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ABSTRACT

Reconstruction in Tomography

with Diffracting Sources. (December 2003)

Yuan Xu, B.S., Wuhan University;

M.S.,Shanghai Institute of Optics and Fine Mechanics;

Ph.D., Institute of Physics, Chinese Academy of Sciences

Chair of Advisory Committee: Dr. Lihong V. Wang

In this dissertation, we first derive exact reconstuction algorithms for ther-

moacoustic tomography (TAT) and broadband diffraction tomography (a linearized

inverse scattering problem) using derived time-reversal formulas. Then we focus on

some important practical problems of TAT including the limited-view problem, the

effects of acoustic heterogeneity, and fast reconstruction algorithms.

In Chapter II, we propose time-reversal methods and apply them to tomogra-

phy with diffrating sources. We first develop time-domain methods to time-reverse

a transient scalar wave using only the field measured on an arbitrary closed surface

enclosing the initial sources. Under certain conditions, a time-reversed field can be

obtained with the delay-and-sum algorithm (backprojection to spheres) used in syn-

thetic aperture imaging. Consequently, the physical meaning and the valid conditions

of this widely used algorithm are revealed quantitatively for the first time from basic

physics. Then exact reconstruction for TAT and broadband diffraction tomography

is proposed by time-reversing the measured field back to the time when each source

or secondary source is excited. The theoretical conclusions are supported by a nu-

merical simulation of three-dimensional diffraction tomography. The extension of our

time-reversal methods to the case using Green function in a heterogeneous medium
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is also discussed.

In Chapter III, the limited-view problem is studied for TAT. We define a ”detec-

tion region,” within which all points have sufficient detection views. It is explained

analytically and shown numerically that the boundaries of any object inside this re-

gion can be recovered stably. Otherwise some sharp details become blurred. One can

identify in advance the parts of the boundaries that will be affected if the detection

view is insufficient. Computations are conducted for both numerically simulated and

experimental data. The reconstructions confirm our theoretical predictions.

In Chapter IV, the effects of wavefront distortions induced by acoustic hetero-

geneities in breast TAT are studied. Amplitude distortions are shown to be insignifi-

cant for different scales of acoustic heterogeneities. After that we consider the effects

of phase distortions (errors in time-of-flight) in our numerical studies. The numerical

results on the spreads of point sources and boundaries caused by the phase distor-

tions are in good agreement with the proposed formula. We also demonstrate that

the blurring of images can be compensated for by using the distribution of acoustic

velocity in the tissues in the reconstructions.

In Chapter V, we discuss exact and fast Fourier-domain reconstruction algo-

rithms for TAT in planar and circular configurations.
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CHAPTER I

INTRODUCTION

A. TOMOGRAPHY WITH DIFFRACTING SOURCES

Traditional X-ray and emission tomographies have been successful, but they are ei-

ther ionizing or radiative. Interest in tomography with diffracting sources has been

increasing due to the need for developing novel noninvasive non-ionizing medical imag-

ing modality. In X-ray and emission tomographies, a ray travels from the source to

the detector along a straight line, because the diffraction effect is ignorable due to

the much smaller wavelength than the resolution of the imaging system. In this case,

the signal at one detection position is just the integration of the object value along

a straight line. On the other hand, in the tomography with diffracting sources, the

diffraction effect can not be ignored because the wavelength of the field is on the

same scale of the resolution of the system. Consequently, the signal at one detection

position is related with the object value throughout the object space. This makes the

tomography with diffracting sources (TWDS) more challenging. Diffraction-based

tomographies have wide applications in industry field and medical imaging. Some

examples are diffraction tomography (DT) and thermoacoustic tomography (TAT),

which may also be referred to as photoacoustic or optoacoustic tomography depend-

ing on the source of irradiation. In DT, objects are irradiated by an illuminating

(acoustic or electromagnetic) source and the scattered field is measured to map the

heterogeneity of objects. In TAT, objects are irradiated by electromagnetic pulse,

and the thermoacoustic signal, which is induced by the electromagnetic absorption

and the subsequent thermoelastic expansion, is measured to map the electromagnetic

The journal model is IEEE Transactions on Automatic Control.
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absorption of objects.

B. THERMOACOUSTIC TOMOGRAPHY

When electromagnetic radiation is absorbed in biological tissues, the heating and the

subsequent expansion will cause emission of acoustic signals, which is called the ther-

moacoustic effect. In thermoacoustic tomography, the thermoacoustic signals from a

tissue sample are collected to map the distribution of the radiative absorption within

the sample. The radiative absorption is closely related to the physiological and patho-

logical status of the tissue: for example, cancerous breast tissues are 2-5 times more

strongly absorbing to microwaves than surrounding normal breast tissues [1, 2, 3],

which has been attributed to an increase in bound water and sodium within malig-

nant cells. While the optical absorption is related to the oxy- and deoxyhemoglobin

[4].

Thermoacoustic tomography combines good imaging resolution with good imag-

ing contrast. Purely microwave or optical imaging has the advantage of good imaging

contrast but suffers from poor spatial resolution [5, 6, 7, 8]. On the other hand, purely

ultrasonic imaging has good spatial resolution but poor contrast. Thermoacoustic to-

mography can bridge the gap between them. Therefore, in this thesis, TAT will be

studied in more details.

There are various types of thermoacoustic tomography, such as photoacoustic

tomography [9, 10, 11] and microwave-induced thermoacoustic tomography (MITT)

[12, 13, 14, 15, 16, 17, 18, 19]. In photoacoustic tomography, due to the use of short

laser pulses (several nanoseconds in pulse width) and the strong attenuation of the

laser light by tissues, the frequency spectrum of the acoustic signal from the buried

object of several micrometers in size is estimated to have significant components up to
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75 MHz, which makes its axial resolution as good as 10 µm. However, the maximum

imaging depth in photoacoustic tomography is limited by the strong attenuation of

the laser light and of the high-frequency acoustic waves. On the other hand, MITT

can be used to image much deeper tissues due to the relatively low absorption of

microwaves. The spectra of the acoustic signals in MITT are usually below 2 MHz,

and the axial resolution is not better than 1 mm. Several investigators employed

microwave-induced thermoacoustic waves in the 1980s for imaging of biological tis-

sues; these early works however did not produce any tomographic or depth-resolved

images. Recent progress realized tomographic imaging of biological tissues based on

microwave-induced thermoacoustic waves [16].

C. FORWARD FORMULAS OF TAT IN A HOMOGENEOUS MODEL

We will be deriving a formula for the forward problem in an acoustically homoge-

neous model, which will be used in the following chapters on TAT. In the case of

thermal confinement, the acoustic wave at point r and time t, p(r, t), is related to the

microwave absorption H(r, t) by the following wave equation [20]:

∂2p(r, t)

∂t2
− ν2

s0∇
2p(r, t) =

β

C

∂H(r, t)

∂t
, (1.1)

where vs0 is the acoustic speed; C is the specific heat; and β is the coefficient of the

volume thermal expansion. (1.1) can be rewritten in terms of H(r, t):

p(r, t) =
β

4πC

∫∫∫

∂H(r′, t′)

∂t′
dr′

|r − r′|
, (1.2)

where t′ = t − |r − r′| /νs0. The source term H(r, t) can further be written as the

product of a spatial component and a temporal component,

H(r, t) = I0ϕ(r)η(t), (1.3)
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where I0 is a scaling factor proportional to the incident radiation intensity; ϕ(r′)

describes the to-be-reconstructed microwave absorption properties of the medium at

r′; and η(t) describes the shape of the irradiating pulse. Substituting (1.3) into (1.2)

results in

p(r, t) =
βI0

4πC

∫∫∫

ϕ(r′)
dη(t′)

dt′
dr′

|r − r′|
. (1.4)

We proceed by transforming the time-dependent wave equation into the temporal-

frequency domain. Denoting the Fourier transforms of p and η by p̄ and η̄, respectively,

we have

p(r, t) =

∫ ∞

−∞

p̄(r, ω) exp(iωt)dω,

η(t) =

∫ ∞

−∞

η̄(ω) exp(iωt)dω. (1.5)

Substituting (1.5) into (1.4) results in

p̄(r, ω) =
iβI0ωη̄(ω)

4πC

∫∫∫

ϕ(r′)
exp(−iω |r − r′| /νs0)

|r − r′|
dr′. (1.6)

Define p̄1(r, ω) = p̄(r, ω)/(2πη̄(ω)); substitute it into (1.6); apply an inverse Fourier

transform to both sides of the equation, and obtain the following equation:

p1(r, t) =
βI0vs0

4πC

∂

∂t

∫∫

t=tf (r′,r)

ϕ(r′)

|r − r′|
dr′, (1.7)

where

tf (r
′, r) = |r − r′| /νs0 (1.8)

is the time-of-flight (TOF) from r′ to r; p1(r, t) is the deconvolution of p(r, t) with

respect to the profile of the microwave pulse and can be interpreted as the detected

pressure signal when the microwave pulse is infinitely narrow. The physical meaning

of this equation is that, in an acoustically homogenous medium, the pressure p1, at a

spatial point r and time t, is proportional to the first-order temporal derivative of the
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integration of the absorbed microwave energy over a spherical surface [a circle in the

two-dimensional (2-D) case]. The spherical surface is centered at r and has a radius

of tvs0.

D. OUTLINE

In this thesis, I first derive exact reconstuction algorithms for TAT and broadband

diffraction tomography using developed time-reversal techniques [21]. Then I will

focus on some important practical problems of TAT including limited-view problem

[22], effects of acoustic heterogeneity [23], and fast reconstruction algorithms [24, 25].

In Chapter II, we develop time-reversal methods and apply them to deriving

exact reconstruction algorithms for broadband UT and TAT in an arbitrary configu-

ration for the first time [21]. Before our work, developing reconstruction methods in

TWDS has been a craft work. The derivation of an algorithm depends strongly on

the specific illumination and detection geometry and exact reconstruction algorithms

are only available in a few special geometries. Although the concept of time reversal

(more generally known as backpropagation) has been used in developing reconstruc-

tion algorithm, no exact reconstruction algorithm is available using only the measured

field on a closed surface. This is because the available time-reversal formulas [26, 27]

requires both the field and its normal gradient on a closed surface enclosing the initial

sources. However, it is not practical to measure both the field and its normal gradi-

ent simultaneously. In Chapter II, we find that when time reversal is considered in

the time domain, exact time-reversal methods that use only the field on an arbitrary

closed surface can be derived for a wide variety of applications such as tomography

with diffracting sources, inverse diffraction, and ultrasound therapy. Then the re-

construction in UT and TAT can be developed by time-reversing the acoustic field
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to the time when the to-be-reconstructed point is excited. By using time-reversal

concept, the reconstruction in different branches of TWDS can be derived in a uni-

form framework. Furthermore, the proposed time-reversal methods can be applied in

other studies such as inverse diffraction, ultrasound therapy, and other time-reversal

applications.

The TAT reconstruction algorithms developed in Chapter II are based on two

assumptions. The first one is that the thermoacoustic signals are detected in a full

(panoramic) view. In other words, the detector moves along a whole circle in the 2-D

case or sphere in the three-dimensional (3-D) case. This means in particular that each

point of the scanned object is visible from the detector’s trajectory for 2π radians in

the 2-D case or 4π steradians in the 3-D case. However, in many applications of TAT,

the signals cannot be collected from all directions. For example, the solid angle of

detection is at most 2π steradians for a breast. So, one faces here an incomplete data

problem. In Chapter III, we define a “detection region,” within which all points have

sufficient detection views. It is explained analytically and shown numerically that the

boundaries of any objects inside this region can be recovered stably. Otherwise some

sharp details become blurred. One can identify in advance the parts of the boundaries

that will be affected if the detection view is insufficient. If the detector scans along

a circle in a two-dimensional case, acquiring a sufficient view might require covering

more than a π-, or less than a π-arc of the trajectory depending on the position of

the object. Similar results hold in a three-dimensional case. In order to support

our theoretical conclusions, three types of reconstruction methods are utilized: a

filtered backprojection (FBP) approximate inversion, which is shown to work well

for limited-view data, a local-tomography-type reconstruction that emphasizes sharp

details (e.g., boundaries of inclusions), and an iterative algebraic truncated conjugate

gradient algorithm used in conjunction with FBP. Computations are conducted for
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both numerically simulated and experimental data. The reconstructions confirm our

theoretical predictions.

The second assumption is that the tissue is acoustically homogeneous. For many

medical imaging applications, including imaging of the female breast, this assumption

is an approximation. For example, the speed of sound in the breast can vary from

1400 m/s to 1550 m/s. Errors due to the assumption of a constant acoustic speed,

which has never been studied in TAT, can potentially have a pronounced effect on

image quality. In Chapter IV, The effects of wavefront distortions induced by acoustic

heterogeneities in breast thermoacoustic tomography (TAT) are studied [23]. Firstly,

amplitude distortions are shown to be insignificant for different scales of acoustic

heterogeneities. For wavelength-scale, or smaller heterogeneities, amplitude distortion

of the wavefront is minor as a result of diffraction when the detectors are placed in

the far field of the heterogeneities. For larger-scale heterogeneities at the parenchyma

wall, by using a ray approach (geometric optics), we show that no refraction-induced

multipath interference occurs and, consequently, that no severe amplitude distortion,

like is found in ultrasound tomography, exists. Next, we consider the effects of phase

distortions (errors in time-of-flight) in our numerical studies. The numerical results

on the spreads of point sources and boundaries caused by the phase distortions are

in good agreement with the proposed formula. After that, we demonstrate that

the blurring of images can be compensated for by using the distribution of acoustic

velocity in the tissues in the reconstructions. The effects of the errors in the acoustical

velocities on this compensation are also investigated. An approach to implement the

compensation using only TAT data is proposed. At last, the differences in the effects

of acoustic heterogeneity and the generation of speckles in breast TAT and breast

ultrasound imaging are discussed.

The above reconstruction algorithms are implemented in the time domain. The



8

reconstruction of an image by Fourier transform has been used in X-ray CT [28],

ultrasonic reflectivity imaging [29] and diffraction tomography [30] successfully. The

computation complexity is reduced greatly due to the efficiency of the Fourier trans-

form. Then, in Chapter V, we develop exact and fast Fourier-domain reconstruction

algorithms for thermoacoustic tomography in planar and cylindrical configurations.

This is important for real-time 3-D imaging.
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CHAPTER II

TIME REVERSAL AND ITS APPLICATION TO TOMOGRAPHY WITH

DIFFRACTING SOURCES1

A. INTRODUCTION

Time reversal of an acoustic or electromagnetic wave is based on the invariance of the

wave equation in a lossless medium under the transform t → −t ( t represents the

time). Time reversal of a wave can be understood as generating the back-propagation

field from the measured forward-propagation field and/or its normal derivative after

removing the initial sources. The concept of time reversal has been implemented

experimentally and applied to a wide range of studies such as inverse scattering [31,

32, 33], wavefront distortion correction [27, 34], and multiple scattering phenomena

[35].

However, no formula is available for computing the time-reversed field using only

the measured field on a closed surface enclosing the initial source. When both the field

and its normal gradient on a closed surface are available, there are formulas [26, 27]

to derive the time-reversed field. However, it is not practical to measure both the

field and its normal gradient simultaneously. There are two challenges in deriving the

time-reversed field using only the field. First, it is not obvious that Green function,

which is widely used to derive the field in space from the field on a closed surface,

can be applied here. This is because the time-reversed field on the closed surface

includes both diverging and converging components [26, 27]. While the converging

component of the time-reversed wave is just the measured signals in the forward

1Y. Xu and L.-H. Wang, Phys. Rev. Lett., accepted, 2003. Copyright (2003) by
the American Physical Society.
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propagation with reverse temporal order, the diverging component has no counterpart

in the forward propagation and, consequently, is not available from measurement in

general. Secondly, in a free space, retransmission of the measured signals in reversed

temporal order from the detection surface will not reproduce the time-reversed field.

This is because the waves retransmitted in one position will propagate to the other

positions on the surface and change the field there, and consequently the field on the

surface will not equal the field in the forward propagation in reversed temporal order.

In this chapter, we find that when time reversal is considered in the time domain,

exact time-reversal methods that use only the field on an arbitrary closed surface can

be derived for a wide variety of applications such as tomography with diffracting

sources, inverse diffraction, and ultrasound therapy. Under certain conditions, a

time-reversed field can be approximated by retransmitting the measured signals in

reversed temporal order in a free space. Acoustic waves are used as an example to

present our results and methods, but their application to other scalar or vector waves

is straightforward.

Next, we show that exact reconstruction for broadband diffraction tomography

(DT) [36, 37, 38, 39, 40] and TAT can be essentially represented by a time-reversal

process. Although exact reconstruction algorithms have been proposed for DT and

TAT in some special geometries, no exact algorithm for broadband DT and TAT

using only pressure measured on an arbitrary closed surface has been proposed. In

the forward problem of our DT model, the objects [shaded in (Fig. 1)] are irradiated

by an illuminating source of δ(t)δ(r−rs) at rs, and the scattered field is measured on

an arbitrary closed surface Σ enclosing the objects to reconstruct their heterogeneity.

This DT model is a single-view one; therefore, it is very efficient for collecting data.
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Fig. 1. Illustration of diffraction tomography. S represents the illuminating source, D

represents a detector scanning across surface Σ, and the to-be-imaged object

is shaded. R and R̄ are the space inside and outside Σ, respectively.

The total field in an acoustically heterogeneous medium is [41]:

p̄t(r, ω) = p̄in(r, ω) +

∮

R

dr1ω
2γ(r1)p̄t(r1, ω)Gω(r |r1 )/v2

s , (2.1)

where p̄t(r, ω) and p̄in(r, ω) are the temporal spectrum of the total pressure field and

the incidence field, respectively; γ(r) = (κ−κ0)/κ0 describes the normalized deviation

of compressibility κ from the average κ0; Gω(r |r0 ) = exp(−iω |r − r0| /vs)/(4π |r − r0|);

p̄in(r, ω) = Gω(r |rs ) is the incident wave. Now we define a normalized scattered field

as p̄n(r, ω) = [p̄t(r, ω) − p̄in(r, ω)]v2
s/ω

2 and rewrite (2.1) as

p̄n(r, ω) =

∮

R

dr1γ(r1)p̄t(r1, ω)Gω(r |r1 ) . (2.2)

It is easy to see that point r1 of the objects can be considered as a secondary source

γ(r1)p̄t(r1, ω) for p̄n. In our reconstruction of DT, we first time-reverse p̄n back to

time te(r) = |r − rs| /vs at point r (vs is the acoustic speed and te(r) is the time the

secondary source at r is excited) and then derive the heterogeneity. Here, we first

derive the formulas for time-reversing a wave in a homogeneous medium and treat

DT under first Born approximation (FBA), which involves replacing p̄t(r1, ω) with

p̄in(r1, ω) on the right-hand side of (2.2). Then the extensions of the results to the

case using Green function in a heterogeneous medium are discussed.
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B. TIME REVERSAL OF A WAVE

1. Definition of Time Reversal

We start from the wave equation for pressure p0(r, t)

∇2p0(r, t) −
1

v2
s

∂2p0(r, t)

∂t2
= −q(r, t) , (2.3)

where q(r, t) is the source term and is nonzero only in R [the space enclosed by the

detection surface Σ (Fig. 1)] and within the time period [0, Ts]. The pressure field

can be expressed as

p0(r, t) =

∫ Ts

0

dt0

∮

R

dr0q(r0, t0)g+(r, t |r0, t0) , (2.4)

where g±(r, t |r0, t0) = δ(t − t0 ∓ |r − r0| /vs) /(4π |r − r0|) is a diverging ( g+) or con-

verging ( g−) Green function of the wave equation.

In this chapter, time reversal of p0(r, t) at time T0, is defined as

pr(r, T0) = p0(r, T0), p
′
r(r, T0) = −p′0(r, T0) , (2.5)

where prime represents the temporal derivative in this chapter; pr(r, t) is the time-

reversed field of p0(r, t); and T0 is chosen to be large enough so that p0(r, t) = 0 for

r ∈ R, t > T0. Then, pr(r, t) can be uniquely determined by the initial conditions

at T0. The above definition of time reversal is analogous to the fact that a particle

will move back along its trajectory if its velocity is reversed and position unchanged.

According to this definition, we mean pr(r, t̂) when we say time-reversing a field back

to time t, where a hat over a time variable t represents 2T0 − t in this chapter.
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2. Time Reversal in the Case of a Point Source

In the case of a point source δ(r − r0)δ(t − t0) in R, (2.5) becomes gr(r, T0) =

g+(r, T0 |r0, t0 ), g′
r(r, T0) = −g′

+(r, T0 |r0, t0 ). It can be easily verified that the time-

reversed field

gr(r, t |r0, t0 ) = g−(r, t
∣

∣r0, t̂0 )

−g+(r, t
∣

∣r0, t̂0 ), t > T0 , (2.6)

because it satisfies both the homogeneous wave equation and the initial-value condi-

tions shown above. This result is also obtained by Cassereau [27] and Porter [26] .

The physical meaning of (2.6) is that if we time-reverse, at T0, the field of a point

source which is located at r0 and excited at t0, the time-reversed field converges to

r0 at time t̂0, and then diverges with an opposite amplitude. The diverging wave

g+(r, t
∣

∣r0, t̂0) , however, does not have a counterpart in the forward propagation. It

exists because, unlike the forward propagation, there is no source inside Σ for gr(r, t).

The diverging wave with an opposite amplitude exactly cancels the source term re-

lated to the converging one.

3. Time Reversal in the Case of an Arbitrary Source

In the case of an arbitrary source, similar results can be obtained after considering

the linearity of the wave equation with respect to the source

pr(r, t) =

∫ Ts

0

dt0

∮

R

dr0q(r0, t0)gr(r, t |r0, t0) . (2.7)



14

After substituting (2.6) into (2.7), using g−(r, t |r0, t0) = g+(r,−t |r0,−t0) , and vari-

able transform, we have for rd ∈ Σ ( although it is valid for any r)

pr(rd, t) = p0(rd, 2T0 − t) + pout(rd, t) , (2.8)

pout(rd, t) = −

∫ 2T0

2T0−Ts

dt0

∮

R

dr0q(r0, t̂0)g+(rd, t |r0, t0) .

As in the case of a point source, the diverging component pout(rd, t) has no counterpart

in the forward propagation and is, in general, not available from the experimental

measurements of p0 except in some special cases. Nevertheless, we will be showing

that pr(r, t) before a specified time can be derived using only p0(rd, t).

C. TIME-REVERSAL METHODS

Since there is no source for pr(r, t) and pr(r, T0) = 0 in R, pr(r, t) in R can be

expressed in terms of the field on Σ [42]:

pr(r, t) = −

∫ t+

T0

dt0

∮

Σ

dSdpr(rd, t0)
∂g1(r, t |rd , t0)

∂n
, (2.9)

where n is a unity vector along the normal of Σ at rd pointing away from the volume

R; g1(r, t |r0, t0) with r, r0 ∈ (R ∪ Σ) is Green function subject to the homogeneous

Dirichlet boundary condition on Σ and explicit expression of g1 in the form of series

of eigenfunctions can be found for the boundaries that fit with separable coordinates

[42]. Here, we will show that pro(r, t), the contribution of pout(rd, t0) to the right-hand

side of (2.9), is zero before a specified time. After inserting (2.8) into (2.9), we have

pro(r, t) =

∫ t+

T0

dt0

∮

Σ

dSd

∫ 2T0

2T0−Ts

dtc

∮

R

drcq(rc, t̂c)

×g+(rd, t0 |rc, tc)
∂g1(r, t |rd , t0)

∂n
. (2.10)
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Considering g+(rd, t0 |rc, tc) = 0 when t0 < tc + |rc − rd| /vs, and g1(r, t |rd, t0) = 0

when t < t0 + |r − rd| /vs, and assuming that q(rc, tc) is nonzero only within the

period [t1c , t
2
c ], we conclude that pro(r, t) = 0 if for any rc ∈ R and rd ∈ Σ

t < 2T0 − t2c + |rd − rc| /vs + |r − rd| /vs . (2.11)

Actually, pro(r, t) can be shown to be equivalent to the field induced by the reflection

of the diverging field pout(r, t) by Σ. It contributes only to the late part of pr(r, t).

In many applications including tomography with diffracting sources and ultrasound

therapy, it can be shown that we are only interested in the part of pr(r, t) within the

range defined by (2.11). For example, let us consider our broadband DT model. As

will be shown in (2.20), the heterogeneity at point r in Fig. 1 can be derived from

pr(r, t̂e(r)). After noticing |te(r) − te(rc)| 6 |r − rc| /vs and t1c = t2c = te(rc), it can

be found that (2.11) is minimally observed for any rc ∈ R and rd ∈ Σ to compute

pr(r, t̂e(r)) in DT. Similarly, it can be found that (2.11) can be easily met for other

applications such as thermoacoustic tomography and ultrasound therapy. Therefore,

pr(r, t), within the range defined by (2.11), can be expressed as

pr(r, t) = −

∫ t+

T0

dt0

∮

Σ

dSdp0(rd, t̂0)
∂g1(r, t |rd , t0)

∂n
. (2.12)

The physical meaning of (2.12) is that the time-reversed field before a certain time

in R is equivalent to the field (caused by the retransmission of p0(rd, t) from Σ in

reversed temporal order) in a reflective cavity (formed by Σ) rather than in the free

space. Therefore, the reflections from Σ will also contribute to pr(r, t). The reason is

that the field transmitted in one position on Σ will propagate to the other positions

on Σ, and, consequently, the field in these positions will change. The reflections from

Σ will cancel the changes in these positions.

Next, we will show that the reflections from Σ can be approximately ignored
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under certain conditions. The central concept is that g1(r, t |rd , t0) can be obtained

in a model where the boundary Σ serves as a perfect mirror (with a phase shift of π

after reflection), and a delta pulse source is launched at rd and time t0. Under the

ray approach (geometrical optics approximation), g1(r, t |rd , t0) is the summation of

the contributions from all the rays that go from rd and arrive at r if the radii of Σ

are much larger than the wavelength of the excitation pulse. As shown in Fig. 1, the

first ray from rd to r travels along the line connecting rd and r. The second ray is

first reflected by the boundary at rd and then goes to r. Both of them arrive at r

at time t0 + |r − rd| /vs. The contribution of the first two rays to ∂g1/∂n in (2.12)

is 2∂g+/∂n. Then there will be other rays (for example, the dashed line in Fig. 1)

that are reflected at other points on the boundary such as A. In DT, it is shown in

Appendix A that when the to-be-reconstructed point r is around the center of Σ, and

ldet > 2lobj, where ldet is the average linear dimension of Σ and lobj is the maximum

linear dimension of the object, pr(r, t̂e(r)) can be approximated well after replacing

∂g1/∂n in (2.12) with 2∂g+/∂n

pr(r, t) ≈ −2

∫ t+

T0

dt0

∮

Σ

dSdp0(rd, t̂0)
∂g+(r, t |rd , t0)

∂n
. (2.13)

The physical meaning of (2.13) is that under certain conditions, time reversal can

be approximated well by retransmission of the measured signals in reversed temporal

order from the detection surface in a free space. (2.13) also holds for applications

other than DT when appropriate ldet is chosen by using the demonstrated method for

DT. (2.13) can be transformed into

pr(r, t) ≈
1

2π

∮

Σ

dSd
n · (rd − r)

|r − rd|
2 [

p0(rd, trd)

|r − rd|

−p′0(rd, trd)/vs] , (2.14)
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where trd = 2T0 − t + |r − rd| /vs. (2.14) is in the form of the well-known delay-

and-sum algorithm (backprojection to spheres) used in synthetic aperture imaging.

Consequently, the physical meaning and the valid conditions of this widely used al-

gorithm are revealed quantitatively for the first time from basic physics.

D. RECONSTRUCTION IN DT

Now we will discuss the reconstruction in DT. In the forward propagation, the sec-

ondary sources (the points of the objects) are not excited at the same time, since

the incidence wave reaches different points at different times. Therefore, in the time-

reversed field, the diverging waves from some secondary sources mingle with the

converging waves from other secondary sources according to (2.6). Nevertheless, we

will show that there is a strikingly simple relationship between the time-reversed field

and the heterogeneity under FBA. After combining (2.2), (2.6), and (2.7) and the

application of inverse Fourier transform, the time-reversed field of p̄n(r, ω) at time

t̂e(r) is

pnr(r, t̂e(r)) =

∮

R

dr1γ(r1)

∫ ∞

−∞

dk exp(−ik |r − rs|)

×p̄t(r1,−ω)[G∗
ω(r |r1 ) − Gω(r |r1 )] , (2.15)

where * represents the complex conjugate and k = ω/vs. Let’s define ϕ1(r) =

|r − rs| pnr(r, t̂e(r)). After applying FBA we have

ϕ1(r) =
1

4π

∮

R

dr1γ(r1)

∫

dk{
|r − rs| exp [−ik(|r − rs| − |rs − r1| − |r − r1|)]

4π |r − r1| |rs − r1|

−
|r − rs| exp[−ik(|r − rs| − |rs − r1| + |r − r1|)]

4π |r − r1| |rs − r1|
} . (2.16)
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We denote the contribution of the first term in the integrant on the right-hand side

of (2.16) to ϕ1(r) as ϕ+
1 (r). After the integration over k, we have

ϕ+
1 (r) =

1

2

∮

R

dr1γ(r1)
|r − rs| δ(|r − rs| − |rs − r1| − |r − r1|)

4π |r − r1| |rs − r1|
. (2.17)

It can be found that r1 has to fall in the line between rs and r to make the δ function

nonzero. Without losing generality, assume r − rs is in the z direction and rs is the

original point, and we can compute the above integration in a spherical coordinate

system

ϕ+
1 (r) =

1

2

∮

R

dφdθ sin(θ)dr1r1γ(r1)
rδ(r − r1 −

√

r2 + r2
1 − 2rr1 cos(θ)

4π
√

r2 + r2
1 − 2rr1 cos(θ)

=
1

2

∫

dr1r1

∫ π

0

dθ sin(θ)γ(r1)
r

2
√

r2 + r2
1 − 2rr1 cos(θ)

×δ(
2rr1(1 − cos(θ))

r − r1 +
√

r2 + r2
1 − 2rr1 cos(θ)

)

=
1

8

∫ ∞

0

dr1γ(r1)
|r − r1 + |r − r1||

2 |r − r1|

=
1

8

∫ r

0

dr1γ(r1) . (2.18)

Similarly, we can obtain the second part of the integration in (2.16)

ϕ−
1 (r) = −

1

8

∫ ∞

r

dr1γ(r1) . (2.19)

At last, we have

γ(r) = 4
∂[|r − rs| pnr(r, t̂e(r))]

∂ |r − rs|
. (2.20)

Therefore, the reconstruction in DT can be implemented by first time-reversing pn

to obtain pnr(r, t̂e(r)) with (2.12) or (2.13), and then obtaining γ(r) with (2.20). A

numerical simulation of three-dimensional DT is implemented to support our theoret-

ical conclusions. The object is a sphere with a radius of 8 mm that is located at the

origin, and γ(r) is set to be unity in the sphere and zero otherwise. The illuminating
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Fig. 2. Reconstructed image sections in DT along the (a) y = 0 and (b) x = 0 planes,

respectively.

point source is at [0, 64, 0] mm. The detection surface is an ellipsoid with three axis

lengthes of [80, 64, 80] mm and centered at the origin. 4096 detection positions are

randomly distributed over the detection ellipsoid. The imaging space is a cube with

a side length of 62 mm, centered at the origin, and mapped with a 62 by 62 by 62

mesh. In the forward problem, pn(r, t) is computed by the integration of the object

value along a series of ellipsoids. In the inverse problem, we use (2.14) instead of the

exact formula (2.12) to time-reverse fields due to the consideration of computation

efficiency. Fig. 2(a)-(b) shows the reconstructed image section along the y = 0 and

x = 0 planes, respectively. It can be found that the object value is reconstructed

quantitatively. There are some shadows from the object along the y axis in Fig. 2(b).

The shadows are probably caused by the limited bandwidth of the simulated signals.

They can be eliminated if the illuminating source is placed in several positions and

multiple sets of data are collected.

E. TIME REVERSAL AND DT IN A HETEROGENEOUS MEDIUM

1. Time Reversal in a Heterogeneous Medium

Our time-reversal methods are derived for waves in a homogeneous medium. The

extension of most of them to a heterogeneous medium is straightforward. (2.4)-(2.9)
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hold for a heterogeneous medium after Green function is replaced by the correspond-

ing one in a heterogeneous medium. In this case, g− is defined as

g−(r, t |r0, t0) = g+(r,−t |r0,−t0) . (2.21)

In addition to replacing Green function, vs in (2.11) should be understood as the

maximum of the acoustic speed in the medium to extend (2.10)-(2.12). (2.13) can

be extended after the minimum requirement for ldet is estimated. This estimation is

more complex in a heterogeneous medium, since Green function in a heterogeneous

medium is usually a wave train rather than a delta pulse. To proceed from (2.13)

to (2.14), we need to assume that the heterogeneity changes only the flight time of

a transient wave but not its shape. This assumption is usually valid in a weakly-

scattering application such as when a low-frequency ultrasonic pulse is used to image

soft tissue. In this case, g is approximated as

g±(r, t |r0, t0) = δ(t − t0 ∓ tf (r, rd)) /(4π |r − r0|) , (2.22)

where tf (r, r0) is the flight time from r0 to r. Then (2.14) can be extended to a

heterogeneous medium after replacing |r − rd| /vs in (2.14) with tf (r, r0).

2. DT in a Heterogeneous Medium

When g is approximated as (2.22), we can obtain similar reconstruction formula for

DT using Green function in a heterogeneous medium along the same line of deriving

(2.20). In the heterogeneous case, we need to the time-reverse p̄n(r, k) back to time

tf (r, rs). In the heterogeneous case, (2.16) becomes

ϕ1(r) =
1

4π

∮

R

dr1γ(r1)

∫

dk{
|r − rs| exp [−ik(tf (r, rs) − tf (rs, r1) − tf (r, r1))]

4π |r − r1| |rs − r1|

−
|r − rs| exp[−ik(tf (r, rs) − tf (rs, r1) + tf (r, r1))]

4π |r − r1| |rs − r1|
} . (2.23)
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We will first consider the first part of the integration. After the integration over k,

we have

ϕ+
1 (r) =

1

2

∮

R

dr1γ(r1)
|r − rs| δ(tf (r, rs) − tf (rs, r1) − tf (r, r1))

4π |r − r1| |rs − r1|
(2.24)

Now, it can found that only only r1 within l(rs, r) contributes to the above integration

according to Fermats’ principle, where l(rs, r) is the ray path from rs to r. By an

analog with (2.18)

ϕ+
1 (r) ≈

1

8

∮

l(rs,r)

dr1γ(r1) . (2.25)

Finally, we have

γ(r) ≈ 4nl · ∇r[|r − rs| pnr(r, t̂f (r, rs))] , (2.26)

where nl is the tangential unit vector along l(rs, r) at r.

F. RECONSTRUCTION ALGORITHM IN TAT

In TAT, the to-be-reconstructed parameter is the energy deposition, because the

acoustic contrast is usually much less significant than the electromagnetic absorption

contrast. We will be showing that the energy deposition is equivalent to the initial

pressure distribution in TAT.

1. A Delta Excitation Pulse

The thermoacoustic signal is related to the energy deposition by

∇2p(r, t) −
1

v2
s

∂p(r, t)

∂t2
=

γ(r)

v2
s

∂p(r, t)

∂t2
−

β

C

∂H(r, t)

∂t
. (2.27)

We will first consider a delta pulse, and the effect of finite pulse length will be discussed

later in the paper. Substituting a delta pulse into (2.27), and applying integration of

t over [0−, 0+] twice, where 0+ (0-) is an infinite small positive (negative) real, we
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have

p(r, 0+) = εϕ(r), (2.28)

where ε = βv2
sI0/C, and it is assumed that the thermoacoustic pressure is finite.

Therefore, the reconstruction algorithm in TAT is equivalent to reverting the pressure

field to time zero. This concept can also be adopted to derive TAT reconstruction

algorithm in a known acoustically heterogeneity medium. Therefore, combining (2.28)

and the time reversal techniques, we have the following exact reconstruction algorithm

in TAT,

ϕ(r) =
1

ε
pi(r, 0) =

1

ε
pr(r, 2T0). (2.29)

2. The Effect of Finite Bandwidth in an Acoustically Homogeneous Model

In many cases, p̄(r, k) may be modified from the signal in the ideal case by the

multiplication of a function of k in the k -space due to the limited bandwidth of the

detector. The time-reversed field is

p̄r(r, k) = iεkη̄(−k) exp(−2ikT0)

∫∫∫

ϕ(r′)[Gk(r | r′) − G∗
k(r | r′)]dr′. (2.30)

The reconstructed image is equivalent to the time-reversed field at 2T0

ϕm(r) =
1

2πε

∫

dk exp(2ikT0)p̄r(r, k) =
1

2πε

∫

dkη̄(−k)[p̄i(r, k) + p̄i(r,−k)]. (2.31)

Now, we will compute the point spread function. If there is a point source at r0, the

thermoacoustic signal caused by it is

p̄i(r, k) = ikεGk(r | r0) . (2.32)
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Substituting (2.32) into (2.31), we have the following expression for the point-spread-

function (PSF)

ϕpsf (r, r0) =
1

2π

∞
∫

−∞

dkikη(−k)
[exp(−ik |r − r0|) − exp(ik |r − r0|)]

4π |r − r0|

= (
1

2π
)2

∞
∫

−∞

dk(−1)kη(−k)
sin(−ik |r − r0|)

|r − r0|

=
η′(− |r − r0| /vs) − η′(|r − r0| /vs)

4π |r − r0|
. (2.33)

This is in agreement with the PSF in TAT obtained for planar, cylindrical and spher-

ical configuration [43]. An interesting conclusion from (2.33) is that the component

of the excitation pulse that is antisymmetrical with respect to time zero does not

contribute to the reconstructed image.

FBA is used in our discussion about DT. We realize that FBA does not hold

for high frequencies. However, if we confine the frequency response range of the

ultrasound transducer to the low-frequency range, FBA will stand approximately.

Alternatively, we can improve FBA by using distorted-wave Born approximation. At

last, it should be pointed out that our time-reversal methods can be easily applied to

inverse diffraction and inverse source problems.
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CHAPTER III

LIMITED-VIEW THERMOACOUSTIC TOMOGRAPHY1

A. INTRODUCTION

As shown by (1.7), TAT signals can be represented in terms of a known circular

Radon transform. There exist explicit reconstruction formulas for this transform

[44, 45, 46, 47, 48, 49] when data are collected along a line or a full circle in a two-

dimensional (2-D) case and along a plane, sphere, or a cylinder in a three-dimensional

(3-D) case. In all these cases it is assumed that the imaged objects are located either

on one side of the scanning line (plane), or inside the scanning circle (sphere, cylin-

der), without which assumption reconstruction is not always possible. The available

inversion formulas employ either special-function expansions, or backprojection in the

case of the linear or planar data-acquisition geometry.

Exact reconstruction algorithms for TAT based on series-expansion techniques

are implemented in planar, spherical, and cylindrical configurations in [24, 25, 50].

Following the line of [39], an approximate modified backprojection algorithm has

been developed from an exact 3-D model. Other backprojection algorithms are also

proposed [12, 51]. In these algorithms for TAT, it is assumed that the thermoacoustic

signals are detected in a full (panoramic) view. In other words, the detector moves

along a whole circle in the 2-D case or sphere in the 3-D case. This means in particular

that each point of the scanned object is visible from the detector’s trajectory for

2π radians in the 2-D case or 4π steradians in the 3-D case. However, in many

applications of TAT, the signals cannot be collected from all directions. For example,

1 c©2003 American Association of Physicists in Medicine. Reprinted, with permis-
sion from Y. Xu and L.-H. Wang, “Reconstructions in limited-view thermoacoustic
tomography,” accepted by Med. Phys., 2003.
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the solid angle of detection is at most 2π steradians for a breast. So, one faces here an

incomplete data problem. Although one can show [52] that theoretically an arbitrarily

small scanning arc (i.e., the arc of a circle over which the detectors move) suffices for

the uniqueness of recovery, in practical implementations the limited-view problems

usually lead to losing some parts of the high-frequency information and hence blurring

of some sharp details.

In this chapter, we present our results on the limited-view TAT. Although limited-

view problems have been studied extensively in X-ray tomography (e.g., [53], and

references therein), diffraction tomography [54], and reflectivity tomography [55], to

the best of our knowledge, no results on the limited-view TAT have been published.

In the methods section, a formula for the forward problem is presented. In particu-

lar, it is shown that the TAT signals can be represented in terms of a known circular

Radon transform. This enables us to employ results of [52] that justify the theoret-

ical possibility of reconstruction. Then results by Quinto and Louis [56] developed

for sonar are applied to determine the “stably visible” parts of the objects in TAT.

In particular, a piece of the boundary of an object (i.e., interfaces between objects)

can be stably reconstructed as soon as at any point on the boundary at least one of

its two normal directions passes through a detector position. On an intuitive level,

this is because an arbitrary interface can be considered as a combination of small flat

interface segments, and each segment transmits acoustic waves identically in the two

opposite directions perpendicular to the interface segment. This means that we need

to collect signals at only one of the two directions to obtain information about the

boundary segment. More complicated sharp details (“singularities”) could be con-

sidered as well, which would entail using the notion of a wavefront of a function and

other tools of microlocal analysis. However, among all possible singularities, tissue

interfaces are of the most interest for TAT.
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Exact reconstruction formulas for the limited-view TAT are not yet known. We

derive an approximate filtered backprojection (FBP) algorithm that works well quan-

titatively. A version of this method that emphasizes singularities [a “local tomog-

raphy” (LT) reconstruction] is also tested. The FBP results are then iteratively

improved using a truncated conjugated gradient (TCG) method. Besides using nu-

merical phantoms for calculations, we also conducted experimental measurements on

physical phantoms and applied our reconstruction methods to the obtained data.

The results of all these reconstructions confirm our theoretical predictions. These are

addressed in the section of results and discussion.

1. Analysis of Singularities in Circular Radon Transform and Limited-view TAT

a. Circular Radon Transform

It can be seen from (1.7) that p1(r, t) can be obtained from ϕ(r′) after applying three

linear operations: circular (spherical in 3-D) Radon transform R, multiplication by

1/t, and differentiation Dt with respect to t. The circular Radon transform defined

as

Rϕ(r, t) =

∮

t=|r−r
′|/νs

ϕ(r′)dr′ . (3.1)

It is similar to the conventional linear Radon transform, except that the integration

here is over a circle or a sphere rather than a line or a plane. In this chapter, the set

Σ of centers r of the circles (spheres) of integration coincides with the set of positions

of the detector, and the set of radii (that are proportional to time t) is unrestricted.

We call these circles (spheres) “projection curves” (“projection surfaces”) and the set

Σ the “scanning curve” (or “detector curve”). We assume that the source function

ϕ(r) is zero outside Σ and in a neighborhood of Σ. In other words, the scanned

object is strictly inside the scanning detector trajectory Σ. In this case it is known
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that data collected from an arbitrarily small arc of the detector trajectory are the-

oretically sufficient for a complete reconstruction [52]. This result, however, neither

provides reconstruction algorithms, nor guarantees that the reconstruction can be

achieved in any practically stable manner. Indeed, it is well known [49] that solving

incomplete data problems usually leads to operations like Fourier filtrations with fast

growing filters, which implies high sensitivity to errors in data. This in turn requires

cutting high frequencies and hence blurring the images. Sacrifices in high frequencies

naturally lead to destroying sharp details (interfaces between different tissues) in the

reconstruction. The question of what parts of the singularities (i.e., sharp details)

of the image can be stably reconstructed depending on the scanning geometry is ad-

dressed for the planar Radon transform in [57] and for the circular one in connection

with sonar in [56]. Local tomography reconstructions [58, 59, 60, 61] also address

similar issues.

b. TAT

We would like to note that in (3.1) the presence of a temporal derivative in the TAT

data (which is equivalent to a radial derivative after the circular Radon transform)

can only emphasize singularities and hence should not lead to additional blurring in

comparison with the circular Radon transform itself (this can be shown rigorously).

In fact, as it will be seen later in this chapter, this derivative is a natural part of the

reconstruction procedure for the circular Radon transform.

We will now apply to TAT the known results of integral geometry concerning

singularity reconstruction [56, 57]. The exact description would require the notions

of microlocal analysis, in particular the one of a wavefront set of a function (e.g.,

[56, 57]). However, in tomographic problems, in particular in TAT, one is mostly

interested in only one type of singularity: the jump of the imaged value ϕ across
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Fig. 3. Wavefront WS(ϕ) of an image ϕ consisting of pairs (r′, ξ). Point r′ belongs to

L (a jump interface in the image) and ξ is a non-zero vector normal to L at

r′.

an interface (a curve in 2-D or a surface in 3-D). Assuming that ϕ is smooth except

for a jump across a curve L in the plane (the 3-D situation is analogous with L

being a surface), then the wavefront WS(ϕ) of ϕ consists of pairs (r′, ξ) where point

r′ belongs to L and ξ is a non-zero vector normal to L at r′ as shown in Fig. 3.

Now the results of [56] can be summarized as follows: one can identify that a pair

(r′, ξ) belongs to the wavefront set of the image by looking at the singularities of

the Radon data if and only if among the circles (spheres) of integration (“projection

curves”) there exists at least one passing through the point r′ and normal to ξ at

this point. To put it differently, in TAT one can see without blurring only those

parts of the interfaces that one can touch tangentially by circles (spheres) centered

at detector positions. This means that one needs to have a detector located on the

normal to L at r′ in either direction. What happens to other, “invisible” parts of

the interfaces? We provide here a non-technical explanation. One would need to

recover these singularities from smooth parts of the measured data. This in turn

means the involvement of operations like filtrations in the frequency domains with

filters growing faster than any power. In order to avoid instabilities then, this clearly

requires cutting those frequencies off, which causes blurring. The conclusion is that

the “visible” parts of the interfaces should be possible to recover, while the others

should blur independently of the reconstruction method used. Discussion of the
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Fig. 4. Illustration of the “detection regions” (shaded areas) of circular Radon trans-

form. (a) The detector moves along a single arc (solid) of a circle. (b) Two

arcs. (c) Three arcs.

related issues of stability of reconstruction would be too lengthy; one can find the

relevant considerations for instance in [62]. In a nutshell, more stable tomographic

problems allow one to estimate the error in the reconstruction (in a Sobolev norm)

by the error in the data in a somewhat smoother norm. This, however, is impossible

when the information about the wavefront is lost.

Let us make this geometry more explicit for our circular (spherical) trajectory

of detectors. We pose the question: Assume that only a part of the detector circle

(sphere) is used for collecting data; at what locations then, all interfaces in the image

will be completely recoverable? We will call the set of all such “good” locations the

“detection region.” For images outside this region, one needs to apply the tangent-

circle test as described in the preceding two paragraphs to predict what parts of the

boundaries will not be stably recoverable. Assuming first that the detector moves

along a single arc of the circle [Fig. 4(a)], then simple geometric consideration shows

that the “detection region” is just the convex hull of this arc (i.e., the circular cap

based on the arc). Here the “detection region” is shaded, and the arc of the circle

where we do not position a detector is shown as a dotted line. Analogously, one
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can find the “detection region” (shaded) for two arcs [Fig. 4(b)]. The situation

changes, however, for more complicated scanning trajectories. For instance, in the

case of three arcs, one can have more than just circular caps in the “detection region”

[Fig. 4(c)]. Here an additional triangular part of “detection region” appears in the

center. The situation can become even more complicated for spherical 3-D geometry.

The general rule for finding the “detection region” is: draw all lines such that both

of their intersection points with the scanning circle (sphere) do not coincide with

detector locations. These lines cover the “invisible” domain, so its complement forms

the “detection region”. Note that in the “invisible” domain some boundaries can

still be recovered stably, while others blur away. Namely, the parts of the boundaries

the normal lines to which pass through a detector position, and only those, can

be stably recoverable. The above conclusions are illustrated in Fig. 5, where the

“invisible” parts of the object boundaries, i.e. the ones to be blurred during the

reconstructions, are shown with dotted lines. For instance, in Fig. 5(a) one has a

cap “detection region” and a rectangular object that does not fit fully into it. Then

one expects the dotted parts of the rectangle’s boundary to be affected by blurring

artifacts during the reconstruction. Fig. 5(b) shows the expected reconstruction of

a circular object located outside the “detection region”. Let us remark that similar

considerations apply to an arbitrary scanning geometry. For instance, Fig. 5(c) shows

the parts (solid) of the boundaries of a circular and a square object that can be stably

reconstructed from the detection on a segment AB.

c. Reconstruction Methods

As it has already been mentioned before, exact inversion procedures are known for

circular and spherical Radon transforms in some special detection configurations [44,

49]. However, for the circular trajectories of detectors only special-function-expansion
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Fig. 5. ”Visible” (solid line) and “invisible” (dashed) boundaries of a square object,

and the ”detection regions” (shaded areas). (a) The detector moves along an

arc (solid). (b) Same as (a) for a disk phantom. (c) Same as (a) except that

the detector moves along the line segment AB and the objects are a square and

a disk. The ”visible” boundaries are expected to be recoverable stably, while

the ”invisible” boundaries should be blurred away.

methods are known, while formulas of FBP type are available for the linear (planar)

trajectories. Our approach is to use an approximate FBP formula, which happens to

work well under most of circumstances and can be improved in conjunction with post-

processing by an iterative method. Namely, for objects not too close to the detectors,

one can think of projection lines as close to straight lines, and hence the circular

Radon transform as being close to the standard Radon transform. In this approach,

the center r of the projection circle and its radius ρ (which is proportional to time)

are analogs of the normal coordinates (θ̂, ς) of a line r · θ̂ = ς in the standard Radon

transform where, θ̂ is a unit vector normal to the line. FBP inversion of the standard

Radon transform on the plane consists (up to a constant factor) in applying the first

derivative with respect to ς, then Hilbert transform with respect to ς, and finally the

backprojection operator, which averages over lines passing through a given point [49].

We implement a similar procedure in the circular Radon transform. This amounts
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Fig. 6. Diagram to show the uniform rotation of θ in FBP in circular Radon transform

or TAT. The dashed arrow represents the normal to the detection curve (dotted

arc) at rθ and the dashed line is the normal to a projection arc centered at rθ

and passing through a reconstructed point r. θt is the detection view at r, i.e.

the angle subtended by the detection curve as viewed from r.

to a differentiation with respect to the radius, a Hilbert transform with respect to

the radius, and then a circular backprojection, i.e., averaging over the circles passing

through a given point. One should also make sure that during the backprojection the

tangent lines (or the normal vectors) to the projection curves at the given point, for

example, θ in Fig. 6, rather than the centers of the projection curves (which coincide

with detector positions), rotate at a constant speed. Differentiation with respect to

the radius is already contained in the TAT data, as shown in (3.1), so this step can

be simplified in 2-D reconstructions (it is still required in a 3-D TAT). Based on this,

we arrive in Appendix B at an approximate FBP reconstruction formula for the 2-D

TAT

ϕ(r) ≈
C

βI0v2
s

∮

ds
n · (r − rθ)

|r − rθ|
2 H(p1(rθ, |rθ − r| /vs) |r − rθ| + p2(rθ, |rθ − r| /vs)),

(3.2)

where H is a Hilbert transform; p2(r, t) = vs

∫ t

0
p1(r, t)dt; n is the inward normal to

the detection curve at rθ; ds is the arc length differential; and the integration is along
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a complete detection curve (i.e., the one that runs around the objects). In the case

of incomplete data, one just replaces the missing data with zeros (possibly gradually

phasing off the existing data closely to the missing data region to reduce the artifacts

caused by the missing data) and then applies the formula. Although this is not an

exact inversion, one can show using microlocal analysis that it preserves all “visible”

singularities (a conclusion supported by the numerical and experimental evidences

presented below). If one is interested in singularities only (e.g., interfaces between

different types of tissue), then one can drop the integral term p2(rθ, |rθ − r| /vs) in

the last formula, since it corresponds to a pseudo-differential operator of a smaller

order.

Let us also provide a local tomography formula for the 2-D TAT. In order to

do this we replace the Hilbert transform by an additional time derivative. This then

leads to the local tomography reconstruction:

Λϕ(r) =
C

βI0v2
s

∮

ds
n · (r − rθ)

|r − rθ|
2 (

∂p1

∂t
(rθ, |rθ − r| /vs) |r − rθ|+2vs p1(rθ, |rθ − r| /vs)).

(3.3)

As before, if one wants to recover singularities only, the term of a lower pseudo-

differential order 2vsp1 in this formula can be dropped.

One can apply a similar consideration to the 3-D TAT, which leads to the ap-

proximate FBP formula:

ϕ(r) ≈ −
C

2πβI0v3
s

∮

dS
n · (r − rθ)

|r − rθ|
2 (

∂p1(rθ, |rθ − r| /vs)

∂t
+

2p1(rθ, |rθ − r| /vs)vs

|rθ − r|
).

(3.4)

In the case of limited-angle detection, there is also the following possibly useful cor-

rection if one is interested in quantitative imaging. Here, we define a detection view

θt (solid angle Ωt for 3-D case) at r, which is the (solid) angle subtended by the de-

tection curve (surface) when viewed from the reconstruction point r as shown in Fig.



34

6. Because of the incompleteness of data, the integral in the above equations runs

over a portion of the detection curve (surface) only. One might want to compensate

for that by multiplying the value of the reconstructed function at this point by a

factor 2π/θt ( 4π/Ωt for the 3-D case). The factor appears when the backprojection

operator is considered approximately as an averaging over the available projection

curves passing through the reconstruction point r. It should be noted that both θt

and Ωt depend on r. The effectiveness of this compensation is shown below by our

numerical simulation results of TAT.

There are three useful features of (3.2) and (3.4). First of all, they yield, as

we intend to show in numerical simulations, acceptable quantitative results from

limited-view data. Secondly, their computation complexity is much less than that for

the iterative methods such as TCG, while they produce images of comparable quality.

Finally, if an iterative method is necessary, our backprojection formula can serve as

a good initial guess. This is also observed in our numerical simulations.

Although the above backprojection formula is shown to work well in numerical

simulations, it is not exact. Nevertheless, one can show that it amounts to applying

a pseudo-differential operator to the image ϕ (this is true if the data is gradually

phased out near the areas of the missing data). Pseudo-differential operators are

known not to shift locations of any singularities, including boundaries (see analogous

considerations, e.g., in [52, 61, 63]). This means that although the backprojection

formula might give imprecise values of ϕ it will present the locations of the boundaries

of all inclusions correctly.

Another reconstruction method is to apply an additional differentiation with re-

spect to time (the radius) without applying Hilbert transform, as shown in (3.3).

This leads to a local tomography type formula [58, 61]. The result of the procedure

also produces an expression of the form Λϕ where Λ is a pseudo-differential opera-
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tor defined in (3.3). In this case, however, the operator has a positive order, which

means that all the “visible” interfaces and other sharp details not only have correct

locations, but also are emphasized. This effect is well known in image processing,

where for instance the Laplace operator is sometimes used to emphasize the edges.

One can also notice that our experimental data, due to the shape of the transducer’s

impulse response function and electromagnetic pulse shape, already carry a filtration

that makes the reconstruction similar to the local one. Then, unless an appropriate

deconvolution is applied to the data during pre-processing, the interfaces are accen-

tuated in the reconstruction. The reader will notice this in our actual reconstructions

from experimental data.

2. Numerical Implementation

In the case of incomplete data discussed above, we complete it by concatenating with

zeros (sometimes gradually smoothing the data to zero at the boundary in order to

reduce the artifacts in the reconstruction). The FBP algorithm described above is

first applied to the limited-view data. Since the inversion formula we use is not exact

even for complete data, we improve it by employing an iterative algebraic method for

solving the discretized version of (3.1), starting with the FBP reconstruction as the

initial guess. We adopt as such the TCG method for finding the least-squares solution

of the discretized version of the problem. No preconditioner is used. We also employ

local tomography procedure described above. We expect in all these methods to see

the reconstructions that agree with the theoretical predictions stated in the previous

section, i.e., sharp “visible” details with the “invisible” parts blurred.
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B. RESULTS AND DISCUSSION

Our results consist of three parts: (1) inversion of simulated circular Radon trans-

form data to show the theoretical predictions about the “visible” and “invisible”

boundaries, (2) reconstructions from simulated TAT data to test our reconstruction

algorithms quantitatively, and (3) images based on experimental data collected from

a physical phantom.

1. Numerical Results for the Limited-view Circular Radon Transform

Fig. 7 shows the inversion of the circular Radon transform for different detection

configurations and phantoms (shown in the first column from the left) to demonstrate

our discussions on the “visible” and “invisible” boundaries. In the second column from

the left, the detection curve is shown as the solid part of the outer circle, the “detection

region” is shaded, and the “visible” (solid) and “invisible” (dashed) boundaries of

the objects predicted by theory are shown. The inclusion represents the object to be

imaged. The third and fourth columns from the left show the FBP reconstructions

and the local tomography reconstructions, respectively. Notice the good agreement

between the three columns on the right concerning reconstructions of the “visible”

and “invisible” parts of the boundaries.

Fig. 7(1a-1d) shows the results for a phantom containing a square inclusion. The

data are collected from detectors located on the upper half-circle. Exactly the parts

of the boundary of the square predicted in this chapter (see the dotted lines in the

Fig. 7(1b)) become blurred in Fig. 7(1c) and Fig. 7(1d).

Fig. 7(2a-2d) and Fig. 7(3a-3d) show the reconstructions of circular inclusions

from the data collected by the detector located along the upper half-circle. In Fig.

7(2a-2d), the phantom is completely outside the “detection region”, which leads to
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Fig. 7. Numerical simulation of circular Radon transforms. (1a) A square phantom in-

side a circular detection curve in a circular Radon transform. (1b) The diagram

showing the detection curve (solid part of the outer circle), the “visible” (solid)

and “invisible” (dashed) boundaries of the object predicted by theory, and the

“detection region” (shaded). (1c) FBP reconstruction. (1d) Local tomography

reconstruction, where the boundary is emphasized. (2a-2d) A disk phantom

outside the “detection region”. (3a-3d) A disk phantom inside the “detection

region”. (4a-4d) An off-center disk phantom and a detection curve consisting of

three arcs. (5a-5d) A centered disk phantom and a detection curve consisting

of three arcs.
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blurring of its right and left boundaries in accordance with the theory. In Fig. 7(3a-

3d), however, the boundaries of the disk are recovered sharply, since the inclusion

is in the “detection region”. Notice here some deterioration of the image near the

detector circle. This can be attributed to the fact that near the detector circle,

linear and circular Radon transform become noticeably different, and so the quality

of our approximate formulas diminishes. This problem can be dealt with in two

ways: one can make sure that the detectors do not approach the imaged objects too

closely (this will be enforced in our further numerical simulations and experiments),

or to improve the reconstruction quality by post-processing with an iterative algebraic

reconstruction method.

Other limited-view reconstructions from the circular Radon data are shown in

Fig. 7(4a-4d) and Fig. 7(5a-5d), where there are three arcs of detection, 60 degrees

each, with 60 degrees intervals between them. An off-center and a centered circular

inclusion are reconstructed in Fig. 7(4a −4d) and Fig. 7(5a-5d), respectively. The

results agree well with the theory: some parts of the boundary of the off-center

disk are blurred; namely, those where the normals do not pass through any detector

positions. However, the in-center disk is reconstructed sharply, in spite of the fact

that it does not fit into the “detection region”. The reason is that in this case every

normal to the boundary of the inclusion passes through a detector.

2. Reconstruction from Simulated Limited-view TAT Data

A numerical phantom that contains four sharp and one soft inclusions is shown in Fig.

8. Among the sharp ones we have one large and two small squares and one disk. The

object value, which represents the electromagnetic energy deposition, is set to be 0.5

within the largest square and unity within other sharp inclusions and zero elsewhere.

Inside the “soft” circular inclusion, this value drops linearly with the radius from unity
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Fig. 8. Diagram of inclusions in TAT (used in Fig. 9). The value of the image ϕ(r) is

set to be 0.5 in the largest square and unity within other sharp inclusions and

zero elsewhere. Inside the “soft” circular inclusion, this value drops linearly

with the radius from unity at the center to zero at the interface.

at the center to zero at the interface in order to simulate a gradual interface. The

imaged field of 154 mm by 154 mm is mapped with a 128 ×128 mesh. The detection

circle has a radius of 133 mm and is centered at the center of the picture. We scan

200 steps in all the simulations. The gray scale and the scale bar of the images

are shown below the images in Fig. 9. The top row of reconstructions employs the

local tomography formula that emphasizes the boundaries. The next one uses the

FBP formula, and the lowest one shows the improvements achieved by running the

algebraic reconstruction method (TCG) starting with the FBP as an initial guess.

The left column uses only the data collected from the π/2 detection arc in the first

quadrant. None of the phantom inclusions fits into the “detection region”. One can

see that all parts of the inclusion boundaries the normals to which do not intersect

the detector arc are blurred (even in the local tomography reconstruction). Other

parts of the boundaries are sharp. This is in perfect agreement with our theoretical

prediction. The soft inclusion is not significantly affected by the artifacts.
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Fig. 9. Images reconstructed from simulated TAT data corresponding to the phantom

in Fig. 8. The three columns correspond from the left to the right to detection

angles of 90 degrees (from 0 o to 90 o), 217 degrees (from –19 o to 198 o as shown

by the angle θ in Fig. 8), and 360 degrees respectively. The three rows corre-

spond from top to bottom to the local tomographic reconstruction, FBP, and

FBP with the consecutive TCG, respectively. The values of (minimum, max-

imum) of the gray scale for (a)–(i) are (–0.8081, 1.0000), (–0.8302, 1.0000),

(–0.7515, 1.0000), (–2.0745, 1.7899), (–0.6385, 1.0723), (–0.1030, 1.0349),

(–0.9284, 1.2859), (–0.0326, 1.0030), and (–0.0149, 1.0021) respectively. The

maxima of the local reconstructions are normalized to unity.
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Fig. 10. Line graphs corresponding to the reconstructions in Fig. 9. (a) The graphs

of FBP reconstructions shown in Fig. 9(d)–(f) and the corresponding exact

value along the dashed-dotted line in Fig. 8. (b). The graphs corresponding

to TCG reconstructions, Fig. 9(d)–(f), along the same line as in (a).

The middle column employs the data collected from the detector arc of approxi-

mately 217 degrees (the angle θ in Fig. 8), whose chord coincides with the bottom side

of the large square inclusion. In this case all inclusions are in the “detection region”,

and hence all the boundaries are reconstructed sharply. The third column represents

the full data reconstruction. Notice that the quality of the final reconstructions in the

last two columns is the same. Figs. 8(a) and (b) show the reconstructed image ϕ(r)

along the dashed-dotted line in Fig. 8 using the FBP [Figs. 7(d)–(f)] and TCG recon-

structions [Figs. 7(g)–(i)], respectively. The exact value is also shown for comparison.

It can be found in Fig. 10 (a) that the results of FBP are in good agreement with

the real value for the case of 217-degree and 360-degree detection, where all objects

are in the “detection region”. Iteration improves the results further as shown in Fig.

10(b). Even for the case of a 90-degree detection curve, the profile of the objects is

reconstructed. Comparing (a) and (b), one can find that the significant overshoot
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Fig. 11. Dependence of reconstruction on detection view. Dependence of the normal-

ized errors on detection view of the mean value in the hard sphere(circle mark),

the mean value in the central square(square mark), and the mean value in the

background(*).

and undershoot in FBP can be considerably reduced by TCG iterations (we remind

the reader that FBP is only an approximation rather than the implementation of an

exact formula).

3. Dependence of Reconstruction on Detection View

Fig. 11 shows the normalized errors of reconstructions via the detection view. Three

reconstruction values are studied: the mean value in the hard sphere, the mean value

in the central square, and the mean value in the background. The errors of recon-

struction are normalized to the corresponding real values for the hard sphere and the

central square, and to the real value of the hard sphere in the case of the background(

because its real value is zero). When the detection angle is less than π, the errors de-

crease sharply with the increasing detection angle; when the detection angle is larger
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Fig. 12. Experimental results. (a) Photograph of the experimental sample. (b)–(d)

TAT reconstructions using detection arcs of 92 degrees (from 50 o to 142 o in

(a)), 202 degrees (from –18 o to 184 o ), and 360 degrees, respectively. The

blurred parts of the boundaries in (b) due to the limited view agree with the

theoretical predictions. In (c) all the boundaries are resolved, since the object

fits into the “detection region”.

than π, the errors change much more slowly with the increasing detection angle. The

results agree with our theoretical conclusions.

4. Experimental Results

The experimental setup is described in [19] and will not be repeated here. The

sample and the polar coordinate system describing the scanning orbit are shown in

Fig. 12(a). The sample consists of a muscle cylinder of 4 mm in diameter and 5 mm

in length embedded in a chunk of pork fat of 1.2 cm in radius rf . There is a 10-mm
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fat layer below the muscle and another 7-mm one above it. An electromagnetic pulse

is delivered to the sample from below (i.e., from behind the picture plane). With a

scanning radius of rd = 7.1 cm, thermoacoustic data are collected around the sample

over a 2 π angular span with 161 steps. As it is mentioned above, the electromagnetic

pulse profile and the impulse response function of the ultrasonic transducer impose

a filter on the thermoacoustic signals. We attempted to correct this effect using

deconvolution but found that the resulted images were distorted, due to the lack

of precise knowledge of the filter. Therefore, we do not use deconvolution in the

reconstruction. This leads, as is explained above, to somewhat emphasized interfaces.

Figs. 9(b)-(d) show the reconstructed images using FBP with three sets of data.

In the first of them, we choose the data collected along a circular detector arc of 92

degrees located at the top of the picture and almost symmetric with respect to its

vertical axes. One sees that the left and right boundaries of the muscle cylinder and of

the pork chunk are blurred away, since their normal lines do not touch the detector arc,

while the rest of the boundary is sharp. The next figure shows reconstruction obtained

with the data collected from a 202-degree arc [which is about 180 + 2 ∗ a sin(rf/rd)

obtained in the same way as θ in Fig. 8], when the whole phantom fits into the

detection region. All boundaries are sharp now. Finally, the last figure shows the

reconstruction with the full-view data.

Notice that although no local reconstruction algorithms are applied, the bound-

aries are somewhat emphasized. The reason for this is the presence in the data of the

impulse response function of the ultrasonic transducer, which has an effect similar to

the application of an additional derivative with respect to the radius of the circle of

integration. Presence of such a derivative emphasizes high frequencies and makes the

reconstruction similar to a version of a local tomography algorithm.
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5. Discussion

As mentioned above, although circular scanning is used in both our numerical and

experimental studies, our conclusions can be applied to other configurations as well.

In TAT with a planar configuration [51, 64, 65], detections are implemented on a part

of a line or a plane where the scanning view is quite limited; consequently, artifacts

and interface blurring appear in the reconstructed images. In fact, in planar and

linear scanning geometries one can never have an object immersed entirely into the

“detection region” because the normal lines to any interfaces that are orthogonal to

the detector plane (line) never pass through a detector. As a consequence, those parts

of the interfaces will be blurred in any kind of reconstruction. For a sufficiently large

view, these parts will be small, but theoretically will never disappear. For example,

in [51] 2-D planar detection is utilized to image artificial blood vessels; the scanning

view is about 2.18 steradians. Therefore, it is not surprising that only the interfaces

more-or-less parallel to the plane of detection are well imaged. In [64], linear scanning

detection is used to image a 2-D phantom. Because the view in [64] is much larger

than in [51], the interfaces are recovered much more completely. However, due to

a limited view, artifacts and interface blurring similar to those demonstrated in our

numerical and experimental studies still appear in the images in [64].

By comparing Figs. 7 and 9, we observe that the quality of images reconstructed

from incomplete data when an object is in the detection region, is comparable with

those from the full-view data. Scanning a smaller range has the advantages of reducing

the scanning time or the size of the acoustic transducer array. It should be pointed

out that this advantage usually exists in the case when both the sample and medium

are relatively acoustically homogeneous. When strong wavefront distortion caused

by acoustic heterogeneities occurs, it might be beneficial to collect signal from all
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directions.
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CHAPTER IV

EFFECT OF ACOUSTIC HETEROGENEITY ON BREAST

THERMOACOUSTIC TOMOGRAPHY1

A. INTRODUCTION

An important assumption in the previous reconstruction algorithms is that the tis-

sue is acoustically homogeneous. For many medical imaging applications, including

imaging of the female breast, this assumption is an approximation. For example, the

speed of sound in the breast can vary from 1400 m/s to 1550 m/s. Errors due to the

assumption of a constant acoustic speed, which has never been studied in TAT, can

potentially have a pronounced effect on image quality. In breast ultrasound tomogra-

phy (UT), however, wavefront distortion has been studied extensively [66, 67, 68, 69].

The amplitude distortion caused by refraction dominates the phase distortion induced

by acoustic speed variation in the breast UT [67]. Refraction occurs where there is

a speed mismatch across a tissue interface. Because of refraction, rays from a single

source can reach the same receiver by different paths, as shown in Fig. 13. The inter-

ference between these rays causes strong amplitude distortions in breast UT. Different

deaberration methods have been proposed to compensate for phase distortion in UT

[70, 71]. However, they have so far been inadequate to correct the strong amplitude

distortion caused by refraction [72]. The effects of acoustic heterogeneity on breast

TAT are estimated to be weaker than those in breast UT for the following reasons.

First, signals in breast TAT are primarily in a lower frequency range (usually below

1.5 MHz [13]) than those in UT. Ultrasound scattering in this frequency range is

1 c©2003 IEEE. Reprinted, with permission from Y. Xu and L.-H. Wang, “Effects of
acoustic heterogeneity in breast thermoacoustic tomography,” IEEE Trans. Ultrason.
Ferroelectr. Freq. Control, vol. 50, pp. 1134–1146, 2003.
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Fig. 13. Illustration of the multipath interference. An interference caused by refraction

at boundary points B1 and B2 in breast ultrasound imaging in transmission

mode. S is a point source and D is a detector.

weak. Secondly, in TAT, the acoustic source is induced by electromagnetic absorp-

tion; therefore, only one-way distortion on reception wave propagation occurs. As

shown in Fig. 14, an acoustic ray, for example SB1D, needs to pass through interface

Σ only once. In contrast, in pure ultrasound imaging, either in the pulse-echo mode or

in the transmission mode, ultrasound distortion includes two parts: distortion during

both transmission and reception wave propagation. Therefore, the acoustic wave has

to pass through the interface at least twice, as shown in SB2B1D in Fig. 14. Third, if

the detection distance from the objects are properly chosen, the effects of amplitude

distortion can be minimized in breast TAT, as will be shown in Section B.

In our work, we analyze the effects of amplitude distortion and numerically sim-

ulate the effects of phase distortion with the truncated conjugate gradient [73] (TCG)

method. In Section B, we investigate the effects of refraction on the wavefront ampli-

tude and phase in breast TAT. We prove that, in breast TAT, a convex parenchyma

wall (when observed from the outside of the parenchyma tissue) does not cause multi-

path interference and that the effects of amplitude distortion are also not severe for a

concave boundary. An equation for the forward problem in an acoustically heteroge-

neous model is also introduced at the end of this section. The inversion algorithm of

TCG, and the model and parameters used in the numerical simulations, are presented
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Fig. 14. Illustration of a ray refraction at the parenchyma wall in breast TAT. The

outer oval represents the breast surface, where there is negligible refraction

due to the good match of acoustic speed between fat and mineral oil. The

solid line SB1D represents a ray in the heterogeneous model while the dashed

one SB2D in a homogeneous model. S is a point source and D is a detector;

B1, B2 are two points at the parenchyma wall.

in Section C. In Section D, the effects of phase distortion are studied numerically. We

show how the degradation of the reconstructed images depends on acoustic hetero-

geneity when acoustic heterogeneity is not considered in the reconstruction algorithm.

Correction of phase distortion should be the first step for improving image quality

in breast TAT because phase is much more important in imaging than amplitude

when there is no severe amplitude distortion [74, 75]. Therefore, the reconstructions

are implemented with consideration of acoustic velocity heterogeneity to illustrate

how the imaging degradation can be compensated for. The effects of the errors in

the acoustical velocities on this compensation are also investigated. In Section E, an

approach to implement compensation with only TAT data is proposed. The differ-

ences between breast TAT and breast ultrasound imaging on the effects of acoustic

heterogeneity and speckles are explained by their differences in central ultrasound

frequency and detection geometry. The last section presents conclusions.
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B. THE EFFECT OF ACOUSTIC HETEROGENEITY IN TAT

A TAT model is shown in Fig. 14. In our imaging system, mineral oil is chosen as the

coupling medium for both microwaves and ultrasonic waves. The acoustic speed of

light in mineral oil is 1437 m/s [76], which is very close to that in fat [77]. Therefore,

there should be negligible refraction at the boundary between the breast and the

mineral oil, and, consequently, we will consider only the effects of the acoustical

heterogeneity within the breast. More details on our TAT experimental setup can be

found in [19].

1. Amplitude Distortion Caused by Refraction

Fig. 13 shows the multipath interference in breast ultrasound imaging in transmission

mode. The acoustic ray from source S can travel to detector D by two different paths,

SD and SB2B1D, due to refraction at the interfaces between different tissues. The

interference between the two rays can cause amplitude distortion [67]. In the following

subsections, we will first prove that there is no multipath interference in the case of

a convex parenchyma wall in breast TAT. Then, we will show that the amplitude

distortion is also not severe for a concave parenchyma wall.

a. Convex Boundary

In this subsection, we will show that there is no multipath interference in the TAT of

the breast with a convex parenchyma wall by proving that no two rays from a source

within the parenchyma will intersect with each other after refractions at the wall.

The model is shown in Fig. 15, where S is an acoustic source; vp and vs0 are the

acoustic speed in the breast parenchyma and the medium (also the fat), respectively

( vp > vs0); the dashed lines are the normals of the boundary points B1, B2, B3,
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Fig. 15. Diagram to study refraction at a convex boundary. It shows that no two rays

from a point source S will intersect with each other after being refracted at a

convex boundary Σ and entering a medium with a slower acoustic speed. S

is a point source; D1 and D2 are detectors; φ1, φ2, and φ3 are the incidence

angles; θ1, θ2, and θ3 are the transmission angles; the solid lines represent

acoustic rays; B1, B2, and B3 are three points at the parenchyma wall; vp, vs0

are the mean acoustic speeds in the parenchyma tissue and the fat tissue,

respectively, and vp > vs0.
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respectively; φ1, φ2, and φ3 are the angles of incidence; θ1, θ2, and θ3 are the angles

of transmission; and the solid lines represent the acoustic rays. Since the boundary

is convex, it can be inferred that rotation from the normal at point B2 to the normal

at point B1 is clockwise and the angle is θ0 (positive). We also have φ2 < θ0 + φ1,

which can be seen by extending lines SB2 and SB1 to the outside of the boundary

and noticing that SB2 and SB1 will never intersect outside the boundary. To prove

B2D2 and B1D1 will not intersect outside the boundary, we need to show θ2 < θ0 +θ1.

According to Snell’s law, we have

sin θ2 = (1 − α) sin φ2

sin θ1 = (1 − α) sin φ1, (4.1)

where α = 1− vs0/vp, which is positive when vp > vs0. The problem can be discussed

under two conditions:

(a) φ2 < φ1. In this case, according to (4.1), we have θ2 < θ1 and therefore

θ2 < θ0 + θ1.

(b) φ2 > φ1. (4.1) can be transformed to:

sin(
θ1 − φ1

2
) = −

α sin(φ1)

2 cos((θ1 + φ1)/2)

sin(
θ2 − φ2

2
) = −

α sin(φ2)

2 cos((θ2 + φ2)/2)
. (4.2)

Since φ2 > φ1 and consequently θ2 > θ1, it is straightforward to obtain θ2−φ2 6 θ1−φ1

from (4.2). Using φ2 < θ0+φ1, we have θ2 < θ0+θ1. In conclusion, we prove that after

the rays from a point source go into another medium with a slower acoustic speed, the

rays cannot intersect with each other when the interface is convex. In another words,

for any pairing of point source and detector, there is only one acoustic path that

satisfies Snell’s law. Consequently, no multipath interference occurs and amplitude
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distortion can be ignored. This conclusion can also be applied to a boundary with

wavelength-scale concave segments. This kind of boundary can be treated as a convex

boundary approximately because the effects of the small concave segments can be

neglected when the detector are placed in the far field of the segments, as will be

shown in the following subsection. In contrast, multipath interference does occur

after rays pass a convex parenchyma wall in ultrasound imaging, as shown in Fig. 13.

This difference makes the amplitude distortion in TAT of the breast with a convex, or

approximately convex parenchyma wall, smaller than that in pure ultrasound imaging.

b. Concave Boundary

We realize that, in reality, the boundary between mammary tissue and subcutaneous

fat tissue might be concave and quite irregular. In this subsection, we will show

that the amplitude distortion caused by a concave boundary is not severe. Basically,

this conclusion can be explained as follows. With wavelength-scale or smaller het-

erogeneities, amplitude distortion of the wavefronts is minor due to diffraction when

the detectors are placed in the far field of the irregular boundary segment. When the

size of the concave segment is larger, according to the imaging formula of concave

boundaries shown below, only imaginary images exist after the wavefronts from real

objects pass through the concave boundary. Equivalently, no two rays from a point

source will intersect with each other after passing through the concave boundary

segment and no strong amplitude distortion occurs. In the following subsection, we

will define two kinds of multipath interference: focusing-type and nonfocusing-type

interferences. The former can induce amplitude distortion in both narrowband and

broadband signals, while the latter can only induce amplitude distortion in narrow-

band signals. As a consequence, we need only examine in detail the focusing-type

interference, because signals in breast TAT are broadband.
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Fig. 16. Diagram to show two types of multipath interferences caused by a con-

cave boundary: focusing-type interference between SB1D and SB2D, and

nonfocusing-type interference between SB1D (SB2D) and SB3D. In a fo-

cusing-type interference, the different rays have approximately the same

time-of-flight (TOF), which consequently yields constructive interference and

strong amplitude distortion; in this case, the boundary segment around B1B2

can be considered as a lens. In nonfocusing-type interference, the difference of

the TOFs along two rays is larger than the pulse width, and, consequently, the

pulses are separated temporally and no strong amplitude distortion occurs.

See Fig. 15 for the symbols’ definitions.

c. Definition of Focusing-type and Nonfocusing-type Interferences

Fig. 16 shows the two different kinds of multipath interferences. Three different

ray paths SB1D, SB2D, SB3D from source S to detector D are shown, and each

of them satisfies the refraction law. SB1D and SB2D can be considered as a small

modification of the straight line SD due to weak heterogeneity, while SB3D is far

away from SD. We use focusing-type interference to refer to the interference between

pulses along the paths with the same TOFs. The interference between SB1D and

SB2D is of this type. This is because SB1D and SB2D satisfy the refraction law,

and their TOFs are local minima according to Fermat’s principle [28]. Consequently

the rays around SB1D and SB2D should have almost the same TOF. After noticing

that B1 and B2 are close to each other, it can be inferred that SB1D and SB2D have

the same TOFs. Actually, the boundary segment around B1B2 can be considered a

focusing lens and can produce strong amplitude distortion even for broadband pulses,



55

as verified by the strong amplitude distortion in broadband breast ultrasound imaging

[67]. As a contrast, we use nonfocusing-type interference to refer to the interference

between the pulses along paths with different TOFs. The interference between SB3D

and SB1D (SB2D) is a nonfocusing-type interference, because B3 is far from B1

and B2, and generally, it can be assumed that |tSB1D − tSB3D| and |tSB2D − tSB3D|

( tSB1D, tSB2D, and tSB3D are the TOFs along ray paths SB1D, SB2D, and SB3D

respectively) are larger than 1 µs, the average pulse width of thermoacoustic signals

in our RF TAT experiments. Consequently, the pulse along SB3D is separated tem-

porally from the pulses along SB1D, SB2D and the interference between SB3D and

SB1D (SB2D) is insignificant. Similar analyses can be found in the pure ultrasound

imaging literature [67].

The signals along SB3D may introduce artifacts in the reconstructed images

because detector D receives two pulses from source S–one along SB1D and SB2D,

and the other along SB3D. To estimate the effects of signals along path SB3D, we

numerically simulate refractions at arbitrary boundaries, where the locations of source

S and detector D are randomly chosen. We find that the SB3D type refraction rarely

occurs. Therefore, we expect the artifacts introduced by the signals along SB3D to be

insignificant, and in the following studies, we consider only focusing-type interference.

d. Analysis of Focusing-type Interference

For a boundary segment with a size of 2a much larger than the wavelength of interest

λ, we will use a ray model to study the effects of refraction. To have focusing-

type interference, the positions of the source and detector must satisfy the following

equation,

1

lSB1
/ cos φ1

+
1

lB1D(1 − α)/ cos φ1

=
α

Rl

=
1

f
, (4.3)
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where f is the focal length of segment B1B2 in Fig. 16 and f = Rl/α; Rl is the

radius of the segment; and lSB1
and lB1D are the lengths of line SB1 and DB1,

respectively. The derivation of (4.3) can be found in Appendix C. To have a real

image, or equivalently to have two rays intersect after passing through boundary

segment B1B2, (4.3) requires

lSB1
/ cos(φ1) > Rl/α. (4.4)

Next, we derive another requirement due to diffraction for the occurrence of strong

amplitude distortion. The smallest beam width after a wavefront passes through a

boundary segment with a size of 2a is lB1Dλ/a, where λ is the wavelength of the

acoustic wavefront. To induce strong focusing, or equivalently strong amplitude dis-

tortion at detector D, the beam width should be smaller than a at D; therefore, we

have

lB1D < a2/λ. (4.5)

The right-hand side of the above inequality is the same as the definition of the near-

field length of a plain transducer when a is considered as the radius of the transducer.

It is well known that the amplitude can change rapidly in the near field, while it is

much smoother in the far field. Similarly, if the detector is placed within the far field

of the concave boundary segment, the amplitude distortion will be less severe in TAT.

(4.5) is derived for the case where a wavefront propagates perpendicularly to the

boundary segment. When a wavefront is incident obliquely upon the segment B1B2,

the effective size of the lens in (4.5) should be the projection of its geometrical size

onto the plane perpendicular to the propagation direction of the incident wave. Then

we have:

lB1D < (a cos φ1)
2/λ. (4.6)
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By combining (4.6), (4.4) and Rl > a, we achieve the following requirement for strong

amplitude distortion after passing through the boundary:

lSB1
>

√

lB1Dλ

α
. (4.7)

It can be seen from this equation that when lB1D is large enough,

lB1D >
(lSB1

α)2

λ
, (4.8)

the strong amplitude distortion can be minimized. Notice that the required minimum

detection distance in (4.8) increases linearly with the frequency of the wave.

In the derivation of (4.3), ray theory is utilized. Ray theory is valid under the

following conditions [78]:

lB1D << 4a2/λ, (4.9)

and

2a >> λ. (4.10)

(4.9) is similar to (4.5), but the former is stronger. (4.9) states that the ray model

is valid when the wave propagation distance from the heterogeneity is smaller than

4a2/λ; beyond that distance, diffraction must be considered. In our analysis of am-

plitude distortion in TAT, we extend the effective range the ray model from (4.9) to

(4.5). This is based on the assumption that the ray model overestimates the wavefront

distortions due to ignorance of the diffraction effect. Therefore, if the analysis using

ray theory shows that there is only minor amplitude distortion when (4.8) and (4.10)

are met, the analysis from the exact wave equation should yield the same result.

For a wavelength-scale boundary segment, for example 2a < 4λ, (4.10) is vio-

lated, and (4.8) cannot be applied. In this case, strong amplitude distortion can be
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minimized by placing the detector within the far field of the heterogeneity,

lB1D > 4λ, (4.11)

where we have substituted 2a < 4λ into (4.5). Combining (4.8) and (4.11), we obtain

the minimum detection distance for avoiding strong amplitude distortion induced by

different scales of heterogeneities

lB1D > MAX[
(lSB1

α)2

λ
, 4λ], (4.12)

where MAX[] represents computing the maximum. Using the following parameters,

lSB1
< 10 cm (the assumed size of the breast parenchyma), and α = 0.07, where the

mean velocity in the subcutaneous zone vf and the breast parenchyma vp are assumed

to be 1437 m/s [79] and 1546 m/s [80], respectively, we have lB1D > 4.9 cm for 1.5

MHz ultrasound and lB1D > 1.63 cm for 0.5 MHz ultrasound. These requirements can

be easily met in TAT experiments. For ultrasound waves with a frequency less than

0.5 MHz, it is not necessary to apply (4.12), because ultrasound scattering by soft

tissue in this frequency range can be neglected and no severe amplitude distortion is

expected.

The above analysis is made for 2-D TAT. This corresponds to the experimental

configuration where a linear, or ring array of transducers with a cylindrical surface

is used and a section image of the breast in the detection plane is desired. However,

because of the refraction at the parenchyma wall, the thermoacoustic waves from the

objects within the detection plane might deviate out of the plane. On the other hand,

the signals collected in the detection plane are transmitted by the objects out of the

detection plane rather than within it. Consequently, the obtained image is actually a

projection of the out-of-plane objects onto the detection plane. To reduce this kind

of error, we can use the technique of compressing the breast against the chest wall,
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which has proven to be effective in reducing wavefront distortions in breast ultrasound

imaging. After the compression, the acoustic signals can pass through the interface

more or less perpendicularly. However, the ultimate solution to this problem is 3-D

TAT. Most of the 2-D results on amplitude distortions, such as (4.6), (4.8) and (4.12)

and the results on phase distortions shown later, can be directly applied to 3-D TAT.

(4.3) can also be applied to analyze a 3-D convex boundary locally by substituting

- Rl for Rl. Then, it is straightforward to see that in a 3-D case no two rays can

intersect with each other after passing a convex boundary segment.

In summary, our analysis shows that in RF breast TAT, if the detection is made

at a distance to the breast surface farther than that required by (4.12), the amplitude

distortion caused by the refraction at the parenchyma wall is not important because

of the diffraction effect and the fact that TAT signals are broadband, have low central

frequency, and experience only one-way transmission through the parenchyma wall.

The effect of intramammory fat lobules will be addressed in the Discussion Section.

Therefore, in the following analysis and simulations, we will consider only phase

distortion.

2. Phase Distortion Caused by Refraction and Speed Variation

If the background is acoustically homogeneous, an acoustic ray from source S in

Fig. 14 goes along the straight line SD to reach detector D. When there is acoustic

heterogeneity, an acoustic ray goes along line SB1D because of refraction at the

interface. Assume there is no change in the shape of the acoustic pulse caused by

acoustic heterogeneity. The TOF from source S to detector D in the acoustically

heterogeneous model is

tSB1D =

∫

SB1D

dl/νs(r
′′), (4.13)
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where vs(r
′′) is the local acoustic speed, and r′′ is a point within line SB1D. Now,

we will show that tSB1D can be approximated to the second order of a small value

ε = (vs(r
′′) − vs0)/vs0 by tSD =

∫

SD
dl/νs(r

′′), where vs0 is the velocity used in the

acoustically homogeneous model. According to Fermat’s principle, an acoustic ray

travels on the fastest path. In another words, SB1D is a local minimum of TOF.

Now assume B1 is displaced to B′ by a small distance q = |BB′|,

q

lSD

= o(ε). (4.14)

After expanding tSB′D around tSB1D with respect to q, we have

tSB′D = tSB1D + q
∂tSB′D

∂q

∣

∣

∣

∣

q=0

+ o(ε2). (4.15)

Recalling that SB1D is a local minimum, we have
∂tSB′

1
D

∂q

∣

∣

∣

q=0
= 0. Substituting it

into (4.15) and assuming lB2B1
/lSD = o(ε) due to the weak acoustic heterogeneity in

breast tissue, we have

tSD =

∫

SD

dl/νs(r
′′) = tSB1D + o(ε2). (4.16)

The above result can be understood in the following way. Although the path length

of SB1D in Fig. 14 is longer than that of SD and (lSB1
+ lDB1

− lSD)/lSD = o(ε), path

SD has a longer part within the slow-speed area than path SB1D. The combination

of the two opposite effects leads to the cancellation of the first-order term of ε in

(4.16).

Next we will show that the approximation of tSB1D by tSD includes most of the

flight-time variation induced by acoustic heterogeneity. The TOF from source S to

detector D in an acoustically homogeneous and heterogeneous model is lSD/vs0 and
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tSB1D, respectively. The difference between them is

δt = |tSB1D − lSD/vs0| = |tSB1D − tSD + tSD − lSD/vs0| ≈
∣

∣o(ε2) + tSD − lSD/vs0

∣

∣ ≈ o(ε),

(4.17)

where we used (4.16). Combining δt with (4.16), we have

|tSD − tSB1D|

δt
= o(ε). (4.18)

Therefore, the error in the approximation of tSB1D by tSD is not important. At last,

it should be pointed out that our analysis of TOF can be applied to both 2-D and

3-D TAT.

3. Forward Formula in an Acoustically Heterogeneous Model

In our analysis of TOF, we consider only a single interface. The results can be

extended to the case involving several interfaces. In general, the TOF from r to r′

can be expressed as

tf (r
′, r) =

∫

L(r′,r)

dl/νs(r
′′) + o(ε2), (4.19)

where L(r′, r) is the straight line from r′ to r, and r′′ lies within the line L. Combining

(4.19) and (1.7), we obtain the forward formula for acoustically heterogeneous TAT.

Our analysis of TOF is in agreement with the results from a more rigid model

[81]. It was reported that the variation in travel time caused directly by acoustic speed

heterogeneity is a first-order perturbation, and that the effect of the ray bending on

the travel times is a second-order one. For breast tissue, which is weakly acoustically

heterogeneous, it is enough to consider the first-order perturbation by computing the

integral of the slowness perturbation along straight lines, as shown in (4.19).
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C. IMPLEMENTATION AND MODELLING OF NUMERICAL SIMULATIONS

1. Numerical Implementation

It can be seen from (1.7) that p1(r, t) can be obtained from ϕ(r′) after applying

two linear operations to it: one is integration over the object space; the other is

differentiation over t. Therefore, in its discrete form, (1.7) is a set of linear equations:

Mϕ = p, (4.20)

where M is the matrix representing the product of the two linear operators. The

standard techniques of solving a linear equation system can be utilized. We adopted

the TCG method to minimize the object function ‖Mϕ − p‖ and no preconditioner is

used. In the implementation of TCG, instead of the whole matrix M, a function that

gives the multiplication of matrix M and its adjoin with an arbitrary vector is re-

quired. Consequently, the demand on computer memory is reduced greatly, compared

with many other techniques that require storing the whole matrix M in memory. An-

other advantage of TCG is that an approximate result can be obtained by stopping

the iteration before reaching the full convergence. The truncation not only saves com-

putation time but also provides a way of regularization for stabilizing the results. In

(4.19), we use the Savitzky-Golay smoothing method [82], rather than the finite dif-

ferentiation method to implement the operation of the first-order temporal derivative,

as the former yields a much smoother and more accurate result than the latter when

data are noisy. We truncated our simulations after 15 iterations, which corresponds

to the relative changes in the norms of the results, about 0.7% for the acoustically

homogeneous model and up to 6% for the acoustically heterogeneous model. In both

cases, further iterations yield little visible improvement to image quality and may

induce instability.



63

Fig. 17. Distribution of acoustic velocity and microwave absorption. (a) Distribution

of acoustic velocity normalized to vs0 for a breast model. The breast surface

is represented by the outer circle; the wall between the breast parenchyma

and the subcutaneous fat is represented by the inner irregular boundary. (b)

The microwave absorption distribution in our model. The four small spots

represent the assumed tumors.

In our simulations, we choose the 2-D case rather than the 3-D case because the

computational complexity can be reduced and because it is much easier to interpret

and graph a 2-D image. For the 2-D case, the integration in (1.7) is over a curve

instead of a spherical surface:

p1(r, t) =
βI0vs0

4πC

∂

∂t

∮

t=tf (r′,r)

ϕ(r′)

|r − r′|
dr′ , (4.21)

where tf is determined by (4.19). Nevertheless, the conclusions of a 2-D case can be

extended to a 3-D one.

2. Model and Parameters in Numerical Simulations

Fig. 17 (a) and (b) illustrate the acoustic and RF absorption models of the breast,

respectively. The acoustic model of the breast in our simulations is based on exper-

imental results on the distribution of acoustic speed in the breast [77, 83]. Acoustic

speed in the breast may vary from 1400 m/s to 1550 m/s. Generally, a zone of low
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velocity (1400-1450 m/s) characterizes subcutaneous fat [83]. The speed in normal

dense parenchyma is higher, varying from 1500m/s to 1550 m/s [80]. In Fig. 17 the

outer circles, with a radius of 50 mm, represent the breast surface. The inner irregular

boundaries, which are generated by randomly modifying a circle, represent the walls

of the breast parenchyma. The size of the parenchyma tissue was changed in different

simulations because the ratio of breast parenchyma to subcutaneous fat may change

with age. Usually, a young female breast has less fat than an older one does. The

mean velocity in the subcutaneous zone vf and the breast parenchyma vp are set to

be 1437 m/s [77] and 1546 m/s [80], respectively. A random component, which is a

normal distribution with a mean of zero and a variance of 33 m/s, is added to the ve-

locity distribution to simulate the velocity fluctuations in the subcutaneous zone [83]

and the breast parenchyma [80]. Later, our simulation results show that the random

component of velocity will induce little spread in the images due to the cancellation

after integration. To ensure that the acoustic speed does not change sharply within

each tissue, the random component is smoothed spatially by introducing a correlation

length as shown below. The imaged area is divided into patches with side dimensions

of a correlation length. The value of the random component at the center of each

patch is determined according to the normal distribution mentioned above; then the

random component within the patch decreases linearly to zero at the boundary of the

patch. We tried different correlation lengths in our simulations, from 12 mm (about

the size of fat lobules in parenchyma tissue) to 3 mm. The image degrades more with

increasing correlation length, but the difference is minor. The correlation length was

chosen to be about 6 mm for the reported results. The speed distribution in Fig.

17 was normalized to 1437 m/s, which is assumed to be the acoustic velocity in the

medium surrounding the breast and also the acoustic speed in the subcutaneous fat.

The RF absorption model of the breast is shown in Fig. 17(b). The boundary
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shapes are the same as in Fig. 17(a). The outer circle is quite weak because of the

low microwave absorption rate of fat. RF absorption coefficients in fat, tumors, and

the coupling oil are set to be 0.3, 3, and 0 after being normalized to that in the

parenchyma. The tumors, shown in Fig. 17(b) as dark spots, are placed evenly along

the horizontal direction to study the dependence of the distortions in the images

based on the tumor locations. We set the radii of the four tumors to about 1.2 mm

to simulate approximately the point-source spread caused by acoustic heterogeneity.

The parenchyma wall in our simulation is generated as the following equation:

r(θ) = rp(1 + Ag(θ)), where r(θ) is the radius of the boundary at angle θ; rp is the

mean radius of the boundary and is used to represent the size of the parenchyma

tissue; A is the distortion amplitude; and g(θ) generates random numbers within

[-1,1].

The parameters in our simulations are chosen as follows unless stated otherwise.

Noise is added to the generated signals so that the frequency range with signal-to-

noise ratio (SNR) larger than unity is from 0 to 1.5 MHz, which approximates our

experimental results [13]. The radius of the circle of detection is set to be 125 mm to

meet (4.8); the angle range of detection is 2π with 400 steps. An insufficient number

of scanning steps can cause radial aliases in the reconstructed image [25]. Thermoa-

coustic signals are sampled for 108 µs at a sampling rate of about 14 MHz, which

is sufficient to meet the Nyquist criteria. The 100 mm by 100 mm imaging field is

mapped with a 256 by 256 mesh. In our simulations, the thermoacoustic signals are

generated in an acoustically inhomogeneous model, while the reconstruction is imple-

mented for two cases–with and without the consideration of acoustic heterogeneity.
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Fig. 18. (a)-(d) Images when acoustic heterogeneity is not considered in the recon-

structions. The mean radii of the parenchyma wall are set to be 0.8, 0.6, 0.4

and 0.2 of the breast radius, respectively. The point-spread width and the

boundary-spread width increase linearly with the size of the parenchyma tis-

sue. Note that the spread of points outside the parenchyma tissue are much

smaller than the spread inside.

D. NUMERICAL RESULTS

We first study the effect of acoustic heterogeneity on imaging when acoustic hetero-

geneity is considered in the forward problem but not in the reconstruction. In the

reconstruction, vs(r) in (4.19) is set to be vs0. Then we show how to improve image

resolution after considering acoustic heterogeneity in the reconstructions. Lastly, the

effects of measurement errors in vf , vp and Σ on the improvement are investigated.

1. Reconstruction without Considering Heterogeneity

Fig. 18(a)-(d) shows the results when acoustic heterogeneity is not considered in the

reconstructions. In the four simulations, the mean radii of the parenchyma wall rp
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Fig. 19. Diagram for deriving (4.22), which estimates the spread of a point source S

along line D1D2 due to TOF error. S1 is the intersection of D1D2 with the

backprojection arch of the signal transmitted by source S and detected by

detector D1; S2 is the corresponding one at D2.

are set to be 0.8, 0.6, 0.4 and 0.2 of the breast radius. The wall is distorted randomly

in the simulations and the distortion amplitude is 0.1. We measure the point-spread

width (PSW), which is the width of the image of a point source along a specific

direction minus its real size, 2.4 mm, and the boundary spread width (BSW), which

is the width of the blurred parenchyma wall Σ in an image. It is clear from Fig. 18

that PSW and BSW increase with the radius of the parenchyma wall. It is proved in

Appendix D that the two widths can be estimated by the following equation:

w = lpα, (4.22)

where lp is 2rp in the case of BSW; in the case of PSW, lp is the length of a ray

within the parenchyma tissue along a specific direction (for example the length of

B1B2 in Fig. 19). The PSW is anisotropic because lp depends on direction. This

anisotropy of PSW can be verified by the observation that the three tumors within the

parenchyma tissue in Fig. 18(a) and (b) have the same spread along the horizontal

direction, while their spreads along the vertical direction decrease when the tumors

are located away from the center. Fig. 20 shows the quantitative results (with an

error of ± 0.8 mm) of the PSW and BSW along the horizontal direction in eight

simulations where the radius changes from 0.1 to 0.8 of the breast radius with a step

of 0.1. The corresponding linear fitting results for the PSW and BSW are shown
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Fig. 20. Quantitative results of the point-spread width and boundary-spread width

along the horizontal direction in eight simulations where the mean radius of

the parenchyma wall changes from 0.1 to 0.8 of the breast radius using a

step of 0.1. The corresponding linear fittings of PSW (dashed) and BSW

(dash-dotted) are in good agreement with the proposed formula (4.22).

as dashed and dash-dotted lines, respectively. The slopes of the two lines are 0.071

and 0.0705, respectively, both of which are close to the estimated rate of 0.07 derived

from (4.22) after substituting the parameters used in our simulations, the radius of

the breast rb = 50 mm and α = 0.07. Another interesting point in Fig. 18 is that

the PSW of the objects outside the parenchyma tissue are affected little by acoustic

heterogeneity. Only minor artifacts are observed near them. This is because in TAT

a π- or wider view can provide complete data for reconstruction [22]. In this case,

a view means the angle subtended by the detection curve when observed from the

to-be-imaged object. For example, object A in Fig. 21 has a view larger than π while

object B’s is less than π. If an object is outside the parenchyma tissue, it has at least

a π-view detection range in which the medium between the object and the detectors is
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Fig. 21. Diagram to show the limited-view TAT. It shows that in TAT a π- or wider

view can provide complete data for reconstruction. A view means the angle

subtended by the detection curve when observed from the to-be-imaged ob-

ject. Object A has a view larger than π, and object B has a view less than

π.

acoustically homogeneous. Therefore, a perfect image can be reconstructed from this

part of the data. On the other hand, the image reconstructed from the part of signals

that experience the heterogeneous medium is weak in amplitude because the flight-

time errors compromise the build-up strength of the signals. In addition to blurring of

images, acoustic heterogeneity increases the background noise level and decreases the

values of reconstructed tumors, which consequently reduces the contrast of tumors

in the images and the detectability of small tumors. A comprehensive quantitative

study of this issue will depend on the SNR of the hardware of the imaging system, the

parameters of the imaging system and reconstruction algorithms, and the contrast of

the to-be-imaged objects. Meaningful conclusions should be made based on relevant

experimental data which we leave for future study.

2. Reconstruction with the Consideration of Heterogeneity

The exact distribution of acoustic velocity is included in the model in Fig. 22(a).

Although the result is good, it is not practical, because it is not feasible to obtain

the exact distribution of velocity in the breast by current technology. A much more
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practical situation is when the mean velocities vf , vp and boundary profile Σ are

approximately known while the velocity fluctuation within each area is unknown.

Different approaches to obtain vf , vp and boundary profile Σ will be explored in detail

in the Discussion Section. Here, we will show the effectiveness of our compensation

method. Fig. 22(b)–(f) shows the images reconstructed from the same data as in Fig.

22(a) but the reconstruction algorithm used only vf , vp and Σ to study the effects

of the measurement errors in vf , vp and Σ on the improvement. In Fig. 22(b)–(f),

the random component of the acoustic-velocity distribution is ignored. In addition,

vp is decreased by 1% and 3% in Fig. 22(c) and (d), respectively; Σ is scaled down

by 10% in Fig. 22(e), and a 20% random error is introduced to Σ in Fig. 22(f). Fig.

23(a)-(f) are the corresponding close-up images around the central tumor in Fig. 22.

rp in these simulations is 0.6 of the breast radius, and the distortion amplitude of the

parenchyma wall is 0.2.

a. Effect of Errors in Velocities

There is little difference between the resolution of the reconstructed images when

we consider [Fig. 23(a)] and do not consider [Fig. 23(b)] the random component of

velocity distribution, although the artifacts in the background in Fig. 23(b) are a little

stronger than those in Fig. 23(a). The good resolution, after ignoring the random

component of the acoustic-velocity distribution in Fig. 23(b), can be explained by

modifying (4.22) to:

w =

∫

B1B2

α(r′′)dlp, (4.23)

where α(r′′) = 1−vs0/vp(r
′′) and is spatially dependent; the integration is over the line

B1B2 in Fig. 19 . It can be found that the contributions of the random component

of velocity are cancelled in some degree after the integration over an acoustic ray.
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Fig. 22. Compensation for the degradation in images. (a) Complete acoustic hetero-

geneity information is included in the reconstructions. (b) Only exact vp, vf ,

and Σ are included to show the insensitivity of improvement to a random com-

ponent of the acoustic-velocity distribution. (c) and (d) Images when there

are 1% and 3% errors in vp, respectively. (e). Images when Σ is scaled down

by 10%. (f) Images when 20% random error is introduced in Σ. The above

results show the stability of the improvement to the errors in vp, vf , and Σ.
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Fig. 23. (a)-(f) Close-up images around the central tumor in Fig. 22(a)-(f), respec-

tively.

Comparing Fig. 23(c)–(d) with Fig. 23(b), it should be noted that a 1% error

in vp does not degrade the imaging quality much, while a 3% error in vp greatly

deteriorates the imaging resolution and contrast. This is because in our model, the

difference between vf and vp is about 7% of their speeds, and a 3% error in vp actually

accounts for 42% of the difference between vf and vp. Therefore, we conclude that

an accuracy of 1% in the determination of vp is sufficient for significant improvement

in imaging resolution.
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b. Effects of Errors in Determining Σ

In the model in Fig. 23(e), the boundary Σ is scaled down by 10%. In Fig. 23(f),

a random component is added to the real boundary, which is implemented by mul-

tiplying the real radii of a boundary with uniform random numbers within [0.8,1.2].

After comparing Fig. 23(e) and (f) with other figures in Fig. 23, it is found that

compensation is less sensitive to error in determining Σ as vp. This is because a 10%

error, which is about 6 mm in the diameter of the parenchyma wall, adds at most

0.42 mm to the PSW and BSW according to (4.22).

E. DISCUSSION

1. Effect of Small Fat Lobules

In breast UT, cm-scale fat lobules in the parenchyma tissue can also cause significant

distortion. In breast TAT, the amplitude distortion due to cm-scale fat lobules is

estimated to be insignificant because of the diffraction effect, as discussed in the

section on refraction in the concave boundary segments. For example, substituting a

= 1 cm, λ =1.5 mm in (4.5), we obtain a near-field length of 6.7 cm. Therefore, no

strong amplitude distortion is expected when detectors are placed farther than 6.7 cm

from the lobule. In addition, Figs. 6 (b)-(d) shows that the images of point sources

outside an acoustic heterogeneity are affected little by the acoustic heterogeneity due

to the completeness of the π-view detection in TAT. This explanation can also be

applied to the distortion caused by fat lobules. When a fat lobule on one side of

an acoustic source causes severe distortion, the signals that are spared from severe

distortion in other directions can still produce good images.
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2. Determine vf and vp in Experiments

Our simulation results in Fig. 22(c) and Fig. 23(c) show that a 1% error in vf and

vp will lead to minor blurring but that we still have enough definition to determine

the configuration and location of the imaged objects. To determine vf and vp within

1% accuracy, we can try different speeds around the averages, which are 1437 m/s

and 1546 m/s for fat and breast tissue, respectively, with a step size of 1% velocity.

Optimum speeds can be determined by choosing the reconstructed image with the

sharpest parenchyma wall, because errors in vf and vp will cause the spread of this

boundary. Since the variations of vf and vp between individuals are about 2% and

4% respectively, only 15 trials are needed to scan all the combinations. Furthermore,

the backprojection method [19] can be used in each trial because the boundary of

the reconstructed image can be recovered well with this method [22, 56]. Therefore,

the additional computation cost in the trials is estimated to be only double the total

computation complexity.

3. Determine Σ in Experiments

There are two ways to obtain Σ. The first method uses only TAT signals. It takes

advantage of the fact that fat and parenchyma have both acoustic and microwave

contrasts. First, a TAT image is reconstructed with an acoustically homogeneous

model. Then an approximate Σ can be extracted from the image and plugged into

an acoustically heterogeneous reconstruction model to obtain a more accurate TAT

image. As shown in Fig. 18, the boundary-spread of the parenchyma wall in TAT

images is at most 7% of its real size (if α = 0.07) when an acoustically homogeneous

reconstruction model is used. Our studies on the effects on the reconstruction of the

errors in the boundary profile, shown in Fig. 22(e) and Fig. 23(e), reveal that this
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level of error has little effect on the images reconstructed from a heterogeneous model.

We intend to implement this method in our future work.

The second method for determining Σ is the coregistration of ultrasound B-

scan imaging and TAT. In principle, this can be accomplished in the same set-up.

First, TAT data is acquired. After that, the transducers work in pulse-echo mode to

determine an approximate Σ. At last, this boundary information can be included in

the reconstruction algorithm of TAT.

4. Differences between TAT and UT

The studies we presented show that there should be no severe amplitude distortion in

breast TAT while severe amplitude distortion caused by refraction has been observed

in both narrowband and broadband breast UT [67]. The difference between the

effects of acoustic heterogeneity on TAT and UT can be explained by the different

central frequencies. In UT, the central frequency is above 3 MHz, while in TAT, the

central frequency is below 1 MHz. The higher frequency in UT results in stronger

wavefront distortion due to the following reasons. First, the scattering effect increases

rapidly with frequency; secondly, the minimum detection distance for avoiding strong

amplitude distortion caused by an acoustic lens, which can be a boundary segment

or a small inclusion, extends farther with increasing frequency. Substituting the

following parameters for UT, lSB1
< 10 cm, λ = 0.5 mm, and α = 0.07 into (4.12), we

have lB1D > 9.8 cm. We notice that the transducer or array was placed closer than

the required distance to the breast [67, 68]. Therefore, it is not surprising to observe

the strong interference effect in UT.

Another important difference between TAT and UT is that there is no speckle

in our TAT images [24]. Speckle is an important factor limiting the quality of pure

ultrasonic imaging. In our technology, the detected signals are primary acoustic waves
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rather than reflective or scattered waves as in UT. Further, the temporal frequency of

the acoustic signals lies in a range from 0 to 1.5 MHz, which is only weakly scattered

in the tissues. However, the issue of image speckle in more realistic medical imaging

applications is a topic for future consideration.

5. Miscellaneous

Our analysis and numerical simulations have shown that breast TAT images can

survive acoustic heterogeneity. The ultimate test, however, will come from clinical

experiments on the breast where the motion artifacts due to breathing and cardiac

movement, may introduce blurring. Such blurring of images is estimated to be on the

order of the movement amplitude. To correct the blurring, we can monitor the breast

motion, for example, placing a microwave absorber on the breast surface as a marker.

Then the data on the breast motion can be used in the reconstructions to shift the

detectors’ positions and, consequently, compensate for the breast’s displacement.

F. CONCLUSIONS

The effects of acoustic heterogeneity on TAT in the breast are studied. Our anal-

ysis shows that the amplitude distortion in the breast TAT is minor. There is no

multipath interference in the breast TAT with a convex parenchyma wall, and the

amplitude distortion is also not severe for concave boundary, because the TAT signals

are broadband, have low central frequency, and experience only one-way transmission

through the parenchyma wall. Therefore we consider only phase distortion in our

numerical studies. The numerical results on the spread of point sources and bound-

aries caused by the phase distortion are in good agreement with the predictions of

the proposed formula. It is shown that phase distortion can be compensated for when
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complete or partial information on the distribution of acoustic velocity in the breast

is included in the reconstruction. It is found that improvement in the results is more

sensitive to measurement error in vf , vp than Σ. Based on this sensitivity study, an

approach to implement our compensation method using only TAT data is proposed.

The differences between breast TAT and breast ultrasound imaging in relation to the

effects of acoustic heterogeneity and speckles are accounted for by differences in their

central frequency of ultrasound and detection configuration.



78

CHAPTER V

FAST RECONSTRUCTION ALGORITHMS

A. PLANAR GEOMETRY1

1. Introduction

In this chapter, I present our studies on an exact and fast reconstruction algorithm

using a Fourier transform for TAT in a planar configuration. The reconstruction of

an image by Fourier transform has been used in X-ray CT [28], ultrasonic reflectivity

imaging [39, 29, 84] and diffraction tomography [30] successfully. The computation

complexity is reduced greatly due to the efficiency of the Fourier transform. We devel-

oped image reconstruction by Fourier transform for planar TAT. Furthermore, some

limitations from experiments, such as the effects of the finite size of the detectors and

the finite length of the excitation pulse, are included explicitly in the reconstruction

algorithm. The reconstruction algorithm is verified by both numerically simulated

and experimental results. Our simulations also demonstrate that the blur due to the

finite size of the detector surface, which is a key limiting factor on the resolution of

images [10, 85], can be alleviated by deconvolution with respect to the size of the

detector surface. Other effects that may cause blurring of images can be treated in

a similar way. In our initial experiments, an image in good agreement with the real

objects is reconstructed and the deconvolution improved the resolution of the imaging

system.

1 c©2002 IEEE. Reprinted, with permission from Y. Xu, D. Feng, and L.-H. Wang,
“Exact frequency-domain reconstruction for thermoacoustic tomography: I. planar
geometry,” IEEE Trans. Med. Imag., vol. 21, pp. 823–828, 2002.
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2. Methods

a. Image Reconstruction

Assume that the detector scans within the plane z = 0 and that the object is dis-

tributed only in the half space z′ > 0. In order to obtain a spatial resolution of about

1 mm, the microwave pulse should be set to less than ∼1 µs because the speed of

sound in soft biological tissue is ∼1.5 mm/ µs. For these parameters, the diffusion

term in the heat conduction equation is about six orders of magnitude less than the

term of the first-derivative of the temperature [20]. Therefore, heat conduction can

be ignored. This is known as the assumption of thermal confinement. If the acoustic

signals are collected along a line or in a plane, for example at z = 0, following the

line of Nortan and Linzer in [39], it can be shown that for the case |k| > ρ and z′ > 0,

(1.6) can be transformed into

P̄ (u, v, k) =
βvsI0kη̄(k)sgn(k)

2C
√

k2 − ρ2

∫ ∞

0

Φ(u, v, z′) exp(−iz′sgn(k)
√

k2 − ρ2)dz′, (5.1)

where k = ω/vs0, ρ2 = u2 + v2, sgn(k) is the signum function,

P̄ (u, v, k) =
1

(2π)2

∫∫

p̄(x, y, 0, k) exp(−i(ux + vy))dxdy, (5.2)

and

Φ(u, v, z′) =
1

(2π)2

∫∫

ϕ(r′) exp(−i(ux′ + vy′))dx′dy′. (5.3)

(5.1) can further be simplified to

P̄ (u, v, k) =
πβvsI0kη̄(k)sgn(k)Φ1(u, v, sgn(k)

√

k2 − ρ2)

C
√

k2 − ρ2
, (5.4)

where

Φ1(u, v, w) =
1

2π

∫ ∞

−∞

Φ(u, v, z′) exp(−iwz′)dz′. (5.5)
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The lower limit of the above integration is changed from 0 to – ∞ because Φ(u, v, z′) =

0 when z′ < 0. (5.4) gives an exact mapping relation between the spectrum of the

collected signals and the spectrum of the distribution of microwave energy deposition

and is the essence of our reconstruction method. However, (5.4) stands only if the

acoustic detector is a point detector. In practice, the detector is of finite size, whose

surface shape can be described by R(x, y). The signal from the detector pd(x, y, t)

can be expressed as an integral of the acoustic wave p(r, t) over the detector surface:

pd(x, y, t) =

∫∫

s

p(x′, y′, t)R(x′ − x, y′ − y)dx′dy′. (5.6)

After transforming (5.6) into the temporal- and spatial-frequency domain, we have

P̄d(u, v, k) = 4π2P̄ (u, v, k)R̄(−u,−v), (5.7)

where P̄d(u, v, k) is the temporal and spatial Fourier transform of pd(x, y, t), and

R(u, v) is the spatial Fourier transform of R(x, y). Substituting (5.7) into (5.4) results

in

P̄d(u, v, k) =
4π3βvsI0kη̄(k)sgn(k)R̄(−u,−v)Φ1(u, v, sgn(k)

√

k2 − ρ2)

C
√

k2 − ρ2
. (5.8)

Mapping the (u, v, k) space into the (u, v, w) space by the relation

w = sgn(k)
√

k2 − ρ2 (5.9)

yields an explicit expression for Φ1:

Φ1(u, v, w) =
CwP̄d(u, v, sgn(w)

√

w2 + ρ2)

4π3βvsI0sgn(w)
√

w2 + ρ2η̄(sgn(w)
√

w2 + ρ2)R̄(−u,−v)
. (5.10)

At last, the distribution of the microwave energy deposition can be reconstructed from

Φ1 by a 3-D inverse Fourier transform. (5.10) gives an exact reconstruction algorithm
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for planar TAT for the first time. Furthermore, the effects of the finite size of the

detectors and the finite length of the excitation pulse are included explicitly. From

(5.10), it can be inferred that the reconstructed image spectrum Φd(u, v, w) from the

experimental data without the consideration of these two effects, as was presented by

previous researchers [10, 85], is related to the actual image spectrum Φ1(u, v, w) by

Φd(u, v, w) = 4π2η̄(sgn(w)
√

w2 + ρ2)R̄(−u,−v)Φ1(u, v, w). (5.11)

Both of the effects result in multiplications of a function to the actual image spectrum

in the frequency domain. They are equivalent to convolutions in the spatial domain,

which blur the reconstructed image. However, given the pulse shape and the surface

configuration of the detector surface, the two effects can be reduced by deconvolution.

To summarize, the reconstruction procedure consists of the following steps:

(1) The signal from the detector pd(x, y, t̄) is Fourier transformed with respect to

t̄ to yield p̄d(x, y, k). Deconvolution with respect to the finite pulse length can be

implemented immediately after the Fourier transform.

(2) p̄d(x, y, k) is Fourier transformed with respect to x and y, yielding P d(u, v, k).

(3) According to (5.9)–(5.10), P d(u, v, k) is mapped to Φd(u, v, w).

(4) Φd(u, v, w) is deconvoluted with respect to the finite size of the detector, giving

Φ1(u, v, w).

(5) Φ1(u, v, w) is inversely Fourier transformed with respect to u, v, w to yield ϕ(x′, y′, z′).

The order of steps (4) and (5) can be exchanged so that more stable deconvolution

algorithms can be applied. In numerical calculations, P d(u, v, k) is obtained only at

discrete points; hence the mapping from P d(u, v, k) to Φd(u, v, w) needs interpolation,

which can be a major source of distortion.
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Fig. 24. Experiment setup of planar TAT.

b. System Setting

The experimental setup was reported in [64] and, for convenience, is only briefly

described here Fig. 24. The x-axis points perpendicularly to the drawing plane; the

y-axis points to the right in the plane; and the z-axis points downward along the

acoustic axis. Microwave pulses are transmitted by a 9-GHz microwave generator.

The pulse width is 0.5 µs. The object to be imaged is a cylinder of pork fat containing

a thin layer of connective tissue and six yellow microstructures. The diameter of the

cylinder fat is 14 mm and the length in the x direction 30 mm. The cylinder was

immersed in mineral oil in a plexiglass tank. The central frequency of the ultrasonic

transducer (Panametrics) is 2.25 MHz; the bandwidth 1.8 MHz; and the diameter of

the active element 6 mm. More details about the system can be found in [64].

3. Results and Discussion

Our method was applied to reconstructing images from both the simulated and the

experimental data in a 2-D case, where the imaged objects were uniform along the

x-axis. Because the blur due to the finite size of the detector surface is a limiting

factor on the resolution of images, we demonstrated how deconvolution with respect

to the detector surface can deblur the images. We chose the 2-D case here because

both the computational and experimental complexity can be reduced more in the 2-D
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case than in the 3-D one. Nevertheless, the extension of the conclusions of the 2-D

case to the 3-D one is straightforward.

a. Simulation

The thermoacoustic imaging of two cylinders was numerically simulated. Cylinders

were chosen because the analytical expression for their thermoacoustic signal is avail-

able [86]. In the simulations, the temporal-frequency range was from near 0 to 1.5

MHz, which was in accordance with the experimental one and with our previous ex-

periments [13]. Two simulations were run. The first one was to test our reconstruction

algorithm under an ideal experimental condition, which is noiseless and does not con-

sider any experimental limitations on the detectors. In the second case, the effect of

the finite size of the detectors on the imaging was studied while noise was also added.

Deconvolution with respect to the finite size of the detector surface was applied to

improve the lateral resolution of the blurred image. Since energy deposition is a pos-

itive value, only the positive components of the reconstructed image were retained,

and the others were set to zero.

In step (3) of the reconstruction, which is the mapping from P d(u, v, k) to

Φd(u, v, w), linear interpolation was applied. By adopting the zero-padding technique

[30] for the time-domain data, one can increase the sampling density in the k-space

and, consequently, obtain a better performance of the interpolation in the k-space.

In the reconstruction from the simulation data and experimental data, we appended

to the end of the data the same number of zeros as in the original collected data,

so that the sampling density in the k-space was doubled. By utilizing the Wiener

filtering method [87], deconvolution with respect to the finite pulse length was imple-

mented immediately after the Fourier transform with respect to time in step (1). As

the deconvolution with respect to the finite size of the detector surface is much more
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unstable than the deconvolution with respect to the finite pulse length, we have tried

two methods of deconvolution: the Wiener filtering method and the piecewise poly-

nomial truncated singular value decomposition (PP-TSVD) [88] method. The first

method can be implemented in the spatial-frequency domain and is more computa-

tionally efficient than the second, but the performance of the second method is much

better, as it can restore sharp boundaries blurred by the convolution while avoiding

the appearance of artificial oscillations in an unstable deconvolution. Therefore, we

adopted the PP-TSVD method to process the images. Since the models in our sim-

ulation and experiment were uniform along the x-axis, one-dimension deconvolution

was applied.

Fig. 25 shows the reconstructed image from the simulated data under the ideal

experimental condition, where the radius of the two cylinders was 2 mm; the distance

between the centers of the cylinders was 5.5 mm; the centers of the cylinders were

positioned in the plane of z = 10 mm; the scanning range of the detector along the

y axis was 90 mm with a step size of 0.5 mm; and the thermoacoustic signals were

sampled for 40 µs at a sampling rate of 50 MHz. The reconstructed image is in good

agreement with the real objects, whose outlines are plotted as dotted circles in Fig.

25. The dimension of the cylinders is 3.75 mm along the z direction and 4.7 mm

along the y direction. The cylinder is a little deformed laterally, which is due to

the finite scanning range of the detector. Fig. 26 shows the images before and after

deconvolution with respect to the finite size of the detector surface in a case similar to

our experimental conditions. The noise was added to the thermoacoustic signals, and

the SNR was 50; the diameter of the detector was 6 mm. All of the other parameters

were the same as those in the first case. The image before deconvolution is shown in

Fig. 26(a). The dimension of the images of the objects is 3.5 mm along the z-axis,

which agrees well with the real one, 4 mm. However, along the y-axis, the images of
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Fig. 25. The reconstructed image of the cross-section of two cylinders with a radius of 2

mm and the centers separated by 5.5 mm under ideal experimental conditions.

the two cylinders were blurred and consequently merged into one, which is predicted

by our analysis of the effect of the finite size of the detector. The image shows no

clear boundaries of the objects along the y-axis. After deconvolution, the lateral

boundaries of the objects become very clear and the width of the objects in Fig.

26(b) is 4.1 mm, which is quite close to reality. Furthermore, the two objects can be

distinguished clearly. After comparing Fig. 26(a) with Fig. 26(b), it seems that the

ghost images become slightly more obvious, which is a disadvantage of deconvolution.

Nevertheless, it is obvious that deconvolution with respect to the finite size of the

detector surface can improve the lateral resolution greatly. In Fig. 25 and Fig.

26, there are some ghost images. In principle, our reconstruction method is exact

under the assumption of thermal confinement and constant acoustic speed. However,

several factors may introduce distortions. First, as mentioned at the end of part (a) of

the method section, the mapping from P d(u, v, k) to Φd(u, v, w) needs interpolation,

which is a major source of distortion. This distortion can be reduced by increasing

sampling time or applying a better interpolation algorithm in the mapping. Second,

in experiments, the detector cannot be scanned over the whole plane. Nevertheless,

Fig. 25 shows that collecting data within a finite area of the collection plane can
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Fig. 26. Demonstration of deconvolution with numeric simulation. The reconstructed

images for the same two cylinders as in Fig. 25 from noisy data (a) before

and (b) after the deconvolution with respect to the detector surface.

produce images of sufficient definition to determine the configuration and position of

the objects.

b. Experimental Result

Fig. 27 shows the experimental result. The images before and after deconvolution

with respect to the finite size of the detector surface are shown in Fig. 27(a) and Fig.

27(b), respectively. Fig. 27(c) is the cross section of the biological tissue, which was

a cylinder with a radius of about 14 mm and 3 cm long. It consisted of two parts

of fat separated by a very thin layer of connective tissue, which is labelled as (7) in

the middle of the sample. There were some yellow microstructures among the fat,

labelled from (1) to (6), respectively. Fig. 27(a) is the image reconstructed from the

experimental data before deconvolution. The connective tissue between the two parts

of fat and the yellow microstructures are imaged clearly. The dimension of the image

is 16.4 mm along the z direction and 19.2 mm along the y direction. However, it is
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Fig. 27. Demonstration of deconvolution with experimental results. The reconstructed

images from the experimental data (a) before and (b) after the deconvolution

with respect to the detector surface; (c) the cross section of a cylinder of fat

sample containing six yellow microstructures labelled from 1 to 6 and a layer

of connective tissue in the middle labelled as 7.
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obvious that the image before deconvolution is blurred along the y-axis, which makes

the lateral boundaries unclear and the yellow microstructures (1) and (2), (3) and (4)

merge into one object, respectively. The lateral resolution of the image needs to be

improved. Consequently, deconvolution with respect to the finite size of the detector

surface was applied to Fig. 27(a), and the result is shown in Fig. 27(b). The lateral

resolution of the image after deconvolution is much improved. The merged objects

can be distinguished clearly, and the lateral boundaries of the cylinder become much

clearer. The dimension of the image is 16.4 mm along the z direction and 16.7 mm

along the y direction.

c. Discussion

There are several advantages of our reconstruction method. The first one is that it is

an exact reconstruction algorithm. Unlike other reconstruction methods for TAT that

are approximate ones, our reconstruction method provides a solid base for analyzing

and improving the quality of reconstructed images. Furthermore, the exact recon-

struction method has a broader application than the approximate ones. For example,

in both our simulation and experiment, the closest distance between the objects and

the detectors was only about 1 cm; this is possible because in principle there is no

limitation on the detector-object distance in our method. In other words, the detector

can be placed very close to the object to ensure a better SNR. The second advantage

of our method is that it can explicitly include the effect of many limitations from the

experiment, such as the finite size of detector surface, the microwave pulse length, and

the finite frequency response range of the detector. Actually, these analysis are also

valid for other approximate reconstruction methods as long as the other reconstruction

methods are able to produce images approximating the real objects. Consequently,

our analysis of the blur caused by the various experimental limitations can also be
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very useful for eliminating the limitations in other reconstruction methods. Lastly,

since the reconstruction in our method is implemented in the frequency domain, the

efficiency of computation is much better than the algorithm implemented in the time

domain due to the use of the efficient Fourier transformation in our method. This is

especially important for real-time 3-D imaging.

From the above images, it can be seen that there is no speckle in the reconstructed

image. Speckles are an important factor limiting the quality of pure ultrasonic imag-

ing. In our technology, the detected signals are directly from the primary acoustic

waves rather than reflective or scattered waves. Further, the temporal frequency of

the acoustic signals lies in a range from 0 to 1.5 MHz, which is only weakly scattered

in the tissues. The above two factors guarantee that there is no obvious speckle in our

experimental images. However, the issue of image speckle in more realistic medical

imaging applications of our algorithm is a topic for future consideration.

The formulas in this chapter are for TAT in planar geometry only. However,

for cylindrical geometry [25], we can predict that the lateral resolution of images can

also be improved by deconvolution with respect to the detector surface, where the

deconvolution is carried out in a cylindrical surface instead of a plane. For spherical

geometry [19], similar work can be conducted as well.

4. Conclusions

We develop a Fourier-domain reconstruction for TAT and obtain an exact and fast

reconstruction algorithm. The effects of the finite size of the detectors and the finite

length of the excitation pulse are included explicitly in the reconstruction algorithm.

The reconstruction algorithm is verified by both numerical simulations and experi-

mental results. Our simulations demonstrate that the blurring caused by the finite

size of the detector surface, which is a key limiting factor on the resolution of images,
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can be alleviated by deconvolution with respect to the detector surface. Other effects

that may cause the blur of the images can be treated in a similar way. In the initial

experiment, an image in good agreement with the real objects is reconstructed and

the deconvolution improves the resolution of the imaging system.

B. CYLINDRICAL GEOMETRY1

1. Introduction

In some applications such as the imaging of the limbs, a cylindrical scanning surface

may be more appropriate. In this section, using a new expansion formula in cylindrical

coordinates, we derive a frequency-domain reconstruction algorithm and report our

numerical and experimental results in two-dimensional (2-D) cases.

2. Methods

We assume that the detector scans on a cylindrical surface with a radius of ρ, which

encircles all microwave absorbing objects. In this chapter, a coordinate with a prime

refers to the position in an imaged object, while a coordinate without a prime refers

to that of a detector. In the case of thermal confinement, the temporal spectrum

of acoustic field p̄(r, k) is related to the microwave absorption distribution ϕ(r′) by

(1.6). Cylindrical coordinates are used in the following derivation, where z is shown

in Fig. 2 of [19], and ρ, φ are the polar coordinates within the x− y plane. Following

the derivation of the series expansion of 1/ |r − r′| [89], we obtained the following new

identity for a series expansion of a spherical wave in a cylindrical coordinate system

1 c©2002 IEEE. Reprinted, with permission from Y. Xu, M. Xu, and L.-H. Wang,
“Exact frequency-domain reconstruction for thermoacoustic tomography: II. cylin-
drical geometry,” IEEE Trans. Med. Imag., vol. 21, pp. 829 – 833, 2002.
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(see appendix for the derivation):

exp(−ik |r − r′|)

4π |r − r′|
=

−i

8π

∫ ∞

−∞

dkz exp[−ikz(z
′ − z)]

∞
∑

m=−∞

A(m,µρ′, µρ) exp[−im(φ′ − φ)],

(5.12)

where µ = sgn(k)
√

|k2 − k2
z |; sgn() is the signum function; and A is the function

defined as:

A(m,µρ′, µρ) = {
Jm(µρ′)H2

m(µρ), if |k| ≥ |kz|

2i
π
Im(|µ| ρ′)Km(|µ| ρ), if |k| < |kz|

,

where Jm, H2
m, Im, and Km are the m-th order Bessel, second-kind Hankel, and mod-

ified Bessel functions, respectively. It has been assumed in the above two equations

that ρ > ρ′. Substituting (5.12) into (1.6) results in

p̄(r, k) =
βvsI0kη̄(k)sgn(k)

8πC

∮

dr′ϕ(r′)

∫ ∞

−∞

dkz exp[−ikz(z
′ − z)]

×

∞
∑

m=−∞

A(m,µρ′, µρ) exp[−im(φ′ − φ)] . (5.13)

The |k| ≥ |kz| part of the integration with respect to kz represents the contribution

from the propagation wave, while the |k| < |kz| part represents the evanescent wave.

As the evanescent wave decays rapidly at a distance several wavelengths from the

source, it is not suitable for thermoacoustic imaging. For the case of |k| ≥ |kz|, after

Fourier transforming both sides of the above equation with respect to φ and z, we

have

p̄1(m, kz, k) =
βvsI0kη̄(k)H2

m(µρ)

8πC

∫ ∞

0

dρ′ρ′ϕ1(m, kz, ρ
′)Jm(µρ′), (5.14)

where p̄1(m, kz, k) and ϕ1(m, kz, ρ
′) are the Fourier transforms of p̄(r, k) and ϕ(r′),

respectively. Noticing that the right side of (5.14) is actually a Hankel transform, an
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inverse Hankel transform gives

ϕ1(m, kz, ρ
′) =

8πC

βvsI0

∫ ∞

0

dµ
µp̄1(m, kz, k)Jm(µρ′)

kη̄(k)H2
m(µρ)

, |k| ≥ |kz| .

Applying a variable change of the integral variable from µ to k to the above equation

results in

ϕ1(m, kz, ρ
′) =

8πC

βvsI0

∫ ∞

kz

dk
p̄1(m, kz, k)Jm(µρ′)

η̄(k)H2
m(µρ)

, |k| ≥ |kz| . (5.15)

At last, ϕ1(m, kz, ρ
′) is inversely Fourier transformed with respect to m and kz to

yield ϕ(φ′, z′, ρ′). (5.15) gives an exact mapping relation between the spectrum of the

collected signals and the spectrum of the distribution of microwave energy deposition

and is the essence of our reconstruction method.

An exact reconstruction method for ultrasonic reflectivity imaging with a cylin-

drical scanning surface was given in [39]. However, our results are much simpler and

more stable. In their equation A24, Jm(µr0), where r0 is the radius of the scanning

cylindrical surface, appeared in the denominator and can be zero for some values of

µ; consequently, this term can cause instability. In our (5.15), H2
m(µρ) appeared in

the denominator, which cannot be zero for a finite µ.

To summarize, the reconstruction procedure consists of the following steps:

(1) The signal from the detector p(φ, z, t̄) is Fourier transformed with respect to

t̄ to yield p̄(φ, z, k). Deconvolution with respect to the finite pulse length can be

implemented immediately after the Fourier transform.

(2) p̄(φ, z, k) is Fourier transformed with respect to z and φ, giving p̄1(m, kz, k) .

(3) According to (5.15), p̄1(m, kz, k) is mapped to ϕ1(m, kz, ρ
′).

(4) ϕ1(m, kz, ρ
′) is inversely Fourier transformed with respect to u, v, w to yield

ϕ(φ′, z′, ρ′).
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3. Results and Discussion

To test our method, images from both numerically simulated and experimental data

were reconstructed in a 2-D case. We chose the 2-D case rather than the three-

dimensional (3-D) case to reduce the computational and experimental complexity.

For the 2-D case, the reconstruction equation can be derived from (5.14) by replacing

all kz with zero. The extension of the conclusions of the 2-D case to a 3-D one is

straightforward.

a. Numerical Simulation

The thermoacoustic imaging of two cylinders was numerically simulated, where the

radius of each cylinder was 2 mm; the distance between the centers of the cylinders

was 5 mm; and the center of one of the cylinders was positioned at the origin of the

circle of detection. Cylinders were chosen because the analytical expression for their

thermoacoustic signal is available [86]. In the simulations, the temporal-frequency

range was from about 0 to 2 MHz, which was close to our experimental situation [13].

For the noiseless simulated data, the reconstruction is almost perfect. Therefore,

we show only the results from noisy data. Fig. 28 shows the images before and

after the reconstruction from the simulated data with introduced additive noise. The

units for the signals and energy deposition in Fig. 28 and 29 are relative ones.

Calibration of our system is needed to obtain an absolute measurement. The radius

of the circle of detection was 30 mm; the angular scanning range was 2π with 256

steps; and the thermoacoustic signals were sampled for 50 µs at a sampling rate of 4

MHz. The signal-noise-ratio (SNR) of the raw data shown in Fig. 28(a) was 1. The

reconstructed image shown in Fig. 28 (b) is in good agreement with the real objects,

whose outlines are plotted as dotted circles in Fig. 28(b). The dimensions of the



94

Fig. 28. The images (a) before and (b) after the reconstruction from the simulated

data of two cylinders.

reconstructed cylinders are 4 mm along both the x and the y directions. The SNR of

the reconstructed image is about 8, which is improved greatly compared with that of

the raw data.

b. Experiment Results

The experimental setup for 2-D TAT in a cylindrical configuration is the same as

that in [12]. The sample is shown in Fig. 29(a), which was photographed after the

experiment. Microwave pulses were delivered to the sample from below. The imaging

plane was 2 cm above the bottom of the tissue sample. Above the plane, there is

another layer of fat about 1 cm thick. The sample consisted of five muscle cylinders

with a diameter of about 3 mm and a height of 6 mm. The muscle cylinders were

surrounded by pork fat. The electrical property of interest to this imaging technique is

the microwave attenuation coefficient of the medium at the experimental microwave

frequency, 3 GHz. The microwave attenuation coefficients of fat and muscle are 9

cm−1 and 1 cm−1, respectively. The microwave absorption in mineral oil can be

neglected, compared with the absorption in fat and muscle. During the experiment,
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Fig. 29. Experiment results of cylindrical TAT. (a) The cross section of a fat sample

containing 5 pieces of muscle cylinders. (b) The reconstructed image from the

experimental data.

the transducer scanned around the sample at a radius of 7.1 cm from 0 to 360 degrees

with a step size of 2.25 degrees. The thermoacoustic signals were sampled for 60 µs at

a sampling rate of 20 MHz. The time between the end of a microwave pulse and the

acquisition of the thermoacoustic signal was between 10 µs and 20 µs in our system,

depending on the distance of the transducer to the nearest sample surface. Fig. 29(b)

shows the reconstructed image from the experimental data. The reconstructed image

is in good agreement with the real objects. The boundaries between the fat and the

surrounding medium and the muscle cylinders are imaged clearly. However, it can

be seen that the quality of the image decreases with the increasing distance of the

objects from the center of the circle of detection. One possible reason is that the finite

surface area of the detector, which has a 6-mm diameter in this experiment, may cause

blurring of the image perpendicular to the radial direction, and this blurring is more

serious when the object is farther from the center. Another possible reason is that the
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microwave field decreases when the radius increases in our irradiation configuration.

Our method can be applied to analyze the effect of the discrete sampling by the

detector along the circle of detection on imaging. This can be illustrated by analyzing

the signals from a point source located at radius ρ1. According to (5.14),

p̄1(m, k) ∝ Jm(kρ1). (5.16)

Fig. 30 shows how Jm(kρ1) changes with m, where k = 8.37 mm –1 (the wave number

of a 2-MHz acoustic wave) and ρ1 = 10 mm. It is clear that Jm(kρ1) has considerable

value until m ≈ kρ1, where the Bessel function makes a transition from near-field

behavior to far-field behavior. Therefore, it is safe to claim that, with respect to

variable φ, p̄(r, k) is band-limited by kρ1. According to the Nyquist criteria, the

number of scanning points per cycle should be at least 2kρ1 to avoid aliasing. In

other words, for a fixed number of scanning points N , the maximum wave number

before aliasing occurs is kmax ≈ N/(2ρ1). It can be seen that the maximum wave

number is inversely proportional to ρ1. For the same N and temporal spectrum of

signal, the aliasing may be more serious for signals coming from sources at a greater

radial distance than for those closer to the center. The above analysis also points out

a way to produce an aliasing-free image from the data obtained by discrete detection.

That is to apply a filter in the temporal-frequency domain to the spectrum of the

temporal data with a stopband at about N/(2ρmax), where ρmax is the maximum

radius of imaging range of interest. The application of the filter will decrease the

resolution of the image; however, it can guarantee that there will be no aliasing in

the image.
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Fig. 30. Jm(kρ1) versus m, where k = 8.37 mm−1 (the wave number of a 2 MHz

acoustic wave) and ρ1 = 10 mm.

4. Discussion

Since our method is implemented in the frequency domain using the FFT technique,

the computational efficiency is much greater than if implemented in the time do-

main. The most time-consuming computation in the numerical reconstruction lies

in (5.15), which is a Hankel transform. Fortunately, a quasi-fast algorithm for it,

which is as efficient as a 1-D fast Fourier transform, is available [90]. Following the

methods in [24], our method can explicitly include and further eliminate the effect of

many limitations from the experiment, such as the finite size of the detector surface,

the microwave pulse length, and the finite response frequency range of the detector.

Additionally, combining our method and the techniques in [39], a new exact recon-

struction algorithm for 3-D ultrasonic reflectivity imaging with a cylindrical aperture

can be derived.

The size of tissue samples that can be imaged by our system is mainly limited

by the safety standard on microwave power, the microwave frequency, the microwave

irradiation configuration, the sensitivity of the ultrasonic transducer, the dynamic

range of the preamplifier and sampling system, and the affordable imaging time.

A microwave irradiation configuration that renders a uniform microwave irradiation
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within the sample will also increase the capacity of the system to image larger samples.

A large dynamic range of the preamplifier and the sampling system is necessary to

accurately collect the thermoacoustic signals from both the surface and the inside

of a sample. A more sensitive ultrasonic transducer and a longer imaging time can

improve the signal-to-noise ratio of acoustic signals and make the weak signals from

the inside of large samples detectable.

In our initial computation, the reconstruction of a single 2D image required

about 2 minutes in a Dell precision 330 computer (Intel Pentium 4 processor with a

clock frequency of 1.5 GHz) with Matlab programs if there was no precomputation of

Bessel and Hankel functions. However, our initial computation was aimed at verifying

the proposed algorithm rather than demonstrating the computation efficiency. The

proposed algorithm can be implemented with high computational efficiency as stated

in the discussion section. For high computational efficiency, the program should

be coded with languages such as C or Fortran, Bessel and Hankel functions should

be precomputed, and the fast Hankel transform algorithm should be adopted. The

evaluation of the computation efficiency of our algorithm is a topic for future studies.

5. Conclusions

Using a new expansion of a spherical wave in the cylindrical coordinate system, we

apply the Fourier transform and Hankel transform techniques to TAT with a cylin-

drical detection surface. The reconstruction algorithm is verified by both numerical

simulations and experimental results in 2-D cases. The method is applied to analyze

the effect of discrete sampling by the detector along the circle of detection on imag-

ing; an aliasing-free reconstruction method for discrete sampling along the azimuthal

direction is proposed.
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CHAPTER VI

CONCLUSIONS

Time-domain methods are proposed to time-reverse a transient scalar wave using only

the field measured on an arbitrary closed surface enclosing the initial source. Under

certain conditions, a time-reversed field can be approximated by retransmitting the

measured signals in a reversed temporal order in a free space. Exact reconstructions

for TAT and broadband diffraction tomography (a linearized inverse scattering prob-

lem) are proposed by time-reversing the measured field back to the time when each

(secondary) source is excited. The theoretical conclusions are supported by a numer-

ical simulation of three-dimensional diffraction tomography. Extension of the results

to a heterogeneous medium is discussed.

It is explained theoretically what parts of the image can be stably recovered in

the limited-view TAT. Analytic and algebraic reconstruction methods are developed

and applied to numerical phantoms and experimental data. Both numerical and

experimental results agree perfectly with the theoretical conclusions. The results can

be applied practically to quantitative reconstructions with incomplete data, as well

as to designing efficient scanning geometries in TAT and interpreting the obtained

images.

The effects of acoustic heterogeneity on TAT in the breast are studied. Our

analysis shows that the amplitude distortion in the breast TAT is minor. There is

no multipath interference in the breast TAT with a convex parenchyma wall, and the

amplitude distortion is also not severe for concave boundary, because the TAT signals

are broadband, have low central frequency, and experience only one-way transmission

through the parenchyma wall. Therefore we consider only phase distortion in our

numerical studies. The numerical results on the spread of point sources and bound-
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aries caused by the phase distortion are in good agreement with the predictions of

the proposed formula. It is shown that phase distortion can be compensated for when

complete or partial information on the distribution of acoustic velocity in the breast

is included in the reconstruction. It is found that improvement in the results is more

sensitive to measurement error in vf , vp than Σ. Based on this sensitivity study, an

approach to implement our compensation method using only TAT data is proposed.

The differences between breast TAT and breast ultrasound imaging in relation to the

effects of acoustic heterogeneity and speckles are accounted for by differences in their

central frequency of ultrasound and detection configuration.

We develop a Fourier-domain reconstruction for TAT and obtain an exact and

fast reconstruction algorithm. The effects of the finite size of the detectors and

the finite length of the excitation pulse are included explicitly in the reconstruction

algorithm. The reconstruction algorithm is verified by both numerical simulations

and experimental results. Our simulations demonstrate that the blurring caused by

the finite size of the detector surface, which is a key limiting factor on the resolution of

images, can be alleviated by deconvolution with respect to the detector surface. Other

effects that may cause the blur of the images can be treated in a similar way. In the

initial experiment, an image in good agreement with the real objects is reconstructed

and the deconvolution improves the resolution of the imaging system.

Using a new expansion of a spherical wave in the cylindrical coordinate system,

we apply the Fourier transform and Hankel transform techniques to TAT with a cylin-

drical detection surface. The reconstruction algorithm is verified by both numerical

simulations and experimental results in 2-D cases. The method is applied to analyze

the effect of discrete sampling by the detector along the circle of detection on imag-

ing; an aliasing-free reconstruction method for discrete sampling along the azimuthal

direction is proposed.
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APPENDIX A

DERIVATION OF (2.13)

First, after combining (2.12), (2.20) and the time-domain form of (2.2), it can be

found that g1(r, t |rd , t0) only within t < Ag, where Ag = t0 + (|r − rd| + 2lobj)/vs,

is needed to compute pr(r, t̂e(r)) using (2.12) for DT application. Secondly, when r

is around the center of Σ and ldet > 2lobj, the flight-time difference between the first

two rays (arriving at r at time t0 + |r − rd| /vs) and the other rays (such as ray DAB)

is larger than 2lobj/vs in most cases and, consequently, the rays other than the first

two make contribution to g1(r, t |rd , t0) only when t > Ag, and to pr(r, t) only when

t > t̂e(r).
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APPENDIX B

DERIVATION OF (3.2)

(3.1) can be rewritten as

p1(r, t) =
βI0

4πC
Dt

Rϕ

t
. (B.1)

We define p2(r, t) = vs

∫ t

0
p1(r, t)dt. Then we have

4πCtp2(r, t)

βI0vs

= Rϕ. (B.2)

If the detector is not very close to the objects, we can approximate the circular Radon

transform by the standard Radon transform. The forward and inverse formulas for

the standard Radon transform are [49]

m(ς, θ) =

f(r)
∫

r·θ=ς

dr, (B.3)

and

f(r) =
1

4π

2π
∫

0

dθ H
∂m(r · θ, θ)

∂ς
, (B.4)

where H is Hilbert transform. Although the circular Radon transform is different, one

can write down an approximate inversion formula modeled after (B.4). By combining

an analog of (B.4) with (B.2), one obtains an approximate formula

ϕ(r) ≈
C

βI0v2
s

∫ 2π

0

dθH(p1(rθ, |rθ − r| /vs) |rθ − r| + p2(rθ, |rθ − r|)), (B.5)

where θ is defined as in Fig. 6. According to Fig. 6, we have the relation

dθ = ds
n · (r − rθ)

|r − rθ|
2 , (B.6)
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where n is the inward normal to the detection curve at rθ and ds is the arc length

differential of the detection curve. After substituting this identity into (B.5) we obtain

(3.2). (3.4) can be derived in a similar way.
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APPENDIX C

DERIVATION OF (4.3)

Assume the concave boundary can be approximated by an arch with a radius Rl > a,

where a is half the size of the boundary segment. Two rays are refracted at points B1

and B2 in Fig. 16, where B2 has a small displacement from B1 along the boundary.

According to the refraction law, we have

sin θ1 = (1 − α) sin φ1,

cos θ1dθ1 = (1 − α) cos φ1dφ1, (C.1)

where dφ1 is the difference between the incidence angles of the two rays and dθ1 is

the transmission one. They can be expressed as

dθ1 = (1 −
Rl cos θ1

lB1D

)dθ

dφ1 = (
Rl cos φ1

lSB1

+ 1)dθ, (C.2)

where lSB1
and lB1D are the distances from the boundary point B1 to source S and

detector D, respectively, and dθ = lB1B2
/Rl. Combining the above equations, we have

the imaging formula for the boundary segment

cos2 φ1

lSB1

+
cos2 θ1

lDB1
(1 − α)

=
cos θ1/(1 − α) − cos φ1

Rl

. (C.3)

Since in our breast model α ≈ 0.1 is small, the above equation can be further simplified

to (4.3) after using θ1 ≈ φ1.
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APPENDIX D

DERIVATION OF (4.22)

The first iteration in TCG is equivalent to the backprojection method [22]. In back-

projection for an acoustically homogeneous TAT, ϕ(r, t), the signal detected at r and

time t is projected back to a sphere with a radius of tvs0 and a center at r. It is

shown that the boundaries of objects can be reconstructed correctly with the back-

projection method [56]. Let’s consider a model illustrated in Fig. 19 to estimate the

spread of source S along line D1D2, where D1 and D2 are two detectors; S1 is the

intersection of D1D2 with the backprojection arch of the signal transmitted by source

S and detected by detector D1; S2 is the corresponding one at D2, and Σ represents

the parenchyma wall. If there is no error in computing TOFs, S1, S2, and S will be

one point; therefore, a point image of source S can be recovered. In an acoustically

heterogeneous model, however, the flight-time errors caused by the approximation of

vp by vs0 in the reconstruction result in the splitting of S1 and S2 from S, where

lS1S and lS2S can be estimated by the multiplication of the flight-time errors with vs0,

lS1S = lB1S(1− vs0/vp) = αlB1S and lS2S = lB2S(1− vs0/vp) = αlB2S. Combining them

together, we have (4.22) for the spread width of source S along line D1D2. Similar

analysis can be applied to estimating BSW as well.
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APPENDIX E

DERIVATION OF (5.12)

The derivation of (5.12) will be presented here. The spherical wave Gk(r, r
′) =

exp(−ik |r − r′|)/(4π |r − r′|) is a solution to the wave equation with a point source:

∇2
r
Gk(r, r

′) + k2Gk(r, r
′) = −δ(r − r′) . (E.1)

The solution can be expanded in terms of orthonormal functions of z and φ in a

cylindrical coordinate system:

Gk(r, r) = (
1

2π
)2

∞
∑

m=−∞

∫ ∞

−∞

dkzgm(k, kz, ρ, ρ′) exp[im(φ − φ′) + ikz(z − z′)] . (E.2)

Substituting (E.2) into (E.1) results in an equation for the radial Green’s function

gm:

1

ρ

d

dρ
(ρ

dgm

dρ
) + (k2 − k2

z −
m2

ρ2
)gm = −

δ(ρ − ρ′)

ρ
. (E.3)

When |k| < |kz|, following the derivation of the series expansion of 1/|r − r′| [89], one

obtains a similar expansion for the spherical wave:

gm = Im(|µ| ρ′)Km(|µ| ρ) . (E.4)

We next consider the case of |k| ≥ |kz| and k > 0. Noticing that when ρ → ∞, gm

behaves asymptotically as exp[−iµ(ρ− ρ′)] ( ρ > ρ′ is implicit in our model), one can

follow the derivation in [89] and obtain

gm =
π

2i
Jm(µρ′)H2

m(µρ) . (E.5)

Similarly, for |k| ≥ |kz| and k < 0:

gm =
πi

2
Jm(|µ| ρ′)H1

m(|µ| ρ) . (E.6)
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Using the following identities of Bessel and Hankel functions [91]:

H1
m(µρ) = −(−1)mH2

m(−µρ),

J (
mµρ) = (−1)mJ (

m − µρ),

and combining (E.2), (E.4), (E.5), and (E.6), we obtain (5.12).
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