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ABSTRACT 

By how much can a hospital reduce cost level while maintaining the service 

provided? In our problem, we estimate an input oriented measure of inefficiency and a 

cost function to understand the relationship between cost and number of performed 

procedures in the U.S. hospital industry. In addition, our model accounts for contextual 

variables which provide insights regarding cost drivers. For estimation, we use the 

method called Multivariate Bayesian Convex Regression (MBCR). 

Our data are composed from two databases. We use the American Hospital 

Association Annual Survey and the National Inpatient Sample provided by the 

Healthcare Cost and Utilization Program. Our cost measure is total expenditures and the 

output is number of procedures which is classified in four categories according to nature 

of service and type of operating room. The contextual variables (hospital size, region, 

teaching status and ownership) are selected using Bayesian Information Criterion (BIC). 

Many factors can impact costs level. Our results show that larger hospitals and 

teaching hospitals located in the Northeast are more cost inefficient. In the same way, 

private hospitals are less cost inefficient compared to public hospitals. Average cost 

inefficiency levels for an ~10% sample of all U.S. hospitals are 27%, 18% and 23% for 

years 2004, 2007 and 2011, respectively. Further, we found evidence that production in 

the U.S. hospital industry might be better characterized by the Regular Ultra-Passum 

Law than by a convex cost function. 
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1. INTRODUCTION

In order to improve health system and increase healthcare coverage, President 

Obama signed in 2010 the Patient Protection Affordable Care Act (ACA). The new 

policy promised a variety of benefits. However, it did not considered issues related to 

cost, sustainability and quality in its proposal and some believed the reform would turn 

the health system more bureaucratic and complex (Steinmetz, et al., 2013). Despite of 

the government investment in health, one cannot affirm that the system will be more 

efficient as more money is spent. Indeed, higher healthcare investment is not directly 

proportional to technical efficiency improvement (Varabyova and Schreyoegg, 2013). 

For instance, in 2012 the United States’ expenditures on health accounted for 

16.9% of GDP, which is 7.5 percentage points above the OECD average for the same 

year (OECD, 2014). Thirty-one percent of U.S. healthcare expenditures are spent solely 

on hospital care or approximately 5% of GDP (The Henry J. Kaiser Family Foundation, 

2012). Estimates of the excess cost in the system consistently exceed $750 billion and 

range as high as half of all healthcare expenditures (PricewaterhouseCoopers LLC, 

2009). Because hospitals make-up such a large portion of healthcare expenditures, 

hospitals are a potential large source of cost savings. Motivated by these factors, our 

research investigates the cost efficiency of hospitals. 

There are approximately 5,627 registered hospitals in the U.S. (American 

Hospital Association, 2016) with approximately 50% are Not-For-Profit Community 

Hospitals, approximately 20% are Investor-Owned Community Hospitals, approximately 
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20% are Local Government Community Hospitals, and the remainder are Federal, 

Psychiatric, or Nonfederal Long Term Care. Among these hospitals, 35% are Rural 

Community hospitals, which are more susceptible to close due to budget constraints and 

lack of demand. One attempt to minimize rural hospital closure is the Critical Access 

Hospital (CAH) program. Hospital that are critical access certified receive a cost-based 

reimbursement from Medicare instead of standard fixed rates in order to enhance 

economic performance. Nedelea and Fannin, (2013) argue under this payment scheme, 

hospitals tend to over supply services in an attempt to increase revenues as evidence by 

their estimates that cost inefficiency increases by 4.8% for each additional year a 

hospital is enrolled in the program. A similar study was performed at the state level at 

Missouri also found that hospitals engaged in the CAH program have higher cost 

inefficiency levels (Gautam, et al., 2013).  

However, contrary evidence also exists indicating some laws and policies have a 

positive effects on cost efficiency. The Certificate of Need is a legal document required 

by many states to justify the necessity of healthcare facilities in order to control costs 

(National Conference of States Legislatures, 2007). Rosko and Mutter (2014) showed 

that hospitals located in states which follow the regulation were on average more cost 

efficient. In addition, these hospitals had higher mean occupancy rate. Nevertheless, this 

sort of regulation may impact availability of service and competition. As a consequence, 

hospitals have less impetus to achieve excellence. Thus, the law promotes efficiency in 

hospitals; however, it could potentially jeopardize quality. These results and need for 
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cost improvements motivate us to gather and analyze data describing a set of U.S. 

hospitals to understand the drivers of cost and cost efficiency. 
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2. LITERATURE REVIEW 

 

Cost-control and cost-efficiency analyses are familiar to the hospital industry, 

where concerns over rising costs have been present since the 1950’s and 60’s (Sheps, 

1955; Dowling, 1976; Griffin et al., 1976). It has been nearly 25 years since 

accountability and assessment were hailed as the next revolution in medical care 

(Relman, 1988), and yet the best models for efficiency measurement in hospitals suffer 

serious limitations and are rarely applied in practice. Efficiency is one of the six specific 

aims for quality improvement proposed in 2001 by the Institute of Medicine (IOM). Cost 

functions have been used to measure inefficiency in hospitals (Wagstaff, 1989; 

Zuckerman, et al., 1994).  This literature review is structure to review several cost 

drivers discussed in the literature. Specifically, we will discuss scale economies, 

ownership, regional variations, rural/urban differences, impact of teaching, and critical 

access designation effects on cost. Then at the end of the literature review we will 

discuss specific issues related to modeling a cost function.  

We observe an improvement of cost efficiency due to economies of scale in a 

wide variety of industries (Baumol et al., 1982). However, many smaller hospitals face 

the challenge of distributing high fixed costs over a relatively small capacity and provide 

a wide array of procedures. Kristensen et al. (2012) investigates optimal hospital size in 

Danish public hospitals. The results shown that medium sized hospitals have a constant 

economies of scale and larger sized hospitals have a decreasing economies of scale. The 



 

5 

 

authors find for medium size public hospital a range of 205 and 276 beds maximizes 

resources utilization. 

Public hospitals are managed by governments and are often found in rural areas. 

In general, these hospitals provide health services for those who have lower income, are 

uninsured or are covered by Medicaid. Additionally, those hospitals also provide trauma 

care for their local populations. On the other hand, not for profit hospitals are 

approximately 50% of all community hospitals across the country and are controlled by 

foundations and religious institutions. Compared to public hospitals, they have similar 

behavior regarding services provided, length of stay and number of beds (Fraze, et al., 

2010). Private hospitals are profit-seeking whereas public and not for profit are not. 

Additionally, they are located in strategic markets in order to maximize revenues. Based 

on these selection issues, we expect private hospital to be more cost efficient. In contrast, 

Tiemann, et al. (2012) study German hospitals and finds that private and not for profit 

hospitals are less efficient than public hospitals. 

 The Census Bureau (2015) divide U.S. in four major regions (Northeast, 

Midwest, South and West) and each region has peculiarities regarding demographic 

characteristics. These regional difference can effect cost efficiency of hospitals. For 

instance, Sharma, et al. (2013) analyze procedure costs controlling for teaching hospital 

status, region, size and ownership and find for certain types of brain surgery that larger, 

public and teaching hospitals located in Northeast had lower costs. 

Teaching hospitals may have multiple missions beyond healthcare including 

medical education. They are important establishments because they prepare future 
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healthcare professionals. Further, highly specialized services are concentrated in 

teaching hospitals, as they often perform medical research (American Hospital 

Association, 2009). Teaching hospitals have significant costs beyond patient care related 

to residents training (Babineau, et al., 2004). However, Rosko (2004) found cost 

efficiency improvements for teaching hospitals in 1990’s data and more recently Kane, 

et al. (2005) shows minimal impacts of teaching hospitals on cost levels. 

Rural and urban areas have different demographic characteristics. In rural areas, 

population is older and they have a lower income compared to urban areas. Additionally, 

they are more likely to be uninsured and to have chronic diseases (American Hospital 

Association, 2011). Hospitals located in rural areas usually are smaller, have a low 

volume of patients and struggle to allocate high fixed costs. Moreover, rural hospital 

perform less procedures than urban hospitals caused by a possible lack of resources, like 

equipment and specialty physicians (Hall and Owings, 2014). Approximately 60% of 

rural hospitals revenue come from public programs, mainly Medicare and Medicaid, and 

reimbursements from these programs do not cover total cost of care (American Hospital 

Association, 2011). For this reason, differences in cost efficiency between hospitals in 

rural and urban settings are expected.  

Critical Access Hospitals (CAH) are created to avoid rural hospital closure by 

increasing the rate of reimbursement. A study investigated how ownership and size 

influenced cost and efficiency in public and not for profit hospitals in Washington State. 

From this study, Coyne, et al. (2009) find that small, not for profit hospitals have similar 

cost efficiency to largest hospitals because 70% of this subset are CAH. Despite helping 
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hospitals to have a more steady financial condition, this program does not address all 

economic problems.  

Stochastic frontier analysis (SFA) (Aigner et al., 1977) and data envelopment 

analysis (DEA) (Cooper et al., 2007) are the methods most frequently applied to assess 

the cost functions of hospital production. However, both of these methods have serious 

shortcomings in the context of hospital production. DEA assumes that all data are 

perfectly observed without random variation and the cost/output models are exhaustively 

specified. SFA requires the specification of the functional form for production. These 

assumptions are clearly untenable in the complex, multi-output realm of hospital 

production. In this work, we propose to use methods which blend the advantages of each 

method to more accurately estimate the true cost frontier. A standard axiom of the cost 

function is convexity in outputs (Chambers, 1988), which provides additional structure 

and improves functional estimates in finite samples. However, nonparametric methods 

for estimation are preferred because parametric misspecification can lead to bias and 

inconsistent estimates (Skinner, 1994). Nevertheless, to be able to estimate potential cost 

saving, we must develop a regression model of the hospitals production process. 
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3. METHODOLOGY

Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) are 

the most popular methods to assess performance in an organization. DEA is a 

nonparametric method that estimates a piece-wise frontier using linear programming. 

The frontier envelops the observed data points and is built upon monotonicity, concavity 

and constant (or variable) returns to scale axioms. However, all the deviations from the 

frontier are considered as inefficiency for this method. SFA is a probabilistic method 

that involves parametric regression techniques using predefined functional forms for the 

frontier and inefficiency distribution assumptions. The main advantage of SFA over 

DEA is the decomposition of the error term into inefficiency and noise, which allows the 

estimator to also account for random error of measurement. In contrast, SFA requires a 

functional form which are hard to justify a particular specification. In our research we 

will try to combine the benefits of SFA and DEA. Axiomatic properties such as 

monotonicity or convexity are motivated by economic theory (Varian, 1992). Thus, we 

impose these shape constraint and model noise and inefficiency when estimating the 

hospital cost function. 

3.1 Model 

The regression model we will estimate is defined in (1): 

Ci=f(Yi)eεieδzi, (1) 
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where C𝐢 is a vector of observed costs, Yi  is a matrix of observed number of procedures 

and f(∙) represents the best attainable cost level. Residual, ε𝐢, are initially defined as 

symmetric random observation specific term, and 𝑖 is the index of observations, in our 

application these will be hospitals. The matrix zi denote the contextual variables and the 

parameter δ estimate the marginal effects of the contextual variable on costs.    

The firm specific estimation equation (2) is  

ln(Ci) = ln(f(Yi)) + εi,     i=1,…,n  (2) 

The two axioms we would like to impose, monotonicity and convexity results in 

two sets of constraints. The convexity constraint can be imposed via the gradient of 

function f(∙) with respect of outputs. Let fi=f(Yi) for notation simplicity, we can define 

the convexity property by (3).  

 f(Yi)≥ f(Yj)+ ∇f(Yj)
T(Yi-Yj) ∀i,j.  (3) 

Hence, given that convexity constraints hold , monotonicity can be imposed by 

adding ∇f(Yi)>0 ∀i to the model. However, a function described by the maximum of 

hyperplanes automatically meets the convexity criteria. The estimation procedure below 

takes advantage of this fact making the estimator more efficient than brute constrained 

optimization in large data sets. 

 

 3.2 Multivariate Nonparametric Bayesian Convex Regression 

 Hannah and Dunson (2013) propose Multivariate Bayesian Convex Regression 

(MBCR), a methodology based on Reversible Jump Markov Chain Monte Carlo 

(RJMCMC) techniques. The method takes a random collection of hyperplanes and 
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approximates a general convex multivariate regression function. At each iteration, 

hyperplanes can be added, removed or changed to propose a new collection of 

hyperplanes. Furthermore, the hyperplane-specific regression coefficients are computed 

assuming a Gaussian Mixture likelihood and Normal-Inverse Gamma conjugate prior 

distributions on the regression coefficients and the hyperplane-specific variance 

parameters respectively. MBCR has clear advantages over DEA and SFA as it allows to 

nonparametrically estimation of the production function, while accounting for nonzero 

noise levels on the data. Although other methods, such as Convex Nonparametric Least 

Squares (Kuosmanen, 2008) and Constraint Weighted Bootstrapping (Du et al. 2013) 

share these strengths, MBCR has shown to be more computationally effective for 

datasets up to a few thousand observations (Preciado Arreola and Johnson, 2015). 

Recent work extends MBCR to propose MBCR-I, a semi-nonparametric method 

which incorporates the SFA-customary assumptions of multiplicative residuals, a 

noise/inefficiency decomposition, and allows for the use on contextual variables 

(Preciado Arreola and Johnson, 2015).Further, MBCR-I models heteroscedastic 

inefficiency, imposes shape constraints, and has a one-stage framework. This set of 

features is unique with respect to other SFA estimators. We choose MBCR-I as our 

estimation method given its computational efficiency on datasets of the size our 

application requires, its nonparametric framework and its ability to incorporate 

contextual variables, which is critical to our investigation of cost drivers in hospitals. We 

proceed to describe both our regression model and the use of MBCR-I to estimate it. 

The multivariate regression function to estimate the convex function 𝑓(𝒀) is 
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 f̂(Y)= max
k∈{1,…,K}

αk+β
k

T
Y.  (4) 

MBCR-I proposes adding, removing and relocating hyperplanes at each iteration 

t. At a given iteration, the data is divided into 𝐾(𝑡) basis regions, each of which is 

dominated by a hyperplane. The coefficients of each hyperplane are computed using 

bound-constrained nonlinear least squares.  We define the kth basis region as 

Ck= {i:k= arg  min
k∈{1,… , K}

αk+β
k

T
Yi}.  (5) 

Proposals of a hyperplane additions, removals or relocations are conditional on 

our prior assumption on K and a tunable parameter c. The probabilities to propose a 

hyperplane addition, removal or relocation are given by the expressions (6).  

b
K

(t)=c min {1,
p(K

(t)+1)

p(K
(t))

} ,  d
K

(t)=c min {1,
p(K

(t)-1)

p(K
(t))

} ,  r
K

(t)=1-b
K

(t)- dK
(t)  (6) 

If a hyperplane relocation is proposed, the basis regions undergo minimal 

refitting-induced changes. However, if a removal is chosen, the observations on the basis 

region of the hyperplane proposed to be removed will be reassigned to other basis 

regions after refitting the remaining existing hyperplanes. In the case of a hyperplane 

addition proposal we take each potential hyperplane to be substituted, split its basis 

region into two and fit separate hyperplanes on them.  

At each iteration, we compute mean squared error denote MSE(t)=
1

n
∑ (Ĉi-

n
i=1

Ci)
2
, where Ĉi=f̂ie

vieδzi, to evaluate quality of the estimator. The parameters of each 

hyperplane (α
k
,β

k
)
k=1

K
 are obtained by the mathematical program described in (7). The 

parameters are estimated by nonlinear least square with monotonicity assumption.  
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min
αk,βk

∑ (( ln(Ci) )
nk

i=1 +ui- ln(αk+β
k

T
Yi) )

2
 

subject to β
k
>0,    k=1,… , K 

 (7) 

We simulate the remaining parameters of the model during an iteration of 

MBCR-I. To do this, we specify a Gaussian Mixture likelihood on the noise terms (8). 

The hyperplane-specific noise variance parameters (σ
k

2
)
k=1

K
 are modeled to follow Inverse 

Gamma distributions (9). The prior inefficiency distribution is Γ (w
0
) as shown in (11) 

and we assume w0= -1/ ln(τ*) where τ* is an estimate of inefficiency. Equation (10) 

describes posterior inefficiency distribution following an exponential distribution. 

Additionally, residuals are denoted by εi = ln (Yi) - ln (xi'β). 

 

 vi~ N(ln(Yi) - ln(f̂i) +ui,σ[i]
2 )   (8) 

 σk
2 ~IG(ak

*,bk
*),     k=1,… , K, where 

         ak
*= ã+

nk

2
   ,   bk

*
=b̃+

1

2
 (∑ (ln(

nk

i=1 Yi[k])+ui-ln(αk+β
k

T
Xi[k]))

2
)  (9) 

  ui|…∝ Exp (-1/2σui

2 ⋅ (μ
ui

-ui)),   ui≥0,  i=1,…,n  where 

                       μ
ui

=-(ε
i
+θσ[i]

2 )   σui

2 = σ[i]
2  (10) 

  θ|…~Γ(n+1, w0+ ∑ ui
n
i=1 ) (11) 

 

Parameter K has a Poisson prior assumption with expected value 𝜆 and is used to 

determine whether hyperplanes will be added, relocated or removed. After proposing 

parameter values for the given split, removal or relocation, MBCR-I evaluates them in a 

Metropolis-Hastings acceptance probability calculation to see if the proposed move is a 

valid draw of the joint posterior distribution of all parameters. MBCR-I usually reaches 
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stationarity within 100 iterations. Nevertheless, we disregard its first 150 iterations to 

further insure all our values correspond to steady-state draws. Finally, MBCR-I 

considers a stopping criterion, which is met when the median MSE has not significantly 

changes and variability across iterations is constant for at least 200 iterations.  

We use the smoothed version of MBCR-I proposed by Preciado Arreola and 

Johnson (2015) as it performs better in datasets larger than 300 observations, which 

matches the specifications of our dataset. 

 

3.3. Bayesian Information Criterion 

The Bayesian Information Criterion is a method for model selection. This 

method is helpful when the problem have a large number of predictors available and the 

optimal model is unknown. Based on the likelihood function, BIC selects a model that 

minimizes  

BIC= -2× log L(𝜃) +d× log (n),  (12) 

where θ is the parameters of the model, n is the number of observations and d is the 

number of free parameters. The likelihood function of θ is given by L (θ)  = ∏ f (y
i 
| n

i=1

xi, θ), where x and y are observed data (Schwarz, 1978).  

The BIC indirectly estimates a test error to account for bias due to overfitting by 

adjusting the training error for the model size. Also, the number of observations must be 

much larger than the number of predictors and it is not recommended in cases with very 

complex collections of models. For a linear model fit using a least square model with d 

predictors BIC is given by (13). 
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BIC=
1

n
 (RSS+ log(n) ×d×σ̂

2),  (13) 

where RSS is the residual sum of squares and σ̂
2
 is the variance of residuals (James, G. 

et al., 2013). 

An alternative to determine an optimal model is to perform a backward stepwise 

selection which can provide a best subset selection. This strategy begins with a model 

that contains all predictors and it removes iteratively one predictor at a time. At each 

iteration, a variable is deleted by evaluating the smallest residual of sum of squares value 

among a subset of predictors. Formally, the method is given by the algorithm in Table 1, 

(James, G. et al., 2013).  

 

Table 1 Backward stepwise selection algorithm 

 

1. Let Mp be the full model with all p predictors and M = {M0,…, Mp}. 

2. For k = p, p-1,…, 1. 

a) Consider all k models that contain all but one of the predictors in Mk for a total of 

k-1 predictors.  

b) Choose the best model, which is selected according to the smallest value of 

residual sum of squares, among these k models and call it Mk-1. 

3. Select a single best model from among M using cross-validated prediction error BIC.  

 

The result from a backward stepwise selection is not guarantee to find the best 

model, however, the result is the most likely one. Unlike the best subset selection, which 

proposes to fit a model using a least square criteria for each possible combination of 

predictors (2p), the backward stepwise selection search considers 1+p (p+1)/2 models. 

Therefore, we select backward stepwise because it is computationally less demanding. 
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3.4. Method of Moments 

The method of moments is a standard technique in the SFA literature for 

estimating the parameters of the noise and inefficiency distribution using information 

from the residual of a conditional mean estimator (Aigner et al., 1979). The method 

requires additional distributional assumption. In our case, we assume inefficiency with a 

half normal distribution ui~N+(0, σu
2) and noise with a normal distribution vi~N(0, σv

2) 

(Kuosmanen and Kortelainen, 2012). The mean of the inefficiency term is calculated as, 

μ=E(ui). 

We can estimate second and third central moments of the residual with equations 

(14) and (15). 

M2̂= ∑ εi
2n

i=1 / (n-1) (14) 

M3̂= ∑ εi
3n

i=1 / (n-1)  (15) 

The second moment is a sample variance of residuals and the third moment is a 

component of skewness measure. If our distribution assumptions on noise and 

inefficiency hold, we have second and third moment equal to equations (16) and (17) 

respectively.  

M2= (
π - 2

π
)  σu

2 + σv
2  (16) 

M3= (
√2

√π
) (1 -

4

 π
) σu

3  (17) 

As we can observe, the third moment only depends on standard deviation 

inefficiency. For this reason, we can estimate standard deviation of inefficiency and 

consequently calculate the standard deviation of noise.  
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4. PROBLEM INPUT 

 

Hospitals are complicated entities that incur costs to provide a variety of services 

which can broadly be divided into two categories: diagnosis or treatment nature. Thus, 

hospitals are an integrated set of subsystems aiming at delivery healthcare.  Within the 

healthcare industry, hospitals are important entity both because of the critical role they 

play in providing services and the significant portion of the cost they incur. Hence, cost 

analysis of hospitals is necessary for the improvement of the healthcare system. We 

gather a large data set to estimate cost inefficiency and to assess impact of contextual 

variables in cost for an approximate 10 percent sample of all U.S. hospitals.  

 

4.1. Databases 

Our data set is a combination of multiple data sources. We used the Healthcare 

Cost Utilization Project (HCUP) National Inpatient Sample (NIS) and American 

Hospital Association Survey Database to build our data set. The HCUP collects 

extensive information about all patients for a sample of approximately 1,000 hospitals. 

This data has extensive output measures and contains several variables that are cost 

drivers, but does not have information about costs or the resources used by the hospital. 

The American Hospital Association (AHA) has data for all U.S. hospitals describing 

specifically the resources they use and the costs they incur along with information on 

potential non-resource cost drivers. Each dataset will be described in detail below. 
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4.1.1. Healthcare Cost Utilization Project  

The HCUP is a source of hospital database, reports, tools and software. The NIS 

is one of the databases available and it describes clinical and non-clinical information 

about patient demographics, diagnoses, service provider, treatments, and predicted and 

realized outcomes (length of stay, charges, mortality). Every year of the database 

contains approximately 8 million records of hospital activities. Until 2011, these 

observations constitute every discharge regardless of payer from each of a 20% sample 

of U.S. community hospitals (approximately 1,000 hospitals per year), stratified for size 

and location. These include non-Federal, short-term, general, and other specialty 

hospitals, excluding hospitals of institutions. The National Inpatient Sample database 

ideal for measuring outputs because up to 15 diagnosis related group (DRG) and ICD-9-

CM codes are recorded for each patient visit.  

Following Pope and Johnson (2013), we use 4 outputs, minor diagnostic 

procedures, major diagnostic procedures, minor therapeutic procedures, and major 

therapeutic procedures, categorized by their International Classification of Diseases, 

Clinical Modification (ICD-9-CM) codes. The distinguishing characteristic between 

minor and major procedures of each type is the use of an operating room and nature of 

service. The database also records variables related to the context of hospital operations, 

such as ownership status, urban/rural setting, teaching status, and classification of the 

hospital as part of a larger provider system (e.g., independent, centralized, 

decentralized). The HCUP data is available for the years 2004-2011.  
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4.1.2. American Hospital Association  

Since 1946, the American Hospital Association does an annual survey of 

American hospitals to collect a wide range of information. Recently the survey covers 

6,500 hospital systems and includes up to 1,000 variables regarding organizational 

structure, facility and services lines, inpatient and outpatient utilization, expenses, 

physician arrangements, staffing, corporate and purchasing affiliations and geography 

indicators. The variable expenses will be used to describe input level for this work. 

According to the survey instrument, the expenses accounts for payroll, employee 

benefits, depreciation, interest and supply. Also, percentage of inpatient surgeries, 

number of emergency room visits, number of beds and ownership were extracted from 

the database to be part of the potential contextual variable scope.  

The AHA Survey Database access is possible due to a collaborative work with 

Sam Walton Business School at University of Arkansas and Industrial and Systems 

Department at Texas A&M. The AHA Survey Databases are available from 2004 until 

2011. 

 

4.2. Variables 

The AHA identification number (AHAID) is used to merge the two databased and 

create a single hospital dataset with 500 observations on average per year. The cost and 

output measures described above are augmented with the following contextual variables 

listed below: 

a) Hospital Size: hospital classification as small, medium or large. 
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b) Ownership: classification of hospital control in private, not-for-profit and 

public. 

c) Location: whether a hospital is rural or urban. 

d) Region: classification of hospital according to its geographical location. 

e) Teaching status: whether a hospital is a teaching hospital or not. 

f) Percentage of inpatient surgeries over total of surgeries. 

g) Critical Access Hospital participation status of a hospital. 

These seven contextual variables are explored to determine the best model using 

backwards stepwise selection and BIC. The data used and its sources are presented in 

Table 2.  

 

Table 2 Description of input, outputs and contextual variable. 

 

Variable Description Source 

x Cost AHA 

y1 Number of minor diagnostic procedures HCUP 

y2 Number of major diagnostic procedures HCUP 

y3 Number of minor therapeutic procedures HCUP 

y4 Number of major therapeutic procedures HCUP 

z1 Hospital Size  HCUP 

z2 Region  HCUP 

z3 Teaching status  HCUP 

z4 Ownership  AHA 

 

 In our dataset, 21% of hospital are teaching institutions. Regarding size, hospitals 

are classified as small, medium or large according to number of beds. The definition take 

into consideration region, teaching status and urban-rural designation (see Appendix A 
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for details). Thus, hospitals are 39% small, 28% medium and 34% large in our dataset. 

Further, 20% of the hospitals are located in Northeast, 25% in Midwest, 27% in West 

and 28% in South. Also, 20% are public hospitals, 69% are not for profit and 11% are 

private. For the purpose of our analysis, the contextual variables are reorganized in 

dummy variables which are described in table 3.  

 

Table 3 Description of dummy variables  

 

Dummy 

code 

Contextual 

variable 

associated 

Description 

z11 z1 Impact of large hospital compared to small hospitals 

z12 z1 Impact of medium hospitals compared to small hospitals 

z21 z2 
Impact of hospitals located in West region compared to 

Northeast region 

z22 z2 
Impact of hospitals located in South region compared to 

Northeast region 

z23 z2 
Impact of hospitals located in Midwest compared to 

Northeast region 

z3 z3 
Impact of Teaching hospital regarding non-teaching 

hospitals 

z41 z4 Impact of Private hospital in contrast with public 

z42 z4 Impact of Not for profit hospital in contrast with public 



 

21 

 

5. RESULTS 

 

5.1. Model Selection 

We preferred to estimate a common model for all years. The model was selected 

by analyzing the 2007 data reported in Table 4. To verify the robustness of the results we 

also analyzed the 2010 data and found similar results (see Appendix B for details). At 

each iteration, a subset of the contextual variables, with one fewer contextual variable, 

was selected based on the lowest residual sum of squares. This was repeated until the 

subset contained no more contextual variables. We then computed the BIC value for 

each model with different numbers of contextual variables. The BIC measures trade-off 

between goodness of fitting and adding one more variable in the model; therefore, the 

lowest value of BIC implies the best model.  

 

Table 4 Model section results of each subset for 2007  

 

Number of 

Contextual 

Variables 

Best model from each subset BIC (x1015) 

7 

Hospital Size, Region, Teaching Status, Ownership, 

Hospital Location, CAH status and Percentage of 

inpatient surgeries 

6.36 

6 
Hospital Size, Region, Teaching Status, Ownership, 

Hospital Location and CAH status 
6.06 

5 
Hospital Size, Region, Teaching Status, Ownership and 

Hospital Location  
5.94 

4 Hospital Size, Region, Teaching Status and Ownership 5.88 

3 Hospital Size, Region, Teaching Status 5.91 

2 Region and Teaching Status 5.93 

1 Region 6.07 

0 None 6.48 
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The outcome of BIC analysis shows that best mix of contextual variables 

contains four variables (Hospital Size, Region, Teaching Status and Ownership). 

 

5.2. Cost Drivers 

Many are the features that can impact costs level in a hospital. Variety and 

complexity of services, bargaining power in purchasing supplies and demand are some 

examples. Additionally, some hospitals play a special roles in the society, such as 

teaching hospitals, which are an important figure to prepare future health practitioners.  

Teaching hospitals, with inexperienced professionals, are potentially subject to 

overutilization of resources (Brownlee, et al., 2014). Subsidized hospitals face similar 

challenges meaning these hospitals receive cost-basis reimbursements and therefore, 

they are inclined towards using more resources as well (Nedelea and Fannin, 2013). For 

example, hospitals participants of the CAH program are gradually less cost efficient for 

each more year enrolled as a subsided hospital (Nedelea and Fannin, 2013).  

We estimated the impact of Hospital Size, Region, Teaching Status and 

Ownership (our set of contextual variables) on cost while jointly estimating the cost 

function using ZMBCR (without an inefficiency term). Table 5 includes a row for each 

dummy variable that appears in the ZMBCR model. Similar results were found when 

estimating cost function using ZMBCR-I (see details in Appendix C).The base case cost 

function is estimated for a small hospital in the Northeast that is not a teaching hospital 

and is publically own. The values reported in the table are the coefficients on the dummy 

variables for a cost function estimated in logs. Therefore, the coefficient can be 
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interpreted as percentages. For example the table entry of -0.26 for Region (West-

Northeast) and 2004 can be interpreted as, if all other things are held equal, then the 

costs for a hospital in the west are 26 percent lower than the costs of an equivalent 

hospital in the Northeast in 2004.  Tables entries of * indicate the coefficient was not 

significant at the 5% percent level. All values including credible intervals for each year 

is presented in the Appendix D.  

 

Table 5 Impact of contextual variable for all years using ZMBCR  

 

Contextual Variable 
Delta Values 

2004 2005 2006 2007 2008 2009 2010 2011 

Hospital size  

(large - small) 
* 0.13 1.46 * 0.18 * * 0.12 

Hospital size  

(medium - small) 
* 0.12 0.75 * 0.09 * * 0.09 

Region  

(West - Northeast) 
-0.26 -0.26 -0.25 -0.32 -0.21 -0.21 -0.12 -0.12 

Region  

(South - Northeast) 
-0.17 -0.26 -0.35 -0.31 -0.23 -0.28 -0.22 -0.22 

Region  

(Midwest - Northeast) 
-0.12 -0.21 -0.39 -0.22 -0.08 -0.10 -0.10 -0.02 

Teaching status  

(0 - no / 1 - yes) 
* * 1.19 * * 0.10 * * 

Ownership  

(Private - Public) 
* -0.20 0.33 -0.16 * -0.19 -0.26 -0.23 

Ownership  

(Not for profit - Public) 
* * * * * * * * 

(*) not significant result 

 

The variety of offered services is an important aspect to evaluate when assessing 

costs. Intuitively, increasing hospital size should improve productivity due to economies 
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of scale until a most productive scale size. Then, any increase beyond that size could 

lead to reduced productivity due to managerial challenges related to span of control. Our 

finds are in 2005, 2006, 2008 and 2011 smaller hospitals are significantly more cost 

efficient than large hospitals. However, 2006 seems to have some anomalies because of 

simple fitting. We relaxed convexity assumption and we found that 2006 fits a linear 

function. For this reason veracity of delta values might be affected.  

We observed that hospitals located in the Northeast are less cost efficient than 

other regions of the U.S. The coefficient is negative for all dummies variables in all 

years that indicate hospitals located in South, Midwest and West are less expensive than 

hospitals located in Northeast. The Northeast region present highest CPI (consumer price 

index) value which is an economic indicator associated with cost of living (Bureau of 

Labor Statistics, 2016). Therefore, we expect that price of goods are more expensive in 

this region of the country.  

Teaching hospitals are important to train the future healthcare professionals’ 

education. Although students work under supervision, they are not completely ready to 

perform accurate diagnosis and treatment. Hence overutilization is a likely problem 

which can influence cost level (Brownlee, 2014). Our findings indicate that teaching 

hospitals have statistically significantly higher costs in 2006 and 2009.  

Our database classified hospitals in three major categories of ownership 

regarding profit orientation and government sponsorship. The categories are public, not-

for-profit and private. We find that public hospitals are more cost inefficient than private 

in five of the eight years we analyze (2005, 2007, 2009, 2010, and 2011), with two of the 
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years indicated cost differences are insignificantly (2004 and 2008) and in 2006 private 

hospitals are found to be less cost efficient then public hospitals.  The cost differences 

between not-for-profit and public hospitals are insignificant. Nevertheless, we can affirm 

that these categories of hospitals have a similar behavior as they do not have profits as 

main motivation to operate.  

 

5.3. Cost Inefficiency 

If all hospitals are efficient, then difference in performance are just random 

variation and a cost function should be estimated as the conditional mean of the data, 

Figure 1(a). Cost inefficient firms exhibit higher costs to produce a given output level. 

As we add inefficient firms to the example in Figure 1(a), true cost frontier shifts 

downwards as observed in Figure 1(b).  

 

 

Figure 1 (a) Full efficient firms. (b) Not full efficient firms. 

 

Cost 

Output 

Cost 

Output 
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The method ZMCR-I incorporates the standard assumption from the SFA 

literature that the residual distribution should be a convolution of a symmetric error term 

and a skewed inefficiency term. The skewed inefficiency terms implies that the 

probability of observing an inefficient production unit is smaller than the probability of 

observed an efficient production unit. This assumption is intuitive in competitive 

markets where inefficient firms would be driven out of business under the efficient 

market hypothesis (Fama, 1965; Fama et al., 1993). However, the markets in which 

hospitals compete in unlikely to be efficient and therefore this classic assumption from 

SFA is less likely to hold. We find evidence for this as we are was unable to draw 

inefficiency in the Bayesian ZMCR-I in certain years (2006, 2008, 2009 and 2010). In an 

attempt to confirm our intuition that the problems related to inefficiency draws in 

ZMBCR-I is related to the skewness of the inefficiency term, we also estimated ZMBCR 

(without an inefficiency term) and then applied the standard method of moments to the 

residuals from ZMBCR. This method allows us to calculate the skewness of the 

residuals. In our model, we expect residuals to have a negative skew. Nonetheless, we 

found wrong skewness of residuals via ZMBCR followed by method of moments for 

2005, 2006, 2008, 2009 and 2010. These results can be interpreted in at least two ways. 

First, perhaps the efficient market hypothesis is violated for this data set to the point 

where the probability of observing inefficient firms should be higher than the probability 

of observing efficient firms. Second, perhaps the systematic inefficient term for this set 

of hospitals is small relatively to the noise in the measurement of variables and in the 

model and therefore it is difficult to estimate the inefficiency distribution parameters. 
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Both interpretation are plausible and further research is needed to determine which effect 

is stronger.  

Returning to the results of the ZMBCR-I model, table 6 reports the estimated 

average cost inefficiency for 2004, 2005, 2007 and 2011. We note that our 2005 

inefficiency estimation is only possible due to the one-stage nature of ZMBCR-I. We 

reached this conclusion after attempting to obtain average cost inefficiency estimates 

using a two-stage framework, in which ZMBCR was used as a first stage and method of 

moments as a second stage. This two-stage approach resulted in wrongly-skewed 

residuals after the first stage. Table 6 also presents standard deviation of inefficiency. 

The last column of table 6 reports the number of hyperplanes estimated by the 

ZMBCR-I procedure in each year. The estimation procedure fits approximately a linear 

cost function.  

 

Table 6 Inefficiency attributes, mean square error of estimation and number of 

fitted hyperplanes 

 

Year 
Inefficiency 

(mean) 

Inefficiency 

(standard deviation) 
MSE 

Number of fitted 

hyperplanes 

2004 27% 0.46 0.23 1 

2005 6% 0.02 0.09 1 

2007 18% 0.24 0.14 1.008 

2011 23% 0.30 0.11 1.005 

 

On average, 89% of hospitals are at most 30% cost inefficient whereas 8% of 

hospitals have within 10% of the cost inefficiency, disregarding results from 2005.  As 
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each year of the database is a sample of all community hospitals, the graphs are not alike 

and we found discrepant outliers that boost average of the industry for most of the years. 

Figure 2 illustrates the distribution of cost efficiency in 2011. Typical cost efficiency 

estimates lie between 1 and 2, with 1 indicating efficient performance and 2 indicating 

50% efficient. However, Figure 2 indicates there were four hospitals in 2011 outside of 

this range. These observations are likely to be data entry mistakes. In 2004 there are six 

observations of this type and in 2007 two observations of this type. The graphs showing 

the distribution of cost inefficiency for each year are reported in Appendix E. 

 

 
 

Figure 2 Cost inefficiency per hospital in 2011 

 

If outliers are removed from the dataset (2004, 2007 and 2011), ZMBCR-I 

cannot draw the inefficiency parameter. Further, ZMBCR-I fit is slightly better when 
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outliers are removed. However, number of hyperplanes remains approximately one, 

which indicates ZMBCR-I is fitting a linear function. We have a four dimensional output 

vector that makes visually our data somewhat challenging. For this reason, we plotted 

two-dimensional graphs with pairwise outputs. For most of the years, we observed the 

data clustered near the origin in a narrow cone. The narrowness of these cones are 

consistent with the use of a single hyperplane to fit this data. For illustration purposes, 

Figure 3 shows these graphs for 2011. These graphs for all year are in the Appendix F. 

Figure 3 Pairwise outputs graphs 

While cost functions are often assumed to be convex, our estimates indicated a 

linear fit is best. Thus, we also did some preliminary experiments to investigate 

alternative hypothesis. Specifically the Regular Ultra Passum Law proposed by Ranger 



30 

Frisch (1965), suggest that production and cost functions should have an increasing 

returns-to-scale region followed by an inflection point and a decreasing returns-to-scale 

region, see Figure 4.  If a cost function satisfies the Regular Ultra Passum Law then 

beyond the inflection point the cost function is convex. We chose to split our data in half 

by selecting the hospitals with the largest costs to see if there was evidence that above a 

particularly cost level our cost data could be fit by a convex function more accurately. 

We found some evidence for this law. In Table 7, we report the number of hyperplanes 

used to fit only the largest half of hospitals in terms of cost. The average number of 

hyperplanes is slightly larger than almost all years (in 2005 the values are equal). In 

2004 the number of hyperplanes is significantly larger, 2.1 compared to 1. While further 

research is needed to determine if this data would be well described by an estimator that 

imposed the Regular Ultra Passum Law, these results provide some support and 

motivation for future research in this direction. 

Cost 

Output 

c* 

Figure 4 Illustration of S-shape cost function 
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Table 7 Number of hyperplanes per year for subset experiment  

Year 2004 2005 2006 2007 2008 2009 2010 2011 

Average number of fitted 

hyperplanes across 

iterations 

2.10 1 1.04 1.35 1.02 1.01 1 1.02 

Maximum number of fitted 

hyperplanes over all 

iterations 

4 1 2 2 2 2 1 2 
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6. CONCLUSIONS 

 

The healthcare industry is a large part of the U.S. economy and hospitals 

particularly make up 5% of GDP. Politicians have been working to restructuring the 

healthcare industry by making laws that will/are directly impacting hospitals’ operations. 

Hospitals have a complex production process because of the wide array of services they 

provide and the critical timing in which they need to be provided. Thus, understanding 

the drivers of cost efficiency in hospitals is critical to help inform policy makers. In this 

work, we aimed to estimate cost benchmarks and cost efficiency for community 

hospitals. The efficiency analysis methods such as DEA and SFA that have been used to 

this point do not account for characteristics of hospitals’ production systems. Therefore, 

we choose ZMBCR-I with the advantages it models noise and inefficiency and allows 

for the joint estimation of the effects of additional variables.  

The main findings show that certain hospital profiles are less cost efficient than 

others, such as teaching hospitals, larger hospitals and hospitals located in the Northeast 

region. Regarding ownership, we find private hospitals are more cost efficient which is 

consistent with other research. Further, our findings indicate that our dataset has 

decreasing marginal product for high cost hospitals motivation further research to 

develop estimators that impose the regular Ultra Passum Law.   

 Our analysis is at the system or hospital level, thus our recommendations do not 

address specific operational practices within hospitals. Future research should look at 

integrating system level analysis with detailed operational analysis. While the scale 
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economies of hospitals has received attention in the literature, the effects of scope has 

received less attention. Future research investigating the interaction between scale and 

scope decisions could provide considerable insights to the hospital industry.  
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http://kff.org/report-section/health-care-costs-a-primer-2012-report/
http://kff.org/report-section/health-care-costs-a-primer-2012-report/
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APPENDIX A 

Hospital size classification 

 

HOSPITAL 

CHARACTERISTICS 

HOSPITAL 

SIZE 

 Small Medium Large 

Northeast    

Rural  1-49 50-99 100+ 

Urban, non teaching 1-124 125-199 200+ 

Urban , teaching  1-249 250-424 425+ 

Midwest    

Rural  1-29 30-49 50+ 

Urban, non teaching 1-74 75-174 175+ 

Urban , teaching  1-249 250-374 375+ 

South    

Rural  1-39 40-74 75+ 

Urban, non teaching 1-99 100-199 200+ 

Urban , teaching  1-249 250-449 450+ 

West    

Rural  1-24 25-44 45+ 

Urban, non teaching 1-99 100-1 175+ 

Urban , teaching  1-199 200-324 325+ 
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APPENDIX B 

Full result model selection 2007 

Number of 

Contextual 

Variables 

Model Subset 

RSS 

(x1018) 

BIC 

(x1015) 

H
o

sp
it

a
l 

S
iz

e 

L
o

ca
ti

o
n

 

R
eg

io
n

 

T
ea

ch
in

g
 S

ta
tu

s 

P
er

ce
n

ta
g

e 
o

f 

in
p

a
ti

en
t 

su
rg

er
ie

s 

C
A

H
 s

ta
tu

s 

O
w

n
er

sh
ip

 

7 x x x x x x x 2.91 6.36 

6 

x x x x x x  2.99 - 

x  x x x x x 2.91 - 

x x x  x x x 3.00 - 

x x x x  x x 2.80 6.06 

x x x x x  x 2.92 - 

x x  x x x x 3.36 - 

 x x x x x x 2.98 - 

5 

x x x x  x  2.86 - 

x x x x   x 2.78 5.94 

x x x   x x 2.87 - 

x x  x  x x 3.17 - 

x  x x  x x 2.78 - 

 x x x  x x 2.83 - 

4 

x x x x    2.88 - 

x x x    x 2.86 - 

x x  x   x 3.17 - 

x  x x   x 2.78 5.88 

 x x x   x 2.82 - 

3 

x  x x    2.85 5.91 

x  x    x 2.86 - 

x   x   x 3.14 - 

 x x    x 2.93 - 

2 

x  x     2.95 - 

x   x    3.16 - 

  x x    2.97 5.93 

1 
  x     3.03 6.07 

   x    3.17 - 

0        3.35 6.48 
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Full result model selection 2010 

Number of 

Contextual 

Variables 

Model Subset 

RSS 

(x1018) 

BIC 

(x1015) 
H

o
sp

it
a
l 

S
iz

e 

L
o

ca
ti

o
n

 

R
eg

io
n

 

T
ea

ch
in

g
 S

ta
tu

s 

P
er

ce
n

ta
g

e 
o

f 

in
p

a
ti

en
t 

su
rg

er
ie

s 

C
A

H
 s

ta
tu

s 

O
w

n
er

sh
ip

 

7 x x x x x x x 2.60 6.03 

6 

x x x x x x  2.69 - 

x  x x x x x 2.58 - 

x x x  x x x 2.60 - 

x x x x  x x 2.57 5.91 

x x x x x  x 2.60 - 

x x  x x x x 2.65 - 

 x x x x x x 2.65 - 

5 

x x x x  x  2.63 - 

x x x x   x 2.57 - 

x x x   x x 2.56 - 

x x  x  x x 3.07 - 

x  x x  x x 2.54 5.75 

 x x x  x x 2.55 - 

4 

x  x x  x  2.61 - 

x  x x   x 2.57 - 

x  x   x x 2.54 - 

x   x  x x 3.05 - 

  x x  x x 2.53 5.62 

3 

  x x  x  2.61 - 

  x x   x 2.58 - 

  x   x x 2.53 5.55 

   x  x x 3.04 - 

2 

  x   x  2.65 - 

  x    x 2.54 5.51 

     x x 3.44 - 

1 
  x     2.64 5.60 

      x 3.04 - 

0        3.16  
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APPENDIX C 

Delta Values and Credible Interval using ZMBCR-I 

Contextual 

Variables 

2004 2005 2007 2011 

Delta Credible interval Delta Credible interval Delta Credible interval Delta Credible interval 

Hospital size 

(large - small) 
0.02 -0.06 0.09 0.13 0.05 0.22 0.11 0.03 0.19 0.10 0.01 0.20 

Hospital size 

(medium - small) 
0.07 -0.01 0.15 0.12 0.03 0.20 0.06 -0.02 0.14 0.09 0.00 0.17 

Region (West - 

Northeast) 
-0.28 -0.38 -0.19 -0.25 -0.34 -0.16 -0.31 -0.39 -0.23 -0.12 -0.22 -0.03 

Region (South - 

Northeast) 
-0.20 -0.28 -0.11 -0.25 -0.36 -0.16 -0.31 -0.39 -0.23 -0.22 -0.30 -0.14 

Region (Midwest 

- Northeast) 
-0.12 -0.22 -0.04 -0.19 -0.31 -0.10 -0.20 -0.28 -0.11 0.00 -0.08 0.09 

Teaching status 

(0 - no / 1 - yes) 
-0.04 -0.13 0.05 0.00 0.00 0.00 0.04 -0.02 0.11 0.03 -0.05 0.11 

Ownership 

(Private - Public) 
-0.02 -0.09 0.07 -0.20 -0.32 -0.08 -0.16 -0.25 -0.05 -0.25 -0.38 -0.14 

Ownership (Not 

for profit - 

Public) 

-0.10 -0.23 0.01 -0.03 -0.12 0.05 -0.02 -0.09 0.05 -0.07 -0.15 0.00 
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APPENDIX D 

 

Delta values and Credible Intervals using ZMBCR  

 

 Contextual 

Variables 

2004 2005 2006 2007 

Delta Credible interval Delta Credible interval Delta Credible interval Delta Credible interval 

Hospital size 

(large - small) 
0.01 -0.09 0.10 0.13 0.05 0.20 1.46 1.31 1.60 0.09 0.00 0.17 

Hospital size 

(medium - small) 
0.06 -0.04 0.14 0.12 0.04 0.19 0.75 0.57 0.92 0.05 -0.03 0.14 

Region (West - 

Northeast) 
-0.26 -0.36 -0.17 -0.26 -0.34 -0.18 -0.25 -0.44 -0.08 -0.32 -0.40 -0.24 

Region (South - 

Northeast) 
-0.17 -0.26 -0.08 -0.26 -0.35 -0.17 -0.35 -0.53 -0.17 -0.31 -0.39 -0.23 

Region (Midwest 

- Northeast) 
-0.12 -0.22 -0.03 -0.21 -0.31 -0.11 -0.39 -0.55 -0.23 -0.22 -0.30 -0.13 

Teaching status 

(0 - no / 1 - yes) 
-0.02 -0.11 0.07 0.00 0.00 0.00 1.19 1.03 1.34 0.06 -0.02 0.14 

Ownership 

(Private - Public) 
-0.03 -0.11 0.05 -0.20 -0.31 -0.09 0.33 0.19 0.46 -0.16 -0.26 -0.06 

Ownership (Not 

for profit - 

Public) 

-0.10 -0.23 0.02 -0.03 -0.11 0.03 0.09 -0.14 0.32 -0.01 -0.09 0.05 
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Delta values and Credible Intervals using ZMBCR (cont.)  

 

Contextual 

Variables 

2008 2009 2010 2011 

Delta Credible interval Delta Credible interval Delta Credible interval Delta Credible interval 

Hospital size 

(large - small) 
0.18 0.09 0.26 0.06 -0.02 0.15 0.02 -0.06 0.11 0.12 0.02 0.21 

Hospital size 

(medium - small) 
0.09 0.01 0.18 0.06 -0.03 0.15 0.04 -0.04 0.13 0.09 0.00 0.18 

Region (West - 

Northeast) 
-0.21 -0.29 -0.13 -0.21 -0.30 -0.12 -0.12 -0.21 -0.04 -0.12 -0.21 -0.04 

Region (South - 

Northeast) 
-0.23 -0.31 -0.15 -0.28 -0.37 -0.19 -0.22 -0.30 -0.15 -0.22 -0.30 -0.14 

Region (Midwest 

- Northeast) 
-0.08 -0.16 0.01 -0.10 -0.18 -0.01 -0.10 -0.19 -0.02 -0.02 -0.12 0.08 

Teaching status 

(0 - no / 1 - yes) 
0.07 -0.01 0.15 0.10 0.02 0.17 -0.01 -0.09 0.07 0.06 -0.03 0.14 

Ownership 

(Private - Public) 
-0.09 -0.21 0.02 -0.19 -0.31 -0.07 -0.26 -0.38 -0.15 -0.23 -0.35 -0.11 

Ownership (Not 

for profit - 

Public) 

0.02 -0.06 0.10 -0.01 -0.10 0.06 -0.04 -0.11 0.04 -0.07 -0.15 0.01 
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APPENDIX E 

Cost Inefficiency per Hospital in 2004 

 



 

46 

 

Cost Inefficiency per Hospital in 2005 
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Cost Inefficiency per Hospital in 2007 
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Cost Inefficiency per Hospital in 2011 
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APPENDIX F 

Pairwise output graphs for 2004 
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Pairwise output graphs for 2005 
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Pairwise output graphs for 2006 
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Pairwise output graphs for 2007 
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Pairwise output graphs for 2008 
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Pairwise output graphs for 2009 
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Pairwise output graphs for 2010 
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Pairwise output graphs for 2011 
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