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ABSTRACT

The Hochschild cohomology of an associative algebra is a Gerstenhaber algebra,

having a graded ring structure given by the cup product and a compatible graded

Lie algebra structure given by the Gerstenhaber bracket. The cup product can be

defined generally from multiple perspectives and has been studied for many classes

of algebras. The Gerstenhaber bracket, however, has not admitted such a general

definition, making computations difficult.

In this dissertation, we characterize the Gerstenhaber algebra structure on the

Hochschild cohomology of group extensions of quantum complete intersections. We

utilize the notion of twisted tensor products, a noncommutative tensor product, and

adapt a technique of Wambst’s to compute the graded ring structure on Hochschild

cohomology. The bracket structure is computed by employing an alternative descrip-

tion given in recent work of Negron and Witherspoon. When the group is trivial, this

work extends the previous computations of the graded ring structure of Hochschild

cohomology of quantum complete intersections to include the bracket structure. As

an example, we compute the Gerstenhaber algebra structure for two generator quan-

tum complete intersections extended by selected groups.
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1. INTRODUCTION

Hochschild cohomology is used in many diverse areas of mathematics including

representation theory, deformation theory, and the study of the structure of algebras.

In low homological degrees, Hochschild cohomology of an algebra reveals some of the

structure of the algebra such as the center and possible derivations on the algebra.

A large gap in cohomology implies smoothness of finitely generated commutative

algebras as shown by Avramov and Iyengar in [2]. Beyond the vector space structure,

Hochschild cohomology has graded ring structure given by the cup product and

compatible graded Lie algebra structure given by the Gerstenhaber bracket, making

it a Gerstenhaber algebra. The cup product on cohomology has been widely studied

for many algebras but the Lie bracket on Hochschild cohomology is less understood

as it can be difficult to compute.

Both products are typically computed on projective resolutions. Motivated by

deformations, Gerstenhaber originally defined the Lie bracket structure of Hochschild

cohomology in [10] on the bar resolution. While the bar resolution is a projective

resolution for any algebra over a field, some algebras have projective resolutions

that are more tuned to the structure of the specific algebra. For example, the Koszul

complex is a finite length resolution for the polynomial ring whose differentials involve

multiplying by the generators while the bar resolution is an infinite length resolution

whose differentials involve summing over increasingly long tensor products. In order

to compute the brackets using a different resolution, in general, one needs to construct

chain maps between the two resolutions, pass elements through a chain map to the

bar resolution, compute the bracket, and then pass back through a chain map to

the desired resolution. While such chain maps always exist, they can be difficult to
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explicitly state. For example, see [26] or [27]. Fortunately, Negron and Witherspoon

gave a more computationally minded description of the Lie brackets in [23] on any

resolution which is compatible with the bar resolution. Unlike more traditional

techniques, this method does not require explicit chain maps to and from the bar

resolution. In this dissertation, we utilize this bracket description to study the Lie

structure of group extensions of quantum complete intersections.

The behavior of Hochschild cohomology of quantum complete intersections has

been shown to vary greatly based on the choice of quantum coefficients, exhibit-

ing behaviors unseen with commutative algebras. Quantum complete intersections

of interest here are noncommutative generalizations of truncated polynomial rings.

Formally, if k is a field, m1,m2, ....,mn are positive integers, and q = {qi,j}i,j∈{1,2,...,n}

such that qi,j ∈ k∗ for all i, j ∈ {1, 2, ..., n}, qj,i = q−1
i,j , and qi,i = −1, then define

Λ(m1,m2,...,mn)
q = k〈x1, x2, ..., xn| xixj = −qi,jxjxi, xmii = 0 for all i, j ∈ {1, 2, ...n}〉,

the quantum complete intersection on q and (m1, ...mn). That is, Λ
(m1,m2,...,mn)
q is

a noncommutative truncated polynomial ring generated by x1, x2, .., xn where xi is

truncated at xmii and multiplication on the set of generators is commutative up

to multiplication by non-zero scalars. This noncommutative multiplication can be

replicated using iterated twisted tensor products given by Bergh and Oppermann in

[6] as will be shown in Example 3.1.1.

The quantum complete intersection Λ
(2,2,...,2)
q was introduced by Manin in [19, Ex-

ample 3.2] as an example of a quantum Grassmannian (exterior) algebra. Avramov,

Gasharov, and Peeva first formally defined quantum complete intersections in [1] by

introducing the notion of quantum regular sequences, generalizing complete intersec-

tions and regular sequences. A discussion of other possible classes of noncommutative
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complete intersections can be found in [15].

Buchweitz, Green, Madsen and Solberg showed that the two generator quantum

complete intersections, Λ
(2,2)
q , whose quantum coefficient is not a root of unity have

infinite global dimension but finite Hochschild cohomology in [7], the first example

of this type. When the quantum coefficient is a root of unity, Λ
(2,2)
q has infinite

Hochschild cohomology with large gaps determined by the root of unity. Bergh and

Erdmann generalized this result in [5], showing that the general class of two generator

quantum complete intersections, Λ
(m1,m2)
q , have finite Hochschild cohomology if and

only if the quantum coefficient is not a root of unity. In [25], Oppermann furthered

this study by showing that the Hochschild cohomology of finite quantum complete

intersections, Λ
(m1,m2,...,mn)
q , is intimately tied to the choice of quantum coefficients.

In this dissertation, we allow a finite group to act diagonally on the quantum

complete intersections and study the effect on Hochschild cohomology. In particular,

if G is a finite group acting on Λ
(m1,m2,...,mn)
q , we denote by Λ

(m1,m2,...,mn)
q oG the group

extension of Λ
(m1,m2,...,mn)
q by G. Work on the structure of Hochschild cohomology

of Λ
(m1,m2,...,mn)
q o G is related to efforts to understand Hochschild cohomology of

Sq(V ) oG. The quantum symmetric algebra, Sq(V ), of the vector space V is

Sq(V ) = T (V )/(vivj − qi,jvjvi|i, j ∈ {1, 2, ..., n}) where T (V ) =
⊕
n≥0

V ⊗n

and {v1, v2, ..., vn} is a k-basis for V . The structure of Hochschild cohomology of

an algebra reveals information about possible deformations the algebra. In the case

of Sq(V ) o G, deformations of this algebra include many algebras of interest, such

as quantum Drinfeld Hecke algebras, rational Cherednik algebras [9], and braided

Cherednik algebras [3]. The explicit relation between Hochschild cohomology of

Sq(V )oG and quantum Drinfeld Hecke algebras is given by Naidu and Witherspoon
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in [21]. Deformations of Λ
(m1,m2,...,mn)
q oG are related to quotients of these interesting

algebras.

The document is organized as follows. In Section 2, we give the necessary ho-

mological framework and define the Gerstenhaber algebra structure on Hochschild

cohomology. As in [5] and [25], the work in this dissertation utilizes the notion of

twisted tensor products for computations on quantum complete intersections. We

define twisted tensor products in Section 3 and give the results of Nguyen, With-

erspoon and myself regarding bracket constructions using twisted tensor products

contained in [11]. Section 4 contains a description of the Gerstenhaber algebra

structure on Hochschild cohomology of group extensions of quantum complete in-

tersections. When the group is trivial, this work extends the computations of [7] and

[25] (when mi = 2 for all i) to include the bracket structure. To demonstrate this

result, we compute the structure for several two generator cases, including cases with

a specified group action and cases with a specified quantum coefficient, in Section 5.

Both cases contain new computations which give a sense of the behaviors that can

be found in Hochschild cohomology of noncommutative algebras.
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2. HOMOLOGICAL ALGEBRA

We start by providing the homological techniques which we will need in Section 4,

the main section of this document. In Section 2.1, we give a brief introduction to ho-

mological terminology and use this to define the Hochschild cohomology vector space

structure. We give a definition of the Gerstenhaber algebra structure on Hochschild

cohomology in Section 2.2 on the bar resolution. In Section 2.3, we discuss alterna-

tive descriptions of the cup product and bracket on more general resolutions. We

will use the descriptions from Section 2.3 in Section 4.

Unless otherwise noted, ⊗ = ⊗k and all modules are left modules for the remain-

der of the text.

2.1 Hochschild cohomology

We start by defining the homological terminology which will be used in later

sections. A more general discussion of homological algebra can be found in [13], [18],

and [30].

Definition 2.1.1. Let R be a ring. A chain complex D over R is a sequence of

R-module homomorphisms

D : ...
δi+2−−→ Di+1

δi+1−−→ Di
δi−→ Di−1

δi−1−−→ ...

such that δiδi+1 = 0 for all i ∈ Z. The R-module homomorphisms δ are called

differentials or boundary maps.

If D is a chain complex over R with boundary maps δ, then, because δiδi+1 = 0,

Im δi+1 ⊂ Ker δi for all i ∈ Z. Therefore the quotient Ker δi/ Im δi+1 is well-defined.

The R-module Ker δi/ Im δi+1 is called the ith homology module and is denoted Hi(D).
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A sequence of R-module homomorphisms

D : ...
δi+2−−→ Di+1

δi+1−−→ Di
δi−→ Di−1

δi−1−−→ ...

is exact if Im δi+1 = Ker δi for all i ∈ Z. An exact sequence is, by definition, a

complex with Hi(D) = 0 for all i ∈ Z.

If D and E are chain complexes over R, a chain map φ : D → E is a family of

R-module homomorphisms {φi : Di → Ei|i ∈ Z} such that φi−1δi = δ̃iφi where δ and

δ̃ are the families of boundary maps on D and E respectively. We can combine the

complexes D and E to create a new complex called the total complex of the tensor

product, a useful construction which we will use throughout the rest of the text.

Definition 2.1.2. Let D and E be chain complexes over R with R-module homo-

morphisms δ and δ̃ respectively. The total complex Tot(D⊗ E) is

Tot(D⊗ E) : ...
δ′i+2−−→

⊕
p+q=i+1

Dp ⊗ Eq
δ′i+1−−→

⊕
p+q=i

Dp ⊗ Eq
δ′i−→

⊕
p+q=i−1

Dp ⊗ Eq
δ′i−1−−→ ...

where δ′i(d⊗ e) = δp(d)⊗ e+ (−1)pd⊗ δ̃q(e) for d ∈ Dp and e ∈ Eq.

Throughout the text, D ⊗ E should always be interpreted as the total complex,

Tot(D ⊗ E), with boundary map as described in Definition 2.1.2 unless otherwise

stated.

Remark 2.1.3. Terms with a co- prefix are defined under the given definition with all

maps reversed. For example, a cochain complex D over R is a sequence of R-module

homomorphisms

D : ...
δi−1−−→ Di−1

δi−→ Di
δi+1−−→ Di+1

δi+2−−→ ...

such that δi+1δi = 0 for all i ∈ Z.

6



We finish the basic homological terminology with a key definition for Hochschild

cohomology.

Definition 2.1.4. Let R be a ring. A projective resolution of an R-module X is an

exact sequence of R-module homomorphisms

P : ...
δ3−→ P2

δ2−→ P1
δ1−→ P0

δ0−→ X → 0

where for each i ≥ 0, Pi is a projective R-module.

That is, a projective resolution of X as an R-module, P, is a chain complex such

that Pi is projective for all i ≥ 0, P−1 = X, Pi = 0 for all i < −1, and P is exact.

Remark 2.1.5. Projective resolutions exist for any R-module as can be shown by a

constructive proof. See for example [13, Chapter IV Section 4].

Let us give an example of a projective resolution for an algebra which we will

refer back to frequently.

Example 2.1.6. Let k be a field and Rx = k[x]/(x2), the truncated polynomial

ring. Let Rop
x be the opposite ring and Re

x = Rx ⊗ Rop
x . Then Rx is an Re

x-module

with action given by left and right multiplication, (r′ ⊗ r′′)r = r′rr′′ for all r ∈ Rx,

r′ ⊗ r′′ ∈ Re
x. Consider

Kx : ...
δ3−→ Re

x
δ2−→ Re

x
δ1−→ Re

x
δ0−→ Rx → 0

with δi(a ⊗ b) = (x ⊗ 1 + (−1)i1 ⊗ x)(a ⊗ b) for all i > 0 and δ0(a ⊗ b) = ab for

a, b ∈ Rx. Notice δi is an Re
x-module homomorphism for all i > 0 and Re

x is a free

(and thus projective) Re
x-module. It remains to check that Kx is exact.
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For i odd, Im δi = spanRex{(x⊗ 1− 1⊗x)} and Ker δi = spanRex{(x⊗ 1 + 1⊗x)}.

For i > 0 even, Im δi = spanRex{(x⊗1+1⊗x)} and Ker δi = spanRex{(x⊗1−1⊗x)}

and Im δ0 = R. All of this information together implies that Px is exact and thus a

projective resolution for Rx as an Re
x-module.

If R is a graded ring, then a graded R-module X is a module that can be written

as a direct sum

X =
⊕
m∈N

Xm

such that RiXj ⊂ Xi+j. Let X and Y be graded R-modules, a homomorphism

f : X → Y is graded of degree m if f(Xi) ⊂ Yi+m. A graded projective resolution

of an R-module X is a projective resolution such that Pi is a graded R-module and

the degree of δi is 0 for all i ∈ Z.

Continuing our example, we can assign Rx a natural Z-grading by polynomial

degree. In this case, Kx is not a graded projective resolution because each δi has

degree 1 for i > 0. If we shift the degrees of the modules, however, we can change

the degrees of δi for i > 0. Define (Re
x〈a〉)b = (Re

x)b−a. That is, in Re
x〈a〉, the degrees

of all homogeneous elements are increased by a from their degree in Re
x. Then

K′x : ...
δ3−→ Re

x〈2〉
δ2−→ Re

x〈1〉
δ1−→ Re

x
δ0−→ Rx → 0

is a graded projective resolution for Rx as an Re
x-module, where δi(a⊗ b) = (x⊗ 1 +

(−1)i1⊗ x)(a⊗ b) for all i > 0 and δ0(a⊗ b) = ab for a, b ∈ Rx as before.

To get a projective resolution for Rx ⊗ Ry
∼= k[x, y]/(x2, y2), consider the total

complex, Tot(Kx ⊗ Ky). Denote k[x, y]/(x2, y2) by Λ(2,2) to compare with our later

constructions. Because the tensor product and direct sum of projective modules is

a projective module, each of the (Λ(2,2))e-modules in Tot(Kx ⊗ Ky) is projective.
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Moreover, as a result of the Künneth Theorem, Tot(Kx ⊗Ky) is an exact sequence.

See, for example, [13, Chapter V, Theorem 2.1] for the statement of the Künneth

Theorem. Therefore Tot(Kx ⊗ Ky) is a projective resolution of Λ(2,2) as a (Λ(2,2))e-

module. In general, the total complex can be used to construct a projective resolution

for any algebra over a field that can be expressed as the tensor product of two algebras

for which we know the projective resolutions.

Now that we have the homological framework, we can work towards the definition

of Hochschild cohomology. Let k be a field and Λ be an associative k-algebra. As

in Example 2.1.6, let Λop be the opposite algebra which is Λ as a vector space with

opposite algebra multiplication and Λe = Λ ⊗ Λop be the enveloping algebra of Λ.

Notice Λ is a left Λe-module with action (λ0 ⊗ λ1)λ = λ0λλ1 for λ0, λ1, λ ∈ Λ.

Let M be a Λe-module. Define Hochschild cohomology of Λ with coefficients in

M , HH
r
(Λ,M) by the following procedure: Let

P : ...
δ3−→ P2

δ2−→ P1
δ1−→ P0

δ0−→ Λ→ 0

be a projective Λe-module resolution of Λ. Apply HomΛe(−,M) to P and drop the

HomΛe(Λ,M) term to get the sequence

HomΛe(P,M) : 0→ HomΛe(P0,M)
δ∗1−→ HomΛe(P1,M)

δ∗2−→ HomΛe(P2,M)
δ∗3−→ ...

where δ∗i (f) = fδi for i > 0. While P was an exact sequence, HomΛe(P,M) may not

be exact. Moreover, for f ∈ HomΛe(Pi−1,M), we have δ∗i+1δ
∗
i (f) = δ∗i+1(fδi) =

fδiδi+1 = f(0) = 0 because P is exact and f is a homomorphism. Therefore

HomΛe(P,M) is a cochain complex on which cohomology is well-defined. Define the
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ith Hochschild cohomology k-module of Λ with coefficients in M to be the quotient

HHi(Λ,M) = Hi(HomΛe(P,M)) = Ker (δ∗i+1)/ Im(δ∗i ).

Remark 2.1.7. In this definition of Hochschild cohomology, we are implicitly using

the Ext functor. As a result, this definition can be shown to be independent of

choice of projective Λe-module resolution. A thorough discussion of the Ext functor

and resolutions can be found in [13]. For other equivalent definitions of Hochschild

cohomology, including the simplicial definition, see [30, Chapter 9].

We have a natural grading by homological degree such that elements in HHi(Λ,M)

and HomΛe(Pi,M) have homological degree i. Define HH
r
(Λ,M) to be the graded

vector space

HH
r
(Λ,M) =

⊕
i≥0

HHi(Λ,M).

In the special case that M = Λ, we shorten the notation HH
r
(Λ,Λ) to HH

r
(Λ) and

call HH
r
(Λ) the Hochschild cohomology of Λ. We now demonstrate the definition of

Hochschild cohomology by giving an example using the projective resolution from

Example 2.1.6.

Example 2.1.8. Let k be a field and Rx = k[x]/(x2). Kx is a projective resolution

for Rx as an Re
x-module. To compute HH

r
(Rx), apply HomRex(−, Rx) to Kx and drop

HomRex(Rx, Rx) to get

0→ HomRex(R
e
x, Rx)

δ∗1−→ HomRex(R
e
x, Rx)

δ∗2−→ HomRex(R
e
x, Rx)

δ∗3−→ ...

where δ∗0 = 0, δ∗i (f) = fδi, and δi(a⊗ b) = (x⊗ 1 + (−1)i1⊗ x)(a⊗ b) for all i > 0

and a, b ∈ Rx. Homomorphisms in HomRex(R
e
x, Rx) are determined by the image of
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1 ⊗ 1. Let f ∈ HomRex(R
e
x, Rx) with f(1 ⊗ 1) = ax + b for a, b ∈ k. Assume f has

homological degree i− 1.

If i is odd, δ∗i f(1 ⊗ 1) = fδi(1 ⊗ 1) = f(x ⊗ 1 − 1 ⊗ x) = xb − bx = 0 and

therefore Im δ∗i = 0 and Ker δ∗i = HomRex(R
e
x, Rx). If i > 0 is even, δ∗i f(1 ⊗ 1) =

fδi(1⊗ 1) = f(x⊗ 1 + 1⊗ x) = xb+ bx = 2bx and therefore Im δ∗i = spank{x} and

Ker δ∗i = spank{x}. Therefore

HH0(Rx) = HomRex(R
e
x, Rx) ∼= Rx,

HHodd(Rx) = spank{x}/(0) ∼= spank{x}, and

HHeven(Rx) = HomRex(R
e
x, Rx)/spank{x} ∼= k.

2.2 Gerstenhaber algebra structure

In addition to the graded vector space structure, Hochschild cohomology of Λ

has a graded ring structure given by the cup product and a compatible Lie algebra

structure given by the Gerstenhaber bracket, making HH
r
(Λ) a Gerstenhaber algebra.

We will use this section to discuss the general definition of these products, given at

the chain level on the bar resolution.

Definition 2.2.1. Let Λ be an algebra over a field k. The bar resolution of Λ, B(Λ),

is a free Λe-module resolution of Λ given by

B = B(Λ) : ...
d3−→ Λ⊗4 d2−→ Λ⊗ Λ⊗ Λ

d1−→ Λ⊗ Λ
d0−→ Λ→ 0

where

di(λ0 ⊗ λ1 ⊗ ...⊗ λi+1) =
i∑

m=0

(−1)mλ0 ⊗ λ1 ⊗ ...⊗ λmλm+1 ⊗ ...⊗ λi+1

11



for λ0, ..., λi+1 ∈ Λ.

The ith homological degree term in the bar resolution of Λ is denoted Bi. Notice

Bi = Λ⊗i+2 for each i ≥ 0. It can be shown that the bar resolution is a free (and

therefore projective) Λe-module resolution of Λ.

Remark 2.2.2. If we set P = B in the definition of Hochschild cohomology given in

the previous section, we recover the original definition given by Hochschild in [14].

By our construction in Section 2.1, we can express elements in HHi(Λ) at the

chain level as equivalence classes of elements in HomΛe(Bi,Λ) = HomΛe(Λ
⊗i+2,Λ).

We now define the products on Hochschild cohomology at the chain level. Let f ∈

HomΛe(Λ
⊗i+2,Λ) and g ∈ HomΛe(Λ

⊗j+2,Λ). Define the cup product of f and g by

f ^ g(λ0⊗λ1⊗ ...⊗λi+j+1) = f(λ0⊗λ1⊗ ...⊗λi⊗1)g(1⊗λi+1⊗ ...⊗λi+j⊗λi+j+1)

for any λ0, λ1, ..., λi+j+1 ∈ Λ. With the cup product, HH
r
(Λ) becomes a graded ring,

graded by homological degree.

Remark 2.2.3. Denote by f and g the representative functions of f ∈ HomΛe(Λ
⊗i+2,Λ)

and g ∈ HomΛe(Λ
⊗j+2,Λ) in HH

r
(Λ). If f ∈ HHi(Λ) and g ∈ HHj(Λ), then

f ^ g = (−1)ijg ^ f , making HH
r
(Λ) a graded commutative ring with respect

to ^. Proof of this relation can be found in [10, Section 7, Corollary 1].

We will next describe the compatible Lie algebra structure, as defined by Ger-

stenhaber in [10]. The Gerstenhaber bracket is defined via the circle product of f

and g, given by the following equation. Let

f ◦ g(λ0 ⊗ λ1 ⊗ ...⊗ λi+j) =
i∑

m=1

(−1)(j−1)(m−1)f(λ0 ⊗ λ1 ⊗ ...⊗ λm−1⊗
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g(1⊗ λm ⊗ ...⊗ λm+j−1 ⊗ 1)⊗ λm+j ⊗ ...⊗ λi+j)

for any λ0, λ1, ..., λi+j ∈ Λ. Then define the Gerstenhaber bracket, in terms of ◦, to

be

[f, g] = f ◦ g − (−1)(i−1)(j−1)g ◦ f.

Let f ∈ HHi(Λ), g ∈ HHj(Λ), and h ∈ HHl(Λ). Then the Gerstenhaber bracket

satisfies

[f, g] = −(−1)(i−1)(j−1)[g, f ]

and

(−1)(i−1)(l−1)[[f, g], h] + (−1)(j−1)(i−1)[[g, h], f ] + (−1)(l−1)(j−1)[[h, f ], g] = 0,

making HH
r
(Λ) a graded Lie algebra with respect to [−,−]. Proof of these bracket

properties is given by Gerstenhaber in [10]. Specifically, in [10, Section 7], it is shown

that the circle product defines a pre-Lie system which, by [10, Section 2, Theorem 1]

makes (HH
r
(Λ), [−,−]) a graded Lie algebra. While the Gerstenhaber bracket is

well-defined on cohomology, the circle product is not.

Moreover, the two products satisfy

[f ^ g, h] = [f, h] ^ g + (−1)i(l−1)f ^ [g, h] (2.2.4)

for f ∈ HHi(Λ), g ∈ HHj(Λ), and h ∈ HHl(Λ). That is, the Gerstenhaber bracket

behaves as a graded derivation with respect to the cup product. Proof of this result

is given in [10, Section 8, Corollary 2]. The graded ring structure, graded Lie algebra

structure, and compatibility relation between the structures (2.2.4) makes HH
r
(Λ) a
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Gerstenhaber algebra.

2.3 Alternative descriptions of products

For our computations in Section 4, we will need definitions of the product struc-

tures more targeted to our setting. First, let us introduce yet another multiplication.

The bar resolution of Λ admits a comultiplication given by the diagonal map on B,

∆B : B→ B⊗Λ B which is a chain map given by

∆B(λ0 ⊗ λ1 ⊗ ...⊗ λn+1) =
n∑

m=0

(λ0 ⊗ ...⊗ λm ⊗ 1)⊗Λ (1⊗ λm+1 ⊗ ...⊗ λn+1)

for λ0, ..., λn+1 ∈ Λ. We will define the product structures on HH
r
(Λ) on the chain

level in terms of this diagonal map.

Let f ∈ HomΛe(Bi,Λ) and g ∈ HomΛe(Bj,Λ). Using the diagonal map, we can

view f ^ g, previously defined in Section 2.2, as the composition

f ^ g : B ∆B−→ B⊗Λ B f⊗Λg−−−→ Λ⊗Λ Λ
µ−→ Λ (2.3.1)

where µ is the multiplication map giving the isomorphism Λ ⊗Λ Λ ∼= Λ. If K is

a another resolution for Λ with diagonal chain map, ∆K, lifting the identity map

1Λ : Λ→ Λ, then the cup product is given by (2.3.1) after replacing B with K. That

is, if f, g ∈ HomΛe(K,Λ), then the cup product is given by

f ^ g : K ∆K−−→ K⊗Λ K f⊗Λg−−−→ Λ⊗Λ Λ
µ−→ Λ.

In particular, if K is a subresolution of B for which ∆B induces a comultiplication

on K, then the cup product on K is also induced by the composition in (2.3.1).

To demonstrate the ring structure on Hochschild cohomology of an algebra, we will
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continue developing Example 2.1.6. Notice the resolution used in this example was

not the bar resolution.

Example 2.3.2. Let k be a field and Rx = k[x]/(x2). Recall, HH0(Rx) ∼= Rx,

HHodd(Rx) ∼= spank{x}, and HHeven(Rx) ∼= k for i > 0. Before computing the cup

product, let’s adopt some new notation to better track homological degree. The pro-

jective resolution from which we computed cohomology was

Px : ...
δ3−→ Re

x
δ2−→ Re

x
δ1−→ Re

x
δ0−→ Rx → 0.

Let εi be the copy of 1 ⊗ 1 in homological degree i and ε∗i the dual Re
x-module ho-

momorphism. Then, in this notation, HH
r
(Rx) ∼= spank{1, x, xε∗1, ε∗2, xε∗3, ε∗4, ...} as a

vector space. It can be shown that a diagonal map on Px is

∆Px(εi) =
∑
i=p+q

εp ⊗Rx εq.

Then (2.3.1) gives us for i, j > 0,

x ^ ε∗2i = xε∗2i,

x ^ xε∗2i+1 = 0,

xε∗2i+1 ^ xε∗2j+1 = 0,

xε∗2i+1 ^ ε∗2j = xε∗2(i+j)+1, and

ε∗2i ^ ε∗2j = ε∗2(i+j).

The reader can check that HH
r
(Rx) ∼= Rx ×k

∧∗(xε∗1)[ε∗2], the fiber product of rings.

That is, HH
r
(Rx) is the subring of Rx⊕

∧∗(xε∗1)[ε∗2] consisting of pairs (a, b) such that

the images of a and b under the augmentation maps of Rx and
∧∗(xε∗1)[ε∗2] respectively
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are equal where x, xε∗1, and ε∗2 are in the kernel of their respective augmentation maps.

While the cup product can be defined using any projective resolution, there is

no such general description of the Lie bracket structure. However, the bracket can

be defined on certain resolutions. In [23], Negron and Witherspoon defined the

Gerstenhaber bracket on any resolution, K, of Λ satisfying the following conditions:

Conditions 2.3.3. (a) There is a chain map ι : K→ B lifting 1Λ.

(b) There is a chain map π : B→ K such that πι = 1K.

(c) K admits a diagonal chain map, ∆K : K→ K⊗ΛK, such that ∆Bι = (ι⊗Λι)∆K.

Notice K = B(Λ) trivially satisfies the conditions above. It is argued in [23] that if

Λ is a Koszul algebra and K is its Koszul resolution, then K satisfies the conditions

above. Explicit diagonal maps for Koszul algebras can be found in [8] and [22].

Assume K satisfies Conditions 2.3.3. To define the Gerstenhaber bracket on K,

we will need the following definition.

Definition 2.3.4. Let C and D be cochain complexes. A chain map C→ D is called

a quasi-isomorphism if the induced maps Hi(C) → Hi(D) are isomorphisms for all

i ∈ Z.

Let Λ be the cochain complex

Λ : ...→ 0→ 0→ Λ→ 0→ 0→ ...

with Λ in homological degree 0 and 0 in all other degrees. Let m : K → Λ be a

quasi-isomorphism. That is, m induces the isomorphism H0(K) ∼= Λ. Then, as in

[23, Section 3.2], define

FK = (m⊗Λ 1K − 1K ⊗Λ m) : K⊗Λ K→ K. (2.3.5)
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Let φ : K ⊗Λ K → K be a Λe-module homomorphism which satisfies d(φ) = FK

where d is the boundary map on the double complex HomΛe(K ⊗Λ K,K). That is,

d(φ) = dKφ+ φdK⊗K for dK⊗K the differential on Tot(K⊗K) and dK the differential

on K. An iterative method for computing such a φ map is given in [23, Lemma

3.3.1]. We will call such a φ map a contracting homotopy for FK. As given in [23,

Definition 3.2.2], for f ∈ HomΛe((K)n,Λ) and g ∈ HomΛe((K)m,Λ), we can define

the ◦-product on the chain level as a composition

f ◦ g : K ∆K−−→ K⊗Λ K ∆K⊗Λ1K−−−−−→ K⊗Λ K⊗Λ K 1K⊗Λg⊗Λ1K−−−−−−−→ K⊗Λ K φ−→ K f−→ Λ (2.3.6)

where, in 1K ⊗Λ g ⊗Λ 1K, we are including the identification K ⊗Λ Λ ∼= K and the

function is given the Koszul sign convention. That is, for x1⊗Λx2⊗x3 ∈ K⊗ΛK⊗ΛK

with x1 homogeneous,

(1K ⊗Λ g ⊗Λ 1K)(x1 ⊗Λ x2 ⊗Λ x3) = (−1)m||x1||x1 ⊗Λ g(x2)⊗Λ x3

where ||x1|| is the homological degree of x1.

Remark 2.3.7. We recover the original definition of the ◦-product given by Ger-

stenhaber in [10] when we set K = B and φ((λ0 ⊗ ... ⊗ λi) ⊗Λ (λi+1 ⊗ ... ⊗ λj)) =

λ0 ⊗ ...⊗ λiλi+1 ⊗ ...⊗ λj.

As in Section 2.2, let [f, g] = f ◦ g − (−1)(n−1)(m−1)g ◦ f. According to [23,

Theorem 3.2.5], this definition of the Gerstenhaber bracket agrees with the definition

given in Section 2.2 on cohomology. Using this definition, we are able to compute

brackets on certain “nice” resolutions other than the bar resolution without having

to pass to the bar resolution definition. We will use this description of brackets for

the remainder of the dissertation.
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We conclude this section by computing the bracket structure for the ongoing

example, Example 2.1.6.

Example 2.3.8. Let k be a field and Rx = k[x]/(x2). To use the methods of this

section, we must check that Px satisfies Conditions 2.3.3. Let ι : Px → B be defined

by ι(εi) = 1⊗x⊗i⊗1 for i ≥ 0. Choose a map π : B→ Px such that π(1⊗x⊗i⊗1) = εi

for each i ≥ 0. Such a map exists because we can make a free Re
x-basis of Bi which

includes 1⊗ x⊗i ⊗ 1. As we saw in Example 2.3.2, a diagonal on Px is given by

∆Px(εi) =
∑
i=p+q

εp ⊗Rx εq.

It can be readily checked that ∆Bι = (ι ⊗Rx ι)∆Px . Therefore Px satisfies Condi-

tions 2.3.3.

Then by [11, Lemma 4.2], the contracting homotopy φ is

φi+j(εi ⊗Rx xmεj) = δm,1(−1)iεi+j+1

where δm,1 is the Kronecker delta. Using (2.3.6) and these maps, the reader will find

that the low degree non-zero brackets, for example, are

[xε∗1, x] = x and [ε∗2, xε
∗
1] = −2ε∗2.

All other brackets can be computed using the equation (2.2.4) and our previous com-

putations.
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3. TWISTED TENSOR PRODUCTS

In this section, we discuss twisted tensor products and study their behavior with

Hochschild cohomology. Section 3.1 contains the pertinent development of twisted

tensor products and Hochschild cohomology given by Bergh and Oppermann in [6].

The reader is directed to [6] for a more detailed discussion of twisted tensor products.

In Section 3.2, we discuss the bracket structure on Hochschild cohomology of twisted

tensor products as given by Nguyen, Witherspoon and me in [11].

3.1 Preliminaries

Let R and S be associative algebras over a field k, graded by abelian groups A

and B respectively. Let

t : A⊗Z B → k∗

be a homomorphism of abelian groups which we will call the twisting map. We will

denote t(a⊗Z b) = t<a|b> for all a ∈ A and b ∈ B. Then, as in [6], define R⊗t S, the

twisted tensor product of R and S, to be R⊗S as a vector space with multiplication

given by

(r0 ⊗ s0)(r1 ⊗ s1) = t<|r1|||s0|>(r0r1 ⊗ s0s1)

for all homogeneous elements r0, r1 ∈ R and s0, s1 ∈ S, where | · | denotes the grading

degree of the element. Twisted tensor products have been used to construct quantum

polynomial rings in [20], quantum exterior algebras in [4], and quantum complete

intersections in [5], [11], and [25]. We give now an explicit construction of Λ
(2,2,...,2)
q .

Example 3.1.1. Let q = {qi,j}i,j∈{1,2,...,n} such that qi,j ∈ k∗ for all i, j ∈ {1, 2, ..., n},
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qj,i = q−1
i,j , and qi,i = −1. Define the quantum complete intersection

Λ(2,2,...,2)
q = k〈x1, x2, ..., xn| xixj = −qi,jxjxi, x2

i = 0 for all i, j ∈ {1, 2, ...n}〉.

We will construct Λ
(2,2,...,2)
q by taking an iteration of twisted tensor products of

the algebra Rx from Example 2.1.6. The algebras Rx1 and Rx2 are both Z-graded by

polynomial degree. Therefore define

Rx1 ⊗t1 Rx2 by the twist t
<1|1>
1 = −q−1

1,2.

Then notice Λ
(2,2)
q
∼= Rx1 ⊗t1 Rx2. We continue building towards Λ

(2,2,...,2)
q by defining

(Rx1 ⊗t1 Rx2)⊗t2 Rx3 by t
<(1,0)|1>
2 = −q−1

1,3 and t
<(0,1)|1>
2 = −q−1

2,3.

Again, by construction, we get Λ
(2,2,2)
q

∼= (Rx1 ⊗t1 Rx2)⊗t2 Rx3. We can continue this

process to get

Λ(2,2,...,2)
q

∼= (...((Rx1 ⊗t1 Rx2)⊗t2 Rx3)⊗t3 ...)⊗tn−1 Rxn

where t
<[j]|1>
i = −q−1

j,i+1 for i ∈ {1, 2, ..., n−1} and j < i and [j] = (0, ..., 0, 1, 0, ..., 0),

the i-tuple with a 1 in the jth coordinate and 0 otherwise.

The class of quantum complete intersections Λ
(2,2,...,2)
q is central to this disserta-

tion and will be discussed in more depth in Section 4. In the meantime, we must

develop more techniques for computations with twisted tensor products. Our aim is

to construct an (R⊗ S)e-module resolution of R⊗t S using resolutions of R and S.

To do this, we must give a graded (R ⊗ S)e-module structure to the twisted tensor

product of graded Re-modules with graded Se-modules.
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Definition 3.1.2. Let X be a graded Re-module and Y be a graded Se-module. Define

a graded (R⊗t S)e-module structure on X ⊗t Y by the action

((r ⊗ s)⊗ (r′ ⊗ s′))(x⊗ y) = t<|x|||s|>t<|r
′|||y|>t<|r

′|||s|>(rxr′ ⊗ sys′)

for r, r′ ∈ R, s, s′ ∈ S, x ∈ X, and y ∈ Y .

Remark 3.1.3. There is a subtly about the graded module structure of X ⊗t Y as

it compares to the individual grading of X and Y . See [6, Remark 4.2] for more

discussion of this point.

Let X be a graded Re-module and Y be a graded Se -module with graded pro-

jective bimodule resolutions

P : ...→ P2 → P1 → P0 → X → 0

Q : ...→ Q2 → Q1 → Q0 → Y → 0

of X and Y respectively. Then by [6, Lemma 4.5], the total complex, Tot(P ⊗t Q),

is a graded projective bimodule resolution of X ⊗t Y . That is, we can use a twisted

version of the total complex to construct a resolution for algebras given by a twisted

tensor product. Just as Tot(Px ⊗ Py) is a projective resolution for Λ(2,2) (recall this

discussion in Section 2.1), Tot(Px1 ⊗t Px2) is a projective resolution for Λ
(2,2)
q . We

will use this twisted total complex in our computations in Section 3.2.1.

3.2 Brackets on Hochschild cohomology

The purpose of this section is to construct the Gerstenhaber bracket on Hochschild

cohomology of the twisted tensor product of two algebras when we are given the

brackets on Hochschild cohomology of the two algebras. We forgo discussion of the
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vector space and cup product structures because they are defined for arbitrary res-

olutions (recall Section 2.3). The results in this section are attributed to Nguyen,

Witherspoon and me and can be found in more detail in [11].

Let R and S be associative algebras over a field k, graded by abelian groups A

and B respectively. Let t : A⊗Z B → k∗ be a twisting map. Assume

P : ...→ P2 → P1 → P0 → R→ 0

is a graded projective resolution of R as an Re-module and

Q : ...→ Q2 → Q1 → Q0 → S → 0

is a graded projective resolution of S as an Se-module. Assume additionally that P

and Q satisfy Conditions 2.3.3. That is, there are maps φQ, φP, ∆P, and ∆Q from

which we can define the bracket on HH
r
(R) and HH

r
(S) using (2.3.6).

As we saw in the previous section, Tot(P ⊗t Q) is a A ⊕ B-graded projective

bimodule resolution of R ⊗t S. Our aim is to construct the bracket on the total

complex using the description in Section 2.3. Thus, assume that we are in the setting

in which K = Tot(P⊗tQ) satisfies Conditions 2.3.3. In order to use (2.3.6), we must

first determine a contracting homotopy φ : Tot(P⊗tQ)⊗R⊗tSTot(P⊗tQ)→ Tot(P⊗t

Q). We would like to construct this φ from the contracting homotopies φP and φQ.

Because φP and φQ are defined on (P⊗R P) and (Q⊗S Q) respectively, we begin by

defining a chain map from Tot(P⊗t Q)⊗R⊗tS Tot(P⊗t Q) to (P⊗R P)⊗t (Q⊗S Q).

Lemma 3.2.1 ([11, Lemma 3.3]). The chain map

σ : Tot(P⊗t Q)⊗R⊗tS Tot(P⊗t Q)→ (P⊗R P)⊗t (Q⊗S Q)
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defined by

σ((x⊗ y)⊗ (x′ ⊗ y′)) = (−1)||y||||x
′||t<|x

′|||y|>(x⊗ x′)⊗ (y ⊗ y′) (3.2.2)

is an isomorphism of (R ⊗t S)e-modules. Recall ||y|| ∈ Z is the homological degree

of y ∈ Q and |y| ∈ B is the graded degree of y.

Using σ, we can now define the FK map given in Section 2.3. Let mQ : Q → Λ

and mP : P→ Λ be quasi-isomorphisms. Then define

F = ((mP ⊗R 1P)⊗ (mQ ⊗S 1Q)− (1P ⊗R mP)⊗ (1Q ⊗S mQ))σ.

F is in fact the chain map FTot(P⊗tQ). We record this in the following lemma.

Lemma 3.2.3 ([11, Lemma 3.4]). F = FTot(P⊗tQ) as in (2.3.5).

For this F , we determine a corresponding contracting homotopy φ. The following

lemma is critical to the computations and constructions for remaining work and is

shown by tracing back through the definitions of the involved maps.

Lemma 3.2.4 ([11, Lemma 3.5]). Let φP , φQ be contracting homotopies for FP and

FQ respectively as in (2.3.6). Define

φ = (φP ⊗ (mQ ⊗S 1Q) + (−1)i+p(1P ⊗R mP)⊗ φQ)σ

on (Pi ⊗t Qj)⊗R⊗tS (Pp ⊗Qq). Then φ is a contracting homotopy for F .

With this map φ, we now have the necessary tools to compute the bracket struc-

ture on HH
r
(R ⊗t S) given the structures on HH

r
(R) and HH

r
(S) by the formula
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(2.3.6),

f ◦ g : K ∆K−−→ K⊗Λ K ∆K⊗Λ1K−−−−−→ K⊗Λ K⊗Λ K 1K⊗Λg⊗Λ1K−−−−−−−→ K⊗Λ K φ−→ K f−→ Λ,

setting K = Tot(P⊗t Q), Λ = R⊗t S, and φ as in Lemma 3.2.4.

Before computing examples in the subsequent section, we apply these techniques

to a more general problem. Let R and S be algebras over a field k, at least one of

them finite dimensional. Le and Zhou proved that

HH
r
(R⊗ S) ∼= HH

r
(R)⊗ HH

r
(S) (3.2.5)

as Gerstenhaber algebras in [16]. To prove this result, they define the bracket struc-

ture and cup product structure on HH
r
(R) ⊗ HH

r
(S) using the brackets and cups

on the individual cohomologies as we have in this section. Under the more gen-

eral setting of the twisted tensor product, Bergh and Oppermann proved in [6] that

the isomorphism holds as algebras under the cup product for a subalgebra of the

Hochschild cohomologies on both sides of (3.2.5). In [11], Nguyen, Witherspoon,

and I used the bracket development restated in this section to prove that the iso-

morphism of [6] extends to an isomorphism of Gerstenhaber algebras. That is, if

the brackets on the Hochschild cohomology of two algebras is known, we can recover

some of the brackets on Hochschild cohomology of the twisted tensor product of

these algebras, without having to make explicit computations on a resolution of the

twisted tensor product.

3.2.1 Quantum complete intersections

In this section we use the techniques of the previous sections to compute the

brackets on Hochschild cohomology of the quantum complete intersection, Λ
(2,2)
q .
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Buchweitz, Green, Madsen, and Solberg computed the vector space and cup product

structures of Hochschild cohomology of Λ
(2,2)
q in [7]. We utilize the vector space

description in this section. The brackets in this section were originally computed by

Nguyen, Witherspoon, and me in [11, Section 4]. We include these computations for

comparison with our results in Section 5.

As shown in Example 3.1.1, quantum complete intersections can be constructed

by iterated twisted tensor products as in Example 3.1.1. In particular, Λ
(2,2)
q is

isomorphic to Rx1 ⊗t1 Rx2 where Rx = k[x]/(x2) and twist given by t<1,1>
1 = −q−1

1,2.

We have already collected quite a bit of information about HH
r
(Rx) in the previous

examples which we will use in this section. By Example 2.1.6, Px is a projective

resolution for Rx as an Re
x-module given by

Px : ...
δ3−→ Re

x
δ2−→ Re

x
δ1−→ Re

x
δ0−→ R→ 0

with δi(a ⊗ b) = (x ⊗ 1 + (−1)i1 ⊗ x)(a ⊗ b) for all i > 0 and δ0(a ⊗ b) = ab for

a ⊗ b ∈ Re
x. Therefore K = Tot(Px1 ⊗t1 Px2) is a graded projective resolution for

Λ
(2,2)
q by [6, Lemma 4.5]. See Definition 2.1.2 for the formal description of K. It can

be shown (and will be shown in great detail in Section 4) that K is isomorphic to

the resolution

K′ : ...
δ′3−→
⊕
i+j=2

Λ(2,2)
q εi,jΛ

(2,2)
q

δ′2−→
⊕
i+j=1

Λ(2,2)
q εi,jΛ

(2,2)
q

δ′1−→ Λ(2,2)
q ε0,0Λ(2,2)

q

δ′0−→ Λ(2,2)
q → 0

where εi,j = εi ⊗ εj and εi is the copy of 1⊗ 1 in homological degree i and

δ′n(εi,j) = xεi−1,j + (−1)nqjεi−1,jx+ qiyεi,j−1 + (−1)nεi,j−1y.

By a slight abuse of notation, we will use the resolutions K and K′ interchangeably
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according to the situation.

Remark 3.2.6. The resolution K′ as defined above is the resolution found in [7] by

making the identification f̃ni ↔ εi,n−i.

Now, because Λ
(2,2)
q is Koszul and K is a Koszul resolution, Conditions 2.3.3 hold.

Thus to compute brackets using (2.3.6), we first need to compute the maps φ and ∆K

for K as described above. As given by [11, Lemma 3.5] and used in Example 2.3.8,

φi+j(εi⊗Rxxmεj) = δm,1(−1)iεi+j+1 is a contracting homotopy for Px. We will call this

map φP to distinguish this map from our desired map φ for K. Then by Lemma 3.2.4,

φ(εi,j ⊗Λ
(2,2)
q

xlymεp,r)

= φ((εi ⊗ εj)⊗Λ
(2,2)
q

(−q1,2)−pm(xlεp ⊗ ymεr))

= (φP ⊗ (mP ⊗Rx2
1P) + (−1)i+p(1P ⊗Rx1

mP)⊗ φP)((−q1,2)−pm−(l+p)jxlεp ⊗ ymεr)

= (−q1,2)−pm−(l+p)j(δl,1(−1)iεi+p+1 ⊗ δj,0ymεr + (−1)i+pδp,0εix
l ⊗ δm,1(−1)jεj+r+1).

Simplifying, we get φ(εi,j ⊗Λ
(2,2)
q

xlymεp,r)

=



(−q)mi+mδl,1(−1)iymεi+p+1,r, if j = 0, p > 0

(−q)mi+mδl,1(−1)iymεi+1,r+(−q)lr+lδm,1(−1)iεi,r+1x
l, if j = 0, p = 0

(−q)lr+lδm,1(−1)i+jεi,j+r+1x
l, if j > 0, p = 0

0, otherwise.

The last map which needs to be defined before computing examples is ∆K. How-

ever, this map is given in [7] after making the identification f̃ni ↔ εi,n−i. That is, by
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[7, p. 810], the diagonal on K is given by

∆K(εi,j) =

i+j∑
w=0

min{w,j}∑
l=max{0,w−i}

q
l(i+l−w)
1,2 εw−l,l ⊗Λ

(2,2)
q

εi+l−w,j−l.

It is shown in [11] that ∆K satisfies ∆Kι = (ι⊗
Λ

(2,2)
q

ι)∆K for the inclusion map given

by ι(εi,j) = f̃ i+jj .

With ∆K and φK, we now have enough information to compute brackets on

HH
r
(Λ

(2,2)
q ) for some choices of q1,2. We will compute the example when q1,2 is not a

root of unity and when q1,2 is a dth root of unity for d > 1 odd. All other computa-

tions for q1,2 6= 0 can be found in [11].

Example 3.2.7. Assume q1,2 is not a root of unity. As given by [7, Section 2.1],

HH
r
(Λ(2,2)

q ) ∼= k[xy]/((xy)2)×k
∧∗(xε∗1,0, yε∗0,1).

Therefore we need to compute the brackets for pairs of elements from the set of algebra

generators {xy, xε∗1,0, yε∗0,1}. All other brackets can be computed using (2.2.4). The

reader can check that

xε∗1,0 ◦ xε∗1,0 = xε∗1,0,

xε∗1,0 ◦ yε∗0,1 = 0,

yε∗0,1 ◦ xε∗1,0 = 0,

yε∗0,1 ◦ yε∗0,1 = yε∗0,1.

Therefore all of these circle products result in Gerstenhaber brackets that are 0. Non-
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zero brackets arising when pairing generators with the degree 0 element xy are:

[xε∗1,0, xy] = xy and [yε∗0,1, xy] = xy.

The algebra in this example, Λ
(2,2)
q for q1,2 not a root of unity, provided an answer

to Happel’s question [12]: does the vanishing of Hochschild cohomology in high

degrees of a finite dimensional algebra over a field imply finite global dimension? In

[2], Avramov and Iyengar showed that for commutative algebras, the answer is yes.

However, for Λ
(2,2)
q with q1,2 not a root of unity, the answer is no, as shown in [7].

When q1,2 is a root of unity, Buchweitz, Green, Madsen, and Solberg showed in [7]

that HH
r
(Λ

(2,2)
q ) does not vanish but has large gaps in cohomology corresponding to

the root of unity. We now look at the brackets on one such example.

Example 3.2.8. Assume q1,2 is a dth root of unity for d > 1 odd. By [7, 3.1],

translated into our notation,

HH
r
(Λ(2,2)

q ) ∼= k[xy]/((xy)2)×k (
∧∗(xε∗1,0, yε∗0,1)[ε∗2d,0, ε

∗
d,d, ε

∗
0,2d]/(ε

∗
2d,0ε

∗
0,2d − (ε∗d,d)

2)).

Thus we need to calculate the brackets on pairs of elements from the set

{xy, xε∗1,0, yε∗0,1, ε∗2d,0, ε∗d,d, ε∗0,2d}.

The rest will follow by applying (2.2.4). We again leave it to the reader to check that,

of these pairs, the non-zero circle products are

xε∗1,0 ◦ xε∗1,0 = xε∗1,0,

(xy)iε∗2d,0 ◦ xε∗1,0 = 2d(xy)iε∗2d,0,
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(xy)iε∗d,d ◦ xε∗1,0 = d(xy)iε∗d,d,

yε∗0,1 ◦ yε∗0,1 = yε∗0,1,

(xy)iε∗2d,0 ◦ yε∗0,1 = 2d(xy)iε∗0,2d, and

(xy)iε∗d,d ◦ yε∗0,1 = d(xy)iε∗d,d.

Then the non-zero Gerstenhaber brackets are

[xε∗1,0, xy] = xy,

[yε∗0,1, xy] = xy,

[ε∗2d,0, xε
∗
1,0] = 2dε∗2d,0,

[ε∗d,d, xε
∗
1,0] = dε∗d,d,

[ε∗d,d, yε
∗
0,1] = dε∗d,d, and

[ε∗0,2d, yε
∗
0,1] = 2dε∗0,2d.
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4. GROUP EXTENSIONS OF QUANTUM COMPLETE INTERSECTIONS

The behavior of Hochschild cohomology of quantum complete intersections is

controlled by the choice of quantum coefficients as was shown in [5], [7], and [25].

In this section, we allow a finite group to act diagonally on the algebra and study

the behavior of Hochschild cohomology of group extensions of quantum complete

intersections. In this case, Hochschild cohomology is controlled by the quantum

coefficients as well as the choice of diagonal group action. We restrict to the case

of diagonal group actions for two main reasons: (1) in Section 4.2 this action allows

for the decomposition of a complex into subcomplexes, a crucial step in the proof

of the vector space structure, while other actions would not directly allow for such

a decomposition and (2) allowing for a more general group action would require

restrictions on our choice of quantum coefficients.

We utilize the notion of twisted tensor products developed in Section 3 and adapt

a technique from [29] to compute the vector space structure in Section 4.2. As in

[29], we restrict to the characteristic 0 case as it is required by the contracting

homotopy used in the proof. We use techniques adapted from [7] to compute the cup

product in Section 4.3. Using the alternative bracket description given by Negron

and Witherspoon in [23] and [24], summarized in Section 2.3, we compute the bracket

structure in Section 4.4. When the group is trivial, the formula in Section 4.4 yields

previously unknown bracket computations on Hochschild cohomology of quantum

complete intersections, extending the work of [5], [7], and [25].

For the remainder of the paper, we assume k is a field of characteristic 0.
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4.1 Projective resolutions

As in Example 3.1.1, let q = {qi,j}i,j∈{1,2,...,n} such that qi,j ∈ k∗ for all i, j ∈

{1, 2, ..., n}, qj,i = q−1
i,j , and qi,i = −1 and

Λ(2,2,...,2)
q = k〈x1, x2, ..., xn|xixj = −qi,jxjxi, x2

i = 0 for all i, j ∈ {1, 2, ...n}〉,

the class of quantum complete intersections of interest for this paper. Notice that

this definition agrees with the definition of Λ
(2,2,...,2)
q found in [25] with the additional

assumption that char k = 0. For brevity of notation, we will denote Λ
(2,2,...,2)
q by Λq

unless emphasis is needed.

Let G be a finite group which acts diagonally on the generating set x1, x2, ..., xn

of Λq. That is, if we denote the action of g on λ by gλ for g ∈ G and λ ∈ Λq, then

for each i ∈ {1, 2, ..., n} and g ∈ G, there exists a χg,i ∈ k such that gxi = χg,ixi.

By extending linearly to all of Λq, this action induces an action of G on Λq by

automorphisms. Notice, for all g ∈ G and i ∈ {1, 2, ..., n}, χg,i is necessarily a root

of unity because G is a finite group. With these structures, we define the group

extension of Λq by G.

Definition 4.1.1. Define Λq oG, the group extension of Λq by G (also called skew

group algebra, crossed product, or smash product in other contexts), to be Λq⊗ kG

as a vector space with multiplication determined by

(λ0 ⊗ g0)(λ1 ⊗ g1) = λ0(g0λ1)⊗ g0g1

for λ0, λ1 ∈ Λq and g0, g1 ∈ G.

We are interested in the Hochschild cohomology of Λq o G. It is well-known

that Hochschild cohomology of group extensions has a particular form given by the
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isomorphism

HH
r
(Λq oG) ∼= (HH

r
(Λq,Λq oG))G, (4.1.2)

where (HH
r
(Λq,Λq oG))G is the G-invariant subspace of HH

r
(Λq,Λq oG). A com-

parable result on Hochschild homology of group extensions was given by Lorenz in

[17]. In [28], Ştefan proved the isomorphism (4.1.2) in the more general setting of

Hopf Galois extensions. As a result of this isomorphism, to compute HH
r
(Λq o G)

we can start with a resolution of Λq and incorporate the group action later in the

computation. With this result in mind, we now construct a resolution of Λq as a

Λe
q-module.

In Example 3.1.1, we saw that Λq
∼= (...((Rx1 ⊗t1 Rx2)⊗t2 Rx3)⊗t3 ...)⊗tn−1 Rxn

where t
<[j]|1>
i = −q−1

j,i+1 for i ∈ {1, 2, ..., n− 1} and j < i and [j] = (0, ..., 0, 1, 0, ..., 0),

the i-tuple with a 1 in the jth coordinate and 0 otherwise. By Example 2.1.6, each

factor, Rx, has a projective resolution

Kx : ...
δ3−→ Re

x
δ2−→ Re

x
δ1−→ Re

x
δ0−→ Rx → 0

with δi(a ⊗ b) = (x ⊗ 1 + (−1)i1 ⊗ x)(a ⊗ b) for all i > 0 and δ0(a ⊗ b) = ab for

a, b ∈ Rx. Then by [6, Lemmas 4.3, 4.4, 4.5],

K = Tot(Kx1 ⊗t1 Kx2 ⊗t2 ...⊗tn−1 Kxn)

is a projective resolution of Λq as a (Λq)e-module. By definition of the total complex,

(K)m =
⊕

i1+i2+...+in=m

(Kx1)i1 ⊗t1 (Kx2)i2 ⊗t2 ...⊗tn−1 (Kxn)in
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=
⊕

i1+i2+...+in=m

Re
x1
〈i1〉 ⊗t1 Re

x2
〈i2〉 ⊗t2 ...⊗tn−1 Re

xn〈in〉

where the boundary map is the induced map on K,

δm((1⊗ 1)⊗t1 ...⊗tn−1 (1⊗ 1))

=
n∑
k=1

(1⊗ 1)⊗t1 ...⊗tk−1 (xk ⊗ 1)⊗tk ...⊗tn−1 (1⊗ 1)

+ (−1)
∑
l≤k ik(1⊗ 1)⊗t1 ...⊗tk−1 (1⊗ xk)⊗tk ...⊗tn−1 (1⊗ 1).

By [6, Lemma 4.3], we have an isomorphism of graded (Rxj ⊗tj Rxj+1
)e-modules,

Re
xj
〈ij〉 ⊗tj Re

xj+1
〈ij+1〉 ∼= (Rxj ⊗tj Rxj+1

)e〈ij, ij+1〉 given by

(r1 ⊗ r′1)⊗tj (r2 ⊗ r′2) 7→ t
−<r′1|r2>−<ij |r2>−<r′1|ij+1>
j (r1 ⊗tj r2)⊗ (r′1 ⊗tj r′2)

for r1, r
′
1 ∈ Rxj and r2, r

′
2 ∈ Rxj+1

. By iterating this isomorphism and changing

notation, we get an isomorphism of graded (Λq)e-modules,

(K)m ∼=
⊕

i1+i2+...+in=m

Λqεi1,i2,...,inΛq,

where εi1,i2,...,in is the copy of 1⊗ 1 in homological degree ij in xj, defined by sending

xα1
1 ⊗x

α′1
1 ⊗t1 xα2

2 ⊗x
α′2
2 ⊗t2 ...⊗tn−1 xαnn ⊗xα

′
n
n ∈ (Kx1)i1 ⊗t1 (Kx2)i2 ⊗t2 ...⊗tn−1 (Kxn)in

to ∏
k<l

(−qk,l)αlα
′
k+ilα

′
k+ikαlxα1

1 x
α2
2 ...x

αn
n εi1,i2,...inx

α′1
1 x

α′2
2 ...x

α′n
n ∈ Λqεi1,i2,...,inΛq.

Using the εi1,i2,...,in notation, we can better track homological degree of elements.
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After making this identification, the boundary map becomes

δm(εi1,i2,...,in) =
n∑
k=1

(
∏
k<l

qikk,lxlεi1,...il−1,il−1,il+1,...,in + (−1)m
∏
k>l

qikl,kεi1,...il−1,il−1,il+1,...,inxl).

(4.1.3)

Because i1 + i2 + ...+ in = m, we could have also written the boundary map

δm(εi1,i2,...,in) =
n∑
l=1

(
∏
k<l

qikk,lxlεi1,...il−1,il−1,il+1,...,in

+ (−1)
∑
k≤l ik

∏
k>l

(−ql,k)ikεi1,...il−1,il−1,il+1,...,inxl).

The latter description will be more helpful in later calculations. As in the previous

section, we will refer to this identified complex as K with boundary maps δm for the

remainder of the paper.

Homomorphisms η ∈ Hom(Λq)e((K)m,Λq o G) are entirely determined by the

images, η(εi1,i2,...,in), for i1, i2, ..., in ∈ N with i1 + i2 + ... + in = m. Denote by

ε∗i1,i2,...,in the dual function in Hom(Λq)e(K,Λq o G) defined by ε∗i1,i2,...,in(εj1,j2,...,jn) =

δi1,j1δi2,j2 ...δin,jn ⊗ 1 where δim,jm is the Kronecker delta. In terms of these ε∗i1,i2,...,in ,

any homomorphism η ∈ Hom(Λq)e((K)m,Λq oG) can be written

η =
∑
g∈G

∑
i1+i2+...+in=m

(λgi1,i2,...,in ⊗ g)ε∗i1,i2,...,in

where λgi1,i2,...,in ∈ Λq depends on i1, i2, ..., in and g. Moreover, because

Hom(Λq)e(K,Λq oG) ∼=
⊕
g∈G

Hom(Λq)e(K,Λq ⊗ g),

we can restrict to only looking at homomorphisms in Hom(Λq)e(K,Λq ⊗ g) for each
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g ∈ G.

Before we move further, we will need some additional notational conveniences,

as in [29]. Elements of Λq are linear combinations of the monomials cxα1
1 x

α2
2 ...x

αn
n

for c ∈ k and αi ∈ {0, 1}. Denote xα = xα1
1 x

α2
2 ...x

αn
n , using multi-index notation,

for α ∈ {0, 1}n. Similarly, for β ∈ Nn, define εβ = εβ1,β2,...,βn and ε∗β = ε∗β1,β2,...,βn
.

Denote |β| = β1 + β2 + ... + βn. Lastly, as in the twisting maps in the construction

of Λq, denote [i] = (0, ..., 0, 1, 0, ..., 0), the n-tuple with 1 in the ith coordinate and 0

otherwise.

Using this notation, we then describe the induced boundary map on

Hom(Λq)e(K,Λq ⊗ g) as

δ∗m((xα ⊗ g)ε∗β)(εγ) =(xα ⊗ g)ε∗βδm(εγ)

=(xα ⊗ g)ε∗β(
n∑
l=1

(
∏
k<l

qβkk,lxlεγ−[l] − (−1)
∑
k≤l βk

∏
k>l

(−ql,k)βkεγ−[l]xl))

for β, γ ∈ Nn with |β| = m − 1 and α ∈ {0, 1}n. Refer to (4.1.3) for the expression

of δm. In order to get a non-zero value from ε∗β(εγ−[l]), we need γ − [l] = β or,

equivalently γ = β + [l]. That is,

δ∗m((xα ⊗ g)ε∗β) =
n∑
l=1

(
∏
k<l

qβkk,lxl(x
α ⊗ g)ε∗β+[l]

− (−1)
∑
k≤l βk

∏
k>l

(−ql,k)βk(xα ⊗ g)xlε
∗
β+[l])

=
n∑
l=1

(
∏
k<l

qβkk,l(−qk,l)
−αk(xα+[l] ⊗ g)ε∗β+[l]

− (−1)
∑
k≤l βk

∏
k>l

(−ql,k)βk(−ql,k)−αkχg,l(xα+[l] ⊗ g)ε∗β+[l])

35



=
n∑
l=1

(
∏
k<l

(−1)βk(−qk,l)βk−αk − (−1)
∑
k≤l βk

∏
k>l

(−ql,k)βk−αkχg,l)

(xα+[l] ⊗ g)ε∗β+[l]

=
n∑
l=1

(−1)
∑
k<l βk(

∏
k<l

(−qk,l)βk−αk − (−1)βl
∏
k>l

(−ql,k)βk−αkχg,l)

(xα+[l] ⊗ g)ε∗β+[l].

If αl = 1 or (−1)βl
∏

k 6=l(−qk,l)βk−αk = χg,l, the coefficient of the ε∗β+[l] term is 0 in

δm((xα ⊗ g)ε∗β). Accordingly, to simplify the differential expression, define

Ωg(α, β, l) =



0 if αl = 1

0 if (−1)βl
∏

k 6=l(−qk,l)βk−αk = χg,l

(−1)
∑
k<l βk(

∏
k<l(−qk,l)βk−αk

−(−1)βl
∏

k>l(−ql,k)αk−βkχg,l) otherwise

for l ∈ {1, 2, ..., n}. Then, using this notation,

δ∗m((xα ⊗ g)ε∗β) =
n∑
l=1

Ωg(α, β, l)(x
α+[l] ⊗ g)ε∗β+[l] (4.1.4)

for β ∈ Nn with |β| = m− 1 and α ∈ {0, 1}n.

The construction of Ωg agrees with and should be compared to the Ωg used in

the proof of [29, Theorem 6.1].

4.2 Hochschild cohomology

To compute Hochschild cohomology, we break the complex HomΛeq(K,Λq ⊗ g)

into subcomplexes. The decomposition of the complex, given in this section, is an

adaptation of a method of Wambst originally used in [29, Section 6] to compute the
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Hochschild cohomology of quantum symmetric algebras and was adapted by Naidu,

Shroff, and Witherspoon in [20] to compute the Hochschild cohomology of group

extensions of quantum symmetric algebras. In this section, we adapt the method

again to compute Hochschild cohomology of group extensions of quantum complete

intersections.

For each m ∈ N, g ∈ G, and γ ∈ (N ∪ {−1})n, consider the set

Km
g,γ = spank{(xα ⊗ g)ε∗β|α ∈ {0, 1}n, β ∈ Nn, |β| = m, and β − α = γ}

of all elements in homological degree m with fixed β − α. Notice, for α ∈ {0, 1}n,

β ∈ Nn as in (4.1.4), the difference β−α ∈ ({0, 1}∪N)n is unchanged by the boundary

map δ∗m. Therefore for fixed g ∈ G and γ ∈ (N ∪ {−1})n, Kg,γ =
⊕

m∈NK
m
g,γ is a

subcomplex of Hom(Λq)e(K,Λq ⊗ g).

We will show that for some g ∈ G and γ ∈ (N ∪ {−1})n, the subcomplexes Kg,γ

are acyclic and, for others, the differentials are 0. This condition on the subcomplexes

is determined by the set

Cg = {γ ∈ (N ∪ {−1})n|∀ l, γl = −1 or (−1)γl
∏
k 6=l

(−qk,l)γk = χg,l},

a set of γ which satisfy a relation between the quantum coefficients and diagonal

action by g.

Lemma 4.2.1. If g ∈ G and γ ∈ (N ∪ {−1})n − Cg, then Kg,γ is acyclic.

Proof. Let g ∈ G and γ ∈ (N ∪ {−1})n − Cg. To show this result, we adapt the

proofs of [29, Theorem 6.1] and [20, Lemma 4.6] to this setting. That is, we will

construct a contracting homotopy for these subcomplexes but first we will need a bit
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more notation. Let

||γ||g = #{l ∈ {1, 2, ..., n}|γl 6= −1 and (−1)γl
∏
k 6=l

(−qk,l)γk 6= χg,l}

count the number of indices not satisfying the conditions of Cg. Because we assumed

γ ∈ (N ∪ {−1})n − Cg, some index must not satisfy the conditions of Cg and thus

||γ||g 6= 0.

Now, let m ∈ N be fixed, and define hm : Km
g,γ → Km−1

g,γ by

hm((xα ⊗ g)ε∗β) =
1

||β − α||g

n∑
l=1

ωg(α, β, l)(x
α−[l] ⊗ g)εβ−[l]

for β ∈ Nn with |β| = m, α ∈ {0, 1}n such that β − α = γ and

ωg(α, β, l) =


0 if αl = 0 or βl = 0

0 if
∏

k 6=l(−qk,l)βk−αk(−1)βl = −χg,l

Ωg(α− [l], β − [l], l)−1 otherwise.

.

Let us check first that ωg(α, β, l) is well-defined. That is, that Ωg(α − [l], β −

[l], l) 6= 0 for any α ∈ {0, 1}n, β ∈ Nn, and l ∈ {1, 2, ..., n} that do not sat-

isfy the first two cases of ωg. Note that Ωg(α − [l], β − [l], l) = 0 if and only if

(α − [l])l = 1 or (−1)(β−[l])l
∏

k 6=l(−ql,k)βk−αk = χg,l by definition of Ωg. There-

fore we need only check that we do not consider Ωg(α − [l], β − [l], l)−1 when (αl −

[l])l = 1 or (−1)(β−[l])l
∏

k 6=l(−ql,k)βk−αk = χg,l. Because αl = 0 or 1, (α − [l])l 6= 1

so this condition is never satisfied. For the second condition, if α and β satisfy

(−1)(β−[l])l
∏

k 6=l(−ql,k)βk−αk = χg,l, then (−1)βl
∏

k 6=l(−ql,k)βk−αk = −χg,l. But this

α, β satisfies the second case of ωg and therefore ωg(α, β, l) = 0 and we do not
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consider Ωg(α− [l], β − [l], l)−1.

Remark 4.2.2. Because we divide by ||β − α||g in hm, we require that char k = 0.

I claim that h is a contracting homotopy. That is, hm+1δ
m+1 + δmhm = 1

∣∣
Km
g,γ

.

Let α ∈ {0, 1}n, β ∈ Nn with |β| = m such that β − α = γ, then

(hm+1δ
m+1+δmhm)((xα ⊗ g)ε∗β)

=
1

||β − α||g

n∑
j=1

n∑
l=1

(Ωg(α, β, l)ωg(α + [l], β + [l], j)

+ Ωg(α− [j], β − [j], l)ωg(α, β, j))(x
α+[l]−[j] ⊗ g)ε∗β+[l]−[j]

=
1

||β − α||g

n∑
l=1

(Ωg(α, β, l)ωg(α + [l], β + [l], l)

+ Ωg(α− [l], β − [l], l)ωg(α, β, l))(x
α ⊗ g)ε∗β

+
1

||β − α||g

∑
j 6=l

(Ωg(α, β, l)ωg(α + [l], β + [l], j)

+ Ωg(α− [j], β − [j], l)ωg(α, β, j))(x
α+[l]−[j] ⊗ g)ε∗β+[l]−[j].

We need to show that

1

||β − α||g

n∑
l=1

(
Ωg(α, β, l)ωg(α + [l], β + [l], l)

+ Ωg(α− [l], β − [l], l)ωg(α, β, l)
)

(xα ⊗ g)ε∗β

= (xα ⊗ g)ε∗β

and
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1

||β − α||g

∑
j 6=l

(
Ωg(α, β, l)ωg(α + [l], β + [l], j)

+ Ωg(α− [j], β − [j], l)ωg(α, β, j)
)

(xα+[l]−[j] ⊗ g)ε∗β+[l]−[j]

= 0.

Let us start by showing the second condition. Assume j 6= l. Notice, because

(α ± [r])s = αs and (β ± [r])s = βs for r 6= s, Ωg(α, β, l)ωg(α + [l], β + [l], j) and

Ωg(α − [j], β − [j], l)ωg(α, β, j) are both either simultaneously 0 or nonzero. If they

are 0, we have nothing to prove. Therefore assume these terms are nonzero. If j < l,

then

Ωg(α, β, l)ωg(α + [l], β + [l], j) + Ωg(α− [j], β − [j], l)ωg(α, β, j)

=(−1)
∑
k<l βk(

∏
k<l

(−qk,l)βk−αk − (−1)βl
∏
k>l

(−ql,k)−βk+αkχg,l)

(−1)
∑
k<j βk(

∏
k<j

(−qk,j)βk−αk + (−1)βj
∏
k>j

(−qj,k)−βk+αkχg,j)
−1

+ (−1)
∑
k<l βk(−

∏
k<l

(−qk,l)βk−αk + (−1)βl
∏
k>l

(−ql,k)−βk+αkχg,l)

(−1)
∑
k<j βk(

∏
k<j

(−qk,j)βk−αk + (−1)βj
∏
k>j

(−qj,k)−βk+αkχg,j)
−1

=0.

If j > l, then

Ωg(α, β, l)ωg(α + [l], β + [l], j) + Ωg(α− [j], β − [j], l)ωg(α, β, j)

=(−1)
∑
k<l βk(

∏
k<l

(−qk,l)βk−αk − (−1)βl
∏
k>l

(−ql,k)−βk+αkχg,l)
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(−1)
∑
k<j βk(−

∏
k<j

(−qk,j)βk−αk − (−1)βj
∏
k>j

(−qj,k)−βk+αkχg,j)
−1

+ (−1)
∑
k<l βk(

∏
k<l

(−qk,l)βk−αk − (−1)βl
∏
k>l

(−ql,k)−βk+αkχg,l)

(−1)
∑
k<j βk(

∏
k<j

(−qk,j)βk−αk + (−1)βj
∏
k>j

(−qj,k)−βk+αkχg,j)
−1

=0.

Thus for every j, l ∈ {1, 2, ..., n} with j 6= l,

Ωg(α, β, l)ωg(α + [l], β + [l], j) + Ωg(α− [j], β − [j], l)ωg(α, β, j) = 0,

giving us our desired expression.

Now we will show

1

||β − α||g

n∑
l=1

(Ωg(α, β, l)ωg(α + [l], β + [l], l)

+ Ωg(α− [l], β − [l], l)ωg(α, β, l))(x
α ⊗ g)ε∗β

= (xα ⊗ g)ε∗β

by showing that

n∑
l=1

(Ωg(α, β, l)ωg(α + [l], β + [l], l) + Ωg(α− [l], β − [l], l)ωg(α, β, l)) = ||β − α||g.

Recall, we assumed γ ∈ (N ∪ {−1})n − Cg. Thus for some l ∈ {1, 2, ..., n}

and any β ∈ Nn and α ∈ {0, 1}n with β − α = γ, we have βl − αl 6= −1 and

(−1)βl−αl
∏

k 6=l(−qk,l)βk−αk 6= χg,l. If βl − αl = −1 or (−1)βl−αl
∏

k 6=l(−qk,l)βk−αk =
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χg,l, then Ωg(α, β, l) = 0 and ωg(α, β, l) = 0 by definition, making

Ωg(α, β, l)ωg(α + [l], β + [l], l) + Ωg(α− [l], β − [l], l)ωg(α, β, l) = 0.

Therefore these indices do not contribute to either side of our desired expression. If

βl − αl 6= −1 and (−1)βl−αl
∏

k 6=l(−qk,l)βk−αk 6= χg,l, then we consider two cases.

Case 1: Assume αl = 1, then Ωg(α, β, l) = 0 by definition of Ωg and our other

assumptions become (−1)βl
∏

k 6=l(−qk,l)βk−αk 6= −χg,l and βl 6= 0. Then, by definition

of ωg, because (−1)βl
∏

k 6=l(−qk,l)βk−αk 6= −χg,l, βl 6= 0, and αl 6= 0, ωg(α, β, l) =

Ωg(α− [l], β − [l], l)−1. Therefore

Ωg(α, β, l)ωg(α + [l], β + [l], l) + Ωg(α− [l], β − [l], l)ωg(α, β, l) = 1.

Case 2: Assume αl = 0, then Ωg(α− [l], β− [l], l) = 0 by definition of Ωg and our

other assumption becomes (−1)βl
∏

k 6=l(−qk,l)βk−αk 6= χg,l. Therefore, by definition

of ωg, because αl + 1 6= 0, βl + 1 6= 0, and (−1)βl+1
∏

k 6=l(−qk,l)βk−αk 6= −χg,l,

ωg(α + [l], β + [l], l) = Ωg(α, β, l)
−1. Thus

Ωg(α, β, l)ωg(α + [l], β + [l], l) + Ωg(α− [l], β − [l], l)ωg(α, β, l) = 1

in this case as well.

We have seen that

Ωg(α, β, l)ωg(α + [l], β + [l], l) + Ωg(α− [l], β − [l], l)ωg(α, β, l)

detects the l ∈ {1, 2, ..., n} for which βl − αl 6= −1 and (−1)βl−αl
∏

k 6=l(−qk,l)βk−αk 6=
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χg,l, giving us our final result,

n∑
l=1

(Ωg(α, β, l)ωg(α + [l], β + [l], l) + Ωg(α− [l], β − [l], l)ωg(α, β, l)) = ||β − α||g.

Therefore the subcomplexes Kg,γ for a fixed g ∈ G and γ ∈ (N ∪ {−1})n−Cg are

acyclic and do not contribute to the cohomology. We now are now ready to compute

HH
r
(Λq,Λq ⊗ g), focusing on those Kg,γ for which g ∈ G and γ ∈ Cg.

Theorem 4.2.3. For each g in G,

HHm(Λq,Λq ⊗ g) ∼=
⊕
β∈Nn
|β|=m

⊕
α∈{0,1}n
β−α∈Cg

spank{(xα ⊗ g)ε∗β}.

Therefore HHm(Λq oG) is the G-invariant subspace of

⊕
g∈G

⊕
β∈Nn
|β|=m

⊕
α∈{0,1}n
β−α∈Cg

spank{(xα ⊗ g)ε∗β}.

Proof. We start by showing that for γ ∈ Cg, δ
m
∣∣
Km
g,γ

= 0. If γ ∈ Cg, then for all

l ∈ {1, 2, ..., n}, γl = −1 or (−1)γl
∏

k 6=l(−qk,l)γk = χg,l.

Case 1: If γl = −1, then αl = 1 and βl = 0, making Ωg(α, β, l) = 0. Therefore

δ∗((xα ⊗ g)ε∗β) = 0 by equation (4.1.4).

Case 2: If (−1)γl
∏

k 6=l(−qk,l)γk = χg,l, we break into two cases: αl = 0 or αl = 1.

Assume αl = 1, then Ωg(α, β, l) = 0 and therefore δ∗((xα ⊗ g)ε∗β) = 0. In this case,

the condition that (−1)γl
∏

k 6=l(−qk,l)γk = χg,l is unnecessary. Assume αl = 0, then

(−1)βl
∏

k 6=l(−qk,l)γk = (−1)γl
∏

k 6=l(−qk,l)γk = χg,l and therefore Ωg(α, β, l) = 0 in

this case as well, making δ∗((xα ⊗ g)ε∗β) = 0.
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Thus for γ ∈ Cg, δ
m
∣∣
Km
g,γ

= 0. Then the cohomology of subcomplexes Km
g,γ for

γ ∈ Cg is spank{(xα⊗ g)ε∗β|β−α = γ}. By Lemma 4.2.1, the subcomplexes Km
g,γ for

γ /∈ Cg are acyclic and thus do not contribute to cohomology. Therefore

HHm(Λq,Λq ⊗ g) ∼=
⊕
β∈Nn
|β|=m

⊕
α∈{0,1}n
β−α∈Cg

spank{(xα ⊗ g)ε∗β}.

Remark 4.2.4. In order to use Theorem 4.2.3, we will need to specify the G-action

on HHm(Λq o G). The group action is the induced action on HomΛeq(K,Λq o G).

That is, for f ∈ HomΛeq(K,Λq oG) and g ∈ G, gf(λ) = (1⊗ g)f(g
−1
λ)(1⊗ g−1) for

λ ∈ K.

4.3 Cup product

We now have a complete description of the vector space structure of HHm(ΛqoG).

To understand the algebra structure, we will need a bit more development.

Recall, by Section 2.3, we can view the cup product, ^ on B as a composition,

for f ∈ Hom(Λq)e(Bl, A) and g ∈ Hom(Λq)e(Bm, A)

f ^ g : B(A)
∆B−→ B⊗Λq B

f⊗Λqg−−−−→ Λq ⊗Λq Λq
µ−→ Λq

where µ is the multiplication map. To make use of this description, we will define

yet another resolution of Λq, P, which is a subcomplex of B such that the diagonal

∆B induces a comultiplication on P. That is, ∆B(P) ⊂ P⊗Λq P.

We begin by defining an n-dimensional analog of the fmi defined in [5] and [7].

Let f(0,0,...,0,0) = 1, f[l] = xl for all l ∈ {1, 2, ..., n}, and fβ = 0 for any β ∈ Zn with
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βl < 0 for some l ∈ {1, 2, ..., n}. Then for β ∈ Nn, define fβ iteratively by the relation

fβ =
n∑
l=1

(
∏
k>l

qβkl,k)fβ−[l] ⊗ xl.

That is, for β ∈ Nn, fβ is a linear combination of all tensor products of length |β|

with βi xi’s for each i ∈ {1, 2, ..., n} and coefficient qα determined by the commuting

coefficients that appear when moving the generators past each other starting from

the configuration with generators in increasing index order. For example,

f(0,2,1,0,...,0) = x2 ⊗ x2 ⊗ x3 + q2,3x2 ⊗ x3 ⊗ x2 + q2
2,3x3 ⊗ x2 ⊗ x2.

As in [7], let

f̃β = 1⊗ fβ ⊗ 1.

Consider the Λe
q-module resolution

P : ...
dm+1
P−−−→

⊕
β∈Nn
|β|=m

Λq ⊗ fβ ⊗ Λq

dmP−→
⊕
β∈Nn
|β|=m−1

Λq ⊗ fβ ⊗ Λq

dm−1
P−−−→ ...

where

dmP (f̃β) =
n∑
j=1

(
∏
l<j

qill,jxj f̃β−[j] + (−1)m
∏
l>j

qilj,lf̃β−[j]xj).

Remark 4.3.1. The motivation for developing fβ is that we have, as we saw in

Section 3.1.1, an isomorphism

⊕
β∈Nn
|β|=m

Λq ⊗ fβ ⊗ Λq
∼=
⊕
β∈Nn
|β|=m

ΛqεβΛq

defined by sending f̃β to εβ. This isomorphism preserves the differential on the re-
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spective complexes, making P ∼= K. See Section 4.1 for the definition of K. We

introduce both resolutions because the resolution K is computationally useful while

the resolution P is a subcomplex of the bar resolution, inheriting the diagonal on B

(which we will prove next).

For each m ∈ N, (P)m ⊂ (B(Λq))m. I claim, as was shown in [7] for n = 2, that

P is a subcomplex of B. To see this, we will show that the differential on the bar

resolution, d, induces the map dP defined above.

Fix β ∈ N with |β| = m. On the bar resolution, d(λ1⊗ ...⊗λm) is a sum of terms

formed by removing the ith tensor symbol, multiplying the (i−1)st and the ith term,

and then multiplying the result by (−1)i−1 for i ∈ {1, 2, ...m−1}. See Definition 2.2.1

for the definition of the differential on the bar resolution. Thus d(f̃β) contains all of

the terms in
∑n

j=1(
∏

l<j q
il
l,jxj f̃β−[j] + (−1)m

∏
l>j q

il
j,lf̃β−[j]xj) which are the result of

removing the first and last tensor symbol respectively. Thus what needs to be shown

is that the terms that come from removing the ith tensor symbol, i ∈ {2, 3, ...,m−2},

do not appear in d(f̃β).

For α ∈ {1, 2, ..., n}m define xα = xα1 ⊗ xα2 ⊗ ...⊗ xαm . Then we can write

fβ =
∑

α∈{1,2,...,n}m
#{l|αl=i}=βi ∀i∈{1,2,...,n}

qαxα

where qα is determined by the commuting coefficients that appear when moving

the generators past each other starting from the configuration with generators in

increasing order according to index.

Consider a single term qα⊗xα⊗ 1 in f̃β. If αi = αi+1 for any i ∈ {2, 3, ...,m− 2}

then, because x2
j = 0 for all j ∈ {1, 2, ..., n}, the term coming from removing the

ith tensor symbol is 0 as desired. If αi 6= αi+1 for any i ∈ {2, 3, ...,m − 2} then,
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without loss of generality, assume αi < αi+1. By definition of fβ, f̃β contains the

term qαqαi,αi+1
⊗ xα1 ⊗ xα2 ⊗ ...⊗ xαi−1

⊗ xαi+1
⊗ xαi ⊗ xαi+2

⊗ ...⊗ xαm ⊗ 1. When

we remove the ith tensor symbol, multiply the (i− 1)st and ith terms, and multiply

by (−1)i−1 in qα ⊗ xα ⊗ 1, we get

(−1)i+1qα ⊗ xα1 ⊗ ...⊗ xαi−1
⊗ xαixαi+1

⊗ xαi+2
⊗ ...⊗ xαm ⊗ 1

= (−1)i−1qα(−qαi,αi+1
)⊗ xα1 ⊗ ...⊗ xαi−1

⊗ xαi+1
xαi ⊗ xαi+2

⊗ ...⊗ xαm ⊗ 1

= (−1)iqαqαi,αi+1
⊗ xα1 ⊗ ...⊗ xαi−1

⊗ xαi+1
xαi ⊗ xαi+2

⊗ ...⊗ xαm ⊗ 1.

When we remove the ith tensor and multiply by (−1)i−1 in qαqαi,αi+1
⊗ xα1 ⊗ xα2 ⊗

...⊗ xαi−1
⊗ xαi+1

⊗ xαi ⊗ xαi+2
⊗ ...⊗ xαm ⊗ 1, we get

(−1)i−1qαqαi,αi+1
⊗ xα1 ⊗ xα2 ⊗ ...⊗ xαi−1

⊗ xαi+1
xαi ⊗ xαi+2

⊗ ...⊗ xαm ⊗ 1.

Thus in d(f̃β), these two terms cancel each other as desired. Notice no other terms

in f̃β contribute to the 1⊗xα1⊗xα2⊗ ...⊗xαi−1
⊗xαi+1

xαi⊗xαi+2
⊗ ...⊗xαm⊗1 term

in d(f̃β). Therefore d(f̃β) =
∑n

j=1(
∏

l<j q
il
l,jxj f̃β−[j] +(−1)m

∏
l>j q

il
j,lf̃β−[j]xj) = dP(f̃β)

and P is a subcomplex of B.

Now, to see that the diagonal on B(Λq) restricts to a diagonal on P, recall

∆B(λ0 ⊗ ...⊗ λm+1) =
m∑
i=0

(λ0 ⊗ ...⊗ λi ⊗ 1)⊗Λq (1⊗ λi+1 ⊗ ...⊗ λm+1)

for λ0, ..., λm+1 ∈ Λq. For β ∈ Nm and 0 ≤ t ≤ |β| fixed, we have

fβ =
∑

α+γ=β
α,γ∈Nm and |α|=t

(
∏

1≤l≤n
k<l

qγkαlk,l )fα ⊗ fγ.
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Therefore define,

∆P(f̃β) =
∑

α+γ=β

(
∏

1≤l≤n
k<l

qγkαlk,l )f̃α ⊗Λq f̃γ.

Then the diagonal map, ∆P, is induced by ∆B. Moreover, by Remark 4.3.1, K ∼= P.

Therefore, using this isomorphism, we have our desired diagonal map

∆K(εβ) =
∑

α+γ=β

∏
1≤l≤n
k<l

qγkαlk,l εα ⊗Λq εγ

and we are finally ready to describe the cup product.

By Theorem 4.2.3, the vector space, HHm(Λq,Λq o G), has a basis given by all

(xα ⊗ g)ε∗β such that β − α ∈ Cg. Then, the cup product, defined on these basis

elements is given by the following formula.

Theorem 4.3.2. If α, γ ∈ {0, 1}n, β, κ ∈ Nn, and g, h ∈ G, then

(xα ⊗ g)ε∗β ^ (xγ ⊗ h)ε∗κ =
n∏
l=1

χγlg,l
∏
k<l

qκkβl−γkαlk,l (−1)−γkαl(xα+γ ⊗ gh)ε∗β+κ.

Proof. Let α, γ ∈ {0, 1}n, β, κ, ρ ∈ Nn, and g, h ∈ G. Because we can identify K as

a subcomplex of B(Λq), we can compute the cup product, (xα ⊗ g)ε∗β ^ (xγ ⊗ h)ε∗κ

as the composition

K ∆K−−→ K⊗Λq K
(xα⊗g)ε∗β⊗(xγ⊗h)ε∗κ−−−−−−−−−−−→ (Λq oG)⊗Λq (Λq oG)

µ−→ Λq oG.

Then

(xα ⊗ g)ε∗β ^ (xγ ⊗ h)ε∗κ(ερ)

= µ((xα ⊗ g)ε∗β ⊗ (xγ ⊗ h)ε∗κ(∆K(ερ)))
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= µ((xα ⊗ g)ε∗β ⊗ (xγ ⊗ h)ε∗κ(
∑

ρ′+ρ′′=ρ

∏
1≤l≤n
k<l

q
ρ′′kρ
′
l

k,l ερ′ ⊗Λq ερ′′)).

Notice for the last equality, we need ρ′ = β, ρ′′ = κ, and ρ = κ+ β.

(xα ⊗ g)ε∗β ^ (xγ ⊗ h)ε∗κ(ερ) = µ(
∏

1≤l≤n
k<l

qκkβlk,l (xα ⊗ g)⊗Λq (xγ ⊗ h))

=
∏

1≤l≤n
k<l

qκkβlk,l (xα ⊗ g)(xγ ⊗ h)

=
n∏
l=1

χγlg,l
∏
k<l

qκkβlk,l (xαxγ ⊗ gh)

=
n∏
l=1

χγlg,l
∏
k<l

qκkβlk,l (−qk,l)−γkαl(xα+γ ⊗ gh).

Thus (xα⊗g)ε∗β ^ (xγ⊗h)ε∗κ =
∏n

l=1 χ
γl
g,l

∏
k<l q

κkβl−γkαl
k,l (−1)−γkαl(xα+γ⊗gh)ε∗β+κ.

4.4 Gerstenhaber bracket

With a bit more structure, we can compute the brackets on HH
r
(Λq o G) using

the techniques of [23] (discussed in Section 2.3) adapted to this setting. We must

first show that K satisfies Conditions 2.3.3 (a)–(c):

(a) Let ι : K → B be defined by sending εβ 7→ f̃β, with εβ, f̃β defined as in the

previous section.

(b) By the Comparison Theorem, there exists a chain map π : B→ K. Choose a

map π such that f̃β 7→ εβ. Such a map exists because {f̃β}|β|=m may be extended to

a free Λe
q-basis of B|β|. By construction, we have πι = 1K.

(c) Let the diagonal map ∆K : K→ K⊗Λq K be defined by

∆K(εβ) =
∑

α+γ=β

∏
1≤l≤n
k<l

qγkαlk,l εα ⊗Λq εγ
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for β ∈ Nn, as in Section 4.3. We saw in Section 4.3,

∆Bι(εβ) = ∆B(f̃β) =
∑

α+γ=β

∏
1≤l≤n
k<l

qγkαlk,l f̃α ⊗Λq f̃γ.

On the other hand,

(ι⊗Λq ι)∆K(εβ) = (ι⊗Λq ι)(
∑

α+γ=β

∏
1≤l≤n
k<l

qγkαlk,l εα ⊗Λq εγ) =
∑

α+γ=β

∏
1≤l≤n
k<l

qγkαlk,l f̃α ⊗Λq f̃γ.

Therefore ∆Bι = (ι⊗Λq ι)∆K as required.

Thus K satisfies Conditions 2.3.3 and, if φ : K⊗Λq K→ K is a contracting homo-

topy, we can define the ◦-product on HH
r
(Λq,Λq) on the chain level as a composition

f ◦ g : K ∆K−−→ K⊗Λq K
∆K⊗Λq1K−−−−−−→ K⊗Λq K⊗Λq K

1K⊗Λqg⊗Λq1K−−−−−−−−−→ K⊗Λq K
φ−→ K f−→ Λq

for f ∈ HomΛq
e((K)l,Λq) and g ∈ HomΛq

e((K)m,Λq). However, we would like to

define the ◦-product on HH
r
(ΛqoG,ΛqoG). By [24], we can define such a ◦-product

using a similar technique as above, extended trivially to the group.

Define K̃ to be the resolution

...
δ̃3−→ K2 ⊗ kG

δ̃2−→ K1 ⊗ kG
δ̃1−→ K0 ⊗ kG

δ̃0−→ Λq oG→ 0

where δ̃m = δm ⊗ 1kG. Let ∆K̃ = ∆K ⊗ 1kG be the induced diagonal map on K̃.

Let φ̃ = φ ⊗ 1kG. Then, by [24, Section 2.2], for f ∈ Hom(ΛqoG)e(K̃m,Λq o G) and

g ∈ Hom(ΛqoG)e(K̃l,ΛqoG) we can view the φ-circle product, f ◦φg, as a composition

K̃
∆K̃−−→ K̃⊗ΛqoG K̃

1K̃−→ K̃⊗ΛqoG K̃⊗ΛqoG K̃
1K̃⊗g⊗1K̃−−−−−→ K̃⊗ΛqoG K̃ φ̃−→ K̃ f−→ Λq oG
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where the tensor products in 1K̃⊗ g⊗1K̃ are over Λq oG, 1K̃⊗ g⊗1K̃ includes the

indentification K̃⊗ΛqoGΛqoG ∼= K̃, and this function has Koszul signs as in (2.3.6).

By [23, Theorem 3.2.5], the Gerstenhaber bracket on HH
r
(Λq oG) is given by

[f, g] = f ◦φ̃ g − (−1)(m−1)(l−1)g ◦φ̃ f

at the chain level. Thus the only remaining work is to determine φ.

By Lemma 3.2.4, φ can be defined iteratively as the complex K = Tot(...((Kx1⊗t1

Kx2)⊗t2 ...)⊗tn−1 Kxn) is defined iteratively. To get a closed form description of φ, we

need to introduce some additional notation. Define K(l) = Tot(...((Kx1 ⊗t1 Kx2)⊗t2

...) ⊗tl−1 Kxl) and for α ∈ {0, 1}l, let α(l−1) = (α1, α2, ..., αl−1) the (l − 1)-tuple

consisting of the first l − 1 entries of α.

As we saw in Example 2.3.8, for β, γ ∈ N and α ∈ {0, 1}

φK(1)(εβ ⊗Λq x
α
1 εγ) = δα,1(−1)βεα+γ+1.

Therefore, by Lemma 3.2.4, for β, γ ∈ N2 and α ∈ {0, 1}2,

φK(2)(εβ ⊗Λq x
αεγ) =(−q1,2)α2(β1+1)δβ2,0δα1,1(−1)β1xα2

2 εα+γ+[1]

+ (−q1,2)α1(γ2+1)δγ1,0δα2,1(−1)|β|εα+γ+[2]

=
2∑
l=1

(−1)|β|δβl+1+...+β2,0δγ1+...+γl−1,0δαl,1
∏
l<k≤2

(−ql,k)αk(γl+1)

∏
1<k≤l

(−qk,l)αk(βl+1)
∏

1≤r<s≤2
r 6=l 6=s

(−qr,s)αr(αs+γs)+αsβr

x
αl+1

l+1 ...x
α2
2 εβ+γ+[l]x

α1
1 ...x

αl−1

l−1 .

Compare this φK(2) to the φ from Section 3.2.1. As suggested by the formula for
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φK(2) , we claim that φ = φK(n) is defined, for β, γ ∈ Nn and α ∈ {0, 1}n, by

φ(εβ ⊗Λq x
αεγ) =

n∑
l=1

(−1)|β|δβl+1+...+βn,0δγ1+...+γl−1,0δαl,1
∏
l<k≤n

(−ql,k)αk(γl+1)

∏
1<k≤l

(−qk,l)αk(βl+1)
∏

1≤r<s≤n
r 6=l 6=s

(−qr,s)αr(αs+γs)+αsβr

x
αl+1

l+1 ...x
αn
n εβ+γ+[l]x

α1
1 ...x

αl−1

l−1 .

We will show this by induction. We have established the base case with φK(1) and

φK(2) . Now assume the formula holds for φK(n−1) . Then for β, γ ∈ Nn and α ∈ {0, 1}n,

φK(n)(εβ ⊗Λq x
αεγ) =φ(

∏
k<n

(−qk,n)αnγkεβ ⊗Λq x
α(n−1)εγ(n−1)

⊗ xαnεγn)

=(φK(n−1) ⊗ F l
Kxn + (−1)i+pF r

K(n−1) ⊗ φKxn )σ

by Lemma 3.2.4. Recall σ is the chain map isomorphism defined in Lemma 3.2.1

that allows for rearranging terms in the tensor product of complexes. Simplifying,

we get

φK(n)(εβ ⊗Λq x
αεγ)

=(φK(n−1) ⊗ F l
Kxn + (−1)i+pF r

K(n−1) ⊗ φKxn )(∏
k<n

(−qk,n)αnγk−βn(αk+γk)(−1)βn|γ(n−1)|εβ(n−1)
⊗Λq x

α(n−1)εγ(n−1)
⊗ εβn ⊗ xαnεγn

)
=
(∏
k<n

(−qk,n)αnγk−βn(αk+γk)(−1)βn|γ(n−1)|
)

( n−1∑
l=1

(−1)|β(n−1)|δβl+1+...+βn−1,0δγ1+...+γl−1,0δαl,1

( ∏
l<k<n−1

(−ql,k)αk(γl+1)

∏
1≤k<l

(−qk,l)αk(βl+1)
∏

1≤r<s≤n−1
r 6=l 6=s

(−qr,s)αr(αs+γs)+αsβr
)
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x
αl+1

l+1 ...x
αn−1

n−1 εβ(n−1)+γ(n−1)+[l]x
α1
1 ...x

αl−1

l−1 ⊗ δβn,0x
αn
n εγn

+ (−1)|β(n−1)|+|γ(n−1)|δ|γ(n−1)|,0εβ(n−1)
xα(n−1) ⊗ δαn,1(−1)βnεβn+γn+1

)

by the inductive hypothesis. Now, we can rearrange our terms to get

φK(n)(εβ ⊗Λq x
αεγ) =

(∏
k<n

(−qk,n)αnγk−βn(αk+γk)(−1)βn|γ(n−1)|
)

( n−1∑
l=1

(−1)|β(n−1)|δβl+1+...+βn,0δγ1+...+γl−1,0δαl,1

( ∏
l<k<n−1

(−ql,k)αk(γl+1)

∏
1≤k<l

(−qk,l)αk(βl+1)
∏

1≤r<s≤n−1
r 6=l 6=s

(−qr,s)αr(αs+γs)+αsβr
∏
k<l

(−qk,n)αk(αn+γn)

∏
k<n

(−qk,n)αn(βk+γk+[l])
)
x
αl+1

l+1 ...x
αn
n εβ+γ+[l]x

α1
1 ...x

αl−1

l−1

+ (−1)|β|δ|γ(n−1)|,0

(∏
k<n

(−qk,n)αk(βn+γn+1)
)
εβ+γ+[n]x

α(n−1)

)
=

n−1∑
l=1

(−1)|β|δβl+1+...βn,0δγ1+...+γl−1,0δαl,1

( ∏
l<k≤n

(−ql,k)αk(γl+1)
∏

1<k≤l

(−qk,l)αk(βl+1)

∏
1≤r<s≤n
r 6=l 6=s

(−qr,s)αr(αs+γs)+αsβr
)
x
αl+1

l+1 ...x
αn
n εβ+γ+[l]x

α1
1 ...x

αl−1

l−1

+ (−1)|β|δ|γ(n−1)|,0δαn,1

(∏
k<n

(−qk,n)αk(γn+1)
)
εβ+γ+[n]x

α(n−1)

=
n∑
l=1

(−1)|β|δβl+1+...βn,0δγ1+...+γl−1,0δαl,1

( ∏
l<k≤n

(−ql,k)αk(γl+1)
∏

1<k≤l

(−qk,l)αk(βl+1)

∏
1≤r<s≤n
r 6=l 6=s

(−qr,s)αr(αs+γs)+αsβr
)
x
αl+1

l+1 ...x
αn
n εβ+γ+[l]x

α1
1 ...x

αl−1

l−1

as desired. Therefore
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φ(εβ ⊗Λq x
αεγ) =

n∑
l=1

(−1)|β|δβl+1+...+βn,0δγ1+...+γl−1,0δαl,1

( ∏
l<k≤n

(−ql,k)αk(γl+1)

∏
1<k≤l

(−qk,l)αk(βl+1)
∏

1≤r<s≤n
r 6=l 6=s

(−qr,s)αr(αs+γs)+αsβr
)

x
αl+1

l+1 ...x
αn
n εβ+γ+[l]x

α1
1 ...x

αl−1

l−1

for β, γ ∈ Nn and α ∈ {0, 1}n.

We now have all of the necessary pieces to compute the Gerstenhaber bracket,

[f, g] = f ◦φ̃ g − (−1)(m−1)(l−1)g ◦φ̃ f (4.4.1)

for f ∈ Hom(ΛqoG)e((K̃)m,Λq o G) and g ∈ Hom(ΛqoG)e((K̃)l,Λq o G). Notice

{(xα ⊗ g)(εβ ⊗ 1)∗}α∈{0,1}n,β∈Nn,g∈G forms a basis of Hom(ΛqoG)e(K̃,Λq o G). In the

following theorem, we give the circle product on elements of this form. While these

elements are not necessarily non-zero elements of cohomology, the given formula can

be extended linearly to give a well-defined bracket on cohomology by restricting to

the elements of the form as in Theorem 4.2.3.

Theorem 4.4.2. For α, γ ∈ {0, 1}n, β, κ ∈ Nn, and g, h ∈ G,

(xγ ⊗ h)(εκ ⊗ 1)∗ ◦φ̃ (xα ⊗ g)(εβ ⊗ 1)∗

=
n∑
r=1

∑
ρ′+ρ′′=κ+β−[r]

(ρ′−β)l≥0 ∀l∈{1,2,...,n}

(−1)|ρ
′−β|(|β|+1)δρ′r+1,βr+1

...δρ′n,βnδρ′′1 +..+ρ′′r−1,0
δαr,1

Q(xα+γ−[r] ⊗ hg)(εκ+β−[r] ⊗ 1)∗
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where

Q =
∏

1≤s<r

χαsh,s(−qs,r)
αs(ρ′r−βr+1)

∏
1≤k<l<r≤n

q
βk(ρ′l−βl)
k,l

∏
1≤r<k<l≤n

q
ρ′′kβl
k,l

∏
r<s≤n

(−qr,s)αs(ρ
′′
r+1)

∏
1≤t<u≤n
t6=r 6=u

(−qt,u)αt(αu+ρ′′u)+αt(ρ′u−βu)
∏

1≤s<r
s<v≤n

(−qs,v)−αsγv
∏

1≤v<r<s≤n

(−qv,s)−(γv+αv)αs

∏
r<s≤n
r≤v<s

(−qv,s)−γvαs .

Proof.

(xγ ⊗ h)(εκ ⊗ 1)∗ ◦φ̃ (xα ⊗ g)(εβ ⊗ 1)∗(ερ ⊗ 1)

=(xγ ⊗ h)(εκ ⊗ 1)∗φ̃(1K̃ ⊗ (xα ⊗ g)(εβ ⊗ 1)∗ ⊗ 1K̃)∆̃(2)(ερ ⊗ 1)

=(xγ ⊗ h)(εκ ⊗ 1)∗φ̃(1K̃ ⊗ (xα ⊗ g)(εβ ⊗ 1)∗ ⊗ 1K̃)(∆̃⊗ 1K̃)( ∑
ρ′+ρ′′=ρ

∏
1≤l≤n
k<l

q
ρ′′kρ
′
l

k,l ερ′ ⊗ ερ′′ ⊗ 1
)

=(xγ ⊗ h)(εκ ⊗ 1)∗φ̃(1K̃ ⊗ (xα ⊗ g)(εβ ⊗ 1)∗ ⊗ 1K̃)( ∑
ν′+ν′′=ρ′

∑
ρ′+ρ′′=ρ

∏
1≤l≤n
k<l

q
ρ′′kρ
′
l+ν
′′
k ν
′
l

k,l εν′ ⊗ εν′′ ⊗ ερ′′ ⊗ 1
)
.

In order to get a non-zero output from the function 1K̃ ⊗ (xα ⊗ g)(εβ ⊗ 1)∗ ⊗ 1K̃, we

need ν ′′ = β. Set ν ′′ = β, then ν ′ = ρ′ − β. Applying this map thus gives us the

Koszul sign (−1)|ρ
′−β||β|, making

(xγ ⊗ h)(εκ ⊗ 1)∗ ◦φ̃ (xα ⊗ g)(εβ ⊗ 1)∗(ερ ⊗ 1)

=(xγ ⊗ h)(εκ ⊗ 1)∗φ̃( ∑
ρ′+ρ′′=ρ

(ρ′−β)l≥0 ∀l∈{1,2,...,n}

(−1)|ρ
′−β||β|

∏
1≤l≤n
k<l

q
ρ′′kρ
′
l+βk(ρ′−β)l

k,l
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ερ′−β ⊗ (xα ⊗ g)⊗ ερ′′ ⊗ 1
)
.

We need (ρ′ − β)l ≥ 0 for all l ∈ {1, 2, ..., n} because ερ′−β is tracking homolog-

ical degree which is positive in each coordinate. Therefore δ(ρ′−β)r+1+...+(ρ′−β)n,0 =

δρ′r+1,βr+1
...δρ′n,βn . We will use this in the next expression.

(xγ ⊗ h)(εκ ⊗ 1)∗ ◦φ̃ (xα ⊗ g)(εβ ⊗ 1)∗(ερ ⊗ 1)

=(xγ ⊗ h)(εκ ⊗ 1)∗φ̃( ∑
ρ′+ρ′′=ρ

(ρ′−β)l≥0 ∀l∈{1,2,...,n}

(−1)|ρ
′−β||β|

∏
1≤l≤n
k<l

q
ρ′′kρ
′
l+βk(ρ′−β)l

k,l

ερ′−β ⊗ (xα ⊗ g)⊗ ερ′′ ⊗ 1
)

=(xγ ⊗ h)(εκ ⊗ 1)∗( ∑
ρ′+ρ′′=ρ

(ρ′−β)l≥0 ∀l∈{1,2,...,n}

(−1)|ρ
′−β||β|

∏
1≤l≤n
k<l

q
ρ′′kρ
′
l+βk(ρ′−β)l

k,l

n∑
r=1

(−1)|ρ
′−β|δρ′r+1,βr+1

...δρ′n,βnδρ′′1 +..+ρ′′r−1,0
δαr,1

∏
r<s≤n

(−qr,s)αs(ρ
′′
r+1)

∏
1≤s<r

(−qs,r)αs(ρ
′
r−βr+1)

∏
1≤t<u≤n
t6=r 6=u

(−qt,u)αt(αu+ρ′′u)+αt(ρ′u−βu)

x
αr+1

r+1 ...x
αn
n ερ′−β+ρ′′+[r]x

α1
1 ...x

αr−1

r−1 ⊗ g
)
.

In order to get a non-zero output from the function (xγ ⊗ h)(εκ ⊗ 1)∗, we need

ρ′ − β + ρ′′ + [r] = κ. That is, κ+ β − [r] = ρ′ + ρ′′ = ρ. Notice

x
αr+1

r+1 ...x
αn
n ερ′−β+ρ′′+[r]x

α1
1 ...x

αr−1

r−1 ⊗g = (x
αr+1

r+1 ...x
αn
n ⊗1)(ερ′−β+ρ′′+[r]⊗1)(xα1

1 ...x
αr−1

r−1 ⊗g)

by the definition of the multiplication on Λq o G. The second expression makes it
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clearer how to apply (xγ ⊗ h)(εκ ⊗ 1)∗. Then

(xγ ⊗ h)(εκ ⊗ 1)∗ ◦φ̃ (xα ⊗ g)(εβ ⊗ 1)∗(ερ ⊗ 1)

=
∑

ρ′+ρ′′=κ+β−[r]
(ρ′−β)l≥0 ∀l∈{1,2,...,n}

(−1)|ρ
′−β||β|

∏
1≤l≤n
k<l

q
ρ′′kρ
′
l+βk(ρ′−β)l

k,l

n∑
r=1

(−1)|ρ
′−β|δρ′r+1,βr+1

...δρ′n,βnδρ′′1 +..+ρ′′r−1,0
δαr,1

∏
r<s≤n

(−qr,s)αs(ρ
′′
r+1)

∏
1≤s<r

(−qs,r)αs(ρ
′
r−βr+1)

∏
1≤t<u≤n
t6=r 6=u

(−qt,u)αt(αu+ρ′′u)+αt(ρ′u−βu)

(x
αr+1

r+1 ...x
αn
n ⊗ 1)(xγ ⊗ h)(xα1

1 ...x
αr−1

r−1 ⊗ g)

=
n∑
r=1

∑
ρ′+ρ′′=κ+β−[r]

(ρ′−β)l≥0 ∀l∈{1,2,...,n}

(−1)|ρ
′−β|(|β|+1)

∏
1≤l≤n
k<l

q
ρ′′kρ
′
l+βk(ρ′−β)l

k,l

δρ′r+1,βr+1
...δρ′n,βnδρ′′1 +..+ρ′′r−1,0

δαr,1
∏
r<s≤n

(−qr,s)αs(ρ
′′
r+1)

∏
1≤s<r

(−qs,r)αs(ρ
′
r−βr+1)

∏
1≤t<u≤n
t6=r 6=u

(−qt,u)αt(αu+ρ′′u)+αt(ρ′u−βu)
∏

1≤s<r

χαsh,s

∏
1≤s<r
s<v≤n

(−qs,v)−αsγv
∏
r<s≤n
1≤v<r

(−qv,s)−(γv+αv)αs
∏
r<s≤n
r≤v<s

(−qv,s)−γvαs

xα+γ−[r] ⊗ hg.

This expression can be simplified slightly to eliminate trivial terms. That is,

(xγ ⊗ h)(εκ ⊗ 1)∗ ◦φ̃ (xα ⊗ g)(εβ ⊗ 1)∗

=
n∑
r=1

∑
ρ′+ρ′′=κ+β−[r]

(ρ′−β)l≥0 ∀l∈{1,2,...,n}

(−1)|ρ
′−β|(|β|+1)δρ′r+1,βr+1

...δρ′n,βnδρ′′1 +..+ρ′′r−1,0
δαr,1

∏
1≤s<r

χαsh,s(−qs,r)
αs(ρ′r−βr+1)

∏
1≤k<l<r≤n

q
βk(ρ′−β)l
k,l

∏
1≤r<k<l≤n

q
ρ′′kβl
k,l
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∏
r<s≤n

(−qr,s)αs(ρ
′′
r+1)

∏
1≤t<u≤n
t6=r 6=u

(−qt,u)αt(αu+ρ′′u)+αt(ρ′u−βu)
∏

1≤s<r
s<v≤n

(−qs,v)−αsγv

∏
1≤v<r<s≤n

(−qv,s)−(γv+αv)αs
∏
r<s≤n
r≤v<s

(−qv,s)−γvαs

(xα+γ−[r] ⊗ hg)(εκ+β−[r] ⊗ 1)∗.

We will denote ◦φ̃ as ◦ for the remainder of the text to ease notation. By the

work in this section, the Gerstenhaber algebra structure of the Hochschild cohomol-

ogy of group extensions of Λq is completely formulated. When the group is trivial,

the work of this section recovers the Gerstenhaber brackets for Hochschild coho-

mology of quantum complete intersections, extending previous computations. The

Gerstenhaber algebra structure can also be used to collect information about the

deformations of these algebras.
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5. BRACKETS FOR SOME GROUP EXTENSIONS OF QUANTUM

COMPLETE INTERSECTIONS

In the previous section, we gave a general description of the Gerstenhaber struc-

ture on group extensions of quantum complete intersections. We use this section

to compute these structures for several cases when n = 2. In Section 5.1, we allow

the diagonal group action to vary and restrict the choice of quantum coefficient. In

Section 5.2, we allow the quantum coefficient to be a dth root of unity and fix the

diagonal group action to agree with the quantum coefficient. The vector space struc-

ture is computed for all d and the bracket structure is computed for d > 1 odd. When

the characteristic of the field is 0, these example cases are generalizations of, and

can be compared to, the Gerstenhaber brackets computed in [11, Section 5] (when

n = 2) and the vector space computations in [5, Section 3] and [7, Section 3] for

quantum complete intersections.

5.1 Two generator quantum complete intersections

Now that we have the general formulas for the Gerstenhaber algebra structure

on HH
r
(Λn

qoG), we can apply them to simple examples very similar to the examples

computed in [11, Section 5.1]. Let n = 2 and assume q1,2 is not a root of unity and

G is an abelian group. For simplicity, let q = q1,2.

Then, by Theorem 4.2.3,

HHm(Λ2
q oG) ∼= (

⊕
g∈G

⊕
β∈Nn
|β|=m

⊕
α∈{0,1}n
β−α∈Cg

spank{(xα ⊗ g)ε∗β})G

where Cg = {γ ∈ (N ∪ {−1})2|∀i, γi = −1 or (−1)γi
∏

k 6=i(−qk,l)γk = χg,i}.

Therefore we have two conditions on the γ = β − α for which (xα ⊗ g)ε∗β is
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non-trivial in HHm(Λ2
q,Λ

2
q oG),

γ1 = −1 or (−1)γ1(−q−1)γ2 = χg,1

and γ2 = −1 or (−1)γ2(−q)γ1 = χg,2.

If γ1 = −1, then, as q is not a root of unity and χg,2 must be a root of unity, we

cannot have (−q)−1 = (−1)γ2χg,2 and thus, for γ ∈ Cg, we need γ2 = −1.

Alternatively, if γ1 6= −1, then for γ ∈ Cg, we need (−1)γ1(−q−1)γ2 = χg,1. But,

again because q is not a root of unity, we must have γ2 = 0 and χg,1 = 1. Thus γ1 6=

−1 forces γ2 6= −1 also. Therefore, for γ ∈ Cg, γ1 must satisfy (−1)γ2(−q)γ1 = χg,2,

forcing γ1 = 0 and χg,2 = 1.

That is, we have two options for non-trivial elements, either γ = (−1,−1) or

γ = (0, 0) and χg,1 = χg,2 = 1, making

HH
r
(Λ2

q oG) ∼= (spank{ε∗0,0, {(x1x2 ⊗ g)ε∗0,0}g∈G,

{(x2 ⊗ g)ε∗0,1, (x1 ⊗ g)ε∗1,0, (x1x2 ⊗ g)ε∗1,1} g∈G
χg,1=χg,2=1

})G

∼=
⊕
g∈G

spank{ε∗0,0, {(x1x2 ⊗ g)ε∗0,0}χg,1χg,2=1,

{(x2 ⊗ g)ε∗0,1, (x1 ⊗ g)ε∗1,0, (x1x2 ⊗ g)ε∗1,1}χg,1=χg,2=1}.

We can now use our formula from Theorem 4.3.2,

(xα ⊗ g)ε∗β ^ (xγ ⊗ h)ε∗κ =
2∏
l=1

χγlg,l
∏
k<l

qκkβl−γkαlk,l (−1)−γkαl(xα+γ ⊗ gh)ε∗β+κ

to compute cup products. Because of the factor xα+γ in the product, the only possible
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non-zero cup products in homological degree greater than 0 are

(x2 ⊗ g)ε∗0,1 ^ (x1 ⊗ h)ε∗1,0 = χ1
g,1q

1−1(−1)1(x1x2 ⊗ gh)ε∗1,1

= −χg,1(x1x2 ⊗ gh)ε∗1,1

= −(x1x2 ⊗ gh)ε∗1,1

and, using either the formula given in Theorem 4.3.2 or the graded commutativity

of ^ on HHm(Λ2
q oG) given in Remark 2.2.3,

(x1 ⊗ h)ε∗1,0 ^ (x2 ⊗ g)ε∗0,1 = (x1x2 ⊗ hg)ε∗1,1.

The element ε∗0,0 is the multiplicative identity with respect to ^ and (x1x2 ⊗ g)ε∗0,0

has cup product 0 with any of the generators except ε∗0,0.

Finally, we can use our formula from Theorem 4.4.2, restated for the case n = 2,

(xγ ⊗ h)(εκ ⊗ 1)∗ ◦ (xα ⊗ g)(εβ ⊗ 1)∗

=
2∑
r=1

∑
ρ′+ρ′′=κ+β−[r]

(ρ′−β)`≥0 ∀`∈{1,2}

(−1)|ρ
′−β|(|β|+1)δρ′r+1,βr+1

...δρ′n,βnδρ′′1 +..+ρ′′r−1,0
δαr,1

∏
1≤s<r

χαsh,s(−qs,r)
αs(ρ′r−βr+1)

∏
r<s≤2

(−qr,s)αs(ρ
′′
r+1)(xα+γ−[r] ⊗ hg)

(εκ+β−[r] ⊗ 1)∗

to compute brackets. Then the non-zero ◦-products are

(x2 ⊗ h)(ε0,1 ⊗ 1)∗ ◦ (x1x2 ⊗ g)(ε0,0 ⊗ 1)∗

=
∑

ρ′+ρ′′=(0,0)

χh,1(−q)1(0−0+1)(−q)−1(x1x2 ⊗ hg)(ε0,0 ⊗ 1)∗
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= χh,1(x1x2 ⊗ hg)(ε0,0 ⊗ 1)∗

= (x1x2 ⊗ hg)(ε0,0 ⊗ 1)∗

and

(x2 ⊗ h)(ε0,1 ⊗ 1)∗ ◦ (x1x2 ⊗ g)(ε0,0 ⊗ 1)∗ = (x1x2 ⊗ hg)(ε0,0 ⊗ 1)∗,

(x1 ⊗ h)(ε1,0 ⊗ 1)∗ ◦ (x1 ⊗ g)(ε1,0 ⊗ 1)∗ = (x1 ⊗ hg)(ε1,0 ⊗ 1)∗,

(x1 ⊗ h)(ε1,0 ⊗ 1)∗ ◦ (x1x2 ⊗ g)(ε0,0 ⊗ 1)∗ = (x1x2 ⊗ hg)(ε0,0 ⊗ 1)∗,

(x1x2 ⊗ h)(ε1,1 ⊗ 1)∗ ◦ (x1 ⊗ g)(ε1,0 ⊗ 1)∗ = (x1x2 ⊗ hg)(ε1,1 ⊗ 1)∗,

(x1 ⊗ g)(ε1,0 ⊗ 1)∗ ◦ (x1x2 ⊗ h)(ε1,1 ⊗ 1)∗ = (x1x2 ⊗ gh)(ε1,1 ⊗ 1)∗,

(x2 ⊗ h)(ε0,1 ⊗ 1)∗ ◦ (x2 ⊗ g)(ε0,1 ⊗ 1)∗ = (x2 ⊗ hg)(ε0,1 ⊗ 1)∗,

(x1x2 ⊗ h)(ε1,1 ⊗ 1)∗ ◦ (x2 ⊗ g)(ε0,1 ⊗ 1)∗ = (x1x2 ⊗ hg)(ε1,1 ⊗ 1)∗, and

(x2 ⊗ g)(ε0,1 ⊗ 1)∗ ◦ (x1x2 ⊗ h)(ε1,1 ⊗ 1)∗ = (x1x2 ⊗ gh)(ε1,1 ⊗ 1)∗.

Using our formula (4.4.1), modifying for this notation,

[(xα ⊗ g)(εβ ⊗ 1)∗,(xγ ⊗ h)(εκ ⊗ 1)∗]

= (xα ⊗ g)(εβ ⊗ 1)∗ ◦ (xγ ⊗ h)(εκ ⊗ 1)∗

− (−1)(|κ|−1)(|β|−1)(xγ ⊗ h)(εκ ⊗ 1)∗ ◦ (xα ⊗ g)(εβ ⊗ 1)∗,

we can complete the bracket computations. The non-zero brackets among pairs of

the generators of HH
r
(Λ2

q oG) are

[(x2 ⊗ h)(ε0,1 ⊗ 1)∗,(x1x2 ⊗ g)(ε0,0 ⊗ 1)∗] = (x1x2 ⊗ hg)(ε0,0 ⊗ 1)∗ and

[(x1 ⊗ h)(ε1,0 ⊗ 1)∗,(x1x2 ⊗ g)(ε0,0 ⊗ 1)∗] = (x1x2 ⊗ hg)(ε0,0 ⊗ 1)∗.
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Notice that the bracket and cup product computations agree with the results in

[11, Section 5.1] and [7, Section 2.1] respectively when G = 1, given in Example 3.2.7.

5.2 A specific group action

We will now consider a specific example, on Λ2
q, to study the structure in more

depth. Let q1,2 = q be a primitive dth root of unity. Let G = 〈g〉 be the cyclic group

generated by an element g with |G| = d. Assume that G acts on Λ2
q by

gx1 = qx1 and gx2 = q−1x2.

That is, G acts on the generators of Λ2
q by multiplication by powers of the quantum

coefficient.

By Theorem 4.2.3, we know that HHm(Λ2
q oG) is isomorphic to the G-invariant

subspace of
d⊕
i=1

⊕
β∈N2

|β|=m

⊕
α∈{0,1}2
β−α∈Cgi

spank{(xα ⊗ gi)ε∗β}

where

Cgi ={γ ∈ (N ∪ {−1})2| ∀ l, γl = −1 or, for k 6= l, (−1)γl(−qk,l)γk = qil,k}

={γ ∈ (N ∪ {−1})2| ∀ l, γl = −1 or, for k 6= l, qγk+i
k,l = (−1)|γ|}

={γ ∈ (N ∪ {−1})2| γ1 = −1 or qγ2+i = (−1)|γ| and

γ2 = −1 or qγ1+i = (−1)|γ|}.

Therefore to find a non-trivial element of cohomology, we need to first check the

conditions for which γ ∈ (N∪{−1})2 satisfies γ1 = −1 or qγ2+i = (−1)|γ| and γ2 = −1

or qγ1+i = (−1)|γ| and then check for terms that are G-invariant.

63



To compute the cup product, by Theorem 4.3.2, we know that for α, γ ∈ {0, 1}2,

β, κ ∈ N2, and gi, gj ∈ G,

(xα ⊗ gi)ε∗β ^ (xγ ⊗ gj)ε∗κ =
2∏
l=1

∏
l 6=k

qiγll,k
∏
k<l

qκkβl−γkαlk,l (−1)−γkαl(xα+γ ⊗ gi+j)ε∗β+κ

=qi(γ1−γ2)+κ1β2−γ1α2(−1)−γ1α2(xα+γ ⊗ gi+j)ε∗β+κ.

Under these assumptions, Theorem 4.4.2 becomes, for α, γ ∈ {0, 1}2, β, κ ∈ N2,

and gi, gj ∈ G,

(xγ ⊗ gj)(εκ ⊗ 1)∗ ◦ (xα ⊗ gi)(εβ ⊗ 1)∗

=
2∑
r=1

∑
ρ′+ρ′′=κ+β−[r]

(ρ′−β)`≥0 ∀`∈{1,2}

(−1)|ρ
′−β|(|β|+1)δρ′r+1,βr+1

...δρ′n,βnδρ′′1 +...+ρ′′r−1,0
δαr,1

∏
1≤s<r

qjαss,r (−qs,r)αs(ρ
′
r−βr+1)

∏
r<s≤2

(−qr,s)αs(ρ
′′
r+1)

∏
1≤s<r
s<v≤2

(−qs,v)−αsγv(xα+γ−[r] ⊗ gi+j)(εκ+β−[r] ⊗ 1)∗

=
∑

ρ′+ρ′′=κ+β−[1]
(ρ′−β)`≥0 ∀`∈{1,2}

(−1)|ρ
′−β|(|β|+1)δρ′2,β2

δα1,1(−q1,2)α2(ρ′′1 +1)

(xα+γ−[1] ⊗ gi+j)(εκ+β−[1] ⊗ 1)∗

+
∑

ρ′+ρ′′=κ+β−[2]
(ρ′−β)`≥0 ∀`∈{1,2}

(−1)|ρ
′−β|(|β|+1)δρ′′1 ,0δα2,1q

jα2(−q)α1(ρ′2−β2+1)−α1γ2

(xα+γ−[2] ⊗ gi+j)(εκ+β−[2] ⊗ 1)∗.

As in [7] and [11], we study the specific structure of Hochschild cohomology for

each choice of d. We compute the graded vector space structure for all possible

choices of d 6= 0 and the Gerstenhaber brackets for the case d > 1 odd.
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5.2.1 q a dth root of unity for d > 1 odd

If d > 1 is odd, then

Cgi ={γ ∈ (N ∪ {−1})2| γ1 = −1 or (∃ t, k ∈ N, γ2 + i = td and |γ| = 2k) and

γ2 = −1 or (∃ t, k ∈ N, γ1 + i = td and |γ| = 2k)}

={γ ∈ (N ∪ {−1})2| γ1 = −1 and γ2 = −1 or

γ1 = −1 and ∃ t ∈ N, γ2 = 2t+ 1 and i = 1 or

γ2 = −1 and ∃ t ∈ N, γ1 = 2t+ 1 and i = 1 or

∃ t, t′ ∈ N, γ1 = td− i and γ2 = t′d− i and t+ t′ even}.

From this description, we immediately get

HH
r
(Λ2

q,Λ
2
q oG) ∼=

⊕
t∈N

spank{(x1 ⊗ g)ε∗0,2t+1, (x2 ⊗ g)ε∗2t+1,0, (x1x2 ⊗ g)ε∗2t,0,

(x1x2 ⊗ g)ε∗0,2t}
d⊕
i=1

⊕
t,t′∈N

t+t′ even

spank{(1⊗ gi)ε∗td−i,t′d−i, (x1 ⊗ gi)ε∗td−i+1,t′d−i,

(x2 ⊗ gi)ε∗td−i,t′d−i+1, (x1x2 ⊗ gi)ε∗td−i+1,t′d−i+1}
d⊕
i=1

spank{(x1x2 ⊗ gi)ε∗0,0, (1⊗ gi)ε∗0,0}

as a vector space. In this expression, the terms ε∗a,b should be interpreted with

a, b ≥ 0 and thus we only consider t large enough to make the homological degrees

nonnegative.
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Then, after taking the G-invariant subspace, we get

HH
r
(Λ2

q oG) ∼=
⊕
t∈N

spank{(x1 ⊗ g)ε∗0,2td−1, (x2 ⊗ g)ε∗2td−1,0, (x1x2 ⊗ g)ε∗2td,0,

(x1x2 ⊗ g)ε∗0,2td}
d⊕
i=1

⊕
t,t′∈N

t+t′ even

spank{(1⊗ gi)ε∗td−i,t′d−i, (x1 ⊗ gi)ε∗td−i+1,t′d−i,

(x2 ⊗ gi)ε∗td−i,t′d−i+1, (x1x2 ⊗ gi)ε∗td−i+1,t′d−i+1}
d⊕
i=1

spank{(x1x2 ⊗ gi)ε∗0,0, (1⊗ gi)ε∗0,0}

as a vector space.

We will forgo the cup product structure in favor of showing the bracket structure.

The non-zero brackets are, for t, t′, t′′, t′′′ ∈ N and i, j ∈ {1, 2, ..., d},

[(x2 ⊗ g)ε∗2t′d−1,0, (x1 ⊗ g)ε∗0,2td−1] = (2t′d− 1)(x2 ⊗ g2)ε∗2t′d−2,2td−1,

− (2td− 1)q(x1 ⊗ g2)ε∗2t′d−1,2td−2,

[(x1x2 ⊗ g)ε∗2t′d,0, (x1 ⊗ g)ε∗0,2td−1] = (2t′d)(x1x2 ⊗ g2)ε∗2t′d−1,2td−1,

[(1⊗ gi)ε∗t′d−i,t′′d−i, (x1 ⊗ g)ε∗0,2td−1] = (t′d− i)(1⊗ gi+1)ε∗t′d−i−1,2td+t′′d−i−1,

[(x1 ⊗ gi)ε∗t′d−i+1,t′′d−i, (x1 ⊗ g)ε∗0,2td−1] = (t′d− i+ 1)(x1 ⊗ gi+1)ε∗t′d−i,2td+t′′d−i−1,

[(x2 ⊗ gi)ε∗t′d−i,t′′d−i+1, (x1 ⊗ g)ε∗0,2td−1] = (t′d− i)(x2 ⊗ gi+1)ε∗t′d−i−1,2td+t′′d−i

− (2td− 1)q(x1 ⊗ gi+1)ε∗t′d−i,2td+t′′d−i,

[(x1x2 ⊗ gi)ε∗t′d−i+1,t′′d−i+1, (x1 ⊗ g)ε∗0,2td−1] = (t′d− i+ 1)(x1x2 ⊗ gi+1)ε∗t′d−i,2td+t′′d−i,

[(x1x2 ⊗ gi)ε∗0,2t′d, (x2 ⊗ g)ε∗0,2td−1] = (2t′d)q(x1x2 ⊗ g2)ε∗2td−1,2t′d−1,

[(1⊗ gi)ε∗t′d−i,t′′d−i, (x2 ⊗ g)ε∗0,2td−1] = (t′′d− i)qi(1⊗ gi+1)ε∗2td+t′d−i−1,t′′d−i−1,

[(x1 ⊗ gi)ε∗t′d−i+1,t′′d−i, (x2 ⊗ g)ε∗0,2td−1] = (t′′d− i)qi(x1 ⊗ gi+1)ε∗2td+t′d−i,t′′d−i−1
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− (2td− 1)(x2 ⊗ gi+1)ε∗2td+t′d−i−1,t′′d−i,

[(x2 ⊗ gi)ε∗t′d−i,t′′d−i+1, (x2 ⊗ g)ε∗0,2td−1] = (t′′d− i+ 1)qi(x2 ⊗ gi+1)ε∗2td+t′d−i−1,t′′d−i,

[(x1x2 ⊗ gi)ε∗t′d−i+1,t′′d−i+1, (x2 ⊗ g)ε∗0,2td−1]

= (t′′d− i+ 1)qi(x1x2 ⊗ gi+1)ε∗2td+t′d−i,t′′d−i,

[(1⊗ gi)ε∗t′d−i,t′′d−i, (x1x2 ⊗ g)ε∗2td,0]

= (−1)t
′d−i+1

t′′d−i−1∑
ρ′2=0

qρ
′
2+i+1(x1 ⊗ gi+1)ε∗2td+t′d−i,t′′d−i−1,

[(x1 ⊗ gi)ε∗t′d−i+1,t′′d−i, (x1x2 ⊗ g)ε∗2td,0]

= −(2td)(x1x2 ⊗ gi+1)ε∗2td+t′d−i,t′′d−i,

[(x2 ⊗ gi)ε∗t′d−i,t′′d−i+1, (x1x2 ⊗ g)ε∗2td,0]

= (−1)t
′d−i

t′′d−i∑
ρ′2=0

qρ
′
2+i(x1x2 ⊗ gi+1)ε∗2td+t′d−i,t′′d−i,

[(1⊗ gi)ε∗t′d−i,t′′d−i, (x1x2 ⊗ g)ε∗0,2td]

= (−1)t
′d−i

t′d−i−1∑
ρ′′1 =0

qρ
′′
1 +1(x2 ⊗ gi+1)ε∗t′d−i−1,2td+t′′d−i

− (−1)t
′d−i

t′′d−i−1∑
ρ′2=2td

qρ
′
2−2td+i+1(x1 ⊗ gi+1)ε∗t′d−i,2td+t′′d−i−1,

[(x1 ⊗ gi)ε∗t′d−i+1,t′′d−i, (x1x2 ⊗ g)ε∗0,2td]

= (−1)t
′d−i+1

t′d−i∑
ρ′′1 =0

qρ
′′
1 +1(x1x2 ⊗ gi+1)ε∗t′d−i−1,2td+t′′d−i,

[(x2 ⊗ gi)ε∗t′d−i,t′′d−i+1, (x1x2 ⊗ g)ε∗0,2td]

= (−1)t
′d−i

2td+t′′d−i∑
ρ′2=2td

qρ
′
2−2td+i(x1x2 ⊗ gi+1)ε∗t′d−i,2td+t′′d−i

− (2td)q(x1x2 ⊗ gi+1)ε∗t′d−i,2td+t′′d−i,
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[(x1 ⊗ gj)ε∗t′′d−j+1,t′′′d−j, (1⊗ gi)ε∗td−i,t′d−i]

= −(td− i)(1⊗ gi+j)ε∗(t+t′′)d−i−j,(t′+t′′′)d−i−j,

[(x2 ⊗ gj)ε∗t′d−j,t′′d−j+1, (1⊗ gi)ε∗td−i,t′d−i]

= −(t′d− i)qi(1⊗ gi+j)ε∗(t+t′′)d−i−j,(t′+t′′′)d−i−j,

[(x1x2 ⊗ gj)ε∗t′d−j+1,t′′d−j+1, (1⊗ gi)ε∗td−i,t′d−i]

= (−1)t
′′d−j+1

td−j−1∑
ρ′′1 =0

qρ
′′
1 +1(x2 ⊗ gi+j)ε∗(t+t′′)d−i−j,(t′+t′′′)d−i−j+1

+ (−1)td−i
(t′+t′′′)d−i−j∑
ρ′2=t′′′d−i+1

qρ
′
2−t′′′d+i+j(x1 ⊗ gi+j)ε∗(t+t′′)d−i−j+1,(t′+t′′′)d−i−j,

[(x1x2 ⊗ gj)ε∗0,0, (1⊗ gi)ε∗td−i,t′d−i]

= (−1)td−i
td−i−1∑
ρ′′1 =0

qρ
′′
1 +1(x2 ⊗ gi+j)ε∗td−i−1,t′d−i

+ (−1)td−i
t′d−i−1∑
ρ′2=0

qρ
′
2+i+1(x1 ⊗ gi+j)ε∗td−i,t′d−i−1,

[(x1 ⊗ gj)ε∗t′′d−j+1,t′′′d−j, (x1 ⊗ gi)ε∗td−i+1,t′d−i]

= ((t+ t′′)d− i− j)(x1 ⊗ gi+j)ε∗(t+t′′)d−i−j+1,(t′+t′′′)d−i−j,

[(x2 ⊗ gj)ε∗t′d−j,t′′d−j+1, (x1 ⊗ gi)ε∗td−i+1,t′d−i]

= (t′′d− j)(x2 ⊗ gi+j)ε∗(t+t′′)d−i−j,(t′+t′′′)d−i−j+1

− (t′d− i)qi(x1 ⊗ gi+j)ε∗(t+t′′)d−i−j+1,(t′+t′′′)d−i−j,

[(x1x2 ⊗ gj)ε∗t′d−j+1,t′′d−j+1, (x1 ⊗ gi)ε∗td−i+1,t′d−i]

= (t′′d− j + 1)(x1x2 ⊗ gi+j)ε∗(t+t′′)d−i−j+1,(t′+t′′′)d−i−j+1

+ (−1)td−i
td−i∑
ρ′′1 =0

qρ
′′
1 +1(x1x2 ⊗ gi+j)ε∗(t+t′′)d−i−j+1,(t′+t′′′)d−i−j+1,

[(x1x2 ⊗ gj)ε∗0,0, (x1 ⊗ gi)ε∗td−i+1,t′d−i]
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= (−1)td−i
td−i∑
ρ′′1 =0

qρ
′′
1 +1(x1x2 ⊗ gi+j)ε∗td−i,t′d−i,

[(x2 ⊗ gj)ε∗t′d−j,t′′d−j+1, (x2 ⊗ gi)ε∗td−i,t′d−i+1]

[(t′′′d− j + 1)qj − (t′d− i+ 1)qi](x2 ⊗ gi+j)ε∗(t+t′′)d−i−j,(t′+t′′′)d−i−j+1,

[(x1x2 ⊗ gj)ε∗t′d−j+1,t′′d−j+1, (x2 ⊗ gi)ε∗td−i,t′d−i+1]

= (t′′′d− j + 1)qj(x1x2 ⊗ gi+j)ε∗(t+t′′)d−i−j+1,(t′+t′′′)d−i−j+1

− (−1)td−i
t′d−j∑
ρ′′2 =0

qρ
′′
2−t′′d+j+i−1(x1x2 ⊗ gi+j)ε∗(t+t′′)d−i−j+1,(t′+t′′′)d−i−j+1,

and

[(x1x2 ⊗ gj)ε∗0,0, (x2 ⊗ gi)ε∗td−i,t′d−i+1]

= (−1)td−i+1

t′d−i∑
ρ′2=0

qρ
′
2+i(x1x2 ⊗ gi+j)ε∗td−i,t′d−i.

We can compare these results to the computations in [11, Section 5.3] and [7,

Section 3.1] when i = 0, given in Example 3.2.8.

5.2.2 q a dth root of unity for d > 2 even

If d > 2 is even, then

Cgi ={γ ∈ (N ∪ {−1})2| γ1 = −1 or (∃ t, t′ ∈ N, γ2 + i = t
d

2
and |γ| = t′

and t+ t′ even) and

γ2 = −1 or (∃ t, t′ ∈ N, γ1 + i = t
d

2
and |γ| = t′

and t+ t′ even)}

={γ ∈ (N ∪ {−1})2| γ1 = −1 and γ2 = −1 or

γ1 = −1 and ∃ t ∈ N, γ2 = t′ + 1 and
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i = t
d

2
+ 1 and t+ t′ even or

γ2 = −1 and ∃ t ∈ N, γ1 = t′ + 1 and

i = t
d

2
+ 1 and t+ t′ even or

∃ t, t′ ∈ N, γ1 = t
d

2
− i and γ2 = t′

d

2
− i and t+ t′ even}.

From this description, we immediately get

HH
r
(Λ2

q,Λ
2
q oG) ∼=

⊕
t∈N

spank{(x1 ⊗ g)ε∗0,2t+1, (x1 ⊗ g
d
2

+1)ε∗0,2t, (x2 ⊗ g)ε∗2t+1,0,

(x2 ⊗ g
d
2

+1)ε∗2t,0, (x1x2 ⊗ g)ε∗2t,0, (x1x2 ⊗ g
d
2

+1)ε∗2t+1,0,

(x1x2 ⊗ g)ε∗0,2t, (x1x2 ⊗ g
d
2

+1)ε∗0,2t+1}
d⊕
i=1

⊕
t,t′∈N

t+t′ even

spank{(1⊗ gi)ε∗t d
2
−i,t′ d

2
−i, (x1 ⊗ gi)ε∗t d

2
−i+1,t′ d

2
−i,

(x2 ⊗ gi)ε∗t d
2
−i,t′ d

2
−i+1

, (x1x2 ⊗ gi)ε∗t d
2
−i+1,t′ d

2
−i+1
}

d⊕
i=1

spank{(x1x2 ⊗ gi)ε∗0,0, (1⊗ gi)ε∗0,0}

as a vector space.

Then the G-invariant subspace is

HH
r
(Λ2

q oG) ∼=
⊕
t∈N

spank{(x1 ⊗ g)ε∗0,td−1, (x1 ⊗ g
d
2
−1)ε∗0,td, (x2 ⊗ g)ε∗td−1,0,

(x2 ⊗ g
d
2

+1)ε∗td,0, (x1x2 ⊗ g)ε∗td,0, (x1x2 ⊗ g
d
2

+1)ε∗td−1,0,

(x1x2 ⊗ g)ε∗0,td, (x1x2 ⊗ g
d
2

+1)ε∗0,td−1}
d⊕
i=1

⊕
t,t′∈N

t+t′ even

spank{(1⊗ gi)ε∗t d
2
−i,t′ d

2
−i, (x1 ⊗ gi)ε∗t d

2
−i+1,t′ d

2
−i,
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(x2 ⊗ gi)ε∗t d
2
−i,t′ d

2
−i+1

, (x1x2 ⊗ gi)ε∗t d
2
−i+1,t′ d

2
−i+1
}

d⊕
i=1

spank{(x1x2 ⊗ gi)ε∗0,0, (1⊗ gi)ε∗0,0}

as a vector space.

5.2.3 q = −1

Now assume q = −1. That is, d = 2 and we are in the commutative truncated

polynomial case. Then

Cgi ={γ ∈ (N ∪ {−1})2| γ1 = −1 or ∃ t ∈ N, γ1 − i = 2t and

γ2 = −1 or ∃ t ∈ N, γ2 − i = 2t}

={γ ∈ (N ∪ {−1})2| γ1 = −1 and γ2 = −1 or

γ1 = −1 and ∃ t ∈ N, γ2 = 2t+ i or

γ2 = −1 and ∃ t ∈ N, γ1 = 2t+ i or

∃ t, t′ ∈ N, γ1 = 2t+ i and γ2 = 2t′ + i}.

From this description, we immediately get

HH
r
(Λ2

q,Λ
2
q oG) ∼=

2⊕
i=1

⊕
t∈N

spank{(x1 ⊗ gi)ε∗0,2t+i, (x2 ⊗ gi)ε∗2t+i,0, (x1x2 ⊗ gi)ε∗2t+i+1,0,

(x1x2 ⊗ gi)ε∗0,2t+i+1}
2⊕
i=1

⊕
t,t′∈N

spank{(1⊗ gi)ε∗2t+i,2t′+i, (x1 ⊗ gi)ε∗2t+i+1,2t′+i,

(x2 ⊗ gi)ε∗2t+i,2t′+i+1, (x1x2 ⊗ gi)ε∗2t+i+1,2t′+i+1}
d⊕
i=1

spank{(x1x2 ⊗ gi)ε∗0,0, (1⊗ gi)ε∗0,0}
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as a vector space.

Then, after taking the G-invariant subspace, we get

HH
r
(Λ2

q oG) ∼=
⊕
t∈N

spank{(x1 ⊗ g)ε∗0,2t+1, (x2 ⊗ g)ε∗2t+1,0, (x1x2 ⊗ g)ε∗2t,0,

(x1x2 ⊗ g)ε∗0,2t}
2⊕
i=1

⊕
t,t′∈N

spank{(1⊗ gi)ε∗2t+i,2t′+i, (x1 ⊗ gi)ε∗2t+i+1,2t′+i,

(x2 ⊗ gi)ε∗2t+i,2t′+i+1, (x1x2 ⊗ gi)ε∗2t+i+1,2t′+i+1}
d⊕
i=1

spank{(x1x2 ⊗ gi)ε∗0,0, (1⊗ gi)ε∗0,0}

as a vector space.

5.2.4 q = 1

Finally, if q = 1, we are considering the truncated skew polynomial ring. In this

case,

C1 ={γ ∈ (N ∪ {−1})2| γ1 = −1 or ∃ t ∈ N, γ1 + γ2 = 2t and

γ2 = −1 or ∃ t ∈ N, γ1 + γ2 = 2t}

={γ ∈ (N ∪ {−1})2| γ1 = −1 and γ2 = −1 or

γ1 = −1 and ∃ t ∈ N, γ2 = 2t+ 1 or

γ2 = −1 and ∃ t ∈ N, γ1 = 2t+ 1 or

∃ t ∈ N, γ1 + γ2 = 2t}.
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From this description, we immediately get

HH
r
(Λ2

q oG) ∼=
⊕
t∈N

spank{(x1 ⊗ 1)ε∗0,2t+1, (x2 ⊗ 1)ε∗2t+1,0, (x1x2 ⊗ 1)ε∗2t,0,

(x1x2 ⊗ 1)ε∗0,2t}⊕
t,t′∈N

t+t′ even

spank{(1⊗ 1)ε∗t,t′ , (x1 ⊗ 1)ε∗t+1,t′ , (x2 ⊗ 1)ε∗t,t′+1,

(x1x2 ⊗ 1)ε∗t+1,t′+1}⊕
spank{(x1x2 ⊗ 1)ε∗0,0, (1⊗ 1)ε∗0,0}

as a vector space.

Because the group action is trivial in this case, we can directly compare this result

to [7, Section 3.5] and [11, Section 5.6].
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6. CONCLUSION

In this dissertation, we discussed the Gerstenhaber algebra structure of the

Hochschild cohomology of noncommutative associative algebras over a field. We

utilized the notion of twisted tensor products given by Bergh and Oppermann in [6]

to compute the vector space and cup product structures of Hochschild cohomology

of Λ
(2,2,...,2)
q . Using an alternative bracket definition given by Negron and Wither-

spoon in [23], we were able to formulate the Gerstenhaber bracket on HH
r
(Λ

(2,2,...,2)
q ).

As well as characterizing the structure of Hochschild cohomology of a large class of

algebras, when the group acting on Λ
(2,2,...,2)
q is trivial, this work provides a complete

description of the Gerstenhaber algebra structure on Hochschild cohomology of this

class of quantum complete intersections, extending the previous results of [7] and [25]

to include the bracket structure. While brackets are useful for determining formal

deformations, the bracket structure is less understood than the other structures on

Hochschild cohomology.

The work presented in this dissertation has natural extensions for future work.

Continuing my work on quantum complete intersections, I want to investigate the

Gerstenhaber algebra structure of Hochschild cohomology of group extensions of

more general quantum complete intersections, Λ
(m1,m2,...,mn)
q , allowing generators to

be truncated at arbitrary powers. The techniques used by Oppermann in [25] can

potentially be extended to the group extensions of quantum complete intersections to

assist in computing the vector space and cup structure on cohomology. The bracket

structure however may prove to be more difficult in this more general setting. In this

dissertation, the quantum complete intersections considered were Koszul algebras

and thus brackets could be computed using the techniques given by Negron and
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Witherspoon in [23]. When mi 6= 2 for any i ∈ {1, 2, ..., n}, the quantum complete

intersections are not Koszul. There is a natural choice of projective resolution for

single generator truncated polynomial rings as given in [29, Exercise 9.1.4]. Taking

the total complex of the twisted tensor product of these natural resolutions would

result in a resolution for Λ
(m1,m2,...,mn)
q . However, it is not immediately clear that this

resolution construction satisfies Conditions 2.3.3, allowing us to use the techniques

of [23] for bracket computations.

In addition, I plan to study quantum complete intersections and their group

extensions in more detail by studying the deformations of these algebras. In defor-

mation theory, one deforms or perturbs the algebra structure slightly to create a

class of related algebras by introducing a new parameter. By studying the defor-

mations of an algebra, one can characterize a large class of closely related algebras.

Deformations of group extensions of quantum complete intersections may be related

to other algebras of interest, such as restricted rational Cherednik algebras. To be-

gin this research, I am currently working with Christine Uhl, a graduate student

at the University of North Texas who has experience with deformations of similar

algebras, to study a particular class of deformations of group extensions of quantum

complete intersections. The goal is to achieve a result comparable to that of Naidu

and Witherspoon in [21], bridging the gap between the homological perspective of

deformations and PBW conditions of quantum Drinfeld Hecke algebras.
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