [70]. To achieve real time simulation,

efficient and precise detection and management of collisions are two keys to our

model.

4.3.1 Collision detection

To detect the self-collisions, the intuitive method is to check the collisions between

each pair segments of the rod. If the distance between two segments is the same as

the distance between the two lines taken by the segments and is smaller than a

certain value ∆d, we define that the collision between these two segments happens

(see Figure 4.3). The time complexity of this method is the square of the number of

discrete rod vertices. Since the speed of the simulation is required to be at real time

rate, the computation cost is unacceptable. There are a significant amount of fast

collision detection techniques in the area of computer graphic to efficiently detect the

possible collisions. Usually bounding volume hierarchy (BVH) and spatial partition

are often employed to detection the self collisions of rod like one dimensional objects.

For the general BVH technique, the bounding volumes of each object forms the

leaf nodes (see Figure 4.4). Then these nodes are grouped as small sets and enclosed
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(a) (b) (c)

L1

L2

d

L1

L2

d

L1

L2

d

E1

E1

E1E2 E2

E2

Figure 4.3: Line segments E1 and E2 are parts of lines L1 and L2 respectively. If the
two ends of d, the distance between L1 and L2, locate on the line segments E1 and
E2 and is smaller than a certain value ∆d, we define that collision between E1 and
E2 happens.

within larger bounding volumes. These are in turn grouped and enclosed within other

larger bounding volumes in a recursive way, eventually resulting in a tree structure

with a single bounding volume at the top. During the collision testing, children is not

necessary to be checked if their parent bounding volume is not intersected. The time

complexity can then be reduced to a logarithmic in the number of tests performed

[71]. BVH is very efficient for the self collision detection of a rod in the average case

[26]. However, constructing the hierarchy tree is essentially a recursive process and

A

B C

A
B C

Figure 4.4: A sample bounding volume hierarchy of six objects.

thus is difficult to be parallelized for CPU especially for GPU processors, which will

greatly limits the application when parallel computation are employed.
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Spatial partitioning techniques provide broadphase processing by dividing space

into regions and checking if objects intersect the same region of space. Because

objects can only collide only if they overlap the same region of space, the number

of pairwise test is significantly reduced. The common spatial partitioning methods

include three major types, grids, trees, and spatial sorting. We will employ the

uniform grids in our model, which is a highly parallelable and effective method

employed to detect the self-collisions of a rod. This uniform grid divide space into

a number of grid cells of equal size, as shown in Figure 4.5. Each object is then

associated with the cells it overlaps. Possible collisions can only happen in the

common and its neighbor cells.

Figure 4.5: A sample spatial partitioning of six objects by uniform gird. The left
bottom circle can only possible collide with the spiral, cuboid and the pentagram.

To obtain well performance of the spatial partitioning based on the uniform grid,

the grid size should be carefully selected. If the grid size is too coarse, many objects

may locate in the same grid cell, resulting in the expensive pairwise collision check. If

the grid size is too fine, each object may take a lot of grid cells, and the computation

cost of partitioning can be very expensive, which in turn slow down the collision

check. In our case, the gird size should be larger than ∆d (the criterion value
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judging the collision happens between two rod segment) to avoid missing detecting

the possible self-collisions.

In our 3D cases, the gird cell we selected is a cubic. Let the edge length of

the grid cell be ∆LG. We then employ Bresenham’s line algorithm [72], which is a

very efficient algorithm major used to draw lines on monitors, to subdivide each rod

segment into the gird cells. To better explain the Bresenham’s line algorithm, we

first explore a simple 2D case as shown in Figure 4.6. Consider a line with initial

point (x0, y0) and end point (x1, y1). If ∆x = x1 − x0 and ∆y = y1 − y0, we define

the driving axis to be the x − axis if |∆x| > |∆y| (the y − axis if |∆y| > |∆x|).

The driving axis is used as the âĂĲaxis of controlâĂİ for the algorithm and is the

axis of maximum movement. The coordinate corresponding to the driving axis is

incremented by one cell. The coordinate corresponding to the other axis (denoted

as the passive axis) is only incremented as needed.

Bresenham’s algorithm begins with the point (x0, y0) and âĂĲilluminatesâĂİ

that pixel. Since we assume x is the driving axis in this example, it then increments

the x coordinate by one cell of length lcell. Rather than keeping track of the y

coordinate (which increases by m = ∆y
∆x lcell, each time the x increases by one cell),

the algorithm keeps an error ε at each stage, which represents the negative of the

distance from the point where the line exits the cell to the middle of the cell. The

calculation of error ε can be see in Figure 4.7,

ε = y0 + ∆y
∆x(lcell − x0)− lcell

2 (4.51)

If ε > lcell, then the cell position in the passive y axis increase 1 and let the new error

to be

ε = ε− lcell
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When we consider the 3D cases, the procedure is exactly the same. Only difference

is that we have two passive axis now (the detail algorithm is shown in Table 4.1).

(x0, y0)

(x1, y1)

ǫ ǫ

ǫ

Figure 4.6: Illustration of the result of Bresenham’s line algorithm.

(x0, y0)

lcell − y0

y0

x0 lcell − x0

ǫ
∆y
∆x(lcell − x0)

Figure 4.7: Illustration of the calculating the correct error ε of Bresenham’s line
algorithm.
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1. Let ∆x = x1 − x0, ∆y = y1 − y0, ∆z = z1 − z0. Find the driving axis-
x− axis (assume |∆x| = max(|∆x|, |∆y|, |∆z)|).

2. Let xinc = (∆x < 0)?− 1 : 1
yinc = (∆y < 0)?− 1 : 1
zinc = (∆z < 0)?− 1 : 1

3. Calculate the initial bound error for the passive axis εy and εz
if ∆x > 0,
εy = 2|∆y|

[
1−

(
x0
lcell
− b x0

lcell
c
)]
− yinc · |∆x|

[
1− 2

(
y0
lcell
− b y0

lcell
c
)]

εz = 2|∆z|
[
1−

(
x0
lcell
− b x0

lcell
c
)]
− zinc · |∆x|

[
1− 2

(
z0
lcell
− b z0

lcell
c
)]

if ∆x < 0,
εy = yinc · 2|∆y|

(
x0
lcell
− b x0

lcell
c
)
− |∆x|

[
1− 2

(
y0
lcell
− b y0

lcell
c
)]

εz = zinc · 2|∆z|
(
x0
lcell
− b x0

lcell
c
)
− |∆x|

[
1− 2

(
z0
lcell
− b z0

lcell
c
)]

4. Let Px, Py, Pz be the cell taken by the line segment.
5. Px(0) = b x0

lcell
c, Py(0) = b y0

lcell
c, Pz(0) = b z0

lcell
c.

for i = b x0
lcell
c+ 1 to b x1

lcell
c

Px(i) = Px(i− 1) + xinc, εy = εy + 2|∆y|, εz = εz + 2|∆z|
if εy > 2|∆x|

εy = εy − 2∆x, Py(i) = Py(i− 1) + yinc
else

Py(i) = Py(i− 1)
endif
if εz > 2|∆x|

εz = εz − 2∆x, Pz(i) = Pz(i− 1) + zinc
else

Pz(i) = Pz(i− 1)
endif

end for

Table 4.1: The application of Bresenham’s algorithm to partition 3D line segment
with start point (x0, y0, z0) and end point (x1, y1, z1) into a uniform grid of length
lcell.
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4.3.2 Collision response

Once the collisions are detected, these collisions should be handled such that

no penetrations between the discrete rod happen. At a broad level, collision re-

sponse algorithms can be classified into three categories[73, 74]: constraint-based

formulations[75, 76, 77], penalty-based methods[78], and impulse-based methods[79].

In general, constraint-based methods result in a more plausible simulation at the cost

of extra computation. Impulse-based methods are more suitable for rigid body col-

lision response. So we employ penalty-based method. However traditional penalty

based methods suffer various kinds of problem, such as jitter effect. While Tang

et al. improve the penalty method and develop a novel model-continuous penalty

forces[73]. Therefore we employ the model of continuous penalty forces to handling

the collision detection.

t t+∆t

d(t)
d(t+∆t)

a0

b0

d0

c0 c1

a1 d1

b1
E1

E2

Figure 4.8: Continuous penalty force for edge-edge (EE) contact. d(t) is the displace-
ment between the edge a0b0 (E1) and edge c0d0 (E2) at time t; d(t) is the distance
between E1 and E2 at time t+ ∆t.

Since the rod is taken as one dimensional object and the radius of the cross

section is neglect, we cannot handle the collision between the discrete straight edges

as that for collision between 3D objects. As shown in figure 4.8.when the magnitude

of the displacement |d(t)| between two straight edge E1 and E2 is less than ∆d
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(|d(t)| ≤ ∆d), the collision happens. Let the direction of the displacement d(t) is

Ud(t) = d(t)
|d(t)| (4.52)

According the penalty based method, if |d(t)| ≤ ∆d, the penalty force created at

time t is

Fp(t) = ks(∆d− |d(t)|)Ud(t) (4.53)

where ks is the stiffness constant. To derive our force formulation based on continuous

penalty method, we pay attention to the impulse I produced by a penalty force Fp(t)

during time instants [t, t+ ∆t]. The impulse I is defined using the following integral,

I =
∫ t+∆t

t
Fp(t) dt (4.54)

According to the work by Tang et al.[73], the continuous penalty force created by

the collision during the time interval ∆t is

Fc = I
∆t = 1

∆t

∫ t+∆t

t
Fp(t) dt (4.55)

The last task is to couple the continuous penalty force Fc into the constrained

discrete Euler-Lagrange equation (4.34). Since our model to simulate the rod is

force based model, we only need to insert Fc into the total load (4.35) of the equa-

tion (4.34). Therefore the collision combined constrained discrete Euler-Lagrange
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equation becomes



vk+1 = vk + hM−1
[(
− dE
dxk

+ Fc

)
+ 1
h

∂Ψ
∂xk

λk
]

xk+1 = xk + hvk+1

Ψ(xk+1) = 0

(4.56)

We observe that to solve the collision combined constrained discrete Euler-Lagrange

equations by Picard iteration, the only thing we need to do is to combine the con-

tinuous penalty force Fc together with the force − dE
dxk

. Now we have finished to

painted the whole picture of how to simulating the dynamic behavior of a rod.

4.4 Results

Before proceeding to the simulations results, we introduce a series of experiments

to verify the validity of our rod model.

4.4.1 Qualitative experiment of plectoneme phenomenon

The Instron MicroTorsion machine (see Figure 4.10) was used to capture the

formation of plectoneme when the thread was twisted. The specifications of the

machine are shown in Table 4.2. Limited by the load measurement accuracy, we

used a plastic wire (depicted in green in Figure 4.11 ) thicker and stiffer than surgical

threads in the experiment. The schematic diagram of this qualitative experiments is

shown in Figure 4.9. The left end of the thread is clamped to the input shaft that

controls the twisting angle; the right end of the thread is clamped to the load cell

that measures the torque applied on the thread.

The rest length of the sample is L = 259 mm and the distance between the input

shaft and torque cell is Le = 164 mm with the initial configuration shown in Figure

4.11a. We increase the twisting angle from 0 to 3600 deg at a rate of Vθ = 1 deg/s.
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Input Shaft Torque Cell

Le

Thread

Figure 4.9: Digram of the experimental instruments. The thread is clamped at both
ends on the input shaft (left) and torque cell (right). The twisting angle is controlled
by the input shaft and the torque applied on the thread is measured through the
torque cell. The distance between the input shaft and torque cell is fixed to Le.

Figure 4.11b shows the final configuration of the wire (angle of twist equal to 3600

deg) with two loops formed (plectoneme).

Testing Speed Range 0 ∼ 60 rpm
Resolution of Rotation 0.168 arc-min
Torque Cell Capacity 0.225 N · m

Load Measurement Accuracy ± 0.5 of reading down to 1/500 of load
cell capacity

Transducer Resolution 1 part in 500, 000 of ± full scale (19
bits)

Table 4.2: The specifications of Instron MicroTorsion Testing System MT2.

Figure 4.12 is a plot of torque applied on the thread with respect to angle of

twist. We see two distinct deeps (points B and C). They correspond to the angle

of twist at which loops have formed. An explanation for that behavior is that as

the loop forms, twisting energy is converted into bending energy which results in a

decrease in the amount of torque applied on the thread. When the loop has fully

formed, self-contact occurs and prevents the thread from bending further. At the
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Figure 4.10: The picture of experimental instrument - Instron MicroTorsion Testing
System MT2.

(a) Initial configuration of the thread (b) Final configuration of the thread

Figure 4.11: The configurations of the green plastic thread. The rest length of the
thread is 259 mm. The distance between the two ends of the thread is Le = 164 mm.

same time, twisting energy increases because of the input of angle of twist, which

generates an increase of torque applied on the thread. In summary, the plectoneme
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phenomenon is associated with both a decrease and an increase of torque.

Figure 4.12: The plot of the torque applied on the thread with respect to angle of
twist. Two sharp decrease points B and C correspond to the angle of twist at which
loops of the thread have formed as shown in Figure 4.11b.

4.4.2 Simulation of plectoneme phenomenon

We apply the Kirchhoff rod model developed in this chapter to illustrate the

formation of the plectoneme of a thread. Noteworthy parameters used in the simula-

tions are a thread of length L = 1 m and mass M = 0.02 kg. The rod is discretized

into NL = 20 segments of equal length. The bending and torsional stiffness of the

rod are kb = 0.02 N·m2 and kt = 0.02 N·m2 respectively. The time step is h = 0.001

s. For the collision detection and response, the distance criterion is ∆d = 0.3 L
NL

and the stiffness constant is ks = 100 N/m. The initial configuration of the rod is

represented by a blue straight line on Figure 4.13.

In the simulation, the right end of the thread is displaced toward the left at a

speed equal to Ve = [−0.5, 0, 0]T . When the distance between the two ends reaches

the value of Le = 0.075 m, the right end of the rod is twisted at an angular velocity

equal to ωe = 0.8 rad/s until the angle of twist reaches θmax
in = 20 rad (maximum
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Figure 4.13: The left end of the thread is pinned and the right end is moving toward
the left end at the speed of Ve = [−0.5, 0, 0]T until the distance between the two
ends is Le = 0.075 m. Then the twisting angle is input with the angular velocity
of ωe = 0.8 rad/s until reaching θmax

in = 25 rad. The blue (straight) line represent
the initial configuration of the thread at t = 0.0 s ; the red curve (helix) is the
configuration at t = 40.0 s.

value). The simulations show that the formation of two loops is accompanied by a

decrease then a increase of torque (points A and B in Figure 4.14), in agreement

with the experimental results (points A and B in Figure 4.12). Also, the simulation

shows some oscillations of the torque that are not recorded in the experiments. Due

to the assumption of the elasticity of the thread model, the oscillations of the loop

occurs and at the same time twisting energy and bending energy are keeping transfer

to each other, resulting in the oscillations of the torque after the formation of the

loops. Also, we should notice that, because part of the twisting energy has transfered

to bending energy, the final torsion angle of the thread decrease and is smaller than
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Figure 4.14: The relation between the torque on the thread and the input torsion
angle during the simulation. Note that every contact causes an oscillation (the con-
tact resulting in plectonemes are shown as points A and B), which shows a signature
that is similar to the experimental results (see Figure 4.12).

the input torsion angle 20 rad (see Figure 4.15).

4.4.3 Real time simulation results

As we said, the goal of our project is to develop a physical based real time

simulator, so we speed up the simulation by parallel programming techniques. Figure

4.16 shows the three phenomenons of plectoneme with different thread properties

under the same load. The thread is initially straight with length L = 1 m and mass

M = 0.01 kg, and discretized into N = 100 equal segments. The simulations are run

with different stiffness shown in the Figures 4.16 (a) kb = 0.001 N· m2, kt = 0.001

N· m2, (b) kb = 0.0005 N· m2, kt = 0.001 N· m2, and (c) kb = 0.00025 N· m2,

kt = 0.001 N· m2. During all the simulations, the time step is h = 0.001 s, and the
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Figure 4.15: The figure shows the change of torsion angle of the thread with respect
to time during the simulation. Note that every contact causes an oscillation (the
contact resulting in plectonemes are shown as points A and B). The final torsion
angle of the thread is smaller than the input torsion angle 20 rad.

same load is applied (the left end of the thread moves toward the fixed right end

until the distance between the two ends is Le = 0.02 m. Then the twisting angle is

input with the angular velocity of ωe = 20 rad/s until reaching θmax
in = 50π). We

notice that with the same torsion stiffness, the thread with softer bending stiffness

can generate more loops under the same torsional load. The simulation runs on a

computer with Intel(R) Core(TM) i7-3520M CPU @ 2.90 GHz, 8.00 GB RAM, 64-

bit Operation System (Win 8.1). The average frame rate of the graphical display

remained above 1.00 KHz.

We also simulated the tying of a square knot. We kept all the previous parameters

used for looping but discretized the rod into NL = 40 segments of equal length. The

result is shown in figure 4.17.
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(a) kb = 0.001 N ·m2 (b) kb = 0.0005 N ·m2 (c) kb = 0.00025 N ·m2

kt = 0.001 N ·m2 kt = 0.001 N ·m2 kt = 0.001 N ·m2

Figure 4.16: The thread is initially straight with length L = 1m and mass M =
0.01kg, and discretized into N = 100 equal segments. The simulations are run
with different stiffness as shown in the figures (a), (b), and (c). During all the
simulations, the time step is h = 0.001 s, and the same load is applied (the left
end of the thread moves toward the fixed right end until the distance between the
two ends is Le = 0.03m. Then the twisting angle is input with the angular velocity
of ωe = 20 rad/s until reaching θmax

in = 50π). We note that for the same torsional
modulus, the thread with the lower bending modulus has a more plectonemes (more
loops).
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Figure 4.17: The result of tying a square knot. The left end of the thread is pinned
and the right end is moving toward the right side. The blue (loosen) curve is the
initial condition of the thread at t = 0.0 s; the red (tight) curve is the configuration
at t = 4.0 s.

4.4.4 Application of the thread model to three dimensional scenario

The overarching goal of our project is to develop a surgery simulation software;

therefore we need to verify that our thread model can serve as a physical engine of

other application. In this dissertation, we test our thread model by apply it to a

simple three dimensional scenario ∗. To apply our physical thread engine in various

windows platform, we create a dynamic link library (DLL) file with the interface

shown in Table 4.3. The results are shown in the Figure 4.18 and 4.19.

4.5 Conclusion

In this chapter, we develop an inextensible elastic rod model based on the the-

ories of Kirchhoff rod, and this model can be used to simulate dynamic response
∗This three dimensional scenario is generated by SimInsights Inc.
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void Initialize(ThreadProperties &ThreadProp, double *InitDisX, int Load-
type); // Initialize the properties of the thread and select the load type (1.
Motion input 2. End force input)
void ApplyMotionInput(double RightEndX, double RightEndY, double Right-
EndZ, double DeltaRightEndTwist, double LeftEndX, double LeftEndY, dou-
ble LeftEndZ, double DeltaLeftEndTwist, double PenaltySpringConst); // Ap-
ply the motion input: the twist input angle (during each time step) and the
position of the thread’s two ends
void ApplyForceInput(double RightEndForceX, double RightEndForceY, dou-
ble RightEndForceZ, double DeltaStartTwist, double LeftEndForceX, double
LeftEndForceY, double LeftEndForceZ, double DeltaEndTwist); // Apply the
force input: the twist input angle (during each time step) and the end force
load applied on the thread’s two ends
void Update(); // update the new position of the thread at each time step
void GetPosition(double *DisConfig); // get the position of the discrete thread
at current time step
void Stop(); // stop the simulation

Table 4.3: The interfaces of the physical thread engine developed in this dissertation.

of a surgical thread at real time rate. The combination of maintaining exact inex-

tensibility, together with the use of the discrete variational integrator technique and

continuous collision force technique guarantees that the simulation is able to handle

very high bending angles and intimate contact without instability. The symplectic

properties of the variational integrator guarantee the conservation of momentum and

energy, resulting in the long time stable simulation of the thread. To efficiently deal

with the thread’s possible self-collision when large deformation occurs, we employ

fast collision detection based on uniform space portioning method and the collision

response is managed through a continuous penalty forces. However, our model has

not been coupled with tissue materials. Also, the thread is not allowed to apply large

external forces. Additionally, real-time simulation of multiple threads may require

faster computers.
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Figure 4.18: Plectoneme formation.
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(a) Initial configuration of the knot.

(b) Final configuration of the knot.

Figure 4.19: Knot tying.
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APPENDIX A

DERIVATION OF TOTAL TORSION ANGLE

To calculate the total twisting angle θNL
− θ1, we adopt a new accumulative

technique. The angular velocity of pth segment can be expressed as [69]

ω̂p = φ̇pn̂p + sinφ ˙̂np + (1− cosφp)n̂p × ˙̂np (A.1)

where n̂p = (kb)p
|(kb)p|

is the unit vector along (kb)p, as shown in Figure A.1. Since

(kb)p = ew × ep, the magnitude of |(kb)p| is sinφp ( |(kb)p| = sinφp), where φp is

the angle between two continuous discrete segments, and

(kb)p = sinφpn̂p

˙(kb)p = ėw × ep + ew × ėp

Therefore

pw e

ew ep

(kb)P = ew × ep

Figure A.1: The solution space of all the possible paths.
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˙̂np = − cosφp
sin2 φp

(kb)p + 1
sinφp

˙(kb)p

= − cosφp
sin2 φp

(ew × ep) + 1
sinφp

(ėw × ep + ew × ėp)
(A.2)

Thus, the twisting angle change along each segment during each time step can be

given by,

∆θp = h(ω̂p · ep) = h(ep · ω̂p)

= h
[
φ̇p ep · n̂p + sinφ ep · ˙̂np + (1− cosφp) ep · (n̂p × ˙̂np)

] (A.3)

The first term in above equation A.3 is

φ̇p ep · n̂p = φ̇p ep ·
kbp

sinφp

= φ̇p
sinφp

ep · (ew × ep) = 0
(A.4)

The second term in the equation A.3 is

sinφ ep · ˙̂np = sinφ ep ·
[
− cosφp

sin2 φp
(kb)p + 1

sinφp
˙(kb)p

]

= −cosφp
sinφp

ep · kbp + ep · ˙(kb)p
(A.5)

From equation A.4, we know the first term in above equation is 0. Thus,

sinφ ep · ˙̂np = 0 + ep · ˙(kb)p = ep · [ėw × ep + ew × ėp]

= ep · [ėw × ep] + ep · [ew × ėp]

= ėw · [ep × ep] + ėp · [ep × ew]

= ėp · [ep × ew] = −ėp · [ew × ep]

= −(kb)p · ėp

(A.6)

111



The third term in equation A.3 is

(1− cosφp) ep · (n̂p × ˙̂np)

= (1− cosφp) ep ·
[

1
sinφp

(kb)p ×
(
− cosφp

sin2 φp
(kb)p + 1

sinφp
˙(kb)p

)]

= −(1− cosφp) cosφp
sin3 φp

ep · [(kb)p × (kb)p] + 1− cosφp
sin2 φp

ep ·
[
(kb)p × ˙(kb)p

]
= 1− cosφp

1− cos2 φp
ep · [(kb)p × (ėw × ep + ew × ėp)]

= 1− cosφp
(1− cosφp)(1 + cosφp)

ep · [(kb)p × (ėw × ep) + (kb)p × (ew × ėp)]

= 1
1 + cosφp

ep · {ew [(kb)p · ėp]− ėp [(kb)p · ew] + ėw [(kb)p · ep]− ep [(kb)p · ėw]}

= 1
1 + cosφp

{ep · ew [(kb)p · ėp]− ep · ep [(kb)p · ėw]}

= 1
1 + cosφp

[cosφp(kb)p · ėp − (kb)p · ėw]

= 1
1 + cosφp

(kb)p · (cosφpėp − ėw)

(A.7)

Substituting equations (A.4), (A.6), and (A.7) into equation (A.3), we can obtain

∆θp = h
[
φ̇p ep · n̂p + sinφ ep · ˙̂np + (1− cosφp) ep · (n̂p × ˙̂np)

]
= h

[
−(kb)p · ėp + 1

1 + cosφp
(kb)p · (cosφpėp − ėw)

]

= h(kb)p ·
cosφpėp − ėw + (1 + cosφp)ėw

1 + cosφp

= − h

1 + cosφp
(kb)p · (ėw + ėp) = − h

1 + cosφp
(kb)p · (ẋe − ẋw)

= − h

1 + cosφp
(ew × ep) · (ẋe − ẋw)

(A.8)

which is the equation (4.40).
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APPENDIX B

DERIVATION OF CONTINOUS PENALTY FORCES

Our method to handle the collision response is based on the model of continuous

penalty force is developed by Tang et. al. [73]; hence our notation here follows their

work. Since we are going to develop a model that is able to provide force feedback,

the time step is very small (the simulation rate is at least 600 Hz). As shown in

Figure B.1, we assume that two line segments L1(α) = P + αd1 (d1 = Q − P,

α ∈ [0, 1]) and L2(β) = R + βd2 (d2 = S − R, β ∈ [0, 1]) collide with each other

(|wc| < ∆d), where the shortest displacement between them is wc with start point

L2(βc) on L2 and end point L1(αc) on L1. The motion of the four ends points of the

two line segments are given by

P(t) = P0 + VP t Q(t) = Q0 + VQt

R(t) = R0 + VRt S(t) = S0 + VSt

Let a = d1 · d1, b = d1 · d2, c = d2 · d2, d = d1 ·w, e = d2 ·w, where w = P−R,

then we can obtain [73]

αc(t) = be− cd
ac− b2 , βc(t) = ae− bd

ac− b2 (B.1)
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P

w wc

L1(αc)

L2(βc) L1

L2

R

Q

S

Figure B.1: Two line segments L1(α) = P + αd1 (d1 = Q − P, α ∈ [0, 1]) and
L2(β) = R +βd2 (d2 = S−R, β ∈ [0, 1]) collide with each other (|wc| < ∆d), where
the shortest displacement between them is wc with start point L2(βc) on L2 and end
point L1(αc) on L1.

Therefore we know

wc(t) = L1(αc)− L2(βc)

= w + (be− ac)d1 − (ae− bd)d2

ac− b2

= P−R + (be− ac)(Q−P)− (ae− bd)(S−R)
ac− b2

=
(

1− be− cd
ac− b2

)
P +

(
be− cd
ac− b2

)
Q−

(
1− ae− bd

ac− b2

)
R − ae− bd

ac− b2 S

= ωP (t)P(t) + ωQ(t)Q(t)− ωR(t)R(t)− ωS(t)S(t)

(B.2)

where ωP (t) = 1 − be− cd
ac− b2 , ωQ(t) = be− cd

ac− b2 , ωR(t) = 1 − ae− bd
ac− b2 , and ωS(t) =

ae− bd
ac− b2 . When ac − b2 = 0, L1 and L2 are parallel to each other. The direction of
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wc(t) can be given by,

m′(t) = (Q(t)−P(t))× (R(t)− S(t))

= [(Q0 −P0) + (VQ −VP )t]× [(R0 − S0) + (VR −VS)t]

= (Q0 −P0)× (R0 − S0) + [(VQ −VP )× (R0 − S0)

+(Q0 −P0)× (VR −VS)] t+ (VQ −VP )× (VR −VS)t2

= n′0 + n′1t+ n′2t2

(B.3)

where

n′0 = (Q0 −P0)× (R0 − S0)

n′1 = (VQ −VP )× (R0 − S0) + (Q0 −P0)× (VR −VS)

n′2 = (VQ −VP )× (VR −VS)

The unit direction of wc(t) can then be expressed as

nE(t) = n′0 + n′1t+ n′2t2

|n′0 + n′1t+ n′2t2|
(B.4)

We can now find the impulse during the time interval h is [73],

I = ks

∫ t+h

t
nE(t)T [∆d nE(t)−wc(t)] nE(t)dt (B.5)

Since the time step h is very small in our model, we can get the approximations for

nE(t) and wc(t) as [73],

wc(t) = ωP (t)P(t) + ωQ(t)Q(t)− ωR(t)R(t)− ωS(t)S(t)

≈ wapp
c (t) = ωP0P(t) + ωQ0Q(t)− ωR0R(t)− ωS0S(t)
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where ωP0 = 1 − b0e0 − c0d0

a0c0 − b2
0
, ωQ0 = b0e0 − c0d0

a0c0 − b2
0
, ωR0 = 1 − a0e0 − b0d0

a0c0 − b2
0
, and ωS0 =

a0e0 − b0d0

a0c0 − b2
0
, and

nE(t) = n′0 + n′1t+ n′2t2

|n′0 + n′1t+ n′2t2|
≈ nappE (t) = n′0 + n′1t+ n′2t2

|n′0|

= n′0
|n′0|

+ n′1
|n′0|

t+ n′2
|n′0|

t2 = n0 + n1t+ n2t
2

where n0 = n′0
|n′0|

, n1 = n′1
|n′0|

, and n2 = n′2
|n′0|

. And thus we can get the discrete

impulse during the time interval [t1, t2] as

Idisd = h

2
{

(nappE (t1))T [∆d nappE (t1)−wapp
c (t1)] nappE (t1)

+ (nappE (t2))T [∆d nappE (t2)−wapp
c (t2)] nappE (t2)

} (B.6)

So the continuous penalty forces created during the time interval [t1, t2] in numerical

scheme can be expressed as

Fdis
c =Idisd

h
= 1

2
{

(nappE (t1))T [∆d nappE (t1)−wapp
c (t1)] nappE (t1)

+ (nappE (t2))T [∆d nappE (t2)−wapp
c (t2)] nappE (t2)

} (B.7)
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APPENDIX C

MATLAB CODE FOR THE BEAM BUCKLING PROBLEM WITH

DIVERGENT CHANNEL CONSTRAINTS

In this part, we give an introduction to the code for the static simulation of a

buckled Euler beam with divergent channel constraints. The following table C.1

shows the key variables in the Matlab code. Table C.2 shows the structure of the

code.

1 c l e a r a l l ;

c l c ;

3

R=1;

5 L=R∗ pi /2 ;

7 EI=1;

% s e c t i o n

9 NS=8;

wds=ze ro s (NS, 1 ) ;

11 % domain

NL=50;

13 ds=L/NL;

% range NK must be odd number

15 NK=41;

STARTI=21;

17

Tx=−500.0;

19 Ty=−500.0;
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R Radius of channel centerline
L Length of the beam
EI Bending stiffness
NS The constrain is discretized into NS straight channels
NL The beam is discretized into NL discrete elements
NK The range is discretized into NK possible values
ds The length of each discrete beam element
Tx The load applied at the end of beam in x direction
Ty The load applied at the end of beam in y direction
sur_x The survival storing the x position of the beam configuration

in local coordinate system of each straight channel constraints
sur_y The survival storing the y position of the beam configuration

in local coordinate system of each straight channel constraints
sur_section The survival storing the section location of the current beam

node
sur_x_old The x survival in previous stage
sur_y_old The y survival in previous stage
sur_section_old The section survival in previous stage
cost The total potential energy of the current survival
cost_old The total potential energy of the previous survival
configx The x position of beam configuration with minimum potential

energy in global coordinate system
configy The y position of beam configuration with minimum potential

energy in global coordinate system

Table C.1: The key variables in the Matlab code for the beam buckling problem with
divergent channel constraints based on Viterbi algorithm.
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1. Initialization (line 1 ∼ 19): assign the geometric and material properties,
and set the discretization strategies for domain, range, and constraints

2. Constraints discretization (line 24 ∼ 127): discretize the continuous con-
straint into NS straight channels

3. Range discretization (line 166 ∼ 170)
3. Calculate the potential energy of survival in the first two stages line 184 ∼

208
4. Calculate the potential energy of survival in the first two stages line 210 ∼

292
5. for stgi = 4 ∼ NL (stage 4 ∼ NL: line 294 ∼ 453)

Calculate the cost of all the possible survivals in current stage
line 323 ∼ 410:
for ppsi = 1 ∼ NK (range number in pre-pre-stage)

for psi = 1 ∼ NK (range number in pre-stage)
for si = 1 ∼ NK (range number in current stage)
Calculate cost_temp(ppsi, psi, si) based on equation (3.14)

end
end

end
Find survivals with minimum cost among cost_temp(ppsi, psi, si)
for psi = 1 ∼ NK (line 412 ∼ 451)

for si = 1 ∼ NK
Calculate the cost of the survival(psi, si) in current stage:
cost(psi, si) = min cost_temp(1 ∼ NK, psi, si)
Record the survivals path: sur_x, sur_y, sur_section

end
end

end
6. Find the survival with minimum potential energy

min_cost = cost(min_psi,min_si) = min cost(1 ∼ NK, 1 ∼ NK)
final_survival = [survival_x, y, section(min_psi,min_si)]

7. Transfer the local position information into global coordinate system
configx, configy = rotation (final_survival)

Table C.2: The algorithm structure of the Matlab code for the beam buckling prob-
lem with divergent channel constraints.

119



21

f e a t u r e ( ’ a c c e l ’ , ’ on ’ )

23 t i c

%% %%%%% i n i t i a l c o n s t r a i n t s ( c on s t r a i n t s d i s c r e t i z a t i o n ) %%%%%%%

25 DeltaRs =0.05;

DeltaRe=0.10;

27 DLR=0.05;

29 theta=l i n s p a c e (0 , p i /2) ;

31 % lower wa l l

low_x=(R+DLR) ∗ s i n ( theta ) ;

33 low_y=R−(R+DLR) ∗ cos ( theta ) ;

de l taup=DeltaRe−DeltaRs ;

35 drtheta=deltaup ∗ theta /( p i /2) ;

% s e c t i o n lower wa l l

37 slower_x=(R−DeltaRs−drtheta ) . ∗ s i n ( theta ) ;

slower_y=R−(R−DeltaRs−drtheta ) . ∗ cos ( theta ) ;

39 R_cx=R∗ s i n ( theta ) ;

R_cy=R−R∗ cos ( theta ) ;

41 dtheta=pi /2/(NS−1) ;

Stheta=ze ro s (NS, 1 ) ;

43 Stheta (1 ) =0.0 ;

f o r i =2:NS

45 Stheta ( i )=Stheta ( i −1)+dtheta ;

end

47

% d i s c r e t e lower wa l l

49 s e c l x=ze ro s (NS+1 ,1) ;

s e c l y=ze ro s (NS+1 ,1) ;

51 s e c l x (1 ) =0.0 ;
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s e c l y (1 )=−DLR;

53 s e c l x (2 )=s e c l x (1 )+(R+DLR) ∗ tan ( dtheta /2) ;

s e c l y (2 )=s e c l y (1 ) ;

55 f o r i =3:NS

s e c l x ( i )=s e c l x ( i −1)+2∗ (R+DLR) ∗ tan ( dtheta /2) ∗ cos ( Stheta ( i −1) ) ;

57 s e c l y ( i )=s e c l y ( i −1)+2∗ (R+DLR) ∗ tan ( dtheta /2) ∗ s i n ( Stheta ( i −1) ) ;

end

59 s e c l x (NS+1)=s e c l x (NS)+(R+DLR) ∗ tan ( dtheta /2) ∗ cos ( Stheta (NS) ) ;

s e c l y (NS+1)=s e c l y (NS)+(R+DLR) ∗ tan ( dtheta /2) ∗ s i n ( Stheta (NS) ) ;

61

% d i s c r e t e upper wa l l

63

% the c a l i b r a t i o n point−mid point o f each s e c t i o n :2~NS−1; 1 s t and

l a s t

65 % sec t i on , the c a l i b r a t i o n po in t s are the s t a r t and end point

r e s p e c t i v e l y

xca l=ze ro s (NS, 1 ) ;

67 yca l=ze ro s (NS, 1 ) ;

xca l (1 ) =0.0 ;

69 yca l (1 )=DeltaRs ;

wds (1 )=DLR+DeltaRs ;

71 f o r i =2:NS−1

th e t a i=dtheta ∗ ( i −1) ;

73 xca l ( i )=(R−DeltaRs−deltaup ∗ ( t h e t a i /( p i /2) ) ) ∗ s i n ( t h e t a i ) ;

yca l ( i )=R−(R−DeltaRs−deltaup ∗ ( t h e t a i /( p i /2) ) ) ∗ cos ( t h e t a i ) ;

75 wds ( i )=DLR+DeltaRs+deltaup ∗ ( t h e t a i /( p i /2) ) ;

end

77 xca l (NS)=R−DeltaRs−deltaup ;

yca l (NS)=R;

79 wds (NS)=DLR+DeltaRs+deltaup ;

121



81 % se c t i o n upper

secsup_x=ze ro s (NS+1 ,1) ;

83 secsup_y=ze ro s (NS+1 ,1) ;

secsup_x (1) =0.0 ;

85 secsup_y (1)=DeltaRs ;

f o r i =2:NS−1

87 secsup_x ( i )=(yca l ( i −1)+xca l ( i ) ∗ tan ( Stheta ( i ) )−xca l ( i −1)∗ . . .

tan ( Stheta ( i −1) )−yca l ( i ) ) /( tan ( Stheta ( i ) )−tan ( Stheta ( i −1) ) ) ;

89 secsup_y ( i )=yca l ( i )+(secsup_x ( i )−xca l ( i ) ) ∗ tan ( Stheta ( i ) ) ;

end

91 secsup_x (NS)=R−DeltaRs−deltaup ;

secsup_y (NS)=yca l (NS−1)+(secsup_x (NS)−xca l (NS−1) ) ∗ tan ( Stheta (NS−1) ) ;

93 secsup_x (NS+1)=xca l (NS) ;

secsup_y (NS+1)=yca l (NS) ;

95

% r e l a t i v e s e c t i o n po s i t i o n

97 secx=ze ro s (4 ,NS) ;

secy=ze ro s (4 ,NS) ;

99 secx ( : , 1 ) =[ s e c l x (1 ) , s e c l x (2 ) , secsup_x (2) , secsup_x (1) ] ;

secy ( : , 1 ) =[ s e c l y (1 )+DLR, s e c l y (2 )+DLR, secsup_y (2)+DLR, secsup_y (1)+DLR

] ;

101 f o r i =2:NS−1

d2x=s e c l x ( i +1)−s e c l x ( i ) ;

103 d2y=s e c l y ( i +1)−s e c l y ( i ) ;

d3x=secsup_x ( i +1)−s e c l x ( i ) ;

105 d3y=secsup_y ( i +1)−s e c l y ( i ) ;

d4x=secsup_x ( i )−s e c l x ( i ) ;

107 d4y=secsup_y ( i )−s e c l y ( i ) ;

secx ( : , i ) =[0 , d2x∗ cos ( Stheta ( i ) ) . . .

109 +d2y∗ s i n ( Stheta ( i ) ) , d3x∗ cos ( Stheta ( i ) ) . . .

+d3y∗ s i n ( Stheta ( i ) ) , d4x∗ cos ( Stheta ( i ) )+d4y∗ s i n ( Stheta ( i ) ) ] ;
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111 secy ( : , i )=[0,−d2x∗ s i n ( Stheta ( i ) )+d2y∗ cos ( Stheta ( i ) ) , . . .

−d3x∗ s i n ( Stheta ( i ) )+d3y∗ cos ( Stheta ( i ) ) , . . .

113 −d4x∗ s i n ( Stheta ( i ) )+d4y∗ cos ( Stheta ( i ) ) ] ;

end

115 d2x=s e c l x (NS+1)−s e c l x (NS) ;

d2y=s e c l y (NS+1)+L/4− s e c l y (NS) ;

117 d3x=secsup_x (NS+1)−s e c l x (NS) ;

d3y=secsup_y (NS+1)+L/4− s e c l y (NS) ;

119 d4x=secsup_x (NS)−s e c l x (NS) ;

d4y=secsup_y (NS)−s e c l y (NS) ;

121 secx ( : ,NS) =[0 , d2x∗ cos ( Stheta (NS) ) . . .

+d2y∗ s i n ( Stheta (NS) ) , d3x∗ cos ( Stheta (NS) ) . . .

123 +d3y∗ s i n ( Stheta (NS) ) , d4x∗ cos ( Stheta (NS) )+d4y∗ s i n ( Stheta (NS) ) ] ;

secy ( : ,NS)=[0,−d2x∗ s i n ( Stheta (NS) ) . . .

125 +d2y∗ cos ( Stheta (NS) ) ,−d3x∗ s i n ( Stheta (NS) ) . . .

+d3y∗ cos ( Stheta (NS) ) ,−d4x∗ s i n ( Stheta (NS) )+d4y∗ cos ( Stheta (NS) ) ] ;

127 %% %%%%%%%%%%%%%%% Vi t e rb i s t a r t %%%%%%%%%%%%

sur_x=ze ro s (NK,NK,NL) ;

129 sur_y=ze ro s (NK,NK,NL) ;

sur_sect ion=ze ro s (NK,NK,NL) ;

131

sur_x_old=ze ro s (NK,NK,NL) ;

133 sur_y_old=ze ro s (NK,NK,NL) ;

sur_sect ion_old=ze ro s (NK,NK,NL) ;

135

% l i nk

137 l s x=ze ro s (NK,NK) ;

l s y=ze ro s (NK,NK) ;

139 l s s e c=ze ro s (NK,NK) ;

141 l e x=ze ro s (NK,NK) ;
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l e y=ze ro s (NK,NK) ;

143 l e s e c=ze ro s (NK,NK) ;

145 l a n g l e=i n f (NK,NK) ;

147 l sx_old=ze ro s (NK,NK) ;

l sy_old=ze ro s (NK,NK) ;

149 l s s e c_o ld=ze ro s (NK,NK) ;

151 lex_old=ze ro s (NK,NK) ;

ley_old=ze ro s (NK,NK) ;

153 l e s e c_o ld=ze ro s (NK,NK) ;

lang le_o ld=i n f (NK,NK) ;

155

% Poten t i a l Engergy

157 co s t=i n f (NK,NK) ;

cost_old=i n f (NK,NK) ;

159

dr=wds/(NK−1) ;

161

f o r i =1:NS

163 nreach ( i )=f l o o r ( ds/dr ( i ) ) ;

end

165

vrange=ze ro s (NK,NS) ;

167

f o r i =1:NS

169 vrange ( : , i )=l i n s p a c e (0 ,wds ( i ) ,NK) ;

end

171
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173

rmin=STARTI−nreach (1 ) ;

175 i f rmin<1

rmin=1;

177 end

rmax=STARTI+nreach (1 ) ;

179 i f rmax>NK

rmax=NK;

181 end

183

% stage 1 and 2

185 f o r s i=rmin : rmax

l s x (STARTI, s i )=ds ;

187 l s y (STARTI, s i )=DLR;

l s s e c (STARTI, s i )=1;

189

theta2=as in ( ( vrange ( s i , 1 )−vrange (STARTI, 1 ) ) /ds ) ;

191 l e x (STARTI, s i )=ds+ds∗ cos ( theta2 ) ;

%l ey (STARTI, s i )=DLR+ds∗ s i n ( theta2 ) ;

193 l e y (STARTI, s i )=vrange ( s i , 1 ) ;

l e s e c (STARTI, s i )=1;

195

l a n g l e (STARTI, s i )=theta2 ;

197 theta2=theta2+Stheta (1 ) ;

199 % update co s t

co s t (STARTI, s i )=PE(0 , theta2 , EI ,NL,Tx ,Ty) ;

201 end

sur_x ( : , : , 1 )=l s x ;

203 sur_y ( : , : , 1 )=l s y ;
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sur_sect ion ( : , : , 1 )=l e s e c ;

205

sur_x ( : , : , 2 )=l ex ;

207 sur_y ( : , : , 2 )=l ey ;

sur_sect ion ( : , : , 2 )=l e s e c ;

209

% stage 3

211 % sto r e prev ious s tage in fo rmat ion

cost_old=cos t ;

213 l sx_old=l s x ;

l sy_old=l s y ;

215 l s s e c_o ld=l s s e c ;

lex_old=l ex ;

217 ley_old=l ey ;

l e s e c_o ld=l e s e c ;

219 l ang l e_o ld=l ang l e ;

221 sur_x_old=sur_x ;

sur_y_old=sur_y ;

223 sur_sect ion_old=sur_sect ion ;

% update cur rent s tage

225 f o r p s i =1:NK

i f cost_old (STARTI, p s i )==i n f

227 co s t ( ps i , : )=i n f (NK, 1 ) ;

e l s e

229 rmin=psi−nreach ( l e s e c (STARTI, p s i ) ) ;

i f rmin<1

231 rmin=1;

end

233 rmax=ps i+nreach ( l e s e c (STARTI, p s i ) ) ;

i f rmax>NK
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235 rmax=NK;

end

237

f o r s i=rmin : rmax

239 l s x ( ps i , s i )=lex_old (STARTI, p s i ) ;

l s y ( ps i , s i )=ley_old (STARTI, p s i ) ;

241 l s s e c ( ps i , s i )=l s s e c_o ld (STARTI, p s i ) ;

243 theta2=as in ( ( vrange ( s i , 1 )−vrange ( ps i , 1 ) ) /ds ) ;

l e x ( ps i , s i )=l s x ( ps i , s i )+ds∗ cos ( theta2 ) ;

245 l e y ( ps i , s i )=l s y ( ps i , s i )+ds∗ s i n ( theta2 ) ;

i n s i d e=inpolygon ( l ex ( ps i , s i ) , l e y ( ps i , s i ) , secx ( : , 1 ) , secy ( : , 1 ) ) ;

247 % end point in cur rent s e c t i o n

i f i n s i d e==1

249 l e s e c ( ps i , s i )=l s s e c_o ld (STARTI, p s i ) ;

% end po int in next s e c t i o n

251 e l s e

% transform to the l o c a l coo rd inate system in next s e c t i o n

253 dsx=l s x ( ps i , s i )−secx (2 , l s s e c ( ps i , s i ) ) ;

dsy=l s y ( ps i , s i )−secy (2 , l s s e c ( ps i , s i ) ) ;

255 dtheta=Stheta ( l s s e c ( ps i , s i )+1)−Stheta ( l s s e c ( ps i , s i ) ) ;

lxnew=dsx∗ cos ( dtheta )+dsy∗ s i n ( dtheta ) ;

257 lynew=−dsx∗ s i n ( dtheta )+dsy∗ cos ( dtheta ) ;

259 % update the end po s i t i o n o f l i n k ( ps i , s i )

s e c i=l s s e c ( ps i , s i )+1;

261 i f abs ( vrange ( s i , s e c i )−lynew ) > ds

t e s t=i n f ;

263 cont inue ;

end

265 theta2=as in ( ( vrange ( s i , s e c i )−lynew ) /ds ) ;
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267

% r e l a t i v e p o s i t i o n

269 l e x ( ps i , s i )=lxnew+ds∗ cos ( theta2 ) ;

l e y ( ps i , s i )=lynew+ds∗ s i n ( theta2 ) ;

271 % lo c a t i o n o f s e c t i o n

l e s e c ( ps i , s i )=l s s e c ( ps i , s i )+1;

273 end

275 l a n g l e ( ps i , s i )=theta2 ;

277 % update co s t

theta2=theta2+Stheta ( l e s e c ( ps i , s i ) ) ;

279 theta1=lang le_o ld (STARTI, p s i )+Stheta ( l e s e c_o ld (STARTI, p s i ) ) ;

c o s t ( ps i , s i )=cost_old (STARTI, p s i )+PE( theta1 , theta2 , EI ,NL,Tx ,Ty) ;

281

% update su rv i vo r

283 sur_x ( ps i , s i , 1 : 2 )=sur_x_old (STARTI, ps i , 1 : 2 ) ;

sur_y ( ps i , s i , 1 : 2 )=sur_y_old (STARTI, ps i , 1 : 2 ) ;

285 sur_sect ion ( ps i , s i , 1 : 2 )=sur_sect ion (STARTI, ps i , 1 : 2 ) ;

287 sur_x ( ps i , s i , 3 )=l ex ( ps i , s i ) ;

sur_y ( ps i , s i , 3 )=l ey ( ps i , s i ) ;

289 sur_sect ion ( ps i , s i , 3 )=l e s e c ( ps i , s i ) ;

end

291 end

end

293

% stage 4 ~ NL

295 s t a g e i =3;

f o r s t g i =4:NL
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297 s t a g e i=s t g i ;

d i sp ( s t a g e i ) ;

299 % sto r e prev ious s tage in fo rmat ion

cost_old=cos t ;

301 l sx_old=l s x ;

l sy_old=l s y ;

303 l s s e c_o ld=l s s e c ;

lex_old=l ex ;

305 ley_old=l ey ;

l e s e c_o ld=l e s e c ;

307 l ang l e_o ld=l ang l e ;

309 sur_x_old=sur_x ;

sur_y_old=sur_y ;

311 sur_sect ion_old=sur_sect ion ;

313 cost_temp=i n f (NK,NK,NK) ;

lsx_temp=ze ro s (NK,NK,NK) ;

315 lsy_temp=ze ro s (NK,NK,NK) ;

lssec_temp=ze ro s (NK,NK,NK) ;

317

lex_temp=ze ro s (NK,NK,NK) ;

319 ley_temp=ze ro s (NK,NK,NK) ;

lesec_temp=ze ro s (NK,NK,NK) ;

321

langle_temp=ze ro s (NK,NK,NK) ;

323 f o r pps i =1:NK

f o r p s i =1:NK

325 i f cost_old ( ppsi , p s i )==i n f

% cost_temp ( ppsi , ps i , : )=i n f (1 ,NK) ;

327 cont inue ;
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end

329

rmin=psi−nreach ( l e s e c ( ppsi , p s i ) ) ;

331 i f rmin<1

rmin=1;

333 end

rmax=ps i+nreach ( l e s e c ( ppsi , p s i ) ) ;

335 i f rmax>NK

rmax=NK;

337 end

f o r s i=rmin : rmax

339 lsx_temp ( ppsi , ps i , s i )=lex_old ( ppsi , p s i ) ;

lsy_temp ( ppsi , ps i , s i )=ley_old ( ppsi , p s i ) ;

341 lssec_temp ( ppsi , ps i , s i )=l e s ec_o ld ( ppsi , p s i ) ;

343 s e c i=l e s e c_o ld ( ppsi , p s i ) ;

theta2=as in ( ( vrange ( s i , s e c i )−lsy_temp ( ppsi , ps i , s i ) ) /ds ) ;

345

lex_temp ( ppsi , ps i , s i )=lsx_temp ( ppsi , ps i , s i )+ds∗ cos ( theta2 ) ;

347 ley_temp ( ppsi , ps i , s i )=lsy_temp ( ppsi , ps i , s i )+ds∗ s i n ( theta2 ) ;

i n s i d e=inpolygon ( lex_temp ( ppsi , ps i , s i ) , . . .

349 ley_temp ( ppsi , ps i , s i ) , secx ( : , s e c i ) , secy ( : , s e c i ) ) ;

% end po int in cur rent s e c t i o n

351 i f i n s i d e==1

lesec_temp ( ppsi , ps i , s i )=s e c i ;

353 % angle in g l oba l c oo rd ina t e s system

theta2g=theta2+Stheta ( s e c i ) ;

355 % end point in next s e c t i o n

e l s e

357 % forward or backward?

gendx=s e c l x ( s e c i ) . . .
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359 +lex_temp ( ppsi , ps i , s i ) ∗ cos ( Stheta ( s e c i ) ) . . .

−ley_temp ( ppsi , ps i , s i ) ∗ s i n ( Stheta ( s e c i ) ) ;

361 gendy=s e c l y ( s e c i ) . . .

+lex_temp ( ppsi , ps i , s i ) ∗ s i n ( Stheta ( s e c i ) ) . . .

363 +ley_temp ( ppsi , ps i , s i ) ∗ cos ( Stheta ( s e c i ) ) ;

365 thetaend=pi/2−atan ( (R−gendy ) /gendx ) ;

th e ta s e c=pi/2−atan ( (R−yca l ( s e c i ) ) / xca l ( s e c i ) ) ;

367

i f thetaend>the ta s e c

369 seci_new=s e c i +1;

e l s e

371 seci_new=sec i −1;

end

373 % transform to the l o c a l coo rd inate system in next s e c t i o n

gsx=lsx_temp ( ppsi , ps i , s i ) ∗ cos ( Stheta ( s e c i ) ) . . .

375 −lsy_temp ( ppsi , ps i , s i ) ∗ s i n ( Stheta ( s e c i ) ) ;

gsy=lsx_temp ( ppsi , ps i , s i ) ∗ s i n ( Stheta ( s e c i ) ) . . .

377 +lsy_temp ( ppsi , ps i , s i ) ∗ cos ( Stheta ( s e c i ) ) ;

379 dsx=−s e c l x ( seci_new )+s e c l x ( s e c i )+gsx ;

dsy=−s e c l y ( seci_new )+s e c l y ( s e c i )+gsy ;

381 lxnew= dsx∗ cos ( Stheta ( seci_new ) )+dsy∗ s i n ( Stheta ( seci_new ) ) ;

lynew=−dsx∗ s i n ( Stheta ( seci_new ) )+dsy∗ cos ( Stheta ( seci_new ) ) ;

383

385 i f abs ( vrange ( s i , seci_new )−lynew ) > ds

cost_temp ( ppsi , ps i , s i )=i n f ;

387 cont inue ;

end

389 theta2=as in ( ( vrange ( s i , seci_new )−lynew ) /ds ) ;
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391

% r e l a t i v e p o s i t i o n

393 lex_temp ( ppsi , ps i , s i )=lxnew+ds∗ cos ( theta2 ) ;

ley_temp ( ppsi , ps i , s i )=lynew+ds∗ s i n ( theta2 ) ;

395 % lo c a t i o n o f s e c t i o n

lesec_temp ( ppsi , ps i , s i )=seci_new ;

397

% angle in g l oba l c oo rd ina t e s system

399 theta2g=theta2+Stheta ( seci_new ) ;

end

401

langle_temp ( ppsi , ps i , s i )=theta2 ;

403

% update co s t

405 theta1=lang le_o ld ( ppsi , p s i )+Stheta ( l e s e c_o ld ( ppsi , p s i ) ) ;

cost_temp ( ppsi , ps i , s i )=cost_old ( ppsi , p s i ) . . .

407 +PE( theta1 , theta2g , EI ,NL,Tx ,Ty) ;

end

409 end

end

411

f o r p s i =1:NK

413 f o r s i =1:NK

temp_min_cost=i n f ;

415 temp_min_ppsi=i n f ;

f o r pps i =1:NK

417 i f temp_min_cost>cost_temp ( ppsi , ps i , s i )

temp_min_cost=cost_temp ( ppsi , ps i , s i ) ;

419 temp_min_ppsi=pps i ;

end
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421 end

423 i f temp_min_ppsi<i n f

co s t ( ps i , s i )=temp_min_cost ;

425 l s x ( ps i , s i )=lex_old ( temp_min_ppsi , p s i ) ;

l s y ( ps i , s i )=ley_old ( temp_min_ppsi , p s i ) ;

427 l s s e c ( ps i , s i )=l e s ec_o ld ( temp_min_ppsi , p s i ) ;

429 l e x ( ps i , s i )=lex_temp ( temp_min_ppsi , ps i , s i ) ;

l e y ( ps i , s i )=ley_temp ( temp_min_ppsi , ps i , s i ) ;

431 l e s e c ( ps i , s i )=lesec_temp ( temp_min_ppsi , ps i , s i ) ;

433 l a n g l e ( ps i , s i )=langle_temp ( temp_min_ppsi , ps i , s i ) ;

435 % update su rv i vo r

sur_x ( ps i , s i , 1 : s t g i −2)=sur_x_old ( temp_min_ppsi , ps i , 1 : s t g i −2) ;

437 sur_y ( ps i , s i , 1 : s t g i −2)=sur_y_old ( temp_min_ppsi , ps i , 1 : s t g i −2) ;

sur_sect ion ( ps i , s i , 1 : s t g i −2)=sur_sect ion_old ( temp_min_ppsi , ps i , 1 : s t g i

−2) ;

439

sur_x ( ps i , s i , s t g i −1)=l s x ( ps i , s i ) ;

441 sur_y ( ps i , s i , s t g i −1)=l s y ( ps i , s i ) ;

sur_sect ion ( ps i , s i , s t g i −1)=l s s e c ( ps i , s i ) ;

443

sur_x ( ps i , s i , s t g i )=l ex ( ps i , s i ) ;

445 sur_y ( ps i , s i , s t g i )=l ey ( ps i , s i ) ;

sur_sect ion ( ps i , s i , s t g i )=l e s e c ( ps i , s i ) ;

447 e l s e

co s t ( ps i , s i )=i n f ;

449 end

end
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451 end

453 end

455

mincost=i n f ;

457 f o r p s i =1:NK

f o r s i =1:NK

459 i f mincost>cos t ( ps i , s i )

mincost=cos t ( ps i , s i ) ;

461 min_psi=ps i ;

min_si=s i ;

463 end

end

465 end

467 con f i gx=ze ro s (1 ,NL) ;

con f i gy=ze ro s (1 ,NL) ;

469

mincost

471 f o r i =1:NL

i f mincost==i n f

473 min_psi=1;

min_si=1;

475 s e c i =1;

e l s e

477 s e c i=sur_sect ion (min_psi , min_si , i ) ;

theta=Stheta ( s e c i ) ;

479 con f i gx ( i )=s e c l x ( s e c i )+sur_x (min_psi , min_si , i ) ∗ cos ( Stheta ( s e c i ) ) . . .

−sur_y (min_psi , min_si , i ) ∗ s i n ( Stheta ( s e c i ) ) ;

481 con f i gy ( i )=s e c l y ( s e c i )+sur_x (min_psi , min_si , i ) ∗ s i n ( Stheta ( s e c i ) ) . . .
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+sur_y (min_psi , min_si , i ) ∗ cos ( Stheta ( s e c i ) ) ;

483 end

end

485

toc

487

489 %% %%%%%%%%%%%%%% Vi t e rb i end %%%%%%%%%%%%%%%%

491 p lo t ( low_x , low_y , ’−c ’ ,R_cx ,R_cy , ’−.k ’ , slower_x , slower_y , ’−c ’ , s e c lx ,

s e c ly , ’ .−b ’ , secsup_x , secsup_y , ’ .−b ’ , [ 0 . 0 , c on f i gx ] , [ 0 . 0 , c on f i gy ] , ’

.− r ’ ) ;

g r i d on ;

493 ax i s equal ;

xl im ( [ 0 1 . 2 ] ) ;

495 ylim ([−0.2 1 . 2 ] ) ;

codes/Matlab_code_for_the_beam.m

1 f unc t i on Pot en t i a l=PE( theta1 , theta2 , EI ,NL,Tx ,Ty)

Pot en t i a l=(EI∗ 0 .5 ∗ ( theta2−theta1 ) ^2∗ (NL+2)∗ (NL+2)−Ty∗ s i n ( theta2 )+Tx∗

(1− cos ( theta2 ) ) ) /(NL+2) ;

3 end

codes/cost_function.m
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APPENDIX D

C++ CODE FOR THE REAL TIME SIMULATION OF KIRCHHOFF ROD

In this part, we give an introduction to the code of real time simulation of surgical

thread (the application of the model based on the theories of Kirchhoff rod). The

key variables are shown in the following:

M Total mass of the surgical thread. (Unit: Kg)
L Length of the surgical thread. (Unit: m)
N The surgical thread is discretized into N segments
m The mass of each discrete node of the surgical thread. (Unit:

Kg)
l The length of each discrete segments of the surgical thread.

(Unit: m)
BendStif Bending stiffness (Unit: N ·m2)
TorsionStiff Torsion stiffness (Unit: N ·m2)
Q The total torsion angle of the thread
h Time step. (Unit: second)
RunTime The total simulation time
MatrixXd X The position matrix (3×N) of discrete surgical thread’s nodes

. (Unit: m)
MatrixXd DX The discrete segment displacements matrix (3×N−1): DX(:

, i) = X(:, i+ 1)−X(:, i), i = 1 . . . N − 1. (Unit: m)
MatrixXd EX The unit direction matrix (3 × N − 1) of discrete surgical

thread: EX(:, i) = DX(:, i)/|DX(:, i)|, i = 1 . . . N − 1
MatrixXd V The speed matrix (3×N) of discrete surgical thread’s nodes.

(Unit: m/s)
DispAir The air dissipation coefficient kair in equation (4.24)
DispBend The bending dissipation coefficient kd in equation (4.25)
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MatrixXd Fext The forces matrix (3×N) applied on the discrete nodes. (Unit:
N)

MatrixXd FGrav The gravity matrix (3×N) of the discrete nodes. (Unit: N)
MaxCols The number of maximum cells can be taken by the discrete

surgical thread
DeltDis The criteria distance of collision detection ∆d
DeltaCellGridSize The cell size lcell in the uniform space partitioning
SpringConst The spring constant kp in equation (4.53) for the penalty force

(Unit: N/m)
MaxIter The number of maximum iterations can been taken before the

Picard iteration gets convergent

The algorithm structure of the code is shown in the following:

1. initialization(); Initialize the simulation. (line 371 in the code file:
main.cpp)
while (run)

2. UpdateExtForce(); Calculate the forces applied on each nodes (line
190 in the code file: main.cpp)

3. CollisionDetection(); (line 190 in the code file: main.cpp)
4. CollisionResponse(); (line 199 in the code file: main.cpp)
5. UpdatePosition(); Employ Picard iteration to update the positions

at current time step (line 208 in the code file: main.cpp)
end
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The function of initialization() is very straight forward; also UpdateExtForce(),

CollisionResponse(), and UpdatePosition() are directly following the work in chapter

3, so we are also not going to further explain them. Here we discuss CollisionDe-

tection() in detail. The key variables and the algorithm structure of the collision

detection are shown in the following:

NodsCellLocs The cell location of each discrete node
NodsCellErrs The position of each discrete node relative to the coordinate

system assigned to the current cell occupied
ColCheckF lg The self collision check status between two segments of

the surgical thread. If checked, ColCheckF lg = 1, else
ColCheckF lg = 0

SelfColSta The self collision status between two segments of the surgical
thread. If collide, SelfColSta = 1, else SelfColSta = 0

CellNeighbors The neighbor cells positions relative to current one.
CellBeTakenNum The total number of the cells that are occupied by the discrete

surgical thread
CellBeTaken The positions of the cells that are occupied by the discrete

surgical thread
CellTakenSparse A sparse matrix that served as index from the cell position to

SegsInCell
SegsInCell Recording the segments information in each cell has been oc-

cupied
SegsInCellNum The number of total segments in each cell has been occupied
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1. Do space partitioning based on the algorithm shown in Table 4.1. (line
41 ∼ 303 in the code file: CollisionDetection.h)
for i = 0 · · ·CellBeTakenNum

2. Check the self collisions in current cell
(line 313 ∼ 393 in CollisionDetection.h)
for j = 0 : SegsInCellNum(i)

for k = j + 1 : SegsInCellNum(i)
if the distance between to segments smaller than ∆d

SelfColSta = 1 Collision happens
end
ColCheckF lg = 1 Collision has been checked

end
end

3. Check self collisions in its neighbor cells (CellNeighbors)
(line 395 ∼ 497 in CollisionDetection.h)
for j = 0 : SegsInCellNum(i)

if the distance between to segments smaller than ∆d
SelfColSta = 1 Collision happens

end
ColCheckF lg = 1 Collision has been checked

end
end
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1 #inc lude <iostream>

#inc lude <fstream>

3 #inc lude <s td i o . h>

#inc lude <g lu t . h>

5

#inc lude <Eigen/Eigen>

7 #inc lude <Eigen/SparseLU>

#inc lude <Eigen/Sparse>

9 #inc lude <ctime>

//#inc lude <tbb/tbb . h>

11

us ing namespace std ;

13 us ing namespace Eigen ;

15

#de f i n e M 0.01 // t o t a l mass

17 #de f i n e L 1 .0 // l ength o f the thread

#de f i n e h 0 .001 // time step

19 #de f i n e g 9 .81

#de f i n e DIM 3

21 #de f i n e Error 1e−6 // numerica l e r r o r caused by f l o a t c a l c u l a t i o n

#de f i n e MaxIter 1000

23 // 4∗ (N−1) : max c e l l s can be taken ; 3∗MaxCols : the c e l l s p o s i t i o n

#de f i n e MaxCols 10

25 #de f i n e PI 3.1415926

27 #de f i n e runningt imecheck

//#de f i n e drawce l lbetaken

29 #de f i n e drawgrid

#de f i n e SparseMatr ixSo lver

31 #de f i n e SparseVectorCe l l Index
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#de f i n e SparseColDetect

33 //#de f i n e inextcheck

//#de f i n e outputtorque

35

#de f i n e N 101 // the number o f d i s c r e t e nodes o f the thread

37 #de f i n e BendSti f 0 .00025 //#de f i n e BendSti f 0 .02 // 1−>

0 . 0 0 1 : 2−3 plectonemes ; 2−> 0 .0005 : 1 plectoneme ; 3 −> 0.00025

no plectorneme

#de f i n e To r s i o nS t i f f 0 .001 //#de f i n e To r s i o nS t i f f 0 .02

39 #de f i n e SpringConst 4 //#de f i n e SpringConst 200

double RunTime=40;

41

// s p e c i a l load

43 double Q=0.0; // i n i t i a l tw i s t i n g ang le

double QEnd=50∗PI ;

45 double Qv=0.2∗ (N−1) ; // the v e l o c i t y o f tw i s t i n g ang le

47 // t e s t

double Q=0.0; // i n i t i a l tw i s t i n g ang le

49 double QEnd=250∗PI ;

double Qv=0.2∗ (N−1) ; // the v e l o c i t y o f tw i s t i n g ang le

51

#i f 20∗ l >1

53 double XSTOP=0.8∗ l ; // stop moving the end o f thread ( s p e c i a l load

end )

double DeltDis =0.2∗ l ; // c o l l i s i o n de t e c t i on c r i t e r i o n d i s t anc e

55 #de f i n e MaxCellPerSeg 6

#e l s e

57 double XSTOP=0.5;

double DeltDis =0.01;

59 #de f i n e MaxCellPerSeg 6
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#end i f

61 double De l taCe l lGr idS i z e=DeltDis ; // ( i f change t h i s De l taCe l lGr idS ize

, a l s o change the dimension o f SegsCe l lLocat i on = c e i l ( 1 /0 . 3 )=4)

63

#i f d e f SparseMatr ixSo lver

65 //#de f i n e Paral le lComputing

typede f Eigen : : SparseMatrix<double> SpMat ; // d e c l a r e s a column−major

spar s e matrix type o f double

67 typede f Eigen : : Tr ip l e t<double> T;

#end i f

69

#i f d e f SparseVectorCe l l Index

71 typede f Eigen : : SparseVector<int> SpVecInt ;

#end i f

73

double m=double (M/N) ; // mass o f each node

75 double l=double (L/(N−1) ) ; // l ength o f each segment

double l squ=l ∗ l ;

77 double lsquRec=1/( l ∗ l ) ;

double l u n i t=1/ l ;

79 double hRec=1/h ;

double hsqu=h∗h ;

81 double DispAir =0.2/(N−1) ; // a i r d i s s i p a t i o n

double DispBend=0.01∗m; // bending d i s s i p a t i o n

83

85 i n t QstoredSize=in t ( c e i l (RunTime/h) )+1; // s t o r e the t o t a l tw i s t i n g

ang le o f the thread

// s p e c i a l load s t a r t

87
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89 Vector3d VeEnd=Vector3d : : Zero ( ) ; // Input : the v e l o c i t y o f the

thread end

Vector3d XEnd=Vector3d : : Zero ( ) ; // the po s i t i o n o f the end o f

the thread

91

93 MatrixXd X=MatrixXd : : Zero (DIM,N) ; // po s i t i o n o f each d i s c r e t e node

MatrixXd DX=MatrixXd : : Zero (DIM,N−1) ; // the vec to r o f the d i s c r e t e

segments

95 MatrixXd EX=MatrixXd : : Zero (DIM,N−1) ; // the un i t d i r e c t i o n o f the

d i s c r e t e segments

97 MatrixXd V=MatrixXd : : Zero (DIM,N) ; // v e l o c i t y o f each d i s c r e t e node

//MatrixXd VSqureNorm=MatrixXd : : Zero (DIM,N) ; // square norm of the

v e l o c i t y o f each node

99

VectorXd Qstore=VectorXd : : Zero ( QstoredSize ) ;

101

MatrixXd Fext=MatrixXd : : Zero (DIM,N) ; // ex t e rna l f o r c e s app l i ed on

each node

103 MatrixXd FGrav=MatrixXd : : Zero (DIM,N) ; // g rava i ty f o r c e s

105 Vector3d UnitVectorx (1 , 0 , 0 ) ; // un i t vec to r

107 // v a r i a b l e s in the f i l e č ž Co l l i s i o nDe t e c t i o n s t a r t

#de f i n e XWidthNeg MaxCellPerSeg∗ (N−1)

109 #de f i n e XWidthPos MaxCellPerSeg∗ (N−1)

#de f i n e YWidthNeg MaxCellPerSeg∗ (N−1)

111 #de f i n e YWidthPos MaxCellPerSeg∗ (N−1)

#de f i n e ZWidthNeg (N−1)
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113 #de f i n e ZWidthPos (N−1)

115 i n t const XWid=XWidthNeg+XWidthPos ;

i n t const YWid=YWidthNeg+YWidthPos ;

117 i n t const ZWid=ZWidthNeg+ZWidthPos ;

i n t const XYWid=XWid∗YWid;

119 double const XMin=−XWidthNeg∗Del taCe l lGr idS i z e ;

double const YMin=−YWidthNeg∗Del taCe l lGr idS i z e ;

121 double const ZMin=−ZWidthNeg∗Del taCe l lGr idS i z e ;

#de f i n e i n c e l l ( xx , yy , zz ) xx+yy∗XWid+zz ∗XYWid

123 #de f i n e z c e l l ( xx ) i n t ( xx/XYWid)

#de f i n e y c e l l ( xx ) i n t ( ( xx%XYWid) /XWid)

125 #de f i n e x c e l l ( xx ) ( xx%XYWid)%XWid

127 i n t ColCheckFlgIni [ (N−1)∗ (N−1) ]={0};

// v a r i a b l e s in the f i l e : Co l l i s i o nDe t e c t i o n end

129

131 #i f d e f runningt imecheck

double c e l l i n g f l o o r =0.0 ;

133 double c o l d e c t i n g =0.0 ;

double Bresenham3Dtime=0.0;

135 double p icardt ime =0.0;

double so lv ingeqt ime =0.0;

137 double e lapsed_secs =0.0 ;

double upext f t ime =0.0 ;

139 double co lde t t ime =0.0;

double c o l r e s t ime =0.0 ;

141 double uppostime =0.0;

#end i f

143
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#i f d e f drawce l lbetaken

145 //draw

in t drawcellnumber=0;

147 i n t d rawce l l [ MaxCellPerSeg∗ (N−1) ]={0};

#end i f

149

#i f d e f outputtorque

151 ofstream myf i l e ;

#end i f

153

double TimeI=0.0 ;

155 i n t TimeIter=0;

157 #inc lude " i n i t i a l i z a t i o n . h "

#inc lude " UpdateExtForce . h "

159 #inc lude " Co l l i s i o nDe t e c t i o n . h "

#inc lude " Co l l i s i onResponse . h "

161 #inc lude " UpdatePosit ion . h "

163 clock_t s t a r t ;

void thread ( )

165 {

167 i f ( TimeI==0)

{

169 s t a r t= c lock ( ) ;

}

171

i f ( TimeIter%500==0)

173 {

cout<<TimeI<<" −−> "<<Q<<" " ;
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175 }

177 // 1

#i f d e f runningt imecheck

179 clock_t begin = c lock ( ) ;

#end i f

181 UpdateExtForce ( ) ;

183 #i f d e f runningt imecheck

clock_t end = c lock ( ) ;

185 upext f t ime =upext f t ime+ double ( end − begin ) / CLOCKS_PER_SEC;

begin = c lo ck ( ) ;

187 #end i f

189 // 2

Co l l i s i o nDe t e c t i o n ( ) ;

191

#i f d e f runningt imecheck

193 end = c lock ( ) ;

co lde t t ime =co lde t t ime+ double ( end − begin ) / CLOCKS_PER_SEC;

195 begin = c lo ck ( ) ;

#end i f

197

// 3

199 Col l i s i onResponse ( ) ;

201 #i f d e f runningt imecheck

end = c lock ( ) ;

203 c o l r e s t ime =co l r e s t ime+ double ( end − begin ) / CLOCKS_PER_SEC;

begin = c lo ck ( ) ;

205 #end i f
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207 // 4

UpdatePosit ion ( ) ;

209

#i f d e f runningt imecheck

211 end = c lock ( ) ;

uppostime =uppostime+ double ( end − begin ) / CLOCKS_PER_SEC;

213 #end i f

Qstore ( TimeIter )=Q;

215

i f (TimeI>=RunTime−h)

217 {

clock_t end = c lock ( ) ;

219 double e lapsed_secs =double ( end − s t a r t ) / CLOCKS_PER_SEC;

cout<<endl<<"Running time = "<<elapsed_secs<<endl ;

221 #i f d e f runningt imecheck

double totalsum=upext f t ime+co lde t t ime+co l r e s t ime+uppostime ;

223

cout<<"UpdateExtForce ( )= "<< upextft ime<<" "<< upext f t ime / totalsum

∗100<<"%"<<endl ;

225 cout<<" Co l l i s i o nDe t e c t i o n ( )= "<< coldett ime<<" "<< co lde t t ime /

totalsum ∗100<<"%"<<endl ;

cout<<" Ce l l ing−> Ce l l Floor= "<<c e l l i n g f l o o r <<"

Bresenham3Dtime= "<<Bresenham3Dtime<<endl ;

227 cout<<" Ce l l ing−> Detect ing+= "<<co l d e c t i n g <<endl ;

cout<<" Co l l i s i onResponse ( )= "<< co l r e s t ime<<" "<< co l r e s t ime /

totalsum ∗100<<"%"<<endl ;

229 cout<<" UpdatePosit ion ( )= "<< uppostime<<" "<< uppostime/ totalsum ∗

100<<"%"<<endl ;

cout<<" UpdatePosit ion−>Pircardt ime= "<<picardt ime<<" sov l i n g

equat ion time= "<<so lv ingeqt ime<<endl ;
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231

cout<<"Sum= "<<totalsum<<endl ;

233 #end i f

std : : system ( " pause " ) ;

235 e x i t (0 ) ;

}

237

#i f d e f outputtorque

239

i f ( TimeIter%50==0)

241 {

myf i l e<<Q<<" " ;

243 }

245 i f (TimeI>=RunTime−h) {

myf i l e . c l o s e ( ) ;

247 }

#end i f

249

TimeIter+=1;

251 TimeI+=h ;

}

253

255 void Draw( ) {

thread ( ) ;

257 MatrixXd drawx=X;

drawx . row (0) . array ( )=drawx . row (0) . array ( )+XMin ;

259 drawx . row (1) . array ( )=drawx . row (1) . array ( )+YMin ;

drawx . row (2) . array ( )=drawx . row (2) . array ( )+ZMin ;

261

148



g lC l ea r (GL_COLOR_BUFFER_BIT) ;

263 #i f d e f drawce l lbetaken

// draw c e l l been taken

265 g lBeg in (GL_QUADS) ;

g lCo l o r 3 f ( 0 . 0 , 1 . 0 , 1 . 0 ) ;

267 f o r ( i n t i =0; i<drawcellnumber ; i++)

{

269 g lVer t ex3 f ( x c e l l ( d rawce l l [ i ] ) ∗Del taCe l lGr idS i z e+XMin , y c e l l

( d rawce l l [ i ] ) ∗Del taCe l lGr idS i z e+YMin , z c e l l ( d rawce l l

[ i ] ) ∗Del taCe l lGr idS i z e+ZMin) ;

g lVer t ex3 f ( x c e l l ( d rawce l l [ i ] ) ∗Del taCe l lGr idS i z e+XMin+

Del taCe l lGr idS ize , y c e l l ( d rawce l l [ i ] ) ∗Del taCe l lGr idS i z e+YMin ,

z c e l l ( d rawce l l [ i ] ) ∗Del taCe l lGr idS i z e+ZMin) ;

271 g lVer t ex3 f ( x c e l l ( d rawce l l [ i ] ) ∗Del taCe l lGr idS i z e+XMin+

Del taCe l lGr idS ize , y c e l l ( d rawce l l [ i ] ) ∗Del taCe l lGr idS i z e+YMin+

Del taCe l lGr idS ize , z c e l l ( d rawce l l [ i ] ) ∗Del taCe l lGr idS i z e+ZMin) ;

g lVer t ex3 f ( x c e l l ( d rawce l l [ i ] ) ∗Del taCe l lGr idS i z e+XMin , y c e l l

( d rawce l l [ i ] ) ∗Del taCe l lGr idS i z e+YMin+Del taCe l lGr idS ize , z c e l l (

d rawce l l [ i ] ) ∗Del taCe l lGr idS i z e+ZMin) ;

273 }

275

g lCo l o r 3 f ( 0 . 0 , 0 . 0 , 1 . 0 ) ;

277 f o r ( i n t i =0; i<N−1; i++)

{

279 g lVer t ex3 f ( NodsCellLocs [ 3 ∗ i ] ∗Del taCe l lGr idS i z e+XMin ,

NodsCellLocs [ 3 ∗ i +1]∗Del taCe l lGr idS i z e+YMin ,

NodsCellLocs [ 3 ∗ i +2]∗Del taCe l lGr idS i z e+ZMin) ;

g lVer t ex3 f ( NodsCellLocs [ 3 ∗ i ] ∗Del taCe l lGr idS i z e+XMin+

Del taCe l lGr idS ize , NodsCellLocs [ 3 ∗ i +1]∗Del taCe l lGr idS i z e+YMin ,

NodsCellLocs [ 3 ∗ i +2]∗Del taCe l lGr idS i z e+ZMin) ;
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281 g lVer t ex3 f ( NodsCellLocs [ 3 ∗ i ] ∗Del taCe l lGr idS i z e+XMin+

Del taCe l lGr idS ize , NodsCellLocs [ 3 ∗ i +1]∗Del taCe l lGr idS i z e+YMin+

Del taCe l lGr idS ize , NodsCellLocs [ 3 ∗ i +2]∗Del taCe l lGr idS i z e+ZMin) ;

g lVer t ex3 f ( NodsCellLocs [ 3 ∗ i ] ∗Del taCe l lGr idS i z e+XMin ,

NodsCellLocs [ 3 ∗ i +1]∗Del taCe l lGr idS i z e+YMin+Del taCe l lGr idS ize ,

NodsCellLocs [ 3 ∗ i +2]∗Del taCe l lGr idS i z e+ZMin) ;

283 }

glEnd ( ) ;

285 #end i f

287 #i f d e f drawgrid

// draw c e l l g r i d

289 g lCo l o r 3 f ( 1 . 0 , 0 . 7 , 0 . 8 ) ;

g lBeg in (GL_LINES) ;

291 double ce l l_x=−XWidthNeg∗Del taCe l lGr idS i z e ;

f o r ( i n t i i =0; i i <XWid; i i ++)

293 {

g lVer t ex3 f ( ce l l_x , −YWidthNeg∗DeltaCe l lGr idS ize , 0 . 0 ) ;

295 g lVer t ex3 f ( ce l l_x , YWidthPos∗DeltaCe l lGr idS ize , 0 . 0 ) ;

ce l l_x+=De l taCe l lGr idS i z e ;

297 }

299 double ce l l_y=−YWidthNeg∗Del taCe l lGr idS i z e ;

f o r ( i n t i i =0; i i <=YWid; i i ++)

301 {

g lVer t ex3 f (−XWidthNeg∗DeltaCe l lGr idS ize , ce l l_y , 0 . 0 ) ;

303 g lVer t ex3 f (XWidthPos∗DeltaCe l lGr idS ize , ce l l_y , 0 . 0 ) ;

ce l l_y+=De l taCe l lGr idS i z e ;

305 }

glEnd ( ) ;

307
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// Axis x−y−z

309 g lCo l o r 3 f ( 1 . 0 , 0 . 0 , 0 . 0 ) ;

g lBeg in (GL_LINES) ;

311 g lVer t ex3 f (−0.2 , 0 . 0 , 0 . 0 ) ;

g lVer t ex3 f ( 1 . 2 , 0 . 0 , 0 . 0 ) ;

313

g lVer t ex3 f ( 0 . 0 , −0.6 , 0 . 0 ) ;

315 g lVer t ex3 f ( 0 . 0 , 0 . 6 , 0 . 0 ) ;

317 g lVer t ex3 f ( 0 . 0 , 0 . 0 , −0.6) ;

g lVer t ex3 f ( 0 . 0 , 0 . 0 , 0 . 6 ) ;

319 glEnd ( ) ;

#end i f

321

// draw d i s c r e t e thread

323 g lCo l o r 3 f ( 1 . 0 , 1 . 0 , 1 . 0 ) ;

g lBeg in (GL_LINE_STRIP) ;

325 f o r ( i n t i i =0; i i <=N−1; i i ++)

{

327 Vector3d temp=Vector3d ( drawx . c o l ( i i ) ) ;

g lVer t ex3 f ( temp (0) , temp (1) , temp (2) ) ;

329 }

glEnd ( ) ;

331

// draw d i s c r e t e nodes o f the thread

333 g lCo l o r 3 f ( 0 . 0 , 0 . 0 , 1 . 0 ) ;

g lPo in tS i z e (5 ) ;

335 g lBeg in (GL_POINTS) ;

f o r ( i n t i i =0; i i <=N−1; i i ++)

337 {

Vector3d temp=Vector3d ( drawx . c o l ( i i ) ) ;
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339 g lVer t ex3 f ( temp (0) , temp (1) , temp (2) ) ;

}

341 glEnd ( ) ;

343 g lF lush ( ) ;

345 g lutPostRed i sp lay ( ) ;

}

347

void I n i t i a l i z e ( ) {

349 g lC l ea rCo lo r ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) ;

glMatrixMode (GL_PROJECTION) ;

351 g lLoadIdent i ty ( ) ;

glOrtho (−0.2 , 1 . 2 , −0.6 , 0 . 2 , −0.4 , 0 . 4 ) ;

353 // glOrtho ( 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , −1.0 , 1 . 0 ) ;

}

355

i n t main ( i n t iArgc , char ∗∗ cppArgv ) {

357

// cout<<" s i z e o f ColCheckFlgIni="<<s i z e o f ( ColCheckFlgIni )<<endl ;

359

#i f d e f outputtorque

361 myf i l e . open ( " torque . x l s " ) ;

363 myf i le<<"Time "<<" " ;

f o r ( double i i =0; i i <RunTime ; i i= i i +50∗h)

365 {

myf i l e<<i i <<" " ;

367 }

myf i l e<<" \n"<<"Torque "<<" " ;

369 #end i f
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// thread func t i on s

371 i n i t i a l i z a t i o n ( ) ;

373 g l u t I n i t (&iArgc , cppArgv ) ;

g lut In i tDisp layMode (GLUT_SINGLE | GLUT_RGB) ;

375 glutInitWindowSize (1000 , 800) ;

g lutIn i tWindowPos i t ion (0 , 0) ;

377 glutCreateWindow ( "XoaX . net " ) ;

I n i t i a l i z e ( ) ;

379 glutDisplayFunc (Draw) ;

381 glutMainLoop ( ) ;

r e turn 0 ;

383 }

codes/main.cpp

1 //MatrixXd VSqureNorm(DIM,N) ;

//VectorXd VSqureNorm(N) ;

3 //MatrixXd BiNorm=MatrixXd : : Zero (DIM,N−1) ; // t h i s conta in s the c r o s s

product e i c r o s s e i+1 vec to r s ;

//VectorXd BetaCos=VectorXd : : Zero (N−1) ; // t h i s conta in s the dot

product e i c r o s s e i+1 vec to r s ;

5 VectorXd BetaCosPre=VectorXd : : Ones (N−1) ; // f o r our case i t s one

void UpdateExtForce ( )

7 {

9 VectorXd VSqureNorm(N) ;

VSqureNorm=V. co lw i s e ( ) . squaredNorm ( ) ;

11 //−−−− update the cur rent geometr ic in fo rmat ion

// update segment and i t s d i r e c t i o n in fo rmat ion

13 DX=X. block (0 , 1 ,DIM,N−1)−X. block (0 , 0 ,DIM,N−1) ;
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EX=DX∗ l u n i t ;

15

// update dot product in fo rmat ion

17 VectorXd BetaCos (N−1) ;

BetaCos (0 ) =1.00;

19 BetaCos . segment (1 ,N−2)=(EX. block (0 , 0 ,DIM,N−2) . array ( ) ∗EX. block (0 , 1 ,

DIM,N−2) . array ( ) ) . c o lw i s e ( ) . sum( ) ;

// cout<<BetaCos<<endl ;

21 #i f d e f inextcheck

// cheking the e r r o r caused by f l o a t c a l c u l a t i o n in CPU

23 i n t temp_betag1=(BetaCos . array ( ) . abs ( ) > 1) . count ( ) ;

i f ( temp_betag1>= 1)

25 {

// cout<<"temp_betag1="<<temp_betag1<<endl ;

27 i n t temp_betag2=(BetaCos . array ( ) . abs ( ) > (1+Error ∗ 10000) ) . count ( )

;

i f ( temp_betag2>= 1)

29 {

std : : cout<<BetaCos<<endl ;

31 std : : cout<<" Error in ang le c a l c u l a t i o n : "<<temp_betag2<<" ang le

dot products g r e a t e r than 1 "<<endl ;

s td : : system ( " pause " ) ;

33 re turn 1 ;

}

35 e l s e

{

37 // cout<<"be f o r e :"<<BetaCos . t ranspose ( )<<endl ;

BetaCos=BetaCos . unaryExpr ( ptr_fun (GreaterThanOne ) ) ;

39 // cout<<"a f t e r :"<<BetaCos . t ranspose ( )<<endl ;

// system ( " pause " ) ;

41 }
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}

43 #end i f

45 // update the binormal in fo rmat ion

MatrixXd BiNorm(DIM,N−1) ; // t h i s conta in s the c r o s s product e i

c r o s s e i+1 vec to r s ;

47 BiNorm . c o l (0 )=UnitVectorx . c r o s s ( Vector3d (EX. c o l (0 ) ) ) ;

f o r ( i n t i i =1; i i <=N−2; i i ++)

49 {

BiNorm . c o l ( i i )=Vector3d (EX. c o l ( i i −1) ) . c r o s s ( Vector3d (EX. c o l ( i i ) ) )

;

51 }

53

//−−−−−−−−−−−−−−−−−−−−−−− update ex t e rna l f o r c e s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

55 Fext . c o l (0 )=−DispAir∗VSqureNorm (0) ∗V. co l (0 )

+BendSti f ∗(−1/((1+BetaCos (1 ) ) ∗(1+BetaCos (1 ) ) ) ∗DX. co l (1 ) ) ∗

l squRec

57 −DispBend∗(−DX. co l (1 ) ∗ ( BetaCos (1 )−BetaCosPre (1 ) ) ) ∗hRec∗

l squRec ;

Fext . c o l (1 )=−DispAir∗VSqureNorm (1) ∗V. co l (1 )

59 +BendSti f ∗ (1/((1+BetaCos (1 ) ) ∗(1+BetaCos (1 ) ) ) ∗ (DX. c o l (1 )−DX.

co l (0 ) )−1/((1+BetaCos (2 ) ) ∗(1+BetaCos (2 ) ) ) ∗DX. co l (2 ) ) ∗ l squRec

−DispBend∗ ( (DX. c o l (1 )−DX. co l (0 ) ) ∗ ( BetaCos (1 )−BetaCosPre (1 ) )

−DX. co l (2 ) ∗ ( BetaCos (2 )−BetaCosPre (2 ) ) ) ∗hRec∗ l squRec ;

61 f o r ( i n t i i =2; i i <N−2; i i ++)

{

63 Fext . c o l ( i i )=−DispAir∗VSqureNorm( i i ) ∗V. co l ( i i )

+BendSti f ∗ (1/((1+BetaCos ( i i −1) ) ∗(1+BetaCos ( i i −1) ) ) ∗DX. co l (

i i −2)+1/((1+BetaCos ( i i ) ) ∗(1+BetaCos ( i i ) ) ) ∗ (DX. c o l ( i i )−DX. co l (
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i i −1) )−1/((1+BetaCos ( i i +1) ) ∗(1+BetaCos ( i i +1) ) ) ∗DX. co l ( i i +1) ) ∗

l squRec

65 −DispBend∗ (DX. c o l ( i i −2)∗ ( BetaCos ( i i −1)−BetaCosPre ( i i −1) )+(

DX. c o l ( i i )−DX. co l ( i i −1) ) ∗ ( BetaCos ( i i )−BetaCosPre ( i i ) )−DX. co l ( i i

+1)∗ ( BetaCos ( i i +1)−BetaCosPre ( i i +1) ) ) ∗hRec∗ l squRec ;

}

67 Fext . c o l (N−2)=−DispAir∗VSqureNorm(N−2)∗V. co l (N−2)

+BendSti f ∗ (1/((1+BetaCos (N−4) ) ∗(1+BetaCos (N−3) ) ) ∗DX. co l (N

−4)+1/((1+BetaCos (N−2) ) ∗(1+BetaCos (N−2) ) ) ∗ (DX. c o l (N−2)−DX. co l (N

−3) ) ) ∗ l squRec

69 −DispBend∗ (DX. c o l (N−4)∗ ( BetaCos (N−3)−BetaCosPre (N−3) )+(DX.

co l (N−2)−DX. co l (N−3) ) ∗ ( BetaCos (N−2)−BetaCosPre (N−2) ) ) ∗hRec∗

l squRec ;

Fext . c o l (N−1)=−DispAir∗VSqureNorm(N−1)∗V. co l (N−1)

71 +BendSti f ∗ (1/((1+BetaCos (N−2) ) ∗(1+BetaCos (N−2) ) ) ∗DX. co l (N

−3) ) ∗ l squRec

−DispBend∗ (DX. c o l (N−3)∗ ( BetaCos (N−2)−BetaCosPre (N−2) ) ) ∗hRec

∗ l squRec ;

73

Fext=Fext+FGrav ;

75

// update the ex t e rna l f o r c e −−> add end load

77 // update end load in fo rmat ion −−> only f o r c e no torque

XEnd=XEnd+h∗VeEnd ;

79 i f (XEnd(0)<=XSTOP)

{

81 XEnd(0)=XSTOP−Error ;

VeEnd=Vector3d : : Zero ( ) ;

83 }

// update the f o r c e

85 Fext . c o l (N−1)=Fext . c o l (N−1)+300∗ (XEnd−X. co l (N−1) ) ;
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87 // update the ex t e rna l f o r c e −−> tw i s t i n g

//Fext=MatrixXd : : Zero (DIM,N) ;

89 // update end load in fo rmat ion −−> only torque no f o r c e

i f (VeEnd . norm ( )==0)

91 {

Q=Q+Qv∗h ;

93 }

i f (Q>QEnd)

95 {

Qv=0.0;

97 }

// update the t o t a l t o r s i o n a l ang le

99 f o r ( i n t i i =1; i i <=N−2; i i ++)

{

101 Q=Q+Vector3d (BiNorm . c o l ( i i ) ) . dot ( Vector3d (V. c o l ( i i +1)−V. co l ( i i −1)

) ) ∗h/(1+BetaCos ( i i ) ) ;

}

103 Q=Q+Vector3d (BiNorm . c o l (0 ) ) . dot ( Vector3d (V. c o l (1 ) ) ) ∗h/(1+BetaCos (0 )

) ;

// c a l c u l a t e the f o r c e caused by t o r s i o n

105 double QPS=Q/(N−1) ; // tw i s t ang le per segment

Fext . c o l (0 )=Fext . c o l (0 )−To r s i o nS t i f f ∗(−QPS∗BiNorm . c o l (1 ) /(1+BetaCos

(1 ) ) ) ;

107 f o r ( i n t i i =1; i i <=N−3; i i ++)

{

109 Fext . c o l ( i i )=Fext . c o l ( i i )−To r s i o nS t i f f ∗QPS∗ (BiNorm . c o l ( i i −1)/(1+

BetaCos ( i i −1) )−BiNorm . c o l ( i i +1)/(1+BetaCos ( i i +1) ) ) ;

}

111 Fext . c o l (N−2)=Fext . c o l (N−2)−To r s i o nS t i f f ∗ (QPS∗BiNorm . c o l (N−3)/(1+

BetaCos (N−3) ) ) ;
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113 BetaCosPre=BetaCos ;

// std : : cout<<"tw i s t i n g : \n"<<Fext<<endl ;

115 }

codes/UpdateExtForce.h

1 i n t NodsCellLocs [DIM∗N]={0};

double NodsCel lErrs [DIM∗N]={0 .0} ;

3 i n t ColCheckFlg [ (N−1)∗ (N−1) ]={0};

i n t Se l fCo lS ta [ (N−1)∗ (N−1) ]={0};

5 i n t Cel lNe ighbours [13]={−1 , −XWid+1, −XWid, −XWid−1,

−XYWid+XWid+1,−XYWid+XWid,−XYWid+XWid−1,

7 −XYWid+1,−XYWid, −XYWid−1,

−XYWid−XWid+1,−XYWid−XWid,−XYWid−XWid−1};

9 i n t CellBeTakenNum=0;

i n t CellBeTaken [ MaxCellPerSeg∗ (N−1) ]={0};

11

#i f d e f SparseVectorCe l l Index

13 SpVecInt Cel lTakenSparse ( (XWidthNeg+XWidthPos ) ∗ (YWidthNeg+YWidthPos ) ∗

(ZWidthNeg+ZWidthPos ) ) ;

#e l s e

15 i n t CellTaken [ ( XWidthNeg+XWidthPos ) ∗ (YWidthNeg+YWidthPos ) ∗ (ZWidthNeg+

ZWidthPos ) ]={0};

#end i f

17 i n t Co l l i s i o nDe t e c t i o n ( )

{

19 #i f d e f runningt imecheck

clock_t beg in co ld e t=c lo ck ( ) ;

21 #end i f

#i f d e f SparseVectorCe l l Index

23 CellTakenSparse . s e tZero ( ) ;
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CellTakenSparse . r e s e r v e (MaxCellPerSeg∗ (N−1) ) ;

25 #e l s e

f o r ( i n t i i =0; i i <CellBeTakenNum ; i i ++)

27 {

CellTaken [ CellBeTaken [ i i ] ]=0 ;

29 }

#end i f

31 // std : : memset(&CellTaken [ 0 ] , 0 , CellBeTakenNum) ;

CellBeTakenNum=0;

33

// f i l l ( SegsInCellNum , SegsInCellNum+4∗ (N−1) , 0) ;

35 i n t SegsInCellNum [ MaxCellPerSeg∗ (N−1) ]={0};

i n t Seg s InCe l l [ MaxCellPerSeg∗ (N−1)∗MaxCols ]={0};

37 copy ( begin ( ColCheckFlgIni ) , end ( ColCheckFlgIni ) , begin ( ColCheckFlg ) ) ;

f i l l ( Se l fCo lSta , Se l fCo lS ta+(N−1)∗ (N−1) , 0) ;

39

41 //−−−−−−−−−−−−−−−−−−− c e l l i n g s t a r t −−−−−−−−−−−−−−−−−−−−−−//

43 // Ce l l i n g ( ) ;

45 //MatrixXd temp_X=MatrixXd : : Zero (3 ,N) ;

47

double DetlaDisRev=1/De l taCe l lGr idS i z e ;

49 MatrixXd temp_loc=X∗DetlaDisRev ;

double temploca [DIM∗N] ;

51 Eigen : :Map<MatrixXd>(temploca ,DIM,N) = temp_loc ;

//temp_X=temp_X∗DetlaDisRev ;

53 // cout<<endl<<temp_X<<endl<<temp_loc ;

// cout<<endl<<temp_loc<<endl ;
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55

f o r ( i n t i i =0; i i <N; i i ++)

57 {

NodsCellLocs [ i i ∗DIM]= in t ( temploca [ i i ∗DIM] ) ;

59 NodsCellLocs [ i i ∗DIM+1]= in t ( temploca [ i i ∗DIM+1]) ;

NodsCellLocs [ i i ∗DIM+2]= in t ( temploca [ i i ∗DIM+2]) ;

61 NodsCel lErrs [ i i ∗DIM]=temploca [ i i ∗DIM]−NodsCellLocs [ i i ∗DIM ] ;

NodsCel lErrs [ i i ∗DIM+1]=temploca [ i i ∗DIM+1]−NodsCellLocs [ i i ∗DIM+1] ;

63 NodsCel lErrs [ i i ∗DIM+2]=temploca [ i i ∗DIM+2]−NodsCellLocs [ i i ∗DIM+2] ;

}

65

#i f d e f runningt imecheck

67 clock_t endc e l l 1=c lock ( ) ;

c e l l i n g f l o o r =c e l l i n g f l o o r+ double ( endc e l l 1 − beg in co ld e t ) /

CLOCKS_PER_SEC;

69 #end i f

71 // void Bresenham3D( Vector3d ∗x1 , Vector3d ∗x2 , double s t a r t_e r r o r [ ] ,

i n t s t a r t_ c e l l [ ] , i n t end_ce l l [ ] )

#i f d e f runningt imecheck

73 clock_t beginBresenham3D=c lock ( ) ;

#end i f

75

double dxa [DIM∗ (N−1) ] ;

77 double xa [DIM∗N] ;

Eigen : :Map<MatrixXd>(dxa ,DIM,N−1) = DX;

79 Eigen : :Map<MatrixXd>(xa ,DIM,N) = X;

i n t i , x_inc , y_inc , z_inc ;

81 i n t po int [DIM ] ;

double err_1 , err_2 , dx2 , dy2 , dz2 , l , m, n , Esx , Esy , Esz ;

83
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f o r ( i n t i i =0; i i <N−1; i i ++)

85 {

//Bresenham3D( i i ,&Vector3d (X. c o l ( i i ) ) ,&Vector3d (X. c o l ( i i +1) ) , &

Vector3d ( NodsCellErr . c o l ( i i ) ) ,&Vector3 i ( NodsCellLoc . c o l ( i i ) ) ,&

Vector3 i ( NodsCellLoc . c o l ( i i +1) ) ) ;

87 po int [ 0 ] = NodsCellLocs [ i i ∗DIM ] ;

po int [ 1 ] = NodsCellLocs [ i i ∗DIM+1] ;

89 po int [ 2 ] = NodsCellLocs [ i i ∗DIM+2] ;

x_inc = ( dxa [ i i ∗ 3 ] < 0) ? −1 : 1 ;

91 l = abs ( dxa [ i i ∗ 3 ] ) ;

y_inc = ( dxa [ i i ∗3+1] < 0) ? −1 : 1 ;

93 m = abs ( dxa [ i i ∗3+1]) ;

z_inc = ( dxa [ i i ∗3+1] < 0) ? −1 : 1 ;

95 n = abs ( dxa [ i i ∗3+2]) ;

97 dx2 = l+l ;

dy2 = m+m;

99 dz2 = n+n ;

i n t cel lnum=i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ;

101 #i f d e f SparseVectorCe l l Index

i f ( Cel lTakenSparse . c o e f f ( cel lnum )==0)

103 {

Cel lTakenSparse . i n s e r t ( cel lnum )=CellBeTakenNum+1;

105 CellBeTaken [ CellBeTakenNum]=cel lnum ;

CellBeTakenNum+=1;

107 }

109 Segs InCe l l [ ( Cel lTakenSparse . c o e f f ( cel lnum )−1)∗MaxCols+SegsInCellNum [

Cel lTakenSparse . c o e f f ( cel lnum )−1]]= i i ;

SegsInCellNum [ Cel lTakenSparse . c o e f f ( cel lnum )−1]+=1;

111 #e l s e
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i f ( CellTaken [ cel lnum ]==0)

113 {

CellTaken [ cel lnum ]=CellBeTakenNum+1;

115 CellBeTaken [ CellBeTakenNum]=cel lnum ;

CellBeTakenNum+=1;

117 }

119 Segs InCe l l [ ( CellTaken [ cel lnum ]−1)∗MaxCols+SegsInCellNum [ CellTaken [

cel lnum ]−1]]= i i ;

SegsInCellNum [ CellTaken [ cel lnum ]−1]+=1;

121 #end i f

// record the in fo rmat ion o f the mid part o f the segment

123 i f ( ( l >= m) && ( l >= n) ) {

Esy=y_inc∗ (2 ∗NodsCel lErrs [ i i ∗3+1]−1)∗ l−x_inc∗ (2 ∗NodsCel lErrs [ i i ∗3]−1)

∗m;

125 Esz=z_inc∗ (2 ∗NodsCel lErrs [ i i ∗3+2]−1)∗ l−x_inc∗ (2 ∗NodsCel lErrs [ i i ∗3]−1)

∗n ;

//Esx=2∗ es ∗ l ;

127 err_1 = Esy+ dy2 − l ;

err_2 = Esz+ dz2 − l ;

129 // not r e co rd ing the l o c a t i o n o f s t a r t and end po in t s o f the segment

// because i t has a l r eady been ca l c u l a t ed in the s t a r t_ c e l l and

end_ce l l

131 // so i<abs ( end_ce l l [0]− s t a r t_ c e l l [ 0 ] )−1

f o r ( i = 1 ; i < abs ( NodsCellLocs [ ( i i +1)∗3]−NodsCellLocs [ i i ∗ 3 ] ) ; i++)

133 {

i f ( err_1 > 0) {

135 po int [ 1 ] += y_inc ;

err_1 −= dx2 ;

137 }

i f ( err_2 > 0) {
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139 po int [ 2 ] += z_inc ;

err_2 −= dx2 ;

141 }

err_1 += dy2 ;

143 err_2 += dz2 ;

po int [ 0 ] += x_inc ;

145

// cout<<begin ( SegsCe l lLocs )<<endl ;

147 // cout<<endl<<point [0]<<" "<<point [1]<<" "<<point [2]<<" "<<endl ;

// cout<<endl<<SegsCel lLoc [ s e g i ] . l o c s [ loctemp]<<" "<<SegsCel lLoc [

s e g i ] . l o c s [ loctemp+1]<<" "<<SegsCel lLoc [ s e g i ] . l o c s [ loctemp+2]<<"

"<<endl ;

149

//new ve r s i on

151 #i f d e f SparseVectorCe l l Index

cel lnum=i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ;

153 i f ( Cel lTakenSparse . c o e f f ( cel lnum )==0)

{

155 CellTakenSparse . i n s e r t ( cel lnum )=CellBeTakenNum+1;

CellBeTaken [ CellBeTakenNum]=cel lnum ;

157 CellBeTakenNum+=1;

}

159

Segs InCe l l [ ( Cel lTakenSparse . c o e f f ( cel lnum )−1)∗MaxCols+SegsInCellNum

[ Cel lTakenSparse . c o e f f ( cel lnum )−1]]= i i ;

161 SegsInCellNum [ Cel lTakenSparse . c o e f f ( cel lnum )−1]+=1;

163 #e l s e

i f ( CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]==0)

165 {

CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]=CellBeTakenNum+1;
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167 CellBeTaken [ CellBeTakenNum]= i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ;

CellBeTakenNum+=1;

169 }

Segs InCe l l [ ( CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]−1)∗

MaxCols+SegsInCellNum [ CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int

[ 2 ] ) ]−1]]= i i ;

171 SegsInCellNum [ CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]−1]+=1;

#end i f

173 }

}

175 e l s e i f ( (m >= l ) && (m >= n) ) {

Esx=x_inc∗ (2 ∗NodsCel lErrs [ i i ∗ 3 ] −1)∗m−y_inc∗ (2 ∗NodsCel lErrs [ i i ∗

3+1]−1)∗ l ;

177 Esz=z_inc∗ (2 ∗NodsCel lErrs [ i i ∗3+2]−1)∗m−y_inc∗ (2 ∗NodsCel lErrs [ i i ∗

3+1]−1)∗n ;

err_1 = Esx+ dx2 − m;

179 err_2 = Esz+ dz2 − m;

f o r ( i = 1 ; i < abs ( NodsCellLocs [ ( i i +1)∗3+1]−NodsCellLocs [ i i ∗3+1]) ;

i++) {

181 //output−>getTi l eAt ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] )−>setSymbol ( symbol

) ;

i f ( err_1 > 0) {

183 po int [ 0 ] += x_inc ;

err_1 −= dy2 ;

185 }

i f ( err_2 > 0) {

187 po int [ 2 ] += z_inc ;

err_2 −= dy2 ;

189 }

err_1 += dx2 ;

191 err_2 += dz2 ;
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po int [ 1 ] += y_inc ;

193

//new ve r s i on

195 #i f d e f SparseVectorCe l l Index

cel lnum=i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ;

197 i f ( Cel lTakenSparse . c o e f f ( cel lnum )==0)

{

199 CellTakenSparse . i n s e r t ( cel lnum )=CellBeTakenNum+1;

CellBeTaken [ CellBeTakenNum]=cel lnum ;

201 CellBeTakenNum+=1;

}

203

Segs InCe l l [ ( Cel lTakenSparse . c o e f f ( cel lnum )−1)∗MaxCols+SegsInCellNum

[ Cel lTakenSparse . c o e f f ( cel lnum )−1]]= i i ;

205 SegsInCellNum [ Cel lTakenSparse . c o e f f ( cel lnum )−1]+=1;

207 #e l s e

i f ( CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]==0)

209 {

CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]=CellBeTakenNum+1;

211 CellBeTaken [ CellBeTakenNum]= i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ;

CellBeTakenNum+=1;

213 }

Segs InCe l l [ ( CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]−1)∗

MaxCols+SegsInCellNum [ CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int

[ 2 ] ) ]−1]]= i i ;

215 SegsInCellNum [ CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]−1]+=1;

#end i f

217 }

} e l s e {

219 Esy=y_inc∗ (2 ∗NodsCel lErrs [ i i ∗3+1]−1)∗n−z_inc∗ (2 ∗NodsCel lErrs [ i i ∗
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3+2]−1)∗m;

Esx=x_inc∗ (2 ∗NodsCel lErrs [ i i ∗ 3 ] −1)∗n−z_inc∗ (2 ∗NodsCel lErrs [ i i ∗

3+2]−1)∗ l ;

221 err_1 = Esy+dy2 − n ;

err_2 = Esx+dx2 − n ;

223 f o r ( i = 1 ; i < abs ( NodsCellLocs [ ( i i +1)∗3+2]−NodsCellLocs [ i i ∗3+2]) ;

i++) {

//output−>getTi l eAt ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] )−>setSymbol ( symbol

) ;

225 i f ( err_1 > 0) {

po int [ 1 ] += y_inc ;

227 err_1 −= dz2 ;

}

229 i f ( err_2 > 0) {

po int [ 0 ] += x_inc ;

231 err_2 −= dz2 ;

}

233 err_1 += dy2 ;

err_2 += dx2 ;

235 po int [ 2 ] += z_inc ;

237 //new ve r s i on

#i f d e f SparseVectorCe l l Index

239 cel lnum=i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ;

i f ( Cel lTakenSparse . c o e f f ( cel lnum )==0)

241 {

Cel lTakenSparse . i n s e r t ( cel lnum )=CellBeTakenNum+1;

243 CellBeTaken [ CellBeTakenNum]=cel lnum ;

CellBeTakenNum+=1;

245 }
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247 Segs InCe l l [ ( Cel lTakenSparse . c o e f f ( cel lnum )−1)∗MaxCols+SegsInCellNum

[ Cel lTakenSparse . c o e f f ( cel lnum )−1]]= i i ;

SegsInCellNum [ Cel lTakenSparse . c o e f f ( cel lnum )−1]+=1;

249

#e l s e

251 i f ( CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]==0)

{

253 CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]=CellBeTakenNum+1;

CellBeTaken [ CellBeTakenNum]= i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ;

255 CellBeTakenNum+=1;

}

257 Segs InCe l l [ ( CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]−1)∗

MaxCols+SegsInCellNum [ CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int

[ 2 ] ) ]−1]]= i i ;

SegsInCellNum [ CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]−1]+=1;

259 #end i f

}

261 }

263 po int [ 0 ] = NodsCellLocs [ i i ∗ 3+3] ;

po int [ 1 ] = NodsCellLocs [ i i ∗ 3+4] ;

265 po int [ 2 ] = NodsCellLocs [ i i ∗ 3+5] ;

267 //new ve r s i on

#i f d e f SparseVectorCe l l Index

269 cel lnum=i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ;

i f ( Cel lTakenSparse . c o e f f ( cel lnum )==0)

271 {

Cel lTakenSparse . i n s e r t ( cel lnum )=CellBeTakenNum+1;

273 CellBeTaken [ CellBeTakenNum]=cel lnum ;

CellBeTakenNum+=1;
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275 }

277 Segs InCe l l [ ( Cel lTakenSparse . c o e f f ( cel lnum )−1)∗MaxCols+SegsInCellNum [

Cel lTakenSparse . c o e f f ( cel lnum )−1]]= i i ;

SegsInCellNum [ Cel lTakenSparse . c o e f f ( cel lnum )−1]+=1;

279

#e l s e

281 i f ( CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]==0)

{

283 CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]=CellBeTakenNum+1;

CellBeTaken [ CellBeTakenNum]= i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ;

285 CellBeTakenNum+=1;

}

287 i n t c e l l l l l l =CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]−1;

i n t t e s t t =(CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]−1)∗MaxCols+

SegsInCellNum [ CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ] −1 ] ;

289 Segs InCe l l [ ( CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]−1)∗MaxCols+

SegsInCellNum [ CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]−1]]=

i i ;

SegsInCellNum [ CellTaken [ i n c e l l ( po int [ 0 ] , po int [ 1 ] , po int [ 2 ] ) ]−1]+=1;

291 #end i f

double t e s t =0.0 ;

293 }

295 #i f d e f SparseVectorCe l l Index

Cel lTakenSparse . f i n a l i z e ( ) ;

297 #end i f

299 #i f d e f runningt imecheck

clock_t endBresenham3D=c lock ( ) ;

301 Bresenham3Dtime=Bresenham3Dtime+ double ( endBresenham3D −

168



beginBresenham3D ) / CLOCKS_PER_SEC;

#end i f

303 //−−−−−−−−−−−−−−−− c e l l i n g end −−−−−−−−−−−−−−//

305 // double tempx [ 3 ∗N] ;

//Eigen : :Map<MatrixXd>(tempx , 3 ,N) = X;

307 MatrixXd tempx = X;

f o r ( i n t i i =0; i i <CellBeTakenNum ; i i ++)

309 {

i n t t empce l l l o c=CellBeTaken [ i i ] ;

311 i n t tepnum=SegsInCellNum [ i i ] ;

// check the segments in cur rent c e l l

313 i f ( tepnum>1)

{

315 f o r ( i n t j j =0; j j <tepnum ; j j++)

{

317 i n t s e g j j=Segs InCe l l [ i i ∗MaxCols+j j ] ;

f o r ( i n t kk=j j +1;kk<tepnum ; kk++)

319 {

i n t segkk=Segs InCe l l [ i i ∗MaxCols+kk ] ;

321 i f ( ColCheckFlg [ s e g j j ∗ (N−1)+segkk ]==0)

// i f ( abs ( s e g j j−segkk ) )

323 {

// cout<<"check c o l l i s i o n in the s e l f c e l l "<<endl ;

325 double d i s t ance =0.0 ;

#i f d e f runningt imecheck

327 clock_t beg indet s=c lo ck ( ) ;

#end i f

329 // i n t c o l l i s i o n_ f l a g=dist3D_Line_to_Line(&Vector3d ( tempx . c o l ( s e g j j )

) ,&Vector3d ( tempx . c o l ( s e g j j +1) ) ,&Vector3d ( tempx . c o l ( segkk ) ) ,&

Vector3d ( tempx . c o l ( segkk+1) ) ,& d i s t anc e ) ;
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i n t s t a tu s =5;

331 double c1=0;

double c2=0;

333

Vector3d u=Vector3d (DX. co l ( s e g j j ) ) ;

335 Vector3d v=DX. co l ( segkk ) ;

Vector3d w=tempx . c o l ( s e g j j )−tempx . c o l ( segkk ) ;

337

// double a=u . dot (u) ;

339 double a=l squ ;

double b=u . dot (v ) ;

341 // double c=v . dot ( v ) ;

double c=l squ ;

343 double d=u . dot (w) ;

double e=v . dot (w) ;

345

double D=a∗c−b∗b ;

347

i f (D<(Error ∗a ) )

349 {

s t a tu s =1;

351 c1 =0.0 ;

i f (b>=c )

353 { c2=d/b ; }

e l s e

355 { c2=e/c ; }

}

357 e l s e

{

359 s t a tu s =0;

c1 = (b∗e − c∗d) /D;
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361 c2 = ( a∗e − b∗d) /D;

}

363

i f ( ( c1<=0) | | ( c1>=1) | | ( c2<=0) | | ( c2>=1))

365 {

s t a tu s =2;

367 }

d i s t ance = (w + ( c1 ∗ u) − ( c2 ∗ v ) ) . norm ( ) ;

369 #i f d e f runningt imecheck

clock_t endc e l l 2=c lock ( ) ;

371 c o l d e c t i n g =co l d e c t i n g+ double ( endc e l l 2 − beg indet s ) / CLOCKS_PER_SEC

;

#end i f

373 i f ( s t a tu s==0)

// i f ( c o l l i s i o n_ f l a g==0)

375 {

i f ( d i s tance<=DeltDis )

377 {

Se l fCo lS ta [ s e g j j ∗ (N−1)+segkk ]=1;

379 Se l fCo lS ta [ segkk ∗ (N−1)+s e g j j ]=1;

}

381 e l s e

{

383 ColCheckFlg [ s e g j j ∗ (N−1)+segkk ]=1;

ColCheckFlg [ segkk ∗ (N−1)+s e g j j ]=1;

385 }

}

387 e l s e

{

389 ColCheckFlg [ s e g j j ∗ (N−1)+segkk ]=1;

ColCheckFlg [ segkk ∗ (N−1)+s e g j j ]=1;
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391 }

}}}

393 }

395 // check i t s neighbour c e l l s

f o r ( i n t j j =0; j j <tepnum ; j j++)

397 {

i n t s e g j j=Segs InCe l l [ i i ∗MaxCols+j j ] ; ;

399 f o r ( i n t kk=0;kk<13;kk++)

{

401 i n t t emce l l l o cne i ghbour=t empce l l l o c+Cel lNe ighbours [ kk ] ;

i f ( t emce l l l o cne ighbour <0)

403 {

cout<<" Ce l l i s too smal l "<<endl ;

405 system ( " pause " ) ;

}

407 #i f d e f SparseVectorCe l l Index

i f ( Cel lTakenSparse . c o e f f ( t emce l l l o cne i ghbour )>0)

409

{

411 f o r ( i n t l l =0; l l <SegsInCellNum [ Cel lTakenSparse . c o e f f (

t emce l l l o cne i ghbour ) −1]; l l ++)

413 {

i n t segkk=Segs InCe l l [ ( Cel lTakenSparse . c o e f f ( t emce l l l o cne i ghbour )

−1)∗MaxCols+l l ] ;

415

#e l s e

417 i f ( CellTaken [ t emce l l l o cne i ghbour ]>0)

419 {

172



f o r ( i n t l l =0; l l <SegsInCellNum [ CellTaken [ t emce l l l o cne i ghbour ] −1 ] ; l l ++)

421

{

423 i n t segkk=Segs InCe l l [ ( CellTaken [ t emce l l l o cne i ghbour ]−1)∗MaxCols+l l ] ;

#end i f

425 i f ( ColCheckFlg [ s e g j j ∗ (N−1)+segkk ]==0)

{

427 double d i s t ance =0.0 ;

#i f d e f runningt imecheck

429 clock_t beg indet s=c lo ck ( ) ;

#end i f

431 // i n t c o l l i s i o n_ f l a g=dist3D_Line_to_Line(&Vector3d ( tempx . c o l ( s e g j j )

) ,&Vector3d ( tempx . c o l ( s e g j j +1) ) ,&Vector3d ( tempx . c o l ( segkk ) ) ,&

Vector3d ( tempx . c o l ( segkk+1) ) ,& d i s t anc e ) ;

i n t s t a tu s =5;

433 double c1=0;

double c2=0;

435

Vector3d u=Vector3d (DX. co l ( s e g j j ) ) ;

437 Vector3d v=DX. co l ( segkk ) ;

Vector3d w=tempx . c o l ( s e g j j )−tempx . c o l ( segkk ) ;

439

// double a=u . dot (u) ;

441 double a=l squ ;

double b=u . dot (v ) ;

443 // double c=v . dot ( v ) ;

double c=l squ ;

445 double d=u . dot (w) ;

double e=v . dot (w) ;

447

double D=a∗c−b∗b ;
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449

i f (D<(Error ∗a ) )

451 {

s t a tu s =1;

453 c1 =0.0 ;

i f (b>=c )

455 { c2=d/b ; }

e l s e

457 { c2=e/c ; }

}

459 e l s e

{

461 s t a tu s =0;

c1 = (b∗e − c∗d) /D;

463 c2 = ( a∗e − b∗d) /D;

}

465

i f ( ( c1<=0) | | ( c1>=1) | | ( c2<=0) | | ( c2>=1))

467 {

s t a tu s =2;

469 }

d i s t ance = (w + ( c1 ∗ u) − ( c2 ∗ v ) ) . norm ( ) ;

471

#i f d e f runningt imecheck

473 clock_t endc e l l 2=c lock ( ) ;

c o l d e c t i n g =co l d e c t i n g+ double ( endc e l l 2 − beg indet s ) / CLOCKS_PER_SEC

;

475 #end i f

477

// i f ( c o l l i s i o n_ f l a g==0)
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479 i f ( s t a tu s==0)

{

481 i f ( d i s tance<=DeltDis )

{

483 Se l fCo lS ta [ s e g j j ∗ (N−1)+segkk ]=1;

Se l fCo lS ta [ segkk ∗ (N−1)+s e g j j ]=1;

485 }

e l s e

487 {

ColCheckFlg [ s e g j j ∗ (N−1)+segkk ]=1;

489 ColCheckFlg [ segkk ∗ (N−1)+s e g j j ]=1;

}

491 }

e l s e

493 {

ColCheckFlg [ s e g j j ∗ (N−1)+segkk ]=1;

495 ColCheckFlg [ segkk ∗ (N−1)+s e g j j ]=1;

}

497 }}}

499 }

}

501 }

#i f d e f drawce l lbetaken

503 drawcellnumber=CellBeTakenNum ;

copy ( begin ( CellBeTaken ) , end ( CellBeTaken ) , begin ( drawce l l ) ) ;

505 #end i f

r e turn 0 ;

507 }

codes/CollisionDetection.h
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1 void Distance ( Vector3d ∗L1Start , Vector3d ∗L1End , Vector3d ∗L2Start ,

Vector3d ∗L2End , Vector3d ∗ di s tance , double ∗c1 , double ∗ c2 )

{

3 // the d i r e c t i o n o f d i s t anc e i s from the po in t s on L2 to L1

// s t a tu s : 0 : the d i s t anc e i s between L1 , and L2

5 // 1 : L1 i s p a r a l l e l to L2

// 2 : the d i s t anc e i s ou t s i d e L1 , or L2

7 // cu r r en t l y cannot dea l with the thread in the same l i n e

9 Vector3d u=∗L1End−∗L1Start ;

Vector3d v=∗L2End−∗L2Start ;

11 Vector3d w=∗L1Start−∗L2Start ;

13 double a=u . dot (u) ;

double b=u . dot (v ) ;

15 double c=v . dot (v ) ;

double d=u . dot (w) ;

17 double e=v . dot (w) ;

19 double D=a∗c−b∗b ;

∗ c1 = (b∗e − c∗d) /D;

21 ∗ c2 = ( a∗e − b∗d) /D;

23 ∗ d i s t ance = w + ( ∗ c1 ∗ u) − ( ∗ c2 ∗ v ) ;

}

25

27 //∗∗∗∗ cont inuous pena l ty f o r c e s f o r l i n e to l i n e

void CPF_L2L( Vector3d ∗CPF, Vector3d ∗P0 , Vector3d ∗Q0, Vector3d ∗R0 ,

Vector3d ∗S0 , Vector3d ∗VP, Vector3d ∗VQ, Vector3d ∗VR, Vector3d ∗

VS, double dt , double dl , double spr ing_constant , i n t s i gn )
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29 {// P: the s t a r t po int o f l i n e segment L1 ; Q: the end po int o f L1 ;

// R: the s t a r t po int o f l i n e segment L2 ; S : the end po int o f L2 ;

31 // VP,VQ,VR,VS are the speed o f the four end po in t s o f L1 , L2

// the d i r e c t i o n o f pena l ty f o r c e i s : L2−−>L1

33 Vector3d d10=∗Q0−∗P0 ;

Vector3d d20=∗S0−∗R0 ;

35 Vector3d w0=∗P0−∗R0 ;

37 double a0=d10 . dot ( d10 ) ;

double b0=d10 . dot ( d20 ) ;

39 double c0=d20 . dot ( d20 ) ;

double d0=d10 . dot (w0) ;

41 double e0=d20 . dot (w0) ;

43 double WP=1−(b0∗e0−c0∗d0 ) /( a0∗c0−b0∗b0 ) ;

double WQ=(b0∗e0−c0∗d0 ) /( a0∗c0−b0∗b0 ) ;

45 double WR=1−(a0∗e0−b0∗d0 ) /( a0∗c0−b0∗b0 ) ;

double WS=(a0∗e0−b0∗d0 ) /( a0∗c0−b0∗b0 ) ;

47

Vector3d n0p=(∗Q0−∗P0) . c r o s s ( ∗R0−∗S0 ) ;

49 Vector3d n1p=(∗VQ−∗VP) . c r o s s ( ∗R0−∗S0 )+(∗Q0−∗P0) . c r o s s ( ∗VR−∗VS) ;

Vector3d n2p=(∗VQ−∗VP) . c r o s s ( ∗VR−∗VS) ;

51 double n0n=n0p . norm ( ) ;

Vector3d n0=n0p/n0n ;

53 Vector3d n1=n1p/n0n ;

Vector3d n2=n2p/n0n ;

55

// i n t e g r a t i o n f o r pena l ty moment

57 double t=0;

Vector3d Wc0=WP∗ ( ∗P0+∗VP∗ t )+WQ∗ ( ∗Q0+∗VQ∗ t )−WR∗ ( ∗R0+∗VR∗ t )−WS∗ ( ∗S0+∗VS

∗ t ) ;
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59 Vector3d nwc0=s ign ∗Wc0/Wc0. norm ( ) ;

Wc0=dl ∗nwc0−s i gn ∗Wc0;

61 Vector3d NE0=n0+n1∗ t+n2∗ t ∗ t ;

t=dt ;

63 Vector3d Wc=WP∗ ( ∗P0+∗VP∗ t )+WQ∗ ( ∗Q0+∗VQ∗ t )−WR∗ ( ∗R0+∗VR∗ t )−WS∗ ( ∗S0+∗VS∗

t ) ;

Vector3d nwc=s ign ∗Wc/Wc. norm ( ) ;

65 Wc=dl ∗nwc−s i gn ∗Wc;

Vector3d NE=n0+n1∗ t+n2∗ t ∗ t ;

67 Vector3d I=spr ing_constant ∗ (NE0∗Wc0. t ranspose ( ) ∗NE0+NE∗Wc. t ranspose ( )

∗NE) ∗dt /2 ;

69 ∗CPF=I /dt ;

}

71 // v a r i a b l e s in the func t i on : Co l l i s i onResponse ( ) s t a r t

Vector3d Fcon=Vector3d : : Zero ( ) ; // contact f o r c e

73 Vector3d d i s t=Vector3d : : Zero ( ) ;

Vector3d Fc11=Vector3d : : Zero ( ) ;

75 Vector3d Fc12=Vector3d : : Zero ( ) ;

Vector3d Fc21=Vector3d : : Zero ( ) ;

77 Vector3d Fc22=Vector3d : : Zero ( ) ;

double c1=0;

79 double c2=0;

// v a r i a b l e s in the func t i on : Co l l i s i onResponse ( ) end

81 i n t Co l l i s i onResponse ( )

{

83 f o r ( i n t i i =0; i i <=N−4; i i ++)

{

85 f o r ( i n t j j= i i +2; j j <=N−2; j j++)

{

87 // i f (SELFCSS( i i , j j )==1)
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i f ( S e l fCo lS ta [ i i ∗ (N−1)+j j ]==1)

89 {

CPF_L2L(&Fcon ,& Vector3d (X. c o l ( i i ) ) ,& Vector3d (X. c o l ( i i +1) ) ,&

Vector3d (X. c o l ( j j ) ) ,&Vector3d (X. c o l ( j j +1) ) ,

91 & Vector3d (V. c o l ( i i ) ) ,& Vector3d (V. c o l ( i i +1) ) ,&Vector3d (V

. c o l ( j j ) ) ,&Vector3d (V. c o l ( j j +1) ) ,h , DeltDis , SpringConst , 1 ) ;

93 Distance(&Vector3d (X. c o l ( i i ) ) ,&Vector3d (X. c o l ( i i +1) ) ,&Vector3d (X.

c o l ( j j ) ) ,&Vector3d (X. c o l ( j j +1) ) ,&d i s t , &c1 , &c2 ) ;

Fc11=Fcon∗(1−c1 ) ;

95 Fc12=Fcon−Fc11 ;

Fc21=−1∗Fcon∗(1−c2 ) ;

97 Fc22=−1∗Fcon−Fc21 ;

99 Fext . c o l ( i i )=Fext . c o l ( i i )+Fc11 ;

Fext . c o l ( i i +1)=Fext . c o l ( i i +1)+Fc12 ;

101 Fext . c o l ( j j )=Fext . c o l ( j j )+Fc21 ;

Fext . c o l ( j j +1)=Fext . c o l ( j j +1)+Fc22 ;

103 }

}

105 }

return 0 ;

107 }

codes/CollisionResponse.h

1 // v a r i a b l e s in the func t i on : UpdatePosit ion ( ) s t a r t

// employ Picard i t e r a t i o n to update the p o s i t i o n s o f each node

3 VectorXd Lambda=VectorXd : : Zero (N−1) ; // Lagrangian mu l t i p l i e r s

VectorXd Lambdanew=VectorXd : : Zero (N−1) ; // Lagrangian mu l t i p l i e r s

5

MatrixXd DV=MatrixXd : : Zero (DIM,N−1) ;
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7 MatrixXd DFext=MatrixXd : : Zero (DIM,N−1) ;

MatrixXd DXBar=MatrixXd : : Zero (DIM,N−1) ;

9

MatrixXd EE=MatrixXd : : Zero (DIM,DIM) ;

11 Vector3d Lamdbablock=Vector3d : : Zero ( ) ;

MatrixXd E1N=MatrixXd : : Zero (DIM,DIM−1) ;

13 MatrixXd LEX=MatrixXd : : Zero (DIM,N−1) ;

15 VectorXd Rhs=VectorXd : : Zero (N−1) ;

#i f d e f SparseMatr ixSo lver

17 SpMat LHS(N−1,N−1) ;

#i f d e f Paral le lComputing

19 tbb : : concurrent_vector<T> c o e f f i c i e n t s ;

#e l s e

21 std : : vector<T> c o e f f i c i e n t s ; // l i s t o f non−z e ro s c o e f f i c i e n t s

#end i f

23 #e l s e

25 MatrixXd LHS=MatrixXd : : Zero (N−1,N−1) ;

#end i f

27

29 // v a r i a b l e s in the func t i on : UpdatePosit ion ( ) end

void UpdatePosit ion ( )

31 {

DV=V. block (0 , 1 ,DIM,N−1)−V. block (0 , 0 ,DIM,N−1) ;

33 DFext=Fext . b lock (0 , 1 ,DIM,N−1)−Fext . b lock (0 , 0 ,DIM,N−1) ;

DXBar=DX+h∗DV+(hsqu/m) ∗DFext ;

35

double e r r =1.0 ;

37 i n t Count=1;
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#i f d e f runningt imecheck

39 clock_t s t a r t=c lock ( ) ;

#end i f

41 //LEX=EX;

43 Rhs . array ( )=lsqu−(DXBar . array ( ) ∗DXBar . array ( ) ) . c o lw i s e ( ) . sum( ) .

t ranspose ( ) ;

45 Vector2d templhs2 ;

Vector3d templhs ;

47 whi le ( ( err >100∗Error )&&(Count<MaxIter ) )

{

49

51 #i f d e f SparseMatr ixSo lver

E1N. c o l (0 )=−EX. co l (0 ) ;

53 E1N. c o l (1 )=EX. co l (1 ) ;

templhs2=(2∗DXBar . c o l (0 )+E1N∗ ( Vector2d (Lambda(0 ) ,Lambda(1 ) ) ) ) .

t ranspose ( ) ∗E1N;

55 c o e f f i c i e n t s . push_back (T(0 ,0 , templhs2 (0 ) ) ) ;

c o e f f i c i e n t s . push_back (T(0 ,1 , templhs2 (1 ) ) ) ;

57 //LHS. c o e f fRe f (0 , 0 )=templhs2 (0 ) ;

//LHS. c o e f fRe f (0 , 1 )=templhs2 (1 ) ;

59 #i f d e f Paral le lComputing

tbb : : p a r a l l e l_ f o r (1 ,N−2, [= ] ( i n t i i ) // ( i n t i i =1; i i <=N−3; i i ++)

61 {

Matrix3d ET;

63 ET. co l (0 )=EX. c o l ( i i −1) ;

ET. c o l (1 )=−2∗EX. co l ( i i ) ;

65 ET. co l (2 )=EX. c o l ( i i +1) ;

Vector3d templhs1=((2∗DXBar . c o l ( i i )+(ET∗Vector3d (Lambda( i i −1) ,
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Lambda( i i ) ,Lambda( i i +1) ) ) ) . t ranspose ( ) ∗ET) ;

67 c o e f f i c i e n t s . push_back (T( i i , i i −1, templhs1 (0 ) ) ) ;

c o e f f i c i e n t s . push_back (T( i i , i i , templhs1 (1 ) ) ) ;

69 c o e f f i c i e n t s . push_back (T( i i , i i +1, templhs1 (2 ) ) ) ;

71 }) ;

#e l s e

73 f o r ( i n t i i =1; i i <=N−3; i i ++)

{

75 EE. c o l (0 )=EX. co l ( i i −1) ;

EE. c o l (1 )=−2∗EX. co l ( i i ) ;

77 EE. c o l (2 )=EX. co l ( i i +1) ;

Lamdbablock=Vector3d (Lambda( i i −1) ,Lambda( i i ) ,Lambda( i i +1) ) ;

79 templhs=(2∗DXBar . c o l ( i i )+(EE∗Lamdbablock ) ) . t ranspose ( ) ∗EE;

c o e f f i c i e n t s . push_back (T( i i , i i −1, templhs (0 ) ) ) ;

81 c o e f f i c i e n t s . push_back (T( i i , i i , templhs (1 ) ) ) ;

c o e f f i c i e n t s . push_back (T( i i , i i +1, templhs (2 ) ) ) ;

83 }

#end i f

85 E1N. c o l (0 )=EX. co l (N−3) ;

E1N. c o l (1 )=−2∗EX. co l (N−2) ;

87 templhs2=(2∗DXBar . c o l (N−2)+E1N∗Vector2d (Lambda(N−3) ,Lambda(N−2) ) ) .

t ranspose ( ) ∗E1N;

c o e f f i c i e n t s . push_back (T(N−2,N−3, templhs2 (0 ) ) ) ;

89 c o e f f i c i e n t s . push_back (T(N−2,N−2, templhs2 (1 ) ) ) ;

LHS. setFromTrip le t s ( c o e f f i c i e n t s . begin ( ) , c o e f f i c i e n t s . end ( ) ) ;

91 c o e f f i c i e n t s . c l e a r ( ) ;

93 #i f d e f runningt imecheck

clock_t s t a r t 1=c lock ( ) ;

95 #end i f
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Eigen : : SparseLU<SparseMatrix<double> > SparseLUsolver ;

97 SparseLUsolver . compute (LHS) ;

SparseLUsolver . ana lyzePattern (LHS) ;

99 SparseLUsolver . f a c t o r i z e (LHS) ;

i f ( SparseLUsolver . i n f o ( ) != Success ) {

101 // decomposit ion f a i l e d

cout<<" Decomposition f a i l e d "<<endl ;

103 system ( " pause " ) ;

e x i t (0 ) ;

105 }

Lambdanew = SparseLUsolver . s o l v e (Rhs ) ;

107

#i f d e f runningt imecheck

109 clock_t end1=c lock ( ) ;

s o lv ingeqt ime=so lv ingeqt ime+double ( end1 − s t a r t 1 ) / CLOCKS_PER_SEC;

111 #end i f

#e l s e

113 E1N. c o l (0 )=−EX. co l (0 ) ;

E1N. c o l (1 )=EX. co l (1 ) ;

115 LHS. block (0 , 0 , 1 , 2 )=(2∗DXBar . c o l (0 )+E1N∗ ( Vector2d (Lambda(0 ) ,Lambda

(1) ) ) ) . t ranspose ( ) ∗E1N;

f o r ( i n t i i =1; i i <=N−3; i i ++)

117 {

EE. c o l (0 )=EX. co l ( i i −1) ;

119 EE. c o l (1 )=−2∗EX. co l ( i i ) ;

EE. c o l (2 )=EX. co l ( i i +1) ;

121

LHS. block ( i i , i i −1 ,1 ,3)=(2∗DXBar . c o l ( i i )+EE∗Vector3d (Lambda( i i −1) ,

Lambda( i i ) ,Lambda( i i +1) ) ) . t ranspose ( ) ∗EE;

123 }

E1N. c o l (0 )=EX. co l (N−3) ;
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125 E1N. c o l (1 )=−2∗EX. co l (N−2) ;

LHS. b lock (N−2,N−3 ,1 ,2)=(2∗DXBar . c o l (N−2)+E1N∗Vector2d (Lambda(N−3) ,

Lambda(N−2) ) ) . t ranspose ( ) ∗E1N;

127 #i f d e f runningt imecheck

clock_t s t a r t 1=c lock ( ) ;

129 #end i f

Lambdanew=LHS. l d l t ( ) . s o l v e (Rhs ) ;

131 #i f d e f runningt imecheck

clock_t end1=c lock ( ) ;

133 so lv ingeqt ime=so lv ingeqt ime+double ( end1 − s t a r t 1 ) / CLOCKS_PER_SEC;

#end i f

135 #end i f

e r r=(Lambda−Lambdanew) . array ( ) . abs ( ) . maxCoeff ( ) ;

137 Lambda=Lambdanew ;

139 Count+=1;

}

141 i f (Count>=MaxIter )

{

143 cout<<"Cannot converge f o r the Pircard i t e r a t i o n ! Po s s i b l e reason :

the time step i s too l a r g e . Try to dec r ea se i t . "<<endl ;

system ( " pause " ) ;

145 }

147

#i f d e f runningt imecheck

149 clock_t end=c lock ( ) ;

p icardt ime=picardt ime+double ( end − s t a r t ) / CLOCKS_PER_SEC;

151 #end i f

153 f o r ( i n t i i =1; i i <=N−2; i i ++)
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{

155 V. co l ( i i )=V. c o l ( i i )+h/m∗Fext . c o l ( i i )+hRec∗ (Lambda( i i ) ∗EX. co l ( i i )−

Lambda( i i −1)∗EX. co l ( i i −1) ) ;

}

157 V. co l (N−1)=V. co l (N−1)+h/m∗Fext . c o l (N−1)−hRec∗Lambda(N−2)∗EX. co l (N−2) ;

159 X. block (0 , 1 , 3 ,N−1)=X. block (0 , 1 , 3 ,N−1)+h∗V. block (0 , 1 , 3 ,N−1) ;

}

codes/UpdatePosition.h
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