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ABSTRACT 

 

The U.S. energy sector has undergone continuous change in the regulatory, 

technological, and market environments.  These developments show no signs of slowing.  

Accordingly, it is imperative that energy market regulators and participants develop a 

strong comprehension of market dynamics and the potential implications of their actions.  

This dissertation contributes to a better understanding of the past, present, and future of 

U.S. energy market dynamics and interactions with policy.  Advancements in 

multivariate time series analysis are employed in three related studies of the electric 

power sector.  Overall, results suggest that regulatory changes have had and will 

continue to have important implications for the electric power sector.  The sector, 

however, has exhibited adaptability to past regulatory changes and is projected to remain 

resilient in the future. 

  Tests for constancy of the long run parameters in a vector error correction model 

are applied to determine whether relationships among coal inventories in the electric 

power sector, input prices, output prices, and opportunity costs have remained constant 

over the past 38 years.  Two periods of instability are found, the first following railroad 

deregulation in the U.S. and the second corresponding to a number of major regulatory 

changes in the electric power and natural gas sectors.   

 Relationships among Renewable Energy Credit prices, electricity prices, and 

natural gas prices are estimated using a vector error correction model.  Results suggest 

that Renewable Energy Credit prices do not completely behave as previously theorized 
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in the literature.  Potential reasons for the divergence between theory and empirical 

evidence are the relative immaturity of current markets and continuous institutional 

intervention.   

 Potential impacts of future CO2 emissions reductions under the Clean Power Plan 

on economic and energy sector activity are estimated.  Conditional forecasts based on an 

outlined path for CO2 emissions are developed from a factor-augmented vector 

autoregressive model for a large dataset.  Unconditional and conditional forecasts are 

compared for U.S. industrial production, real personal income, and estimated factors.  

Results suggest that economic growth will be slower under the Clean Power Plan than it 

would otherwise; however, CO2 emissions reductions and economic growth can be 

achieved simultaneously. 
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CHAPTER I  

INTRODUCTION  

 

The U.S. energy sector is a popular subject of debate in the national media, the U.S. 

political arena, and the academic literature (Burtraw et al. 2014; Bushnell et al. 2015; 

McConnell 2015; U.S. Environmental Protection Agency (EPA) 2015b).  This sector is 

continuously evolving in response to technology improvements, changing market 

conditions, and adjustments in the regulatory environment.  Major changes in the energy 

sector over the last three decades include (but are not limited to) market restructuring in 

both the natural gas and electricity sectors (U.S. Federal Energy Regulatory Commission 

(FERC) 2015a, 2015b), the beginning and end of a national emissions permit trading 

program (Evans and Woodward 2013), the introduction of state level Renewable 

Portfolio Standards (Database of State Incentives for Renewable Energy 2015), and a 

substantial increase in domestic crude oil and natural gas production resulting in 

considerable price decreases in these markets (U.S. Energy Information Administration 

(EIA) 2015a).  Energy sector developments show no signs of slowing in the near future. 

 Given the importance of the U.S. energy sector to the domestic and global 

economies, it is crucial for policy makers and energy market participants to have a 

strong awareness of the potential implications of their actions.  The overall objective of 

this dissertation is to contribute to a better understanding of the past, present, and future 

of U.S. energy market dynamics and interactions with policy by: (1) characterizing 

market relationships and investigating the consequences of past regulatory changes and 
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shifts in market conditions; (2) examining current program functionality; and (3) 

projecting the impacts of future policy implementation.  To achieve this broad objective, 

three related empirical investigations of issues in the electric power sector are conducted 

(Chapters II-IV), drawing on insights from advancements in multivariate time series 

analysis.   

Energy Market Relationships: Past Changes in Regulation and Market Conditions 

Economic relationships governing inventory behavior in the electric power sector are 

characterized in Chapter II.  Specific objectives are to determine how coal inventories at 

electric power plants are related to movements in various economic factors and to 

examine whether these relationships have remained constant over time in the face of 

aforementioned changes.  Monthly data spanning 38 years and encompassing numerous 

changes in the electricity and natural gas industries are used to estimate a vector error 

correction model.  This model allows for cointegration among coal inventories, input 

and output prices, and opportunity costs.  Tests for stability of the long run relationships 

among the variables are conducted following Hansen and Johansen (1999); the tests help 

to understand how inventory behavior of firms in the electric power sector changes when 

confronted with regulatory changes or shifts in market conditions.  Two sustained 

periods of instability are found: the first following deregulation of the U.S. railroad 

industry and the second following the Clean Air Act Amendments of 1990 and 

coinciding with restructuring of both the natural gas and electricity industries.  Results 

suggest policy changes that alter the regulatory environment can result in considerable 

fluctuations in how firms‟ inventory decisions interact with input and output markets and 
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opportunity costs; however, the system is highly resilient as the long run relationships 

remain constant over approximately 68% of the 38 year sample period. 

Current Program Functionality 

Renewable Portfolio Standards, programs that require electricity suppliers to provide a 

minimum percentage of total sales from renewable energy, currently exist in the majority 

of U.S. states (Database of State Incentives for Renewable Energy 2015).  Empirical 

analyses of tradable rights programs are necessary to determine if such programs are a 

move towards efficiency.  There is a lack of empirical analyses of RPS programs in the 

literature (Felder 2011; Fischer 2010).  This gap is addressed in Chapter III, with the 

objective of improving our understanding of the functionality of currently existing RPS 

programs.  This goal is accomplished by determining whether the dynamic relationships 

among Renewable Energy Credit (REC) prices in Massachusetts and Connecticut, 

natural gas prices, and electricity prices are consistent with economic theory.  As in the 

study characterizing inventory behavior, a vector error correction model is employed.  

Results indicate REC prices in the two states do not respond to shocks in electricity 

prices or natural gas prices as theorized in the literature.  Additionally, only weak 

evidence is found regarding whether REC prices are integrated across states.  Possible 

reasons for the divergence between theorized relationships and empirical evidence are 

the relative immaturity of the REC markets and continuous institutional intervention.  It 

appears that although Renewable Portfolio Standards have been promoted and 

implemented as market-based incentives for encouraging renewable generation, 
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regulators have not succeeded in creating an efficient, fundamental-driven market under 

current RPS programs in these two states. 

Projecting Impacts of Future Policy Implementation 

In Chapter IV, potential future impacts of a recently introduced national policy to reduce 

CO2 emissions from the electric power sector (the Clean Power Plan) are estimated using 

advancements in time series techniques for handling large datasets.  Factors extracted 

from a large number of monthly macroeconomic, financial, and energy related time 

series represent the underlying sources of variation in larger U.S. economic and energy 

sector activity.  These factors are included in a factor-augmented vector autoregressive 

model alongside three variables of interest: electric power sector CO2 emissions, U.S. 

industrial production, and U.S. real personal income.  Unconditional and conditional 

forecasts are compared for industrial production, real personal income, and the estimated 

factors.  The conditional forecasts are based on a constrained path of CO2 emissions 

reductions.  Results suggest that growth in economic activity will be slower under the 

Clean Power Plan than it would be otherwise, but that economic growth and CO2 

emissions reductions can be achieved simultaneously. 
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 CHAPTER II  

TESTING STABILITY IN THE ELECTRIC POWER SECTOR: CHARACTERIZING 

FUEL PRICE AND INVENTORY RELATIONSHIPS 

 

Energy markets in the U.S. have experienced several substantial changes in the last 

quarter century, including restructuring of both the natural gas and electricity industries.  

Additionally, the U.S. has seen a steady increase in natural gas supplies in recent years 

because of shale gas exploitation, leading to a decrease in prices.  Real monthly natural 

gas prices paid by electric power generators (October 2014 dollars) have dropped from a 

peak of $14.38/million BTU (mmBTU) in October 2005 to $3.06/mmBTU by 

September 2015 (U.S. Energy Information Administration (EIA) 2015a).  In this 

changing environment, inventory management remains an essential function, having 

consequences for a company‟s profitability (Chen, Xue, and Yang 2013).    

Inventory decisions in the electric power sector are made in the presence of 

varying input prices and stochastic seasonal demands by using both spot market 

purchases and long-term contracts.  As noted, the energy sector has a history of 

regulatory changes and continues to be the subject of proposed regulation.  It is 

important, therefore, to understand how firms behave when faced with a changing 

regulatory environment or with major shifts in market conditions.  Jha (2015) motivates 

this importance; he finds that U.S. electric power plants which face deregulated 

electricity markets save approximately 3% per month in coal procurement and storage 

costs compared to regulated plants.  The objectives of this chapter are to determine how 
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coal stocks at electric power plants are related to movements in various economic factors 

and whether these relationships have remained constant over a period spanning several 

major events in the electricity industry, including market deregulation. 

To achieve these objectives, multivariate time-series techniques are employed, 

using five different U.S. aggregate monthly data series.  Previous literature and 

economic theory suggest that input inventory decisions are affected by input and output 

price expectations and opportunity costs (Jha 2015; Takriti, Supatgiat, and Wu 2001; 

Twisdale and Chu 1979).  Applying this intuition to the electric power industry suggests 

that coal inventories are expected to be related to fuel input prices, electricity (output) 

prices, and the opportunity cost of holding inventories.  Accordingly, two input costs to 

electric power plants are considered: coal and natural gas.  Coal and natural gas are the 

focus as they are the two largest fuel sources in the U.S. electric power sector.  In June 

2014, coal accounted for about 40% of total electricity generation; natural gas was the 

second largest source at 26% (U.S. EIA 2015a).  The third series is a measure of coal 

inventories at electric power plants.  Data for natural gas inventories are not included.  

Both the inherent dangers of natural gas storage and the ease in transportation cause 

natural gas to usually be stored within the gas sector and not the electric power sector.  

Electricity prices and Aaa corporate bond rates are included, representing output prices 

and opportunity costs.  Data are for the period July 1976 to October 2014.  Dynamic 

long run relationships between coal inventories and input and output prices in the 

electricity sector are presented.  To the author‟s knowledge, such coal relationships have 

not been examined in the literature.   
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Literature Review 

There is a relatively vast literature employing time-series methods to address issues in 

energy-related markets, as well as a large volume of literature on inventory control.  A 

non-exhaustive list of inventory behavior literature dates back to Arrow, Harris, and 

Marschak (1951), and includes works such as Holt, Modigliani, and Simon (1955), 

Feldstein et al. (1976), and Blinder (1986).  Generally, inventory studies focus on the 

determination of optimal stocking levels of goods.  The present study takes a different 

approach by studying the dynamic long run relationships between input inventory levels 

and input and output prices in the electricity sector.   

While inventory literature contains many studies of optimal finished goods 

levels, little attention has been given to the optimal stocking of inputs (raw or 

intermediate goods).  Ramey (1989) develops an optimization method for inventories at 

different stages of production.  She shows that input inventories are much more volatile 

than output inventories.  The theory introduced was a major departure from past 

inventory literature, as she treated inventories as a factor of production, rather than a 

stage between production and sale of goods.  Humpreys, Maccini, and Schuh (2001) 

note that Ramey‟s approach to modeling input inventories implies that optimal stocking 

rates stem from factor demand theory.  They argue that Ramey‟s approach does not 

properly capture the flow of inputs in the production process, i.e. the benefits and costs 

from holding inventories of raw and intermediate goods.  Humphreys, Maccini, and 

Schuh (2001) provide a model for inventory management which includes ordering, 

usage, and stocking of inputs in the durable and nondurable goods industries.  Their 
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model shows that input inventories respond positively to sales and negatively to raw 

material price shocks.  Considine (1997) uses a model which simultaneously determines 

input and output inventories to investigate the determinants of each in the petroleum 

refining industry.  He finds that the elasticity of crude oil stocks with respect to a basket 

of energy and material prices is small and negative in both the short and long run. 

There are a small number of studies addressing fuel inventory and purchase 

decisions in the electric power industry.  Jha (2015) estimates a dynamic, plant-level 

model for optimal coal purchases at coal-fired electric power plants.  He finds that firms 

which face wholesale market electricity prices save roughly 3% per month in coal 

purchase and storage costs compared to a firm under output price regulation.  Twisdale 

and Chu (1979) develop a multiperiod, dynamic programming framework in which they 

study optimal coal inventory management.  They find that coal purchases tend to follow 

a seasonal, sawtooth pattern from month to month.  Sensitivity analyses show that 

potential replacement costs (the cost to replace power when the plant is short on coal) 

and/or revenue losses greatly affect the optimal strategy.  Takriti, Supatgiat, and Wu 

(2001) study the problem of a natural gas power plant‟s fuel purchase decision under 

uncertainty of natural gas prices, electricity prices, and natural gas demand. They 

propose a mixed integer programming approach to inform the decision maker when to 

buy or sell natural gas, and when to burn natural gas to produce electricity under 

stochastic scenarios.  They find that their stochastic model outperforms a deterministic 

alternative by a factor of three to four percent. 
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Applications of multivariate time-series techniques to the energy sector are 

prevalent in the literature.  Most of these studies pertain to energy price relationships, 

but a few studies address the relationships between management decisions and economic 

variables.  One such study is Considine and Heo (2000), who investigate relationships in 

petroleum prices, inventories, production, and net imports.  They find that under periods 

of high prices, oil refiners reduce crude oil stocks but increase finished product 

inventories.  Pindyck (2001) develops an explanation for how prices, production, and 

inventory levels of commodities are related to each other.  He shows that price volatility 

is important in driving the dynamics of storage markets.  In a related paper, Pindyck 

(2004) argues that higher volatility in petroleum markets increases the demand for 

inventories, as inventories are meant to be a smoothing mechanism.  He specifies a 

model for petroleum product prices, inventories, and volatility, and finds that while price 

volatility does influence inventory levels, it is to a lesser extent than expected. 

Applications of time series techniques to input and output price data from the 

energy sector provide a starting point for the current study.  Borenstein and Shepard 

(2002) use time series methods to explore the dynamics between crude oil prices and 

wholesale gasoline prices using a model in which holding inventories is costly.  They 

discover that wholesale gasoline (output) price has a lagged response to shocks in crude 

oil price (input cost).  Panagiotidis and Rutledge (2007) test the hypothesis of 

decoupling of natural gas and oil prices in the UK.  They find a cointegrating 

relationship between natural gas and oil prices, providing evidence against the 

hypothesis of decoupling of the markets.  Mohammadi (2009) and Mjelde and Bessler 
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(2009) both use vector error correction models to examine long run relationships 

between electricity prices and major fuel markets.  Mohammadi (2009) finds a 

relationship between coal prices and electricity prices in the long run.  Mjelde and 

Bessler (2009), using four major fuel source prices and two different electricity markets 

within the United States, conclude that the largest responses in electricity prices 

generally come from shocks in the coal market.  They conclude that price discovery is 

found in the fuel source markets.  

Data 

Data used in the empirical analysis includes national level monthly observations of 

seven different series for the period July 1976 to October 2014, giving a total of 459 

observations.  Five endogenous series are: cost of coal and natural gas receipts at electric 

generating plants
1
 (representing input prices); electricity prices (output prices); coal 

inventories (input stocks); and Moody‟s Aaa Corporate Bond ratings (opportunity costs).  

The four energy series are from the EIA‟s Monthly Energy Review (U.S. EIA 2015a).  

Coal inventory is constructed by dividing the amount of coal on hand at electric power 

plants in a given month by the previous month‟s consumption of coal, thereby 

approximating the number of months of coal on hand at electric power plants.
2
  The 

Moody‟s data are from the U.S. Federal Reserve (2015).   Additionally, cooling degree 

                                                 

1
 These series are from Table 9.9 “Cost of Fossil-Fuel Receipts at Electric Generating Plants” of the 

Monthly Energy Review (U.S. EIA 2015a) and are referred to as coal and natural gas costs throughout this 

chapter. 
2
 As a robustness check, the empirical analysis was carried out for an alternative measure of coal 

inventory: current end-of-month coal on hand divided by the following month‟s consumption in the 

previous year, i.e.            
             

                    
.  The test for parameter stability is robust to this 

alternative measure (Appendix A). 
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days and heating degree days are treated as exogenous series.  Cooling and heating 

degree days are national level, population weighted monthly observations from the U.S. 

National Oceanic and Atmospheric Administration (2015).  All five endogenous series 

are converted to October 2014 dollars using the Producer Price Index (U.S. Bureau of 

Labor Statistics 2015).    

The electricity price series is constructed from two different series.  Pre-2001 

electricity prices are average U.S. retail electricity prices, whereas after December 2000 

wholesale prices are used.  January 2001 is the first month in which sufficient data are 

available on deregulated wholesale electricity prices to generate a U.S. national price.  

Wholesale prices are the preferred measure because of their relevance as the price that 

power plants receive for their product.  Retail prices are included as they are tied to the 

price received by plants; however, they are less volatile than wholesale prices.  The 

monthly average retail price comes from U.S. EIA (2015a).  The wholesale price was 

constructed as a weighted average using EIA price and volume data (U.S. EIA 2015b) 

from four major U.S. hubs (PJM West, Mid-Columbia, Palo Verde, and New England – 

Massachusetts).  Because of the nature of the electricity price series, a 0-1 dummy 

variable (equal to one pre-2001 and zero after) to account for the difference in the series 

is included in the model following suggestions by Juselius (2006) and Estima (2006) to 

handle a known break.   

All endogenous series are in natural logarithm form for the analysis.  The 

endogenous series are abbreviated as follows: real coal costs to electric power plants 

(Coal), real natural gas costs to electric power plants (NG), coal inventories at electric 
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power plants (Coal Inv), Aaa corporate bond rates (Bonds), and real electricity prices 

(Elec).  Graphs of the five endogenous (before taking natural logarithms) and two 

exogenous series are presented in figure 2.1.  

Methodology 

Previous studies have shown that economic variables in the electricity sector tend to be 

integrated in the long run, confirming economic theory (Mjelde and Bessler 2009; 

Samuelson 1971).  An appropriate dynamic modeling technique to capture both short 

and long run relationships is the vector error correction model (VECM).  The VECM 

framework affords the opportunity to model long run relationships by allowing for the 

existence of cointegration among a set of non-stationary variables (Juselius 2006).  

Cointegration is present when there exists a linear combination of two or more non-

stationary variables which is itself stationary (the series are thought to move together in 

the long run).
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Figure 2.1. Data series (monthly) included in the analysis (July 1976-October 2014).   

Units: Coal and natural gas costs ($/mmBtu), electricity prices ($/MWh), coal 

inventories (number of coal months on hand) 

 

 

It is important, therefore, to first test whether each of the five endogenous series is 

stationary.  Three separate tests for stationarity are reported in table 2.1.  Under the first 

test, Augmented Dickey-Fuller (Fuller 1996), the null hypothesis of a unit root (non-
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stationarity) cannot be rejected for the natural logarithm of each of the five series.  

Taking the first difference of the natural logs leads to a rejection of the null hypothesis 

for each of the five series, implying that the series are non-stationary in natural logarithm 

of levels, but the first difference natural log transformation leads to stationarity.  The 

second test (Z-A) examines the null hypothesis of a unit root while allowing for an 

unknown breakpoint in both the intercept and linear trend of the series (Zivot and 

Andrews 1992).  The null hypothesis is again rejected for the natural log of all series, but 

cannot be rejected for the first difference natural logs of all series except coal costs.  The 

third test, KPSS (Kwiatkowski et al. 1992), results in a rejection of the null hypothesis of 

stationarity for all series in natural logs.  The null of stationarity is not able to be rejected 

for the first difference natural logs of all five series.  Taking the results of the three tests 

together, it appears that the natural log of all series are integrated of order one, or     , 

providing statistical credence of the potential for cointegration and the use of the VECM 

framework.  
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Table 2.1. Various Tests for Unit Root 

 ADF (  : Unit Root) Z-A (  : Unit Root) KPSS (  : 

Stationarity) 

 Statistic Decision
a 

Statistic Decision
b 

Statistic Decision
c 

log(Series) 

Coal  -1.38 F -3.79 F 4.48 R 

NG -1.84 F -3.51 F 1.14 R 

Coal Inv -1.30 F -3.79 F 4.24 R 

Bonds -0.22 F -4.80 F 6.54 R 

Elec -0.40 F -3.31 F 5.36 R 

diff(log(Series) 

Coal  -3.74 R -4.85 F 0.39 F 

NG -5.03 R -6.00 R 0.05 F 

Coal Inv -5.49 R -6.56 R 0.05 F 

Bonds -5.72 R -6.68 R 0.16 F 

Elec -5.35 R -6.38 R 0.06 F 
a
Based on the 5% critical value of -2.87 

b
Based on the 5% critical value of -5.08 

c
Based on the 5% critical value of 0.46 

 

 

 

Vector Error Correction Model 

Given the results of the tests for stationarity along with the findings of previous studies 

which show the existence of long run relationships among the endogenous series, it is 

appropriate to use the VECM representation:  

(2.1)              ∑                       
   
                  

where:  

       is a       vector of first differences of the endogenous series; 

     is a       vector of constants; 

         represents lagged values of order  ; 

      is the corresponding       coefficient matrix; 
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     is the optimal number of lags in a levels vector autoregressive representation; 

      is a       vector of exogenous series (cooling and heating degree days, and a 0-1 

   qualitative variable to capture retail-wholesale electricity price differences); 

     is a       coefficient matrix; 

      is a       vector of innovations; and 

         is known as the “error correction” term, where   is       vector of 

   coefficients and      is      . 

Writing   as: 

(2.2)                     

where   and   are both       matrices gives an interpretation of the long run 

relationships among the five series and where   is the rank of   .  Because      is non-

stationary and     is stationary,     contains stationary linear combination(s) of the five 

variables, provided cointegration is present.  The   columns of   are known as the 

cointegrating vectors (Tsay 2014).  Statistical tests are performed on  ,  , and   to 

determine   and to further characterize the long run structure between the five series.   

Test of Parameter Stability 

To address the issue of stability of the long run relationships, a test for constancy of   is 

conducted following Hansen and Johansen (1999).  The test is performed by recursively 

estimating the VECM for subsamples of the data spanning from    to 

                   where   is the full sample,    is the time of the first observation, 

and    is the starting point of the recursion chosen to allow a minimal base sample as a 

function of the number of parameters in the model (        .  To test the constancy 
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of  , estimates  ̂    are compared to  ̂   , where  ̂    is the estimate of   for the 

subsample including data up until time  .  Define: 

(2.3)       [ ̂
   

 
]  ,     [ ̂ 

   
 

  
] ,   ̅                                                                             

where    is the orthogonal complement of   such that   
     (likewise for  ̂ 

   
).    ̂    

is normalized on  ̅ such that  ̂ 
   

  ̂     ̅  ̂      .  Additionally, define  ̂ 
   

 

 ̂    ̂     ̅  such that  ̂ 
   

 ̂ 
   

   ̂    ̂    .  Then the test statistic at each point in the 

sample   is: 

(2.4)       
   

 (
 

 
)
 

     {                         }                                                                         

where: 

(2.5)           ̂   (    ̂   )
  

;                                          

(2.6)          (
 

 
)   

        ; and        

(2.7)            
     

     ̂ 
    ̂ 

    
   

       ̂       ̂ 
   

.     

   
   

 is the product moment matrix of residuals from the VECM using the sample up until 

time  ,  ̂    is the diagonal matrix of the   largest eigenvalues corresponding to the   

estimated cointegrating vectors from the full sample, and  ̂    is the covariance matrix 

of innovations based on the full sample (Hansen and Johansen 1999). 

By examining the sequence of test statistics   
   

, a test of whether  ̂     ̂   for 

each                    is performed (null hypothesis at each  ).  For a thorough 
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explanation of the test and the asymptotic distribution of the test statistic   
   

, see 

Hansen and Johansen (1999), Juselius (2006), and the CATS 2.0 Manual (Estima, 2006). 

Innovation Accounting Procedures 

Impulse response functions (IRFs) and forecast error variance decompositions (FEVDs) 

help to characterize the dynamic relationships among coal inventories, coal and natural 

gas costs, electricity prices, and Aaa corporate bond rates.  IRFs show the effect of a 

one-time shock in one variable on the future values of the remaining variables, and 

FEVDs are calculated as the percentage of variance in forecast error in one variable that 

can be explained by unexpected shocks to the other variables. 

Innovation accounting procedures (IRFs and FEVDs) are conducted based on the 

levels vector autoregressive (VAR) form of the VECM in equation (2.1): 

(2.8)                       ∑                                 
   
   .             

An issue that arises when conducting innovation accounting procedures is that the 

contemporaneous covariance matrix of    in Equation (2.8),   , is usually not a diagonal 

matrix in empirical applications (the components of the error term are 

contemporaneously correlated).  If this is the case, then any particular series cannot 

necessarily be shocked without affecting another series; innovation accounting 

procedures are nonsensical if contemporaneous correlation exists (Tsay 2014).  To 

overcome this limitation, the innovations    must be orthogonalized.  Consider a 

Bernanke (1986) ordering, where the correlated innovations    are written as a function 

of the underlying (structural) sources of variation (  ) which are assumed to be 

orthogonal: 
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(2.9)              .          

To conduct the innovation accounting procedures, the VAR representation (equation 2.8) 

is pre-multiplied by the matrix  . 

A form for the matrix   is obtained through causal flow methods (Pearl 2000; 

Spirtes, Glymour, and Scheines. 2000).  Directed Acyclic Graphs (DAGs) provide a 

visual summary of contemporaneous causal flows among innovations from the estimated 

vector error correction model.  The GES algorithm (Chickering 2003) in TETRAD V 

(2015) is employed to generate DAGs using the covariance matrix of error terms.  In 

DAGs, an arrow from A to B implies that A causes B.  An undirected line from A to B 

with no arrow (or a line with an arrow on each end) signifies flows between the two, but 

the algorithm cannot determine whether A causes B or B causes A.  If there is no 

information flow between A and B, the algorithm will not generate a line of any type 

connecting the two.  The GES algorithm starts from a DAG representation where all 

variables are independent of each other (no lines), and searches over more complicated 

representations for improvements in the Bayesian Information Criterion.  The algorithm 

picks the DAG representation such that no added line or change of direction improves 

the criterion. 
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Results 

Model Diagnostics for the Full Model 

The first step in the modeling procedure is to estimate the VECM representation in 

equation (2.1).  First, in accordance with Hansen and Johansen (1999), the constant term 

  is restricted such that no deterministic trend is allowed in the model (the constant is 

constrained to the cointegrating space).  Next, under the restricted constant model, 

simultaneous determination of optimal lag length ( ) and cointegrating rank (   using 

information criteria is performed following Wang and Bessler (2005).  Results of this 

process are reported in table 2.2.  The Hannan and Quinn loss metric reaches a minimum 

value at two lags and three cointegrating vectors. 

 

 

Table 2.2. Results of Simultaneous Determination of   and   Following Wang and 

Bessler (2005), Using the Hannan and Quinn M Loss Metric 

   (cointegrating rank) 

   (lags) 1 2 3 4 5 

 1 -31.12 -31.17 -31.19 -31.17 -31.15 

 2 -31.23 -31.25 -31.26 -31.24 -31.21 

 3 -31.20 -31.19 -31.19 -31.16 -31.13 

 4 -31.08 -31.08 -31.06 -31.03 -30.99 

 5 -30.98 -30.97 -30.95 -30.92 -30.88 

 6 -30.85 -30.83 -30.81 -30.77 -30.74 

 7 -30.63 -30.60 -30.57 -30.54 -30.51 

 8 -30.44 -30.40 -30.37 -30.34 -30.30 

 9 -30.34 -30.31 -30.28 -30.24 -30.22 

 10 -30.13 -30.11 -30.08 -30.04 -30.01 
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There are a suite of tests available to further examine the cointegrating space.  

Results of these tests are reported in table 2.3.  The null hypothesis of the variable 

stationarity test is that one or more of the cointegrating vectors does not represent a 

linear combination of non-stationary series, but rather arises because one of the series is 

stationary given the optimal lag length and cointegrating rank of the VECM.  This 

hypothesis is rejected at the 5% level for all series.  The second test is for variable 

exclusion, which tests the null hypothesis that a particular series is not a part of the 

cointegrating space.  The null hypothesis is rejected at the 5% level for all five 

endogenous series.  Lastly, the test for weak exogeneity examines whether a variable 

responds to disruptions to the long run relationships characterizing the data.  The null 

hypothesis of weak exogeneity is rejected at the 5% level for all five endogenous series.  

These three tests suggest that cointegration exists, all endogenous series are included in 

the cointegrating space, and all series respond to shocks in the system. 

 

Table 2.3. Test for Variable Exclusion, Stationarity, and Weak Exogeneity for the 

Full Sample Period. P-values in Parentheses 

Test Coal NG Coal Inv Bonds Elec 

Stationarity 34.17 

(0.00) 

11.00 

(0.05) 

34.79 

(0.00) 

34.15 

(0.00) 

35.21 

(0.00) 

Exclusion 19.71 

(0.00) 

22.11 

(0.00) 

31.22 

(0.00) 

16.42 

(0.00) 

36.94 

(0.00) 

Weak Exogeneity 25.41 

(0.00) 

12.04 

(0.01) 

30.00 

(0.00) 

9.24   

(0.03) 

35.83 

(0.00) 
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Testing Constancy of   

As Hansen and Johansen (1999) note, the test of parameter constancy outlined above 

does not require any additional restrictions for identification of  .  The sequence of test 

statistics   
   

 for each                   , therefore, is calculated recursively for the 

VECM with two lags and three cointegrating vectors.  The minimum    allowable given 

the number of parameters in the model is April 1980, thus, the base sample for the 

recursive estimation is September 1977 to April 1980.  Each successive estimation in the 

recursive process can be done in one of two ways, either by re-estimating all parameters 

in the model in each step (referred to as the X-Form) or by re-estimating   and   while 

holding the short-run parameters fixed (R1-Form).  The series of test statistics   
   

 are 

reported for both forms in figure 2.2.  By construction, the sequence converges to zero at 

the end of the sample. 

Estimates of   ̂    are not constant over the entire sample for both the X- and R1-

Forms, suggesting the long run relationships among coal inventories, coal and natural 

gas costs, electricity prices, and Aaa bond rates contain some degree of instability.  The 

X-Form displays a period of instability from mid-1994 to mid-2001 as   
   

 exceeds the 

critical value during this period, leading to a rejection of the null hypothesis of parameter 

constancy.  The R1-Form contains the same period of instability, but also shows some 

instability near the beginning of the sample (mid-1981 to mid-1986).   

A timeline of major developments related to the U.S. electricity generating 

process during the sample period is presented in table 2.4.  The first major event in the 

sample was the Staggers Rail Act of 1980, which lifted constraints on the railroad 
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industry and allowed railroad operators more flexibility in pricing and delivery (U.S. 

Federal Railroad Administration 2011).  This flexibility had implications for coal 

inventory decisions in the electricity industry, as the majority of coal is transported by 

rail.  The initial period of instability in the R1-Form begins roughly 10 months after the 

Staggers Rail Act was signed into law.  Wilson (1994) estimates the effects of the 

Staggers Act on rail rates for a number of commodities.  He finds that the law initially 

increased rail rates for coal, but by 1988 the effect of regulation had reversed.  In 

addition, Dennis (2000) shows that coal-related rate reductions were an important factor 

in explaining the large overall rate reduction seen by the railroad industry in the 16 years 

following the Staggers Act.  It is possible that the instability shown in the R1-Form, 

which holds the short-run VECM parameters fixed, is reflective of the effects of policy 

changes in the railroad industry. 
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Figure 2.2.  Results of test for constancy of   following Hansen and Johansen (1999) for VECM with     and    .  

The null hypothesis at each   is that  ̂     ̂   .  The 5% critical value for the test is 4.17. 
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Table 2.4. Timeline of Major Events Pertaining to the Electric Power and Natural 

Gas Sectors 

Date Event Description 

10/14/80 Staggers Rail Act Deregulation of U.S. railroad services 

   

11/15/90 Clean Air Act 

Amendments 

Promotes use of low-sulfur coal and 

natural gas. Establishes SO2 permit trading 

program. 

   

   

4/8/92 FERC Order 636 Unbundling of sales from transportation 

services in natural gas industry 

   

10/24/92 Energy Policy Act Goals for increasing clean energy use and 

improving energy efficiency 

   

1/1/94 NAFTA Trilateral trade agreement between U.S., 

Mexico, and Canada 

   

4/24/96 FERC Order 888 Promotes competition in U.S. electricity 

sector 

   

12/11/97 Kyoto Protocol International agreement to reduce 

greenhouse gas emissions 

   

12/20/99 FERC Order 2000 Advances formation of RTOs 

   

8/8/05 Energy Policy Act Authorizes subsidies for clean energy 

sources, promotes clean coal initiatives 

   

Aug-Sep. 

„05 

Hurricanes Katrina and 

Rita 

Major disruptions in U.S. Gulf state natural 

gas and petroleum infrastructure 

   

‟07-„08 Onset of U.S. shale gas 

boom 

Natural gas supply increase and subsequent 

decrease in price 

   

7/6/11 Cross-State Air Pollution 

Rule 

State level caps on SO2 emissions; national 

cap from ‟90 Clean Air Act Amendments 

no longer binding
1 

1
See Evans and Woodward (2013) for a detailed discussion regarding the 1990 Clean Air 

Act Amendments. 
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The second period (mid-1994 to mid-2001) of parameter instability (present in 

both the X- and R1-Forms) corresponds to the implementation of several regulatory 

measures directly related to the electric power industry.  In November of 1990, a new set 

of amendments to the U.S. Clean Air Act were signed into law.  The new amendments 

encouraged reduction of sulfur dioxide emissions (among other toxics) by establishing 

emissions trading programs and by promoting the use of low sulfur coal and natural gas 

(U.S. Environmental Protection Agency 2015a).  One and a half years later, in April 

1992, the U.S. Federal Energy Regulatory Commission (FERC) issued Order No. 636, 

which unbundled sales and transportation services in the natural gas industry, creating a 

new level of competition in the marketplace (U.S. FERC 2015a).  The second period of 

parameter instability begins about two years after Order No. 636, in 1994.  In April 

1996, FERC passed Order No. 888, which intended to promote competition in wholesale 

electricity markets (U.S. FERC 2015b).  FERC passed Order No. 2000 in December 

1999, encouraging participation in wholesale electricity markets by advancing the 

creation of Regional Transmission Organizations (U.S. FERC 2015c).  The second 

period of instability ends approximately a year and a half afterward, in mid-2001.  Given 

the results of the test displayed in figure 2.2, it is possible that this era of regulatory 

action in the U.S. electricity sector caused disruptions in the long run relationships 

characterizing inventory behavior, input and output prices, and opportunity costs in the 

electricity industry. 

Constancy is present in the estimates of  ̂    after mid-2001.  There is a spike in 

  
   

 around mid-2008, which approximately corresponds to the onset of the U.S. shale 
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gas boom.  The test statistics, however, do not reach the rejection region.  This result 

suggests that the U.S. shale gas boom did not coincide with the same level of instability 

in the long run relationship as that of the regulatory environment of the 1990s. 

Testing Constancy of   in Subsets of the Variables 

To further investigate the possible sources of the parameter instability uncovered in the 

previous sub-section, VECMs are estimated for the 26 potential subsets of the five 

endogenous variables (exogenous variables are included in each model).  Each VECM is 

specified following the simultaneous determination procedure described above.  The 

same test for constancy of   following Hansen and Johansen (1999) is carried out for 

each of the 26 models.  For brevity, only a few results are discussed in the text.  Graphs 

of the test statistics for all 26 models are in Appendix A. 

In all possible four-variable model combinations which contain both coal 

inventory and coal costs, a similar pattern of rejection of constancy is present in the 

beginning of the sample.  As in the full model, the R1-Form of the test statistic rejects 

constancy during the period mid-1981to mid-1986.  Conversely, the four-variable model 

omitting coal costs (containing coal inventory, natural gas costs, electricity price, and 

bonds) does not exhibit rejection in this initial period.  A similar result is found in the 

four-variable model in which coal inventory is omitted.  These findings suggest that the 

initial period of parameter instability in the full model may be attributed to occurrences 

in the coal inventory series, the coal cost series, or the relationship(s) between them.  

This evidence aligns with the proposition that the Staggers Rail Act of 1980 may be 
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influencing the initial period of instability in the long run relationships; the coal market 

was likely affected more by this act than the natural gas or wholesale electricity markets. 

A second pattern emerges from examining the 26 models.  In all models which 

contain both natural gas cost and electricity price, the second period of parameter 

instability appears (mid-1994 to mid-2001).  In the 18 models which omit one or both of 

the natural gas and electricity price series, this period of rejection does not occur except 

in three cases (in these three cases, the period of rejection is shorter and the test statistic 

is only slightly above the critical value).  Of the three cases where a period of rejection 

occurs, electricity price appears in two and natural gas cost is included in the third.  This 

result is consistent with the idea that deregulation of both the natural gas and electricity 

markets might have contributed to the second period of instability in the long run 

relationships.  Duangnate (2015), who investigates the stability of long run relationships 

among eight North American daily natural gas spot markets, finds three periods of 

instability, one from approximately 1996 to 2000.  These findings are compatible with 

that of the current study; the natural gas market may be a source of instability in the long 

run relationships across the coal inventory, coal and natural gas costs, electricity price, 

and bond market relationships. 

A third period of rejection (2007-2009) is present in some of the models, roughly 

coinciding with the onset of the U.S. shale gas boom.  This period of instability appears 

in models which include natural gas and electricity price.  Because the shale gas boom 

affected natural gas prices, which in turn may have affected electricity prices, this 

finding is not surprising.  This period of rejection is generally not present in models 
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which include both the coal inventory and bonds series, suggesting that inventory may 

have been acting as a smoothing mechanism.  This inference is consistent with the 

economic theory of inventory management. 

Innovation Accounting in Three Subperiods 

Given the results of the tests for parameter constancy in the full model, it is instructive to 

break the data into three subperiods.  Tests for variable exclusion, stationarity, and weak 

exogeneity are carried out for each subperiod.  Impulse response functions (IRFs) and 

forecast error variance decompositions (FEVDs) are computed separately for each 

subperiod and compared to examine how the relationships between coal inventory and 

input, output, and opportunity costs have changed over time.  

The three subperiods for which the analysis is implemented, based on the test 

results displayed in figure 2.2, are: July 1976 to September 1993, October 1993 to 

December 2001, and January 2002 to October 2014.  As outlined above, the middle 

period (October 1993 to December 2001) is wholly characterized by long run parameter 

instability, possibly brought on by the introduction and continued alterations of new 

policies in the energy industry.  For each of these three subperiods, a VECM is specified 

and fit to the data.  Results of tests for variable exclusion, stationarity, and weak 

exogeneity for each of the three subperiods are in table 2.5.  All three hypotheses are 

rejected for the coal inventory series in the first two subperiods.  In the third subperiod, 

the hypotheses of exclusion and weak exogeneity of coal inventory are unable to be 

rejected, suggesting that coal inventories are not part of the cointegrating space and do 

not respond to shocks in the system during this subperiod (January 2002 – October 
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2014).  This finding provides further evidence that inventory behavior was likely 

affected by the changing policy landscape of the 1990s, but was fairly stable over more 

recent market developments (Hurricanes Katrina and Rita in 2005 and the onset of the 

U.S. shale gas boom in the mid-to-late 2000s).   

DAGs for each of the three subperiods are presented in figures 2.3-2.5.  The first 

subperiod exhibits contemporaneous causal flows from coal, natural gas, and electricity 

prices to coal inventories, and from Aaa corporate bond rates to electricity prices.  In the 

second subperiod, the flows from coal costs and electricity prices to coal inventories are 

not present.  The DAG for the third subperiod differs from the first two.  

Contemporaneous flows exist from bond rates to coal inventories (this is not the case in 

either of the first two subperiods).  Additionally, there are flows from coal inventories 

and coal costs to natural gas costs, and from natural gas costs to electricity prices.   

IRFs, which show the effect of a one-time shock in one variable on the future 

values of the remaining variables, are displayed for each of the three subperiods in 

figures 2.6-2.8.
3
  The responses of coal inventory to the four economic factors are 

generally unchanged across the three subperiods.  Coal inventories respond negatively to 

shocks in natural gas costs in all three subperiods and negatively to electricity price 

shocks in the first and third subperiods.  During the second subperiod, however, the 

response of coal inventories to shocks in electricity price is minimal.  Recall that the 

second subperiod contains numerous regulatory shifts in the electricity industry.  It is 

                                                 

3
 The IRFs are standardized by dividing through by the standard error of innovations for each series. 
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possible that power plants were less willing to adjust their inventory schedules according 

to electricity price fluctuations during this period of regulatory change. 

Coal inventories respond positively to shocks in coal costs in all three 

subperiods; the largest response is in the first subperiod.  The first subperiod contains the 

Staggers Rail Act of 1980; it is likely that power plants adjusted inventories after seeing 

the effects of the Act on coal rates.  Another interesting takeaway from the IRF analysis 

is that coal inventories respond positively to shocks in Aaa corporate bond rates in all 

three subperiods.   

The IRFs concerning relationships among the non-inventory variables are 

generally consistent across subperiods; several results are noted here.  The first is that 

coal and natural gas costs both respond negatively to shocks in electricity price during 

the second subperiod, which might be the result of adjustment to electricity market 

restructuring during the period.  Electricity prices show a relatively strong positive 

response to natural gas cost shocks in the third subperiod, which contains the U.S. shale 

gas boom (a large increase in domestic natural gas supply). 

Forecast error variance decompositions show the percentage of variance in 

forecast error for a given variable that can be explained by shocks to the other variables 

at various time horizons (tables 2.6-2.8).  In the first subperiod, 82% of forecast error 

variance in coal inventories at a one-month horizon is explained by own shocks.  This 

number falls to 59% at a twelve-month horizon, with natural gas shocks contributing to 

19% of the variance, and the other three economic series contributing between 6% and 

9%.  FEVDs of coal inventories in the second subperiod differ from the first.  Own 
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shocks to coal inventories explain 92% of variance at a one-month horizon, but this 

number falls quickly, reaching 37% at the twelve-month horizon.  Natural gas shocks 

explain 60% of variance in coal inventories at the twelve month horizon, providing 

evidence that regulatory changes in the natural gas sector affected coal inventory 

behavior during this period.  Coal inventories are largely exogenous in the third 

subperiod, with over 90% of variance explained by own shocks at all forecast horizons.  

These findings show that inventory behavior was affected by regulatory changes in the 

1990s to a larger extent than natural shocks to energy markets in the 2000s.   

FEVDs for the electricity price series vary across the three subperiods.  The 

percentage error explained by natural gas costs increases from 3% at a twelve-month 

horizon in the first subperiod, to 28% in the second subperiod, to 70% in the third 

subperiod.  This evidence points towards an increasing level of interaction between the 

two markets as the U.S. shifted from a heavily regulated electricity industry to a more 

competitive landscape. 
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Table 2.5. Test for Variable Exclusion, Stationarity, and Weak Exogeneity for 

the Three Subperiods. P-values in Parentheses 

Test Coal NG Coal Inv Elec Bonds 

July 1976-September 1993 

Stationarity 26.29 

(0.00) 

25.40 

(0.00) 

23.34 

(0.00) 

25.34 

(0.00) 

18.43 

(0.00) 

Exclusion 6.27  

(0.01) 

11.24 

(0.00) 

6.15  

(0.01) 

0.27  

(0.60) 

9.66  

(0.00) 

Weak Exogeneity 5.09  

(0.02) 

9.94 

(0.00) 

10.06 

(0.00) 

1.25  

(0.27) 

3.11  

(0.08) 

October 1993-December 2001 

Stationarity 12.33 

(0.03) 

14.04 

(0.02) 

15.66 

(0.01) 

11.86 

(0.04) 

15.08 

(0.01) 

Exclusion 7.89  

(0.05) 

16.86 

(0.00) 

9.88  

(0.02) 

15.06 

(0.00) 

4.23 

(0.238) 

Weak Exogeneity 32.97 

(0.00) 

10.88 

(0.01) 

15.88 

(0.00) 

18.86 

(0.00) 

8.87  

(0.03) 

January 2002-October 2014 

Stationarity 25.99 

(0.00) 

10.19 

(0.07) 

21.11 

(0.00) 

8.24 

(0.144) 

22.37 

(0.00) 

Exclusion 2.48  

(0.29) 

33.91 

(0.00) 

2.43  

(0.30) 

32.65 

(0.00) 

6.55  

(0.04) 

Weak Exogeneity 13.87 

(0.00) 

4.60 

(0.10) 

0.02  

(0.99) 

14.86 

(0.001) 

7.66  

(0.02) 
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Figure 2.3 Directed Acyclic Graph for the subperiod July 1976 – September 1993 

 

 

 

 
Figure 2.4 Directed Acyclic Graph for the subperiod October 1993 – December 

2001   
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Figure 2.5 Directed Acyclic Graph for the subperiod January 2002 – October 2014 
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Figure 2.6 Impulse Response Functions for the subperiod July 1976 – September 1993 
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Figure 2.7 Impulse Response Functions for the subperiod October 1993 – December 2001  
  



 

38 

 

Figure 2.8 Impulse Response Functions for the subperiod January 2002 – October 2014 
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Table 2.6. Forecast Error Variance Decompositions for the Subperiod July 1976 – 

September 1993 

Contribution of 

Series Months Ahead Coal Natural Gas Coal Inv Elec Bonds 

Coal 1 100.00 0.00 0.00 0.00 0.00 

4 97.69 1.35 0.43 0.06 0.48 

8 93.70 3.50 0.88 0.05 1.88 

12 91.01 4.86 1.14 0.06 2.93 

Natural Gas 1 0.00 100.00 0.00 0.00 0.00 

4 0.02 98.45 1.19 0.15 0.15 

8 0.07 92.73 3.51 0.80 2.90 

12 0.19 86.48 5.16 1.40 6.78 

Coal Inv 1 3.84 7.28 82.46 6.18 0.24 

4 4.68 6.83 78.50 9.28 0.72 

8 5.90 14.18 67.71 7.40 4.80 

12 6.56 19.45 59.15 5.94 8.90 

Electricity 1 0.00 0.00 0.00 96.24 3.76 

4 0.29 0.68 0.03 93.50 5.50 

8 0.20 1.84 0.04 89.58 8.34 

12 0.15 2.63 0.06 86.81 10.35 

Bonds 1 0.00 0.00 0.00 0.00 100.00 

4 0.51 0.30 0.81 0.02 98.36 

8 0.52 1.45 1.63 0.03 96.37 

12 0.49 2.42 2.12 0.05 94.92 
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Table 2.7. Forecast Error Variance Decompositions for the Subperiod October 

1993 – December 2001 

Contribution of 

Series Months Ahead Coal Natural Gas Coal Inv Elec Bonds 

Coal 1 100.00 0.00 0.00 0.00 0.00 

 4 80.32 0.66 10.60 7.46 0.96 

 8 57.77 1.10 15.52 24.49 1.12 

 12 44.83 0.73 20.99 32.39 1.05 

       

Natural Gas 1 0.00 100.00 0.00 0.00 0.00 

 4 1.50 97.22 0.07 0.98 0.24 

 8 3.71 92.87 0.13 1.48 1.82 

 12 6.90 86.52 0.62 1.32 4.64 

       

Coal Inv 1 0.00 7.62 92.38 0.00 0.00 

 4 0.19 33.15 64.81 0.09 1.77 

 8 0.38 50.25 47.21 0.05 2.12 

 12 0.88 60.14 37.09 0.03 1.86 

       

Electricity 1 0.00 0.00 0.00 97.84 2.16 

 4 0.15 3.75 1.64 90.09 4.37 

 8 0.12 19.37 3.60 72.41 4.50 

 12 0.20 27.94 5.05 62.85 3.97 

       

Bonds 1 0.00 0.00 0.00 0.00 100.00 

 4 1.12 0.57 0.79 0.55 96.67 

 8 0.85 2.86 0.57 3.78 91.96 

 12 0.69 3.64 0.36 7.66 87.65 
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Table 2.8. Forecast Error Variance Decompositions for the Subperiod January 

2002 – October 2014 

Contribution of 

Series Months Ahead Coal Natural Gas Coal Inv Elec Bonds 

Coal 1 100.00 0.00 0.00 0.00 0.00 

 4 93.73 1.83 0.01 0.95 3.50 

 8 73.29 15.14 0.03 2.94 8.60 

 12 55.89 27.94 0.05 4.60 11.53 

       

Natural Gas 1 2.74 88.25 8.83 0.00 0.19 

 4 1.76 85.40 10.19 2.55 0.10 

 8 1.57 82.14 12.98 2.71 0.60 

 12 1.46 79.13 15.49 2.49 1.43 

       

Coal Inv 1 0.00 0.00 97.90 0.00 2.10 

 4 0.06 7.04 90.42 1.10 1.39 

 8 0.05 7.24 90.61 0.99 1.10 

 12 0.04 6.66 91.48 0.88 0.94 

       

Electricity 1 1.44 46.55 4.66 47.26 0.10 

 4 1.88 64.06 7.25 26.76 0.05 

 8 1.84 68.90 9.37 19.81 0.08 

 12 1.78 69.36 11.58 16.96 0.32 

       

Bonds 1 0.00 0.00 0.00 0.00 100.00 

 4 1.99 2.09 0.01 2.52 93.39 

 8 2.86 7.20 0.01 2.87 87.07 

 12 3.37 12.14 0.02 2.53 81.94 
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Alternative Specifications of the Full Model 

An alternative to using the simultaneous determination procedure of Wang and Bessler 

(2005) is a two-step process in which optimal lag order ( ) is selected in the first step, 

and then cointegrating rank ( ) is determined in the second step.  Information criteria are 

used to select   in a levels VAR, then a trace test following Johansen (1992) is 

performed to select  .  Results of the first step are reported in table 2.9.  There is a 

disagreement between the two criteria, as the Schwarz loss metric is minimized at     

lag and the Hannan and Quinn loss metric is minimized at     lags.  Because of this 

discrepancy, the trace test is carried out for both scenarios, and the sequence of test 

statistics   
   

 is calculated recursively for each.  The trace test finds three cointegrating 

vectors (   ) for the one lag case, and one cointegrating vector in the three lag case 

(table 2.10). 

Parameter constancy tests (the sequence   
   

) for the     and     are 

displayed in figure 2.9 (Case 2), and for     and     in figure 2.10 (Case 3).  Only 

the R1-Form is reported in Case 2; by definition, a choice of     leads to the absence 

of short-run parameters in the estimated VECM.  The test statistic follows a similar 

pattern in both Case 2 and 3, as well as in the original scenario where     and     

(Case 1).  The pattern of rejection, however, differs between the three cases.  Case 2, 

which has one less lag but the same number of cointegrating vectors as Case 1, rejects 

continuously over the sample period 1981 to roughly mid-2001.  Case 2 more readily 

rejects the null hypothesis of parameter constancy than does Case 1.  On the other hand,  
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Table 2.9. Optimal Lag Length Determination 

k Schwarz Information 

Criterion 

Hannan-Quinn Information 

Criterion 

1 -29.94 -30.29 

2 -29.90 -30.44 

3 -29.76 -30.50 

4 -29.43 -30.35 

5 -29.11 -30.23 

6 -28.91 -30.22 

7 -28.48 -29.99 

8 -28.06 -29.77 

9 -27.78 -29.68 

10 -27.37 -29.45 

11 -27.03 -29.31 

12 -26.63 -29.10 

13 -26.47 -29.14 

14 -26.12 -28.98 

 

 

Table 2.10. Results of Trace Test for Lag Order     and     

r  Trace Critical Value (5%) P-Value 

     

0  339.331 111.420 0.000 

1  129.640 82.351 0.000 

2  67.979 57.190 0.005 

3  24.381 35.854 0.442 

4  10.370 18.084 0.410 

     

0  142.257 111.420 0.000 

1  82.661 82.351 0.047 

2  44.174 57.190 0.377 

3  13.589 35.854 0.963 

4  1.360 18.084 1.000 

The null hypothesis for each           is that    .  The first rejection occurs at 

   , therefore three cointegrating vectors are selected. 
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the sequence   
   

 never reaches the rejection region in Case 3, which has one more lag 

and one less cointegrating vector than Case 1.   

These results suggest the possibility that fitting the model with a higher degree of 

short-run dependence leads to a lower probability of rejection of constancy in the long 

run parameters.  It might also be the case that fitting a model with a lower number of 

cointegrating vectors leads to a similar result.  Simulation studies to examine these 

possibilities are left as a suggestion for further research. 
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Figure 2.9. Results of test for constancy of   following Hansen and Johansen (1999) for VECM with     and    .  

The null hypothesis at each   is that  ̂     ̂   .  The 5% critical value for the test is 4.17. 
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Figure 2.10. Results of test for constancy of   following Hansen and Johansen (1999) for VECM with     and    .  

The null hypothesis at each   is that  ̂     ̂   .  The 5% critical value for the test is 2.88.
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Conclusions 

This study characterizes the long run relationships concerning coal inventory behavior in 

the U.S. electric power sector.  In line with previous studies, cointegrating relationships 

are found among the five endogenous series in the study: coal inventory, coal and natural 

gas costs to electric power plants (input prices), electricity prices (output prices), and 

Aaa corporate bond rates (opportunity costs).  All series are found to be contained in the 

long run relationships and react to shocks in the system to bring it back to equilibrium.  

A test for parameter constancy in a VECM containing the five series reveals two periods 

of instability in the long run relationships, from mid-1981 to mid-1986, and from mid-

1994 to mid-2001.   

The Staggers Rail Act of 1980 had large impacts on the coal industry, resulting in 

changes in railroad practices and rail rates.  The initial period of instability shows that 

the long run relationships among coal inventory, prices, and opportunity costs were 

likely affected by the passage of the Act.  Following the initial period of parameter 

instability, the long run relationships remain constant for approximately eight years.  

During this span, The Clean Air Act Amendments of 1990 were signed into action, 

FERC issued an order to unbundle sales from transportation in the natural gas industry, 

the Energy Policy Act of 1992 was introduced, and NAFTA was established in January 

of 1994.  Following the Clean Air Act Amendments, an upward trend in the test statistic 

  
   

 begins, and reaches the rejection region in mid-1994, where it remains for a period 

of seven years.  During this period of instability, FERC issued several orders pertaining 

to deregulation of the electric power sector and promotion of wholesale power 
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competition.  Additionally, the Kyoto Protocol was signed in late 1997.  It is plausible 

that the long run relationships entered an unstable period following the new regulations 

of the early 1990s and stayed there because of continued regulatory and policy 

fluctuations throughout the decade.    

Following the second period of instability, the test is unable to reject the 

hypothesis of parameter constancy for the remainder of the sample, which includes two 

major shocks to energy markets (Hurricanes Katrina and Rita in 2005 and the onset of 

the U.S. shale gas boom in the mid-to-late 2000s).  These shifts in market conditions did 

not result in the same level of instability which was observed during the changing 

regulatory environment of the 1990s.  This idea is supported by the finding that natural 

gas shocks contribute up to 60% of the forecast error variance in coal inventories during 

the subperiod October 1993-December 2001, but less than 7% during the subperiod 

January 2002-October 2014.  This is not to say that decision makers in the electric power 

sector did not react to price changes caused by these events, but rather that the long run 

relationship between inventory decisions, prices, and opportunity costs did not change as 

a result. 

To explore the potential sources of instability, all 26 subsets of the five 

endogenous variables are examined for parameter constancy.  This investigation reveals 

evidence supporting the hypothesis that the initial period of instability is related to 

structural changes in the coal industry caused by the Staggers Rail Act.  Additionally, 

natural gas costs and electricity prices are found to be a major contributor to the second 
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period of instability.  Deregulation of natural gas and electricity markets is a likely 

source of this instability. 

Following the investigation of parameter instability, the sample period is split 

into three subperiods (July 1976-September 1993, October 1993-December 2001, and 

January 2002-October 2014).  Innovation accounting procedures are carried out for each 

subperiod.  IRFs and FEVDs show that the contribution of unexpected shocks to input 

and output prices and opportunity costs to the behavior of the coal inventory series 

showed some fluctuation across the three subperiods.  In particular, inventory behavior 

shows larger responses to coal costs following the Staggers Rail Act of 1980, and to 

natural gas costs during the period of regulatory instability in the 1990s than in the other 

two subperiods.  

This study shows that major policy changes in the 1990s appear to have disrupted 

long run relationships characterizing management behavior in the electricity industry.  

Further, these policy changes are shown to be larger sources of instability than natural 

shifts in market conditions (natural gas supply shock).  Policy makers should be aware 

that altering the regulatory environment can cause considerable fluctuations in how 

firms‟ inventory decisions interact with input and output markets and opportunity costs 

in the long run.  Finally, the system shows a high level of resiliency.  Despite all of the 

events over the last 40 years, the system long run relationships remain constant 

approximately 68% of the time.  External and internal events will continue to influence 

the coal inventory system, but there is no reason to think the system will not continue to 

be highly resilient. 
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CHAPTER III 

PRICE INTERACTION IN STATE LEVEL RENEWABLE ENERGY CREDIT 

TRADING PROGRAMS 

 

Over the course of the last fifteen years, the majority of U.S. states have adopted policies 

for encouraging the use of renewable energy sources.  As of June 2015, 29 states and the 

District of Columbia had some form of a Renewable Portfolio Standard (RPS); eight 

more states had declared goals to achieve standards in the near future (Database of State 

Incentives for Renewables & Efficiency 2015).  RPS programs generally require retail 

electricity suppliers to provide a minimum percentage of total generation from 

renewable sources; suppliers comply with the requirement by redeeming an appropriate 

amount of Renewable Energy Credits (RECs).  A utility whose electricity portfolio is 

entirely made up of fossil fuel sources, for example, will need to purchase an adequate 

number of RECs to achieve the minimum requirement set forth by the RPS.  A REC is a 

certificate equivalent to a unit of electricity generated from an approved renewable 

source.  RECs are produced contemporaneously with the unit of qualified electricity, but 

they are bought and sold separately from the electricity.  This creates a distinct market in 

which RECs may be traded before compliance submission.   

In the last decade, there has been a marked expansion in the use of tradable rights 

programs to address environmental goals, both in the U.S. and internationally (Goulder 

2013).  In August 2015, the U.S. Environmental Protection Agency (EPA) released a 

final rule to reduce carbon dioxide emissions from the electric power sector (U.S. EPA 
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2015b).  The rule has been under heavy scrutiny from politicians, media members, and 

researchers alike; it has recently been described as “… more or less a forced Renewable 

Portfolio Standard…” (McConnell 2015).  It is important, therefore, to understand the 

functionality of currently existing programs as U.S. states move towards an energy 

future that is more reliant on renewables.  This chapter helps accomplish this goal by 

evaluating the dynamic relationships among REC prices in Massachusetts and 

Connecticut, electricity prices, and natural gas prices.  Previous studies have pointed out 

the need for additional empirical analysis of RPS programs (Felder 2011; Fischer 2010).  

This chapter contributes to the RPS literature by exploiting a modeling framework 

(multivariate time series analysis) to examine market relationships which have been 

introduced in the literature with little empirical examination.   

By using a multivariate time-series approach, data-driven results are obtained to 

describe the REC market relationships mentioned above.  First, the dynamic causal 

relationships between REC and electricity prices are examined in this study.  As Felder 

(2011) argues, theory suggests that the price of a REC is determined by the difference 

between the cost of generation for the renewable resource and the revenue obtained from 

producing electricity.  An increase (decrease) in electricity prices, therefore, is expected 

to correspond to a decrease (increase) in REC prices.   

Second, the empirical analysis examines the relationship among REC prices 

across states.  Many states allow RECs from qualified out-of-state renewable sources to 

be used for in-state compliance.  Both the Massachusetts and Connecticut RPS rules, for 

example, consider any source from within the ISO-New England (ISO-NE) regional 
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transmission organization (RTO) as a qualified source.  As noted by Schmalensee 

(2011), however, REC markets are generally fragmented and differences in prices from 

state to state may be large.     

Literature Review 

The literature on the general structure, cost-effectiveness, and economic implications of 

state level RPS programs is expanding.  Berry (2002), writing in the early years of RPS 

implementation, hypothesizes that the price of RECs should be tied to the excess cost of 

electricity generation from renewable sources over that of traditional sources.  REC 

prices should represent the “cost premium” of renewable power.  

Several studies evaluate the potential effects of RPS on various elements of the 

electric power sector.  Palmer and Burtraw (2005), for instance, employ the Haiku 

electricity market simulation model to evaluate the cost-effectiveness of numerous 

hypothetical national RPS scenarios.  They find that as the percentage requirement of the 

RPS increases, electricity and REC prices increase, and coal and natural gas generation 

decline.  Nogee, Deyette, and Clemmer (2007), in reviewing studies of RPS programs, 

conclude that a national RPS system would reduce fossil-fuel prices (especially natural 

gas) and also reduce electricity prices.  Assuming that REC prices represent the above-

market cost of renewable energy, Wiser et al. (2007) estimate that RPS mandates caused 

retail electricity rates to increase between zero and one percent for the seven states 

considered.  Chen et al. (2009) review 31 studies which were generally conducted during 

the proposed or adoption phase of RPS.  They find that the majority of studies predict 

electricity rate increases of less than one percent, though they stress that there is large 
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uncertainty in the estimates.  Based generally on simulation models, projected electricity 

rates range from a decrease of 5.2% to an 8.8% increase.     

Taking a somewhat different stance from other studies, Felder (2011) suggests 

that a more holistic approach is needed to evaluate the existence of a “price-suppression 

effect.”   This effect characterizes the displacement of higher marginal cost resources 

with low marginal cost renewable sources, resulting in a decrease of the wholesale price 

of electricity.  Fischer (2010) attempts to account for the variability in studies regarding 

the cost impacts of RPS programs (whether RPS program increase or decrease electricity 

prices).  She finds that the elasticity of supply from renewable sources relative to 

conventional sources and the stringency of the RPS help explain some of the variation in 

estimated cost impacts.  Fischer (2010) remarks that better empirical evidence is 

necessary to properly evaluate the impacts of RPS programs.  Assessing the efficiency of 

RPS programs, Schmalensee (2011) observes high levels of price dispersion between 

state REC prices.  He concludes that this variation is a result of fragmented markets with 

high transaction costs.   

The empirical literature on RPS programs, while growing, has resulted in 

inconclusive and contrasting findings regarding the relationship between REC prices and 

electricity prices (Chen et al. 2009).  Other studies (Berry 2002; Felder 2011; 

Schmalensee 2011) develop hypotheses about this relationship, as well as the interaction 

of REC prices across states, without any econometric or statistical techniques to test the 

hypotheses empirically.  This lack of empirical examination of RPS programs is noted in 

the literature (Chen et al. 2009; Felder 2011; Fischer 2010). 
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REC Market Fundamentals  

To provide an understanding of the fundamentals of the REC market, consider the 

simple case in which a state has an RPS requirement that five percent of its electricity 

must come from renewable sources.  For each megawatt hour (MWh) that a renewable 

source generates and sells, one REC is created.  For every 20 MWh of total electricity 

sold onto the grid, one REC must be retired.  Hence, a renewable source that generates 

20 MWh will have 19 surplus RECs that can be sold.  These RECs may be bought by 

electricity suppliers whose generation portfolio is composed of less than five percent 

renewables.   

In RPS programs, there are a number of important institutional details that 

influence REC markets.  Connecticut and Massachusetts are discussed here as they are 

the states included in the empirical analysis.  Institutional details summarized here are 

from the Database of State Incentives for Renewables & Efficiency Sources (2015).  

Sources eligible for REC generation are typically divided into two classes (or tiers) 

based on the fuel or the age of the source.  In both states, electricity suppliers must meet 

two different requirements; percentage requirements from Class I sources and from 

Class II sources.  Class I RECs can be used for compliance with the Class II 

requirement, but the reverse is not true.  Eligible generation sources in the Massachusetts 

RPS include geothermal, solar thermal, solar PV, wind, biomass, hydroelectric, and 

waste-to-energy.  The Massachusetts Class I REC distinction requires that the source of 

generation be installed after December 31, 1997.  Connecticut accepts similar sources of 

electricity generation, but the Connecticut Class I distinction requires that the source be 
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specifically from solar, wind, fuel cells, geothermal, ocean thermal, tidal, small 

hydroelectric facilities, and a few other advanced technologies (but not waste-to-energy 

or older hydroelectric plants).   

The Massachusetts RPS also contains provisions for a solar “carve-out” in which 

a certain percentage of Class I requirements must be met specifically from solar sources, 

creating the MA Solar REC (SREC) trading instrument.  Connecticut does not contain 

such a provision.  There are a number of institutional complications in SREC programs 

which may drive prices
4
 (Coulon, Khazaei, and Powell 2015; Felder and Loxley 2012; 

Massachusetts Department of Energy Resources 2015; SRECTrade 2015).  Additionally, 

the overall costs of generation from solar photovoltaic generation have decreased in 

recent years (U.S. Energy Information Administration (EIA) 2013).  These regulatory 

idiosyncrasies in the MA SREC market may have a large influence on market 

performance, making it unwarranted to include SREC prices in the econometric 

analysis.
5
  

An important feature of both the Connecticut and Massachusetts RPS programs 

is that both Class I requirements can be met with RECs that were generated by sources 

within the ISO-NE RTO (eligible sources do not necessarily have to be in-state).  A 

wind turbine in Connecticut, for example, produces RECs that are eligible to be used for 

the MA Class I requirement.  Both states have legislation in place to prevent double-

                                                 

4
 For instance, the MA SREC market contains a price support in which the state ensures that end-of-period 

unsold SRECs will be purchased in a clearinghouse auction at a fixed price (Massachusetts Department of 

Energy Resources 2015). 
5
 As a check, the specified model was extended to include the MA SREC price series.  Results of 

statistical tests for variable exclusion and weak exogeneity provide confirmatory evidence that the MA 

SREC series is determined outside of the estimated system. 
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counting of RECs (the same REC being used for compliance in two states).  The 

Massachusetts solar carve-out, however, only accepts eligible in-state sources. 

 Massachusetts and Connecticut RECs can be banked for up to two years; giving a 

useful life of three years to each REC.  The year in which the REC is generated is called 

its “vintage,” for instance a REC generated in 2011 would be a Vintage 2011 REC and 

could be used for compliance in 2011, 2012, or 2013.  In this study, the price of a 

current-year vintage of each REC instrument is used as the price observation for a given 

time period.  As a penalty for non-compliance, states generally charge an Alternative 

Compliance Payment (ACP) to suppliers who fall short of their requirement.  The level 

of the ACP in Massachusetts is adjusted annually based on the Consumer Price Index.  

The 2014 ACP rate for the Massachusetts Class I standard was $66.16/MWh, for Class 

II was $27.16/MWh, and for SREC was $523.00/MWh.  Connecticut has a fixed Class I 

ACP at $55/MWh.  The ACP essentially creates a price cap for RECs, as any electricity 

provider that is short of the requirement would typically pay the ACP if faced with a 

REC price that exceeds the ACP. 

Economic theory helps provide insights into REC price formation.  REC prices 

are determined by supply and demand conditions in the REC market.  The key to 

understanding REC prices lies in the dependence of the supply and demand of RECs on 

the market for wholesale electricity (and in turn, on the markets for renewable and 

conventional generation).  Basic economics of the REC market are depicted in figure 

3.1.  The total marginal revenue received by a renewable electricity producer (the 

vertical axis) is equal to the sum of the REC price and the electricity price (PR + PE).  
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The demand for RECs is largely a function of the RPS requirement, which is determined 

by the state legislatures (Felder and Loxley 2012; Lamontagne 2013).  For a given RPS 

requirement, the annual aggregate demand curve for RECs is a step function in which 

the REC price (PR) is equal to the ACP for quantities less than the RPS requirement and 

falls to zero above the requirement.  The simplified demand curve in figure 3.1 excludes 

the possibility that firms may demand RECs in excess of their percentage requirement to 

hedge future risks or to give the appearance of being “green” or environmentally 

friendly.     

 

Figure 3.1. REC market supply and demand fundamentals 
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The quantity of RECs supplied is directly proportional to the amount of qualified 

renewable energy generation.  For illustrative purposes, the shape of the three supply 

curves in figure 3.1 follow those outlined in New England States Committee on 

Electricity (2012) for wind.  In the case of a low, medium, or high level of renewable 

energy generation, the supply of RECs follows supply curve SR
L
, SR

M
, or SR

H
.  In the 

case of relatively low levels of qualified renewable generation (SR
L
), the REC price will 

fall at or near the ACP.  For high levels of renewable generation (SR
H
), the renewable 

producer will receive only the price of electricity and the REC price will be at or near 

zero.  For a medium level of renewable generation (SR
M

) which intersects the vertical 

(inelastic) portion of the demand curve, the REC price will be susceptible to changes in 

electricity price. 

Assuming that renewable generation is more costly than conventional (nuclear, 

natural gas, or coal) generation, Berry (2002) states that REC price should represent the 

cost premium of renewable sources over their conventional counterparts.  Thus, a 

decrease in the price of conventional generation should lead to an increase in the price of 

RECs.  Felder (2011) claims that REC prices should be determined by the difference 

between the cost of renewable generation and the revenue obtained by generating the 

electricity.  In Felder‟s (2011) framework, a decrease in the price of electricity moves 

the demand curve for RECs downward, leading to an increase in the difference between 

the supply curve and PE, thus increasing the price of RECs.  This framework does not 

directly contradict Berry (2002), as the fall in electricity prices may have been caused by 

a decrease in the cost of conventional generation.  Changes in electricity prices can 
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certainly be precipitated by other market forces (e.g. demand shifts or renewable supply 

shifts), nonetheless, electricity prices and costs of conventional generation are 

potentially important sources of REC price formation. 

 An increase in the supply of RECs corresponds to an increase in the supply of 

renewable generation.  In figure 3.1, this increase in supply of RECs would decrease the 

REC price, ceteris paribus.  This outward shift in the supply curve for electricity, 

however, should also lead to a decrease in the price of wholesale electricity, which 

Felder (2011) calls the price-suppression effect.  This price-suppression effect would 

lead to an increase in the price of RECs (Felder 2011).  The effect of a renewable 

electricity supply shock on REC prices, therefore, depends on the magnitude of the price 

suppression effect.   

 It is important to point out, however, that when the supply curve intersects 

demand in either horizontal range (SR
H
 or SR

L
), shifts in supply or demand will have no 

effect on the REC price, they will remain fixed at the ACP or zero.  Only if the supply 

curve intersects demand in the middle range (SR
M

), does theory predict that changes in 

the supply or demand curve lead to changes in the REC price. 

Data 

The empirical analysis uses four endogenous price variables.  All endogenous series are 

in natural logarithms in the empirical analysis.  Graphs of the natural logarithms of the 

four endogenous price series are presented in figure 3.2.  Weekly REC prices, based on 

trade data or derived from indicative quotes when trades are unavailable, are obtained 

from Skystream Markets (2014).  Two Class I REC price series are included in the  
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Figure 3.2. Endogenous price series used in estimating the vector error correction 

model  
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analysis (Connecticut and Massachusetts, denoted as CT Class I and MA Class I) for the 

period March 2011 to December 2013. These price data are the midpoint between bid 

and offer prices for current-year vintages reported by Skystream Markets.  

Unfortunately, data for volume of trades is unavailable.  The previous week‟s 

price is used to fill in any missing observations in the weekly REC price data.  The U.S. 

EIA (2015b) publishes wholesale electricity price data for the ISO-NE RTO.  The third 

endogenous price series is a weighted average of daily on-peak wholesale electricity 

prices based on volume traded to provide a weekly electricity price for the region 

(denoted as MassHub).  Natural gas spot prices (denoted as NG) from the Algonquin 

Hub in Massachusetts (Bloomberg 2015) are included as the final endogenous variable 

to capture the costs of conventional electricity generation.  Data on cooling and heating 

degree days for the New England region (U.S. National Oceanic and Atmospheric 

Administration 2015), which roughly aligns geographically with the ISO-NE RTO, are 

exogenous variables in the model. 

As seen in figure 3.2, the CT and MA Class I REC prices are essentially 

unchanging in the final third of the sample.  Both price series are at or near the ACP 

level defined by the respective state RPS (the market price is determined in the initial 

horizontal portion of the demand curve in figure 3.1).  In this case, the market is short 

and REC price is not expected to react.  The sample is reduced for this reason; it is 

constrained to a period where the market is in the vertical portion of the demand curve.  

Weekly observations for the period March 28, 2011 to December 17, 2012 are used to 

carry out the empirical analysis (a total of 91 observations).   
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Methodology 

The vector error correction model (VECM) provides a flexible framework to 

characterize the REC market relationships.  Let   be the number of endogenous 

variables and   be the number of exogenous variables in the model.  The VECM 

(Juselius 2006) takes the form: 

(3.1)              ∑                       
   
    

where:  

      is a       vector of the endogenous variables at time  ;  

       is a       vector of first differences of the endogenous series; 

     is a       vector of constants; 

         represents lagged values of order  ; 

      is the corresponding       coefficient matrix; 

     is the optimal number of lags in a levels vector autoregressive representation; 

      is a       vector of exogenous series (cooling and heating degree days); 

      is a       vector of innovations; and 

         is the “error correction” term, where   is      . 

 The VECM allows long run, equilibrium relationships among the variables to be 

characterized by examining the existence of cointegration.  Cointegration is present 

when there exists at least one linear combination of non-stationary variables which is 

itself stationary (Tsay 2014).  A key assumption for the estimation of a VECM is that the 

endogenous variables (  ) are non-stationary, but that they are stationary in first 

differences (   ).  Three tests for stationarity are considered, two common pre-model 
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estimation tests and one post-model estimation test.  Results of Augmented Dickey-

Fuller (Fuller 1996) and KPSS (Kwiatkowski et al. 1992) tests for stationarity of the four 

endogenous series are reported in table 3.1 (pre-model estimation tests).  Under the 

Augmented Dickey-Fuller test, all series are non-stationary in natural log levels, but 

stationary in first differences, except for the CT Class I REC price.  Further investigation 

using the KPSS test (Kwiatkowski et al. 1992) reveals that all four series are non-

stationary in natural log levels, and stationary in first differences.  As noted, a third test 

for stationarity is performed after model estimation. 

 

Table 3.1.  Results of Tests for Presence of Unit Root 

 ADF (  : Unit Root) KPSS (  : Stationarity) 

Series Test Statistic Decision
a Test Statistic Decision 

log(Series) 
  

  

CT Class I -1.89 F 2.19 R 

MA Class I -1.89 F 2.20 R 

MassHub -2.64 R 0.35 R 

NG -2.35 F 0.59 R 

diff(log(Series))     

CT Class I -2.51 F 0.25 F 

MA Class I -4.53 R 0.30 F 

MassHub -4.02 R 0.05 F 

NG -3.57 R 0.14 F 
a
Based on the 10% critical value of -2.58. 

b
Based on the 10% critical value of 0.35. 

  

 

 

Post-Estimation Hypothesis Tests 

Decomposing   as: 

(3.2)                     
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where   and   are       matrices, and   is the rank of   , provides an interpretation of 

the long run relationships among the endogenous series.  Because      is non-stationary 

and     is stationary,     contains stationary linear combination(s) of the   endogenous 

variables, provided cointegration is present.  The   columns of   are known as the 

cointegrating vectors (Tsay 2014).  Statistical tests are performed on  ,  , and   to 

determine   and to further characterize the long run structure between the endogenous 

series (Juselius 2006; Mjelde and Bessler 2009).   

The first test for examining the cointegrating space is a test for variable 

stationarity.  The null hypothesis is that at least one of the cointegrating vectors exists 

because a particular variable is itself stationary given the number of lags and 

cointegrating vectors found in the system.  In other words, the cointegrating vector does 

not represent a stationary linear combination of non-stationary variables, but rather a 

transformation of an otherwise stationary variable.  Results of this test complement the 

Augmented Dickey-Fuller and KPSS tests for stationarity presented in table 3.1. 

Variable exclusion tests the null hypothesis that a particular series is not in the 

cointegrating space:  

(3.3)          
              

where   is a matrix containing zero restrictions for excluding a particular series from the 

cointegrating space.  Failure to reject the null hypothesis for a given series implies that 

the corresponding series is excluded from the long run relationships characterizing the 

system (  contains the parameters characterizing these long run relationships). 
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 A third statistical test is for weak exogeneity; the null hypothesis is that a 

particular series does not adjust to disruptions in the long run relationships.  As   

contains the parameters characterizing the long run relationships,   comprises the 

parameters which describe how the series adjust to disruptions, bringing the long run 

relationships back to equilibrium.  The null hypothesis of the test for weak exogeneity is: 

(3.4)          
              

where  , like  , contains zero restrictions for excluding the corresponding   parameters 

for a particular series.  Failure to reject the null hypothesis for a given series implies that 

the corresponding series does not respond to deviations from the long run equilibrium 

relationship. 

Innovation Accounting 

In addition to statistical tests concerning the cointegrating space, innovation accounting 

procedures (impulse response functions and forecast error variance decompositions) are 

helpful in characterizing dynamic relationships among economic variables.  Impulse 

response functions (IRFs) show the effect of a one-time shock in one variable on the 

future values of the remaining variables.  Forecast error variance decompositions 

(FEVDs) measure the percentage of forecast error for a given series that is explained by 

shocks to each of the series.  To conduct innovation accounting procedures, the VECM 

in equation (3.1) is rewritten in a levels vector autoregressive (VAR) model: 

(3.5)                       ∑                                 
   
   . 

An issue that arises when conducting innovation accounting procedures is that 

the contemporaneous covariance matrix of the error term    in equation (3.5),   , is 



 

66 

 

usually not a diagonal matrix in empirical applications (the components of the error term 

are contemporaneously correlated).  If this is the case, then any particular series cannot 

necessarily be shocked without affecting another series; innovation accounting 

procedures are nonsensical if contemporaneous correlation exists (Tsay 2014).  To 

overcome this limitation, the innovations    must be orthogonalized.  Consider a 

Bernanke (1986) ordering, where the correlated innovations    are written as a function 

of the underlying orthogonal sources of variation,   :  

(3.6)              .          

To conduct the innovation accounting procedures, the VAR representation, equation 

(3.5), is pre-multiplied by the matrix  . 

 The matrix   is obtained through causal flow methods (Pearl 2000; Spirtes, 

Glymour, and Scheines 2000).  Directed Acyclic Graphs (DAGs) provide a visual 

summary of contemporaneous causal flows among innovations from the estimated 

VECM.  The GES algorithm (Chickering 2003) in TETRAD V (2015) is employed to 

generate a DAG using the covariance matrix of error terms from the estimated VECM.  

In DAGs, an arrow from node A to node B implies that A causes B.  An undirected line 

from A to B with no arrow (or a line with an arrow on each end) signifies flows between 

the two series, but the algorithm cannot determine whether A causes B or B causes A.  If 

there is no information flow between A and B, the algorithm will not generate a line 

connecting the two series.  The GES algorithm starts with a DAG representation where 

all variables are independent of each other (no lines), and searches over more 

complicated representations for improvements in the Bayesian Information Criterion.  
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The algorithm picks the DAG representation such that no added line or change of 

direction improves the criterion. 

To summarize, results from the empirical analysis help characterize the dynamic 

relationships among REC and electricity prices.  First, the existence of cointegration 

implies that REC and electricity prices move together in the long run.  Statistical tests 

for variable exclusion further investigate whether a particular price series is included in 

the estimated long run relationships.  Tests for weak exogeneity will show whether a 

given series responds to disruptions in the long run relationships.  Further, DAGs show 

how the endogenous price series are related in contemporaneous time.  Impulse response 

functions show the direction of effects of an increase in a particular series on all the 

other endogenous series over time.  Finally, forecast error variance decompositions show 

the percentage of forecast error of each series that can be explained by shocks in the 

other series. 

 Similarly, these procedures shed light on the relationship between MA and CT 

REC prices.  Perhaps most importantly, the existence of cointegration, along with tests 

for variable exclusion and weak exogeneity, provides statistical evidence regarding the 

existence of a long run equilibrium relationship among REC prices.  DAGs and 

innovation accounting procedures further characterize the dynamic relationships across 

state REC prices. 

Results and Discussion 

A two-step procedure is followed to test for cointegration.  First, the optimal lag length 

( ) in a VAR( ) representation is determined (table 3.2).  The lag length ( ) is chosen to 
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be two under the Akaike Information Criterion in the rest of the chapter; the choice of 

    lag would lead to the absence of short run parameters and the inability to conduct 

innovation accounting procedures.  Next, the cointegrating rank ( ) is determined 

following the trace test of Johansen (1991).  One cointegrating vector (   ) is chosen 

(table 3.3).  The remaining discussion of the empirical results is based on a VECM 

specification in equation (3.1) with     lags and     cointegrating vector. 

 

Table 3.2.  Optimal Lag Length Determination 

Lag Order ( ) Schwarz 

Information 

Criterion 

Akaike Information 

Criterion 

Hannan-Quinn 

Information 

Criterion 

0 -12.77 -13.86 -13.13 

1 -17.80 -19.33 -18.62 

2 -16.60 -19.58 -17.90 

3 -15.67 -19.11 -17.44 

4 -14.34 -18.23 -16.58 

5 -13.12 -18.46 -15.84 

6 -11.77 -17.65 -14.98 

7 -10.70 -17.15 -14.42 

8 -9.54 -17.58 -13.76 

9 -8.36 -17.03 -13.10 

10 -7.34 -16.67 -12.62 

 

 

Table 3.3.  Results of Trace Test for Lag Order     

r  Trace Critical Value (5%) P-Value 

0  78.91 73.02 0.02 

1  41.57 49.96 0.23 

2  13.57 30.78 0.87 

3  4.35 15.25 0.84 

The null hypothesis for each           is that    .  The first failure to reject 

occurs at    , therefore one cointegrating vector is selected. 
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Post-Estimation Tests  

Statistical tests for variable exclusion, weak exogeneity, and stationarity are shown in 

table 3.4.  The hypothesis of variable stationarity is rejected at the 5% level for all four 

series.  The cointegrating relationship does not arise because of individual stationarity of 

any of the endogenous price series.  The null hypothesis of variable exclusion cannot be 

rejected at the 5% level for both MA and CT Class I REC price series.  This implies that 

the estimated long run relationship might be the result of integration between natural gas 

and electricity prices only.  Additionally, the hypothesis of weak exogeneity cannot be 

rejected at the 5% level for each of the MA and CT Class I REC price series, providing 

evidence that MA and CT Class I REC prices do not respond to disruptions in the 

cointegrating relationship.  Results of the variable exclusion and weak exogeneity tests 

suggest that the two REC markets are not integrated with regional electricity and natural 

gas markets.   

 

Table 3.4.  Test for Variable Exclusion, Stationarity, and Weak Exogeneity. P-

values in Parentheses 

Test CT Class I MA Class I MassHub NG 

Exclusion 0.62        

(0.43) 

1.42       

(0.23) 

15.82      

(0.00) 

15.42      

(0.00) 

Weak Exogeneity 0.24        

(0.63) 

0.00       

(0.99) 

9.29        

(0.00) 

6.04        

(0.01) 

Stationarity 17.62      

(0.00) 

18.68      

(0.00) 

22.10      

(0.00) 

23.74       

(0.00) 
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Contemporaneous Causality 

The DAG generated from the correlation structure of innovations in the VECM is 

presented in figure 3.3.  Causal flows are found between MassHub electricity prices and 

natural gas prices, and between MA and CT Class I REC prices, but the algorithm is 

unable to determine the direction of flows in either case.  Regarding the relationship 

between natural gas and electricity prices, it is important to note that natural gas is the 

most common fuel source used for on-peak power generation.
6
  Periods of high 

electricity demand result in demand spikes in the natural gas market.  Likewise, periods 

of high natural gas prices increase generation costs for on-peak power generation, which 

is expected to affect wholesale electricity prices.
7
   

 

 
Figure 3.3. Directed Acyclic Graph (DAG) for contemporaneous causal flows 

among innovations  

 

                                                 

6
 Natural gas is a large portion of the overall electricity generation portfolio in both Massachusetts (58% in 

2014) and Connecticut (44%) (U.S. EIA 2015c).  
7
 Mjelde and Bessler (2009) find contemporaneous causal flows from on-peak electricity prices to natural 

gas prices using weekly data for the period June 2001 – April 2008 and the GES algorithm.   
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As noted above, the MA and CT Class I requirements both allow RECs from out-

of-state (but within the ISO-NE RTO). The MA renewable generation market is much 

larger than the CT market, but the renewable proportion of total electric generation 

capacity is similar in both states.
8
  Accordingly, there is no a priori reasoning to 

eliminate a possible direction of contemporaneous flows between either natural gas and 

electricity prices or the two state REC prices.  All four possible combinations of 

contemporaneous causal flows are considered (innovation accounting procedures are 

carried out for four different versions of the matrix   in equation 3.6).  

Innovation Accounting Procedures 

IRFs and FEVDs computed from each of the four possible combinations of directed 

flows in the DAG are presented in figures 3.4-3.7 and tables 3.5-3.8.
9,10

  The IRFs show 

strong links between natural gas and electricity prices in all DAG specifications 

(consistent with previous literature).
11

  Natural gas prices respond positively to shocks in 

electricity prices, and vice versa.  IRFs across each DAG specification are consistent in 

suggesting that CT Class I REC and the MA Class I REC prices do not respond to 

shocks in either electricity or natural gas prices.  Similarly, neither electricity nor natural 

gas prices respond to shocks in REC prices.  FEVDs show that natural gas and electricity 

prices each explain less than one percent of forecast error variance in REC prices at all 

                                                 

8
 The U.S. EIA (2012) reports that Massachusetts had 0.566 GW of renewable capacity in 2010 (4.1% of 

total electric capacity), about twice as much renewable generating capacity as Connecticut (0.281 GW; 

3.3% of total). 
9
 Figure 3.8 and table 3.9 show the IRF and FEVD for the assumption of no contemporaneous causal flows 

between the MA Class I and CT Class I REC price series. 
10

 As in Chapter II, all IRFs are standardized by dividing through by the standard error of innovations of 

each series. 
11

 See for example Mjelde and Bessler (2009). 
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horizons.  In addition to the results of the variable exclusion and weak exogeneity tests 

above, these findings provide further evidence of little interaction between REC markets 

and the ISO-NE electricity and Algonquin Hub natural gas markets. 

The IRFs and FEVDs suggest a relationship between MA and CT Class I REC 

prices, however, the characterization of this relationship is sensitive to the direction of 

contemporaneous causal flows in the DAG.  Assuming contemporaneous causal flows 

from MA to CT Class I REC prices, the MA Class I series explains around 67% of 

forecast error variance in CT Class I REC prices at all horizons (tables 3.5 and 3.6).  CT 

Class I REC prices respond positively to shocks in MA Class I REC prices and the MA 

Class I REC series is almost entirely exogenous (figures 3.4 and 3.5).  When the 

direction of contemporaneous causal flows is reversed, so are these results.  Sixty-seven 

percent of forecast error variance in MA Class I REC prices is explained by CT Class I 

REC prices, MA Class I REC prices respond positively to shocks in CT Class I REC 

prices, and the CT Class I REC series is exogenous (figures 3.6 and 3.7; tables 3.7 and 

3.8).  The asymmetric relationships between these REC prices is surprising since, as 

noted above, Connecticut allows RECs from qualified generation in Massachusetts and 

vice versa.  An explanation for this finding is the nature of the ACP structure mentioned 

previously (MA 2014 Class I ACP was $66.16/MWh and CT Class I ACP was 

$55/MWh).  A Massachusetts REC buyer will look to purchase in the Connecticut REC 

market if faced with a MA REC price higher than the CT ACP, thus increasing the 

demand for CT RECs.  Conversely, a CT REC seller will look to sell RECs in the MA 

REC market if the current MA price is above the CT ACP.  The CT seller is willing to.  
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Table 3.5.  Forecast Error Variance Decompositions (Contemporaneous Causal 

Flows from MA Class I to CT Class I and MassHub to NG)  

Contribution of 

Series Weeks Ahead CT Class I MA Class I MassHub NG 

CT Class I 1 32.92 67.08 0.00 0.00 

 4 32.49 66.85 0.21 0.46 

 8 32.30 66.91 0.25 0.54 

 12 32.23 66.94 0.25 0.58 

      

MA Class I 1 0.00 100.00 0.00 0.00 

 4 0.01 99.87 0.07 0.04 

 8 0.01 99.93 0.04 0.02 

 12 0.01 99.95 0.03 0.01 

      

MassHub 1 0.00 0.00 100.00 0.00 

 4 0.06 0.18 87.30 12.46 

 8 0.10 0.12 80.96 18.83 

 12 0.11 0.10 77.89 21.91 

      

NG 1 0.00 0.00 25.40 74.60 

 4 0.23 1.74 55.99 42.05 

 8 0.27 1.48 61.62 36.64 

 12 0.28 1.39 64.08 34.25 
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Table 3.6.  Forecast Error Variance Decompositions (Contemporaneous Causal 

Flows from MA Class I to CT Class I and NG to MassHub)  

Contribution of 

Series Weeks Ahead CT Class I MA Class I MassHub NG 

CT Class I 1 32.92 67.08 0.00 0.00 

 4 32.49 66.85 0.53 0.14 

 8 32.30 66.91 0.63 0.15 

 12 32.23 66.94 0.66 0.17 

      

MA Class I 1 0.00 100.00 0.00 0.00 

 4 0.01 99.87 0.11 0.01 

 8 0.01 99.93 0.06 0.00 

 12 0.01 99.95 0.04 0.00 

      

MassHub 1 0.00 0.00 74.60 25.40 

 4 0.06 0.18 52.89 46.87 

 8 0.10 0.12 41.05 58.73 

 12 0.11 0.10 35.38 64.42 

      

NG 1 0.00 0.00 0.00 100.00 

 4 0.23 1.74 20.25 77.78 

 8 0.27 1.48 19.95 78.31 

 12 0.28 1.39 20.05 78.28 
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Table 3.7.  Forecast Error Variance Decompositions (Contemporaneous Causal 

Flows from CT Class I to MA Class I and NG to MassHub)  

Contribution of 

Series Weeks Ahead CT Class I MA Class I MassHub NG 

CT Class I 1 100.00 0.00 0.00 0.00 

 4 99.33 0.00 0.53 0.14 

 8 99.21 0.00 0.63 0.15 

 12 99.17 0.00 0.67 0.17 

      

MA Class I 1 67.08 32.92 0.00 0.00 

 4 66.20 33.68 0.11 0.01 

 8 66.20 33.74 0.06 0.00 

 12 66.20 33.76 0.04 0.00 

      

MassHub 1 0.00 0.00 74.60 25.40 

 4 0.78 0.06 52.89 46.87 

 8 0.16 0.06 41.05 58.73 

 12 0.15 0.06 35.38 64.42 

      

NG 1 0.00 0.00 0.00 100.00 

 4 0.75 1.22 20.25 77.78 

 8 0.55 1.19 19.95 78.31 

 12 0.48 1.19 20.05 78.28 
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Table 3.8.  Forecast Error Variance Decompositions (Contemporaneous Causal 

Flows from CT Class I to MA Class I and MassHub to NG)  

Contribution of 

Series Weeks Ahead CT Class I MA Class I MassHub NG 

CT Class I 1 100.00 0.00 0.00 0.00 

 4 99.33 0.00 0.21 0.46 

 8 99.21 0.00 0.25 0.54 

 12 99.17 0.00 0.25 0.58 

      

MA Class I 1 67.08 32.92 0.00 0.00 

 4 66.20 33.68 0.07 0.04 

 8 66.20 33.74 0.04 0.02 

 12 66.20 33.76 0.03 0.01 

      

MassHub 1 0.00 0.00 100.00 0.00 

 4 0.18 0.06 87.30 12.46 

 8 0.16 0.06 80.96 19.81 

 12 0.15 0.06 77.89 21.91 

      

NG 1 0.00 0.00 25.40 74.60 

 4 0.75 1.22 56.00 42.05 

 8 0.56 1.19 61.62 36.64 

 12 0.48 1.19 64.08 34.25 
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Table 3.9.  Forecast Error Variance Decompositions (Contemporaneous Causal 

Flows from MassHub to NG and no flows between MA Class I and CT Class I)  

Contribution of 

Series Weeks Ahead CT Class I MA Class I MassHub NG 

CT Class I 1 100.00 0.00 0.00 0.00 

 4 99.31 0.00 0.24 0.45 

 8 99.18 0.01 0.31 0.51 

 12 99.14 0.01 0.33 0.53 

      

MA Class I 1 0.00 100.00 0.00 0.00 

 4 0.03 99.86 0.07 0.04 

 8 0.03 99.91 0.04 0.02 

 12 0.03 99.93 0.03 0.02 

      

MassHub 1 0.00 0.00 100.00 0.00 

 4 0.19 0.17 87.21 12.45 

 8 0.29 0.17 80.78 18.77 

 12 0.34 0.17 77.68 21.83 

      

NG 1 0.00 0.00 25.40 74.60 

 4 0.68 3.62 54.65 41.05 

 8 0.79 3.53 60.01 35.67 

 12 0.84 3.54 62.32 33.30 
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Figure 3.4 Impulse Response Functions (causal flows from MA Class I to CT Class I and MassHub to NG) 
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Figure 3.5 Impulse Response Functions (causal flows from MA Class I to CT Class I and NG to MassHub) 
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Figure 3.6 Impulse Response Functions (causal flows from CT Class I to MA Class I and NG to MassHub) 
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Figure 3.7 Impulse Response Functions (causal flows from CT Class I to MA Class I and MassHub to NG) 
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Figure 3.8 Impulse Response Functions (causal flows from MassHub to NG and no flows between MA Class I and CT 

Class I)
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settle at a price lower than the MA market price, putting downward pressure on the MA 

price.  The direction of contemporaneous causality is important in characterizing which 

state‟s market plays a bigger role in price formation 

Investigating the Potential of a Structural Break 

Close inspection of the data reveals a jump in the level of the MA Class I REC price 

series in early 2012.  The price increased by $8.00, or 22%, from January 23, 2012 to 

February 20, 2012 and by another $8.00 on March 5, 2012 (a 17% increase from 

February 20).  The magnitude of this jump warrants inspection of the possibility of a 

structural break in the relationships between MA and CT REC, natural gas, and 

electricity prices. 

 Two tests for structural breaks are carried out; the first introduced by Bai and 

Perron (2003) and the second following Hansen and Johansen (1999).  The test of Bai 

and Perron (2003) treats both the number and date of breaks as unknown.  This is done 

by partitioning the dataset multiple times, estimating the coefficients of the model for 

each partition, and finding where the sum of squared residuals is minimized.  F-statistics 

are computed for two types of hypotheses, the first testing the null of no structural 

breaks against the alternative of   breaks and the second being a sequential test of   

versus     breaks.  The Bai and Perron (2003) test is conducted for the four equations 

of a VAR model of MA and CT Class I REC prices, electricity prices, and natural gas 

prices.  Each equation is tested under a VAR model in natural logarithms and under a 

VAR model in first difference natural logarithms.  Results (Appendix B) show no 
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potential breaks in any of the four equations for either VAR model, suggesting that there 

are no breaks in the short or long run relationships among the series. 

 Hansen and Johansen (1999) present a test for parameter constancy which is 

based on the recursive estimation of a VECM model.  In this study, the VECM specified 

above (two lags, one cointegrating vector) is re-estimated in a recursive fashion, adding 

one observation at a time.  Estimates of the long run ( ) parameters at each step in the 

recursion are compared to the full sample estimates to look for deviations.  See Chapter 

II for a detailed explanation of the test.  Results of the Hansen and Johansen (1999) test 

(Appendix B) exhibit stability of the   parameters over the entire sample. 

 Taken together, the tests of Bai and Perron (2003) and Hansen and Johansen 

(1999) reject the possibility of a structural break in the model parameters.  While there is 

a jump in the levels of the MA Class I price series in early 2012, the relationship 

governing the joint behavior of the four variables appears not to change. Accordingly, 

inferences based on the full sample estimates of model parameters about how REC 

prices are related to electricity and natural gas prices, and to each other across states, are 

discussed further below. 

Divergence between Theory and the Data 

As discussed above, theory suggests that an increase in electricity prices or in natural gas 

prices should result in a decrease in REC prices (Felder 2011; Berry 2002).  The results 

above point to a lack of integration between REC prices and electricity and natural gas 

markets.  Specifically, REC prices do not respond to shocks in either electricity prices or 

natural gas prices.  Further, MA and CT Class I REC prices are not found to be a part of 
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the cointegrating space, evidence that the REC markets across states are less integrated 

than expected.  Possible reasons why the Connecticut and Massachusetts REC markets 

have not behaved according to fundamentals are presented below.  

 First, it is worthwhile to note that the Connecticut and Massachusetts REC 

markets are relatively immature (the first compliance year in Massachusetts was 2003, 

and in Connecticut was 2006).  Any market will have an initial period of learning and 

adaptation for market participants.  As explained below, these REC markets in particular 

are characterized by additional complications which may extend the learning curve and 

present a high level of uncertainty for all parties.  Schmalensee (2011 p. 61) summarizes 

this argument, explaining that REC markets are fragmented and thin, do not work well, 

and “are sometimes markedly out of line with their fundamental determinants.”  A lack 

of information may cause market participants to heavily weight the most recent trading 

price as the signal, rather than taking into account market conditions.  Additionally, 

Schmalensee (2011) notes that transaction costs appear to be large in REC markets.  

High transaction costs may conflate the inability of market participants to properly take 

into account all available information.  The gradual climb in REC prices observed in 

figure 3.2 may be the result of high uncertainty in the marketplace.   

Perhaps most importantly, institutional intervention in RPS programs may be 

contributing in driving REC markets away from fundamentals.  Felder and Loxley 

(2012) discuss this issue in SREC markets, but some of their analysis can be generalized 

to REC markets.  They explain that volatile SREC prices solicit complaints from both 

solar providers and ratepayers alike.  Pressure from market participants may provoke 
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policy makers to alter RPS legislation.  There is evidence of this occurring in both the 

Massachusetts and Connecticut REC markets.  For example, in July 2008, five years 

after the Massachusetts program was introduced, the state legislature introduced a bill 

that required electricity suppliers to enter at least two long-term contracts for RECs 

during a three year period (Database of State Incentives for Renewables & Efficiency 

2015).  The provisions of this legislation were amended in June 2010, August 2012, and 

March 2013.  Connecticut legislators passed a similar bill in 2011.  Other changes to the 

Connecticut RPS mandate include altering the qualifications for Class I and Class II 

sources, and planned decreases in REC price for less-desirable renewables (Database of 

State Incentives for Renewables & Efficiency 2015).  Thin and fragmented markets 

make it difficult for policy makers to understand market developments.  This may have 

caused policy makers to modify RPS legislation, resulting in additional uncertainty for 

market participants. 

 An additional potential contributing factor is the near-verticality of the demand 

curve for RECs.  As with any good for which demand is highly inelastic, the market 

price of RECs is especially sensitive to supply shifts.  Felder and Loxley (2012) discuss 

this issue in SREC markets specifically.  They note that a change in supply, however 

small in magnitude, can cause a large swing in price.  This might encourage large 

renewable producers to withhold RECs from the market to increase price.  Importantly, 

supply shifts like these are not driven by electricity or conventional generation price 

expectations and will not be captured by the model implemented here.  
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Conclusions  

The relationships between REC prices, wholesale electricity prices, and costs of 

conventional generation have been contemplated in the literature without much 

statistical investigation.  The empirical analysis shows that neither Massachusetts nor 

Connecticut Class I REC prices respond to shocks in MassHub electricity prices.  This 

result is inconsistent with the theory outlined by Felder (2011), who hypothesized that 

REC prices should represent the difference between the cost of renewable electricity 

generation and the revenue obtained for producing it.  An increase in electricity prices 

should result in a decrease in REC prices in this framework.  Similarly, the empirical 

analysis presented here does not find a relationship between Algonquin Hub natural gas 

prices and REC prices in either state.  Berry (2002) hypothesized that REC prices should 

represent the cost premium of renewable generation over conventional sources, i.e. REC 

prices should respond negatively to positive natural gas price shocks.   

Mixed evidence is found regarding the question of whether REC prices are 

integrated across states.  The trace test of Johansen (1991) resulted in one cointegrating 

vector characterizing the long run relationship between the four endogenous price series.  

However, statistical tests show both the MA and CT Class I REC prices are excluded 

from the cointegrating space and do not respond to disruptions in the long run 

relationship.  An asymmetric relationship between MA and CT Class I REC prices is 

found as well.  The question of whether Massachusetts REC prices drive Connecticut 

REC prices, or vice versa, is sensitive to the specification of causal flows in the DAG.   
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Several explanations for the disparity between theory and the empirical evidence 

are discussed.  The relative immaturity of the REC markets may be contributing to the 

divergence between REC price fundamentals and actual market outcomes.  In addition, 

institutional interventions are continuously altering the market landscape, potentially 

affecting the expectations of market participants, increasing uncertainty, and disrupting 

market fundamentals.  Transaction costs may be large in these markets; potentially 

hindering integration between REC markets in Massachusetts and Connecticut.  Lastly, 

the inelasticity of the market demand curve for RECs can encourage large renewable 

producers to withhold production of RECs and alter price discovery. 

Renewable Portfolio Standards have been promoted and implemented as market-

based incentives for encouraging renewable generation.  As this study has shown, 

markets for RECs in Massachusetts and Connecticut do not behave according to 

hypothesized fundamentals.  Regardless of the reason for this divergence, regulators 

have not succeeded in creating an efficient, fundamental-driven market under current 

RPS programs in the two states. 

Overall, the main contribution of this study is that it provides data-driven results 

testing the hypothesized negative relationships between REC and electricity prices, and 

REC and natural gas prices, in addition to examining the link between REC prices across 

states.  Empirical investigation into these issues has been lacking in the literature.  The 

results of this analysis do not align with theory previously introduced in the literature; 

several reasons are presented as to why this is the case.   
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One limitation of this study is the relatively short time frame for which data is 

available.  Additionally, only two states are included; there are RPS programs in many 

other states.  Taking the results from this study and previous studies indicates that REC 

markets may still be in their infancy.  It appears transaction costs are large in the market.  

The sensitivity of the estimated relationship between REC prices in Massachusetts and 

Connecticut, along with the finding that the two prices are not part of the estimated 

cointegrating relationship, suggests that these REC markets have not matured to the 

point of being efficient.   A limited number of transactions may be restricting market 

integration.  Future empirical investigation into RPS programs and REC pricing 

mechanisms is required as programs mature and data becomes available. 
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CHAPTER IV 

PROJECTING IMPACTS OF CARBON DIOXIDE EMISSIONS REDUCTIONS IN 

THE ELECTRIC POWER SECTOR: EVIDENCE FROM A DATA-RICH 

APPROACH 

 

In August 2015, the United States Environmental Protection Agency (EPA) released a 

heavily anticipated final rule for reducing the amount of carbon dioxide (CO2) emissions 

from fossil-fuel run electricity generating plants (U.S. EPA 2015b).   This rule provides 

guidelines for achieving a reduction in nationwide CO2 emission levels in the electric 

utility sector of approximately 32% from 2005 levels by 2030.  The World Resources 

Institute (2014) posits that emissions reductions and economic growth can be achieved 

simultaneously.  On the other hand, the Institute for 21
st
 Century Energy estimates that 

U.S. GDP will average $51 billion less per year in the EPA regulation case than in the 

base case (U.S. Chamber of Commerce 2014).  This chapter contributes to the literature 

by addressing how the EPA rule (Clean Power Plan or CPP) may impact the U.S. 

economy, using a dynamic, data-rich model, the factor-augmented vector autoregression 

(FAVAR).  The empirical analysis serves as a data-driven complement to structural 

analyses of policy changes in the energy and electricity sectors (Burtraw et al. 2014; 

Bushnell et al. 2014; Electric Reliability Council of Texas 2015; Harrison et al. 2014; 

Hopkins 2015; U.S. Chamber of Commerce 2014; U.S. EPA 2015c). 

 The FAVAR approach allows for the use of a large number of time-series 

variables, overcoming the need to select a particular subset of variables to represent 
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larger economic activity as required by most time series approaches, commonly referred 

to as the “curse of dimensionality” (Aastveit 2014; Bernanke, Boivin, and Eliasz 2005).  

Bernanke, Boivin, and Eliasz (2005), for example, use 120 macroeconomic time series 

in their application of the FAVAR model in studying the effects of monetary policy.  

Zagaglia (2010) uses 239 different series in his study of oil price dynamics in the context 

of the macroeconomy.  The basic concept of the FAVAR approach is that a small 

number of underlying latent factors can be extracted from a high-dimensional dataset; 

these factors can then be used in a conventional multivariate time series framework 

(vector autoregression) alongside particular variables of interest to examine dynamic 

relationships or to develop forecasts.  

 The objective of this chapter is to estimate the potential implications of the 2015 

EPA Clean Power Plan for the U.S. economy.  Factors are estimated from a large 

number of monthly macroeconomic, financial, and energy related time series 

representing the underlying sources of variation in U.S. economic and energy sector 

activity.  These factors are included in a FAVAR model with nationwide CO2 emissions 

from the electric power sector, U.S. industrial production, and U.S. real personal income 

as the variables of interest.  Expected paths, both conditional and unconditional, are 

presented for U.S. industrial production, real personal income, and CO2 emissions, as 

well as for the factors.  Conditional forecasts based on the CO2 emissions reductions 

path outlined by the CPP are generated from the FAVAR model.  Inferences suggest that 

CO2 emissions reductions and economic growth can be achieved simultaneously, but 

that the regulation will slow growth and increase variability in economic activity. 
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Literature Review 

The vector autoregressive (VAR) framework was introduced and explored in the context 

of econometric analysis by works such as Sargent (1979) and Sims (1980).  The 

advancement of the VAR framework provided a new degree of flexibility to empirical 

analysis in economics; the methodology has been a staple ever since.  As Bernanke, 

Boivin, and Eliasz (2005, p. 398) point out, VAR analysis is an “…antidote to incredible 

identifying restrictions…” that plague economic models, meaning that causal inference 

can be conducted without having to make too many assumptions about the underlying 

model structure.  Sims, Goldfeld, and Sachs (1982) explore the suitability of VAR 

models for policy analysis.  They argue that careful applications of VAR models can be 

useful in making projections on the likely impacts caused by different policy scenarios.  

Sims, Goldfeld, and Sachs (1982) account for policy endogeneity in their model, 

something that had been previously ignored.  Sims (1986) extends this idea, giving 

examples of how a VAR model can be identified in the context of an endogenous policy 

instrument(s).  He argues that VAR models should not be considered inferior to rational 

expectations models, as they can provide useful information for policy analysis without 

relying on assumptions for market structure, behavior, functional form, etc.  Cooley and 

Leroy (1985) motivate the importance of developing a strong economic justification for 

the underlying structure of VAR models.  They contend that identifying a VAR model 

without economic justification leads to unsupportable interpretations of the results. 

 An extension of the VAR framework, the FAVAR, has its foundation in the work 

of Stock and Watson (2002a, 2002b) and Bernanke, Boivin, and Eliasz (2005).  Stock 
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and Watson (2002a) establish a method for forecasting in which a large number of time 

series predictors are summarized into a much smaller number of latent factors, which 

they call indexes.  The authors use principal components analysis (PCA) to estimate the 

indexes.  Stock and Watson (2002b) use a similar method to construct an array of 

models from 215 predictor series, referring to the extracted factors as diffusion indexes.  

Models making use of the diffusion indexes perform better than alternatives such as 

univariate autoregressive models and VAR models in forecasting exercises for most of 

the eight variables considered.  Bernanke, Boivin, and Eliasz (2005) formally introduce 

the FAVAR structure in the context of the U.S. monetary policy transmission 

mechanism (the dynamic causal effects of shocks to the federal funds rate on various 

measures of economic activity).  They estimate a VAR model using the federal funds 

rate alongside latent factors extracted from a large panel of macroeconomic variables 

(hence the factor-augmented nomenclature).  The authors conclude that the FAVAR 

approach makes use of important information that would otherwise be ignored in a 

smaller-dimension VAR framework. 

The FAVAR model has been applied to a variety of research questions since its 

introduction.  In the monetary policy arena, Mumtaz, Zabczyk, and Ellis (2011) study 

the effects of UK monetary policy and aggregate demand shocks on various measures of 

the UK macroeconomy, including inflation, real activity, and asset prices.  By allowing 

the FAVAR parameters to vary over time, they find that inflation has a much larger 

response to aggregate demand shocks at the beginning of their sample.  Moench (2008) 

uses a FAVAR approach to forecast the U.S. Treasury bond yield curve by building up a 
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term structure model from the dynamics of the short term interest rate.  He finds that the 

ability of the FAVAR model to predict the yield curve outperforms a variety of models, 

including AR, VAR, and several factor-based models previously introduced in the 

literature.  Barnett, Mumtaz, and Theodoridis (2014) compare the forecasting 

performance of a variety of models for UK GDP, inflation, and interest rates.  They find 

that a FAVAR model with time-varying parameters performs best for all three variables 

at longer (four-quarter ahead) forecast horizons.  Vargas-Silva (2008) investigates the 

effects of a monetary policy shock on U.S. housing starts.  He uses the same 120 series 

as in Bernanke, Boivin, and Eliasz (2005) to find that housing starts respond negatively 

to monetary policy shocks.  Gupta and Kabundi (2010) show U.S. house price inflation 

responds negatively to positive monetary policy shocks by using a FAVAR model based 

on 126 quarterly macroeconomic variables.  Apergis, Christou, and Payne (2014) study 

the dynamics of precious metal markets in the context of a FAVAR model.  They find 

that factors related to macroeconomic variables provide information that helps explain 

gold and silver price movements, whereas a stock market factor does not contribute to 

the same extent. 

Ielpo (2015) introduces a method for improving the power of swap yields in 

forecasting policy rates of both the Federal Reserve and European Central Bank.  He 

shows that his method, which corrects for the cyclical premium of yields, outperforms a 

FAVAR approach using the simple yields themselves in empirical examples.  Favero, 

Niu, and Sala (2012) forecast the U.S. yield curve using both no-arbitrage restrictions 

and large information via factor-based methods.  The authors find that large information 
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sets help at longer time horizons for longer maturities, but that no model strictly 

dominates the others in their empirical setting.  Koop (2013) compares the forecasting 

performance of a FAVAR approach with that of several Bayesian shrinkage methods for 

forecasting U.S. GDP, CPI, and the federal funds rate using a large information set.  He 

shows that Bayesian methods using the Minnesota prior tend to outperform the FAVAR 

approach in medium and large VARs.   

In an energy-related application of the FAVAR approach, Zagaglia (2010) makes 

use of a large dimension (239 variables) dataset containing energy, macroeconomic, and 

financial information to forecast crude oil spot and futures prices.  He finds that the 

FAVAR model improves the forecasting ability of time-series models for oil prices over 

two alternative VAR-type models: one including only oil returns and the second 

including only the factors as right-hand side variables.  Building off of this study, 

Ipatova (2014) applies both FAVAR and Factor-Augmented Vector Error Correction 

Model techniques to forecast crude oil futures at different maturities.  Comparing these 

models to a variety of univariate approaches, her findings are similar to Zagaglia (2010) 

that factor-augmented models have superior performance to alternative time series 

models in forecasting oil futures.  Binder et al. (2016) compare various methods for 

factor extraction in terms of forecasting performance for oil price returns.  The authors 

construct separate FAVAR models for each factor extraction method.  The methods 

perform similarly in terms of probabilistic forecasting, but the traditional PCA method is 

shown to outperform the method introduced by Lam and Yao (2012) in deterministic 

forecasts at short horizons (the reverse is true at longer horizons).  Additional results in 
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Binder et al. (2016) suggest that the choice of the number of factors in a FAVAR is an 

equally important matter in developing a FAVAR model for forecasting.  Hong (2012) 

shows that crude oil price shocks are not exogenous in contemporaneous time when 

modeled alongside factors extracted from a large panel of macroeconomic time series.  

He also shows that a FAVAR model outperforms AR models in forecasting oil price 

returns.  Duangnate (2015) investigates the implications of the number of factors 

included in a FAVAR model on probabilistic forecasting performance.  Interested in 

forecasting U.S. natural gas withdrawals, she finds that including estimated factors 

improves forecasting performance, but using too many factors in a FAVAR model may 

have detrimental effects (parsimony is important).  Chevallier (2011) uses factors 

extracted from macroeconomic, financial, and commodities indicators to study the 

reaction of European carbon prices to international shocks represented by the factors in a 

FAVAR model.  

Conditional Forecasting 

In unconditional forecasting, future values of endogenous variables are predicted solely 

using data up until the present.  Conditional forecasting differs in that the future path of 

at least one variable is assumed to be known (Bloor and Matheson 2011).  Forecasts of 

the variables in the system are made given the assumed path of at least one variable 

(often referred to as a scenario).  Conditional forecasts are commonly developed from 

estimated VAR models; early applications used VAR models to make projections of 

macroeconomic variables, such as GDP or inflation, conditional on a future path of 

monetary policy (Doan, Litterman, and Sims 1984; Dokko et al. 2011; Jarocinski and 
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Smets 2008; Luciani 2015; Meyer and Zaman 2013; Sims, Goldfeld, and Sachs 1982).  

Giannone et al. (2014) develop forecasts of Euro area short-term inflation conditional on 

different future paths of oil prices and price index determinants, showing that their 

model is useful for scenario analysis.  Clark and McCracken (2014) present tests of 

predictive ability (bias, efficiency, and equal accuracy) for conditional forecasts from a 

variety of estimated models.  Other recent examples of conditional forecasting include 

Banbura, Giannone, and Lenza (2015), Stock and Watson (2012), Bloor and Matheson 

(2011), and Lenza, Pill, and Reichlin (2010).  These studies generate conditional 

forecasts from several different models to explore monetary policy effects and 

macroeconomic dynamics during the global financial crisis of 2007-2009. 

Banbura, Giannone, and Lenza (2015) note that there is a lack of investigation 

into conditional forecasting from VAR models for large datasets.  The authors generate 

forecasts, both unconditional and conditional on realized paths of several key variables, 

for a large set of Euro area macroeconomic and financial indicators.  They employ two 

models, one using Bayesian shrinkage methods and the other a dynamic factor model, to 

forecast their 26 variable system.  Additionally, the authors develop a Kalman filter 

based procedure to estimate conditional forecasts for linear systems that can be written 

in a state-space form.  They find that both Bayesian methods and dynamic factor models 

produce accurate unconditional forecasts and reliable scenarios, and that the forecasts 

from each model are very similar.  
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Brief Introduction to the Clean Power Plan 

The Clean Power Plan final rule, officially “Carbon Pollution Emission Guidelines for 

Existing Stationary Sources: Electric Utility Generating Units,” was released in 2015 by 

the U.S. Environmental Protection Agency (U.S. EPA 2015b).  This rule was released 

approximately one year after a proposed version, allowing the EPA to address comments 

and concerns from states, government agencies, utilities, private corporations, and the 

public.  Despite the EPA‟s review of comments, many entities are still strongly opposed 

to the plan and continue to battle its implementation (Hogan 2015; Potts and Zoppo 

2015).
 12,13

   

 The goal of the CPP is to achieve a 32% reduction in nationwide CO2 emissions 

from electric utility generating units by establishing emissions performance rates for 

existing fossil-fuel fired power plants.  In addition, the EPA outlines unique rate- and 

mass-based goals for each state, based on each state‟s current electricity generating mix.  

The EPA has given flexibility to states in the choice of a strategy or combination of 

strategies (emissions taxes, trading programs, incentives for renewables, etc.) to achieve 

these standards.  Each state is required to submit an implementation plan outlining their 

choice and how it will meet the standards.  The CPP not only allows, but encourages 

states to work together to achieve CO2 reductions (U.S. EPA 2015b).  See Burtraw et al. 

(2014), Burtraw, Bushnell, and Munnings (2015), Bushnell et al. (2015), Hogan (2015), 

                                                 

12
 See Potts and Zoppo (2015) for a discussion of the legal issues surrounding the Clean Power Plan and its 

likelihood of being upheld in the U.S. Supreme Court. 
13

 No claims about the legal issues surrounding the Clean Power Plan are made in this study; the sole 

purpose of the study is to evaluate the potential implications of the rule in its current iteration. 
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Michel and Nielsen (2015), and Paul, Palmer, and Woerman (2013) for detailed 

discussions regarding how states can plan for emissions reductions. 

 In establishing the CO2 emissions performance goals for existing electric power 

plants, the EPA established three „building blocks‟ to achieving emissions reductions 

“…that are available to all affected electricity generating units” (U.S. EPA 2015b, p. 

64667).  The blocks are: (1) improving heat efficiency at existing coal-fired plants; (2) 

substituting generation from existing natural gas combined cycle units for generation 

from higher-emitting sources; and (3) substituting generation from zero-emitting sources 

for generation from fossil-fuel units.  The EPA recognizes that CO2 emissions reductions 

may be achieved through other measures, including demand-side energy efficiency 

improvements, and therefore does not require states to use the three building blocks 

exclusively, or even at all, in their implementation plans. 

Under the guidelines set forth by the CPP, the EPA projects annual national CO2 

emissions to be 22-23% below 2005 levels in 2020, 28-29% below in 2025, and 32% 

below in 2030 (U.S. EPA 2015b).  These projections are used to develop scenarios under 

which conditional forecasts are generated in this study.  

Hopkins (2015) compares the findings of six studies that estimate the projected 

impacts of the CPP.  He notes that the studies generally agree on several key points.  

One common theme among the studies is that energy efficiency improvements are the 

most cost-effective way to reduce CO2 emissions and electricity consumption is 

projected to decline as a result under the CPP.  Additionally, the studies project that 

overall cost increases, including costs to electricity consumers, will be manageable.  
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Hopkins (2015) also notes that the studies show decreases in electricity generation from 

coal and that increased generation from renewables and nuclear will help states meet 

CPP goals.  These increases in renewables and nuclear under the CPP, however, are not 

different than what would happen in base case scenarios.  As noted above, this chapter 

serves as a complement to existing structural analyses of impacts to the electricity and 

energy sectors by projecting the impacts of the CPP on larger economic activity in a 

data-rich setting.  

Methodology 

FAVAR Approach 

The FAVAR model uses information from a large number of time series by extracting 

underlying, latent factors which drive variation in the data.  These factors are then 

included in a traditional VAR along with observed variable(s) of interest for which 

forecasting or specific dynamic relationships are desired.  Let     be a large,  -

dimensional panel of time series variables, where each element           contains 

observations of an individual time series over the period        .    Let    be a     

vector of latent factors which describe the information contained in   .  Additionally, let 

   be a     vector of variables of interest.  The relationship between the latent factors 

and observed time series is: 

(4.1)                             

for        .    is an     matrix of factor loadings,    is     matrix of 

coefficients relating    and   , and    is an     vector of mean zero idiosyncratic 

components, or error terms, with diagonal covariance matrix.  No assumptions regarding 
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the magnitude of   and   are needed at this time, however, as Stock and Watson (2002a) 

show, the restriction that        is needed for consistent estimation of the factors.  

The number of information time series must be much greater than the number of latent 

factors plus observed variables of interest.   

 From equation (4.1), both    and    contain information that drives   .  The 

information provided in the observed time series    and    can be utilized to estimate    

in the context of equation (4.1).  The dynamic relationships between the factors (  ) and 

series of interest (  ) are: 

(4.2)     [
  

  
]   ∑   [

    

    
] 

                                           

where            are             matrices of coefficients relating past 

values of    and    to values at time  , and     is a vector of mean zero innovations with 

covariance matrix  .   

Bernanke, Boivin, and Eliasz (2005) present two options for estimating a 

FAVAR, the first of which is a two-step method that initially extracts factors from    

following the PCA procedure used by Stock and Watson (2002a, 2002b).  PCA of the 

informational time series   , t=1,…,T is based on the   largest eigenvalues of its sample 

contemporaneous covariance matrix  ̂     
 

 
∑      ̅      ̅   

    (Stock and 

Watson 2002a).  The     column of the loading matrix    in equation (4.1) is 

proportional to the eigenvector corresponding to the     largest eigenvalue of  ̂    . 

From equation (4.1), the estimated factors  ̂  are obtained using least-squares.  In the 

second step, the factors are placed into a VAR model as endogenous series, joining the 
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observable time series of interest.  They also propose a one-step procedure which 

estimates the factors and the FAVAR system simultaneously using a Gibbs sampling 

procedure.  They find any benefits from using the fully parametric one-step procedure 

are small.  For this reason, as well as the relative computational ease of the alternative, 

the two-step procedure is used in this chapter. 

As noted above, equation (4.1) allows both    and    to contain information that 

drives   .  Thus, the multivariate time series    must be adjusted for the linear effect of 

   in some manner.  The following procedure following Binder et al. (2016) is used here.  

Let  ̃      ̂   , and  ̂  ( ̂ 
 
    ̂ 

 
) where   ̂ 

 
  

 

 
∑     

     
 

 
∑       

   
   

 
   .  

After this adjustment, the two-step procedure following Bernanke, Boivin, and Eliasz 

(2005) is conducted.  Specifically, in the first step, PCA is carried out on the matrix  ̃  to 

obtain estimates of the factors,  ̂ (equation 4.1).  In the second step, a FAVAR 

specification including  ̂  and    is estimated following equation (4.2), using least-

squares techniques.  

Conditional Forecasting 

This chapter builds on the work of Banbura, Giannone, and Lenza (2015) by developing 

conditional forecasts from a VAR model for a high-dimensional dataset.  The authors 

use both Bayesian methods and a dynamic factor model to employ the large dataset.  A 

slightly different approach, however, is taken here by applying a FAVAR model to make 

use of the information contained in the large dataset.  The future path of U.S. CO2 

emissions from the electric power sector is assumed known, based on the EPA‟s outlined 
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path under the CPP.
14

  Following the previous section, factors are extracted in the first 

step, and then the FAVAR parameters of equation (4.2) are estimated using OLS.
15

  To 

compute conditional forecasts, first re-write equation (4.2) in terms of its moving-

average (MA) representation: 

(4.3)     [
  

  
]                          

where      are the MA coefficients of the model.  When fixing a future value of an 

endogenous variable the associated forecast error is, by definition, constrained (the 

difference between the constrained value and the unconditional forecast is set) 

(Robertson and Tallman 1999).  The  -step ahead forecast error of [
    

    
] with forecast 

origin     is: 

(4.4)     ∑         
   
    .         

In effect, by constructing a conditional forecast, linear constraints are placed on the 

innovations              . 

 As explained in Chapters II and III, the innovations    are, in general, non-

orthogonal (      
      is not a diagonal matrix).  It is often beneficial to consider the 

„orthogonalized‟ innovations, as the co-movement of the endogenous variables over time 

                                                 

14
 CO2 emissions are treated as the policy variable for which future values are constrained in this 

forecasting exercise. The implication is that CO2 emissions shocks are assumed to generate the same 

response of economic activity whether emissions levels are set by policy or not.  Sims, Goldfeld and Sachs 

(1982) and Sims (1986) argue that this implication is solely a cautionary reality, not a rejection, of using 

forecasting models in policy analysis.  Bessler and Kling (1989, p. 504) expound upon this point by noting 

that “one should be careful in his/her use of an econometric model where extreme values of the policy 

variables are considered.”    
15

 Clark and McCracken (2014), using Monte Carlo experiments, find little difference between the 

conditional forecasting performance of VARs estimated via Bayesian methods and those estimated via 

OLS.   
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needs to be taken into account.  In computing the conditional forecasts, orthogonal 

innovations following a Bernanke (1986) ordering are used.  Correlated innovations    

are written as a function of the underlying orthogonal sources of variation,   :  

(4.5)              .              

As in Chapters II and III, a form for the matrix   is obtained through causal flow 

methods (Pearl 2000; Spirtes, Glymour, and Scheines 2000), specifically the GES 

algorithm (Chickering 2003) in TETRAD V (2015). 

 Using orthogonalized innovations, the forecast error in equation (4.4) is re-

written as: 

(4.6)     ∑    
        

   
    .             

The linear constraints on the innovations are: 

(4.7)                     

where   is a vector of the orthogonalized innovations               (forecast period 

errors),   is a vector of differences between the known path of the constrained variable 

and its unconstrained forecast values, and   is a matrix relating elements of   to  .  To 

generate conditional forecasts, the vector   which minimizes     subject to the 

constraint in equation (4.7) is found.  The solution to this minimization problem is:  

(4.8)      ̂                     

(Doan, Litterman, and Sims 1984; Van der Knoop 1987).  The solution can be thought of 

as the set of innovations to the FAVAR that best meet the conditioned path for the 

constrained variable(s) according to the least-squares criterion (Clark and McCracken 

2014).  Conditional forecasts of the unconstrained endogenous variables are constructed 
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by modifying unconditional forecasts with the elements of  ̂  (Robertson and Tallman 

1999).  Waggoner and Zha (1999) developed a Gibbs sampling technique for efficiently 

computing the mean and variance of the conditional distribution of innovations 

(extended by Jarocinski 2010).  Clark and McCracken (2014) find that conditional 

forecasts are not affected when using the algorithm of Wagooner and Zha (1999) instead 

of Doan, Litterman, and Sims (1984).   

Data 

The model is estimated using monthly data for the period July 1976 to December 2014, 

giving 462 observations.  As previously noted, three observed series of interest are 

included in   : U.S. carbon dioxide emissions from the electric power sector (U.S. 

Energy Information Administration (EIA) 2015a), U.S. industrial production index 

(Federal Reserve Bank of St. Louis Economic Research 2015), and U.S. real personal 

income (Federal Reserve Bank of St. Louis Economic Research 2015).  Based on 

monthly data availability, industrial production and real personal income are chosen to 

represent producer and consumer welfare.  The informational time series, matrix   , 

contains monthly observations of 166 variables including macroeconomic and financial 

indicators, stock indices and share prices, and energy prices and quantities (Appendix 

C).  Macroeconomic data comprises employment indicators, consumer and producer 

price indices, consumption measures, housing indicators, and production and 

manufacturing indices.  Financial data includes government and corporate bond rates, 

stock market indices, and share prices of major energy firms.  Energy data includes 

generation totals from various fuel sources, fuel prices, electricity prices, natural gas and 
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crude oil drilling and shipment activity, electricity sales to different sectors, gas and 

petroleum product stocks, and energy production and consumption measures from 

various sources and sectors. 

All data series are in natural logarithms for the analysis, except those that are in 

terms of percentages.  The PCA procedure requires stationarity of each of the individual 

components of    for estimation of the factors (Stock and Watson 2002b; Moench 2008; 

Aastveit 2014; Tsay 2014).  Each of the variables is transformed to a stationary process 

before any of the modeling procedure is undertaken (Appendix C).  Additionally, all data 

series are standardized to have mean zero and unit variance as an initial pre-adjustment 

following Moench (2008).   

Results 

Model Specification 

Bai and Ng (2002) develop a formal selection procedure for determining the number of 

factors ( ) in the factor model of equation (4.1) based on information criteria.  As noted 

by Duangnate (2015), the estimated number of factors can vary heavily across 

information criteria in empirical applications.  The number of factors in this chapter 

ranges from 1-20 across the seven information criteria proposed by Bai and Ng (2002) 

(table 4.1).  Moench (2008) and Zagaglia (2010) discuss the importance of considering 

parsimony when determining the number of factors to include in a FAVAR model.  

Additionally, Duangnate (2015) finds forecasting performance may decline when the 

number of factors included in a FAVAR model increases.  For these reasons, four factors 

are included in the FAVAR model.  The optimal lag order ( ) considered in the FAVAR 
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model (equation 4.2) is 12, based on the minimum value of the AIC loss metric (table 

4.2).  Twelve lags are chosen to help capture the seasonal behavior that is characteristic 

of the electricity sector.  The remaining results are based on an estimated FAVAR 

specification with     factors and      lags. 

 

Table 4.1. Bai and Ng (2002) Information Criteria for Selecting Number of Factors
1 

Criterion Number of Factors 

IC1 20 

IC2 14 

IC3 20 

AIC1 20 

BIC1 20 

AIC3 20 

BIC3 1 
1
Maximum number of factors allowed in the computation of the information criteria is 

20. 

 

 

Table 4.2. Optimal Lag Order Selection for the FAVAR 

Lags SIC AIC HQ 

0 9.28 9.28 9.28 

1 1.53 1.09 1.28 

2 1.37 0.49 0.84 

3 1.18 -0.14 0.39 

4 0.93 -0.82 -0.12 

5 1.24 -0.96 -0.08 

6 1.37 -1.27 -0.23 

7 1.81 -1.27 -0.06 

8 2.28 -1.23 0.14 

9 2.71 -1.24 0.32 

10 3.03 -1.37 0.37 

11 3.19 -1.64 0.26 

12 3.37 -1.89 0.18 

13 3.83 -1.88 0.37 

14 4.32 -1.83 0.59 

15 4.81 -1.78 0.82 
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Properties of the Factors 

It is important to develop an interpretation for the estimated factors to provide economic 

intuition to the FAVAR model and the ensuing forecasts.  To provide a sense of the 

information contained in the factors, each estimated factor is regressed on each 

individual component of the large informational time series   .  The ten largest    

values for each factor are reported in tables 4.3-4.6.  All 167    values for each factor 

are charted in figures 4.1-4.4, with the individual components of    grouped into 10 

categories.   Factor 1 appears to be heavily related to macroeconomic indicators, 

particularly consumer price indices, personal consumption, and labor force measures 

(table 4.3 and figure 4.1).  Additionally, Factor 1 is correlated with electricity generation 

from (and consumption of) coal and petroleum in the electric power sector, end-use 

electricity sales, and stocks of crude oil and other petroleum products (figure 4.1).  

Factor 2 is related to crude oil prices, both imported and domestic, as well as producer 

price and manufacturing indices (table 4.4 and figure 4.2).  Factor 3 is also correlated 

with various oil price measures, but additionally relates to capacity utilization in the oil 

and gas extraction and manufacturing industries (table 4.5 and figure 4.3).  Finally, 

Factor 4 is related to natural gas storage activity, total and primary energy consumption 

in the commercial and residential sectors, and petroleum product stocks (table 4.6 and 

figure 4.4). 

 The proportion of total variance in    explained by each of the first four factors 

is also displayed in tables 4.3-4.6.  The proportion of variance explained by      

      is given by    ∑   
 
    where    is the     largest eigenvalue of  ̂     (the  
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Table 4.3. Variance Explained by Factor 1 and Ten Highest    Values from 

Regressing Factor 1 on Individual Components of   
1
 

18.0% of total variance
2
  

Series Description    

Consumer Price Index for All Urban Consumers: Services 0.932 

Consumer Price Index for All Urban Consumers: All items less medical care 0.931 

Consumer Price Index for All Urban Consumers: All Items 0.929 

Consumer Price Index for All Urban Consumers: Commodities 0.927 

Consumer Price Index for All Urban Consumers: All items less shelter 0.926 

Consumer Price Index for All Urban Consumers: Transportation 0.908 

Personal Consumption Expenditures: Services 0.902 

All Employees: Education & Health Services 0.883 

Consumer Price Index: All Items Less Food & Energy 0.883 

Civilian Labor Force 0.873 

1
    values are from the regressions  ̂          for           

2 
Percentage of variance in    explained by Factor 1. 
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Table 4.4. Variance Explained by Factor 2 and Ten Highest    Values from 

Regressing Factor 2 on Individual Components of   
1
 

6.7% of total variance
2 

 

Series Description    

Refiner Acquisition Cost of Crude Oil, Composite 0.385 

Refiner Acquisition Cost of Crude Oil, Imported 0.379 

Producer Price Index: Supplies &   Components 0.376 

Landed Cost of Crude Oil Imports 0.371 

Refiner Acquisition Cost of Crude Oil, Domestic 0.369 

Crude Oil Domestic First Purchase Price 0.369 

Free on Board Cost of Crude Oil Imports 0.363 

Producer Price Index by Commodity for Finished Consumer Goods 0.307 

Producer Price Index by Commodity for Finished Goods 0.282 

ISM Manufacturing: PMI Composite Index© 0.203 

1
    values are from the regressions  ̂          for           

2 
Percentage of variance in    explained by Factor 2. 
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Table 4.5. Variance Explained by Factor 3 and Ten Highest    Values from 

Regressing Factor 3 on Individual Components of   
1
 

5.3% of total variance
2 

 

Series Description    

Crude Oil Domestic First Purchase Price 0.322 

Refiner Acquisition Cost of Crude Oil, Composite 0.320 

Refiner Acquisition Cost of Crude Oil, Imported 0.312 

Landed Cost of Crude Oil Imports 0.311 

Refiner Acquisition Cost of Crude Oil, Domestic 0.310 

Free on Board Cost of Crude Oil Imports 0.302 

Capacity Utilization: Oil and gas extraction 0.278 

Capacity Utilization: Manufacturing (NAICS) 0.263 

Capacity Utilization: Manufacturing (SIC) 0.251 

Capacity Utilization: Total Industry 0.242 

1
    values are from the regressions  ̂          for           

2 
Percentage of variance in    explained by Factor 3. 
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Table 4.6. Variance Explained by Factor 4 and Ten Highest    Values from 

Regressing Factor 4 on Individual Components of   
1
 

5.1% of total variance
2 

 

Series Description    

Natural Gas Storage Activity, Injections 0.528 

Natural Gas Storage Activity, Withdrawals 0.459 

Liquefied Petroleum Gases Stocks 0.384 

Total Energy Consumed by the Residential Sector 0.373 

Electricity Retail Sales to the Industrial Sector 0.250 

Total Energy Consumed by the Commercial Sector 0.231 

Distillate Fuel Oil Stocks 0.218 

Hydroelectric Power Consumption 0.213 

Electricity Net Generation From Conventional Hydroelectric Power 0.212 

Natural Gas in Underground Storage, Total 0.200 

1
    values are from the regressions  ̂          for           

2 
Percentage of variance in    explained by Factor 4. 
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Figure 4.1. Chart of    values from regressing Factor 1 on individual components of    

 



 

114 

 

Figure 4.2. Chart of    values from regressing Factor 2 on individual components of    
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Figure 4.3. Chart of    values from regressing Factor 3 on individual components of    
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Figure 4.4. Chart of    values from regressing Factor 4 on individual components of    
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contemporaneous covariance matrix of   ) (Tsay 2014).  Factor 1 accounts for the 

largest portion of variance in    (18%), while the first four factors together explain 35% 

of the total variance in   . 

Contemporaneous Causality 

The Directed Acyclic Graph (DAG) generated by the GES algorithm is presented in 

figure 4.5.  The DAG is used to provide the causal ordering for innovations in the 

FAVAR (matrix   in equations 4.5 and 4.6).  Contemporaneous causal flows are present 

from industrial production innovations to real personal income and to Factor 1.  

Additional flows exist from Factors 1 and 2 to real personal income.  There are also 

contemporaneous information flows from Factors 1 and 3 to Factor 2 and from Factor 2 

and CO2 to Factor 4.
16

 

Forecasting Results 

Unconditional and conditional forecasts are constructed for the seven variables in the 

FAVAR (CO2 emissions, industrial production, real personal income, and Factors 1-4).  

Out-of-sample forecasts from January 2015 to December 2030 are graphed in figures 

4.6-4.12.  The constraints placed on the forecast period are that monthly CO2 emissions 

levels in the electric power sector must be 22% below corresponding monthly 2005 

levels in the year 2020, 28% below 2005 levels in 2025, and 32% below 2005 levels in 

                                                 

16
 As noted by Demiralp and Hoover (2003), graphical methods for detecting contemporaneous causality 

in VARs generally perform well in identifying the skeleton of a causal structure, but do not always 

identify the direction of causal arrows correctly.  Prior beliefs or additional statistical information may be 

used to supplement graphical algorithms.  For this reason, in addition to the causal structure outlined in 

Figure 4.5, forecasts are generated from a model where the direction of flow from CO2 to Factor 4 is 

reversed (i.e. Factor 4 to CO2).  Forecasting results are robust to this specification (industrial production 

has 3.97% annual growth in the conditional case and 3.92% annual growth in the unconditional case; real 

personal income 3.27% and  3.43%). 
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Figure 4.5. Directed Acyclic Graph for contemporaneous causal flows among 

contemporaneous innovations from the FAVAR 

 

 

 

 

Figure 4.6. Forecasts of CO2 emissions levels from the electric power sector  
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Figure 4.7. Forecasts of U.S. industrial production index  
 

 

 

 Figure 4.8. Forecasts of U.S. real personal income 
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Figure 4.9. Forecasts of Factor 1 

 

 

 

Figure 4.10. Forecasts of Factor 2 
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Figure 4.11. Forecasts of Factor 3 

 

 

 

Figure 4.12. Forecasts of Factor 4 
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2030, for a total of 36 linear constraints in equation 4.7.  The set of forecast period 

innovations that best meet this path for CO2 emission reductions are computed and used 

to construct the conditional forecasts.  Confidence intervals for the conditional forecasts 

are constructed by simulating 1,000 draws from the distribution of forecasts under the 

constrained path of CO2 emissions.  The 16
th

 and 84
th

 percentiles of the distribution are 

displayed in figures 4.6-4.12 (approximately one standard deviation from the mean, 

assuming normally distributed innovations) (Estima 2013).  Checks for sensitivity are 

conducted by varying the constraints in numerous ways, including gradually increasing 

the CO2 emissions reductions in each year of the forecast period, only keeping the 

constraint in the last year (2030), and both shortening and lengthening the forecast 

period by five years.  Inferences based on comparing conditional and unconditional 

forecasts are approximately the same across the sensitivity checks. 

 The forecasts for CO2 emissions provide a visualization of the constraint (figure 

4.6).  The mean of the conditional forecast for CO2 emissions is the same as the 16
th

 and 

84
th

 percentiles of the distribution in 2020, 2025, 2030; this is a direct implication of 

imposing the constraints as described.  Also of note is that the solution to the 

minimization problem (equation 4.8) corresponds to a steady decrease in CO2 emissions, 

rather than large drops in the years in which the constraint is imposed.  Lastly, both the 

conditional and unconditional forecasts for CO2 emissions are characterized by seasonal 

patterns that are present in the electric power industry. 

 Industrial production is projected to be lower in the CPP CO2 emissions 

reduction scenario than in the unconditional case over most of the forecast period (figure 
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4.7).  The maximum difference between the two forecasts occurs in late 2024 when the 

mean conditional industrial production forecast is 8% lower than the unconditional 

forecast.  Unconditional and conditional forecasts for industrial production converge by 

the end of the forecast period.  The average annual growth rate over the entire forecast 

period, therefore, is equal in the conditional and unconditional cases (3.9%).  The 

average annual growth rate for 2015 to 2025, however, is 4.4% in the unconditional case 

and 3.3% in the conditional case.  Additionally, the upper confidence band for the 

conditional forecast is near or below the unconditional forecast from 2017 to 2025.  

After 2025, the unconditional forecast falls within the confidence bands for the 

conditional forecast.  Variance of the industrial production forecast is three percent 

lower in the conditional case than the unconditional. 

The forecasted path of real personal income is projected to be lower in the 

conditional case than in the unconditional over the entire forecast period.  The mean 

conditional forecast for real personal income reaches a maximum difference of 4.1% 

lower than the unconditional forecast in late 2025 and is 1.7% lower at the end of the 

forecast period.  On average, real personal income is projected to grow 3.3% per year in 

the CPP scenario and 3.5% per year in the unconditional case.  However, the upper 

confidence band of the conditional forecast for real personal income is slightly above the 

unconditional forecast for the entire forecast period.  The variance of the conditional 

forecast of real personal income is 17% lower than the unconditional forecast. 

 The conditional forecast of Factor 1 tracks the unconditional forecast closely 

over the first half of the forecast period, but falls below the unconditional forecast 
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around late 2021 and remains below for the rest of the forecast period.  The gap between 

the two forecasts increases over this time frame; in fact, the upper confidence band for 

the conditional forecast is below the unconditional forecast by the end of the forecast 

period.  The variance of the conditional forecast of Factor 1 is 200% higher than that of 

the unconditional forecast.  The forecast results imply that the CO2 emissions scenario 

will have a negative impact (in comparison with the unconditional case) on Factor 1, and 

that additional volatility may be present.  Recall, Factor 1 is highly correlated with 

various consumer price indices, consumption, labor force measures, electric generation 

from fossil fuels, and end-use electricity sales.  These economic indicators and energy 

measures may be negatively impacted by the CPP in the second half of the forecast 

period. 

 Factor 2 is forecasted to be slightly lower under the conditional case than the 

unconditional case for the majority of the forecast period, with a 75% increase in 

variance in the conditional case.  Conditional forecasts of Factor 3 are projected slightly 

above unconditional forecasts in the beginning third of the forecast period, and slightly 

below the unconditional forecasts in the final third of the forecast period.  The variance 

of the two forecasts for Factor 3 are approximately equal (0.2% difference).  As Factors 

2 and 3 are both most related to crude oil price measures, the impact of the CPP on oil 

price measures is ambiguous.  The forecasts for Factor 3 imply that capacity utilization 

in the manufacturing and oil and gas extraction industries could initially be positively 

impacted by the CPP scenario, with this effect reversing in the latter third of the forecast 

period.  The conditional forecast of Factor 4 tracks the unconditional forecast closely, 
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however with increased volatility in the conditional case (63% increase in variance).  

This result suggests that the CPP could result in more volatile natural gas storage activity 

and total energy consumption. 

Conclusions 

Conditional forecasts are developed using information from a dynamic, data-rich 

environment.  Previous applications have focused on Bayesian methods or dynamic 

factor models to conduct conditional forecasting or scenario analysis using large 

datasets.  In this chapter, a FAVAR model is used to employ a large multivariate time 

series dataset, with the purpose of examining the potential impacts of the U.S. EPA‟s 

goal to reduce CO2 emissions from the electric power sector.  The conditional 

forecasting exercise uses the projected reductions in CO2 emissions outlined by the 

EPA‟s Clean Power Plan to fix a path for one of the endogenous variables in the 

FAVAR model (electric power sector CO2 emissions).  Differences between conditional 

and unconditional forecasts are examined as potential impacts of U.S. policy to reduce 

CO2 emissions. 

 The issue of whether climate policy will positively or negatively impact 

economic growth is an important consideration as the U.S. moves forward with 

implementation of the CPP.  Results of this study suggest that both U.S. real personal 

income and industrial production will initially see lower growth under the CPP CO2 

emissions reduction scenario than in the unconditional case.  Growth in real personal 

income will continue to be lower in the conditional case than the unconditional case over 

the entire forecast period.  Interestingly, the conditional forecast of industrial production 
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converges to the unconditional forecast at the end of the forecast period.  A possible 

explanation of this feature is that the economy will show resiliency in adjusting to the 

CO2 emissions constraint.  This is only speculation, however, and further research into 

the convergence of these forecasts is required to determine its source. 

Forecasts of the first factor show that coal and petroleum use in the electric 

power sector may be negatively impacted by the CPP.  This result is consistent with 

other studies and the idea that reduction in coal-fired generation is an easy and cost-

effective way to achieve emissions reductions (Hogan 2015; U.S. Chamber of 

Commerce 2014).  Additionally, end-use electricity sales may be lower under the CPP 

scenario than in the unconditional case (consistent with Hopkins 2015).  Price levels, 

personal consumption, and labor force measures may be negatively impacted as well.  

Increased volatility under the CPP is also possible for the variables associated with 

Factor 1.  Factor 2 and 3 forecasts suggest the projected impact of the CPP on various 

crude oil price levels is ambiguous.  The Factor 4 forecasts suggest the potential for 

increased volatility in natural gas storage activity and overall energy consumption. 

Generally, the forecasting exercise shows little difference between unconditional 

and conditional forecasts of the variables in the early part of the forecast period, 

suggesting that impacts of the CPP are small while the constraints are less stringent.   

Results also suggest substantial increases in the variance of forecasts for Factors 1 and 4 

under the CPP scenario.  Both economic and energy sector activity are projected to be 

more volatile under the CPP.  Additionally, confidence intervals for the conditional 
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forecasts show a high level of uncertainty as the intervals overlap with the unconditional 

forecast for many of the variables. 

 Overall, the results of this study suggest that economic activity may grow more 

slowly under CPP implementation than it would otherwise; however, economic growth 

and CO2 reductions can be achieved simultaneously.  The results serve as a data-driven 

complement to structural analyses of policy change in the energy sector.  Future research 

into climate policy can be improved by continued investigation into methods that 

employ information from large datasets. 
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CHAPTER V 

 

CONCLUSIONS 

 

The U.S. energy sector is continuously evolving amidst regulatory changes, 

technological innovations, and shifts in market conditions.  Given this constantly 

changing environment, it is imperative to improve our understanding of the dynamics in 

which the U.S. energy sector operates.  The overall objective of this dissertation is to 

contribute to a better understanding of the past, present, and future of U.S. energy 

market dynamics and interactions with policy by: (1) characterizing market relationships 

and investigating the consequences of past regulatory changes and shifts in market 

conditions; (2) examining current program functionality; and (3) projecting the impacts 

of future policy implementation.   

 To achieve this overall objective, gaps present in energy-related economics 

literature are addressed by examining three related issues associated with the electric 

power sector.  Advancements in multivariate time series analysis are employed.  First, 

inventory management of inputs in the energy sector has received little attention in the 

literature.  Addressing this deficiency, long-term past inventory management behavior is 

characterized in Chapter II by examining coal inventories at U.S. electric power plants.  

Specific objectives are to investigate how coal inventories are related to movements in 

economic factors and to determine whether these relationships have remained constant 

over time.  Next, market-based tradable right programs have received considerable 

attention; however, there is a lack of empirical examination of the performance of such 

programs, especially Renewable Portfolio Standards (Felder 2011; Fischer 2010).  This 
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gap in the literature is addressed in Chapter III by exploring the pricing dynamics of 

Renewable Energy Credits (RECs) with the goal of improving our understanding of the 

functionality of currently existing RPS programs.  Finally, there has been speculation 

about the potential economic impacts of reducing U.S. CO2 emissions through the Clean 

Power Plan.  A data-rich time series approach, which is lacking in the energy policy 

literature, is used to estimate the potential impacts of emissions reductions on economic 

and energy sector activity in Chapter IV. 

 Overall, results suggest that changes in the regulatory environment have had and 

will continue to have important implications for the electric power sector.  The sector, 

however, has exhibited adaptability to past regulatory changes and is projected to remain 

resilient in the future.   

Energy Market Relationships: Past Changes in Regulation and Market Conditions 

While studies concerning inventory management are relatively abundant, most previous 

studies pertain to optimal stocking of finished goods (Arrow et al. 1951; Blinder 1986; 

Feldstein et al. 1976; Holt, Modigliani, and Simon 1955), and not input inventory 

management.  Further, very few studies investigate inventory behavior in the energy 

sector, especially the electric power sector.  This gap in the literature is addressed by 

examining the response of coal (input) inventories at U.S. electric power plants to 

movements in economic factors.  Past regulatory changes have had implications for the 

profitability of firms in the electric power sector, as shown by Jha (2015), who finds that 

U.S. electric power plants that face deregulated electricity markets save approximately 

3% per month in coal procurement and storage costs compared to regulated plants.  A 
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test for stability of the long run parameters in a vector error correction model following 

Hansen and Johansen (1999) is employed in Chapter II to determine whether long run, 

dynamic relationships governing coal inventory behavior have remained constant over 

time.  There is a lack of empirical applications of tests for structural breaks in the long 

run relationships estimated in vector error correction models.  This dissertation provides 

an economically intuitive setting for an application of the Hansen and Johansen (1999) 

test and gives a detailed interpretation of the results. 

Results suggest two sustained periods of instability in the long run relationships, 

the first from mid-1981 to mid-1986, and the second from mid-1994 to mid-2001.  The 

first period of instability follows the implementation of the Staggers Rail Act of 1980.  

This Act, which altered railroad industry practices and rates, is one likely cause of this 

initial period of instability in the long run relationships among the variables.  The second 

period of instability is preceded by and contains several major regulatory changes in the 

natural gas and electric power sectors, including the Clean Air Act Amendments of 

1990, the Energy Policy Act of 1992, the introduction of NAFTA, the unbundling of 

natural gas sales and transportation, and deregulation of the electric power sector.  

Following the second period of instability, the long run relationships remain constant for 

the rest of the sample.  This latter period of stability in the sample includes two major 

shocks to energy markets (Hurricanes Katrina and Rita in 2005 and the onset of the U.S. 

shale boom in the mid-to-late 2000s).  Taken together, these results suggest that the 

fluctuating regulatory environment of the 1990s was a larger source of instability in the 

inventory behavior of electric generating firms than the shifts in market conditions of the 
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mid-to-late 2000s.  Policy makers should be aware that altering the regulatory 

environment can cause considerable fluctuations in how firms‟ inventory decisions 

interact with input and output markets and opportunity costs in the long run. 

Current Program Functionality 

The academic literature is also lacking empirical studies of the performance of 

Renewable Portfolio Standards (RPS) (Fischer 2011; Felder 2010).  RPS programs have 

been implemented by the majority of U.S. states as market-based, tradable rights 

mechanisms to encourage increased electric generation from renewable sources.  To the 

author‟s knowledge, there have been no empirical investigations into the pricing 

dynamics of Renewable Energy Credits (RECs).  A multivariate time series approach is 

taken in this dissertation, using data from Massachusetts and Connecticut to examine if 

REC pricing relationships behave as theorized in the literature. 

Relationships among Renewable Energy Credit prices in Massachusetts and 

Connecticut, electricity prices, and natural gas prices are estimated using a vector error 

correction model.  Results indicate that REC prices do not behave as previously 

theorized in the literature.  Several reasons for the disparity between theory and the 

empirical evidence are presented, including the relative immaturity of the markets and 

continuous regulatory intervention in the marketplace.  Although RPS programs have 

been promoted as market-based incentives for renewable generation, the analysis 

suggests that policy-makers have not succeeded in creating a fundamental-driven market 

for RECs in Massachusetts or Connecticut.  
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Projecting Impacts of Future Policy Implementation 

There has been speculation about the potential impacts of the recently introduced Clean 

Power Plan (CPP) (Hopkins 2015; U.S. Chamber of Commerce 2014; World Resources 

Institute 2014).  This dissertation complements the growing literature in this area by 

offering a data-rich approach to estimate the impacts of the CPP on economic activity.  

To accomplish this, a factor-augmented vector autoregressive (FAVAR) approach which 

has been utilized in the monetary policy and macroeconomic literature (Bernanke, 

Boivin, and Eliasz 2005; Ielpo 2015; Moench 2008), but less so in energy-related 

applications (Chevallier 2011; Zagaglia 2010), is employed.  The FAVAR approach 

makes use of the information in a large dataset to project the impacts of CO2 emissions 

reductions outlined by the CPP.  Another gap in the literature is noted by Banbura, 

Giannone, and Lenza (2015), who point out that there is a lack of investigation into 

developing conditional forecasts from vector autoregressive models for large datasets.  

This dissertation contributes to this gap in the literature by constructing conditional 

forecasts from a FAVAR model. 

The effect of reducing CO2 emissions in the electric power sector is quantified by 

developing conditional forecasts from a FAVAR model for a large macroeconomic and 

energy-related dataset.  Results suggest that growth in real personal income will be 

slower under the CPP than it would be otherwise.  Additionally, growth in U.S. 

industrial production will be lower under the CPP over the majority of the forecast 

period, but the constrained forecast for industrial production converges to the forecast 

not constrained by CO2 emissions at the end of the period (suggesting a level of 
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economic resiliency to CO2 emissions reductions).  Forecasts of the factors show that 

factors related to coal and petroleum consumption, electricity sales, overall price levels, 

and personal consumption will be negatively impacted and see increased volatility under 

the CPP.  Additionally, increased volatility in factors related to natural gas storage 

activity and overall energy consumption is forecasted under the CPP.  Overall inference 

is that economic activity may grow more slowly under CPP implementation than it 

would otherwise; however, economic growth and CO2 emissions reductions can be 

achieved simultaneously. 

Limitations and Suggestions for Future Research 

It is important to acknowledge the limitations of the analysis conducted in this 

dissertation, and by doing so areas for continued research become apparent.  As noted 

previously, the test for parameter constancy (Hansen and Johansen 1999) conducted in 

Chapter II has not been used extensively in empirical applications.  The test does not 

result in a specific breakpoint in the parameters, such as that of Bai and Perron (2003).  

The interpretation of the test results is not concrete and requires further investigation to 

develop meaningful inference.  Additionally, the power of the test appears to be affected 

by the specification of number of lags and cointegrating vectors in the vector error 

correction model.  Studies concerning further exploration of these issues are a suggestion 

for future research.   

 Data quality and availability is a limitation of the research in Chapter III.  REC 

pricing data is relatively sparse and not readily available.  Only two states are considered 

(Massachusetts and Connecticut), while there are RPS programs in 29 states.  The 
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sample size considered in the empirical analysis is only a short snapshot of the history of 

RPS programs in these states.  Future empirical research into the performance of RPS 

programs is required as data becomes available.  Application of methods to handle 

sparse data and immature markets may be an inviting avenue of future research into RPS 

programs.  Additionally, there may be some degree of influence of the market for CO2 

permits traded under the Regional Greenhouse Gas Initiative (RGGI).  Future research 

into the links between RPS programs and the RGGI in northeastern states will be 

beneficial. 

 The research conducted in Chapter IV is a high-level, purely data-driven analysis 

of the impacts of the Clean Power Plan.  The analysis is meant to serve as a complement 

to more structural, bottom-up models of energy sector policy and economic activity, 

rather than a complete, definitive impact analysis of the CPP.  Additionally, monthly 

data for U.S. GDP is not available for the entire sample period considered.  As such, 

industrial production and real personal income were chosen to represent larger economic 

activity and serve as proxies for producer and consumer welfare.  Future research is 

required to determine why forecasts for industrial production (unconditional and 

conditional) converge at the end of the forecast period. 

 Selection of the number of factors to include in a FAVAR model has been shown 

to have important implications for forecasting performance (Duangnate 2015; Binder et 

al. 2016).  A balance between the information criteria approach of Bai and Ng (2002) 

and the desire for parsimony in VAR models is a common discussion in the FAVAR 

literature (Moench 2008; Zagaglia 2010).  Research into the effect of the number of 
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factors on conditional forecasting performance and scenario analysis is left for future 

exploration. 



 

136 

 

REFERENCES 

Aastveit, K.A. 2014. Forecasting with Factor-Augmented Error-Correction Models. 

International Journal of Forecasting 30 (3): 613-615. 

Apergis, N., C. Christou, and J. Payne. 2014. Precious Metal Markets, Stock Markets, 

and the Macroeconomic Environment: a FAVAR Model Approach. Applied 

Financial Economics 24 (10): 691-703. 

Arrow, K. J., Harris, T., and J. Marschak. 1951. Optimal Inventory Policy. Econometrica 

19 (3): 250-272. 

Bai, J. and S. Ng. 2002. Determining the Number of Factors in Approximate Factor 

Models. Econometrica 70 (1): 191-221. 

Bai, J. and P. Perron. 2003. Computation and Analysis of Multiple Structural Change 

Models. Journal of Applied Econometrics 18 (1): 1-22. 

Banbura, M., D. Giannone, and M. Lenza. 2015. Conditional Forecasts and Scenario 

Analysis with Vector Autoregressions for Large Cross-Sections. International 

Journal of Forecasting 31 (3): 739-756. 

Barnett, A., H. Mumtaz, and K. Theodoridis. 2014. Forecasting UK GDP Growth and 

Inflation Under Structural Change. A Comparison of Models with Time-Varying 

Parameters. International Journal of Forecasting 30 (1): 129-143. 

Bernanke, B.S. 1986. Alternative Explanations of the Money-Income Correlation. 

Carnegie-Rochester Conference Series on Public Policy 25: 49–99. 

Bernanke, B.S.,  J. Boivin, and P. Eliasz. 2005. Measuring the Effects of Monetary 

Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach. The 

Quarterly Journal of Economics 387-422. 

Berry, D. 2002. The Market for Tradable Renewable Energy Credits. Ecological 

Economics 42 (3): 369-379. 

Bessler, D.A. and J.L. Kling. 1989. The Forecast and Policy Analysis. American Journal 

of Agricultural Economics 71 (2): 503-506. 

Binder, K., X. Wang, J. Mjelde, and M. Pourahmadi. 2016. Forecasting Oil Prices Using 

Macroeconomic and Supplementary Variables: The Role of Temporal Dependence 

in Factor Selection Methods. Unpublished Working Paper. Texas A&M Univeristy. 

College Station, TX.  



 

137 

 

Blinder, A.S. 1986. Can the Production Smoothing Model of Inventory Behavior Be 

Saved? NBER Working Paper Series No. 1257. 

http://qje.oxfordjournals.org/content/101/3/431.full.pdf Accessed Jan 20, 2015. 

Bloomberg. 2015. Bloomberg Professional. Subscription Service. Accessed May 14, 

2015. 

Bloor, C. and T. Matheson. 2011. Real-time Conditional Forecasts with Bayesian VARs: 

An Application to New Zealand. North American Journal of Economics and 

Finance 22 (1): 26-42. 

Borenstein, S. and A. Shepard. 2002. Sticky Prices, Inventories, and Market Power in 

Wholesale Gasoline Markets. The Rand Journal of Economics 33 (1): 116-139. 

Burtraw, D., J. Linn, K. Palmer, and A. Paul. 2014. The Costs and Consequence of 

Clean Air Act Regulation of CO2 from Power Plants. Resources for the Future 

Discussion Paper 14-01. 

Burtraw, D., J. Bushnell, and C. Munnings. 2015. State and Regional Comprehensive 

Carbon Pricing and Greenhouse Gas Regulation in the Power Sector under EPA‟s 

Clean Power Plan. Resources for the Future Discussion Paper 15-31. 

Bushnell, J.B., S.P. Holland, J.E. Hughes, and C.R Knittel. 2015. Strategic Policy 

Choice in State-Level Regulation: The EPA‟s Clean Power Plan. NBER Working 

Paper No. 21259. 

Chen, C., R. Wiser, A. Mills, and M. Bolinger. 2009. Weighing the Costs and Benefits 

of State Renewables Portfolio Standards in the United States: A Comparative 

Analysis of State-Level Policy Impact Projections. Renewable & Sustainable 

Energy Reviews 13 (3): 552-566. 

Chen, Y., W. Xue, and J. Yang. 2013. Optimal Inventory Policy in the Presence of a 

Long-Term Supplier and a Spot Market. Operations Research 61 (1): 88-97. 

Chevallier, J. 2011. Macroeconomics, Finance, Commodities: Interactions with Carbon 

Markets in a Data-Rich Model. Economic Modelling 28 (1): 557-567. 

Chickering, D.M. 2003. Optimal Structure Identification with Greedy Search. Journal of 

Machine Learning Research 3 (3): 507-554. 

Clark, T.E. and M.W. McCracken. 2014. Evaluating Conditional Forecasts from Vector 

Autoregressions. FRB of Cleveland Working Paper No. 14-13. 

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2504526 Accessed December 

22, 2015. 



 

138 

 

Considine, T.J. 1997. Inventories Under Joint Production: An Empirical Analysis of 

Petroleum Refining. Review of Economics and Statistics 79 (3): 493-502. 

Considine, T.J. and E. Heo. 2000. Price and Inventory Dynamics in Petroleum Product 

Markets. Energy Economics 22 (5): 527-548.  

Cooley, T.F. and S.F. LeRoy. 1985. Atheoretical Macroeconometrics: A Critique. 

Journal of Monetary Economics 16 (3): 283-308. 

Coulon, M., J. Khazaei, and W.B. Powell. 2015. SMART-SREC: A Stochastic Model of 

the New Jersey Solar Renewable Energy Certificate Market. Journal of 

Environmental Economics and Management 73: 13-31. 

Database of State Incentives for Renewables & Efficiency. 2015. 

http://www.dsireusa.org/ Accessed September 11, 2015. 

Datastream. 2015. Thomson Reuters Datastream. Subscription Service (TAMU 

Libraries). Accessed October 15, 2015. 

Demirlap, S. and K.D. Hoover. 2003. Searching for the Causal Structure of a Vector 

Autoregression. Oxford Bulletin of Economics and Statistics 65: 745-766. 

Dennis, S.M. 2000. Changes in Railroad Rates Since the Staggers Act. Transportation 

Research Part E 37: 55-69. 

Doan, T., R. Litterman, and C. Sims. 1984. Forecasting and Conditional Projection 

Using Realistic and Prior Distributions. Econometric Reviews. 3 (1): 1-100. 

Dokko, J., B.M. Doyle, M.T. Kiley, J. Kim, S. Sherlund, J. Sim, and S. Van Den Heuvel. 

2011. Monetary Policy and the Global Housing Bubble. Economic Policy 26 (66): 

237-287. 

Duangnate, K. 2015. Essays on Dynamics of and Forecasting Ability within the U.S. 

Energy Sector. Unpublished Doctoral Thesis, Texas A&M University. College 

Station, TX. 

Electric Reliability Council of Texas. 2015. Analysis of the Impacts of the Clean Power 

Plan. 

http://www.ercot.com/content/news/presentations/2015/ERCOT_Analysis_of_the_I

mpacts_of_the_Clean_Power_Plan-Final_.pdf Accessed February 4, 2016. 

Estima, 2006. CATS 2.0 Manual. Evanston, IL.  

_______. 2013. RATS Version 8.2 User‟s Guide. Evanston, IL. 



 

139 

 

Evans, D.A. and R.T. Woodward. 2013. What Can We Learn from the End of the Grand 

Policy Experiment? The Collapse of the National SO2 Trading Program and 

Implications for Tradable Permits as a Policy Instrument. Annual Review of 

Resource Economics 5 (1): 325-348. 

Favero, C.A., L. Niu, and L. Sala. 2012. Term Structure Forecasting: No-Arbitrage 

Restrictions versus Large Information Set. Journal of Forecasting 31 (2): 124-156. 

Federal Reserve Bank of St. Louis Economic Research. 2015. FRED Database. 

https://research.stlouisfed.org/fred2/   Accessed October 15, 2015. 

Felder, F.A. 2011. Examining Electricity Price Suppression due to Renewable Resources 

and Other Grid Investments. The Electricity Journal 24 (4): 34-46.  

Felder, F.A.  and C.J. Loxley. 2012. The Implications of a Vertical Demand Curve in 

Solar Renewable Portfolio Standards. Center for Research in Regulated Industries, 

Rutgers University. http://ceeep.rutgers.edu/wp-

content/uploads/2013/11/VerticalDemandCurve.pdf Accessed July 26, 2015. 

Feldstein, M., A. Auerbach, R.E. Hall, and M.C. Lovell. 1976. Inventory Behavior in 

Durable-Goods Manufacturing: The Target-Adjustment Model. Brookings Papers 

on Economic Activity 2: 351-408. 

Fischer, C. 2010. Renewable Portfolio Standards: When Do They Lower Energy Prices? 

Energy Journal 31 (1): 101. 

Fuller, W.A. 1996. Introduction to Statistical Time Series. Vol. 428. John Wiley & Sons. 

New York. 

Giannone, D., M. Lenza, D. Momferatou, and L. Onorante. 2014. Short-Term Inflation 

Projections: A Bayesian Vector Autoregressive Approach. International Journal of 

Forecasting 30 (3): 635-644. 

Goulder, L. 2013. Markets for Pollution Allowances: What Are the (New) Lessons? The 

Journal of Economic Perspectives 27 (1): 87-102. 

Gupta, R. and A. Kabundi. 2010. The Effect of Monetary Policy on House Price 

Inflation: A factor augmented vector autoregression (FAVAR) approach. Journal of 

Economic Studies 37 (6): 616-626. 

Hansen, H., and S. Johansen. 1999. Some Tests for Parameter Constancy in Cointegrated 

VAR-models. The Econometrics Journal 2 (2): 306-333. 



 

140 

 

Harrison, D., A.E. Smith, P. Bernstein, S. Bloomberg, A. Foss, A. Stuntz, and S. 

Tuladhar. 2014. Potential Energy Impacts of the EPA Proposed Clean Power Plan. 

NERA Economic Consulting. 

http://www.nera.com/content/dam/nera/publications/2014/NERA_ACCCE_CPP_Fi

nal_10.17.2014.pdf Accessed February 2, 2016. 

Hogan, W.H. 2015. Electricity Markets and the Clean Power Plan. The Electricity 

Journal 28 (9): 9-32. 

Holt, C.C., F. Modigliani, and H.A. Simon. 1955. A Linear Decision Rule for Production 

and Employment Scheduling. Management Science 2 (1): 1-30. 

Hong, S.W. 2012. Three Essays on Price Dynamics and Causations Among Energy 

Markets and Macroeconomic Information. Unpublished Doctoral Thesis, Texas 

A&M University. College Station, TX. 

Hopkins, J. 2015. Modeling EPA‟s Clean Power Plan: Insights for Cost-Effective 

Implementation. Center for Climate and Energy Solutions. 

http://www.c2es.org/publications/modeling-epas-clean-power-plan-insights-cost-

effective-implementation Accessed February 2, 2016. 

Humphreys, B., L. Maccini, and S. Schuh. 2001. Input and Output Inventories. Journal 

of Monetary Economics 47 (2): 347-375.  

Ielpo, F. 2015. Forward Rates, Monetary Policy, and the Economic Cycle. Journal of 

Forecasting 34 (4): 241-260. 

Ipatova, E. 2014. Essays on Factor Models, Application to the Energy Markets. 

Unpublished Doctoral Thesis, City University London. 

http://openaccess.city.ac.uk/3666/1/Ipatova._Ekaterina.pdf Accessed October 15, 

2014. 

Jarocinski, M. 2010. Conditional Forecasts and Uncertainty About Forecast Revisions in 

Vector Autoregressions. Economics Letters 108 (3): 257-259. 

Jarocinski, M. and F.R. Smets. 2008. House Prices and the Stance of Monetary Policy. 

European Central Bank Working Paper Series No. 891. 

Jha, A. 2015. Dynamic Regulatory Distortions: Coal Procurement at U.S Power Plants. 

Unpublished Working Paper. 

http://web.stanford.edu/~akshayaj/dynamic_reg_distortion.pdf Accessed June 5, 

2015. 



 

141 

 

Johansen, S. 1991. Estimation and Hypothesis Testing of Cointegration Vectors in 

Gaussian Vector Autoregressive Models. Econometrica 59: 1551-1580. 

Johansen, S. 1992. Determination of Cointegration Rank in the Presence of A Linear 

Trend. Oxford Bulletin of Economics and Statistics 54 (3): 383-97. 

Juselius, K. 2006. The Cointegrated VAR Model. Oxford University Press, Oxford. 

Koop, G. 2013. Forecasting with Medium and Large Bayesian VARs. Journal of 

Applied Econometrics 28: 177-203. 

Kwiatkowski, D., P.C.B. Phillips, P. Schmidt, and Y. Shin. 1992. Testing the Null 

Hypothesis of Stationarity against the Alternative of a Unit Root. Journal of 

Econometrics 54 (1): 159-178. 

Lam, C. and Q. Yao. 2012. Factor Modeling for High-Dimensional Time Series: 

Inference for the Number of Factors. The Annals of Statistics 40 (2): 694-726. 

Lamontagne, L. 2013. Essays in Energy Economics: An Inquiry into Renewable 

Portfolio Standards. Doctoral Thesis. Clemson University, Clemson, South 

Carolina. 

Lenza, M., H. Pill, and L. Reichlin. Monetary Policy in Exceptional Times. Economic 

Policy 25: 295-339. 

Luciani, M. 2015. Monetary Policy and the Housing Market: A Structural Factor 

Analysis. Journal of Applied Econometrics 30 (2): 199-218. 

Massachusetts Department of Energy Resources. 2015. Solar Credit Clearinghouse 

Auction. http://www.mass.gov/eea/energy-utilities-clean-tech/renewable-

energy/solar/rps-solar-carve-out/solar-credit-clearinghouse-auction.html, Accessed 

September 10, 2015 

McConnell, C. Interview by M. Trauzzi. October 21, 2015. E&E TV. 

http://www.eenews.net/tv/2015/10/26  Accessed November 2, 2015. 

Meyer, B. and S. Zaman. 2013. It‟s Not Just for Inflation: The Usefulness of the Median 

CPI in BVAR Forecasting. Federal Reserve Bank of Cleveland Working Paper No. 

1303. 

Michel, S. and J. Nielsen. 2015. Carbon Reduction Credit Program: A State Compliance 

Tool for EPA‟s Clean Power Plan Proposal. The Electricity Journal 28 (2): 39-52. 



 

142 

 

Mjelde, J.W., and D.A. Bessler. 2009. Market Integration among Electricity Markets and 

their Major Fuel Source Markets. Energy Economics 31 (3): 482-491.  

Moench, E. 2008. Forecasting the yield curve in a data-rich environment: A no-arbitrage 

factor-augmented VAR approach. Journal of Econometrics 146 (1): 26-43. 

Mohammadi, H. 2009. Electricity Prices and Fuel Costs: Long-Run Relations and Short-

Run Dynamics. Energy Economics 31 (3): 503-509.  

Mumtaz, H., P. Zabczyk, and C. Ellis. 2011. What Lies Beneath? A Time-Varying 

FAVAR Model for the UK Transmission Mechanism. European Central Bank 

Working Paper Series No. 1320. 

New England States Committee on Electricity. 2012. Renewable Resource Supply Curve 

Report. http://www.maine.gov/energy/pdf/NESCOE%20Report_Jan_20121.pdf 

Accessed May 1, 2015. 

Nogee, A., J. Deyette, and S. Clemmer. 2007. The Projected Impacts of a National 

Renewable Portfolio Standard. The Electricity Journal 20 (4): 33-47. 

Palmer, K. and D. Burtraw. 2005. Cost-Effectiveness of Renewable Electricity Policies. 

Energy Economics 27 (6): 873-894. 

Panagiotidis, T., and E. Rutledge. 2007. Oil and Gas Markets in the UK: Evidence from 

a Cointegrating Approach. Energy Economics 29 (2): 329-347. 

Paul, A., K. Palmer, and M. Woerman. 2013. Modeling a Clean Energy Standard for 

Electricity: Policy Design Implications for Emissions, Supply, Prices, and Regions. 

Energy Economics 36 (1): 108-124.  

Pearl, J. 2000. Causality Models, Reasoning, and Inference. Cambridge Press, 

Cambridge, MA.  

Pindyck, R. 2001. The Dynamics of Commodity Spot and Futures Markets: A Primer. 

The Energy Jounal 22 (3): 1-29. 

________. 2004. Volatility and Commodity Price Dynamics. The Jounal of Futures 

Markets 24 (11): 1029-1047. 

Potts, B.H. and D.R. Zoppo. 2015. Will the EPA‟s Clean Power Plan Make it Through 

the Courts? The Electricity Journal 28 (8): 10-19. 

Ramey, V.A. 1989. Inventories as Factors of Production. The American Economic 

Review 79 (3): 338. 



 

143 

 

Robertson, J.C., and E.W. Tallman. 1999. Vector Autoregressions: Forecasting and 

Reality. Economic Review- Federal Reserve Bank of Atlanta First Quarter 1999. 

Samuelson, P.A. 1971. Stochastic Speculative Price. Proceedings of the National 

Academy of Sciences 68 (2): 335-337. 

Sargent, T. 1979. Estimating Vector Autoregressions Using Methods Not Based on 

Explicit Economic Theories. Quarterly Review- Federal Reserve Bank of 

Minneapolis Summer 1979. 

Schmalensee, R. 2011. Evaluating Policies to Increase the Generation of Electricity from 

Renewable Energy. Review of Environmental Economics and Policy 6 (1): 45–64. 

Sims, C.A. 1980. Macroeconomics and Reality. Econometrica 48 (1): 1-48. 

________. 1986. Are Forecasting Models Usable for Policy Analysis? Federal Reserve 

Bank of Minneapolis Quarterly Review 10 (1): 2-16. 

Sims, C.A., S.M. Goldfeld, and J.D. Sachs. 1982. Policy Analysis with Econometric 

Models. Brookings Papers on Economic Activity: 107-164. 

Skystream Markets. 2014. REC Market Data and Handbook. 

Spirtes, P., Glymour, C., and R. Scheines. 2000. Causation, Prediction, and Search. MIT 

Press, Cambridge, MA.  

SRECTrade. 2015. Massachusetts SREC Market. 

http://www.srectrade.com/srec_markets/massachusetts Accessed September 22, 

2015. 

Stock, J.H. and M.W. Watson. 2002a. Forecasting using Principal Components from a 

Large Number of Predictors. Journal of the American Statistical Association 97 

(460): 1167-1179. 

______. 2002b. Macroeconomic Forecasting using Diffusion Indexes. Journal of 

Business & Economic Statistics 20 (2): 147-162. 

______. 2005. Implications of Dynamic Factor Models for VAR Analysis. NBER 

Working Paper No. 11467. http://www.nber.org/papers/w11467 Accessed October 

2014. 

______. 2012. Disentangling the Channels of the 2007-2009 Recession. NBER Working 

Paper No. 18094. http://www.nber.org/papers/w18094 Accessed January 2016. 

http://www.nber.org/papers/w18094


 

144 

 

Takriti, S., C. Supatgiat, and L.S.-Y. Wu. 2001. Coordinating Fuel Inventory and 

Electric Power Generation Under Uncertainty. IEEE Transactions on Power 

Systems 16 (4): 603-608. 

TETRAD V. 2015. http://www.phil.cmu.edu/projects/tetrad/current.html  Accessed 

August 2015. 

Tsay, R. 2014. Multivariate Time Series Analysis: With R and Financial Applications. 

John Wiley & Sons, Inc. Hoboken, NJ. 

Twisdale, L.A., and J. Chu, J. 1979. A Decision Methodology for Coal Inventory 

Optimization. IEEE Transactions on Power Apparatus and Systems PAS-98 (6): 

1947-1957.  

U.S. Bureau of Labor Statistics. 2015. Producer Price Index. http://data.bls.gov/cgi-

bin/surveymost?pc Accessed February 15, 2015. 

U.S. Chamber of Commerce, Institute for 21
st
 Century Energy. 2014. Assessing the 

Impact of Proposed New Carbon Regulations in the United States. 

http://www.energyxxi.org/epa-regs# Accessed October 15, 2014. 

U.S. Energy Information Administration. 2012. State Renewable Electricity Profiles 

2010. http://www.eia.gov/renewable/state/pdf/srp2010.pdf  Accessed May 19, 2015 

U.S. Energy Information Administration. 2013. Capital Cost for Electricity Plants. 

http://www.eia.gov/forecasts/capitalcost/ Accessed October 15, 2014 

U.S. Energy Information Administration. 2015a. Monthly Energy Review. 

http://www.eia.gov/totalenergy/data/monthly/index.cfm?src=email#prices Accessed 

January 16, 2016. 

U.S. Energy Information Administration. 2015b. Wholesale Electricity and Natural Gas 

Market Data. http://www.eia.gov/electricity/wholesale/ Accessed February 15, 

2015. 

U.S. Energy Information Administration. 2015c. Electricity Data Browser: Net 

Generation from All Sectors. 

http://www.eia.gov/electricity/data/browser/#/topic/0?agg=2,0,1&fuel=vtvo&geo=0

08&sec=g&freq=A&start=2001&end=2014&ctype=linechart&ltype=pin&rtype=s

&maptype=0&rse=0&pin= Accessed September 24, 2015. 

U.S. Environmental Protection Agency, 2015a. Overview of the Clean Air Act 

Amendments of 1990. http://epa.gov/oar/caa/caaa_overview.html Accessed March 

6, 2015. 



 

145 

 

U.S. Environmental Protection Agency. 2015b. Carbon Pollution Emission Guidelines 

for Existing Stationary Sources: Electric Utility Generating Units. Federal Register 

October 23, 2015. https://www.gpo.gov/fdsys/pkg/FR-2015-10-23/pdf/2015-

22842.pdf  Accessed December 21, 2015. 

U.S. Federal Energy Regulatory Commission. 2015a. Order No. 636 - Restructuring of 

Pipeline Services. http://www.ferc.gov/legal/maj-ord-reg/land-docs/restruct.asp 

Accessed March 6, 2015. 

U.S. Federal Energy Regulatory Commission. 2015b. Order No. 888. 

http://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp Accessed March 6, 

2015. 

U.S. Federal Energy Regulatory Commission. 2015c. Order No. 2000. 

http://www.ferc.gov/legal/maj-ord-reg/land-docs/RM99-2A.pdf Accessed March 6, 

2015. 

U.S. Federal Railroad Administration. 2011. Impact of the Staggers Rail Act of 1980. 

https://www.fra.dot.gov/eLib/Details/L03012 Accessed March 6, 2015. 

U.S. Federal Reserve. 2015. Moody's Seasoned Aaa Corporate Bond Rates. 

http://www.federalreserve.gov/releases/h15/data.htm Accessed February 15, 2015. 

U.S. National Oceanic and Atmospheric Administration. 2015. National Climate Data 

Center. http://www.ncdc.noaa.gov/oa/documentlibrary/hcs/hcs.html Accessed 

February 15, 2015. 

Van der Knoop, H.S. 1987. Conditional Forecasting with a Multivariate Time Series 

Model. Economic Letters 22 (2): 233-236. 

Vargas-Silva, C. 2008. The Effect of Monetary Policy on Housing: A Factor-Augmented 

Vector Autoregression (FAVAR) Approach.  Applied Economics Letters 15 (10): 

749-752. 

Waggoner, D.F. and T. Zha. 1999. Conditional Forecasts in Dynamic Multivariate 

Models. The Review of Economics and Statistics 81 (4): 639-65. 

Wang, Z., and D.A. Bessler. 2005. A Monte Carlo Study on the Selection of 

Cointegrating Rank Using Information Criteria. Econometric Theory 21 (3): 593-

620. 

Wilson, W.W. 1994. Market-Specific Effects of Rail Deregulation. The Journal of 

Industrial Economics 42 (1): 1-22. 



 

146 

 

Wiser, R., C. Namovicz, M. Gielecki, and R. Smith. 2007. The Experience with 

Renewable Portfolio Standards in the United States. The Electricity Journal 20 (4): 

8-20. 

World Resources Institute, Global Commission on the Economy and Climate. 2014.  

Better Growth, Better Climate. http://newclimateeconomy.report/ Accessed October 

2014. 

Zagaglia, P. 2010. Macroeconomic Factors and Oil Futures Prices: A Data-Rich Model. 

Energy Economics 32 (2): 409-417.  

Zivot, E. and K. Andrews. 1992. Further Evidence on the Great Crash, the Oil Price 

Shock, and the Unit Root Hypothesis. Journal of Business and Economic Statistics 

10 (10): 251-270. 

 

  



 

147 

 

 

APPENDIX A 

 

Graphs of the sequence of test statistics   
   

 for all 26 two, three, four, and five variable 

subsets of the five endogenous series (Chapter II). 

 

1. (Full model) Coal Inv, Coal, NG, Elec, Bonds 

 
2. Coal Inv, Coal, NG, Elec  

 
3. Coal Inv, Coal, NG, Bonds 

 
 

 

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
X(t)

R1(t)

5% C.V. (4.17 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
X(t)

R1(t)

5% C.V. (3.65 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00

1.25

1.50
X(t)

R1(t)

5% C.V. (3.33 = Index)

Q(t)



 

148 

 

 

4. Coal Inv, NG, Elec, Bonds 

 
5. Coal Inv, Coal, Elec, Bonds 

 
6. Coal, NG, Elec, Bonds 

 
 

 

 

 

 

 

 

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
X(t)

R1(t)

5% C.V. (3.33 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
X = R1

5% C.V. (3.65 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
X(t)

R1(t)

5% C.V. (3.33 = Index)

Q(t)



 

149 

 

 

7. Coal Inv, Coal, NG 

 
8. Coal Inv, Coal, Elec  

  is full rank  

 

9. Coal Inv, Coal, Bonds 

 
10. Coal Inv, NG, Elec  

 
 

 

 

 

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.0

0.2

0.4

0.6

0.8

1.0

1.2
X(t)

R1(t)

5% C.V. (3.02 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.0

0.2

0.4

0.6

0.8

1.0

1.2
X(t)

R1(t)

5% C.V. (3.02 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
X(t)

R1(t)

5% C.V. (3.02 = Index)

Q(t)



 

150 

 

 

11. Coal Inv, NG, Bonds 

 
12. Coal Inv, Elec, Bonds 

 
13. Coal, NG, Elec  

 
 

 

 

 

 

 

 

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00
X(t)

R1(t)

5% C.V. (2.4 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
X(t)

R1(t)

5% C.V. (2.4 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
X(t)

R1(t)

5% C.V. (3.02 = Index)

Q(t)



 

151 

 

 

14. Coal, NG, Bonds 

 
15. Coal, Elec, Bonds 

 
16. NG, Elec, Bonds 

 
 

 

 

17. Coal Inv, Coal  

Recursive estimation unable to converge. 

 

 

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00
X(t)

R1(t)

5% C.V. (2.4 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.0

0.2

0.4

0.6

0.8

1.0

1.2
X = R1

5% C.V. (3.02 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
X(t)

R1(t)

5% C.V. (2.4 = Index)

Q(t)



 

152 

 

 

18. Coal Inv, NG 

 
19. Coal Inv, Elec  

 
20. Coal Inv, Bonds 

 
 

 

 

 

 

 

 

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00
X(t)

R1(t)

5% C.V. (2.18 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00

1.25

1.50
X(t)

R1(t)

5% C.V. (2.18 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00
X(t)

R1(t)

5% C.V. (2.18 = Index)

Q(t)



 

153 

 

 

21. Coal, NG  

 
22. Coal, Elec  

  is full rank 

 

23. Coal, Bonds 

 
24. NG, Elec  

 
 

 

 

 

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00
X(t)

R1(t)

5% C.V. (2.18 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00
X(t)

R1(t)

5% C.V. (2.18 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
X(t)

R1(t)

5% C.V. (2.18 = Index)

Q(t)



 

154 

 

 

25. NG, Bonds 

 
26. Elec, Bonds 

 
 

 

  

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.00

0.25

0.50

0.75

1.00
X(t)

R1(t)

5% C.V. (2.18 = Index)

Q(t)

Test of Beta Constancy

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
X(t)

R1(t)

5% C.V. (2.18 = Index)

Q(t)



 

155 

 

 

 

Figure A.2. Hansen and Johansen (1999) test for parameter stability when current end-

of-month coal on hand is divided by the following month‟s consumption in the previous 

year,            
             

                    
.   
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APPENDIX B 

 

Results of Bai and Perron (2003) and Hansen and Johansen (1999) tests for structural 

break (Chapter III). 

 

  

Table B.1. Bai and Perron (2003) Test for Structural Breaks in a VAR(2) Model  

Series in First Difference Natural Logarithms 

Hypothesis CT Class 

I 

MA Class 

I 

MassHub NG 10% critical 

value 

1 vs. 0 3.54 2.30 0.66 1.51 15.53 

2 vs. 0 4.59 2.47 1.60 1.92 14.65 

3 vs. 0 3.05 2.02 1.29 1.86 13.63 

2|1 4.19 2.26 2.43 2.12 17.54 

3|2 0.56 1.06 0.78 1.47 18.55 

Min BIC (# of 

breaks) 

0 0 0 0  

Series in Natural Logarithms 

Hypothesis CT Class 

I 

MA Class 

I 

MassHub NG 10% critical 

value 

1 vs. 0 2.68 3.63 4.48 3.53 15.53 

2 vs. 0 2.69 4.19 3.56 5.32 14.65 

3 vs. 0 1.88 2.50 2.47 4.45 13.63 

2|1 2.27 3.55 2.04 5.21 17.54 

3|2 0.59 0.17 0.65 1.67 18.55 

Min BIC (# of 

breaks) 

0 0 0 2  

Note: Minimum span allowed between breaks set to 15 observations. 

 

  



 

157 

 

 

 
Figure B.1. Hansen and Johansen (1999) test for parameter constancy in a 

VECM(2) model with one cointegrating vector 
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APPENDIX C 

 

List of all data series used in the Chapter IV analysis. 

  

Series Description Units Source Code
a 

Total Energy Electric Power Sector 

CO2 Emissions 

Million Metric 

Tons of CO2 

EIA 2 

Industrial Production Index Index 2007=100 FRED 2 

Real Personal Income Billions of Chained 

2009 Dollars 

FRED 2 

Moody's Corporate Bond AAA Percent FRED 3 

Moody's Seasoned Aaa Corporate 

Bond Minus Federal Funds Rate 

Percent FRED 0 

Average Weekly Hours of Production 

and Nonsupervisory Employees: 

Manufacturing 

Hours FRED 2 

Moody's Corporate Bond BAA Percent FRED 3 

Moody's Seasoned Baa Corporate 

Bond Minus Federal Funds Rate 

Percent FRED 0 

Commercial and Industrial Loans, All 

Commercial Banks 

Billions of Dollars FRED 2 

Capacity Utilization: Oil and gas 

extraction 

Percent of Capacity FRED 3 

Capacity Utilization: Durable 

manufacturing 

Percent of Capacity FRED 0 

Capacity Utilization: Nondurable 

manufacturing 

Percent of Capacity FRED 3 

Average Weekly Hours of Production 

and Nonsupervisory Employees: 

Goods-Producing 

Hours FRED 2 

Average Weekly Hours of Production 

and Nonsupervisory Employees: 

Mining and Logging 

Hours FRED 2 

Average Weekly Hours of Production 

and Nonsupervisory Employees: 

Construction 

Hours FRED 2 

Civilian Labor Force Thousands of 

Persons 

FRED 0 

Consumer Loans at All Commercial 

Banks 

Billions of Dollars FRED 2 

Consumer Price Index for All Urban 

Consumers: All Items 

Index 82-84=100 FRED 1 

Consumer Price Index for All Urban Index 82-84=100 FRED 1 
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Consumers: All Items Less Food & 

Energy 

Consumer Price Index for All Urban 

Consumers: Transportation 

Index 82-84=100 FRED 1 

Capacity Utilization: Manufacturing 

(SIC) 

Percent of Capacity FRED 0 

Consumer Price Index for All Urban 

Consumers: All items less shelter 

Index 82-84=100 FRED 1 

Consumer Price Index for All Urban 

Consumers: All items less medical 

care 

Index 82-84=100 FRED 1 

Consumer Price Index for All Urban 

Consumers: Commodities 

Index 82-84=100 FRED 1 

Consumer Price Index for All Urban 

Consumers: Durables 

Index 82-84=100 FRED 0 

Consumer Price Index for All Urban 

Consumers: Services 

Index 1982-84=100 FRED 1 

Real personal consumption 

expenditures: Goods: Durable goods 

Percent Change 

from Preceding 

Period 

FRED 0 

All Employees: Durable goods Thousands of 

Persons 

FRED 2 

Real personal consumption 

expenditures 

Percent Change 

from Preceding 

Period 

FRED 0 

Real personal consumption 

expenditures: Services (chain-type 

quantity index) 

Index 2009=100 FRED 2 

Real personal consumption 

expenditures: Services 

Percent Change 

from Preceding 

Period 

FRED 0 

Effective Federal Funds Rate Percent FRED 3 

1-Year Treasury Constant Maturity 

Rate 

Percent FRED 3 

10-Year Treasury Constant Maturity 

Rate 

Percent FRED 3 

5-Year Treasury Constant Maturity 

Rate 

Percent FRED 3 

Weekly Overtime Hours: 

Manufacturing for the United States 

Hours FRED 2 

Housing Starts: Total: New Privately 

Owned Housing Units Started 

Thousands of Units FRED 2 

Industrial Production: Business 

Equipment 

Index 2007=100 FRED 2 
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Industrial Production: Consumer 

Goods 

Index 2007=100 FRED 2 

Industrial Production: Durable 

Consumer Goods 

Index 2007=100 FRED 2 

Industrial Production: Durable 

Manufacturing (NAICS) 

Index 2007=100 FRED 2 

Industrial Production: Durable 

Materials 

Index 2007=100 FRED 2 

Industrial Production: Final Products 

(Market Group) 

Index 2007=100 FRED 2 

Industrial Production: Manufacturing 

(SIC) 

Index 2007=100 FRED 2 

Industrial Production: Materials Index 2007=100 FRED 2 

Industrial Production: Mining Index 2007=100 FRED 2 

Industrial Production: Nondurable 

Consumer Goods 

Index 2007=100 FRED 2 

Industrial Production: Nondurable 

Manufacturing (NAICS) 

Index 2007=100 FRED 2 

Industrial Production: Nondurable 

Materials 

Index 2007=100 FRED 2 

Industrial Production: Electric and 

Gas Utilities 

Index 2007=100 FRED 2 

Labor Force Participation Rate - 

Black or African American 

Percent FRED 3 

All Employees: Manufacturing Thousands of 

Persons 

FRED 2 

Capacity Utilization: Manufacturing 

(NAICS) 

Percent of Capacity FRED 0 

ISM Manufacturing: PMI Composite 

Index© 

Index FRED 0 

ISM Manufacturing: Inventories 

Index 

Index FRED 0 

ISM Manufacturing: New Orders 

Index 

Index FRED 0 

All Employees: Nondurable goods Thousands of 

Persons 

FRED 2 

All Employees: Total nonfarm Thousands of 

Persons 

FRED 2 

Personal Consumption Expenditures: 

Services 

Billions of Dollars FRED 1 

Producer Price Index by Commodity 

for Crude Materials for Further 

Processing 

Index 1982=100 FRED 2 



 

161 

 

Producer Price Index by Commodity 

for Finished Consumer Goods 

Index 1982=100 FRED 2 

Producer Price Index by Commodity 

for Finished Goods 

Index 1982=100 FRED 2 

Producer Price Index by Commodity 

Intermediate Materials: Supplies & 

Components 

Index 1982=100 FRED 2 

All Employees: Service-Providing 

Industries 

Thousands of 

Persons 

FRED 2 

3-Month Treasury Bill: Secondary 

Market Rate 

Percent FRED 3 

6-Month Treasury Bill: Secondary 

Market Rate 

Percent FRED 3 

Capacity Utilization: Total Industry Percent of Capacity FRED 0 

Number of Civilians Unemployed for 

15 to 26 Weeks 

Thousands of 

Persons 

FRED 2 

Number of Civilians Unemployed for 

27 Weeks and Over 

Thousands of 

Persons 

FRED 2 

Number of Civilians Unemployed for 

5 to 14 Weeks 

Thousands of 

Persons 

FRED 0 

Number of Civilians Unemployed - 

Less Than 5 Weeks 

Thousands of 

Persons 

FRED 2 

Average (Mean) Duration of 

Unemployment 

Weeks FRED 2 

Civilian Unemployment Rate Percent FRED 0 

Production of Total Industry in United 

States 

Index 2010=100 FRED 2 

All Employees: Construction Thousands of 

Persons 

FRED 2 

All Employees: Education & Health 

Services 

Thousands of 

Persons 

FRED 1 

All Employees: Financial Activities Thousands of 

Persons 

FRED 2 

All Employees: Goods-Producing 

Industries 

Thousands of 

Persons 

FRED 2 

All Employees: Government Thousands of 

Persons 

FRED 2 

All Employees: Mining and logging Thousands of 

Persons 

FRED 2 

All Employees: Total Private 

Industries 

Thousands of 

Persons 

FRED 2 

All Employees: Trade, Transportation 

& Utilities 

Thousands of 

Persons 

FRED 2 
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All Employees: Wholesale Trade Thousands of 

Persons 

FRED 2 

Electricity Net Generation From Coal, 

Electric Power Sector 

Million kWh EIA 1 

Electricity Net Generation From 

Petroleum, Electric Power Sector 

Million kWh EIA 0 

Electricity Net Generation From 

Natural Gas, Electric Power Sector 

Million kWh EIA 2 

Electricity Net Generation From 

Nuclear Electric Power, Electric 

Power Sector 

Million kWh EIA 2 

Electricity Net Generation From 

Conventional Hydroelectric Power, 

Electric Power Sector 

Million kWh EIA 0 

Electricity Net Generation From 

Wood, Electric Power Sector 

Million kWh EIA 2 

Electricity Net Generation From 

Waste, Electric Power Sector 

Million kWh EIA 2 

Electricity Net Generation From 

Geothermal, Electric Power Sector 

Million kWh EIA 1 

Electricity Net Generation Total, 

Electric Power Sector 

Million kWh EIA 2 

Coal Stocks, Electric Power Sector Thousand Short 

Tons 

EIA 2 

Total Petroleum Stocks, Electric 

Power Sector 

Thousand Barrels EIA 2 

Natural Gas Storage Activity, 

Withdrawals 

billion cubic feet EIA 2 

Natural Gas Storage Activity, 

Injections 

Billion Cubic Feet EIA 2 

Natural Gas in Underground Storage, 

End of Period, Base Gas 

Billion Cubic Feet EIA 2 

Natural Gas in Underground Storage, 

End of Period, Working Gas 

Billion Cubic Feet EIA 2 

Natural Gas in Underground Storage, 

End of Period, Total 

Billion Cubic Feet EIA 1 

Exxon Mobil Share Price US Dollars DS 2 

BP Share Price US Dollars DS 2 

Conoco Phillips Share Price US Dollars DS 2 

Royal Dutch Shell Share Price  DS 2 

Chevron Share Price US Dollars DS 2 

US 3 month treasury bill  DS 2 

US-DS Oil & Gas  Price Index DS 2 
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DAX 30 Performance Price Index DS 2 

US dollar to GB Pound Exchange Rate DS 2 

UK Industrial Production Index DS 2 

Retail price of electricity $/MWh EIA 2 

Cost of Coal Receipts at Electric 

Generating Plants 

Dollars per Million 

Btu, Including 

Taxes 

EIA 2 

Cost of Natural Gas Receipts at 

Electric Generating Plants 

Dollars per Million 

Btu, Including 

Taxes 

EIA 2 

Crude Oil and Natural Gas Rotary 

Rigs in Operation, Onshore 

Number of Rigs EIA 2 

Crude Oil and Natural Gas Rotary 

Rigs in Operation, Offshore 

Number of Rigs EIA 2 

Crude Oil and Natural Gas Rotary 

Rigs in Operation, Total 

Number of Rigs EIA 2 

Active Well Service Rig Count Number of Rigs EIA 2 

Coal Consumption for Electricity 

Generation and Useful Thermal 

Output, Electric Power Sector 

Thousand Short 

Tons 

EIA 1 

Distillate Fuel Oil Consumption for 

Electricity Generation and Useful 

Thermal Output, Electric Power 

Sector 

Thousand Barrels EIA 0 

Residual Fuel Oil Consumption for 

Electricity Generation and Useful 

Thermal Output, Electric Power 

Sector 

Thousand Barrels EIA 0 

Petroleum Coke Consumption for 

Electricity Generation and Useful 

Thermal Output, Electric Power 

Sector 

Thousand Short 

Tons 

EIA 2 

Total Petroleum Consumption for 

Electricity Generation and Useful 

Thermal Output, Electric Power 

Sector 

Thousand Barrels EIA 0 

Natural Gas Consumption for 

Electricity Generation and Useful 

Thermal Output, Electric Power 

Sector 

Billion Cubic Feet EIA 2 

Wood Consumption for Electricity 

Generation and Useful Thermal 

Output, Electric Power Sector 

Trillion Btu EIA 2 
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Waste Consumption for Electricity 

Generation and Useful Thermal 

Output, Electric Power Sector 

Trillion Btu EIA 2 

Electricity Retail Sales to the 

Residential Sector 

Million kWh EIA 2 

Electricity Retail Sales to the 

Commercial Sector 

Million kWh EIA 1 

Electricity Retail Sales to the 

Industrial Sector 

Million kWh EIA 2 

Electricity Retail Sales to the 

Transportation Sector 

Million kWh EIA 2 

Electricity Retail Sales, Total Million kWh EIA 2 

Electricity End Use, Total Million kWh EIA 2 

Nuclear Electricity Net Generation Million kWh EIA 2 

Nuclear Share of Electricity Net 

Generation 

Percent EIA 3 

Nuclear Generating Units, Capacity 

Factor 

Percent EIA 3 

Crude Oil Domestic First Purchase 

Price 

Dollars per Barrel EIA 2 

Free on Board Cost of Crude Oil 

Imports 

Dollars per Barrel EIA 2 

Landed Cost of Crude Oil Imports Dollars per Barrel EIA 2 

Refiner Acquisition Cost of Crude 

Oil, Domestic 

Dollars per Barrel EIA 2 

Refiner Acquisition Cost of Crude 

Oil, Imported 

Dollars per Barrel EIA 2 

Refiner Acquisition Cost of Crude 

Oil, Composite 

Dollars per Barrel EIA 2 

Total Biomass Energy Production Trillion Btu EIA 2 

Total Renewable Energy Production Trillion Btu EIA 2 

Hydroelectric Power Consumption Trillion Btu EIA 0 

Geothermal Energy Consumption Trillion Btu EIA 1 

Wood Energy Consumption Trillion Btu EIA 2 

Waste Energy Consumption Trillion Btu EIA 2 

Total Biomass Energy Consumption Trillion Btu EIA 2 

Total Renewable Energy 

Consumption 

Trillion Btu EIA 2 

Crude Oil Stocks, SPR Million Barrels EIA 0 

Crude Oil Stocks, Non-SPR Million Barrels EIA 2 

Crude Oil Stocks, Total Million Barrels EIA 1 

Distillate Fuel Oil Stocks Million Barrels EIA 0 
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Jet Fuel Stocks Million Barrels EIA 1 

Propane/Propylene Stocks Million Barrels EIA 2 

Liquefied Petroleum Gases Stocks Million Barrels EIA 2 

Motor Gasoline Stocks (Including 

Blending Components and Gasohol) 

Million Barrels EIA 2 

Residual Fuel Oil Stocks Million Barrels EIA 2 

Other Petroleum Products Stocks Million Barrels EIA 2 

Total Petroleum Stocks Million Barrels EIA 2 

Primary Energy Consumed by the 

Residential Sector 

Trillion Btu EIA 2 

Total Energy Consumed by the 

Residential Sector 

Trillion Btu EIA 2 

Primary Energy Consumed by the 

Commercial Sector 

Trillion Btu EIA 2 

Total Energy Consumed by the 

Commercial Sector 

Trillion Btu EIA 2 

Primary Energy Consumed by the 

Industrial Sector 

Trillion Btu EIA 2 

Total Energy Consumed by the 

Industrial Sector 

Trillion Btu EIA 2 

Primary Energy Consumed by the 

Transportation Sector 

Trillion Btu EIA 2 

Total Energy Consumed by the 

Transportation Sector 

Trillion Btu EIA 2 

Primary Energy Consumed by the 

Electric Power Sector 

Trillion Btu EIA 2 

Energy Consumption Balancing Item Trillion Btu EIA 0 

Primary Energy Consumption Total Trillion Btu EIA 2 

EIA: U.S. Energy Information Administration (2015a) 

DS: Datastream (2015) 

FRED: FRED Database Federal Reserve Bank of St. Louis Economic Research (2015) 
a
Corresponds to the following transformation: 

0: Levels 

1: Natural Logarithm 

2: First Difference of Natural Logarithm  

3: First Difference of Levels 

 


