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ABSTRACT

The U.S. energy sector has undergone continuous change in the regulatory,
technological, and market environments. These developments show no signs of slowing.
Accordingly, it is imperative that energy market regulators and participants develop a
strong comprehension of market dynamics and the potential implications of their actions.
This dissertation contributes to a better understanding of the past, present, and future of
U.S. energy market dynamics and interactions with policy. Advancements in
multivariate time series analysis are employed in three related studies of the electric
power sector. Overall, results suggest that regulatory changes have had and will
continue to have important implications for the electric power sector. The sector,
however, has exhibited adaptability to past regulatory changes and is projected to remain
resilient in the future.

Tests for constancy of the long run parameters in a vector error correction model
are applied to determine whether relationships among coal inventories in the electric
power sector, input prices, output prices, and opportunity costs have remained constant
over the past 38 years. Two periods of instability are found, the first following railroad
deregulation in the U.S. and the second corresponding to a number of major regulatory
changes in the electric power and natural gas sectors.

Relationships among Renewable Energy Credit prices, electricity prices, and
natural gas prices are estimated using a vector error correction model. Results suggest

that Renewable Energy Credit prices do not completely behave as previously theorized



in the literature. Potential reasons for the divergence between theory and empirical
evidence are the relative immaturity of current markets and continuous institutional
intervention.

Potential impacts of future CO, emissions reductions under the Clean Power Plan
on economic and energy sector activity are estimated. Conditional forecasts based on an
outlined path for CO, emissions are developed from a factor-augmented vector
autoregressive model for a large dataset. Unconditional and conditional forecasts are
compared for U.S. industrial production, real personal income, and estimated factors.
Results suggest that economic growth will be slower under the Clean Power Plan than it
would otherwise; however, CO, emissions reductions and economic growth can be

achieved simultaneously.
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CHAPTER I

INTRODUCTION

The U.S. energy sector is a popular subject of debate in the national media, the U.S.
political arena, and the academic literature (Burtraw et al. 2014; Bushnell et al. 2015;
McConnell 2015; U.S. Environmental Protection Agency (EPA) 2015b). This sector is
continuously evolving in response to technology improvements, changing market
conditions, and adjustments in the regulatory environment. Major changes in the energy
sector over the last three decades include (but are not limited to) market restructuring in
both the natural gas and electricity sectors (U.S. Federal Energy Regulatory Commission
(FERC) 2015a, 2015b), the beginning and end of a national emissions permit trading
program (Evans and Woodward 2013), the introduction of state level Renewable
Portfolio Standards (Database of State Incentives for Renewable Energy 2015), and a
substantial increase in domestic crude oil and natural gas production resulting in
considerable price decreases in these markets (U.S. Energy Information Administration
(EIA) 2015a). Energy sector developments show no signs of slowing in the near future.

Given the importance of the U.S. energy sector to the domestic and global
economies, it is crucial for policy makers and energy market participants to have a
strong awareness of the potential implications of their actions. The overall objective of
this dissertation is to contribute to a better understanding of the past, present, and future
of U.S. energy market dynamics and interactions with policy by: (1) characterizing

market relationships and investigating the consequences of past regulatory changes and
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shifts in market conditions; (2) examining current program functionality; and (3)
projecting the impacts of future policy implementation. To achieve this broad objective,
three related empirical investigations of issues in the electric power sector are conducted
(Chapters 11-1V), drawing on insights from advancements in multivariate time series
analysis.

Energy Market Relationships: Past Changes in Regulation and Market Conditions
Economic relationships governing inventory behavior in the electric power sector are
characterized in Chapter Il. Specific objectives are to determine how coal inventories at
electric power plants are related to movements in various economic factors and to
examine whether these relationships have remained constant over time in the face of
aforementioned changes. Monthly data spanning 38 years and encompassing numerous
changes in the electricity and natural gas industries are used to estimate a vector error
correction model. This model allows for cointegration among coal inventories, input
and output prices, and opportunity costs. Tests for stability of the long run relationships
among the variables are conducted following Hansen and Johansen (1999); the tests help
to understand how inventory behavior of firms in the electric power sector changes when
confronted with regulatory changes or shifts in market conditions. Two sustained
periods of instability are found: the first following deregulation of the U.S. railroad
industry and the second following the Clean Air Act Amendments of 1990 and
coinciding with restructuring of both the natural gas and electricity industries. Results
suggest policy changes that alter the regulatory environment can result in considerable

fluctuations in how firms’ inventory decisions interact with input and output markets and



opportunity costs; however, the system is highly resilient as the long run relationships
remain constant over approximately 68% of the 38 year sample period.

Current Program Functionality

Renewable Portfolio Standards, programs that require electricity suppliers to provide a
minimum percentage of total sales from renewable energy, currently exist in the majority
of U.S. states (Database of State Incentives for Renewable Energy 2015). Empirical
analyses of tradable rights programs are necessary to determine if such programs are a
move towards efficiency. There is a lack of empirical analyses of RPS programs in the
literature (Felder 2011; Fischer 2010). This gap is addressed in Chapter 111, with the
objective of improving our understanding of the functionality of currently existing RPS
programs. This goal is accomplished by determining whether the dynamic relationships
among Renewable Energy Credit (REC) prices in Massachusetts and Connecticut,
natural gas prices, and electricity prices are consistent with economic theory. As in the
study characterizing inventory behavior, a vector error correction model is employed.
Results indicate REC prices in the two states do not respond to shocks in electricity
prices or natural gas prices as theorized in the literature. Additionally, only weak
evidence is found regarding whether REC prices are integrated across states. Possible
reasons for the divergence between theorized relationships and empirical evidence are
the relative immaturity of the REC markets and continuous institutional intervention. It
appears that although Renewable Portfolio Standards have been promoted and

implemented as market-based incentives for encouraging renewable generation,



regulators have not succeeded in creating an efficient, fundamental-driven market under
current RPS programs in these two states.

Projecting Impacts of Future Policy Implementation

In Chapter IV, potential future impacts of a recently introduced national policy to reduce
CO; emissions from the electric power sector (the Clean Power Plan) are estimated using
advancements in time series techniques for handling large datasets. Factors extracted
from a large number of monthly macroeconomic, financial, and energy related time
series represent the underlying sources of variation in larger U.S. economic and energy
sector activity. These factors are included in a factor-augmented vector autoregressive
model alongside three variables of interest: electric power sector CO, emissions, U.S.
industrial production, and U.S. real personal income. Unconditional and conditional
forecasts are compared for industrial production, real personal income, and the estimated
factors. The conditional forecasts are based on a constrained path of CO, emissions
reductions. Results suggest that growth in economic activity will be slower under the
Clean Power Plan than it would be otherwise, but that economic growth and CO,

emissions reductions can be achieved simultaneously.



CHAPTER II
TESTING STABILITY IN THE ELECTRIC POWER SECTOR: CHARACTERIZING

FUEL PRICE AND INVENTORY RELATIONSHIPS

Energy markets in the U.S. have experienced several substantial changes in the last
quarter century, including restructuring of both the natural gas and electricity industries.
Additionally, the U.S. has seen a steady increase in natural gas supplies in recent years
because of shale gas exploitation, leading to a decrease in prices. Real monthly natural
gas prices paid by electric power generators (October 2014 dollars) have dropped from a
peak of $14.38/million BTU (mmBTU) in October 2005 to $3.06/mmBTU by
September 2015 (U.S. Energy Information Administration (EIA) 2015a). In this
changing environment, inventory management remains an essential function, having
consequences for a company’s profitability (Chen, Xue, and Yang 2013).

Inventory decisions in the electric power sector are made in the presence of
varying input prices and stochastic seasonal demands by using both spot market
purchases and long-term contracts. As noted, the energy sector has a history of
regulatory changes and continues to be the subject of proposed regulation. It is
important, therefore, to understand how firms behave when faced with a changing
regulatory environment or with major shifts in market conditions. Jha (2015) motivates
this importance; he finds that U.S. electric power plants which face deregulated
electricity markets save approximately 3% per month in coal procurement and storage

costs compared to regulated plants. The objectives of this chapter are to determine how
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coal stocks at electric power plants are related to movements in various economic factors
and whether these relationships have remained constant over a period spanning several
major events in the electricity industry, including market deregulation.

To achieve these objectives, multivariate time-series techniques are employed,
using five different U.S. aggregate monthly data series. Previous literature and
economic theory suggest that input inventory decisions are affected by input and output
price expectations and opportunity costs (Jha 2015; Takriti, Supatgiat, and Wu 2001;
Twisdale and Chu 1979). Applying this intuition to the electric power industry suggests
that coal inventories are expected to be related to fuel input prices, electricity (output)
prices, and the opportunity cost of holding inventories. Accordingly, two input costs to
electric power plants are considered: coal and natural gas. Coal and natural gas are the
focus as they are the two largest fuel sources in the U.S. electric power sector. In June
2014, coal accounted for about 40% of total electricity generation; natural gas was the
second largest source at 26% (U.S. EIA 2015a). The third series is a measure of coal
inventories at electric power plants. Data for natural gas inventories are not included.
Both the inherent dangers of natural gas storage and the ease in transportation cause
natural gas to usually be stored within the gas sector and not the electric power sector.
Electricity prices and Aaa corporate bond rates are included, representing output prices
and opportunity costs. Data are for the period July 1976 to October 2014. Dynamic
long run relationships between coal inventories and input and output prices in the
electricity sector are presented. To the author’s knowledge, such coal relationships have

not been examined in the literature.



Literature Review

There is a relatively vast literature employing time-series methods to address issues in
energy-related markets, as well as a large volume of literature on inventory control. A
non-exhaustive list of inventory behavior literature dates back to Arrow, Harris, and
Marschak (1951), and includes works such as Holt, Modigliani, and Simon (1955),
Feldstein et al. (1976), and Blinder (1986). Generally, inventory studies focus on the
determination of optimal stocking levels of goods. The present study takes a different
approach by studying the dynamic long run relationships between input inventory levels
and input and output prices in the electricity sector.

While inventory literature contains many studies of optimal finished goods
levels, little attention has been given to the optimal stocking of inputs (raw or
intermediate goods). Ramey (1989) develops an optimization method for inventories at
different stages of production. She shows that input inventories are much more volatile
than output inventories. The theory introduced was a major departure from past
inventory literature, as she treated inventories as a factor of production, rather than a
stage between production and sale of goods. Humpreys, Maccini, and Schuh (2001)
note that Ramey’s approach to modeling input inventories implies that optimal stocking
rates stem from factor demand theory. They argue that Ramey’s approach does not
properly capture the flow of inputs in the production process, i.e. the benefits and costs
from holding inventories of raw and intermediate goods. Humphreys, Maccini, and
Schuh (2001) provide a model for inventory management which includes ordering,

usage, and stocking of inputs in the durable and nondurable goods industries. Their



model shows that input inventories respond positively to sales and negatively to raw
material price shocks. Considine (1997) uses a model which simultaneously determines
input and output inventories to investigate the determinants of each in the petroleum
refining industry. He finds that the elasticity of crude oil stocks with respect to a basket
of energy and material prices is small and negative in both the short and long run.

There are a small number of studies addressing fuel inventory and purchase
decisions in the electric power industry. Jha (2015) estimates a dynamic, plant-level
model for optimal coal purchases at coal-fired electric power plants. He finds that firms
which face wholesale market electricity prices save roughly 3% per month in coal
purchase and storage costs compared to a firm under output price regulation. Twisdale
and Chu (1979) develop a multiperiod, dynamic programming framework in which they
study optimal coal inventory management. They find that coal purchases tend to follow
a seasonal, sawtooth pattern from month to month. Sensitivity analyses show that
potential replacement costs (the cost to replace power when the plant is short on coal)
and/or revenue losses greatly affect the optimal strategy. Takriti, Supatgiat, and Wu
(2001) study the problem of a natural gas power plant’s fuel purchase decision under
uncertainty of natural gas prices, electricity prices, and natural gas demand. They
propose a mixed integer programming approach to inform the decision maker when to
buy or sell natural gas, and when to burn natural gas to produce electricity under
stochastic scenarios. They find that their stochastic model outperforms a deterministic

alternative by a factor of three to four percent.



Applications of multivariate time-series techniques to the energy sector are
prevalent in the literature. Most of these studies pertain to energy price relationships,
but a few studies address the relationships between management decisions and economic
variables. One such study is Considine and Heo (2000), who investigate relationships in
petroleum prices, inventories, production, and net imports. They find that under periods
of high prices, oil refiners reduce crude oil stocks but increase finished product
inventories. Pindyck (2001) develops an explanation for how prices, production, and
inventory levels of commodities are related to each other. He shows that price volatility
is important in driving the dynamics of storage markets. In a related paper, Pindyck
(2004) argues that higher volatility in petroleum markets increases the demand for
inventories, as inventories are meant to be a smoothing mechanism. He specifies a
model for petroleum product prices, inventories, and volatility, and finds that while price
volatility does influence inventory levels, it is to a lesser extent than expected.

Applications of time series techniques to input and output price data from the
energy sector provide a starting point for the current study. Borenstein and Shepard
(2002) use time series methods to explore the dynamics between crude oil prices and
wholesale gasoline prices using a model in which holding inventories is costly. They
discover that wholesale gasoline (output) price has a lagged response to shocks in crude
oil price (input cost). Panagiotidis and Rutledge (2007) test the hypothesis of
decoupling of natural gas and oil prices in the UK. They find a cointegrating
relationship between natural gas and oil prices, providing evidence against the

hypothesis of decoupling of the markets. Mohammadi (2009) and Mjelde and Bessler
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(2009) both use vector error correction models to examine long run relationships
between electricity prices and major fuel markets. Mohammadi (2009) finds a
relationship between coal prices and electricity prices in the long run. Mjelde and
Bessler (2009), using four major fuel source prices and two different electricity markets
within the United States, conclude that the largest responses in electricity prices
generally come from shocks in the coal market. They conclude that price discovery is
found in the fuel source markets.

Data

Data used in the empirical analysis includes national level monthly observations of
seven different series for the period July 1976 to October 2014, giving a total of 459
observations. Five endogenous series are: cost of coal and natural gas receipts at electric
generating plants® (representing input prices); electricity prices (output prices); coal
inventories (input stocks); and Moody’s Aaa Corporate Bond ratings (opportunity costs).
The four energy series are from the EIA’s Monthly Energy Review (U.S. EIA 2015a).
Coal inventory is constructed by dividing the amount of coal on hand at electric power
plants in a given month by the previous month’s consumption of coal, thereby
approximating the number of months of coal on hand at electric power plants.? The

Moody’s data are from the U.S. Federal Reserve (2015). Additionally, cooling degree

! These series are from Table 9.9 “Cost of Fossil-Fuel Receipts at Electric Generating Plants” of the
Monthly Energy Review (U.S. EIA 2015a) and are referred to as coal and natural gas costs throughout this
chapter.

2 As a robustness check, the empirical analysis was carried out for an alternative measure of coal

inventory: current end-of-month coal on hand divided by the following month’s consumption in the

- - . l hand - . .
previous year, i.e. inventory, = ——— " 2% The test for parameter stability is robust to this
coal consumptiong_q1

alternative measure (Appendix A).
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days and heating degree days are treated as exogenous series. Cooling and heating
degree days are national level, population weighted monthly observations from the U.S.
National Oceanic and Atmospheric Administration (2015). All five endogenous series
are converted to October 2014 dollars using the Producer Price Index (U.S. Bureau of
Labor Statistics 2015).

The electricity price series is constructed from two different series. Pre-2001
electricity prices are average U.S. retail electricity prices, whereas after December 2000
wholesale prices are used. January 2001 is the first month in which sufficient data are
available on deregulated wholesale electricity prices to generate a U.S. national price.
Wholesale prices are the preferred measure because of their relevance as the price that
power plants receive for their product. Retail prices are included as they are tied to the
price received by plants; however, they are less volatile than wholesale prices. The
monthly average retail price comes from U.S. EIA (2015a). The wholesale price was
constructed as a weighted average using EIA price and volume data (U.S. EIA 2015b)
from four major U.S. hubs (PJM West, Mid-Columbia, Palo Verde, and New England —
Massachusetts). Because of the nature of the electricity price series, a 0-1 dummy
variable (equal to one pre-2001 and zero after) to account for the difference in the series
is included in the model following suggestions by Juselius (2006) and Estima (2006) to
handle a known break.

All endogenous series are in natural logarithm form for the analysis. The
endogenous series are abbreviated as follows: real coal costs to electric power plants

(Coal), real natural gas costs to electric power plants (NG), coal inventories at electric

11



power plants (Coal Inv), Aaa corporate bond rates (Bonds), and real electricity prices
(Elec). Graphs of the five endogenous (before taking natural logarithms) and two
exogenous series are presented in figure 2.1.

Methodology

Previous studies have shown that economic variables in the electricity sector tend to be
integrated in the long run, confirming economic theory (Mjelde and Bessler 2009;
Samuelson 1971). An appropriate dynamic modeling technique to capture both short
and long run relationships is the vector error correction model (VECM). The VECM
framework affords the opportunity to model long run relationships by allowing for the
existence of cointegration among a set of non-stationary variables (Juselius 2006).
Cointegration is present when there exists a linear combination of two or more non-
stationary variables which is itself stationary (the series are thought to move together in

the long run).

12



Real Coal Costs

22
2z
24 3
H-

15
1575 17 1380 13Ez 1984 1585 1382 1990 1992 1994 199G 199% 000 00 004 D006 I00E I090 S9Z 2044
Real Natural Gas Costs
125 +
75 -
;': T T T T T T T T T T T T T T T T T T T
1975 197TE 13S0 iSEz 1984 1325 195% 1950 1992 1994 199G 199F 000 LO0S I004 2006 S00F SO0 IodD Zoid
Real Electricity Prices
140
100
EJ: -
s

1978 1‘9.'-5- 1"9512 1‘9&2 1"954 1‘96-5 1‘9-5-5- 1"99: ‘;9'9.2 1"9'91- 1‘995- 1‘9’96- .:IJZIZII .:IJZII.Z .;IIZIZJ- .2IJZIIE- .:EIIIZ-E- .:IJZ1II .:IJZ1.Z .;IIZH-

Coal Inwventories

10
30
20
1

197 1‘9.'-5- ‘;9612 1‘9&2 1‘95-1- 1‘965 1"95-5- 1‘9’9: 1‘9’9.2 1‘9’91- ‘;'EEE 1"9'96- ;IJZIIII .:IJIII.; .ilIl- .:IJZIIE- .:IJIIZ-E- .:IJZ1II .:IJI1.; .;IIZH-

Aaa Corporate Bond Rates

14
10
5

1976 1‘9.'-5- 1‘9-512 1‘9&2 ‘;96-1- 1‘9-55 1‘95-5- 1‘99: 1"9'9.2. 1‘9’91- 'i'Ei'EE 1"9'96- .:IJIIIII .:!El:.; .:IJZIZJ- .:IJZIIE- .:IJIIZ-E- .2‘1:1( .:IJI1.; .iIZH-

Cooling Degree Days

2hee
oBEEE
[ENEEN NN

1978 15972 1980 1962 1954 1985 1332 1920 1992 1994 4955 1932 2000 2002 D004 2005 200E 200 22 2014

Heating Degree Days

=1 MAAAMAMAMANAAMAAAMAMAMAMARRA

1978 1978 =20 1982 19E4 1965 19EF 1990 1992 194 1935 1992 2000 D000 2004 2005 D00E 010 2012 204

Figure 2.1. Data series (monthly) included in the analysis (July 1976-October 2014).

Units: Coal and natural gas costs ($/mmBtu), electricity prices ($/MWh), coal
inventories (number of coal months on hand)

It is important, therefore, to first test whether each of the five endogenous series is

stationary. Three separate tests for stationarity are reported in table 2.1. Under the first

test, Augmented Dickey-Fuller (Fuller 1996), the null hypothesis of a unit root (non-
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stationarity) cannot be rejected for the natural logarithm of each of the five series.
Taking the first difference of the natural logs leads to a rejection of the null hypothesis
for each of the five series, implying that the series are non-stationary in natural logarithm
of levels, but the first difference natural log transformation leads to stationarity. The
second test (Z-A) examines the null hypothesis of a unit root while allowing for an
unknown breakpoint in both the intercept and linear trend of the series (Zivot and
Andrews 1992). The null hypothesis is again rejected for the natural log of all series, but
cannot be rejected for the first difference natural logs of all series except coal costs. The
third test, KPSS (Kwiatkowski et al. 1992), results in a rejection of the null hypothesis of
stationarity for all series in natural logs. The null of stationarity is not able to be rejected
for the first difference natural logs of all five series. Taking the results of the three tests
together, it appears that the natural log of all series are integrated of order one, or I(1),
providing statistical credence of the potential for cointegration and the use of the VECM

framework.
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Table 2.1. VVarious Tests for Unit Root

ADF (H,: Unit Root) Z-A (H,: Unit Root)  KPSS (Hy:

Stationarity)
Statistic  Decision® Statistic  Decision® Statistic  Decision®
log(Series)
Coal -1.38 F -3.79 F 4.48 R
NG -1.84 F -3.51 F 1.14 R
Coal Inv -1.30 F -3.79 F 4.24 R
Bonds -0.22 F -4.80 F 6.54 R
Elec -0.40 F -3.31 F 5.36 R
diff(log(Series)
Coal -3.74 R -4.85 F 0.39 F
NG -5.03 R -6.00 R 0.05 F
Coal Inv -5.49 R -6.56 R 0.05 F
Bonds -5.72 R -6.68 R 0.16 F
Elec -5.35 R -6.38 R 0.06 F

4Based on the 5% critical value of -2.87
bBased on the 5% critical value of -5.08
“Based on the 5% critical value of 0.46

Vector Error Correction Model
Given the results of the tests for stationarity along with the findings of previous studies
which show the existence of long run relationships among the endogenous series, it is
appropriate to use the VECM representation:
(1) AY, =y + INILAY, + Y+ AX, + &
where:

AY; isa (5 x 1) vector of first differences of the endogenous series;

yisa (5 x 1) vector of constants;

AY;_; represents lagged values of order i;

I; is the corresponding (5 x 5) coefficient matrix;
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k is the optimal number of lags in a levels vector autoregressive representation;

X; isa (3 x 1) vector of exogenous series (cooling and heating degree days, and a 0-1

qualitative variable to capture retail-wholesale electricity price differences);

Aisa (5 x 3) coefficient matrix;

& I1sa (5 x 1) vector of innovations; and

ITY;_; is known as the “error correction” term, where IT is (5 X 5) vector of

coefficients and Y;_; is (5 x 1).
Writing 11 as:
(22) H=ap’
where a and £ are both (5 X r) matrices gives an interpretation of the long run
relationships among the five series and where r is the rank of II. Because Y;_; is hon-
stationary and AY; is stationary, af’ contains stationary linear combination(s) of the five
variables, provided cointegration is present. The r columns of g are known as the
cointegrating vectors (Tsay 2014). Statistical tests are performed on I1, a, and 8 to
determine r and to further characterize the long run structure between the five series.
Test of Parameter Stability
To address the issue of stability of the long run relationships, a test for constancy of g is
conducted following Hansen and Johansen (1999). The test is performed by recursively
estimating the VECM for subsamples of the data spanning from ¢, to
t = tp, tps1, tpeo, ... T Where T is the full sample, t, is the time of the first observation,
and t;, is the starting point of the recursion chosen to allow a minimal base sample as a

function of the number of parameters in the model (t, < t;,, < T). To test the constancy
16



of B, estimates §® are compared to £, where £® is the estimate of g for the

subsample including data up until time t. Define:

2.3) C=P?]J&=P? O] &= ey

where c; is the orthogonal complement of ¢ such that ¢} ¢ = 0 (likewise for BET)). L™
is normalized on ¢ such that 7 = f®(&/®)~1. Additionally, define @ =
a®B®'c suchthat @40 = a®B®’. Then the test statistic at each point in the
sample t is:
2
24) QP =(3) trace{(v) 1@ (MD) 15}
where:
25) VO = AD(], _A(T))‘l;
(26) M(T) = (%) C’J_SHCJ_ ; and
@7) SO =ci(S5 —aPBT Sy @™ el
Sl.(jt) is the product moment matrix of residuals from the VECM using the sample up until

time t, A is the diagonal matrix of the r largest eigenvalues corresponding to the r

estimated cointegrating vectors from the full sample, and 2 is the covariance matrix

of innovations based on the full sample (Hansen and Johansen 1999).

By examining the sequence of test statistics Q" a test of whether f® = g(Mfor

each t = ty, ty41, ty42, ... T 1S performed (null hypothesis at each t). For a thorough
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explanation of the test and the asymptotic distribution of the test statistic Q;t), see
Hansen and Johansen (1999), Juselius (2006), and the CATS 2.0 Manual (Estima, 2006).
Innovation Accounting Procedures
Impulse response functions (IRFs) and forecast error variance decompositions (FEVDs)
help to characterize the dynamic relationships among coal inventories, coal and natural
gas costs, electricity prices, and Aaa corporate bond rates. IRFs show the effect of a
one-time shock in one variable on the future values of the remaining variables, and
FEVDs are calculated as the percentage of variance in forecast error in one variable that
can be explained by unexpected shocks to the other variables.

Innovation accounting procedures (IRFs and FEVDs) are conducted based on the
levels vector autoregressive (VAR) form of the VECM in equation (2.1):
28) Y=y + @+ + L)Yy = XA — ) Vemior — lim1Yeoi + AXe + &
An issue that arises when conducting innovation accounting procedures is that the
contemporaneous covariance matrix of &, in Equation (2.8), X, is usually not a diagonal
matrix in empirical applications (the components of the error term are
contemporaneously correlated). If this is the case, then any particular series cannot
necessarily be shocked without affecting another series; innovation accounting
procedures are nonsensical if contemporaneous correlation exists (Tsay 2014). To
overcome this limitation, the innovations &, must be orthogonalized. Consider a
Bernanke (1986) ordering, where the correlated innovations &, are written as a function
of the underlying (structural) sources of variation (o) which are assumed to be

orthogonal:
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(29) & =A4A10,.
To conduct the innovation accounting procedures, the VAR representation (equation 2.8)
is pre-multiplied by the matrix A.

A form for the matrix A is obtained through causal flow methods (Pearl 2000;
Spirtes, Glymour, and Scheines. 2000). Directed Acyclic Graphs (DAGS) provide a
visual summary of contemporaneous causal flows among innovations from the estimated
vector error correction model. The GES algorithm (Chickering 2003) in TETRAD V
(2015) is employed to generate DAGs using the covariance matrix of error terms. In
DAGs, an arrow from A to B implies that A causes B. An undirected line from A to B
with no arrow (or a line with an arrow on each end) signifies flows between the two, but
the algorithm cannot determine whether A causes B or B causes A. If there is no
information flow between A and B, the algorithm will not generate a line of any type
connecting the two. The GES algorithm starts from a DAG representation where all
variables are independent of each other (no lines), and searches over more complicated
representations for improvements in the Bayesian Information Criterion. The algorithm
picks the DAG representation such that no added line or change of direction improves

the criterion.
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Results

Model Diagnostics for the Full Model

The first step in the modeling procedure is to estimate the VECM representation in
equation (2.1). First, in accordance with Hansen and Johansen (1999), the constant term
y is restricted such that no deterministic trend is allowed in the model (the constant is
constrained to the cointegrating space). Next, under the restricted constant model,
simultaneous determination of optimal lag length (k) and cointegrating rank () using
information criteria is performed following Wang and Bessler (2005). Results of this
process are reported in table 2.2. The Hannan and Quinn loss metric reaches a minimum

value at two lags and three cointegrating vectors.

Table 2.2. Results of Simultaneous Determination of r and k Following Wang and
Bessler (2005), Using the Hannan and Quinn M Loss Metric
r (cointegrating rank)

k (lags) 1 2 3 4 5

1 -31.12 -31.17 -31.19 -31.17 -31.15
2 -31.23 -31.25 -31.26 -31.24 -31.21
3 -31.20 -31.19 -31.19 -31.16 -31.13
4 -31.08 -31.08 -31.06 -31.03 -30.99
S -30.98 -30.97 -30.95 -30.92 -30.88
6 -30.85 -30.83 -30.81 -30.77 -30.74
7 -30.63 -30.60 -30.57 -30.54 -30.51
8 -30.44 -30.40 -30.37 -30.34 -30.30
9 -30.34 -30.31 -30.28 -30.24 -30.22
10 -30.13 -30.11 -30.08 -30.04 -30.01
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There are a suite of tests available to further examine the cointegrating space.
Results of these tests are reported in table 2.3. The null hypothesis of the variable
stationarity test is that one or more of the cointegrating vectors does not represent a
linear combination of non-stationary series, but rather arises because one of the series is
stationary given the optimal lag length and cointegrating rank of the VECM. This
hypothesis is rejected at the 5% level for all series. The second test is for variable
exclusion, which tests the null hypothesis that a particular series is not a part of the
cointegrating space. The null hypothesis is rejected at the 5% level for all five
endogenous series. Lastly, the test for weak exogeneity examines whether a variable
responds to disruptions to the long run relationships characterizing the data. The null
hypothesis of weak exogeneity is rejected at the 5% level for all five endogenous series.
These three tests suggest that cointegration exists, all endogenous series are included in

the cointegrating space, and all series respond to shocks in the system.

Table 2.3. Test for Variable Exclusion, Stationarity, and Weak Exogeneity for the
Full Sample Period. P-values in Parentheses

Test Coal NG Coal Inv Bonds Elec
Stationarity 34.17 11.00 34.79 34.15 35.21
(0.00) (0.05) (0.00) (0.00) (0.00)
Exclusion 19.71 22.11 31.22 16.42 36.94
(0.00) (0.00) (0.00) (0.00) (0.00)
Weak Exogeneity 25.41 12.04 30.00 9.24 35.83
(0.00) (0.01) (0.00) (0.03) (0.00)
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Testing Constancy of
As Hansen and Johansen (1999) note, the test of parameter constancy outlined above

does not require any additional restrictions for identification of f. The sequence of test

statistics Q?) foreach t = ty, ty41, tp42, ... T, therefore, is calculated recursively for the
VECM with two lags and three cointegrating vectors. The minimum ¢, allowable given
the number of parameters in the model is April 1980, thus, the base sample for the

recursive estimation is September 1977 to April 1980. Each successive estimation in the
recursive process can be done in one of two ways, either by re-estimating all parameters

in the model in each step (referred to as the X-Form) or by re-estimating a and 8 while

holding the short-run parameters fixed (R1-Form). The series of test statistics Q%t) are
reported for both forms in figure 2.2. By construction, the sequence converges to zero at
the end of the sample.

Estimates of S are not constant over the entire sample for both the X- and R1-
Forms, suggesting the long run relationships among coal inventories, coal and natural

gas costs, electricity prices, and Aaa bond rates contain some degree of instability. The

X-Form displays a period of instability from mid-1994 to mid-2001 as Q;t) exceeds the
critical value during this period, leading to a rejection of the null hypothesis of parameter
constancy. The R1-Form contains the same period of instability, but also shows some
instability near the beginning of the sample (mid-1981 to mid-1986).

A timeline of major developments related to the U.S. electricity generating
process during the sample period is presented in table 2.4. The first major event in the

sample was the Staggers Rail Act of 1980, which lifted constraints on the railroad
22



industry and allowed railroad operators more flexibility in pricing and delivery (U.S.
Federal Railroad Administration 2011). This flexibility had implications for coal
inventory decisions in the electricity industry, as the majority of coal is transported by
rail. The initial period of instability in the R1-Form begins roughly 10 months after the
Staggers Rail Act was signed into law. Wilson (1994) estimates the effects of the
Staggers Act on rail rates for a number of commodities. He finds that the law initially
increased rail rates for coal, but by 1988 the effect of regulation had reversed. In
addition, Dennis (2000) shows that coal-related rate reductions were an important factor
in explaining the large overall rate reduction seen by the railroad industry in the 16 years
following the Staggers Act. It is possible that the instability shown in the R1-Form,
which holds the short-run VECM parameters fixed, is reflective of the effects of policy

changes in the railroad industry.
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Figure 2.2. Results of test for constancy of B following Hansen and Johansen (1999) for VECM with k = 2 and r = 3.
The null hypothesis at each t is that



Table 2.4. Timeline of Major Events Pertaining to the Electric Power and Natural

Gas Sectors

Date Event Description

10/14/80  Staggers Rail Act Deregulation of U.S. railroad services

11/15/90  Clean Air Act Promotes use of low-sulfur coal and

Amendments natural gas. Establishes SO, permit trading

program.

4/8/92 FERC Order 636 Unbundling of sales from transportation
services in natural gas industry

10/24/92  Energy Policy Act Goals for increasing clean energy use and
improving energy efficiency

1/1/94 NAFTA Trilateral trade agreement between U.S.,
Mexico, and Canada

4/24/96 FERC Order 888 Promotes competition in U.S. electricity
sector

12/11/97  Kyoto Protocol International agreement to reduce
greenhouse