
LOCAL-GLOBAL MODEL REDUCTION TECHNIQUES USING BALANCED

TRUNCATION

A Dissertation

by

ANASTASIYA N. PROTASOV

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Yalchin Efendiev
Co-Chair of Committee, Eduardo Gildin
Committee Members, Raytcho Lazarov

Alexei Poltoratski
Head of Department, Emil Straube

May 2016

Major Subject: Mathematics

Copyright 2016 Anastasiya N. Protasov



ABSTRACT

Many applications such as porous media and material science possess multiscale

nature of media properties and high number of variables. As a result, forward prob-

lems on todays computer architectures require high cost of computations. The dis-

sertation is devoted to creating novel model reduction techniques in order to carry

out these prohibitively expensive computations.

Model reduction techniques can be divided into two categories, local reduced-

order modeling techniques and global reduced-order modeling techniques. Local

reduced-order modeling techniques include many multiscale and homogenization type

methods. Multiscale techniques provide significant computational savings since the

same multiscale basis functions are used for all forward simulations. While homoge-

nization methods allow reducing cost of computations by solving cell problems with

varying order of accuracy. As for global model reduction technique, we consider the

earlier approach called Balanced Truncation (BT), where the system is written in

terms of a mapping from input to output. In the dissertation local model reduction

techniques and the global model reduction technique are combined.

Local-global model reduction techniques are designed for different problem set-

tings. First, we examine the flow in porous media with separable scales. We employ

hierarchical approaches for solving local problems. Then the obtained coarse-grid

models are coupled with BT approach.

Next problem formulation describes the flow in porous media without scale sep-

aration. Two cases of media properties are considered: general heterogenous media

with a parameter and a time-varying heterogeneous media, where the media proper-

ties depend on time. For these type of problems we use appropriate form of BT and
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combine it with the offline - online GMsFEM procedure.

Finally, we consider a coupled flow and transport problem, where the transport

equation is convection dominated. Both flow and transport equations are discretized

on a coarse grid using GMsFEM. We bring together the mixed coarse-grid discretiza-

tion of convection-diffusion equation and BT approaches to obtain an accurate local-

global model reduction.

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Prof. Yalchin Efendiev for

the guidance, enormous help and valuable suggestions. Without his encouragement,

experience and special topic classes on ”Multiscale methods on partial differential

equations” this research can’t be performed.

I am grateful to Texas A&M University, Department of Mathematics for awarding

me the Teacher Assistant position. I appreciate National Science Foundation for

providing such great fellowships as IGERT Fellowship New Mathematical Tools for

Next-generation Materials and EAPSI fellowship to spend summer 2012 in Singapore.

I am highly indebted to a National Priorities Research Program grant NPRP 701482-

1-278 from QNRF, Army and DOE for providing financial support of my research.

I am benefited of being a member of Exxon Mobil project ”Development of Novel

Nonlinear Model Reduction Techniques for Production Optimization and Parameter

Estimation in Heterogeneous Porous Media Flow”.

I am beholden to the tremendous support of my co-advisor from Petroleum En-

gineering Department Prof. Eduardo Gildin. I appreciate the help of petroleum

engineering students, especially Reza Ghasemi, Sardar Afra and Yuhe Wang.

I would like to extend my appreciation to Prof. Juan Galvis and Postdoctoral

scholar Michael Presho for colossal support with numerical examples and openness for

discussions. I appreciate enormous support of Prof. Donald Brown with discussing

homogenization techniques. I would like to thank Wing Tat Leung for sharing nu-

merical results for coupled flow and transport system, and immediate openness to

all my questions.

iv



Additionally, I would like to thank the visitor Dr. Mehdi Ghommem for valuable

suggestions. I would like to thank Xia Bing Xing for sharing numerical results and

for the support during Nanyang Technological University visit.

I would like to thank all my family for their love and support.

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 First model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Generalized Multiscale Finite Element Method (a local approach) . . 7
2.3 Homogenization (a local approach) . . . . . . . . . . . . . . . . . . . 8
2.4 Balanced Truncation (a global approach) . . . . . . . . . . . . . . . . 9
2.5 Second model problem . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. COARSE-GRID MODEL REDUCTION WITH BALANCED TRUNCA-
TION FOR FLOWS IN POROUS MEDIA WITH SEPARABLE SCALES 15

3.1 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Full tensor product FEM . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Reduced BT approach . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Lowest order basis . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Discussion on computational savings . . . . . . . . . . . . . . 27

3.3 Hierarchical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Sparse approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



4. COARSE-GRID MODEL REDUCTION WITH BALANCED TRUNCA-
TION FOR FLOWS IN GENERAL HETEROGENEOUS POROUS ME-
DIA WITH A PARAMETER . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Offline-online Balanced Truncation approach . . . . . . . . . . . . . . 47

4.2.1 Generalized Multiscale Finite Element Method . . . . . . . . 48
4.2.2 Balanced Truncation . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5. COARSE-GRID MODEL REDUCTION WITH BALANCED TRUNCA-
TION FOR FLOWS IN TIME-VARYING HETEROGENEOUS POROUS
MEDIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Local-global model reduction for a time-varying system . . . . . . . . 73
5.1.1 Implementation of balanced truncation approach for time-varying

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6. BALANCED TRUNCATION METHOD FOR COUPLED FLOW AND
TRANSPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Local-global model reduction . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Generalized Multiscale Finite Element Method for coupled flow and

transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.1 Multiscale solution space V v

H . . . . . . . . . . . . . . . . . . . 90
6.2.2 Multiscale solution space V w

H . . . . . . . . . . . . . . . . . . . 92
6.3 Novel model reduction approach based on Balanced Truncation . . . 94
6.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



LIST OF FIGURES

FIGURE Page

2.1 Illustration of the coarse grid, coarse elements, and a coarse neighbor-
hood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Illustration of a course neighborhood ωi (in green) corresponding to
the coarse edge Ei (see [16]) . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Permeability coefficients for a two-dimensional parameter-dependent
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Time variant pressure fields for fine-scale and coarse-scale systems . . 59

4.3 Time variant output comparisons for a 10×10 coarse mesh configuration 60

4.4 Time variant output comparisons for a 20×20 coarse mesh configuration 61

4.5 Steady state output comparisons for a 10×10 coarse mesh configuration 62

4.6 Steady state output comparisons for a 20×20 coarse mesh configuration 62

4.7 Hankel singular value decline as a guideline for choice of BT system size 63

4.8 Comparison of relative errors for fine, coarse and reduced models . . . 67

4.9 Permeability coefficients for a four-dimensional parameter-dependent
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10 Time variant output comparisons for a four-dimensional problem . . . 70

4.11 Steady state output comparisons for a four-dimensional problem . . . 71

4.12 Comparison of relative errors for fine, coarse and reduced models for
a four-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Initial high-contrast permeability coefficient κ0 . . . . . . . . . . . . . 79

5.2 High-contrast permeability coefficients for a separable case, 10 time
steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



5.3 High-contrast permeability coefficients for a non-separable case 1, 10
time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 High-contrast permeability coefficients for a non-separable case 2, 10
time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Pressure fields for a non-separable case 1, 10 time steps, a fine-scale
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Pressure fields for a non-separable case 1, 10 time steps, a coarse-scale
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Time variant output comparisons for a separable case, 10 time steps . 87

5.8 Time variant output comparisons for a non-separable case 1, 10 time
steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.9 Time variant output comparisons for a non-separable case 2, 10 time
steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 High-contrast permeability coefficient κ1 and the source term f1 for
the first case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 High-contrast permeability coefficient κ2 and the source term f2 for
the second case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Velocity (−7b1,−7b2) for the first case . . . . . . . . . . . . . . . . . 99

6.4 Velocity (−10b1,−10b2) for the second case . . . . . . . . . . . . . . . 100

6.5 Fine-scale solution c for the first case at 1, 5 and 10 time steps . . . . 101

6.6 Coarse-scale solutions c for the first case at 1, 5 and 10 time steps . . 101

6.7 Output comparisons for the first case at 1, 5, and 10 time step instants103

6.8 Output comparisons for the first case at 1, 5, and 10 time step instants104

ix



LIST OF TABLES

TABLE Page

4.1 Measurable output errors for a variety of reduced model dimensions
at steady state: 10×10 coarse mesh . . . . . . . . . . . . . . . . . . . 64

4.2 Measurable output errors for a variety of reduced model dimensions
at steady state: 20×20 coarse mesh . . . . . . . . . . . . . . . . . . . 64

4.3 Computational timing comparisons between the fine, GMsFEM on-
line, and BT algorithms: 10×10 coarse mesh . . . . . . . . . . . . . . 66

4.4 Computational timing comparisons between the fine, GMsFEM on-
line, and BT algorithms: 20×20 coarse mesh . . . . . . . . . . . . . . 66

4.5 Measurable output errors for a variety of reduced model dimensions
at steady state for a four-dimensional problem . . . . . . . . . . . . . 68

4.6 Computational timing comparisons between the fine, GMsFEM on-
line, and BT algorithms for a four-dimensional problem . . . . . . . . 71

5.1 Measurable output errors for a variety of reduced model dimensions
at steady state: 10×10 coarse mesh ( dim(Von) [Nc] = 564, a separable
case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Measurable output errors for a variety of reduced model dimensions
at steady state: 10×10 coarse mesh ( dim(Von) [Nc] = 564, a non-
separable case 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Measurable output errors for a variety of reduced model dimensions
at steady state: 10×10 coarse mesh ( dim(Von) [Nc] = 564, a non-
separable case 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Computational timing comparisons between the fine, GMsFEM on-
line, and BT algorithms: a separable case, 10 time steps . . . . . . . 83

5.5 Computational timing comparisons between the fine, GMsFEM on-
line, and BT algorithms: a separable case, 50 time steps . . . . . . . 83

x



5.6 Computational timing comparisons between the fine, GMsFEM on-
line, and BT algorithms: a non-separable case 1, 10 time steps . . . . 84

5.7 Computational timing comparisons between the fine, GMsFEM on-
line, and BT algorithms: 10×10 coarse mesh, a non-separable case 1,
50 time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.8 Computational timing comparisons between the fine, GMsFEM on-
line, and BT algorithms: a non-separable case 2, 10 time steps . . . . 85

5.9 Computational timing comparisons between the fine, GMsFEM on-
line, and BT algorithms: 10×10 coarse mesh, a non-separable case 2,
50 time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Measurable output errors for the first case . . . . . . . . . . . . . . . 101

6.2 Output errors for the second case . . . . . . . . . . . . . . . . . . . . 102

6.3 Computational timing comparisons between the fine, GMsFEM on-
line, and BT algorithms for the first case . . . . . . . . . . . . . . . . 102

xi



1. INTRODUCTION∗

Many relevant engineering and physical problems in porous media flow involve

model equations that are inherently multiscale in nature. In particular, the under-

lying properties of the reservoir, such as porosity and permeability, often exhibit

heterogeneous and high-contrast behavior (see , e.g. [16, 22, 29, 50, 56]). For exam-

ple, flow conduits (such as fractures or channels) represent regions of media whose

permeability may be many orders of magnitude larger than surrounding regions. On

the other hand, flow barriers (such as deformation bands or compressed shale) are

modeled by a permeability that is many orders of magnitude smaller than surround-

ing regions. Furthermore, the description of a porous medium typically involves

some level of uncertainty that must be incorporated into the model. In turn, solving

such problems on a fully-resolved scale may become a prohibitively expensive task,

especially when numerous computations must be performed for uncertainty quan-

tification, model optimization, and/or sensitivity analysis. As a result, the need for

more computationally efficient and suitably accurate solution techniques for single-

phase flow models as well as for coupled flow and transport models is of particular

interest in this work.

In the dissertation, the first problem we consider is devoted to a single-phase

flow model with scale separation (Section 3). For problems with scale separation,

one can use homogenization techniques to derive macroscopic equations. Homog-

enization techniques are limited to problems with scale separation and are more

effective compared to multiscale methods, which are designed for problems without

∗Parts of this section have been reprinted from E. Gildin, M. Ghasemi, A. Protasov, Y. Efendiev,
Nonlinear Complexity Reduction for Fast Simulation of Flow in Heterogeneous Porous Media,
paper SPE 163618 presented at SPE Annual Technical Conference and Exhibition, Woodlands,
Texas, USA, 18-20 February, 2013.
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scale separation. In this section, we combine Balanced Truncation (BT) and the

homogenization. The global reduced-order model is formulated for the homogenized

equation and we study the convergence of the reduced-order homogenized model and

the fine-scale detailed model analytically.

Over the past two decades, coarse-grid multiscale methods have been used as

suitable alternatives for solving fully-resolved computational models (see, e.g. [1,

6, 27, 41, 42, 43]). This class of methods involves the construction of a coarse so-

lution space in which solutions are sought within the span of a set of multiscale

basis functions. For this work, we follow the framework of the Multiscale Finite Ele-

ment Method (MsFEM), where the basis functions are independently pre-computed

through solving a set of localized problems that resemble the global operator [41].

The multiscale basis functions are then consolidated in order to form a coarse space

in which a specified global formulation is used to construct a reduced-order solution.

Due to the localized fine-grid computations, relevant behavior of the global system

is inherently embedded into the multiscale basis functions. As such, these types of

multiscale spaces are equipped with a direct method of projecting the coarse-grid

solutions to the fine grid. Furthermore, as the basis functions are independent, Ms-

FEM (and related approaches) offers a more efficient solution technique in a parallel

setting. While standard multiscale methods have been effective for a variety of ap-

plications [26, 27, 28, 30], recent literature has offered a generalized framework for

the enrichment of coarse solution spaces. In particular, the Generalized Multiscale

Finite Element Method (GMsFEM) is a robust solution technique where the stan-

dard coarse-grid solution spaces from MsFEM may be systematically enriched to

converge to the fine grid solution [7, 24, 25]. The additional basis functions are

constructed through solutions of localized eigenvalue problems that are used in or-

der to further capture the underlying behavior of the system. Due to this type of

2



construction, GMsFEM offers an approach where the number of basis functions and

resulting coarse space dimension may be carefully chosen to adhere to a desired level

of accuracy. However, since the localized eigenvalue problems scale with respect to

the fine mesh, in this work we wish to avoid direct eigenvector calculations when

sources of uncertainty are incorporated into the problem formulation.

When considering parameter-dependent problems that may require repeated cal-

culations, the coarse space enrichment may be split into two stages for an added

boost in efficiency. More specifically, in the Section 4, we implement an offline-online

procedure in which the basis function computations and coarse space construction

are executed (see also [9, 12, 49, 51]). The main goal of doing so is to allow for

the efficient construction of an online space for each fixed parameter value; in turn,

avoiding the need to directly recompute the eigenvectors for separate realizations.

The first stage of the computation involves forming a larger-dimensional (as com-

pared to the online space) parameter-independent offline space. The offline space

accounts for a suitable range of parameter values that may be used in the online

stage, and the construction constitutes a one-time preprocessing step. The offline

space is created by initially producing a set of “snapshot” functions in which a num-

ber of localized problems are solved on each coarse subdomain for a specified number

of parameter values. The offline space is then obtained by solving a set of localized

eigenvalue problems that use averaged parameter quantities within the space of snap-

shots. The use of averaged quantities at this point of the offline stage is what makes

this computation parameter-independent, and suitable as a pre-processing step. At

the online stage, we finally solve analogous reduced-order eigenvalue problems within

the offline space for a given parameter value in order to construct the desired online

coarse space. In order to perform global model reduction we use BT approach on a

coarse-grid problem obtained by GMsFEM.
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In Section 5 we develop a method for a single-phase flow equation in time-varying

heterogeneous media. The above approach was adapted to a time-varying case by

using a special form of BT developed in [53]. The main advantage of this method

is the fact that it doesn’t require finding expensive solutions of Lyapunov equations.

We offer a novel technique based on described GMsFEM approach coupled with

the time-varying BT. Numerical results validate the computational efficiency of the

suggested global-local model reduction method.

In Section 6, we extend above concepts and consider coupled flow and transport

processes. Our previous studies in Section 3, 4, and 5 consider elliptic type equations,

while in Section 6, we also consider convection-dominated transport equation, which

is coupled to the elliptic flow equations. The global model reduction approach is

proposed based on BT and using local model reduction techniques. For local model

reduction technique, we use a mixed GMsFEM for both flow and transport equa-

tions. The mixed finite element approach gives the mass conservation, which is very

important for subsurface applications. We present numerical results, which show

that with only a few degrees of freedom one can achieve accurate approximations.

4



2. PRELIMINARIES

2.1 First model problem

For our first model problem, we concentrate on a single-phase parameter-dependent

flow equation in heterogeneous media. We assume that k(x;µ) is a high contrast co-

efficient (i.e., the ratio kmax(x)/kmin(x) is large) and an input u (controllable source

term) varies on a coarse grid and µ is used to represent the parameter dependence.

Next, we introduce a mathematical formulation of the problem. We search for a

solution p(x, t) of the system

∂p

∂t
= div

(
κ(x;µ)∇p

)
+ f(u) in D, (2.1a)

p = g on ∂D, (2.1b)

where the input (or control) u ∈ Rm is given, D is a domain in R2, the right hand

side f(u) is square integrable and depends linearly on u, g denotes the boundary

condition. The above model is solved along with a specified initial condition p(x, 0) =

p0(x). We also suppose that an output (measurable quantity) is given by an operator

acting on the state (solution) as q = Cp = (C1(p), . . . , Cn(p)). Modeling subsurface

reservoir flow can be considered as an example, where an input is described by well

rates and an output is the pressure at the wells. In this case, C can be considered

as a selection matrix of grid cells that have been allocated to wells.

In order to solve Equation (2.1), in Section 4 and Section 5, we will use the

GMsFEM, which is based on continuous Galerkin framework. We partition the

domain D into a set of finite elements (e.g., quadrilaterals or triangles) into a coarse

grid which we denote by T H . We use {yi}Nvi=1 to denote the vertices of the coarse

5
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K1

K2K3

K4

T H (Coarse Grid)

ωi
Coarse

Neighborhood

K

Coarse
Element

yi

Figure 2.1: Illustration of the coarse grid, coarse elements, and a coarse neighborhood

mesh, and define the neighborhood of a node yi by

ωi =
⋃
{Kj ∈ T H ; yi ∈ Kj}. (2.2)

See Figure 2.1 for an illustration of a coarse neighborhood. In addition, we assume

that there is a refinement of the coarse mesh and we denote this fine grid by T h.

We denote the space of linear finite element functions subordinated to T h by V h

and we search for p(x, t) ∈ V h such that

∫
D

∂p

∂t
v = −

∫
D

κ(x;µ)∇p∇v +

∫
D

f(u) v for all v ∈ V h. (2.3)

The above equation yields the discrete form

Mpt = −A(µ)p+Bu, (2.4)

where M := [mij] =

∫
D

φiφj is a mass matrix, A(µ) := [a(µ)ij] =

∫
D

κ(x;µ)∇φi∇φj

is a stiffness matrix, Bu := [(bu)i] =

∫
D

f(u)φi, and φi is used to denote standard

6



bilinear basis functions that span V h. Given matrices M , A(µ), and B we solve (2.4)

using a backward Euler, implicit time marching scheme

pk+1 =
(
M + ∆tA(µ)

)−1
Mpk +

(
M + ∆tA(µ)

)−1
∆tBu, (2.5)

where pk denotes the discrete pressure solution at the k time level. Using Nf to

denote the number of fine grid points, we note that the square matrices are of size

Nf×Nf . A main goal of this work is to derive a suitable reduced order model of size

Nr such that Nr � Nf .

2.2 Generalized Multiscale Finite Element Method (a local approach)

Below we briefly discuss the Generalized Multiscale Finite Element Method (GMs-

FEM) that we use in Sections 4-6. A more detailed description will be delegated to

Section 4.2. As GMsFEM hinges on a set of localized spectral problems that are

used to construct a suitable coarse scale solution space, we refer to GMsFEM as

a local model reduction technique. The main purpose of GMsFEM is to derive a

suitable reduced order model of the original system. In the context of GMsFEM,

this is done through the systematic construction of a coarse solution space that is

formed through a series of independent, local computations [25]. In particular, stan-

dard multiscale spaces may be systematically enriched through a careful choice of

localized eigenvalue problems that capture the underlying structure of the system.

Formally speaking, GMsFEM yields a transformation matrix R ∈ RNf×Nc such that

we may express Equation (2.4) as

RTMR(pc)t = −RTA(µ)Rpc +RTBu (2.6)
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or

(pc)t = −Ac(µ)pc +Bcu, (2.7)

where Ac(µ) = (RTMR)−1RTA(µ)R, Bc = (RTMR)−1RTB, and pc denotes the

coarse scale solution. Similarly, an approximation to the measurable output may

be written as qc = CRpc = Ccpc. The square matrices in (2.6) are of size Nc×Nc,

where Nc � Nf denotes the size of the respective coarse solution space. Thus,

Equation (2.7) (or Equation (2.6)) serves as a local model reduction of Equation (2.4).

2.3 Homogenization (a local approach)

Next, we introduce a mathematical formulation of the problem with separable

scales. For a given input u ∈ Rm, we seek of state p(t, ·) ∈ H1(D) such that

dp

dt
= div(κ(x,

x

ε
)∇p) + f(u). (2.8)

We assume D is a domain in RN (R2 or R3) with a small period ε > 0 compared

to the size of the whole domain D. The coefficient κ(x, y) is assumed to be periodic

with respect to y and the observed quantity q = Cp, where C(p) = (C1(p), . . . , Cn(p)).

Moreover, we assume the following boundary conditions: p = g on ∂D, g ∈ H1(∂D)

and an initial condition p(x, y, 0) = 0.

Next, we briefly discuss the idea of homogenization. We introduce a microscopic

variable or fast periodic variable y = x
ε

and a macroscopic variable or slow periodic

variable x.

We assume the solution can be expanded as the following sum

pε(x, t) =
+∞∑
i=0

εipi = p0(x,
x

ε
, t) + εp1(x,

x

ε
, t) + ε2p2(x,

x

ε
, t) + ε3p3(x,

x

ε
, t) + ..., (2.9)
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where the functions pi(x, y, t), i = 1, 2, ... are periodic in y with period 1. It is shown

in Section 3.1 that the homogenized equation can be written as

dpo
dt
− divxκ∗∇xp0 = f(u) in D,

p0 = g0 on ∂D,

p0(x, 0) = 0,

(2.10)

where the homogenized coefficient is defined as κ∗ij =
∫
Y

[
κ(x, y)(ei + ∇yNi)(ej +

∇yNj)
]
(x, y)dy and N(x, y) is a solution of a cell problem defined by:

−divyκ(x, y)(ei +∇yNi(x, y)) = 0 in Y,

N(x, y) is periodic in Y.

(2.11)

As usual, {ei}Ni=1 denotes standard basis in RN .

Moreover, it was shown in Section 3.1 that the expansion can be written as

pε(x, t) = p0(x, x
ε
, t)+εp1(x, x

ε
, t)+ε2p2(x, x

ε
, t)+ε3p3(x, x

ε
, t)+... = p0(x, t)+εN(x, y)·

∇p0 + θ, where ||θ||H1(D) = O(ε1/2).

2.4 Balanced Truncation (a global approach)

Below we describe a general idea of model reduction technique called Balanced

Truncation (BT) followed from the theory summarized in [38]. BT can be successfully

applied in order to approximate the input-output behavior of linear systems. We

consider the following time-invariant system

ṗ(t) = Ãp(t) + B̃u(t) for t ∈ (0,∞), (2.12a)

p(0) = p0, (2.12b)

q = C̃p(t), (2.12c)
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where p0 is an initial condition and q is an output.

Now we introduce Laplace transform for a time-varying vector p(t) by

L[p](s) =

∫ ∞
0

e−stp(t)dt for s ∈ R.

Similarly, we can write L[u](s) =
∫∞

0
e−stu(t)dt and L[q](s) =

∫∞
0
e−stq(t)dt.

Notice that L[ṗ](s) =
∫∞

0
e−stṗ(t)dt = −

∫∞
0

(−s)e−stp(t)dt+ (e−stp(t)) |t=∞t=0 .

Next, we can write the Laplace transform of the system (2.12) as sL[p](s)−p(0) =

ÃL[p](s) + B̃L[u](s) or L[p](s) = (sI − Ã)−1p(0) + (sI − Ã)−1B̃L[u](s).

Finally, we can find the output as L[q] = C̃L[p](s) = C̃(sI − Ã)−1p(0) + C̃(sI −

Ã)−1B̃L[u](s).

In a case of p(0) = 0 we get L[q] = G(s)L[u](s), for as called transfer matrix of

the system G(s) = C̃(sI − Ã)−1B̃. Then, we call a state-space modal (Ã, B̃, C̃, 0)

satisfying

G(s) =

 Ã B̃

C̃ 0

 . (2.13)

a realization of G(s).

Next, we define the observability Gramian as Wo(t) =
∫ t

0
esÃ

T
C̃T C̃esÃds and the

controllability Gramian as Wc(t) =
∫ t

0
esÃB̃B̃T esÃ

T
ds. It can be shown that the

controllability and observability Gramians satisfy the following Lyapunov equations

respectively,

Ã Wc +Wc Ã
T + B̃B̃

T
= 0 and ÃTWo +Wo Ã+ C̃T C̃ = 0. (2.14)

Now we compute a basis such that transforms the controllability and observability

Gramians to be equal and diagonal. In this case, the quantities σi =
√
λi (WcWo),
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i = 1, · · · , n are called the Hankel Singular Values. The reduced system Gr can be

obtained by selecting the dominant eigenvalues.

In [38] it has been shown that the reduced system Gr(s) is balanced and asymp-

totically stable, moreover the following error estimate takes place

‖ G(s)− Gr(s)‖H∞ � (σr+1 + · · ·+ σn) . (2.15)

2.5 Second model problem

We consider a coupled flow and transport system in the following form

∂c

∂t
= G∆c− v · ∇c+ f in D × (0, T ), (2.16a)

v = −κ∇p in D, (2.16b)

divv = 0 in D, (2.16c)

where D is a given domain in R2, G is a diffusivity of the medium, T > 0 is a fixed

time moment, κ is a conductivity, f is a source term, c is a concentration, and p is a

pressure. The boundary conditions are c(x, t) = 0 on ∂D × [0, T ], p(x) = 0 on ∂D.

The initial condition is c(x, 0) = 0 in D.

In order to achieve mass conservation, we use mixed finite element methods. We

introduce a new auxiliary variable w (flux or flux-concentration), so the system (2.16)
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can be written in a mixed formulation

∂c

∂t
= −∇ · w + f in D × (0, T ), (2.17a)

w = −G∇c+ vc in D × (0, T ), (2.17b)

v = −κ∇p in D, (2.17c)

divv = 0 in D. (2.17d)

We assume that the basis functions for the concentration c and the pressure p

are piecewise constant functions on a coarse grid. Following [16], we will construct

multiscale basis functions for the flux w and the velocity v.

Below we write a discretized form of the problem (2.17). We assume that the

domain D is partitioned in a usual way into a union of rectangles which we denote by

T H . The fine mesh we denote as T h. We define by EH = {Ei : 1 ≤ i ≤ Ne} the set

of all edges/faces of elements in T H , where Ne is the number of coarse edges/faces.

We introduce the coarse neighborhood of the edge/face Ei as

ωi = {K ∈ T H : ∂K ∩ Ei 6= ∅}. (2.18)

Figure 2.2 for an illustration of a coarse neighborhood was given at [16], where

the coarse mesh is shown by black lines and the fine mesh is shown by grey lines.

We denote the coarse trial space (will be introduced in Section 6) for the pressure

p and the concentration c by

QH = {ψ : ψ|Ki ∈ P0(Ki) for all Ki ∈ T H}. (2.19)
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Figure 2.2: Illustration of a course neighborhood ωi (in green) corresponding to the
coarse edge Ei (see [16])

We introduce the multiscale solution space for the flux w and the velocity v as

V w
H =

⋃
Ei

Φw
i and V v

H =
⋃
Ei

Φv
i . (2.20)

We discretize the time interval [0, T ] uniformly by the points tn = nδt, n =

0, 1, · · · , N, where δt is the time step and N = T/δt.

Next GMsFEM approximation of (2.17) can be written as following (see [16]).

For all n ≥ 1, find cnH ∈ QH , wnH ∈ V w
H , pH ∈ QH , vH ∈ V v

H , such that

∫
D

cnH − cn−1
H

δt
c̃+

∫
D

(∇ · wn−θH )c̃ =

∫
D

fn−θc̃ for ∀c̃ ∈ QH ,∫
D

1

G
wn−θH · w̃ =

∫
D

(∇ · w̃ +
vH
G
· w̃)cn−θH for ∀q̃ ∈ Ww

H ,∫
D

1

κ
vH · ṽ =

∫
D

(∇ · ṽ)pH for ∀ṽ ∈ V v
H ,∫

D

(∇ · vH)p̃ = 0 for ∀p̃ ∈ QH ,

(2.21)
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where the boundary condition pH = g. For θ = 0, 1/2 and 1, we get the Backward

Euler, Crank-Nicolson and Forward Euler Methods, respectively. The brief construc-

tion of V q
H , V

v
H , and W q

H will be discussed in the section 6 as well as the novel approach

based on BT model reduction.
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3. COARSE-GRID MODEL REDUCTION WITH BALANCED TRUNCATION

FOR FLOWS IN POROUS MEDIA WITH SEPARABLE SCALES

In this section, we combine efficient homogenization methods on a coarse grid with

global model reduction techniques. In [22], this is done using multiscale finite element

methods; however, the cost of computing local solutions can be expensive due to

small-scales and high-contrast in the coefficients. We employ hierarchical approaches

for solving local problems. In particular, we propose solving local problems with

different resolutions and then consider combining these multi-resolution solutions

to achieve an accurate approximation of the effective properties. These coarse-grid

models are coupled with BT.

3.1 Homogenization

Below we remind the theory of a periodic homogenization (see [3]). The main goal

of the homogenization is to move from a microscopic description of a problem to an

averaged/macroscopic formulation. As mentioned before we introduce a microscopic

variable or fast periodic variable y = x
ε

and a macroscopic variable or slow periodic

variable x.

We assume the solution can be expanded as the following sum

pε(x, t) =
+∞∑
i=0

εipi = p0(x,
x

ε
, t) + εp1(x,

x

ε
, t) + ε2p2(x,

x

ε
, t) + ε3p3(x,

x

ε
, t) + ..., (3.1)

where the functions pi(x, y, t), i = 0, 1, ... are periodic in y with period 1. The

following fact is the obvious implementation of chain rule and will be used for ensuing

calculations.

Remark. We assume F (x, y, t) ∈ H1(D), then d
dx
F (x, x

ε
, t) = ∂

dx
F (x, y, t) +
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1
ε
∂
dy
F (x, y, t), where y is evaluated at point y = x

ε
.

Without loss of generality, we will limit ourselves to a one-dimensional problem.

For further calculations we denote the operator F ε := dpε
dt
− div(κ(x, x

ε
)∇pε) = f(u).

Using Equation (3.1) and some obvious regrouping, the following expression is ob-

tained:

F ε = −ε−2
[
divyκ(x, y)∇yp0

]
(x,

x

ε
, t)− ε−1

[
divyκ(x, y)(∇xp0 +∇yp1)+

+divxκ(x, y)∇yp0

]
(x,

x

ε
, t) + +ε0

([
− divxκ(x, y)(∇xp0 +∇yp1)−

−divyκ(x, y)(∇xp1 +∇yp2)
]
(x,

x

ε
, t) +

dpo
dt

(x,
x

ε
, t)
)
+

+
+∞∑
i=1

εi
[dpi
dt
− divxκ(x, y)(∇xpi +∇ypi+1)− divyκ(x, y)(∇xui+1 +∇ypi+2)

]
(x,

x

ε
, t).

(3.2)

In other words, we are looking for a solution of the equation F ε :=
∑+∞

i=−2 aiε
i = f(u),

where coefficients ai(i = −2,−1, 0, 1, 2, ...) of the power series F ε are defined from

Equation (3.2). Clearly, ai = 0 for i 6= 0 and a0 = f(u). We consider two-scale

problem, so only first three terms are sufficient to use. We introduce corresponding

three equations:

a−2 =
[
divyκ(x, y)∇yp0

]
(x, y, t) = 0, (3.3)

a−1 =
[
divyκ(x, y)(∇xp0 +∇yp1) + divxκ(x, y)∇yp0

]
(x, y, t) = 0, (3.4)

a0 =
[
− divxκ(x, y)(∇xp0 +∇yp1)− divyκ(x, y)(∇xp1 +∇yp2)

]
(x, y, t)+

+
dpo
dt

(x, y, t) = f(u).
(3.5)

Since p0(x, y, t) is periodic in y, then Equation (3.3) implies p0(x, y, t) actually doesn’t

depend on y and we can rewrite p0(x, y, t) ≡ p0(x, t).

Moreover, taking into account ∇yp0(x, t) = 0, Equation (3.4) can be transformed

as following:
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[
divyκ(x, y)(∇xp0 +∇yp1) + divxκ(x, y)∇yp0

]
(x, y, t) =

=
[
divyκ(x, y)(∇xp0 +∇yp1)

]
(x, y, t) = 0

or

−divyκ(x, y)∇yp1(x, y, t) = divyκ(x, y)∇xp0(x, t).

Therefore, the last equation gives an expression for p1(x, y, t) in terms of p0(x, t).

More precisely, p1(x, y, t) =
∑N

i=1
∂p0

∂xi
Ni(x, y) = N(x, y)∇p0 up to some constant

function c(x), where N(x, y) is a solution for a cell problem defined by:

−divyκ(x, y)(ei +∇yNi(x, y)) = 0 in Y,

N(x, y) is periodic in Y.

(3.6)

As usual, {ei}Ni=1 denotes standard basis in RN .

Equation (3.5) represents an equation for the unknown p2 in a unit periodic cell

Y = [0, 1]× [0, 1] and it can be rewritten as following:

−divyκ(x, y)∇yp2(x, y, t) =

= −dpo
dt

(x, t) +
[
divxκ(x, y)(∇xp0 +∇yp1) + divyκ(x, y)∇xp1

]
(x, y, t) + f(u). (3.7)

Notice that p2(x, y) has periodic boundary condition, so

∫
Y

divyκ(x, y)∇yp2(x, y, t)dy =

∫
∂Y

(
κ(x, y)∇yp2(x, y, t)

)
· ndS = 0.

Hence after integrating both sides of Equation (3.7) over Y, the following expression
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takes place:

∫
Y

[
divxκ(x, y)(∇xp0 +∇yp1)+divyκ(x, y)∇xp1

]
(x, y, t)dy =

∫
Y

(
dpo
dt

(x, t)−f(u))dy.

(3.8)

Notice that a term

∫
Y

[
divyκ(x, y)∇xp1

]
(x, y, t)dy =

∫
Y

[
divyκ(x, y)∇x

(
N(x, y)∇p0(x, t)

)]
(x, y, t)dy = 0

according to the periodicity of N(x, y) and the following fact.

Remark. We assume F (x, y) is a periodic function with respect to y ∈

Y = [0, 1], then
∫
Y

d
dy
F (x, y)dy = F (x, 1)− F (x, 0) = 0.

Equation (3.8) can be written as

dpo
dt

(x, t)− divx
∫
Y

[
κ(x, y)(∇xp0 +∇yp1)

]
(x, y, t)dy = f(u)

and the homogenized equation can be written as

dpo
dt

(x, t)− divxκ∗∇xp0(x, t) = f(u) in D,

p0 = g0 on ∂D,

p0(x, 0) = 0,

(3.9)

where the homogenized coefficient is defined as κ∗ij =
∫
Y

[
κ(x, y)(ei + ∇yNi)(ej +

∇yNj)
]
(x, y)dy.

We show below that the expansion can be written as pε(x, t) = p0(x, t)+εp1(x, x
ε
, t)+

ε2p2(x, x
ε
, t)+ε3p3(x, x

ε
, t)+... = p0(x, t)+εN(x, y)·∇p0 +θ(x, y, t), where ||θ||H1(D) =

O(ε1/2).

For simplifications, we assume that the right hand side f(u) ≡ 0. Note that θ
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satisfies the following system:

dθ

dt
− divxκ∗∇xθ = 0,

θ = −εN(x,
x

ε
).

(3.10)

Since the minimum energy is achieved on solution, we have
∫
D
|∇θ| ≤

∫
D
|∇θarb|

for any arbitrary θarb with boundary conditions θarb = −εN(x, x
ε
) on ∂D. We consider

a function τ ∈ C∞(D) such that τ = 1 on ∂D and τ = 0 on D0. For simplicity,

we assume D = [0, 1] × [0, 1], τ = 1 in a boundary strip with length δ and τ = 0

otherwise. Then it can be easily shown ∇τ ∼ 1
δ
. The following computations take

place:

∫
D

|∇θarb|2 ≤ c

∫
D

ε2|∇N(x,
x

ε
)|2τ 2 + c

∫
D

ε2|N(x,
x

ε
)|2|∇τ |2 ≤ CδH + cδHε2

1

δ2
=

= CH(δ + ε2

δ
) = CHε, where

∫
Y
|N(x, x

ε
)|2dy = δH.

Therefore, ||θ||H1(D) = O(ε1/2) and it serves to take into account boundary condi-

tions. In order to keep simple explanation, we ignore θ. Hence the pressure is equal

to

pε(x, t) = p0(x, t) + εp1(x,
x

ε
, t), (3.11)

where p1(x, y, t) is a function periodic in y (see [3]). Therefore, our problem becomes

dpε

dt
= div(κ(x,

x

ε
)∇pε) + f(u). (3.12)

We notice that the computational cost for finding such solution is cheap due to

the following fact that the solution can be found for a single RVE and is independent

of ε.

We assume ζε ∈ H1
0 (D) ×H1

per(Y ) is a test function, then the weak form of the
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equation (3.12) can be written as:

∫
D

(
dpε

dt
, ζε)dx =

∫
D

κ(x,
x

ε
)∇pε∇ζεdx+

∫
D

(f, ζε)dx. (3.13)

Note that dpε

dt
= dp0

dt
+ε

dp1(x,x
ε
,t),t

dt

ε→0→ dp0

dt
and the two-scale convergence holds: ∇pε ε→0→

∇xp0(x, t) +∇yp1(x, y, t).

Therefore, the limiting equation for p(x) can be rewritten as following:

∫
D

dp0

dt
ζ0dx =

∫
D

∫
Y

κ(x, y)(∇xp0 +∇yp1)(∇xζ0 +∇yζ1)dydx+

∫
D

f(u)ζ0dx. (3.14)

3.2 Full tensor product FEM

3.2.1 Reduced BT approach

Full tensor product FEM is considered in this section for solving the homogenized

system. For simplicity, we omit dependence of t in the derivations below. Matrix

formulation is described below. We denote basis functions in H1
0 (D) as {Φi(x)}(i =

1, ..., N), basis functions in L2(D) as {Ψk(x)}(k = 1, ...,M) and basis functions in

H1
per(Y ) as {Ψ̃l(y)}(l = 1, ..., M̃).

We assume that p0(x) =
∑N

i=1 ciΦi(x), p1(x, y) =
∑M

k=1

∑M̃
l=1 dklΨk(x)Ψ̃l(y).

Remark. Notice that the relationship between coefficients dkl and ekl can be

found from the following equation:

p1(x, y) =
M∑
k=1

M̃∑
l=1

dklΨk(x)Ψ̃l(y) =
N∑
i=1

M∑
k=1

M̃∑
l=1

eklΨk(x)Ψ̃l(y)ciΦi(x). (3.15)

We assume ζ0 = Φj(x) for some j = 1, ..., N and ζ1 = Ψr(x)Ψ̃s(y) for some

r = 1, ...,M, s = 1, ..., M̃ .

20



Therefore, Equation (3.14) can be rewritten as following:

∫
D

N∑
i=1

dci(t)

dt
Φi(x)Φj(x)dx =

∫
D

∫
Y

κ(x, y)(
N∑
i=1

ci∇xΦi(x))∇xΦj(x)dydx+

+

∫
D

∫
Y

κ(x, y)(
N∑
i=1

ci∇xΦi(x))Ψr(x)∇yΨ̃s(y)dydx+ (3.16)

+

∫
D

∫
Y

κ(x, y)(
M∑
k=1

M̃∑
l=1

dklΨk(x)∇yΨ̃l(y))∇xΦj(x)dydx+

+

∫
D

∫
Y

κ(x, y)(
M∑
k=1

M̃∑
l=1

dklΨk(x)∇yΨ̃l(y))Ψr(x)∇yΨ̃s(y)dydx+

+

∫
D

f(u)Φj(x)dx.

We reorganize terms of Equation (3.16):

N∑
i=1

(

∫
D

Φi(x)Φj(x)dx)
dci(t)

dt
=

N∑
i=1

(

∫
D

∫
Y

κ(x, y)∇xΦi(x)∇xΦj(x)dydx)ci+

+
N∑
i=1

(

∫
D

∫
Y

κ(x, y)∇xΦi(x)Ψr(x)∇yΨ̃s(y)dydx)ci+

+
M∑
k=1

M̃∑
l=1

(

∫
D

∫
Y

κ(x, y)Ψk(x)∇yΨ̃l(y)∇xΦj(x)dydx)dkl+

+
M∑
k=1

M̃∑
l=1

(

∫
D

∫
Y

κ(x, y)Ψk(x)∇yΨ̃l(y)Ψr(x)∇yΨ̃s(y)dydx)dkl+

+

∫
D

f(u)Φj(x)dx.
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Using matrix notation, the equation can be written in the following form:

N∑
i=1

Qij
dci(t)

dt
=

N∑
i=1

Ajici+
N∑
i=1

M∑
r=1

(B∗r )jici+
M∑
k=1

M̃∑
l=1

(Bk)jldkl+
M∑

k,r=1

M̃∑
l=1

(Srk)jldkl+Fj,

(3.17)

where

Aij =
∫
D

∫
Y
κ(x, y)∇xΦi(x)∇xΦj(x)dydx for i = 1, ..., N, j = 1, ..., N ;

(Bl)ij =
∫
D

∫
Y
κ(x, y)Ψl(x)∇yΨ̃j(y)∇xΦi(x)dydx for l = 1, ..,M, i = 1, ..., N, j =

1, ..., M̃ ;

Fj =
∫
D
f(u)Φj(x)dx for j = 1, ..., N ;

(Srj)li =
∫
D

∫
Y
κ(x, y)Ψr(x)∇yΨ̃j(y)Ψi(x)∇yΨ̃l(y)dydx for r = 1, ..,M, j =

1, ..., M̃ , l = 1, ..., M̃ , i = 1, ...,M ;

Qij =
∫
D

Φi(x)Φj(x)dx for i = 1, ..., N, j = 1, ..., N (assume Qij = 0 for all

i = N + 1, ..., N +MM̃, j = N + 1, ..., N +MM̃).

Therefore, the matrix form of Equation (3.17):

Q



dc1
dt

...

dcN
dt

d(d11)
dt

...

d(d1M̃ )

dt

...

d(dMM̃ )

dt



=



(A)N×N(B1)N×M̃ ...(BM)N×M̃

(B∗1)M̃×N(S11)M×M̃ ...(S1M)M×M̃

............

(B∗M)M̃×N(SM̃1)M×M̃ ...(SM̃M)M×M̃





c1

...

cN

d11

...

d1M̃

...

dMM̃



+



F1

...

FN

0

...

0

...

0



=
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=



(A)N×N

(B∗1)M̃×N

............

(B∗M)M̃×N




c1

...

cN

+



(B1)N×M̃ ...(BM)N×M̃

(S11)M×M̃ ...(S1M)M×M̃

............

(SM̃1)M×M̃ ...(SM̃M)M×M̃





d11

...

d1M̃

...

dMM̃


+



F1

...

FN

0

...

0

...

0



=

=

 (A)N×N

(B∗)MM̃×N

[(c)1×N

]
+

 (B)N×MM̃

(S)MM̃×MM̃

[(d)1×MM̃

]
+

 (F )1×N

(0)1×MM̃

 , (3.18)

where B = [B1, ...BM ], c = [c1, ..., cN ]′, d = [d11, ..., d1M̃ , ..., dMM̃ ]′,

F = [F1, ..., FN ]′ and S =


(S11)M×M̃ ...(S1M)M×M̃

............

(SM̃1)M×M̃ ...(SM̃M)M×M̃

 .
From the last Equation (3.18)

B∗c+ Sd = 0,

and the expression of d in terms of c can be found as d = −S(−1)B∗c.

The size of matrix S is comparable to the size of the whole system. The sparse

tensor product finite element method can be used in order to reduce the dimension

of S and be able to compute S(−1) as well as a hierarchical approach.
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We denote the ’non-zero’ part of the matrix Q as Q̃, i.e., Q̃ is N × N matrix,

where coefficients Q̃ij =
∫
D

Φi(x)Φj(x)dx for i = 1, ..., N, j = 1, ..., N . Then we can

rewrite the first equation of the system (3.18) as

Q̃
dc

dt
= Ac+Bd+ F = Ac−BS(−1)B∗c+ F = (A−BS(−1)B∗)c+ F.

Finally, we get the system:

(Q̃)N×N
dc

dt
= (A−BS(−1)B∗)c+ F, (3.19)

q = Cc.

For simplicity, we assume that F = Ku. The BT Approach will be applied in

approximating the input-output behavior of linear systems and a-priori error bounds

can be easily computed. In order to apply the BT approach, we need to take Laplace

transform of dynamic system (3.19). We recall that the Laplace transform for some

function g(t) is defined as

L[g](s) =

∫ +∞

0

e−stg(t)dt, s ∈ R. (3.20)

Moreover,

L[ċ](s) =

∫ +∞

0

e−stċ(t)dt = −
∫ +∞

0

(−s)e−stc(t)dt+ (e−stc(t))

∣∣∣∣s=+∞

s=0

= sL[c](s)− c0.

Therefore, the Laplace transform of dynamic system (3.19) yields

sQ̃L[c](s)− c(0) = (A−BS(−1)B∗)L[c](s) +KL[u](s),
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which gives

L[c](s) = (sQ̃− A+BS(−1)B∗)(−1)x(0) + (sQ̃− A+BS(−1)B∗)(−1)KL[u](s)

and the output

L[q](s) = C(sQ̃− A+BS(−1)B∗)(−1)x(0) + C(sQ̃− A+BS(−1)B∗)(−1)KL[u](s).

We assume c(0) = 0, then

L[q](s) = C(sQ̃− A+BS(−1)B∗)(−1)KL[u](s) = G(s)L[u](s)

for transfer matrix

G(s) = C(sQ̃− A+BS(−1)B∗)(−1)K.

The balanced realization can be written as

G(s) =

Q̃(−1)(A−BS(−1)B∗) Q̃(−1)K

C 0

 . (3.21)

By BT approach, there exists matrices A11, B1, C1 such that

G(s) =

A11 B1

C1 0

 (3.22)

is also a realization of G(s).

We note that the computational cost for S−1 can be substantially high, there-
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fore, it is useful to apply several sparse techniques in advance. Such techniques are

described in the next section.

3.2.2 Lowest order basis

We assume that {Φi(x)}(i = 1, ..., N), {Ψ̃l(y)}(l = 1, ..., M̃) are piecewise-linear

functions and {Ψk(x)}(k = 1, ...,M) are piecewise constant functions. We divide D

into intervals I1, I2, ...IS and denote 〈κ(x, y)〉x,Ir =
∫
D
κ(x, y)Ψr(x)Ψi(x)dx. Also, for

simplicity we assume

D = [0, 1] =
N−1⋃
i=1

[xi, xi+1], Y = [0, 2π] =
M̃−1⋃
j=1

[yj, yj+1]. (3.23)

Then the matrices of Equation (3.17) can be written as following:

(Srj)li =

∫
D

∫
Y

κ(x, y)Ψr(x)∇yΨ̃j(y)Ψi(x)∇yΨ̃l(y)dydx =

=

∫
Y

〈κ(x, y)〉x,Ir∇yΨ̃j(y)∇yΨ̃l(y)δridy =



∫ yl+1

yl−1
〈κ(x, y)〉x,Irδri 2

H2
y
dy, j = l,

−
∫ yl+1

yl
〈κ(x, y)〉x,Irδri 1

H2
y
dy, j = l + 1,

−
∫ yl
yl−1
〈κ(x, y)〉x,Irδri 1

H2
y
dy, j = l − 1,

(3.24)

for

r = 1, ..,M, j = 1, ..., M̃ , l = 1, ..., M̃ , i = 1, ...,M,Hy =
2π

M̃
.

(Br)ij =

∫
D

∫
Y

κ(x, y)Ψr(x)∇yΨ̃j(y)∇xΦi(x)dydx =

=

∫
Y

〈κ(x, y)〉x,Ir∇yΨ̃j(y)∇xΦi(x)dy =
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=


∫ yi+1

yi−1
〈κ(x, y)〉x,Irδri 1

Hx
1
Hy
dy for j, i− odd; j, i− even,

−
∫ yi
yi−1
〈κ(x, y)〉x,Irδri 1

Hx
1
Hy
dy for j − odd, i− even,

for

r = 1, ..,M, i = 1, ..., N, j = 1, ..., M̃ .

Now we will show that a cell problem (3.6) can be derived from the equation

Equation (3.17).

We rewrite a cell problem (3.6) as following

∫
Y

∇yNj(x, y)κ(x, y)∇yΨ̃j(y)∇yΨ̃l(y)dy = −
∫
Y

κ(x, y)∇yΨ̃l(y)dy.

After averaging on the interval Ir we get the following equation:

∫
Y

∇yNj(x, y)〈κ(x, y)〉x,Ir∇yΨ̃j(y)∇yΨ̃l(y)dy = −
∫
Y

〈κ(x, y)〉x,Ir∇yΨ̃l(y)dy.

Therefore, the equation

B∗c+ Sd = 0

can be written as

−(

∫
Y

〈κ(x, y)〉x,Ir∇yΨ̃l(y)dy)Ψl(x)cl −
∫
Y

〈κ(x, y)〉x,Ir∇yΨ̃l(y)dy = 0.

3.2.3 Discussion on computational savings

As we saw in a previous section full tensor product FEM involves calculations

solutions of cell problems for each macroscopic point x ∈ D. Depending on a struc-

ture of the domain D such calculations can be very expensive or even impossible to
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make. Also note that the computational complexity of BT approach is O(N3) for

N being a size of a problem. Therefore, we have to carefully chose the size of an

input-output system (3.19).

In order to reduce computational cost for BT method, two techniques are sug-

gested: a hierarchical approach and a sparse tensor product approach. The first

method avoids enormously massive computations by using a grid hierarchy and a

precomputed information for nearby cell equations. The second method uses a spe-

cial form of sparse tensor product FEM and it achieves convergence rates comparable

to the full FEM.

3.3 Hierarchical approach

Below we offer a basic computational algorithm that is followed by method jus-

tification. We briefly discuss the main concept of a hierarchical approach. It uses

a sequence of finite element spaces where we compute cell equations with different

order of accuracy. Firstly, for chosen macro-grids, we calculate solutions for cell prob-

lems with high accuracy. Secondly, for a finer grid we calculate respective solutions

with less accuracy and correct them using high accurate nearby solutions.

3.3.1 Algorithm

We assume D =
⋃
~k Ξ~k, where Ξ~k = Ξ + ~k for a center of grid-block ~k and

a Ξ - rescaled unit periodic cell. We can associate ~k with labeling denoted by k.

Henceforward, by N(x, y) we mean the analytic solution for (3.6). We fix k ∈

{1, ..., G}, G ∈ Z+ and the corresponding macro-grid Ξk. By Nk(x, y) we denote the

solution for the following problem

−divy((
∫

Ξk

κ(x, y)dx)(I+∇Nk(x, y))) = 0,

∫
Y

Nk(x, y)dy = 0, Nk(x, y) is y−periodic.

(3.25)
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Now we define variational forms as following:

Ay(Ξk)(N
k,Φ) =

∫
Ξk

∫
Y

κ(x, y)∇yN(x, y)∇yφ(y)dydx, (3.26)

(fk(y),Φ)L2 = −
∫

Ξk

∫
Y

κ(x, y)∇yφ(y)dydx. (3.27)

Therefore, the weak variation form of Equation (3.25) can be written as

Ay(Ξk)(N
k,Φ) = (fk(y),Φ)L2 . (3.28)

The problem (3.28) can be solved by standard Galerkin FEM.

We suppose that the basis functions {Ψk(x)}Gk=1 correspond to the grid-blocks

{Ξk}Gk=1, so we may write

Nk(x, y) ≈
M̃∑
l=1

eklΨk(x)Ψ̃l(y). (3.29)

The above approximation is exact in the numerical or discrete sense if the basis

{Ψk(x)} are piecewise constants. We assume φ(x, y) = Ψ̃s(y) and after plugging the

above expression into (3.25), we obtain

∫
Ξk

∫
Y

κ(x, y)

I +
M̃∑
l=1

eklΨk(x)∇yΨ̃l(y)

∇yΨ̃s(y)dydx = 0. (3.30)

Solving the above system for each Ξk, we may construct

N(x, y) ≈
M∑
k=1

M̃∑
l=1

eklΨk(x)Ψ̃l(y).
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We denote such finite element approximation of solution by

N̄(x, y) =
M∑
k=1

M̃∑
l=1

eklΨk(x)Ψ̃l(y). (3.31)

Below we suggested a hierarchical approach for solving problem (3.28) and we

denote the corresponding solution by N̂(x, y).

For clearness, we describe a hierarchical algorithm for 2-level case. For multilevel

case it can be easily done by induction.

Step 1 : Build FEM Spaces. A fixed macro-grid Ξk is considered. We wish to

find an approximation N̄(Ξk, ·) satisfying (3.28) by using Galerkin FEM. We denote

a local coarse space by V c and local fine space by V f , V c ⊂ V f . We denote the error

in V f by h and the coarsening FE factor by r.

Step 2 : Build Macro-Grid. First, we build a nested macro-grid for D denoted

by

T0 ⊂ T1 ⊂ D.

Suppose we have an initial grid T0 with distance between neighboring nodes at most

H and T1 can be obtained by refinement with grid spacing Hr−1.

We then define the hierarchy of macro-grids {S0, S1} as S0 = T0, S1 = T1\S0. We

refer to the coarsest grid S0 as the anchor points. We require that the hierarchy of

macro-grids be dense. That is, we require that for macro-block x ∈ Ξk, there exists

a nearby grid-block Ξk′ such that

dist (k, k′) < O(Hκ−1). (3.32)

Step 3 : Calculating the Correction Term.

We will rewrite the equation (3.28) in a matrix form. In order to do that, for
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fixed grid block Ξk we denote

(Ak)sl =

∫
Ξk

∫
Y

κ(x, y)Ψk(x)∇yΨ̃l(y)∇yΨ̃s(y)dydx, (3.33)

and

(bk)s = −
∫

Ξk

∫
Y

κ(x, y)∇yΨ̃s(y)dydx and ekl = (ek)l. (3.34)

Therefore, (3.28) in a matrix form can be written as

M̃∑
l=1

(Ak)sl (ek)l = (bk)s or Akek = bk. (3.35)

We outline an idea from multilevel algorithm. Suppose we have solved ek in grid-

block Ξk and suppose we wish to solve the equation in a nearby grid-block Ξk′ . Then

we write the correction term as wk = ek′ − ek, and so the correction term satisfies

Ak′wk′ = bk′ − Ak′ek. (3.36)

The idea is to eventually solve wk′ in a coarser space than we used to solve ek. Then,

we let the approximation

ek′ = wk′ + ek. (3.37)

3.3.2 Assumptions

In order to guarantee the existence and uniqueness for the solution, we make a

few assumptions on κ(x, y) and N(x, y).

Assumption 3.3.1 κ(x, y) is
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a) a smooth function of x and y, i.e. κ(., y) ∈ C l(D) and κ(x, .) ∈ Ck(Y ) for

some positive integers k and l,

b) Lipschitz in x, i.e. there exists a positive constant C so that |κ(x1, y) −

κ(x2, y)| ≤ C · dist(x1, x2),

c) bounded above and below, i.e. there are positive constants α and β so that for

all x ∈ D, y ∈ Y the following inequality α · ||x|| · ||y|| ≤ κ(x, y) ≤ β · ||x|| · ||y|| takes

place.

Assumption 3.3.2 N(x, y) is

a) a smooth function of x, i.e. N(., y) ∈ C l1(D) for some l1 ∈ R.

b) Lipschitz in x, i.e. there exists a positive constant C1 so that |N(x1, y) −

N(x2, y)| ≤ C1 · dist(x1, x2).

Assumption 3.3.3 The solution N(x, y) of the problem is in C1(Ξk × Y ). For

the finite element approximation N̄(x, y) =
∑M

k=1

∑M̃
l=1 eklΨk(x)Ψ̃l(y) there exists a

positive constant C such that

||N(x, y))− N̄(x, y)||H1
(Ξk)
≤ Ch||N ||H2

(Ξk)
. (3.38)

Notice that from Assumption 3.3.1 we can easily derive the Lipschitz condition

on Ay(Ξk)(N
k,Φ):

Proposition 3.3.1 There exists a constant γ so that

|(Ay(Ξk)(N
k,Φ)− Ay(Ξk′)(N

k,Φ)) (v, w) | ≤ γ|k − k′|l2‖v‖V‖w‖W (3.39)

for all k, k′ satisfying (3.32).
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Remark. A hierarchical solution may not be periodic on cells, but it can be fixed

by applying oversampling techniques [27].

3.3.3 Main theorem

We apply the same rectangular hierarchy of macro-grids as in [13]. Our goal is to

prove that suggested hierarchical approach gives the same order of accuracy as the

full solve.

We use the FE solution and trial spaces (Vi,Wi)
L
i=1 described in step 1 of algo-

rithm. We assume that V0 = W0 = ∅ and we denote macro-grids by {S0, S1 ..., SL}.

A macrogrid Ξ~k for some fixed k is considered. We apply Galerkin method to find a

solution N~k ∈ Vi with high accuracy for the following problem:

Ay(Ξ~k)(N~k,Φ) = (f~k,Φ) ∀Φ ∈ Wi. (3.40)

Assume we found a solution N~k and we consider a macrogrid Ξ~k′ . Then by

finding the correction term from Ay(Ξ~k′)(ω
c
~k′
,Φc) = R((f f~k′ ,Φ

f ) − Ay(Ξ~k′)(N
f
~k
,Φf )),

we can find an approximation of N as N f
~k′

= R′ωc~k′+N f
~k

, where R - the fine-to-coarse

operator.

Our goal is to prove the following estimates.

Theorem 1. There is a positive constant C independent of an error in the finest

FE space h such that

||N − N̂~k||H1(Y ) ≤ C · h · log(h−1), (3.41)

where N(x, y) is an analytical solution of the cell Equation (3.6) and N̂~k = N̄ + ω̄c

is an approximated solution obtained by hierarchical algorithm Step1-Step3.

Theorem 2. There is a positive constant C̃ independent of an error in the finest
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FE space h such that

||p− p̂||H1 ≤ C̃ · h · log(h−1), (3.42)

where p is an analytical pressure solution of Equation (2.8) and p̂ is an approximated

pressure solution obtained by hierarchical approximation of N̂ .

Theorem 3. There is a positive constant C independent of an error in the finest

FE space h such that

||q − q̂||H1 ≤ C · h · log(h−1), (3.43)

where q is an analytical output and q̂ is an approximated output obtained by hierar-

chical approximation of N̂ .

First, let’s prove the following regularity relation. We remind the definition of ~k.

We assume that D =
⋃
~k Ξ~k, where Ξ~k = Ξ + ~k for a center of grid-block ~k and Ξ -

a rescaled unit periodic cell. We can associate ~k with labeling denoted by k.

Lemma 1. For centers of grid-blocks ~k,~k′ the following error estimate holds

||N~k −N~k′ ||H1(Y ) ≤ C|~k − ~k′|l2 (3.44)

for some constant C.

Proof of Lemma 1. We fix centers of grid-blocks ~k,~k′. Therefore, equations

(3.25) for N~k, N~k′ can be written as following:

∫
Y

(∫
Ξ~k

κ(x, y)dx

)
∇yN~k∇yφ(y)dy = −

∫
Y

(∫
Ξ~k

κ(x, y)dx

)
∇yφ(y)dy, (3.45)
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∫
Y

(∫
Ξ~k′

κ(x, y)dx

)
∇yN~k′∇yφ(y)dy = −

∫
Y

(∫
Ξ~k′

κ(x, y)dx

)
∇yφ(y)dy. (3.46)

Since we assume that the domain D is periodic, then each macro-grid differ by

translation, i.e. we can write Ξ~k = Ξ+~k and Ξ~k′ = Ξ+~k′ for unit cell Ξ. We assume

x~k = x0 + ~k and x~k′ = x0 + ~k′.

We make change of variables in both equations (3.45), (3.46) and subtract one

from another:∫
Y

(∫
Ξ

(κ(x+ ~k, y)dx

)
∇yN

~k∇yφ(y)dy −
∫
Y

(∫
Ξ

(κ(x+ ~k′, y)dx

)
∇yN

~k′∇yφ(y)dy

= −
∫
Y

(∫
Ξ

(κ(x+ ~k, y)− κ(x+ ~k′, y))dx

)
∇yφ(y)dy.

(3.47)

We denote the right hand side−
∫
Y

(∫
Ξ
(κ(x+ ~k, y)− κ(x+ ~k′, y))dx

)
∇yφ(y)dy =

I1. The equation (3.47) can be rewritten as

∫
Y

(∫
Ξ

(κ(x+ ~k, y)dx

)(
∇yN

~k −∇yN
~k′
)
∇yφ(y)dy =

I1 −
∫
Y

(∫
Ξ

(κ(x+ ~k, y)− κ(x+ ~k′, y))dx

)
∇yN

~k′∇yφ(y)dy.

(3.48)

We denote I2 = −
∫
Y

(∫
Ξ
(κ(x+ ~k, y)− κ(x+ ~k′, y))dx

)
∇yN

~k′∇yφ(y)dy. Then

I1 and I2 can be easily estimated through Lipschitz inequality.

First, from Assumption 1b we have

|I1| ≤
∫
Y

∫
Ξ

|κ(x+ ~k, y)− κ(x+ ~k′, y)| · ||∇yφ(y)||L2(Ξ×Y )dxdy ≤∫
Ξ

∫
Y

C|~k − ~k′| · ||∇yφ(y)||L2(Ξ×Y )dydx.

(3.49)
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Secondly, we have:

|I2| ≤
∫

Ξ

∫
Y

|κ(x+ ~k, y)− κ(x+ ~k′, y)| · ||∇yN
~k||L2(Ξ×Y ) · ||∇yφ(y)||L2(Ξ×Y )dydx ≤∫

Ξ

∫
Y

C · |~k − ~k′| · ||∇yN
~k||L2(Ξ×Y ) · ||∇yφ(y)||L2(Ξ×Y )dydx.

(3.50)

Since the gradient of Lipschitz function is bounded by Lipschitz constant, we

have ∫
Ξ

∫
Y

C · |~k − ~k′| · ||∇yN
~k||L2(Ξ×Y ) · ||∇yφ(y)||L2(Ξ×Y )dydx ≤ (3.51)

∫
Ξ

∫
Y

C · |~k − ~k′| · C1 · ||∇yφ(y)||L2(Ξ×Y )dydx.

We take φ = N
~k − N

~k′ , then the left hand side of the equation (3.48) can be

written as

|
∫

Ξ

∫
Y

(κ(x+ ~k, y)∇yN
~k − κ(x+ ~k′, y)∇yN

~k)∇y(N
~k −N~k′)dydx| ≤

∫
Ξ

∫
Y

|κ(x+ ~k, y)− κ(x+ ~k′, y)| · ||∇y(N
~k −N~k′)||2dydx.

The second term:

|
∫

Ξ

∫
Y

(κ(x+ ~k′, y)∇yN
~k − κ(x+ ~k′, y)∇yN

~k′)∇yφ(y)dydx| ≤

∫
Ξ

∫
Y

|(κ(x+ ~k′, y)∇yN
~k − κ(x+ ~k′, y)∇yN

~k′)∇yφ(y)|dydx ≤
∫

Ξ

∫
Y

|(κ(x+ ~k′, y)| · |∇yN
~k −∇yN

~k′| · |∇yφ(y)|dydx.
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Since the gradient of Lipschitz function on bounded interval is bounded, we have

∫
Ξ

∫
Y

|(κ(x+ ~k′, y)| · |∇yN
~k −∇yN

~k′ | · |∇yφ(y)|dydx ≤

∫
Ξ

∫
Y

C̃ · |∇yN
~k −∇yN

~k′| · C∗dydx.

Therefore, ||N~k −N~k′||H1(Y ) ≤ C|~k − ~k′|l2 . 2

Proof of theorem 1.

Assume that N̄ f
k ∈ V f . We choose the nearby grid-block Ξk by assumption (3.32).

We will define the hierarchical solution by N̂ f
k′ = ω̄corr + N̄ f

k for smooth correction

term ω̄corr = Nk′ −Nk.

From the variational formulation we get

Ay(Ξk)(ω,Φ) = Ay(Ξk)(Nk,Φ)−Ay(Ξk)(Nk′ ,Φ) = (fk,Φ)−Ay(Ξk)(Nk′ ,Φ). (3.52)

Since from (3.13) we have Ay(Ξk′)(Nk′ ,Φ) = (fk′ ,Φ), then the equation (3.52)

can be rewritten as following:

(fk−fk′ ,Φ)−(Ay(Ξk)−Ay(Ξk′))(N
′
k,Φ) = Ay(Ξk)(ω,Φ) = Ay(Ξk)(¯̄ωcorr,Φ). (3.53)

From Cea’s lemma, Lipschitz inequality the following error estimate holds for

fixed micro-grid Ξk:

||ω − ¯̄ωcorr|| ≤ Crh · r−1 = Ch. (3.54)

Therefore, from the definition of correction term and the equationAy(Ξk′)(ω̄
c,Φ) =

(fk′ ,Φ),
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Ay(Ξk)(ω̄
c,Φ) = (fk − fk′ ,Φ)− (Ay(Ξk)− Ay(Ξk′))(N

′
k,Φ). (3.55)

From Assumptions, Equation (3.53), Equation (3.55) and following the proof of

Theorem 3.1 at [13]:

‖ ¯̄ωcorr(x, ·)− ω̄corr(x, ·)‖V ≤

≤ 1/β||((fk − fk′)(ω − ω̄corr)||+ 1/β||Ay(Ξk)− Ay(Ξk′))(N
′
k, (ω − ω̄corr))|| ≤ log(

1

h
).

Finally, we proved that ||N − N̂~k||H1(Y ) ≤ C · h · log( 1
h
). 2

Proof of theorem 2.

Notice that p1(x, y) = N(x, y)∇p0(x), therefore it is enough to prove the estimate

just for p0(x).

Using the definition of the homogenized coefficient κ∗, multiplying by a test func-

tion Φj and integrating over the domain D, the Equation (3.9) can be written as

−
∫
D

dp0

dt
Φj =

∫
D

∫
Y

κ(x, y)∇xp0∇xΦjdydx+
M∑
k=1

∫
D

∫
Y

κ(x, y)∇yp1∇xΦj(y)dydx+

+

∫
D

f(u)Φj(x)dx

(3.56)

and

−
∫
D

dp̂0

dt
Φj =

∫
D

∫
Y

κ̂(x, y)∇xp̂0∇xΦjdydx+
M∑
k=1

∫
D

∫
Y

κ̂(x, y)∇yp̂1∇xΦj(y)dydx+

+

∫
D

f(u)Φj(x)dx,

(3.57)

where j = 1, ..., N.
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Subtracting equations (Equation (3.56) - Equation (3.57)) and taking into account

that p0 just depends on x, we have:

−
∫
D

d(p0 − p̂0)

dt
Φj =

∫
D

∫
Y

κ(x, y)∇x(p0 − p̂0)∇xΦjdydx+∫
D

∫
Y

κ(x, y)∇yN∇x(p0 − p̂0)∇xΦjdydx+∫
D

∫
Y

(κ(x, y)− κ̂(x, y))∇xp̂0∇xΦjdydx+

M∑
k=1

∫
D

∫
Y

(κ(x, y)− κ̂(x, y))∇yp̂1∇xΦj(y)dydx∫
D

∫
Y

κ(x, y)∇xp0∇y(N − N̂)∇xΦjdydx.

(3.58)

Now take Φj = (p0 − p̂0) and integrating over the time, the Equation (3.58) can

be rewritten as

1

2

∫ T

0

∫
D

d(p0 − p̂0)2

dt
dxdt+

∫ T

0

∫
D

∫
Y

κ(x, y)(I +∇yN)(∇x(p0 − p̂0))2dydxdt =∫ T

0

∫
D

∫
Y

κ(x, y)∇y(N̂ −N)∇xp0∇x(p0 − p̂0)dydxdt+

M∑
k=1

∫ T

0

∫
D

∫
Y

κ(x, y)∇y(N̂ −N)∇yp̂1∇x(p0 − p̂0)dydxdt+∫ T

0

∫
D

∫
Y

κ(x, y)∇y(N̂ −N)∇xp̂0∇x(p0 − p̂0)dydxdt.

(3.59)

We assume < κ(x, y)(I+∇yN) >≥ δ for some δ > 0, then the following estimate

can be obtained

min(
1

2
, δ) ·

∫ T

0

∫
D

((p0 − p̂0)2 + (∇x(p0 − p̂0))2)dxdt ≤ C ′ · ‖N − N̂‖ · ‖p0 − p̂0‖H1 .

Finally, ‖p0 − p̂0‖H1 ≤ C ′′ · ‖N − N̂‖H1 ≤ C̃ · h · log(h−1).

2
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Proof of theorem 3.

According Theorem 2 we have that ‖p0 − p̂0‖H1 ≤ C̃ · h · log(h−1).

Clearly, ‖q0 − q̂0‖H1 = ‖C‖L∞ · ‖p0 − p̂0‖H1 ≤ C · h · log(h−1) for some constant

C. 2

3.4 Sparse approximation

Below we offer a general construction of sparse tensor product FEM and apply

it for given input-output system (3.19). It was showed in [40] that the convergence

rate for proposed approach is fundamentally the same as for full FEM.

To construct the sparse tensor product finite element spaces in Ω× Y we define

hierarchical sequence of finite element spaces: V 0 ⊂ V 1 ⊂ V 2 ⊂ ... - subspaces of

H1(Ω), V 0
] ⊂ V 1

] ⊂ V 2
] ⊂ ... - subspaces of H1

] (Y ). Notice that p1 ∈ L2(Ω, H1(Y )) ≈

L2(Ω)
⊗

H1(Y ), so we assume the finite element basis for p1 is V L = V L
⊗

V L
] .

Define W l = V l − V l−1 such as V l = W l
⊕

V l−1, l = 1, .., L.

Then the full tensor product space can be written as

V L =
⊕

0≤l0,l1≤L

W l0
⊗

W l1
] ,

while the sparse tensor product space can be written as

V̂
L

=
⊕

0≤l0+l1≤L

W l0
⊗

W l1
] .

We say that dim(V L) = K.

Notice that the dimension of V L is O(22dL) and the dimension of V̂
L

is much less,

O(2dLL).

Now we can define the basis of spaces as: W l0 = span(Ψl01,Ψl02, ...,Ψl0jl0
),

W l1 = span(Ψ̃l11, Ψ̃l12, ..., Ψ̃l1jl1
) for some fixed l0, l1 ∈ R. Then the following rep-
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resentations hold p1(x, y) =
∑

0≤l0+l1≤L
∑jl0

k=1

∑jl1
m=1 d

l0l1
kl Ψl0k(x)Ψ̃l1m(y) and p0(x) =∑N

i=1 ciΦi(x).

Now we can follow the same procedure as for full tensor space.

We assume ζ0 = Φj(x) for some j = 1, ..., N and ζ1 = Ψl0r(x)Ψ̃l1s(y) for some

r = 1, ..., jl0 and s = 1, ..., jl1 .

Therefore, the equation (3.14) can be rewritten as following:

∫
D

N∑
i=1

dci(t)

dt
Φi(x)Φj(x)dx =

∫
D

∫
Y

κ(x, y)(
N∑
i=1

ci∇xΦi(x))∇xΦj(x)dydx+

+

∫
D

∫
Y

κ(x, y)(
N∑
i=1

ci∇xΦi(x))Ψl0r(x)∇yΨ̃l1s(y)dydx+ (3.60)

+

∫
D

∫
Y

κ(x, y)(
∑

0≤l0+l1≤L

jl0∑
k=1

jl1∑
m=1

dl0l1kmΨl0k(x)∇Ψ̃l1m(y))∇xΦj(x)dydx+

+

∫
D

∫
Y

κ(x, y)(
∑

0≤l0+l1≤L

jl0∑
k=1

jl1∑
m=1

dl0l1kmΨl0k(x)∇Ψ̃l1m(y))Ψl0r(x)∇yΨ̃l1s(y)dydx+

+

∫
D

f(u)Φj(x)dx.

We reorganize terms of equation (3.60):

N∑
i=1

(

∫
D

Φi(x)Φj(x)dx)
dci(t)

dt
=

N∑
i=1

(

∫
D

∫
Y

κ(x, y)∇xΦi(x)∇xΦj(x)dydx)ci+

+
N∑
i=1

(

∫
D

∫
Y

κ(x, y)∇xΦi(x)Ψl0r(x)∇yΨ̃l1s(y)dydx)ci+
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+
∑

0≤l0+l1≤L

jl0∑
k=1

jl1∑
m=1

(

∫
D

∫
Y

κ(x, y)Ψl0k(x)∇Ψ̃l1m(y)∇xΦj(x)dydx)dl0l1km+

+
∑

0≤l0+l1≤L

jl0∑
k=1

jl1∑
m=1

(

∫
D

∫
Y

κ(x, y)Ψl0k(x)∇Ψ̃l1m(y)Ψl0r(x)∇yΨ̃l1s(y)dydx)dl0l1km+

+

∫
D

f(u)Φj(x)dx.

Using matrix notation, the equation can be written in the following form:

Q



dc1
dt

...

dcN
dt

0


=

 (A)N×N(B̃)N×K

(B̃∗)K×N(S̃)K×K





c1

...

cN

d1

...

dK


+



F1

...

FN

0

...

0

...

0



=

=

 (A)N×N

(B̃∗)K×K

[(c)1×N

]
+

(B̃)N×K

(S̃)K×K

[(d)1×K

]
+

(F )1×N

(0)1×K

 , (3.61)

where Aij =
∫
D

∫
Y
κ(x, y)∇xΦi(x)∇xΦj(x)dydx for i = 1, ..., N, j = 1, ..., N ;

(B̃)i(kj) =
∫
D

∫
Y
κ(x, y)Ψk(x)∇Ψ̃j(y)∇xΦi(x)dydx for (kj) = 1, ..., K, i = 1, ..., N ;

Fj =
∫
D
f(u)Φi(x)dx for j = 1, ..., N ;

(S̃)(rj)(il) =
∫
D

∫
Y
κ(x, y)Ψr(x)∇Ψ̃j(y)Ψi(x)∇yΨ̃l(y)dydx for (rj) = 1, ..., K, (il) =

1, ..., K;

Qij =
∫
D

Φi(x)Φj(x)dx for i = 1, ..., N, j = 1, ..., N (assume Qij = 0 for all
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i = N + 1, ..., N +K, j = N + 1, ..., N +K).

From the last equation of (3.61)

B̃∗c+ S̃d = 0,

and the expression of d in terms of c can be found: d = −S̃(−1)B̃∗c.

The size of matrix S̃ is comparable to the size of whole system. The sparse tensor

product finite element method can be used in order to reduce the dimension of S̃

and be able to compute S̃(−1).

We denote the ’non-zero’ part of the matrix Q as Q̃, i.e., Q̃ is N × N matrix,

where coefficients Q̃ij =
∫
D

Φi(x)Φj(x)dx for i = 1, ..., N, j = 1, ..., N . Then (3.61)

can be rewritten as:

Q̃
dc

dt
= Ac+ B̃d+ F = Ac− B̃S̃(−1)B̃∗c+ F = (A− B̃S̃(−1)B̃∗)c+ F.

Notice that the output:

q(pε) =

∫
D

l · ∇pεdx ≈
∫
D

l · ∇xp0dx+O(ε
1
2 ),

so denoting by C the operator such that Cc =
∫
D
l(x) · ∇xp0dx, the output can be

rewritten as q = [C 0]

c
d

 = Cc+ 0 = Cc.

Finally, we get the system:

(Q̃)N×N
dc

dt
= (A− B̃S̃(−1)B̃∗)c+ F, (3.62)

q = Cc.
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3.5 Conclusions

This section is devoted to an input-output formulation for a parabolic problem,

where input is a defined, controllable quantity and output is a measurable quantity.

Proposed approach reduces computational cost of obtaining a solution for the flow

in heterogeneous porous media with separable scales.

As a first step of the process, in order to discretize the problem two types of FEM

were considered standard (full tensor product) and sparse tensor product FEM.

The main advantage of a sparse tensor product approach over standard is the fact

of getting a system of much smaller size, while convergence rates are comparable to

full tensor product FEM. As a second step, a combination of both global and local

model reduction techniques was applied in order to carry out computations on a

discretized system. The following approach was developed for both sparse and full

tensor product FEM. First, two-scale homogenization was applied to the system.

Hierarchical approach allows solving local problems with different resolutions and

then combines these multi-resolution solutions to achieve an accurate approximation.

Secondly, the system is transformed in order to apply a global model reduction

technique BT Method. The latter enables to get a good approximation of a solution

by solving a system of much smaller size than the original one.
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4. COARSE-GRID MODEL REDUCTION WITH BALANCED TRUNCATION

FOR FLOWS IN GENERAL HETEROGENEOUS POROUS MEDIA WITH

A PARAMETER ∗

4.1 Preliminaries

In this section we concentrate on a case where the permeability doesn’t have a

scale separation. The following section was published at [50]. We consider a problem

in which we are interested in the effects that a small dimensional set of forcing inputs

has on a small dimensional set of measurable outputs. In the context of flow model-

ing, the forcing inputs may represent an injection-production well configuration, and

the measurable outputs may represent fixed or averaged pressure values at specified

regions of the porous medium. We emphasize that in a basic framework, each eval-

uation of the input-output mapping requires the solution(s) of the model equation

such that the measurable outputs are available. As such, cost effective alternatives

to using fully resolved approximation techniques are desirable. Due to the localized

construction of the coarse spaces mentioned above, GMsFEM may be viewed as a

local model reduction technique for the approximation of the model equation (or the

subsequent output quantities). More specifically, GMsFEM yields a reduced-order

model in which the mapping is approximated by solving smaller systems of equations

to obtain the output values.

We propose a local-global model reduction technique in which GMsFEM is com-

bined with balanced truncation (BT) (see, e.g., [22, 33]). BT is a global model re-

duction technique that offers rigorous apriori error bounds and solution stability, and

∗Reprinted from Journal of Computational and Applied Mathematics, Vol. 271, M. Presho, A.
Protasov, E. Gildin, ”Local-global model reduction of parameter-dependent, single-phase flow
models via balanced truncation”, Pages 163-179, Copyright 2014, with permission from Elsevier.
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has been shown to be an effective model reduction tool for a variety of applications.

For example, BT was recently applied to single-phase flow equations in [22], and we

refer the interested reader to [33] for a more extensive discussion on using BT as an

effective global model reduction technique. The main idea is recast the partial the

differential equations into the systems framework, in which an input-to-output map-

ping, that is, transfer function, is constructed based on the internal state-variables.

Based on how much we can steer a state variable from an initial condition to a final

condition given a finite set of inputs, or how much we can infer the state of these

variables based on some measurements (output) of the system, we can determine the

most important state variables in this input-output mapping. In order to apply the

method, we solve a set of coupled Lyapunov equations that use matrices from a given

input-output dynamical system [38, 57]. The solutions of the Lyapunov equations

are called the observability and controllability Gramians, and their combination is

used to construct a reduced order system through using truncated eigenvectors of

the specified matrices. The associated eigenvalues (so-called Hankel singular values)

that appear in the apriori bounds have been shown to decay rapidly (see [2, 31]),

and therefore the measurable outputs of the system can be accurately approximated

by solving a substantially reduced order model. An important consideration of BT

is that the solutions of the Lyapunov equations can be very expensive to compute

[11, 14, 20]. Thus, BT may not be a suitable global model reduction technique if a

fully-resolved system of equations yields Lyapunov equations that are prohibitively

expensive to solve. As such, applying BT to a coarse-scale set of equations obtained

through GMsFEM is shown to be a tractable approach for solving the model equation

considered in this work.
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4.2 Offline-online Balanced Truncation approach

An application of BT approach to parameter-dependent problems can be com-

putationally insufficient since we have to solve series of Lyapunov equations. In

particular, solving these equations directly on the fine scale for varying permeability

samples, boundary conditions, and forcing terms will quickly become prohibitively

expensive. BT of linear time-varying system was studied in [54], where error bounds

were derived. However, the computational cost of a problem linearly depends on

time steps which further necessitate increasing the efficiency of the method. In turn,

in this work we propose the use of a multiscale, offline-online BT approach in order

to obtain inexpensive solutions. The method is based on GMsFEM that allows us

to construct an independent set of online basis functions in which a coarse solution

may be sought. As the resulting global system will then be posed on a coarse grid,

we avoid the need to implement BT directly on the fine grid.

The method consists of two stages: offline and online. At the offline stage, a

space of “snapshots” is first computed. Then, the fixed offline space is constructed

through a spectral reduction of the original snapshot space. We emphasize that the

offline space is constructed such that it is independent of the input space (e.g., the

input parameters that define the permeability field), and is used during the online

stage in order to efficiently construct a set of multiscale basis functions (and online

solution space). In essence, the online step yields a small dimensional subspace of

the offline space for each fixed µ. As such, at the online stage coarse solutions

may be quickly computed for specified input parameters. We remark that this type

of construction is a main contribution of this work, and serves to further decrease

the computational cost associated with the local model reduction. In particular,

the online space construction will no longer depend on eigenvalue problems that
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scale with respect to the size of the local fine mesh. Rather, the online eigenvalue

computations are performed within a significantly reduced space that depends on the

pre-processed offline eigenfunctions. A related local-global model reduction approach

was offered in [22], where the authors considered a parameter-independent model that

did not necessitate the need for a more efficient offline-online approach.

4.2.1 Generalized Multiscale Finite Element Method

4.2.1.1 Offline computation

At the offline stage, we first construct a snapshot space V ωi
snap subordinated to

each coarse neighborhood ωi in the domain (refer back to Figure 2.1). Construction

of the snapshot space involves solving a set of local problems for a suitable range of

input parameters, and in order construct the space we solve the following eigenvalue

problems on each coarse neighborhood ωi:

A(µj)ψ
ωi,snap
l,j = λωi,snap

l,j S(µj)ψ
ωi,snap
l,j in ωi, (4.1)

where µj (j = 1, . . . , J) is a specified set of fixed parameter values. Neumann bound-

ary conditions are used for solving the eigenvalue problems, however mention that

other global formulations may warrant the use of modified boundary conditions [23].

The matrices in Equation (4.1) are defined as

A(µj) = [a(µj)mn] =

∫
ωi

κ(x;µj)∇φn ·∇φm, S(µj) = [s(µj)mn] =

∫
ωi

κ̃(x;µj)φnφm,

(4.2)

where φn denotes the standard bilinear, fine-scale basis functions and k̃ will be defined

in the next section (cf. (4.8)). We point out that Equation (4.1) is the discretized
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form of the continuous equation

−div(κ(x, µj)∇ψωi,snap
l,j ) = λωi,snap

l,j ψωi,snap
l,j in ωi.

For notational brevity we now omit the superscript ωi for the eigenvalue problems,

yet it is assumed throughout this section that the offline and online space computa-

tions are localized to respective coarse neighborhoods. After solving Equation (4.1),

we keep the first Li eigenfunctions that correspond to the dominant eigenvalues

(asymptotically vanishing in this case) in order to form the snapshot space

Vsnap = span{ψsnap
l,j : 1 ≤ j ≤ J and 1 ≤ l ≤ Li},

for each coarse neighborhood ωi. We then reorder the snapshot functions using a

single index to create the matrix

Rsnap =
[
ψsnap

1 , . . . , ψsnap
Msnap

]
, (4.3)

where Msnap denotes the total number of functions that are kept in the snapshot

matrix construction.

At this stage, we perform a dimension reduction of the space of snapshots using

an auxiliary spectral decomposition in order to construct the offline space V ωi
off . More

precisely, we seek a subspace of the snapshot space such that it can approximate any

element of the snapshot space in the appropriate sense defined via auxiliary bilinear

forms. The main objective is to use the offline space to efficiently (and accurately)

construct a set of multiscale basis functions for each µ value at the online stage. And

we reiterate that the offline bilinear forms are chosen to be parameter-independent,

such that there is no need to reconstruct the offline space for each µ value. The
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analysis in [25] motivates the following eigenvalue problem in the space of snapshots:

AoffΨoff
k = λoff

k S
offΨoff

k , (4.4)

where

Aoff = [aoff
mn] =

∫
ωi

κ(x;µ)∇ψsnap
m · ∇ψsnap

n = RT
snapARsnap

and

Soff = [soff
mn] =

∫
ωi

κ̃(x;µ)ψsnap
m ψsnap

n = RT
snapSRsnap,

where κ(x, µ), and κ̃(x, µ) are domain-based averaged coefficients. Here, A and S

denote similar fine scale matrices as defined in Equation (4.1), except that averaged

coefficients are used in the construction. To finalize the offline space we then choose

the smallest Moff eigenvalues from Equation (4.4) and form the corresponding eigen-

vectors in the space of snapshots by setting ψoff
k =

∑
j Ψoff

kjψ
snap
j (for k = 1, . . . ,Moff),

where Ψoff
kj are the coordinates of the vector Ψoff

k . We then create the offline matrix

Roff =
[
ψoff

1 , . . . , ψ
off
Moff

]
to be used in the online space construction.

4.2.1.2 Online computation

With the offline space available, we next construct the associated online coarse

space V ωi
on (µ) on each coarse subdomain for a specified µ realization. In principle,

we want the online space to be a small dimensional subspace of the offline space for

computational efficiency. More specifically, we seek a subspace of the offline space

such that it can approximate any element of the offline space in an appropriate sense.

We reiterate that at the online stage, the reduced-order bilinear forms are chosen to
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be parameter-dependent. Similar analysis (see [25]) motivates the following eigenvalue

problem to be solved in the offline space:

Aon(µ)Ψon
k = λon

k S
on(µ)Ψon

k , (4.5)

where

Aon(µ) = [aon(µ)mn] =

∫
ωi

κ(x;µ)∇ψoff
m · ∇ψoff

n = RT
offA(µ)Roff

and

Son(µ) = [son(µ)mn] =

∫
ωi

κ̃(x;µ)ψoff
m ψ

off
n = RT

offS(µ)Roff,

and κ(x;µ) and κ̃(x;µ) are now depend on the specified µ value. Finally, to generate

the online space we choose the smallest Mon eigenvalues from Equation (4.5) and

form the corresponding eigenvectors in the offline space by setting ψon
k =

∑
j Ψon

kjψ
off
j

(for k = 1, . . . ,Mon), where Ψon
kj are the coordinates of the vector Ψon

k . We emphasize

that the size matrices in (4.5) now solely depends on the dimension of the offline

space. As such, the diminished computational cost of creating the online space is

in contrast to the more expensive alternative of directly using localized fine-grid

computations in the space construction.

4.2.1.3 Global formulation using online space

In order to incorporate our online basis functions into a reduced-order global for-

mulation of Equation (2.1) we start with an initial coarse space V init(µ) = span{χi}Nvi=1,

where Nv denotes the number of coarse nodes. We use χi to denoted the standard

multiscale partition of unity functions which are defined by

51



−div
(
κ(x;µ)∇χi

)
= 0 K ∈ ωi, (4.6)

χi = gi on ∂K, (4.7)

for all K ∈ ωi, where gi is a bilinear boundary condition. Using the initial partition

of unity we define the summed, pointwise energy κ̃ (cf. Equation (4.2)) as

κ̃ = κ
Nv∑
i=1

H2|∇χi|2, (4.8)

where H denotes the coarse mesh size. In order to construct the global, coarse-

grid solution space we then multiply the partition of unity functions by the online

eigenfunctions from the space V ωi
on (µ) to form the basis functions

ψi,k = χiψ
ωi,on
k for 1 ≤ i ≤ Nv and 1 ≤ k ≤Mωi

on , (4.9)

where we recall that Mωi
on denotes the number of online basis functions to keep for

each ωi. We note that the basis construction in Equation (4.9) yields a basis set

to be used within a continuous Galerkin global formulation, however, continuity is

not a requirement for a discontinuous Galerkin formulation (see [23]). The online,

spectral multiscale space is then defined as

Von(µ) = span{ψi,k : 1 ≤ i ≤ Nv and 1 ≤ k ≤Mωi
on}, (4.10)

and using a single index notation, we write Von(µ) = span{ψi}Nci=1, where Nc denotes

the total number of basis functions that are used in the coarse scale formulation.

Recalling Equation (2.6) we now introduce the final form for the operator matrix R
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to be used in the global system construction. In particular, we set R = [ψ1, . . . , ψNc ],

where ψi represents the vector of nodal values of each basis function defined on the

fine grid. To solve Equation (2.1) we seek pc(x, t;µ) =
∑

i bi(t)ψi(x;µ) ∈ Von such

that

∫
D

∂pc
∂t
v = −

∫
D

κ(x;µ)∇pc∇v +

∫
D

f(u) v for all v ∈ Von. (4.11)

The above equation yields the discrete form

M∗(pc)t = −A∗(µ)pc +B∗u, (4.12)

M∗ := [mIJ ] =

∫
D

ψiψj is a coarse mass matrix, A∗(µ) := [aIJ ] =

∫
D

κ(x;µ)∇ψi∇ψj

is a coarse stiffness matrix, B∗ := [bI ] =

∫
D

f(u)ψi, and ψi denotes the coarse

basis functions that span Von. As previously mentioned in Subsection 2.2, the coarse

matrices may be written using the operator matrix R as follows: M∗ = RTMR,

A∗(µ) = RTA(µ)R, and B∗ = RTB, where M , A(µ), and R are the fine scale

matrices from Equation (2.4). The operator matrix may analogously be used to

project coarse scale solutions back to the fine grid. We note that expressing the

linear system as

(pc)t = −Ac(µ)pc +Bcu,

qc = Ccpc,

(4.13)

where Ac(µ) = (M∗)−1A∗(µ), Bc = (M∗)−1B∗, and Cc = CR is the appropriate form

for applying the BT approach that is described in the next subsection.
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4.2.2 Balanced Truncation

The process of global model reduction may be generally stated as follows: for a

given model G (such as the system in Equation (4.13)), we wish find a lower order

system Gr such that G and Gr are close in some sense [57]. In our case, to reduce

the size of the coarse system

(pc)t = −Ac(µ)pc +Bcu,

qc = Ccpc,

we will apply BT.

In order to reduce the complexity of the system, we can find state space variables

that can be truncated without compromising the input-output behavior of G. This

can be accomplished by finding the states that are very difficult to steer (weakly con-

trollable) and simultaneously states that cannot be inferred from the measurements

or outputs (weakly observable). To this end, we form a joint measure of observability

and controllability through solving the Lyapunov equations

WobA
c(µ) +

(
Ac(µ)

)T
Wob + (Cc)TCc = 0,

Ac(µ)Wco +Wco

(
Ac(µ)

)T
+Bc(Bc)T = 0,

(4.14)

where Wob is the so-called observability Gramian, and Wco is the controllability

Gramian [38]. The solution of these two Lyapunov equations play an important role

in model reduction and in particular in the balanced truncation method. Several

algorithms have been devised to efficiently compute their solution. In the simplest

form, they depend on dense matrix computations such as in the the Bartels-Stewart

[10] method as modified by Hammarling [35] and are in general of order O(n3).

Many other algorithms have been developed to reduced its computational complex-
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ity, but they rely on iterative methods and low rank approximations of the solution

[34, 48, 52], which in many cases may not give an appropriate solution. Once the

Gramians are available, they are expressed in the form of their Cholesky decomposi-

tions: Wob = LTobLob and Wco = LcoL
T
co. We then find the first Nr ordered eigenvalues

and normalized eigenvectors of LTcoWobLco, that is, we solve

LTcoWobLco ξi = ρiξi for i = 1, . . . , Nr. (4.15)

The eigenvalues and (row) eigenvectors of LTobWcoLob are given by {ρi} and {ζi} =

{σ−1
i ξTi L

T
coL

T
ob} (i = 1, . . . , Nr), where σi = ρ

1/2
i . With the respective eigenvalues

and eigenvectors in place we form the matrices U and V such that

V = Lco

[
ξ1σ
−1/2
1 · · · ξNrσ−1/2

Nr

]
and U =


σ
−1/2
1 ζ1

...

σ
−1/2
Nr

ζNr

Lob,

with UV = INr . The reduced order model of Equation (4.13) is finally formed by

creating the matrices Ar(µ) = UAc(µ)V , Br = UBc, and Cr = CcV , where the value

of r depends on the decay of these eigenvalues. This will be shown in the numerical

experiments in the next section. In particular, we arrive at the reduced dimension

model (e.g., Ar(µ) has size Nr×Nr) where

(pr)t = −Ar(µ)pr +Bru,

qr = Crpr,

(4.16)

and the output qr closely approximates qc.

A notable property of BT is that the apriori error estimates simply depend on

the eigenvalues of Equation (4.15) (see [31]). In particular, the error estimate de-
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pends upon the magnitude of the summation of all truncated eigenvalues. Another

advantage of BT is the fact that the stability of the resulting system is preserved

[4]. However, a possible limitation of the method is that the Lyapunov equations

in Equation (4.14) require costly, dense computations. As a result, applying BT

directly to a large dimensional input-output system may become prohibitively ex-

pensive. In this section, the combined GMsFEM-BT approach avoids the need for

large dimensional computations while still maintaining a suitable level of accuracy.

More specifically, since the method is applied directly to a online coarse-scale system

(which has already been reduced using local GMsFEM), the computational cost can

be significantly reduced.

4.3 Numerical results

In this section we offer a variety of numerical results to validate the performance of

the proposed offline-online balanced truncation approach. All solutions are computed

on the two-dimensional unit domain D = [0, 1]×[0, 1], and we assume a homogeneous

boundary condition p = 0. For the initial condition we use p0(x) = 0. We let f(u)

be a piecewise constant forcing parameter on a coarse grid, such that the jth column

of B (recall Equation (2.4)) is defined as

B(:,j) =

 1 if x ∈ Kj,

0 otherwise,

where we use Kj to denote the jth coarse element of the domain. In essence, the

matrix B is a mapping of a coarse-dimensional parameter u to the fine grid. For

all examples in this section, u is taken to be a multi-dimensional random parameter

subordinated to the coarse grid such that each component is uniformly distributed

on [0, 1]. For each set of examples, a new input sample is drawn and used for the
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respective comparisons. Additionally, we assume that the output selection matrix

is defined by C = BT . As a result, the output quantities of interest are taken as

upscaled pressure solutions localized to the coarse elements. In order to solve the

fine scale problem in Equation (2.1), we discretize D into a 100×100 fine element

mesh.

For the first set of examples, we assume that the permeability field from Equa-

tion (2.1) takes the form κ(x, µ) = µ1κ1(x) + µ2κ2(x), where the pair (µ1, µ2) is as-

sumed to be drawn from [0, 1]2. See Figure 4.1 for an illustration of the permeability

structure. In addition, the resulting field exhibits a randomized high-contrast struc-

ture, where the contrast is taken to be κmax/κmin ≈ 105. This type of permeability

structure serves to model a field containing enhanced flow conduits such as fractures

or channels. For all two-dimensional examples we use fixed values of µ1 = 0.4 and

µ2 = 0.7 to create the composite field. In order to generate the snapshot space for

the offline-online procedure (cf. (4.3)) we use three equally spaced points in each

dimension and keep Li = 12 eigenfunctions so that Msnap = 32×12 = 108. For this

set of examples we initially solve the using the fully-resolved system of equations

from (2.4), and compute the corresponding output quantities. This computation is

typically the most expensive, and is used as the benchmark for testing the accuracy

of proposed method. In addition, we also solve the GMsFEM system in (4.13) and

obtain the corresponding output quantities. Finally, we apply BT to the coarse scale

equations from (4.13) to significantly reduce the dimension of the resulting system.

Throughout this section, we are interested in comparing the outputs resulting from

the fully resolved system and the reduced dimension system. In particular, we con-

sider the errors of the output quantities of interest as the respective solutions advance

in time. For the comparisons, we denote the fine-scale solutions as p1
f , p

2
f , . . . , p

M
f ,

the GMsFEM solutions as p1
c , p

2
c , . . . , p

M
c , and the reduced solutions obtained by BT
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Figure 4.1: Permeability coefficients for a two-dimensional parameter-dependent
problem

as p1
r, p

2
r, . . . , p

M
r . Here, we use M to denote the total number of time steps that

are used in the simulations. Figure 4.2 represents the quality of GMsFEM for an

arbitrary example, and serves as a motivation for online-offline balanced truncation

approach.

We then compute the respective output quantities qf,i = Cfpif , q
c,i = Ccpic, and

qr,i = Crpir (for i = 1, . . . ,M), where the triangle inequality

‖qf,i − qr,i‖2 ≤ ‖qf,i − qc,i‖2 + ‖qc,i − qr,i‖2 (4.17)

serves as a guideline for choosing an appropriate BT dimension. In particular, we

wish to choose the dimension such that the errors ‖qf,i − qc,i‖2 and ‖qc,i − qr,i‖2 are

comparable. In doing so, we ensure that the error between the fully-resolved outputs

and GMsFEM-BT reduced model is not dominated by a single term. Throughout

this section we use a discrete, relative l2-norm scaled by the coarse output norm.

For the first set of examples, a time step of ∆t = 5×10−4 is used, and we run

the simulations for 20 total time steps such that a steady state is observed. For
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Figure 4.2: Time variant pressure fields for fine-scale and coarse-scale systems

the following examples, we consider 10×10 and 20×20 coarse mesh configurations

that yield a variety of online coarse space dimensions. In particular, for the 10×10

coarse mesh we consider online spaces of dimension Nc = 364, 564, and 779, and for

the 20×20 coarse mesh we consider online spaces of dimension Nc = 802, 1163, and

1524. The time variant output for selected fine-scale, coarse-scale, and reduced-order

systems is shown in Figures 4.3 and 4.4. Figure 4.3 corresponds to an online space

of dimension Nc = 564 and Figure 4.4 corresponds to an online space of dimension

Nc = 1524. In both figures, we plot the respective outputs for three time levels such

that the fine output is in the first row, the coarse output is in the middle row, and the

reduced output is in the third row. In Figure 4.3 we see from the illustrations that the

reduced outputs are nearly indistinguishable from the fine outputs for the case when

we use a reduced dimension ofNr = 70. Similarly, the outputs in Figure 4.4 are nearly

indistinguishable for a reduced dimension of Nr = 300. For further comparison, we
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Figure 4.3: Time variant output comparisons for a 10×10 coarse mesh configuration

also offer sets of plots that illustrate the similarities between the fine, coarse, and

reduced dimension outputs for either coarse mesh configuration at the steady state

time in Figures 4.5 and 4.6. These initial illustrations serve as a motivation for

more rigorous error comparisons below. In addition, a more detailed discussion on a

suitable choice of reduced dimensions will also be offered.

Table 4.1 compares the errors between the outputs of the respective steady state

solutions using a variety of online coarse spaces and reduced model dimensions cor-
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Figure 4.4: Time variant output comparisons for a 20×20 coarse mesh configuration

responding to a 10×10 coarse mesh. In particular, we test the error quantities

from Equation (4.17) using online coarse space dimensions of Nc = 364, 564, and

779, and BT reduced dimensions of Nr = 20, 30, 40, 50; Nr = 30, 50, 70, 90 and

Nr = 100, 200, 300, 400; respectively. We emphasize that the coarse spaces and re-

duced dimensions are much smaller than the fine-scale system of size Nf = 10201.

We see from the first two columns of Table 4.1 that the error between the fine-scale

and GMsFEM outputs decreases as the dimension of the coarse space increases. In
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Figure 4.5: Steady state output comparisons for a 10×10 coarse mesh configuration
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Figure 4.6: Steady state output comparisons for a 20×20 coarse mesh configuration

addition, we see that it is sufficient to reduce the size of the BT system toNr = 50−70

for the case of Nc = 364, Nr = 70−90 for the case of Nc = 564, and to Nr = 110−150

for the case of Nc = 779 in order to obtain a comparable level of reduced dimen-

sion accuracy. An analogous set of results corresponding to a 20×20 coarse mesh

is offered in Table 4.2. The table suggests that it is sufficient to reduce the size of

the BT system to Nr = 40 − 50 for the case of Nc = 802, Nr = 150 − 200 for the

case of Nc = 1163, and to Nr = 300 − 400 for the case of Nc = 1524 in order to

obtain a comparable level of reduced dimension accuracy. We note that the error

estimates associated with the BT reduction (see [31]) loosely govern an appropriate

size of the reduced system through a consideration of the Hankel singular values (i.e.,

the eigenvalues from Equation (4.15)). In particular, we generally choose a system
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Figure 4.7: Hankel singular value decline as a guideline for choice of BT system size

whose size is consistent with a sufficient decline in the eigenvalue order. For exam-

ple, we see from Figure 4.7 that the reduced dimensions of Nr = 70− 90 (Nc = 564

case) and Nr = 300 − 400 (Nc = 1524 case) roughly correspond to 3 − 4 orders of

reduction in the respective eigenvalues. We again note that these reduced systems

are in stark contrast to the size of the fully-resolved system (Nf = 10201), while

offering a suitable level of accuracy.

For a broader range of comparisons, we also offer a set of plots in Figure 4.8

that show how the relative errors advance in time for 10×10 and 20×20 coarse mesh

examples. For the 10×10 case, we consider Nc = 564, and for the 20×20 case we

consider Nc = 1524. However, we mention that these results are representative for

all cases. From Figure 4.8 we see that an increase in the size of reduced-dimension

yields a decrease in the time-dependent errors. And as expected from Table 4.1, we

see that a suitable range of reduced-dimensions essentially “encapsulates” the fine

vs. coarse errors advancing in time, further validating an appropriate choice of BT

dimensions.

For a final set of comparisons, we offer a set of computational times corresponding
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dim(Von) [Nc] Fine-Coarse Error (%) Coarse-BT Error (%) BT Size [Nr]

364 1.45 4.61 10
364 1.45 2.37 30
364 1.45 1.62 50
364 1.45 1.13 70

564 1.22 3.63 30
564 1.22 1.94 50
564 1.22 1.08 70
564 1.22 0.95 90

779 0.44 2.34 40
779 0.44 1.27 70
779 0.44 0.38 110
779 0.44 0.19 150

Table 4.1: Measurable output errors for a variety of reduced model dimensions at
steady state: 10×10 coarse mesh

dim(Von) [Nc] Fine-Coarse Error (%) Coarse-BT Error (%) BT Size [Nr]

802 1.55 3.03 20
802 1.55 2.14 30
802 1.55 1.37 40
802 1.55 1.33 50

1163 0.51 1.60 50
1163 0.51 0.87 100
1163 0.51 0.52 150
1163 0.51 0.33 200

1524 0.36 0.93 100
1524 0.36 0.43 200
1524 0.36 0.26 300
1524 0.36 0.01 400

Table 4.2: Measurable output errors for a variety of reduced model dimensions at
steady state: 20×20 coarse mesh
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to the fine, coarse, and reduced dimension solution procedures. All computations

were performed serially on a dual-core desktop workstation where each core uses two

Intel Core i3 3.20 GHz processors, each with 4GB of RAM. We emphasize that these

timing comparisons do not account for the parallelizable nature of the GMsFEM

online space construction, however still offer some promising behavior. In particular,

a parallel implementation of the method would likely render the online GMsFEM

computations negligible. The results in Table 4.3 are devoted to a 10×10 coarse

mesh and Table 4.4 contains a set of 20×20 coarse mesh results. The top row

shows the required time to calculate a solution for the given fine-scale system of the

size Nf = 10201 (100×100 fine element mesh). Next, the actual time of finding a

solution by the online-offline balanced truncation approach for the same coarse space

dimensions is provided (Nc = 364, 564, 779 for Table 4.3, and Nc = 802, 1163, 1524

for Table 4.4). The final times are obtained by adding three components: a time

for the construction of the GMsFEM online space, a time for solving the Lyapunov

equations, and a time for finding a solution for the reduced GMsFEM-BT system.

These numerical results show a significant reduction in the computational cost for

the smallest coarse dimension of Nc = 364. In particular, a computational time of

78.3 seconds for the fine-scale solve can be serially reduced to a time of 8.1 seconds for

this reduced model. We reiterate that even for this online space dimension, we obtain

steady state output errors that are less than 1.5% (cf. Table 4.1). Additionally, the

larger-dimensional choices resulting from a 10×10 coarse mesh are still noticeably

smaller than the fine-scale counterpart while offering declining errors. In contrast,

the 20×20 results in Table 4.4 show an increase in computational expense mainly due

to an increase in the Lyapunov system dimension (cf. (4.14)). Thus, we conclude that

a more tractable approach in this setting is to accept slightly larger errors resulting

from reduced systems with more reasonable timing.
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System Size Time (sec)

Fine 10201 78.3

GMsFEM (Online) 364 7.2
BT 50 0.9
GMsFEM-BT 50 8.1

GMsFEM (Online) 564 12.2
BT 70 3.9
GMsFEM-BT 70 16.1

GMsFEM (Online) 779 14.4
BT 110 19.1
GMsFEM-BT 110 33.5

Table 4.3: Computational timing comparisons between the fine, GMsFEM online,
and BT algorithms: 10×10 coarse mesh

System Size Time (sec)

Fine 10201 78.3

GMsFEM (Online) 802 21.4
BT 40 13.2
GMsFEM-BT 40 34.6

GMsFEM (Online) 1163 41.3
BT 150 45
GMsFEM-BT 150 86.4

GMsFEM (Online) 1524 65.2
BT 300 115.5
GMsFEM-BT 300 180.7

Table 4.4: Computational timing comparisons between the fine, GMsFEM online,
and BT algorithms: 20×20 coarse mesh
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Figure 4.8: Comparison of relative errors for fine, coarse and reduced models

For a final set of examples, we consider a four-dimensional permeability field

defined by κ(x, µ) = µ1κ1(x) + µ2κ2(x) + µ3κ3(x) + µ4κ4(x), where the values

(µ1, µ2, µ3, µ4) are assumed to be drawn from [0, 1]4. We introduce a slight abuse

of notation by using κ1 and κ2 to denote different fields than the two-dimensional

case before. See Figure 4.9 for an illustration of the individual fields for the current

four-dimensional case. For all subsequent examples we use fixed values of µ1 = 0.4,

µ2 = 0.7, µ3 = 0.3, and µ4 = 0.8. In order to generate the snapshot space in this case

(cf. (4.3)) we use three equally spaced points in each dimension and keep Li = 12

eigenfunctions so that Msnap = 34×12 = 972.

In compliance with the two-dimensional problem, we offer an analogous set of
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dim(Von) [Nc] Fine-Coarse Error (%) Coarse-BT Error (%) BT Size [Nr]

364 1.35 4.15 20
364 1.35 2.00 50
364 1.35 1.42 80
364 1.35 0.21 110

607 0.34 1.30 60
607 0.34 0.81 90
607 0.34 0.33 120
607 0.34 0.15 150

850 0.14 0.82 100
850 0.14 0.27 150
850 0.14 0.13 200
850 0.14 0.05 250

Table 4.5: Measurable output errors for a variety of reduced model dimensions at
steady state for a four-dimensional problem

examples. The time step for these examples is chosen to be ∆t = 1×10−4 and we

run the simulations for a total number of 40 time steps. For this set of results we

limit ourselves to a 10×10 coarse mesh configuration with online space dimensions

of Nc = 364, 607, and 850. We offer a set of output illustrations corresponding to

the fine, coarse, and reduced models in Figures 4.10 and 4.11. As before, we see

that the respective outputs at a variety of fixed times are nearly indistinguishable.

Furthermore, we see from Table 4.5 and Figure 4.12 that we are able to determine

a suitable reduced dimension based on the corresponding output errors. And as

expected, Table 4.6 shows that this range of online space and reduced dimensions

offers serial simulation times that are smaller than the fine-scale solve. As before,

the Nc = 364 case yields the best timing while still producing errors that are less

than 1.5%.
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Figure 4.9: Permeability coefficients for a four-dimensional parameter-dependent
problem

4.4 Conclusions

In this section we propose a local-global model reduction technique for the accu-

rate calculation of output states of a parameter-dependent, single-phase flow model.

We treat the problem using a combined approach in which GMsFEM is used as an

effective local model reduction tool, and BT is used as an effective global model

reduction tool. GMsFEM hinges on the independent construction of a set of multi-

scale basis functions that are used to form a lower-dimensional coarse solution space.

The localized multiscale basis function computations are cast in the framework of

an offline-online procedure in which a respective set of eigenvalue problems are used
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Figure 4.10: Time variant output comparisons for a four-dimensional problem

to capture the underlying behavior of the system. Since the computation of the

snapshots and offline space accounts for a one-time preprocessing step, the online

coarse space may be cheaply constructed for a fixed input state. Given the locally

reduced coarse system, we then apply balanced truncation (BT) to further reduce

the size of the system while maintaining a suitable level of output state accuracy.

BT is a global model reduction technique in which the input-output mapping is

approximated through the spectral construction of a reduced-order model, and re-
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Figure 4.11: Steady state output comparisons for a four-dimensional problem

System Size Time (sec)

Fine 10201 78.3

GMsFEM (Online) 364 8.3
BT 80 1.3
GMsFEM-BT 80 9.6

GMsFEM (Online) 607 16.9
BT 120 6.6
GMsFEM-BT 120 23.5

GMsFEM (Online) 850 21.3
BT 200 22.4
GMsFEM-BT 200 43.7

Table 4.6: Computational timing comparisons between the fine, GMsFEM online,
and BT algorithms for a four-dimensional problem

quires the solution of a set of Lyapunov equations. The efficiency of the proposed

method depends on the size of the online coarse space, due to the fact that the Lya-

punov equations represent a main source of computational expense. However, the

GMsFEM-BT approach is shown to be quite flexible with respect to the online space

and reduced dimensions, and may be readily modified in order to ensure that the

resulting output errors are comparable. In turn, the associated numerical examples

suggest that the proposed method is a suitable approach for closely approximating

the output state of the parameter-dependent, single-phase model equation.
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5. COARSE-GRID MODEL REDUCTION WITH BALANCED TRUNCATION

FOR FLOWS IN TIME-VARYING HETEROGENEOUS POROUS MEDIA

5.1 Local-global model reduction for a time-varying system

In this section, we propose a local-global model reduction technique that combines

GMsFEM method with BT for a time-varying system. As in Section 4, we use the

GMsFEM as a local model reduction technique. But as a global model reduction

technique, a special computationally efficient form of a time-varying BT is used. We

offer a brief outline of the general procedure below.

We describe a time-variant model as following. Find a solution p(x, t) of the

system

∂p

∂t
= div

(
κ(x; t)∇p

)
+ f(u; t) in D, (5.1a)

p(t) = g(t) on ∂D, (5.1b)

where the input (or control) u ∈ Rm is given, D is a domain in R2, the right hand

side f(u; t) is square integrable and depends linearly on u, g denotes the boundary

condition. The above model is solved along with a specified initial condition p(x, 0) =

p0(x). We also suppose that an output is given as q(t) = C(t)p(t).

For completeness, we rewrite the Equations (4.13) on a coarse grid (in a discrete

setup) for a time-variant case. We denote the transformation matrix which was

obtained by GMsFEM as R ∈ RNf×Nc and the coarse-scale equation can be written

as

RTM(t)R(pc)t = −RTA(t)Rpc +RTB(t)u (5.2)

73



or

(pc)t = −Ac(t)pc +Bc(t)u, (5.3)

where Ac(t) = (RTM(t)R)−1RTA(t)R, Bc(t) = (RTM(t)R)−1RTB(t), and pc de-

notes the coarse scale solution. Similarly, an approximation of the measurable output

may be written as qc(t) = C(t)Rpc(t) = Cc(t)pc(t).

The next step is to apply BT for the time-varying system (5.3). We use the

special computationally efficient form of a time-variant BT that was introduced in

[53, 54]. The detailed algorithm is formulated in the next Section. In order to find a

suitable approximation for the input-output map, we consider the transfer function

G(t). The approximation of G(t) can be accomplished by finding projection matrices,

namely U(t) and V (t), such that Equation (5.3) can be projected onto a much smaller

subspace. To this end, the sequence of reduced-order model Gr(t) can be computed

by setting

Ar(t) = U(t)Ac(t)V (t); Br(t) = U(t)Bc; Cr(t) = CcV (t). (5.4)

We remind the fact that the number of truncated states can be chosen according

to error estimates that are expressed through Hankel singular values (HSV’s).

Finally, a globally reduced system can be written as following

(pr)t = −Ar(t)pr +Br(t)u, (5.5a)

qr = Cr(t)pr, (5.5b)

such that Ar(t) has size Nr×Nr, where Nr � Nc � Nf . The performance of the

proposed method will be assessed by comparing the measurable output quantities
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q(t), qc(t), and qr(t) resulting from Equations (5.1), (5.3), and (5.5), respectively.

As an approximation for the suggested reduced time-variant system (5.5), the

discrete-time formulation is given below

pr(tk+1) =
(
I + ∆tAr(tk)

)−1
pr(tk) +

(
I + ∆tAr(tk)

)−1
∆tBr(tk)u, (5.6a)

qr(tk+1) = Cr(tk)pr(tk+1). (5.6b)

5.1.1 Implementation of balanced truncation approach for time-varying systems

Sandberg developed the algorithm for a time-variant BT in [53] and the following

theorem was proved.

Theorem. In a case when G is stable and has initial realization at rest, there

exists a reduced-order model Ĝ : ‖G−Ĝ‖2 < γ with realization of order n̂(k) ≤ n(k) if

and only if there exist bounded semi-definite solutions P (t) - controllability Gramian,

Q(t) - reachability Gramian to

Ac(k)P (k)(Ac(k))T − P (k + 1) +Bc(k)(Bc)T (k) < 0, (5.7)

(A(k)c)TQ(k + 1)Ac(k)−Q(k) + (Cc(k))TCc(k) < 0, (5.8)

and λmin(P c(k) · Qc(k)) = γ with multiplicity n̂(k)− n(k) for all k. Here P (k) and

Q(k) are discrete time instants of P (t) and Q(t).

Optimal Gramians can be calculated as following:

Ac(k)P (k)(Ac(k))T +Bc(k)(Bc(k))T = P (k + 1), (5.9a)

P (0) = 0, (5.9b)
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(Ac(k))TQ(k + 1)Ac(k) + (Cc(k))TCc(k) = Q(k), (5.10a)

Q(N + 1) = 0. (5.10b)

Time-varying BT algorithm. To find an output q given coarse matrices Ac,

Bc, Cc and M c:

INPUT coarse matrices Ac, Bc, Cc and M c; a size k of the reduced system; a size

N of the coarse system; a total number Nt of time steps; a time step dt

OUTPUT approximated output q of a reduced system

Step 1 Set i = 1, P − zero N ×N matrix (the initial controllability Gramian),

Q−zero N×N matrix (the initial observability Gramian), pr−zero k×1 column

(the solution of the reduced system).

Step 2 For i ≤ Nt do Steps 3-12.

Step 3 Update Ac, Bc, Cc,M c.

Step 4 Bs = (M c + dt ∗ Ac) \ Bc; S = (M c + dt ∗ Ac) \M c. (Calculate

auxiliary terms.)

Step 5 P = S ∗ P ∗ S ′ +Bs ∗Bs′. (Update the controllability Gramian)

Step 6 Set j = 1.

Step 7 For j ≤ Nt− i+ 1 do Step 8.

Step 8 Q = S ′ ∗ Q ∗ S + Cs′ ∗ Cs. (Update the observability

Gramian)

Step 9 Find T - the matrix of the right eigenvectors of the matrix P ∗Q,

where the eigenvalues of P ∗Q are sorted in a descending order.

Step 10 Ar = T ′ ∗Ac ∗ T ;Br = T ′ ∗Bc;Cr = Cc ∗ T ;Fr = T ′ ∗ F c;Mr =

T ′ ∗M c ∗T. Next, cut all matrices Ar, Br, Cr, Fr, Cr by eliminating (k+ 1)th, ..., Nth
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columns and rows. (Calculate reduced matrices.)

Step 11 Solve (pr)t = −Ar(t)pr +Br(t)u.

Step 12 Calculate q = Cr ∗ pr. (Calculate the final output.)

Computational advantage.

First, note that the original method for computing Gramians involves SVD cal-

culations (using Cholesky factors) and it has computational cost O(n3). While the

new method significantly reduce the number of calculations due to its structure.

Second, for varying right hand side F c the Gramians P and Q can be reused.

Therefore, P and Q can be calculated once and at each time step we need to calculate

the output.

The numerical illustration is proposed in the next section.

5.2 Numerical results

In order to study the implementation of the proposed balanced truncation ap-

proach for time-varying systems we consider three numerical cases. The first choice

of permeability κ(x, t) = κ0(x)·exp(t) is referred as a separable case, where the initial

permeability field κ0(x) = κ(x, 0) has the structure shown in Figure 5.1. Notice that

this permeability field κ0(x) exhibits a high-contrast structure, where the contrast is

taken to be κmax/κmin ≈ 105−106. The second and the third cases are non-separable

examples. We use Nt as a total number of time steps.

The first non-separable case has the following permeability at a time step s:

κ1(x, t) = exp(c · s
Nt

), where

 c = 15 for a high-contrast region,

c = 1 otherwise.
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The second non-separable case has a permeability at a time step s as following:

κ2(x, t) = κ0(x) ·

 exp(1 + 4.5 · s
Nt

) for a high-contrast region,

1 otherwise.

The separable permeability coefficient is illustrated in Figure 5.2 and non-separable

cases are represented in Figures 5.3-5.4 for some time instants.

A domain, boundary and initial conditions, a right hand side and an output are

chosen as in the first set of examples in Section 4. We consider the two-dimensional

unit domain D = [0, 1]×[0, 1], we assume a homogeneous boundary condition p = 0

and as the initial condition we use p0(x) = 0. We let f(u) be a piecewise constant

forcing parameter on a coarse grid, such that the jth column of B is defined as

B(:,j) =

 1 if x ∈ Kj,

0 otherwise,

where we use Kj to denote the jth coarse element of the domain. In essence, the

matrix B is a mapping of a coarse-dimensional parameter u to the fine grid. For all

examples u is taken to be a multi-dimensional random parameter subordinated to the

coarse grid such that each component is uniformly distributed on [0, 1]. Additionally,

we assume that the output selection matrix is defined by C = BT . For simplicity of

computations, the output selection matrix and the right hand side don’t depend on

time. And finally, we discretize D into a 100×100 fine element mesh. In all cases

10×10 coarse mesh is considered with online space of dimension Nc = 564.

In order to justify GMsFEM, we list the illustration of the pressure fields for the

fine-scale system (see Figure 5.5) and for the coarse-scale system (see Figure 5.6) for

a non-separable case 1.
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Figure 5.1: Initial high-contrast permeability coefficient κ0

The rest of numerical results are devoted to comparing the outputs from the fine-

scale system and the coarse-scale system. We take a discrete, relative l2-norm scaled

by the coarse output norm. At each time step we wish to choose the dimension such

that the fine to coarse errors ‖qf,i−qc,i‖2 and the coarse to reduced errors ‖qc,i−qr,i‖2

are comparable (where i is the time instant).

Table 5.1 compares the errors between the outputs of the coarse-scale system

and of the reduced system using a variety of time steps and a variety of reduced

system size for a separable case. Tables 5.2 and 5.3 contain numerical results for a

non-separable case 1 and a non-separable case 2, respectively. We test BT reduced

dimensions of Nr = 5, 10, 20 and time steps of Nt = 5, 10, 20, 50 for the same time

interval dt = 0.01. We see that the fine to coarse system error decreases as the

number of time steps increases and the coarse to reduced system error decreases as

the BT reduced dimensions increases. We remind that the size of coarse space is 564

and the ’optimal’ size of reduced space is 20, while the fine-scale system is of size
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Figure 5.2: High-contrast permeability coefficients for a separable case, 10 time steps

Nf = 10201.

The next sets of numerical results verify the computational efficiency of the pro-

posed method. Tables 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 contain computational times

corresponding to the fine, coarse, and reduced dimension solution procedures. All

calculations were completed serially on a dual-core desktop workstation where each

core uses two Intel Core i3 2.6 GHz processors, each with 8GB of RAM. We note

that a parallel implementation of the suggested method would likely provide the

online GMsFEM computations negligible, but still computational savings are signif-

icant. Tables 5.4, 5.5 are devoted to a separable case; Tables 5.6, 5.7 are devoted

to a non-separable case 1 and Tables 5.8, 5.9 are devoted to a non-separable case 2.

Since all above tables show similar numerical observations, we concentrate on Table

5.4 for a separable case with 10 time steps. The first row shows the required time

to calculate a solution for the given fine-scale system. Next row is the actual time

of finding a solution by the online GMsFEM approach. The last time is obtained

by adding three components: a time for the construction of the GMsFEM online
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Time steps [Nt] Fine-Coarse Error (%) Coarse-BT Error (%) BT Size [Nr]

5 1.54 4.37 5
5 1.54 2.33 10
5 1.54 1.12 20

10 1.52 4.45 5
10 1.52 2.34 10
10 1.52 1.12 20

20 1.52 4.49 5
20 1.52 2.36 10
20 1.52 1.12 20

50 1.51 4.52 5
50 1.51 2.37 10
50 1.51 1.12 20

Table 5.1: Measurable output errors for a variety of reduced model dimensions at
steady state: 10×10 coarse mesh ( dim(Von) [Nc] = 564, a separable case)

Time steps [Nt] Fine-Coarse Error (%) Coarse-BT Error (%) BT Size [Nr]

5 1.82 4.60 5
5 1.82 2.27 10
5 1.82 1.12 20

10 2.09 4.89 5
10 2.09 2.66 10
10 2.09 1.23 20

20 2.27 8.87 5
20 2.27 2.97 10
20 2.27 1.38 20

50 2.39 11.31 5
50 2.39 3.24 10
50 2.39 1.47 20

Table 5.2: Measurable output errors for a variety of reduced model dimensions at
steady state: 10×10 coarse mesh ( dim(Von) [Nc] = 564, a non-separable case 1)
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Figure 5.3: High-contrast permeability coefficients for a non-separable case 1, 10
time steps

space, a time for solving the Lyapunov equations, and a time for finding a solution

for the reduced GMsFEM-BT system. This numerical example shows a significant

reduction in the computational cost. In particular, a computational time of 563.23

seconds for the fine-scale solve can be serially reduced to a time of 7.09 seconds for

the reduced model. Figures 5.7, 5.8 and 5.9 give an illustration of fine, coarse and

reduced outputs for a separable case, a non-separable case 1 and non-separable case

2, respectively.
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Time steps [Nt] Fine-Coarse Error (%) Coarse-BT Error (%) BT Size [Nr]

5 1.34 6.15 5
5 1.34 2.98 10
5 1.34 1.29 20

10 1.34 5.97 5
10 1.34 2.90 10
10 1.34 1.25 20

20 1.33 5.88 5
20 1.33 2.86 10
20 1.33 1.24 20

50 1.33 5.82 5
50 1.33 2.83 10
50 1.33 1.23 20

Table 5.3: Measurable output errors for a variety of reduced model dimensions at
steady state: 10×10 coarse mesh ( dim(Von) [Nc] = 564, a non-separable case 2)

System Size Time (sec)

Fine 10201 563.23

GMsFEM (Online) 564 3.71
BT 100 3.38
GMsFEM-BT 100 7.09

Table 5.4: Computational timing comparisons between the fine, GMsFEM online,
and BT algorithms: a separable case, 10 time steps

System Size Time (sec)

Fine 10201 3160.72

GMsFEM (Online) 564 21.65
BT 100 28.71
GMsFEM-BT 100 50.36

Table 5.5: Computational timing comparisons between the fine, GMsFEM online,
and BT algorithms: a separable case, 50 time steps
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Figure 5.4: High-contrast permeability coefficients for a non-separable case 2, 10
time steps

System Size Time (sec)

Fine 10201 553.04

GMsFEM (Online) 564 5.04
BT 20 3.41
GMsFEM-BT 20 8.59

Table 5.6: Computational timing comparisons between the fine, GMsFEM online,
and BT algorithms: a non-separable case 1, 10 time steps

5.3 Conclusions

In this section we consider a time-varying system that represents a typical source

of computational expense. A new robust and computationally efficient method is

suggested, and it is based on combing local and global model reduction techniques.

As a local model reduction, we use the GMsFEM and as a global model reduction

a special form of time-varying BT. We would to remark that such form of time-

varying BT doesn’t require calculations of ”expensive” Lyapunov equations in each

time interval.
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System Size Time (sec)

Fine 10201 2708.89

GMsFEM (Online) 564 23.33
BT 20 27.75
GMsFEM-BT 20 63.01

Table 5.7: Computational timing comparisons between the fine, GMsFEM online,
and BT algorithms: 10×10 coarse mesh, a non-separable case 1, 50 time steps

System Size Time (sec)

Fine 10201 566.67

GMsFEM (Online) 564 4.48
BT 20 2.87
GMsFEM-BT 20 7.35

Table 5.8: Computational timing comparisons between the fine, GMsFEM online,
and BT algorithms: a non-separable case 2, 10 time steps

System Size Time (sec)

Fine 10201 2885.71

GMsFEM (Online) 564 21.36
BT 20 28.05
GMsFEM-BT 20 49.41

Table 5.9: Computational timing comparisons between the fine, GMsFEM online,
and BT algorithms: 10×10 coarse mesh, a non-separable case 2, 50 time steps
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Figure 5.6: Pressure fields for a non-separable case 1, 10 time steps, a coarse-scale
system
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Figure 5.7: Time variant output comparisons for a separable case, 10 time steps
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Figure 5.8: Time variant output comparisons for a non-separable case 1, 10 time
steps
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Figure 5.9: Time variant output comparisons for a non-separable case 2, 10 time
steps
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6. BALANCED TRUNCATION METHOD FOR COUPLED FLOW AND

TRANSPORT

6.1 Local-global model reduction

In this section we consider a new local-global model reduction technique based

on BT approach for solving coupled flow and transport equations. A suggested

method combines the GMsFEM with BT approach for a mixed formulation. The

mixed formulation provides a mass conservative velocity field and is important for

subsurface applications. In this section, we use coarse-grid models for both flow and

transport equations. The mixed formulation used in the section is presented in [16].

6.2 Generalized Multiscale Finite Element Method for coupled flow and transport

6.2.1 Multiscale solution space V v
H

First, we present the construction for the snapshot space V v
s . As in [16], we define

the local problem as following. For each Ei ∈ EH , on its neighboring coarse cell K,

find pij ∈ Qh, ψ
i
v,j ∈ V v

h , such that

ψiv,j + κ∇pij = 0 in K,

∇ · ψiv,j = αij in K,

ψiv,j · n = 0 on ∂K\Ei,

ψiv,j · n = δij on Ei,

(6.1)

where j varies over all fine-grid edges on Ei, α
i
j is a constant on K, n is a fixed

unit-normal vector on ∂K, and δij(x) is defined on Ei with respect to the fine-grid
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edges such that

δij =

 1, on eij,

0, on the other fine-grid edges.

Here, Qh is piecewise constant basis functions.

Next we solve the local problems with respect to Ei and a local snapshot space

can be obtained as V v,i
s = span{ψiv,j : 1 ≤ j ≤ Ji}, where Ji is the number of the

fine-grid edges on Ei. The snapshot space is constructed as following

V v
s =

⋃
Ei

V v,i
s = span{ψiv,j : 1 ≤ j ≤ Ji, 1 ≤ i ≤ Ne}. (6.2)

After renumerating the snapshot functions by a single index, we obtain the coarse-

to-fine snapshot matrix Rv
s =

[
ψv1 , ψ

v
2 , · · · , ψvLs

]
, where Ls =

Ne∑
i=1

Ji.

Next, we construct the offline space V v
off. We define the eigenvalue problem in

V v,i
s as following:

Aoff
v Ψv

k = λkM
off
v Ψv

k, (6.3)

where Aoff
v =

∫
Ei

(ψiv,s · n)(ψiv,t · n), and Moff
v =

∫
ωi

1
κ
ψiv,s · ψiv,t.

In order to compute the offline space, we need to select Lioff eigenvectors of (6.3)

corresponding to the smallest Lioff eigenvalues, and then calculate the element φiv,k =
Ji∑
j=1

Ψv
k,jψ

i
v,j for k = 1, 2, · · · , Lioff. Finally, the local offline space is constructed as

V v,i
off = span{φiv,k : 1 ≤ k ≤ Lioff} and the offline space is

V v
off =

⋃
Ei

V v,i
off = span{φiv,k : 1 ≤ k ≤ Lioff, 1 ≤ i ≤ Ne}. (6.4)

After renumerating the basis functions by a single index, the offline matrix can

be obtained as Rv
off =

[
φv1, φ

v
2, · · · , φvLoff

]
, where Loff =

Ne∑
i=1

Lioff.
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We define the multiscale solution space as V v
H = V v

off. In order to approximate vH ,

we need to solve the following problem. Find pH ∈ QH , vH ∈ V v
H such that

∫
D

1

κ
vH · ṽ =

∫
D

(∇ · ṽ)pH for ∀ṽ ∈ V v
H ,∫

D

(∇ · vH)w̃ = 0 for ∀w̃ ∈ QH ,

(6.5)

where the boundary condition pH = g.

6.2.2 Multiscale solution space V w
H

The process is similar as for the multiscale solution space V v
H ([16]). A local

problem corresponding to each coarse-grid edge Ei ∈ EH is defined as following.

Find cij ∈ Qh, ψ
i
w,j ∈ V w

h , such that

ψiw,j +G∇cij − vHcij = 0 in K,

∇ · ψiw,j = αij in K,

ψiw,j · n = 0 on ∂K\Ei,

ψiw,j · n = δij on Ei.

(6.6)

The snapshot space is constructed as

V w
s =

⋃
Ei

V w,i
s = span{ψiw,j : 1 ≤ j ≤ Ji, 1 ≤ i ≤ Ne} (6.7)

and the coarse-to-fine snapshot matrix as Rw
s =

[
ψw1 , ψ

w
2 , · · · , ψwLs

]
.
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In order to find a snapshot space Ww
s , we solve the adjoint problem of (6.6)

ziw,j −G∇pij = 0 in K,

∇ · ziw,j +
1

G
vH · ziw,j = αij in K,

ziw,j · n = 0 on K\Ei,

ziw,j · n = δij on Ei.

(6.8)

The snapshot space Ww
s is formed by the snapshot functions ziw,j for all Ei ∈ T H .

As before, the local offline space V w,i
off for wH can be obtained by solving the

following eigenvalue problem in V w,i
s :

Aoff
w Ψw

k = λkM
off
w Ψw

k , (6.9)

where Aoff
w =

∫
Ei

(ψiw,s · n)(ψiw,t · n), Moff
w =

∫
ωi
G̃ψiw,s · ψiw,t, G̃ = 1+|vH |

G
. Then the

offline space is V w
off =

⋃
Ei
V w,i

off = span{φiw,k : 1 ≤ k ≤ Lioff, 1 ≤ i ≤ Ne} and the

offline matrix is Rw
off =

[
φw1 , φ

q
2, · · · , φwLoff

]
.

We constructed V w
H = V w

off and the testing space

Ww
H = {z ∈ Ww

s : (z − w) · n|E = 0, for all E ∈ EH , for some w ∈ V w
H }, (6.10)

where n is the unit-normal vector of the coarse-grid edge E. Finally, the GMsFEM

solution cH , wH can be computed by (2.21).
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6.3 Novel model reduction approach based on Balanced Truncation

We write the discretized formulation of (2.17) on a fine grid as following:

( 0 0

0 Mc

+
4t
2
·

 Mw C +G

−CT 0

) ·
w(tn+1)

c(tn+1)

 =

=

( 0 0

0 Mc

− 4t
2
·

 Mw C +G

−CT 0

) ·
w(tn)

c(tn)

+4t ·

 0

f(tn+1)

.
After performing GMsFEM, we denote a trial and a testing snapshot matrices

as Rtrial =

 Rw 0

0 R
(1)
c

 and as Rtest =

 Rw 0

0 R
(2)
c

, respectively. Therefore, the

discretized formulation on a coarse grid can be written as

RT
test ·

( 0 0

0 Mc

+
4t
2
·

 Mw C +G

−CT 0

) ·Rtrial ·

w(tn+1)

c(tn+1)

 =

RT
test ·

( 0 0

0 Mc

− 4t
2
·

 Mw C +G

−CT 0

) ·Rtrial ·

w(tn)

c(tn)

+

+4t ·RT
test ·

 0

f(tn+1)

,
and the coarse system can be written in a compact form for BT as

P n+1
H :=

wH(tn+1)

cH(tn+1)

 = AH ·

wH(tn)

cH(tn)

+BH ·

 0

f(tn+1)

,
where

94



AH =

(
RT
test ·

( 0 0

0 Mc

+ 4t
2
·

 Mw C +G

−CT 0

) ·Rtrial

)
·Rtrial

)−1

·

·RT
test ·

( 0 0

0 Mc

− 4t
2
·

 Mw C +G

−CT 0

) ·Rtrial,

BH =

(
RT
test ·

( 0 0

0 Mc

 + 4t
2
·

 Mw C +G

−CT 0

) · Rtrial

)−1

· 4t ·RT
test,

and wH , cH denote the coarse scale solution. Similarly, an approximation of the

measurable output may be written as qH = CRPH = CHPH .

We denote FH = BH ·

 0

fH(tn+1)

 and we have the following coarse system

P n+1
H = AHP

n
H + FH ,

qn+1
H = CHP

n+1
H .

(6.11)

The next step is to apply BT approach. We calculate the Gramians by solving

the following Lyapunov equations:

WobAH +
(
AH
)T
Wob + (CH)TCH = 0,

AHWco +Wco

(
AH
)T

+ FH(FH)T = 0,

(6.12)

where we denote the observability Gramian as Wob and the controllability Gramian

as Wco. Then having Cholesky decompositions of Gramians: Wob = LTobLob and

Wco = LcoL
T
co, we can solve the spectral problems

LTcoWobLco ξi = ρiξi for i = 1, . . . , Nr, (6.13)
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where Nr is the number of first ordered eigenvalues and normalized eigenvectors of

LTcoWobLco and we can choose Nr according to the desired error. The eigenvalues

and (row) eigenvectors of LTobWcoLob are given by {ρi} and {ζi} = {σ−1
i ξTi L

T
coL

T
ob}

(i = 1, . . . , Nr), where σi = ρ
1/2
i . With the respective eigenvalues and eigenvectors

in place we form the matrices U and V such that

V = Lco

[
ξ1σ
−1/2
1 · · · ξNrσ−1/2

Nr

]
and U =


σ
−1/2
1 ζ1

...

σ
−1/2
Nr

ζNr

Lob,

with UV = INr . The reduced order model of Eq. (6.11) is finally formed by creating

the matrices AR = UAHV , FR = UFH , and CR = CHV . Finally, we arrive at the

reduced dimension model:

P n+1
R = ARP

n
R + FR,

qn+1
R = CRP

n+1
R .

(6.14)

We would like the output qR to approximate qH .

Note that since the method is applied directly to the online coarse-scale system

(which has already been reduced using local GMsFEM), the computational cost can

be significantly reduced.

6.4 Numerical results

In order to study the performance of the proposed GMsFEM-BT approach for

approximating coupled flow and transport equations we consider two numerical cases.

For both cases we have the two-dimensional unit domain D = [0, 1]×[0, 1] and the

diffusivity G = 1. The final time is taken to be T = 0.1. We use 10 time steps

(∆t = 0.01).
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Figure 6.1: High-contrast permeability coefficient κ1 and the source term f1 for the
first case

The first case consists of a permeability κ1(x), the source term f = f1 as shown in

Figure 6.1. Note that this permeability field κ1(x) exhibits a random high-contrast

structure, where the contrast is taken to be κmax
1 /κmin

1 ≈ 104. The boundary condi-

tion is g = −7xy. We discretize D into a 100×100 fine element mesh.

The second case consists of a permeability κ2(x), the source term f = f2 as shown

in Figure 6.2. The boundary condition for this case is g = 10(x− y). We discretize

D into a 200×200 fine-grid element mesh. We define the output coefficients for both

cases to be the average concentration in the coarse elements. The velocity fields are

shown in Figures 6.3 and 6.4 (see [16]).

In order to show the accuracy of the GMsFEM, we list the show the concentrations

for fine-scale system (see Figure 6.5) and for coarse-scale system (see Figure 6.6) for

the first case at different time instants. We need to make a note about the fine-scale
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Figure 6.2: High-contrast permeability coefficient κ2 and the source term f2 for the
second case

solution we used in Figure 6.5. The approximation of the fine-scale solution for the

velocity field was calculated having one basis function for the pressure field and three

basis functions for the velocity field.

The rest of numerical results are devoted to comparing the outputs from the

fine-scale system, the coarse-scale system and the reduced system. We denote the

fine-scale solution at the last time step as PF , the GMsFEM solution as PH , and

the reduced solution obtained by BT as PR, where P = (w, c)′ as before. Then we

can calculate all outputs qF = CFPF , qH = CHPH , and qR = CRPR. Notice that all

inputs are calculated at the specific time instant (for simplicity, we omit the ”time

index”). Applying the triangle inequality, we have

‖qF − qR‖2 ≤ ‖qF − qH‖2 + ‖qH − qR‖2. (6.15)
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Figure 6.3: Velocity (−7b1,−7b2) for the first case

We would like to choose the dimension such that the errors ‖qF−qH‖2 and ‖qH−qR‖2

are comparable. For further computations we take a discrete, relative l2-norm scaled

by the coarse output norm.

For the first case, a 10×10 coarse mesh is considered and for the second case,

a 20×20 coarse mesh is considered with online spaces of dimension Nc = 760 and

Nc = 2920, respectively. Tables 6.1 and 6.2 compare the errors between the outputs

of coarse-scale system and the reduced system using a variety of reduced system

size. For the first case, we test BT reduced dimensions of Nr = 3, 4, 5 and we

observe that the error between the coarse-scale system and the reduced coarse-scale

system decreases as the BT reduced dimension increases. We remind that the size

of coarse space is 760 and the ’optimal’ size (defined as the global reduced-order

system size, which yields an error comparable to the error between the coarse-grid
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Figure 6.4: Velocity (−10b1,−10b2) for the second case

and fine-grid systems) of reduced space is 3− 4, while the fine-scale system is of size

Nf = 30200. For the second case, the optimal ’size’ for the reduced system is 4− 5

global modes, while the fine-scale system is of size Nf = 120400.

Table 6.3 contains a set of computational times corresponding to the fine, coarse,

and reduced dimension solution procedures. All calculations were completed serially

on a dual-core desktop workstation where each core uses two Intel Core i3 2.6 GHz

processors, each with 8GB of RAM. We notice that a parallel implementation of the

suggested method would likely provide the online GMsFEM computations negligible,

but still computational savings are significant. The first row shows the required time

to calculate a solution for the given fine-scale system. Next, the actual time of

finding a solution by the online GMsFEM approach. The last time is obtained by

adding three components: a time for the construction of the GMsFEM online space,
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Figure 6.5: Fine-scale solution c for the first case at 1, 5 and 10 time steps
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Figure 6.6: Coarse-scale solutions c for the first case at 1, 5 and 10 time steps

a time for solving the Lyapunov equations, and a time for finding a solution for the

reduced GMsFEM-BT system. We can observe that the computational time for the

GMsFEM is small compared to the BT. Also, the computational time of performing

BT is very small. Performing BT on the fine grid is very expensive. Figures 6.7 and

6.8 give an illustration of the fine, coarse and reduced outputs for the first and the

second cases, respectively. We observe from these figures that BT coarse-grid output

approximation is close to the coarse-grid output approximation.

BT Dimension [Nr] Fine-Coarse Error (%) Coarse-BT Error (%)

3 5.93 9.66
4 5.93 4.79
5 5.93 1.28

Table 6.1: Measurable output errors for the first case
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BT Dimension [Nr] Fine-Coarse Error (%) Coarse-BT Error (%)

3 10.68 20.59
4 10.68 15.19
5 10.68 6.96

Table 6.2: Output errors for the second case

System Size Time (sec)

Fine 30200 298.63

GMsFEM (Online) 760 0.92
BT 4 4.22
GMsFEM-BT 4 5.14

Table 6.3: Computational timing comparisons between the fine, GMsFEM online,
and BT algorithms for the first case

6.5 Conclusions

In this section we develop a reduced-order modeling technique for a coupled

flow and transport equation. In order to have mass conservation we consider a

mixed formulation for both flow and transport equations. GMsFEM constructs the

multiscale spaces for the flux and the velocity by choosing the snapshot spaces and

implementing local spectral decompositions. For further model reduction we use BT

approach on a coarse-scale system for a mixed formulation. From the numerical

examples, we observe that suggested coupled GMsFEM and BT technique allows to

reduce the model significantly.
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(b) GMsFEM (Nc = 760)
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(c) BT (Nr = 4)

Figure 6.7: Output comparisons for the first case at 1, 5, and 10 time step instants
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(b) GMsFEM (Nc = 2920)
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Figure 6.8: Output comparisons for the first case at 1, 5, and 10 time step instants
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7. CONCLUSIONS

Problems involving heterogeneous porous media applications entail prohibitively

expensive computations due to the large-scale fields and extremely complex geom-

etry. The proposed work is devoted to creating computationally efficient methods

based on combining model reduction techniques such as Balanced Truncation (BT)

approach, Generalized Multiscale Finite Element Method (GMsFEM), homogeniza-

tion techniques. Four different model settings are considered.

The first case contains a model for flows in porous media with separable scales.

In this section, two main objectives are achieved: a robust and inexpensive hier-

archical local-global reduced-order modeling technique to solve problems involving

heterogeneous porous media applications is developed and a modeling technique is

further applied to obtain a solution for a single-phase compressible flow.

The second case is devoted to a model for a parameter-dependent, single-phase

flow in general heterogeneous porous media. The input-output formulation of the

problem is considered. The main result is a creating the offline-online local-global

model reduction technique, where GMsFEM is used as a local model reduction tool

and BT as a global model reduction tool. The localized multiscale basis function

computations are cast in the framework of an offline-online procedure in which a

respective set of eigenvalue problems are used to capture the underlying behavior of

the system. Since the computation of the snapshots and offline space accounts for a

one-time preprocessing step, the online coarse space may be cheaply constructed for

a fixed input state.

In the next section, the second case is extended to a time-dependent permeability

problem. The main challenge of this problem is a computational cost. The special
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time-varying GMsFEM-BT approach allows solving the problem and obtaining time

reduction due to the use of time-varying BT.

The last case is devoted to a convection-dominated flow and transport coupled

system. We consider a mixed formulation for both flow and transport equations

in order to preserve the mass conservation. As the first step of the process, the

coarse grid solver from [16] is applied. This solver uses only a few multiscale basis

functions in each coarse block to solve the coupled system. As the second step, the

BT technique is applied on the obtained coarse system. The main contribution is

a development of a robust model reduction technique that allows to significantly

reduce the size of the system and save the computational timing.
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[42] T. Hughes, G. R. Feijóo, Gonzalo, L. Mazzei, J. -B. Quincy, The variational mul-

tiscale method—a paradigm for computational mechanics, Computer Methods in

Applied Mechanics and Engineering, Vol. 166(1-2), pp. 3-24, 1998.

[43] P. Jenny, S. H. Lee, H.A. Tchelepi, Multi-scale finite-volume method for elliptic

problems in subsurface flow simulation, Journal of Computational Physics, Vol.

187(1), pp. 47-67, 2003.

[44] V. Jikov, S. Kozlov, O. Oleinik, Homogenization of differential operators and

integral functionals, Springer-Verlag, 1994, Translated from Russian.

[45] T. Kailath, Linear systems, Prentice-Hall, New Jersey, 1980.

[46] W. J. Lee, C. W. Hopkins, Characterization of tight reservoirs, SPE Journal of

Petroleum Technology, Vol. 46(11), pp. 956-964, 1994.

[47] E.B. Lee, L. Markus, Foundations of optimal control theory, The SIAM Series

in Applied Mathematics, John Wiley & Sons, 1967.

[48] T. Li, P. Chang-Yi Weng, E. King-wah Chu, Wen-Wei Lin, Large-scale Stein and

Lyapunov equations, Smith method, and applications, Numerical Algorithms,

Vol. 63, pp. 727-752, 2013.

[49] N. C. Nguyen, A multiscale reduced-basis method for parameterized elliptic par-

tial differential equations with multiple scales, Journal of Computational Physics,

Vol. 227(23), pp. 9807-9822, 2008.

[50] M. Presho, A. Protasov, E. Gildin, Local-global model reduction of parameter-

dependent, single-phase flow models via balanced truncation, Journal of Compu-

tational and Applied Mathematics, Vol. 271, pp. 163-179, 2014.

[51] G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis approximation and a

posteriori error estimation for affinely parameterized elliptic coercive partial dif-

112



ferential equations: application to transport and continuum mechanics, Archives

of Computational Methods in Engineering, Vol. 15(3), pp. 229-275, 2008.

[52] J. Sabino, Solution of large-scale Lyapunov equations via the block modified

Smith method, PhD Dissertation, Rice University, Houston, 2006.

[53] H. Sandberg, Model reduction for linear time-varying systems, Department of

Automatic Control Lund Institute of Technology, PhD Dissertation, 2004.

[54] H. Sandberg, A. Rantzer, Balanced truncation of linear-varying systems, IEEE

transactions on automatic control, Vol. 49(2), pp. 217-229, 2004.

[55] E. D. Sontag, Mathematical control theory: deterministic finite dimensional

systems (2nd. edition), Text in Applied Mathematics, 6, Springer-Verlag, New

York, 1998.

[56] X.H. Wu, Y. Efendiev, T.Y. Hou, Analysis of upscaling absolute permeability,

Discrete and Continuous Dynamical Systems Series B, Vol. 2, pp. 185-204, 2002.

[57] K. Zhou, John C. Doyle, K. Glover, Robust and optimal control, Prentice-Hall,

New Jersey, 1996.

113


