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ABSTRACT 

Red drum (Sciaenops ocellatus) is an economically important marine fish species 

that supports a large recreational fishery in the United States and is cultured for both 

restoration and commercial purposes.  Characterizing patterns of genetic diversity in wild 

populations of red drum is essential for understanding how genetic variation in the 

species is partitioned across space and time and for informed decisions regarding 

management of the recreational fishery and culture of the species.  Advances in DNA 

sequencing technology now have allowed cost-effective genotyping of thousands of 

genetic markers and strategies for mapping those markers to the genome.  This has led to 

an unprecedented level of resolution in characterizing patterns of genetic variation in 

wild populations.  The objectives of this research were to supplement the existing red 

drum linkage map with additional anonymous and gene-linked microsatellite loci, to use 

the framework provided by the microsatellite-based map to saturate the map with genetic 

markers (SNP haplotypes) derived from next-generation sequencing, and to use the 

saturated linkage map, combined with genotypes of wild red drum, to (i) identify 

potential changes in genetic effective population size over time, and (ii) conduct a 

population genomic assessment of red drum in U.S. waters.  A dense linkage map, 

consisting of 2,275 genetic markers, was generated.  In addition, a method was 

developed to utilize the linkage map, along with data from studies of linkage 

disequilibrium, to detect changes in effective population size over time.  The method was 

used to show a recent, temporary decline in effective population size in a sample of red 
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drum from Matagorda Bay, Texas.  A population genomic assessment of red drum 

revealed three distinct populations of red drum, corresponding to regions in the western 

Gulf of Mexico, the eastern Gulf of Mexico, and along the southeast Atlantic coast of the 

U.S.  Signatures of natural selection (adaptive variation) were detected among sampled 

populations, and a set of environmental variables correlated to allele frequencies of loci 

potentially under selection was identified.  Using the linkage map, 15 clusters of loci 

potentially under the influence of selection were mapped to individual chromosomes, and 

a set of candidate genes were identified, using comparative genomics.  The result of the 

project is a set of genetic tools and information that will greatly benefit future study of 

red drum in a variety of contexts. 
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CHAPTER I  

INTRODUCTION 

 

BACKGROUND 

Red drum, Sciaenops ocellatus, is an economically valuable marine fish species 

supporting both important recreational fisheries and commercial aquaculture in the 

southeastern United States.  The native distribution of the species is throughout the Gulf 

of Mexico (hereafter Gulf) from Tuxpan, Mexico to southwestern Florida and along the 

Atlantic coast of the United States (hereafter Atlantic) from southeastern Florida to 

Massachusetts (Pattillo et al., 1997).  Adult red drum, which can live to more than 50 

years of age (Ross et al., 1995), typically are found offshore, outside of bays and 

estuaries, and up to 70 miles from the coast (Davis, 1990).  Adults move inshore 

annually to spawn around the mouths of bays and estuaries, and fertilized eggs are 

transported by surface currents into bays and estuaries where juveniles remain until 

sexual maturity at 3-6 years of age (Matlock, 1987; Davis, 1990). 

 The species at one time supported a large commercial fishery, but in response to 

rapid declines in red drum abundance beginning in the mid-1980s (Goodyear, 1991), 

various regulatory measures and harvest restrictions were implemented in the fishery.  

These include a complete harvest moratorium for red drum in federal waters of the Gulf 

and Atlantic (GMFMC, 1996; ASMFC, 2002), closure of the commercial fishery in state 

waters for virtually all Gulf coast and U.S. South Atlantic states, and prohibition of the 

sale of wild-caught red drum (Matlock, 1990).  In addition, red drum stock enhancement 
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programs have since been implemented in Texas, Florida, Georgia, and South Carolina 

(McEachron et al., 1995; Woodward 2000; Smith et al., 2001; Tringali et al., 2008). 

 Today, red drum is arguably the most important recreational marine fish in bays 

and estuaries in U.S. waters of the Gulf and Atlantic, contributing significantly in 2011 

to the >$18 billion in economic impact to (and >100,000 jobs in) Gulf and Atlantic 

coastal communities from saltwater fishing (Southwick Associates, 2013).  Interestingly, 

the red drum recreational harvest in the Gulf in 2013 totaled ~17.4 million pounds, 

which is larger than the total harvest of the commercial fishery (~14.1 million pounds) 

immediately prior to closure of the commercial fishery in the 1980s (NMFS, 2015a).  

Red drum also is an emerging aquaculture species.  Global commercial aquaculture 

production of red drum has risen sharply in recent years, from 4.4 million pounds in 

2000 to 136 million pounds in 2012, largely as a result of increased production in China 

(FAO, 2015).  Despite the fact that red drum is endemic to U.S. coastal waters, a 

relatively small proportion of global commercial production takes place in the United 

States; nevertheless, red drum currently is the highest-producing marine fish species in 

the U.S. by live weight and total sales (USDA, 2014).  In 2013, approximately 3.3 

million pounds of red drum, valued at over U.S. $10 million, were produced by 

commercial farms in the U.S. (USDA, 2014). 
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GENETICS APPROACHES TO FISHERIES MANAGEMENT 

One facet of proper management of marine species is characterization of population or 

'stock' structure.  Characterizing population structure is important because failure to 

recognize structure within an exploited fishery can lead to over-exploitation and 

depletion of a localized, undetected stock and loss of unique genetic diversity in that 

stock (Carvalho and Hauser, 1994; Begg et al., 1999; Hilborn et al., 2003).  Loss of 

genetic diversity can compromise long-term sustainability (Hilborn et al., 2003), and for 

fisheries undergoing rebuilding, failure to recognize cryptic stocks can result in failure to 

anticipate patterns of recruitment (Ruzzante et al., 1999). 

 Population structure of red drum in U.S. waters has been investigated in the past 

through analysis of both mitochondrial DNA (mtDNA) sequences (Gold et al., 1991, 

1993, 1999; Seyoum et al., 2000) and microsatellite loci (Gold and Turner, 2002).  

These studies showed that red drum exhibit a weak pattern of genetic divergence 

between the Gulf and Atlantic and that there is an isolation-by-distance effect on allele 

frequencies across the species’ range; a more fine-scale description of population 

structure, however, has not been forthcoming.  A recent study (Michaelsen, 2015), based 

on18 nuclear-encoded microsatellites and mtDNA control region sequences found no 

evidence of population structure, based on either marker type, among red drum sampled 

across the northern Gulf from Texas to Florida.  However, these previous studies of red 

drum have been limited by several factors.  Red drum is a large, long-lived marine 

species with large effective population sizes (Ne) and potentially high levels of gene flow 

(Carson et al., 2009).  This presents a two-fold problem in that genetic heterogeneity 
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tends to be small and difficult to detect in highly dispersive and abundant populations of 

marine fishes, and the absence of (detected) genetic heterogeneity does not preclude the 

existence of independent demographic stocks.  The reason for this is that (i) genetic 

differences at selectively neutral genetic markers such as those used previously take 

considerable time to accumulate in distinct populations of large Ne, and (ii) fewer 

migrants are required to homogenize genetic differences between subpopulations at such 

markers than are needed to remove demographic independence (Waples, 1998; Hauser 

and Carvalho, 2008).  In addition, as it was only possible previously to screen 

individuals at a few molecular markers, the power to detect weak or recent population 

structure has been constrained. 

 

GENOMIC APPROACHES 

Today, as a result of rapid advances in DNA sequencing technology, a number of 

techniques have been developed to screen thousands of genetic markers in populations 

of individuals of virtually any species.  One such technique, restriction-associated DNA 

(RAD) sequencing, uses a next-generation genotyping-by-sequencing approach to 

identify de novo and genotype thousands of single nucleotide polymorphisms (SNPs) 

(Baird et al., 2008; Davey et al., 2010).  This approach offers a solution to the 

aforementioned problems by: (i) increasing the number of sampled loci, thus increasing 

the power of detecting small, but significant genetic divergence between populations 

(caused by very recent isolation) that would be indicative of spatial genetic differences; 

and (ii) sampling molecular markers that are potentially ‘hitchhiking’ or proximal to loci 
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under the influence of natural selection.  Because selection can cause allele frequencies 

to diverge faster than genetic drift alone, particularly in populations with large Ne, 

identification of loci ‘hitchhiking’ with genes under differential selection is an 

alternative method of inferring population structure in recently diverged populations 

(Bradbury et al., 2010; Bourret et al., 2013). 

 Genome-wide analyses, while powerful, also adds a level of complexity to 

population genetics analysis and inferences.  Computing population statistics with 

thousands of loci simultaneously is computationally intensive and identification of 

genomic outliers among large numbers of markers presents additional problems, 

including an elevated risk of identifying false positives.  In this regard, it is especially 

useful to have information regarding the genomic context for each locus.  A locus that is 

observed to be under the influence of selection, for example, is less likely to be a false 

positive if tightly-linked markers also exhibit the same pattern of differentiation.  

Further, given the possibility that observed markers show signals of selection due to 

genomic ‘hitchhiking’, a comparative genomic approach can be used to identify 

potential nearby candidate genes that may be the actual targets of selection.  While there 

is not currently a draft genome assembly available for red drum, a genetic linkage map 

containing the SNP markers to be analyzed in the population study is a suitable 

alternative.  In addition to providing positional information for markers, linkage maps 

have the advantage of providing estimates of recombination rate between genetic 

markers, which can be combined with linkage disequilibrium data to provide estimates 

of current and past Ne of populations (Hill, 1981; Hayes et al., 2003). 
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PROJECT OVERVIEW 

The overall goal of this research is to thoroughly explore the ways in which next-

generation DNA sequencing can be used to better understand genetic variation and 

divergence among wild populations of red drum.  Specifically, the objectives of the 

research are to: (i) supplement the second-generation red drum genetic map with 

additional neutral and gene-based microsatellite loci; (ii) use the framework provided by 

the microsatellite-based linkage map to create a SNP-based linkage map, using next-

generation sequencing technology; (iii) use information in the genetic map to estimate 

past and present Ne of wild red drum populations; and (iv) conduct a genomics-based 

evaluation of population structure and investigate the extent and organization of neutral 

and potentially adaptive genetic variation in red drum in U.S. waters of both the Gulf 

and Atlantic.  
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CHAPTER II 

A MICROSATELLITE-BASED GENETIC LINKAGE MAP OF RED DRUM 

(Sciaenops ocellatus) AND COMPARISON OF CHROMOSOMAL SYNTENIES 

WITH FOUR OTHER FISH SPECIES* 

 

INTRODUCTION 

A central problem in commercial aquaculture is maximizing production efficiency.  

Genetic improvement of farmed aquatic species has been suggested as a permanent and 

cumulative solution to this problem (Gjedrem et al., 2012).  Most traits targeted by 

selective breeding programs are influenced by many genes (quantitative trait loci, QTLs) 

with cumulative effects and/or more complex interactions (Falconer and Mackay, 1996; 

Lynch and Walsh, 1998).  Genetic marker-based breeding schemes that exploit linkage 

associations between easily screened genetic markers and QTLs offer advantages over 

traditional breeding programs, particularly for traits that are difficult to measure and for 

species with relatively long generation times (Hulata, 2001; Sonesson, 2007).  Genetic 

linkage maps of polymorphic markers are a critical first step in establishing marker-

based selection programs and also provide a framework for physical mapping and 

genome assembly (Liu and Cordes, 2004; Danzmann and Gharbi, 2007). 

                                                 

*Reprinted from Aquaculture volume 435, C. M. Hollenbeck, D. S. Portnoy, and J. R. Gold, “A 

microsatellite-based genetic linkage map of red drum (Sciaenops ocellatus) and comparison of 

chromosomal syntenies with four other fish species”, pp. 265-274, Copyright 2015 with permission from 

Elsevier. 
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 An alternative strategy for identifying QTLs is a candidate gene approach where 

a priori information about a gene's biological function is used to predict that gene's 

impact on a trait of interest (Lynch and Walsh 1998).  This approach has been used in 

fishes to identify QTLs affecting spawning time (Leder et al., 2006), growth rate (Tao 

and Boulding, 2003), and sex determination (Shirak et al., 2006).  Further, the advent of 

next-generation DNA sequencing has led to the generation of massive amounts of 

genetic sequence data for many fish species, including a whole genome assembly of the 

economically important Nile tilapia (Oreochromis niloticus).  The ever-increasing 

availability of DNA sequence data facilitates candidate gene approaches through 

comparative genomics by taking advantage of interspecies synteny – the possession of 

similar chromosomal regions due to common descent – to transfer relevant genomic 

information obtained from studies on well-characterized species to studies involving 

emerging species (Sarropoulou et al., 2007).  One way of identifying synteny between 

species is to assess the distribution of shared genetic markers in both genomes and 

identify regions where a common ordering of those markers occurs.  Type-I (protein-

coding) genetic markers (O’Brien, 1991) are ideal for this approach as they are often 

conserved between species, and when incorporated into a linkage map can provide a 

framework for comparative genomics analysis. 

 Here, we present a genetic linkage map for red drum, expanding upon previous 

work (Karlsson et al., 2007; Portnoy et al., 2010, 2011) by the addition of 177 

anonymous microsatellites and 46 microsatellites closely linked to Type-I loci.  We 

report the map locations of a total of 486 microsatellites, including the 46 linked to 
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Type-I loci, spanning all 24 (haploid) red drum chromosomes.  We also demonstrate the 

application of the genetic map as a tool for candidate-gene identification through 

comparative genomics by putatively localizing an additional 80 known (but previously 

unmapped) red drum coding genes and microsatellites closely linked to Type-I loci 

(EST-SSRs), using a synteny-based mapping approach. 

 

MATERIALS AND METHODS 

In previous studies (Karlsson et al., 2007; Portnoy et al., 2010, 2011), two full-sib 

mapping families (Family A, n=103; and Family B, n=104), generated from outbred, 

single-pair crosses carried out at the Marine Development Center of the Texas Parks and 

Wildlife Department (TPWD), were used.  This study took advantage of the same tissue 

samples used in those studies; details of crosses, spawning, egg collection, and larval 

grow-out may be found in Portnoy et al., (2010) and references therein. 

 A total of 177 polymorphic, anonymous microsatellites were isolated from a 

repeat-enriched library.  Details of enriched-library preparation, primer sequences, and 

summary statistics for each microsatellite can be found in Renshaw et al., (2012).  In 

addition, 133 expressed sequence tag-linked microsatellites (EST-SSRs) were designed 

following the comparative approach outlined in Hollenbeck et al., (2012).  Summary 

information, including repeat motif, primer sequences, and putative identity for all EST-

SSRs can be found in Hollenbeck et al., (2015).  Genomic DNA was extracted following 

a modified Chelex extraction protocol (Estoup et al., 1996).  Following removal of 

residual Chelex by centrifugation at 16,000 x g, one microliter of supernatant was used 

for each PCR reaction.  The 177 anonymous microsatellites and the 46 microsatellites 
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linked to Type-I loci (= 223 total) yielded mapping-informative genotypes in at least one 

parent and were subsequently genotyped in the appropriate progeny.  Genotyping was 

conducted following procedures outlined in Portnoy et al., (2010). 

 Because individuals genotyped in this study also were used in prior mapping 

efforts, genotype data from the 223 microsatellites were combined with genotypes at the 

264 microsatellites assayed previously by Karlsson et al., (2007) and Portnoy et al., 

(2010, 2011).  Linkage analysis was conducted with the program JOINMAP v4.1 and 

linkage groups were defined initially by using microsatellites previously assigned to the 

24 red drum linkage groups (Portnoy et al., 2011).  New markers were assigned to 

existing groups, using an LOD threshold of 3.0.  Marker order for each linkage group 

was computed using the maximum-likelihood (ML) mapping function implemented in 

JOINMAP.  Tests for segregation distortion for each marker were carried out using a chi-

square goodness-of-fit test; probabilities of individual genotypes, conditional upon the 

map order, were computed to check for possible genotyping errors.  A preliminary map 

was generated for each parent and marker order was compared between individuals to 

ensure order agreement.  If marker order for each linkage group was in agreement across 

all parents, a family-specific map was generated using the multipoint ML algorithm for 

map construction with full-sib outbred families, as implemented in JOINMAP and 

described in van Ooijen (2011).  Briefly, the algorithm generates separate ML maps for 

each parent in a cross and integrates the maps by averaging distances between shared 

intervals and interpolating or extrapolating positions of markers segregating in only one 

of the parents.  Family-specific maps were then checked for marker order agreement.  
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Finally, both family-specific maps were integrated into a consensus map, using the 

program MERGEMAP (Wu et al., 2011). 

 The consensus map was used to compare the red drum genome with assembled 

genome sequences and chromosome designations of four other fishes: Nile tilapia 

(Oreochromis niloticus), stickleback (Gasterosteus aculeatus), green spotted puffer 

(Tetraodon nigroviridis), and fugu (Takifugu subripes).  The most recent assembly of 

each species’ genome (tilapia, v 1.1; stickleback, v 1.0; green spotted puffer, v 8; fugu, v 

5) was downloaded to a Linux server.  The discontiguous-megablast algorithm in 

NCBI’s BLAST+ suite (Camacho et al., 2009) was used to compare flanking sequences of 

the original clone of each mapped red drum microsatellite or EST sequence (for EST-

SSRs) with each comparison genome.  Clone sequences were available on GENBANK for 

429 of the 440 mapped anonymous microsatellites; clone sequences of 11 of the 

anonymous microsatellites were not available.  In total, 475 mapped microsatellites (429 

anonymous and 46 EST-SSRs) were used in the BLAST search.  Matches were considered 

similar if they had a region of ≥ 50 base pairs of overlap and had an e-value of ≤ 10-10.  

To prevent duplicated sequences from confounding results, only sequences with a single 

match within a genome were considered for further analysis.  Chromosome number and 

chromosomal position (in base pairs) was recorded for each hit, and Oxford plots 

comparing the red drum linkage map to the genome of each of the four comparison 

species were generated, using the GRID graphics package in R (Murrell 2005).  As the 

comparison species most relevant to aquaculture, tilapia was chosen for a more detailed 

analysis of synteny with red drum.  To visualize the extent of marker collinearity 
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between red drum and tilapia, positions of markers with significant matches to the tilapia 

genome were coded as relative positions along the length of their respective 

chromosomes/linkage groups.  For tilapia, the start position of the marker, in base pairs, 

was divided by the total length of the chromosome, in base pairs.  For red drum, the 

position of each marker, in centiMorgans (cM), on the consensus map was divided by 

the total length of the linkage group, in cM.  Based on the observation that the majority 

of individual red drum linkage groups corresponded to individual tilapia chromosomes, 

the latter were reorganized along the y-axis such that chromosomes homologous 

between the two species aligned along the diagonal axis of the graph.  Shared markers 

were then plotted based on their relative positions on linkage groups/chromosomes.  A 

custom Perl script (available upon request from CMH) was used to identify blocks of 

shared synteny between red drum chromosomes and chromosomes of each of the four 

comparison species.  Syntenic blocks were defined as sets of markers on the same 

linkage group and in the same order in both species, uninterrupted by any other shared 

marker.  Ordering mismatches between markers that were separated by less than five 

percent of the total length of a linkage group/chromosome were ignored in order to 

maximize detection of informative syntenies otherwise disrupted by small-scale, local 

rearrangements or ordering errors caused by uncertainty in the mapping process.  

Syntenic regions from chromosomes involved in apparent chromosomal rearrangements 

between species detected from the Oxford plots were plotted as circular ideograms, 

using the software CIRCOS v0.66 (Krzywinski et al., 2009). 
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 A synteny-based mapping approach was used to identify likely locations of red 

drum coding genes that were stored on NCBI’s GENBANK and of EST-SSRs that were 

designed by Hollenbeck et al., (2012) but which were monomorphic in mapping families 

and could therefore not be mapped via linkage analysis.  Nucleotide sequences for 85 red 

drum coding genes were downloaded from GenBank and reduced to 72 novel nucleotide 

sequences by excluding duplicates of the same locus.  These sequences and the 87 

monomorphic EST-SSRs were compared by BLAST search to each of the four 

comparison genomes, using the same criteria mentioned above.  Given that these loci are 

known to exist in the red drum genome, a locus that maps in another species to a 

syntenic region shared between red drum and that species likely exists in the same 

region of the red drum genome.  Thus, these loci were mapped to the genomes of the 

four comparison species, and when red drum genes and EST-SSRs mapped into 

computed syntenic regions in at least one other species, the locus was putatively 

localized to that marker interval in red drum. 

 

RESULTS 

The map for Family A contained 372 microsatellites, including 32 linked to Type-I loci; 

the map for Family B contained 406 microsatellites, including 34 linked to Type-I loci.  

The map for Family A had a total size of 1641.2 cM, with an average linkage group size 

of 68.38 cM and an average marker interval of 4.81 cM; the map for Family B had a 

total size of 1722.0 cM, with an average linkage group size of 71.75 cM and an average 

marker interval of 4.55 cM.  The consensus map (Figure 2.1) contained 486 
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microsatellites, including 46 linked to Type-1 loci.  The total size, average linkage group 

size, and average marker interval of the consensus map was 1815.3 cM, 75.64 cM, and 

3.96 cM, respectively.  A single microsatellite, Soc685, which was mapped to linkage 

group 8 in a previous study (Portnoy et al., 2010), was removed from the final map due 

to the presence of significant segregation distortion in all four parents.  Of the 46 

microsatellites linked to Type-1 loci, 38 (82.6%) could be assigned a putative identity 

following a BLASTN search of NCBI’s nucleotide (nt) database. 

 Of the 429 anonymous microsatellites with available clone sequences, 163 

(38.0%) had significant homology to the tilapia genome.  Of these, six were excluded 

from further analysis due to hits on multiple chromosomes.  A total of 41 (89.1%) of the 

46 microsatellites linked to Type I loci produced a significant hit to the tilapia genome; 

of these, three were excluded due to hits on multiple chromosomes.  The total number of 

BLAST hits across both microsatellite types was 204 (tilapia), 154 (stickleback), 105 

(fugu), and 84 (green spotted puffer). 

 Oxford plots for all species (Figure 2.2) revealed significant homology between 

red drum linkage groups and chromosomes of the four comparison species, with an 

approximate one-to-one relationship observed between red drum linkage groups and the 

chromosomes of each of the species.  A number of both intra- and inter-chromosomal 

rearrangements, however, appear to have occurred since red drum and each of the four 

comparison species diverged from a common ancestor.  Examples of inferred 
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Figure 2.1 Consensus microsatellite linkage map. The map is based on segregation in two full-sib families of red drum, Sciaenops ocellatus.  Map distances, in cM, are given to the left of each linkage group (LG), while marker names are given on the right; 

marker names in bold represent gene-linked (Type-I) microsatellites. Reprinted with permission from Hollenbeck et al., (2015).



 

16 

 

 

Figure 2.2 Oxford plots displaying conserved synteny. Plots are between linkage groups of red drum 

and chromosomes of four comparison species.  Abscissa: linkage groups 1-24 of red drum; ordinate: 

chromosomes of comparison species, arranged by homology to linkage groups of red drum.  Comparison 

species are: A, Nile tilapia (Oreochromis niloticus); B, three-spined stickleback (Gasterosteus aculeatus); 

C, Japanese pufferfish (Takifugu rubripes); and D, green spotted pufferfish (Tetraodon nigroviridis).  

Numbers in grid squares indicate the number of markers (loci) shared between a red drum linkage group 

and a chromosome in a comparison species. Reprinted with permission from Hollenbeck et al., (2015).
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Figure 2.3 Circular ideograms. Plots were generated using CIRCOS v0.66 and showing putative intra- and inter- chromosomal rearrangements that occurred since red drum and Nile tilapia diverged from a common ancestor.  Left, an inferred chromosomal 

rearrangement involving syntenic groups on red drum linkage group 11 (Soc-11) and Nile tilapia chromosome 16 (Oni-16).  Ribbons linking chromosomes represent regions of shared synteny.  The two syntenic regions derived from Soc-11 are inverted on Oni-

16 relative to their position on Soc-11.  Asterisks indicate the ends of relocated syntenic blocks.  Right, an inferred fusion involving syntenic groups on two red drum chromosomes (Soc-22 and Soc-24) occurring on a single Nile tilapia chromosome (Oni-7).  A 

fusion in the Nile tilapia lineage is inferred because Soc-22 and Soc-24 are syntenic to separate chromosomes in the other three comparison species (data not shown).  The two syntenic regions from Soc-24 flank a single syntenic region from Soc-22 on Oni-7, 

suggesting that a fusion was followed by one or more intra-chromosomal rearrangements. Reprinted with permission from Hollenbeck et al., (2015). 
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chromosomal rearrangements, based on shared syntenic group locations, are presented in 

Figure 2.3.  Several instances where linkage groups on the same red drum chromosome 

occurred on more than one chromosome of a comparison species were observed; these 

included five instances in tilapia and three instances each in the other three comparison 

species.  Finally, a comparison of marker order between putatively homologous 

chromosomes in red drum and tilapia revealed large regions of synteny and shared 

marker order between the two species (Figure 2.4).  Shared markers generally aligned 

along the diagonal axis of the plot, which is expected if markers are largely collinear. 

 Based on criteria described above, 47 conserved syntenic regions were identified 

between red drum and tilapia and a total of 172 microsatellites were placed into these 

regions.  The number of microsatellites per shared syntenic region ranged from two to 

ten, with a mean of 3.66.  Combined, syntenic regions spanned 306 Mb (46.6%) of the 

tilapia genome assembly and 838.29 cM (46.2%) of the red drum map.  In addition, 33, 

30, and 23 syntenic regions were identified between red drum and stickleback, fugu, and 

green spotted puffer, respectively; syntenic regions spanned 37.8% (stickleback), 36.5% 

(fugu), and 32.1% (green spotted puffer) of the species’ genome assemblies. 

 Of the 72 coding genes in red drum available on GENBANK, 50 had a single hit to 

the genome of at least one of the four comparison species.  Of these, 28 (50.6%) were 

mapped to a genomic interval by synteny-based mapping.  Of the 87 monomorphic EST-

SSRs in red drum, 79 had a single hit to the genome of at least one of the four 

comparison species; 52 of these (65.8%) were mapped with the same approach.  Fifty of 

the EST-SSRs were assigned a putative identity based on a BLASTN search of NCBI’s nt
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Figure 2.4 Comparison of synteny between red drum and Nile tilapia.  Abscissa: linkage groups 1-24 

of red drum; ordinate: Nile tilapia chromosomes, arranged by homology, to linkage groups of red drum.  

Shared markers are plotted relative to their position on a given chromosome/linkage group. Reprinted with 

permission from Hollenbeck et al., (2015). 
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database.  A summary of the 28 coding genes and the 52 EST-SSRs, including 

GENBANK accession number, putative identity, flanking markers, species in which the 

syntenic regions are conserved, linkage group in red drum, and interval size, is given in 

Table 2.1.  The map locations of 17 of the coding genes and of 25 of the EST-SSRs were 

supported by shared synteny in more than one of the four comparison species. 

 

DISCUSSION 

An additional 227 microsatellites were added to the red drum map, increasing the total 

number of mapped microsatellites to 486 (440 anonymous, 46 linked to Type-I loci).  

The addition of these microsatellites decreased the inter-marker interval from 6.28 cM 

(previous sex-average map) to 3.96 cM.  The total length of the consensus map was 

1815.3 cM.  This is larger than the size (1196.9 cM) of the sex-averaged map reported 

previously (Portnoy et al., 2010), for two possible reasons.  First, the additional 

microsatellites sampled more of the chromosomal content of the red drum genome by 

mapping locations distal to markers on the previous map; and second, a component of 

the difference is likely attributable to the process of merging family-based maps into a 

single consensus map.  Because of known differences in recombination rate between 

sexes in red drum (Portnoy et al., 2010) and differences in marker polymorphism 

between individual parents, distances between markers in the consensus map may only 

be reflective of that of a single individual.  If a marker is only segregating in one sex, 

marker intervals involving that locus in the consensus map will not be a sex-averaged 

distance, but will reflect only the recombination rate in that particular sex (which could 

be larger than the sex-average).  In addition, while the software MERGEMAP outperforms 
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Table 2.1 Summary of synteny-mapped loci.  Accession No. – GENBANK accession number of a gene sequence or EST; Function – the assigned gene 

name from GENBANK or a significant BLASTN hit (ESTs); Flanking Loci – the closest red drum markers between which the locus from GENBANK could 

be mapped based on synteny with another species; Comparison Species – the species in which a syntenic relationship with red drum existed: 1: three-

spined stickleback, 2: green spotted puffer, 3: Nile tilapia, 4: fugu; Linkage Group – the red drum linkage group to which the locus was mapped; 

Interval – the size of the corresponding marker interval in centiMorgans on the red drum map. Reprinted with permission from Hollenbeck et al., (2015). 

 

Accession 

No. 

Putative Function Flanking Loci Comparison 

Species 

Linkage 

Group 

Interval 

AF062520.1 Sciaenops ocellatus 

somatolactin precursor 

Soc646 Soc418 1,3 5 17.28 

AF064872.1 Sciaenops ocellatus 

translation initiation factor eIF-2B 

precursor 

Soc810 Soc880 1,2,3,4 17 6.68 

AY677170.1 Sciaenops ocellatus 

salmon-type gonadotropin-

releasing hormone precursor 

Soc-Lcr03 Soc-Dla91 1,3 9 16.4 

AY677171.1 Sciaenops ocellatus 

 chicken II-type gonadotropin-

releasing hormone precursor 

Soc-Mmi10 Soc1065 1 10 72.2 

AY876899.1 Sciaenops ocellatus 

 hemoglobin beta chain 

Soc1148 Soc-Dla28 4 15 25.22 

FJ415100.1 Sciaenops ocellatus 

 peptidoglycan recognition protein 

II 

Soc-Dla97 Soc1125 4 1 16.33 

GQ384067.1 Sciaenops ocellatus 

 11 beta-hydroxylase (CYP11B) 

Soc-Dla10 Soc1115 1,3 6 7.62 

GQ384068.1 Sciaenops ocellatus 

 21-hydroxylase (CYP21) 

Soc-Dla10 Soc1115 3 6 7.62 
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Table 2.1 continued     

Accession 

No. 
Putative Function Flanking Loci Comparison 

Species 

Linkage 

Group 

Interval 

FJ641038.1 Sciaenops ocellatus 

 neuronal nitric oxide synthase 

Soc-Dla01 Soc-Dla71 2,3,4 19 3.66 

GU144512.1 Sciaenops ocellatus 

 glycoprotein alpha subunit 

Soc1139 Soc550 2,3 16 38.15 

GU144513.1 Sciaenops ocellatus 

 thyrotropin beta subunit 

Soc1087 Soc-Dla96 1,2 10 67.26 

GU799603.1 Sciaenops ocellatus 

 insulin-like growth factor I 

Soc978 Soc-Dla90 2,4 23 39.33 

GU368832.1 Sciaenops ocellatus 

 recombination activating protein 

1 (RAG1) 

Soc719 Soc1092 1 24 22.63 

GU368812.1 Sciaenops ocellatus 

 si:dkey-174m14.3 gene 

Soc810 Soc1072 4 17 13.86 

GU370888.1 Sciaenops ocellatus 

 ISG15 

Soc758 Soc569 1,3,4 19 10.37 

GU929942.1 Sciaenops ocellatus 

 viperin (Vip) 

Soc1139 Soc550 2,3 16 38.15 

HM581689.1 Sciaenops ocellatus 

 putative tissue factor pathway 

inhibitor 1 

Soc1141 Soc1128 4 11 16.33 

HM368401.1 Sciaenops ocellatus 

 putative tissue factor pathway 

inhibitor 2 (TFPI2) 

Soc-Dla09 Soc1108 1 14 10.57 

HQ651238.1 Sciaenops ocellatus 

 high mobility group protein B1 

(HMGB1) 

Soc949 Soc1017 3,4 5 0.98 
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Table 2.1 continued     

Accession 

No. 
Putative Function Flanking Loci Comparison 

Species 

Linkage 

Group 

Interval 

HQ731135.1 Sciaenops ocellatus 

 FIC domain-containing protein 

(ficd) 

Soc-Dla01 Soc-Dla71 1,2,3,4 19 3.66 

HQ731297.1 Sciaenops ocellatus 

 receptor-interacting serine-

threonine kinase 4 (RIPK4) 

Soc-Dla72 Soc820 1,3 20 10.92 

JX002675.1 Sciaenops ocellatus 

 eukaryotic translation initiation 

factor 3 subunit G (eTIF3) 

Soc1040 Soc804 2,4 4 7.42 

JX002676.1 Sciaenops ocellatus 

 NADH dehydrogenase 1 alpha 

(ND1) 

Soc1141 Soc1128 4 11 16.33 

JQ938122.1 Sciaenops ocellatus 

 hypothetical protein (GCS1) 

Soc991 Soc1063 2 1 13.46 

JQ938817.1 Sciaenops ocellatus 

 peroxisomal enoyl-CoA 

hydratase/L-3-hydroxyacyl-CoA 

dehydrogenase (EHHADH) 

Soc565 Soc1141 1,3,4 11 33.45 

JQ939810.1 Sciaenops ocellatus 

 LOC562320 (KIAA1239) 

Soc-Dla68 Soc640 1,4 3 24.44 

KC830168.1 Sciaenops ocellatus 

 Sushi/von Willebrand factor type 

A/EGF/pentraxin domain-

containing 1 (SVEP1) 

Soc-Dla68 Soc640 1 3 24.44 

KF140446.1 Sciaenops ocellatus 

 T-box brain 1 (tbr1) 

Soc565 Soc1141 1,3,4 11 33.45 
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Table 2.1 continued      

Accession 

No. 
Putative Function Flanking Loci Comparison 

Species 

Linkage 

Group 

Interval 

FP242838.1 Oreochromis niloticus 

 arginine-glutamic acid dipeptide 

(RE) repeats (rere) 

Soc1052 Soc578 1,2,4 21 10.62 

FM010232.1 Neolamprologus brichardi 

 calcium/calmodulin-dependent 

protein kinase type II subunit 

gamma-like (LOC102781265) 

Soc-Dla59 Soc-Dla79 1,3 15 10.3 

FK943099.1 Anoplopoma fimbria 

 Beta-synuclein 

Soc-Dla02 Soc1129 1,2,3,4 8 5.85 

FP237559.1 Neolamprologus brichardi 

 guanine nucleotide-binding 

protein G(s) subunit alpha-like 

(LOC102788485) 

Soc-Mmi10 Soc1065 1 10 72.2 

FP241017.1 Maylandia zebra 

 DNA damage-binding protein 1-

like (LOC101485195) 

Soc718 Soc1048 4 12 19.2 

FP238020.1 Oreochromis niloticus 

 protein phosphatase 1 regulatory 

subunit 14B-like 

(LOC100711861) 

Soc-Dla66 Soc708 1,3 3 13.45 

FL488459.1 Oreochromis niloticus 

 protein-L-isoaspartate(D-

aspartate) O-methyltransferase-

like (LOC100708432) 

Soc-Lcr14 Soc-Dla89 3,4 17 2.11 
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Table 2.1 continued      

Accession 

No. 
Putative Function Flanking Loci Comparison 

Species 

Linkage 

Group 

Interval 

FK941535.1 Oreochromis niloticus 

 elongation of very long chain 

fatty acids protein 6-like 

(LOC100706271) 

Soc694 Soc1050 3 8 0.48 

CV186185.1 Danio rerio 

 si:dkey-11e23.5 (si:dkey-

11e23.5) 

Soc810 Soc1072 4 17 13.86 

FM028201.1 Oreochromis niloticus 

 phosphatidylserine synthase 1 

(ptdss1) 

Soc-Dla10 Soc412 1,3,4 6 1.92 

FM001773.1 Oreochromis niloticus 

 ATPase asna1-like 

(LOC100702925) 

Soc991 Soc1063 2,3 1 13.46 

FK940504.1 Haplochromis burtoni 

 protein FAM212A-like 

(LOC102290510) 

Soc825 Soc-Mmi10 1,3,4 10 0.25 

FM000143.1 Maylandia zebra 

 prospero homeobox protein 1-

like (LOC101476671) 

Soc810 Soc880 1,2,3,4 17 6.68 

FM023318.1 Oreochromis niloticus 

 thioredoxin reductase 3 (txnrd3) 

Soc423 Soc-Dla96 1 10 2.69 

FM027384.1 Neolamprologus brichardi 

 AF4/FMR2 family member 4-

like (LOC102796839)  

Soc630 Soc1071 2,4 20 6.16 
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Table 2.1 continued      

Accession 

No. 
Putative Function Flanking Loci Comparison 

Species 

Linkage 

Group 

Interval 

FM004496.1 Oreochromis niloticus 

 disco-interacting protein 2 

homolog B-A-like 

(LOC100703539) 

Soc1052 Soc578 1,2,4 21 10.62 

FM009184.1 Neolamprologus brichardi 

 hippocalcin-like protein 1-like 

(LOC102792629) 

Soc-Dla09 Soc849 3 14 7.16 

FM011451.1 Haplochromis burtoni 

 myristoylated alanine-rich C-

kinase substrate-like 

(LOC102308505) 

Soc975 Soc921 3 17 2.07 

FM000141.1 Oreochromis niloticus 

 junction plakoglobin-like 

(LOC100707214) 

Soc430 Soc-Dla97 1,3 1 15.84 

FK940790.1 Oreochromis niloticus 

 serine-rich coiled-coil domain-

containing protein 2-like 

(LOC100710988) 

Soc-Lcr03 Soc-Dla91 1 9 16.4 

FM010695.1 Neolamprologus brichardi 

 neurotrypsin-like 

(LOC102780776) 

Soc-Dla59 Soc1148 3 15 11.33 

FM012479.1 Neolamprologus brichardi 

 MAP7 domain-containing protein 

1-like (LOC102788526) 

Soc1133 Soc645 3 14 8.82 

AM986102.1 Oreochromis niloticus 

 protein bicaudal D homolog 2-

like (LOC100712336) 

Soc642 Soc687 3 21 37.51 
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Table 2.1 continued      

Accession 

No. 
Putative Function Flanking Loci Comparison 

Species 

Linkage 

Group 

Interval 

FM000541.1 Haplochromis burtoni 

 notch-regulated ankyrin repeat-

containing protein A-like 

(LOC102310701) 

Soc657 Soc658 3 22 4.65 

FP238879.1 Haplochromis burtoni 

 mucin-17-like (LOC102294623) 

Soc-Lcr12 Soc657 1,3 22 41.12 

FN565801.1 Oreochromis niloticus 

 CCAAT/enhancer-binding 

protein beta-like 

(LOC100689715) 

Soc642 Soc687 3 21 37.51 

FM013092.1 Pundamilia nyererei 

 lysophospholipid acyltransferase 

5-like (LOC102193954) 

Soc1115 Soc777 1,3 6 18.5 

AM987101.1 Oreochromis niloticus 

 LIM domain-binding protein 3-

like (LOC100707522) 

Soc-Dla59 Soc-Dla79 1,3 15 10.3 

FP237257.1 Haplochromis burtoni 

 arf-GAP with dual PH domain-

containing protein 1-like 

(LOC102311544) 

Soc-Dla79 Soc-Dla28 2,4 15 24.19 

FM018821.1 Oreochromis niloticus 

 ubiquitin specific peptidase 9, X-

linked (usp9x), transcript variant 

X7 

Soc1128 Soc548 1 11 15.24 

FP242802.1 Oreochromis niloticus 

 calsyntenin-3-like 

(LOC100707828) 

Soc1115 Soc777 1,3 6 18.5 
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Table 2.1 continued      

Accession 

No. 
Putative Function Flanking Loci Comparison 

Species 

Linkage 

Group 

Interval 

FM006783.1 Oreochromis niloticus 

 cAMP-dependent protein kinase 

type I-alpha regulatory subunit-

like (LOC100711171) 

Soc-Dla28 Soc601 3 15 0.99 

FM017384.1 Oreochromis niloticus 

 beta-14-galactosyltransferase 5-

like (LOC100696774) 

Soc578 Soc687 2 21 14.27 

AM985524.1 Neolamprologus brichardi 

 dedicator of cytokinesis protein 

8-like (LOC102793453) 

Soc-Dla71 Soc439 4 19 16.31 

FM007039.1 Oreochromis niloticus 

 zinc finger CCCH domain-

containing protein 7B-like 

(LOC100698451) 

Soc-Dla79 Soc-Dla28 2,4 15 24.19 

FM007045.1 Haplochromis burtoni 

 breakpoint cluster region protein-

like (LOC102292921) 

Soc657 Soc658 3 22 4.65 

FM012644.1 Neolamprologus brichardi 

 forkhead box protein O3-like 

(LOC102783221) 

Soc1072 Soc921 4 17 11.57 

FM012811.1 Oreochromis niloticus 

 beta-14-galactosyltransferase 5-

like (LOC100696774) 

Soc578 Soc687 2 21 14.27 

FM021649.1 Neolamprologus brichardi 

 E3 ubiquitin-protein ligase 

MSL2-like (LOC102797866) 

Soc1139 Soc550 2,3 16 38.15 

FM008475.1  Soc1117 Soc588 3 23 15.03 
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Table 2.1 continued      

Accession 

No. 
Putative Function Flanking Loci Comparison 

Species 

Linkage 

Group 

Interval 

FM013106.1 Neolamprologus brichardi 

 calcipressin-3-like 

(LOC102786199) 

Soc1139 Soc550 3 16 38.15 

FM000627.1 Haplochromis burtoni 

 nuclear factor 1 X-type-like 

(LOC102293245) 

Soc991 Soc1063 2 1 13.46 

AM984068.1 Oreochromis niloticus 

 cordon-bleu protein-like 1-like 

(LOC100702457) 

Soc565 Soc1141 1,3,4 11 33.45 

CX348550.1 Oryzias latipes 

 basic leucine zipper 

transcriptional factor ATF-like 

(LOC101168259) 

Soc810 Soc880 1,2,3,4 17 6.68 

CX348556.1 Oreochromis niloticus 

 basic leucine zipper 

transcriptional factor ATF-like 

(LOC100690329) 

Soc810 Soc880 1,2,3,4 17 6.68 

C48612.1 Haplochromis burtoni 

 breakpoint cluster region protein-

like (LOC102292921) 

Soc657 Soc658 3 22 4.65 

EV413959.1 Morone saxatilis 

 clone apoa1_3 apolipoprotein A-I 

(ApoA1) 

Soc-Lcr09 Soc646 3 5 31.36 

GW668767.1  Soc588 Soc971 3 23 7.79 
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Table 2.1 continued      

Accession 

No. 
Putative Function Flanking Loci Comparison 

Species 

Linkage 

Group 

Interval 

GW668773.1 Maylandia zebra 

 basic leucine zipper 

transcriptional factor ATF-like 

(LOC101468837) 

Soc810 Soc880 1,2,3,4 17 6.68 

GW670899.1 Oreochromis niloticus 

 nuclear factor erythroid 2-related 

factor 1-like (LOC100705427) 

Soc850 Soc1108 1,3,4 14 2.28 

GW671772.1 Neolamprologus brichardi 

 nuclear receptor subfamily 2 

group F member 6-like 

(LOC102781642) 

Soc1095 Soc507 1,3,4 13 15.69 

GW672302.1 Epinephelus coioides 

 CCAAT/enhancer-binding 

protein beta 2 

Soc642 Soc687 3 21 37.51 
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JOINMAP in estimating a merged marker order (Galeano et al., 2011), it also inflates 

inter-marker distance in combining maps (Khan et al., 2012).  However, there exists a 

tradeoff between accurate estimation of map distances and combining incomplete 

information from multiple individuals into a single map.  For purposes of conserved 

synteny analysis, establishing the linear order of the maximum number of loci is more 

useful than having more accurate map distances. 

The addition of 46 microsatellites linked to Type-I loci to the red drum map is 

important, as a large percentage of mapped Type-I loci (82.6%) were assigned a putative 

function.  Further, an appreciably larger percentage of microsatellites linked to Type-I 

loci, relative to anonymous microsatellites (89.1% vs. 38.0%) were conserved between 

red drum and tilapia, demonstrating the utility of microsatellites linked to Type-I loci for 

comparative genomics analysis.  A comparison of the red drum linkage map to the 

genomes of four different percomorph fishes revealed significant conserved synteny and 

that numerous chromosomal rearrangements had occurred since red drum and each of 

the comparison species last shared a common ancestor.  While a one-to-one 

chromosomal relationship generally was observed between red drum linkage groups and 

chromosomes of each of the four comparison species, there were several instances where 

regions from different red drum chromosomes were found on a single chromosome of a 

comparison species, and there were several inferred intra- and inter-chromosomal 

rearrangements.  Overall, the findings are consistent with previous comparative 

genomics studies in teleost fishes where instances of chromosomal repatterning, as well 
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as a large degree of conserved synteny, have been observed (Kucuktas et al., 2009; 

Sarropoulou et al., 2007). 

 The comparatively high degree of synteny conservation, in terms of total number 

of orthologous syntenic regions, number of loci present in those regions, and percent of 

genome assembly covered by syntenic regions, between red drum and tilapia was not 

unexpected.  The red drum EST-SSRs were designed by using a comparative approach 

that utilized an unassembled version of the tilapia genome to ensure maximum cross-

species amplification (Hollenbeck et al., 2012), and red drum (Family Sciaenidae; Order 

Perciformes) and tilapia (Family Cichlidae; Order Perciformes) have been assumed 

traditionally to be closer phylogenetically than red drum is to either sticklebacks (Order 

Gasterosteiformes) or fugu and green spotted puffer (Order Tetraodontiformes) (Nelson 

2006).  The high degree of synteny and conservation of marker order between red drum 

and tilapia may be useful in future genetic selection of red drum.  Tilapias (Oreochromis 

spp.) have been the subject of considerable genetics research related to aquaculture, and 

QTLs influencing production-relevant traits (e.g., growth rate, immune and stress 

response, sex determination, cold tolerance) have been identified (Cnaani et al., 2003, 

2004; Lee et al., 2003, 2004; Moen et al., 2004; Shirak et al., 2006).  Based on the 

current set of shared loci between the two species, 47 syntenic blocks spanning 306 Mb 

(46.6% of the tilapia genome assembly) were identified and represent chromosomal 

regions that have remained intact over evolutionary time and likely share a significant 

proportion of homologous genes.  Further work to identify these genes in red drum will 

soon be underway. 
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 Using the syntenic regions identified from all comparisons, it was possible to 

putatively localize an additional 28 red drum coding genes, downloaded from GENBANK, 

and 52 unmapped EST-SSRs to marker intervals on the red drum map.  The 28 coding 

genes taken from GenBank are of interest as some appear to be involved in immune 

response.  These include: (i) the neuronal nitric oxide synthase gene (nNOS), which is 

expressed in a number of tissues and thought to be involved in innate immune response 

(Zhou et al., 2009); (ii) the high mobility group protein B1 (HMGB1), which is up-

regulated in response to bacterial challenge and is thought to be involved in immune 

function (Zhao et al., 2011); and (iii) the product of the tissue factor pathway inhibitor 2 

gene (TFPI-2), which is thought to play a role in the response to bacterial infection 

(Zhang et al., 2011).  In addition, 50 of 52 synteny-mapped EST-SSRs were able to be 

assigned a putative function following a BLASTN search.  These include a gene coding 

for a thioredoxin reductase protein, which has been shown to be expressed during 

pathogen infection in rainbow trout (Pacitti et al., 2014), and a gene coding for a 

junction plakoglobin gene product, which has been observed to be upregulated in 

channel catfish skin tissue in response to pathogen challenge (Li et al., 2013). 

 In summary, the current linkage map of 486 total microsatellites (440 

anonymous, 46 gene-linked) is a powerful tool for comparative genomics.  Using 

synteny-based mapping, we putatively localized an additional 28 red drum coding genes 

and 52 red drum EST-SSRs.  The mapping of highly conserved anchor loci will provide 

a framework for additional future comparative work and should allow researchers to 

leverage relevant genomic information from studies involving well-characterized species 
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to inform candidate-gene approaches to QTL detection in red drum.  The general 

strategy presented for mapping by synteny can be applied to any species without an 

available genome assembly, but with an available linkage map.  In addition, the map 

potentially will facilitate identification of chromosomal regions under the influence of 

natural selection in wild populations of red drum, and in this way could inform both 

management of wild stocks and stock-enhancement decisions.  Moreover, the map will 

be a valuable resource for future genomics research in red drum, including physical 

mapping and genome assembly. 
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CHAPTER III 

DETECTION OF RECENT CHANGES IN EFFECTIVE POPULATION SIZE FROM 

LINKAGE DISEQUILIBRIUM BETWEEN LINKED AND UNLINKED LOCI 

 

INTRODUCTION 

Measurement of linkage disequilibrium (LD) between pairs of unlinked genetic markers 

has become the most prevalent method to estimate contemporary effective population 

size (Ne) in the fields of population and conservation genetics.  This is due largely to the 

relative ease with which the approach can be applied, as it only requires a single sample 

and ~20 polymorphic genetic markers (Waples, 2006).  In addition, well-established 

analytical methods and software packages for application are available (Waples, 2006, 

Waples and Do, 2008; Do et al., 2014).  While microsatellite loci previously have been 

the most commonly used genetic markers for applying the LD method, genomics 

techniques now allow the generation of datasets with genotypes at thousands to tens of 

thousands of single nucleotide polymorphisms (SNPs).  This is beneficial for application 

of LD-based methods to estimate Ne as the ability to genotype hundreds or thousands of 

SNPs permits greatly improved precision (Waples and Do, 2010).  However, the ability 

to generate genotypes at many loci distributed across the genome presents a problem in 

that many of the markers are likely to be linked physically, and if all loci are assumed to 

be unlinked, estimates of Ne may be downwardly biased due to excess LD caused by 

linkage rather than drift (Sved et al., 2013).  A straightforward solution to this problem 

is to remove pairwise comparisons involving known linked loci (Larson et al., 2014).  
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This approach, however, does not take full advantage of all information present in a 

large SNP dataset.  As noted by Hill (1981), while LD from unlinked loci reflects current 

contemporary Ne (hereafter current Ne), LD from physically linked loci reflects 

contemporary Ne in past generations (hereafter past Ne).  Thus, if information pertaining 

to physical linkage is available for large number of markers, e.g., in the form of a 

genome sequence or genetic map, LD can be evaluated across a spectrum of linkage 

values to remove the downward bias on current Ne caused by linked loci and, in addition, 

identify potential changes in Ne in prior generations. 

 Use of LD and linkage data to estimate past Ne largely has been limited to model 

species because of the need for linkage or genomic position data.  Hayes et al., (2003) 

introduced a novel measure of LD, chromosome segment homozygosity (CSH), which 

was used in simulated data sets to track changes in Ne over time and, with empirical data, 

to infer demographic population histories in dairy cattle and humans.  Using CSH, they 

(Ibid) also derived an approximate relationship between the degree of linkage (the 

recombination rate, c) and the number of generations in the past (t) to which an estimate 

of Ne would apply: 𝑡 =  
1

2𝑐
.  Tenesa et al., (2007) expanded upon this by instead using 

the LD statistic r2, which has the same expected relationship to Ne as CSH.  The authors 

used r2 estimated from haplotypes of ~1,000,000 SNPs identified in the human HapMap 

project (International HapMap Consortium, 2003) to infer a recent increase in human Ne 

over the last 1,000 years.  Subsequently, several studies involving domesticated animals 

(Corbin et al., 2010; Flury et al., 2010; Qanbari et al., 2010; Alam et al., 2012; Herrero-

Medrano et al., 2013) have shown that with extremely dense genotype and genome-
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sequence data, estimates of contemporary Ne can be obtained from roughly the previous 

generation to t generations in the past.  However, these studies utilized haplotype-based 

methods to estimate LD, which require that marker phase is either known or estimable 

from the data.  Haplotype-based estimators require relatively rare, long haplotypes to 

estimate Ne in the very recent past (t ≤ 50), and because precision of the estimate is 

dependent upon the number of locus pairs used (Hill, 1981), estimates representing the 

recent past are less precise than estimates from the more distant past (Hayes et al., 

2003). 

 There is potential to apply a linkage-based approach to non-model species for 

which large SNP datasets and linkage information (from linkage maps or whole 

genomes) are increasingly available.  However, marker densities in these species may be 

relatively low and phased haplotypes cannot be computed with accuracy, meaning that 

the approach has limited utility for non-model species when investigating processes that 

act on evolutionary time scales.  For example, a linkage map constructed with 100 

individuals will only be able to resolve LD at loci separated by 0.01 Morgans (M).  

Assuming the approximate relationship between recombination rate and time derived by 

Hayes et al., (2003), this would reflect Ne approximately 50 generations in the past.  

However, understanding changes in Ne in the recent past (≤ 50 generations) is of great 

interest to conservation biologists because detecting recent declines (e.g., due to 

anthropogenic effects) or expansions (due to recovery efforts) are important components 

of genetic monitoring programs (Luikart et al., 2010).  Using a linkage-based approach 

would have an advantage over traditional LD- (Waples and Do, 2008) and variance-
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based (Nei and Tajima, 1981, Pollak, 1983) approaches to detect recent changes in Ne in 

that it requires only a single genetic sample rather than sampling over multiple years 

before and after a demographic change (Antao et al., 2010). 

 Here, we extend the LD-based approach of Waples and Do (2008) by including 

linkage information to estimate Ne over a range of time points in the past.  The 

advantage of this approach (hereafter, the linkage approach) over haplotype-based 

methods is two-fold: (i) a composite LD measure is used, enabling calculation of 

pairwise LD from genotype data in the absence of phase information; and (ii) because 

the vast majority of locus pairs in the genome are unlinked, high precision for estimating 

current Ne can be achieved without biases associated with inclusion of physically linked 

loci.  We apply this approach to simulated data to assess the ability to detect 

demographic changes (changes in Ne) in past generations across a variety of 

demographic models, using a dataset of 1,000 SNP loci.  We also explore issues 

important to interpretation of the results.  These include the importance of correcting for 

bias caused by small sample size relative to the true Ne, the effect of rare alleles on 

estimates made at multiple points in time, and the effect of time of sampling relative to a 

change in Ne.  In addition, we compare estimates of current Ne in which physical linkage 

is taken into account with estimates, based on the same data, where all locus pairs are 

assumed to be unlinked, in order to quantify bias.  Finally, to demonstrate the 

effectiveness of the method on an actual dataset, we apply the linkage approach to an 

empirical dataset of SNP genotypes from a sample of a marine fish where a recent, 

temporary reduction in Ne was known to have occurred. 
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MATERIALS AND METHODS 

The method presented here requires genotype data from a diploid species and a matrix of 

pairwise recombination rates for all genotyped markers.  The latter could be obtained 

from linkage mapping data or estimated from genome sequence data.  The general 

strategy involves binning estimates of LD between pairs of loci based on similar 

observed recombination rates (c).  Previous work (Hayes et al., 2003) showed that the 

time period to which an LD-based estimate of Ne applies is a function of c ( 𝑡 =  
1

2𝑐
).  

This equation suggests that time and recombination rate do not scale linearly and that 

most of the range of possible recombination rates (0 – 0.5 M) relates to generations in 

the recent past.  Thus, bins were defined by generations rather than by recombination 

rate and calculated as 
1

2𝑐
.  For these analyses, bins were defined from 1 to 3.33 

generations in the past (c = 0.5 to 0.15 M), 3.33 to 5 generations (c = 0.15 to 0.1 M), 5 to 

10 generations (c = 0.1 to 0.05 M), and 10 or more generations (c = 0.05 to 0.0 M).  We 

note that bins could be otherwise defined to suit particular research questions.  For each 

bin, weighted estimates of total r2 (r2
total) and r2 attributable to sampling variation 

(r2
sample) for all pairs of loci were obtained, following Waples and Do (2008).  The 

difference between r2
total and r2

sample, which is equal to the component of the total r2 

attributable to genetic drift (r2
drift), and the mean c value of pairs of loci in each bin (in 

Morgans) were then used to calculate Ne, following Hill (1981) and Waples (2006).  A 

software program, LINKNE, was written in the Perl programming language to facilitate 

analyses.  A detailed description of the program and calculations can be found in 

Appendix 1. 
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Simulation 

Precision and Bias 

Simulations were used to evaluate the effectiveness of the linkage approach to detect 

changes in Ne under a variety of demographic models and to explore important 

properties of the method.  Simulations were written in Python, utilizing libraries from 

the program SIMUPOP (Peng and Kimmel, 2005).  All simulations included a single, 

closed ‘constant’ population with discrete generations, equal sex ratio, and binomially 

distributed reproductive success, such that the census size (N) is approximately equal to 

Ne.  While Ne under the simulated conditions is actually slightly larger than N, i.e., Ne = 

N + 1/(2N) + 0.5 (Balloux, 2004), the correction term 1/(2N) + 0.5 was used for all 

calculations as the ‘true’ Ne, although for simplicity N and Ne will be treated as 

equivalent hereafter, following Waples (2006).  Populations with an initial (starting) 

effective size of Ne = 100, 250, 500, and 1000 were used in simulations, with each 

simulation replicated 100 times.  The genome used in simulations consisted of 25 

chromosomes, each 0.75 M in size; for each chromosome, map positions for 200 SNP 

loci were chosen randomly at the beginning of each simulation.  Initial allele frequencies 

at each SNP locus were determined by a pseudo-random draw from a uniform 

distribution (0, 1).  Consequently, each replicate began with loci near linkage 

equilibrium.  Theoretical results (Sved, 1971) indicate that for populations with Ne ≤ 

1000, loci separated by at least 0.01 M and starting in linkage equilibrium should reach 

steady-state levels of linkage disequilibrium in approximately 200 generations.  Thus, all 

replicates were 'burned-in' for 200 generations.  The per locus mutation rate followed a 
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SNP-model, with the rate of forward mutation equal to 1 x 10-8 and the reverse mutation 

rate equal to 1 x 10-9.  The probability of recombination between adjacent loci was 

proportional to the distance between them, i.e., loci 0.01 M apart have a 1% chance of 

recombination in each individual in each generation.  After 250 generations, 50 

individuals were sampled from each simulated population and genotypes at 1000 

randomly selected, polymorphic SNP loci were recorded into a single GENEPOP file.  A 

square matrix of recombination rates for all pairs of loci also was generated for each 

simulated population.  For each population, Ne was estimated by using pairs of loci 

binned as noted previously; loci with minor alleles at frequency < 0.05 were excluded 

from the analysis.  Initial runs revealed a downward bias in estimates of Ne in prior 

generations due to tightly linked loci that had not reached steady-state linkage 

disequilibrium; consequently, locus pairs separated by less than 0.015 M were excluded 

from estimations.  Estimates of the coefficient of variation (CV) of Ne, calculated as in 

Hill (1981), were used to generate 95% confidence intervals for each bin, and harmonic 

means of estimates of Ne and their confidence intervals across replicates were plotted 

using the ggplot2 package (Wickham, 2009) in R (R Core Team, 2015).  Bias of each 

estimate was computed as the distance of the harmonic mean of estimated Ne, across 

replicates, from the true Ne and expressed as a percentage of the true Ne.  Precision was 

measured as the CV of Ne (Hill, 1981). 

 

Detection of Changes in Ne 

Five different demographic models were simulated in addition to the ‘constant’ 

population described above.  Three models involved declines in effective size (to 25%, 
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50%, and 75% of starting size), while two involved expansions (to 2x and 5x of starting 

size).  All models were simulated as an instantaneous change in census size that occurred 

five generations prior to sampling; otherwise, all simulations were run in exactly the 

same manner as with the constant population.  A sample (S) of 50 individuals was taken 

at the end of each simulation except when a model involved a reduction in census size to 

less than 50 individuals, in which case all remaining individuals were sampled.  

Detection of a change in Ne was assessed by observing whether confidence intervals 

overlapped between the estimate of Ne from the most recent bin (1 to 3.3 generations in 

the past) and the estimate from bin furthest in the past (≥10 generations).  Bias and 

precision of each estimate were evaluated as discussed at the end of the prior section. 

 

Evaluation of Sample-Size Bias Correction 

Because the linkage approach is intended to identify possible demographic changes by 

evaluating differences in Ne, measured using pairs of markers that have various linkage 

relationships, it is important to determine whether estimates of Ne made from any single 

bin are more or less biased than estimates from other bins.  If so, different levels of bias 

among bins could be incorrectly interpreted as demographic change.  Waples (2006) and 

England et al., (2006) reported a bias in estimating Ne due to exclusion of second- and 

higher-order terms when accounting for the contribution of sampling error to LD 

measured in a finite sample.  The bias is downward and is particularly large when S is 

small relative to the true Ne.  To account for the bias, an empirically derived correction 

factor was proposed by Waples (2006).  To explore the effect of the correction on 

estimates of Ne from prior generations, all simulations of the constant population model 
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were evaluated with both the sample-size bias correction and using only 1/S to account 

for r2
sample.  Ne was again measured across 100 replicates and the harmonic mean of 

results across replicates recorded. 

 

Allele Frequency Cutoff 

The presence of rare alleles also can bias LD-based estimates of Ne (Waples, 2006), and 

excluding rare alleles has been proposed (Waples and Do, 2008) as a means to reduce 

the bias.  We explored the effect of this bias by testing a series of allele-frequency cutoff 

thresholds (0.10, 0.05, 0.02, 0.01, and 0), using the constant population model with N = 

250.  Here, and in all subsequent analyses, the sample-size bias correction proposed by 

Waples (2006) was applied to estimations of Ne.  As above, Ne was measured across 100 

replicates and results averaged across replicates. 

 

Effect of Time between Demographic Change and Sampling 

Over time, drift and recombination reorganize patterns of LD, removing signatures of 

past Ne.  In order to evaluate effectiveness of the linkage approach to detect past 

demographic change, the length of time that signatures of past Ne persist in the genome 

was assessed under two different models: a decline of 25% and an expansion to 2x, both 

with a starting Ne of 250.  The simulation was modified to adjust the number of 

generations (1, 5, 10, 20, and 50) prior to sampling in which the change occurred.  As 

above, results were averaged across 100 replicates. 
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Comparison to the LDNE Method 

More often than not, linkage relationships of marker pairs are not known and current Ne 

is estimated by LD under the assumption that all loci are unlinked.  This assumption 

becomes compromised when genotypes at thousands of genetic markers are obtained, an 

increasingly common standard in genomics studies of non-model species (Allendorf et 

al., 2010).  To evaluate the effect of this assumption, we used NEESTIMATOR v.2.01 (Do 

et al., 2014) to estimate current Ne from the simulated data, using the constant 

population model for each ‘true’ Ne (100, 250, 500, and 1000).  Estimates of Ne and 

parametric confidence intervals were obtained by excluding alleles with frequency < 

0.05 and recording the harmonic mean from 100 replicates.  The difference between 

estimates of Ne and the true Ne was estimated and compared to results when using only 

unlinked pairs of loci and LINKNE. 

Empirical Data 

The linkage approach also was applied to genotype data from a single sample of 

juveniles of red drum (Sciaenops ocellatus) sampled from West Matagorda Bay, Texas, 

in 2008.  West Matagorda Bay is one of several Texas bays and estuaries that are 

stocked annually with fingerling red drum as part of a state-wide stock enhancement 

program (Vega et al., 2003) and was one of several bays sampled over a period of years 

to monitor the relative contribution of stocked fish to wild populations (Karlsson et al., 

2008; Carson et al., 2014).  The sample from West Matagorda Bay was selected for 

analysis because it contained an abnormally high proportion (>16%) of juvenile fish of 

hatchery origin (Carson et al., 2014).  Because the hatchery-raised individuals likely
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Table 3.1 Estimates of current effective population size for juvenile red drum sampled from West 

Matagorda Bay, TX.  Current effective population size (Ne) was estimated for: (i) all juvenile red drum; 

(ii) wild individuals only; and (iii) hatchery-raised individuals only.  Estimates were generated using 

NEESTIMATOR2 (Do et al., 2014); low/high refer to parametric 95% confidence intervals.  Rare alleles 

were excluded below a threshold of 0.05.  S refers to sample size. 

 

Sample Low Ne High 

All (S = 56) 206.9 208.3 209.7 

Wild (S = 42) 4753.5 5912.6 7817.1 

Hatchery (S = 14) 12.4 12.4 12.5 

 



 

46 

 

originated from a limited number of breeders (Gold et al., 2008; Carson et al., 2014), the 

result was a relatively small Ne in the sample that contained both hatchery-raised and 

‘wild’ fish (Table 3.1).  In addition, because the reduced Ne is a first-generation effect 

caused by the presence of a large proportion of hatchery-raised individuals in the 

sample, the reduction in Ne should not be detected in prior generations. 

 

Population Samples 

Tissue samples from 64 juvenile red drum sampled from West Matagorda Bay, TX, in 

the spring of 2008 were randomly chosen from a larger set of samples collected for a 

prior study; sample collection procedures were described in Carson et al., (2014).  DNA 

was extracted using a phenol-chloroform-isoamyl (PCI) extraction protocol and double-

digest restriction-site associated DNA (ddRAD) libraries were prepared following 

procedures outlined in Peterson et al., (2012).  RAD libraries were sequenced on an 

Illumina HiSeq 2000 DNA sequencer. 

 Sequence data were first demultiplexed by individual barcode sequence, using 

the process_radtags program from the STACKS software package (Catchen et al., 2011).  

Read mapping and SNP calling were performed with the dDocent pipeline (Puritz et al., 

2014).  Reads were mapped to a reduced-representation genome sequence, developed as 

part of an ongoing study and consisting of red drum RAD fragments sequenced on the 

Illumina MiSeq platform and assembled to recover the entire sequence of each fragment.  

The raw SNP dataset (consisting of SNP, indel, and complex polymorphisms, but 

hereafter referred to as SNPs, unless otherwise specified) consisted of 524,657 SNP 
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genotypes for 64 individuals.  Genotypes and individuals were filtered based on 

numerous criteria.  First, initial filtering, to remove loci with more than 50% missing 

genotypes and individuals with less than 10x mean coverage across loci, removed 

73,123 SNPs and six individuals from the analysis.  Genotypes with a depth of < 10 

reads and a Phred quality score of less than 20 were then filtered, followed by removal 

of loci with more than 5% missing data across individuals and a minor allele frequency 

of less than 0.05.  A total of 6748 SNPs across 3224 RAD-tags remained after these 

filtering steps.  These genotypes were subject to another round of filtering for quality 

control: filters for allele balance across forward and reverse reads, improper pairing of 

reads, excessively high depth and low quality score (genotypes), and maximum mean 

depth (loci).  This resulted in 6048 SNPs across 3048 RAD-tags.  SNP loci were then 

filtered further if they did not conform to expectations of Hardy-Weinberg equilibrium 

(HWE) (P value < 0.001); 212 SNPs (66 RAD-tags) were removed.  The remaining 

complex polymorphisms were decomposed to allelic primitives with the 

vcfallelicprimitives program in the vcflib package (https://github.com/ekg/vcflib), 

resulting in 6,189 SNPs and indel polymorphisms.  These were collapsed into haplotypes 

for each RAD-tag, using a custom Perl script.  The script filtered indel polymorphisms 

(unless they were the only polymorphism on the RAD-tag) and RAD-tags for which less 

than 95% of individuals could be successfully haplotyped across the RAD-tag.  A 

GENEPOP file, consisting of (haplotype) genotypes at 2101 multi-allelic RAD-tags was 

produced using the script and implemented for NE2 and LINKNE analyses. 
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Mapping Panel 

DNA from tissue samples for two parents and 108 full-sib progeny was extracted and 

ddRAD libraries prepared as above.  Samples were obtained as part of prior studies in 

which a microsatellite-based linkage map was constructed for red drum; details 

regarding the mapping cross and sample collection can be found in Portnoy et al., (2010) 

and references therein. 

 Bioinformatic processing of SNP data was performed as above, with the 

exception that filters for HWE were not applied to the data.  SNPs were collapsed into 

haplotypes for each RAD-tag and the resulting genotypes output into JOINMAP (van 

Ooijen, 2012) format.  The pairwise recombination rate for each pair of loci was 

calculated for each parent, using a custom Perl script.  When a recombination rate could 

be estimated for both parents (both loci were segregating in an informative manner), the 

rate was averaged between parents.  When the recombination rate could be estimated for 

only one parent, the sex-specific rate was used.  Recombination rates were output as a 

square matrix of pairwise values. 

Genotypic data and a matrix of pairwise recombination rates were used to 

generate estimates of Ne, using LINKNE.  The program was run as in the simulations 

except that no filter was applied to remove tightly linked locus pairs.  Data were 

summarized using the ggplot2 package in R. 
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RESULTS 

Simulation 

Precision and Bias 

Simulations involving populations of constant size were used to assess precision and 

bias associated with estimates of Ne at different points in the past.  The strategy used to 

bin locus pairs resulted in four bins, each producing an estimate of Ne at a different time 

in the past.  The exact time point used for each estimate (t) was dependent upon the 

distribution of loci in the genome, which was randomly determined at the beginning of 

each simulation.  Mean time estimates for the four bins, averaged across all starting 

values of Ne, were 1.01, 3.99, 6.65, and 14.35 generations in the past. 

 Bias, as measured by the distance between the harmonic mean of Ne estimates 

across replicates and the true Ne, scaled by true Ne, was less than 10% in all cases; 

direction and magnitude of the bias was dependent upon both Ne and number of 

generations in the past to which an estimate applied.  Bias for estimates from the most 

distant past (14.35 generations) was smallest and positive (upward bias) for Ne = 100 

(2.29%) and negative (downward bias) for larger Ne (-0.35%, -4.85%, and -4.99% for Ne 

= 250, 500, and 1000, respectively).  Bias for estimates from the most recent past (1.01 

generations) was positive (3.54%, 3.15%, 7.51%, and 6.96% for Ne = 100, 250, 500, and 

1000, respectively), while bias for intermediate time points in the past (3.99 and 6.65 

generations) ranged from -2.42% to -9.26%.  In all but one case, confidence intervals for 

estimates of Ne encompassed the true Ne.  Due to a slight upward bias and high precision, 
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the estimate of Ne from the most recent past (1.01 generations) for the simulation where 

Ne = 100 had a confidence interval of 100.6 – 107.5. 

 Precision was greatest for estimates from the more recent past (1.01 generations) 

and ranged from 0.017 (Ne of 100) to 0.081 (Ne of 1000).  The next highest level of 

precision was obtained for estimates from the most distant past (14.35 generations) and 

ranged from 0.053 (Ne of 100) to 0.096 (Ne of 1000).  Intermediate time points (3.99 and 

6.65 generations) were the least precise, ranging from 0.054 (t = 6.65 generations; Ne of 

100) to 0.620 (t = 3.99 generations; Ne of 1000). 

 

Detection of Changes in Ne 

Results of simulations to investigate the ability of the linkage approach to detect declines 

and expansions in Ne are summarized in Figure 3.1.  For the models where Ne remained 

constant, confidence intervals always overlapped; thus, a change in Ne was never falsely 

detected.  A change in Ne was detected in 80% of all decline/expansion models where a 

change in Ne had occurred.  Changes in Ne were detected more often when initial 

effective population size was small and/or when the magnitude of change was great.  

This was due in part to greater precision of estimates of Ne in smaller populations.  A 

summary of demographic models and whether a change in Ne was detected in each 

model is presented in Table 3.2. 

 Estimates of Ne over time for constant and decline models are shown in Figure 

3.1a.  The linkage approach was always able to detect declines to 25% of initial Ne.  

Declines to 50% of initial Ne of were detected for initial Ne of 100, 250, and 500 but not 

1000; declines to 75% were only detected for initial Ne of 100 and 250.  Estimates of Ne
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Table 3.2 Sensitivity of detection of changes in Ne for different demographic models.  Change in Ne 

was estimated using LINKNE for each model based on 1000 SNP loci and a sample size of 50 except where 

the change in Ne generated a population of less than 50 individuals (in which case all individuals were 

sampled).  Change in Ne was detected when confidence intervals between estimates from the most distant 

past (14.3 generations) and those from the most recent past (1.01 generations) did not overlap. 

 

Demographic 

Model 

Initial 

Ne 

Change in 

Ne Detected 

Constant 100 No 

 250 No 

 500 No 

 1000 No 

Decline to 75% 100 Yes 

 250 Yes 

 500 No 

 1000 No 

Decline to 50% 100 Yes 

 250 Yes 

 500 Yes 

 1000 No 

Decline to 25% 100 Yes 

 250 Yes 

 500 Yes 

 1000 Yes 

Expansion to 2x 100 Yes 

 250 Yes 

 500 Yes 

 1000 No 

Expansion to 5x 100 Yes 

 250 Yes 

 500 Yes 

 1000 Yes 
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Figure 3.1 Estimates of Ne over time in the past for various demographic models, calculated with 

LINKNE.  Each panel represents a different starting effective population size (Ne).  Confidence intervals 

are shown only for estimates from the most recent and most distant past.  Time points within a plot are 

adjusted horizontally so that confidence intervals could be distinguished.  (a) Trend lines for constant and 

decline models.  (b) Trend lines for constant and expansion models.  Upper confidence limits for estimates 

of Ne for the expansion to 5x model and for starting Ne of 250, 500, and 1000 were truncated for clarity 

and are marked with an arrow to indicate that the interval extends beyond the limits of the plot
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Figure 3.2 Effect of sample-size bias correction. Calculations used the sample-size (S) bias correction proposed by Waples (2006) on estimates of Ne 

over time.  Estimates were produced with LINKNE.  Solid lines represent estimates of Ne, with bias correction applied, for the constant population size 

model.  Dashed lined represent estimates where r2
sample was measured as 1/S.
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at 1.01 generations in the past were fairly accurate as bias for models of decline to 25%, 

50%, and 75% (averaged across simulations for all starting values of Ne) were 4.06%, 

2.15%, and 1.35%, respectively.  Estimates of Ne for the most distant time in the past 

(14.3 generations) were downwardly biased for all decline models; bias for declines of 

initial Ne to 25%, 50%, and 75% were -41.5%, -19.6%, and -8.71%, respectively. 

 Expansions in Ne (Figure 3.1b) were detected in all but one model (initial Ne of 

1000 and a 2x expansion); confidence intervals between the most recent (1.01 

generations) and most distant (14.3 generations) times in the past overlapped slightly.  

Bias for estimates of Ne at 1.01 generations in the past, averaged across starting values of 

Ne, was positive and less than 10% for expansions of 2x and 5x (7.88% and 1.95%, 

respectively); bias varied considerably over each time period for different values of Ne 

(2x: -0.23% to 27.08%; 5x: -41.5% to 53.77%).  Estimates of Ne in the past were 

influenced less by expansions in population size than by declines. 

 

Evaluation of Sample-Size Bias Correction 

The sample size bias proposed by Waples (2006) influenced estimates of Ne in the recent 

past to a greater extent than estimates in the more distant past (Figure 3.2).  When the 

bias correction was not applied, a downward bias was present for estimates at all points 

in time and was larger for more recent time periods, with an average bias of -7.93% 

(14.3 generations), -18.7% (6.65 generations), -26.9% (3.99 generations), and -50.9% 

(1.01 generations).  There also was an effect of Ne on bias, as downward bias increased 

with increasing Ne.  Overall, failure to apply the bias correction resulted in a significant 
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downward trend, falsely indicating that the model of constant size had experienced a 

recent decline in Ne. 

 

Allele Frequency Cutoff 

The cutoff value for excluding rare alleles had the most influence on estimates of Ne 

from the most distant past (Figure 3.3).  For estimates of Ne in the recent past (1.01 

generations), mean values of Ne ranged from 252.7 to 274.4 (range = 26.74); for 

estimates of Ne in the most distant past (14.3 generations), values ranged from 232.2 to 

276.5 (range = 44.28).  For all allele-frequency cutoff values evaluated, estimates of Ne 

in the recent past were upwardly biased, while the direction of bias for estimates in the 

more distant past depended on the level of cutoff chosen.  No cutoff value was the least 

biased for all time points, although a cutoff value of 0.05 appeared to be the best 

compromise, as it resulted in the least bias, on average, across all time points (Figure 

3.3).
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Effect of Time between Demographic Change and Sampling 

The number of generations between demographic change and sampling had a large 

effect on resulting estimates of Ne (Figure 3.4).  For all demographic change models, 

estimates of Ne derived from unlinked and moderately linked loci (c > 0.15 M) 

equilibrated to the correct Ne within five generations; whereas estimates from tightly 

linked loci (c ≤ 0.15 M) approached the new Ne more slowly.  Both population 

expansions and declines could be detected up to 20 generations in the past.  Estimates 

from the distant past (14.3 generations) tended to equilibrate more slowly for 

demographic expansions than for declines.
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Figure 3.3 Effect of excluding rare alleles at various thresholds. Estimates of Ne were produced using LINKNE and various rare-allele exclusion 

thresholds (0.10, 0.05, 0.02, 0.01, and 0), using the constant population model with N = 250.
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Figure 3.4 Effect of length of time between demographic change and sampling.  (a) Results for decline 

to 25% of initial Ne of 250 when sampling was conducted 1, 2, 5, 10, 20, and 50 generations after a 

decline.  (b) Results for an expansion to 2x of initial Ne of 250 when sampling was conducted 1, 2, 5, 10, 

20, and 50 generations post-expansion.
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Comparison to the LDNe Method 

For all values of Ne under the constant model, estimates of current Ne based on 

NEESTIMATOR2 were biased downward by more than 20% (Figure 3.5).  Bias for initial 

Ne of 100, 250, 500, and 1000 was -25.4%, -23.0%, -20.9%, and -21.2%, respectively.  

Estimates generated using LINKNE had a small upward bias of 3.54%, 3.15%, 7.51%, 

and 6.96% for initial Ne of 100, 250, 500, and 1000, respectively. 

 

Empirical Data 

The trend line for the sample from West Matagorda Bay (Figure 3.6a, dashed line) was 

suggestive of a recent decrease in Ne, consistent with the presence of hatchery-raised 

individuals in the sample.  Separating the sample into hatchery-raised and wild fish 

revealed that estimates of Ne over time for wild fish were large and featured no 

observable trend (Figure 3.6a, grey ribbon); estimates from hatchery-raised individuals 

alone (Figure 3.6b) were consistent with the expected bottleneck (based on Gold et al., 

2008) of progeny from the parental brood stock.  Trend lines for both the mixed sample 

and the hatchery-raised individuals were consistent with results of simulations (see 

Figure 3.1a, decline to 25%); estimates of Ne for the more distant past appeared lower 

than expected and the slope of the trend line less steep due to the recent effect of 

increased genetic drift on tightly linked loci.
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Figure 3.5 Comparison of bias in measures of Ne, using LINKNE and the LDNE method (as implemented in NEESTIMATOR2).  Bias was measured 

as the difference between the estimated and true Ne and is expressed a percentage of the true Ne.  Estimates of Ne based on linkage disequilibrium can be 

biased downward when linked loci are assumed to be unlinked.
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Figure 3.6 Results of analysis of a sample of red drum juveniles from Matagorda Bay, TX.  (a) Trend 

line (dashed) for Ne produced using LINKNE and all sampled individuals and confidence interval (CI) of Ne 

when F1 hatchery individuals are removed (shaded area).  Note that when ‘wild’ individuals are assessed, 

only the lower bounds of the CI are estimable from the data; for clarity, the CI is truncated at 10,000.  (b) 

Trend line for F1 hatchery-raised individuals, indicative of a large decline in Ne in the parental generation, 

which consisted of hatchery brood stock.
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DISCUSSION 

Simulation 

Precision and Bias 

The ability of this or any approach to identify changes in Ne over time is largely 

dependent on precision and potential bias.  If estimates of Ne at different times in the 

past are systematically biased, inferences regarding demographic trends will be 

compromised.  Results of simulations revealed <10% bias in estimates of Ne for 

populations of constant size over the time period (~1-15 generations in the past) 

assessed.  However, the magnitude and direction of the bias depended on both the time 

to which an estimate referred and the true Ne.  This suggests that while the precision 

provided by the number of simulated loci (1000) was such that confidence intervals for 

estimates of Ne across time tended to overlap for the constant population at all initial 

effective sizes, increasing the number of loci could produce estimates so precise that 

confidence intervals would not overlap, even for populations of constant size.  However, 

because bias for all estimates was small (<10%), it would be unlikely that such a 

situation would be confused for a large change in Ne. 

 Further study is needed to evaluate the source of bias at different periods in time.  

For example, it is not clear why estimates from intermediate time points tend to be more 

biased and in a downward direction.  It should be noted that in addition to the sample-

size bias correction, a simulation-based bias correction for the drift component of r2 was 

proposed by Waples (2006) for unlinked loci.  An applied correction for linked loci 

might eliminate some of the bias, but the correction factor would be challenging to 



 

63 

 

implement because a correction factor would have to be calculated for all values of c 

across the spectrum of possible linkage values.  While Waples (2006) found little bias in 

Ne due to drift for unlinked loci when initial Ne was greater than 100, the smallest initial 

Ne evaluated in our study, it is unclear whether this also is true for linked loci. 

 Our findings regarding precision of Ne estimates over time are in agreement with 

Hill (1981) who showed that the coefficient of variation of Ne decreases as the 

recombination rate decreases and the number of pairwise locus comparisons increases.  

This means, given an equal number of pairwise comparisons, that estimates of Ne in the 

past should be more precise than recent estimates (Hill, 1981; Hayes et al., 2003).  

However, the vast majority of locus pairs in a genome are unlinked, so the large number 

of pairwise comparisons available should yield recent estimates with a high level of 

precision.  Consistent with this, intermediate time periods (corresponding to intermediate 

values of c) had the lowest level of precision, most likely as a consequence of having the 

fewest number of pairwise comparisons. 

 

Detection of Changes in Ne 

Results of simulations demonstrated that for ideal populations, recent changes in Ne can 

be reliably detected by comparing estimates of Ne based on LD from pairs of linked and 

unlinked loci.  In our simulations, trend lines for the constant population at all initial 

effective sizes never indicated a change in Ne, although trend lines for models with a 

change in Ne in some models indicated stability.  This has important implications for 

interpretation of results when using the linkage approach as it indicates that although 

detected changes in Ne are robust, results indicating constant size need to be carefully 
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scrutinized.  Our simulations revealed that changes in Ne are more readily detected when 

Ne is small, largely due to increased precision of LD-based estimators at smaller Ne.  In 

fact, even relatively small changes in Ne (declines to 75% of the original value) were 

detected provided that the initial Ne was 250 or less.  The linkage approach was less 

effective in populations with larger initial Ne as only changes in Ne of relatively large 

magnitude could be detected.  However, increasing the sample size, which was fixed at 

50 individuals for all simulations, should improve resolution to detect changes for 

populations of larger initial Ne. 

 Estimates of Ne were fairly accurate for more recent time (t ≈ 1 generation) in the 

past.  This is because sampling was conducted five generations after the change occurred 

and unlinked (or moderately linked [c > 0.15 M]) loci are expected to equilibrate to the 

new steady-state level of LD in three to four generations (Sved, 1971; Waples, 2006).  

Estimates from the more distant past (>3.33 generations) reflected Ne of the population 

prior to the change in Ne; however, these estimates tended to be influenced by more 

recent Ne.  This effect was particularly pronounced for decline models, where estimates 

reflecting prior generations showed a considerable downward bias, causing trend lines to 

be less steep than expected.  In addition, the bias was exaggerated for declines of large 

magnitude.  Estimates of Ne in the past during expansion models were less influenced by 

more recent Ne, and it is likely that the different effects on estimates of Ne in the past 

observed in decline and expansion models relate to the relative contribution of drift and 

recombination to steady-state levels of LD.  In the case of a decline, LD accumulates 

between loci at every linkage interval relatively quickly due to the increased importance 
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of drift.  Alternatively, in an expanding population drift becomes less important as time 

is required for recombination to dissolve LD between linked loci.  In practice, this 

suggests that the true magnitude of a decline in Ne would be difficult to detect with 

certainty because past estimates would be influenced by effects of drift in more recent 

generations; estimates of past Ne following a population expansion, however, may 

provide a more reliable estimate of the magnitude of the change in Ne. 

 A critical component of the linkage approach is establishment of a relationship 

between recombination rate and time.  While an approximate relationship was suggested 

by Hayes et al., (2003), it was derived under the limiting assumptions that c is small and 

that Ne changes linearly with respect to time.  Despite the fact that these assumptions are 

clearly violated, trend lines from our simulations agreed reasonably well with known 

timing of changes in Ne, particularly for expansion models.  The results were less 

concordant for decline models, as trend lines suggested more gradual declines than 

expected.  This is likely due to effects of increased genetic drift following a decline.  

Organizing locus pairs into bins and using a mean value for c, while necessary for 

achieving acceptable levels of precision, is one source of discordance between 

theoretical and observed results.  Depending on the size of the bin and the degree of 

linkage, estimates of LD at locus pairs in genomic regions reflecting Ne across multiple 

generations are collapsed into a single estimate which may obscure fine-scale trends. 

 The simulations evaluated consisted of ideal populations with non-overlapping 

generations, even sex ratios, and binomially distributed reproductive success, such that N 

≈ Ne.  More rigorous investigation is necessary to evaluate effects on estimates made 
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when these assumptions are violated.  Effects of skewed sex ratio and increased variance 

in reproductive success on estimates of contemporary Ne generated with the LD method 

have been investigated to some extent by Waples (2006), with the conclusion that the 

assumptions are fairly robust to the influence of these effects, i.e., an ideal population 

with a given Ne is a reasonable proxy for non-ideal populations with the same Ne (Waples 

2006).  However, the biological characteristics of the species tend to determine the Ne/N 

ratio (Portnoy et al., 2009), and it is likely that changes in census size (N) influence 

estimates of Ne differently.  Therefore, while the linkage method can robustly detect 

changes in Ne, care must be taken when interpreting the results in terms of changes in 

census size.  Additional study will be necessary to understand the influence of other 

factors that shape patterns of genome-wide LD in natural populations on estimates of 

past Ne; these factors include selection, migration, admixture, and complicated 

demographic models. 

 

Effect of Sample Size Bias Correction 

Our simulations demonstrate the importance of sample-size (S) bias correction for 

accurately assessing changes in Ne.  England et al., (2006) and Waples (2006) 

demonstrated that estimates of Ne can be downwardly biased when S is small relative to 

the true Ne.  Our simulations showed that this bias is more pronounced for estimates of 

Ne in the more recent past.  When bias correction was not applied, the linkage method 

produced trend lines characteristic of a decline in Ne, even for the constant populations 

that had not experienced a decline.  This is an important consideration, and little 

attention has been given to the effects of S on estimates of Ne in studies applying similar 
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methods.  It is important to note that the effect of S may be dependent on the way in 

which r2 is estimated, with estimators where marker phase is known requiring a smaller 

correction factor (Corbin et al., 2012). 

 

Allele Frequency Cutoff 

The effect of modifying the cutoff value for excluding rare alleles varied depending on 

the time in the past to which estimates applied and there was no single, optimal allele-

frequency cutoff.  In general, a cutoff at an allele frequency of 0.05 produced estimates 

of Ne across the range of time points that were closest to the true Ne.  In addition, results 

for estimates based on unlinked loci were consistent with the findings of Waples and Do 

(2008) which indicated that larger cutoff values minimized upward bias caused by 

occurrence of rare alleles.  Further, our results paralleled that of a previous study (Corbin 

et al., 2012), where effects of modifying rare allele cutoffs for estimates of past Ne, using 

phase-known data, was explored.  It was concluded (Ibid) that a cutoff value between 

0.05 and 0.1 produced the most accurate estimates.  Applying a separate cutoff to locus 

pairs in different bins may produce more accurate estimates across all time points, if 

increased cutoff values were used for estimates further back in time. 

 

Effect of Time since Sampling 

Several insights were gained by modifying time of change in Ne relative to sampling.  

First, based on evaluating overlap of confidence intervals between past and present 

estimates, the linkage approach was able to detect both expansions and declines in Ne at 

least 20 generations in the past.  In theory, it is possible to obtain estimates of Ne in the 
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much more distant past (and to thus detect older demographic changes) if LD can be 

measured between very tightly linked loci (< 0.01 M).  However, simulations by Corbin 

et al., (2012) suggest that estimating long-term trends can be problematic, in part 

because the effect of mutation is important over long periods of time.  Second, analysis 

of trend lines for decline and expansion models reinforced the idea that past estimates of 

Ne are influenced more by declines than expansion, as past estimates of Ne rapidly 

approach the new steady-state level of LD after a decline but approach the new level 

more slowly following an expansion.  When the change in Ne occurred 50 generations in 

the past, neither declines nor expansions could be statistically differentiated from stasis.  

In the case of declines, the mean estimate of Ne was the same between the most recent 

generation and the generation furthest in the past.  For expansions, the mean estimate of 

Ne was larger in the most recent generation than the generation furthest in the past; 

however, precision was limiting and confidence intervals overlapped.  This further 

suggests that genomic patterns of LD indicating an expansion in Ne persist for longer, 

enabling expansions in the more distant past to be detected. 

 

Comparison with LDNE method 

Results from simulations indicated that the assumption that all loci in a genome-wide 

data set are unlinked can downwardly bias estimates of contemporary Ne by as much as 

25%.  In the absence of marker linkage or genomic position data, it is unclear what 

should be the best strategy for avoiding this bias.  One approach is to remove estimates 

from locus pairs with excessively high LD as they possibly are influenced by physical 

linkage (Gruenthal et al., 2014); in practice, however, the decision to remove such loci is 



 

69 

 

fairly arbitrary.  Regardless, in the absence of known linkage relationships, 

acknowledging that estimates of Ne from the LDNE method likely underestimate the true 

value is a conservative approach; the fact that the bias is downward is favorable from a 

biological risk-assessment standpoint because overestimating Ne likely will have more 

dire consequences for imperiled species than underestimating Ne. 

 

Empirical Data 

A decrease in Ne in the sample of juvenile red drum from Matagorda Bay in 2008 was 

detected using the linkage approach.  Presumably the decline in Ne was due to the 

presence of an inordinately large proportion of hatchery-raised juveniles in the sample.  

The effect, as expected, was temporary as the current Ne of a second sample from the 

same locality, taken in 2015, was considerably larger than the estimate of current Ne in 

the wild fish in the 2008 sample (unpublished data).  This highlights that interpretation 

of trends in Ne based on LD should be made with caution.  If the trend line for the mixed 

sample had been generated with no knowledge about the constituents of the population, 

one might have hypothesized erroneously that the population of red drum in Matagorda 

Bay had experienced a recent, large decline in Ne possibly caused by a decline in census 

population size rather than an unequal contribution of progeny from a limited number of 

breeders in the parental generation.  Additionally, despite the rapidity of the decrease in 

Ne, the trend line suggested a more gradual decline that extended into the distant past.  

This likely occurred for several reasons, including uncertainty in estimating 
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recombination rates from the mapping cross and the necessity of binning loci over large 

genomic distances. 

 Another important consideration when evaluating potential changes in Ne using 

large, empirical datasets is that parametric confidence intervals (calculated based on a 

chi-square approximation [Hill, 1981]) may be too narrow when many loci are utilized 

(Waples et al., 2015).  This is because, as the number of utilized loci increases, there are 

more correlations among r2 values for locus pairs that share common loci, and this 

increasingly violates the assumption of independence of comparisons implicit in the 

parametric model (Waples, 2006; Waples and Do, 2010).  As a result, parametric 

confidence intervals do not adequately convey the uncertainty in r2, and the standard 

jackknife procedure for correcting confidence intervals (Waples and Do, 2008) will not 

alleviate the problem when a large number of loci are used (Do et al., 2014).  Because 

the linkage method presented here tends to separate pairwise comparisons from the same 

locus into different bins, the effect is likely relatively less pronounced as compared to a 

single estimate of Ne using all loci when linkage data is unavailable.  However, when 

comparing confidence intervals of Ne across different points in time it is important to 

consider the possibility of overly precise and inaccurate estimates.  Further study will be 

needed to quantify the extent to which this problem affects genome-scale datasets.  

Regardless, considering that bias appears to be relatively low, overly tight confidence 

intervals are unlikely to result in false detection of large changes in Ne.
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Conclusions 

We have shown that when linkage or genomic position data are available, the LD 

approach of estimating Ne from unphased genetic markers (Waples, 2006; Waples and 

Do, 2008) can be extended to estimate Ne in the recent past and, importantly, to detect 

recent changes in effective population size (Ne).  Results of simulations suggested that 

even with a moderate number of loci, relatively small changes in Ne (25%) could be 

detected provided that initial Ne was not large.  Further, we explored the effects that 

sample-size bias correction, rare allele cutoff, and time since the change occurred have 

on estimates of Ne across points in time and quantified the bias in Ne associated with the 

assumption that all SNPs in a genome-wide dataset are unlinked.  Finally, we 

demonstrated the utility of the linkage method for detecting recent changes in Ne on an 

empirical data set.  Overall, results of the analysis of both simulated and empirical data 

suggest that this approach will be useful for genetic monitoring, particularly when prior 

genetic samples are not available.  This strategy should become increasingly available to 

species of conservation concern as genotyping-by-sequencing techniques are widely 

adopted and as genome sequences and linkage maps become more available. 
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CHAPTER IV 

A POPULATION GENOMIC ASSESSMENT OF RED DRUM IN US WATERS AND 

CONCLUSION 

 

INTRODUCTION 

Advances in next-generation sequencing (NGS) technology have enabled cost-effective 

screening of thousands of genetic markers for nearly any species (Davey et al., 2011).  

One of the principal benefits of dense, genome-wide sampling of genetic markers in wild 

populations is the ability to quantify the relative effects of micro-evolutionary 

phenomena that impact the genome as a whole (e.g., genetic drift and migration) and 

phenomena that have locus-specific impacts (e.g., natural selection) (Luikart et al., 

2003).  Population-genetic theory and empirical studies indicate that genomic regions 

under the influence of selection should show elevated divergence with respect to the rest 

of the genome and that only a small proportion of the genome may show signatures of 

selection (Lewontin and Krakauer, 1973; Wu, 2001; Nosil et al., 2008).  Genome scans, 

using hundreds or thousands of genetic markers, can sample enough of the genome to 

detect and localize regions that contain adaptive genetic variation (Luikart et al., 2003, 

Allendorf et al., 2010). 

 The ability to efficiently recover marker position information, either in the form 

of a genome sequence or a genetic map (Baird et al., 2008), offers a major advantage 

towards elucidating these processes.  Linkage mapping is a cost-effective alternative to 

genome sequencing and, used in conjunction with population-genetic data, can provide 
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each locus a genomic position and allow for the visualization of population-genetic 

statistics as continuously distributed variables across a genome (Hohenlohe et al., 2010a, 

2010b).  This information in turn can be used to identify regions of the genome that are 

potentially under selection, can minimize the proportion of false positive genomic 

outliers, and enable use of comparative genomic approaches to identify potential 

candidate genes in proximity to genetic markers identified as potentially being under the 

influence of selection (Akey et al., 2002). 

 The identification of genomic regions under the selection has important 

implications for exploited species (Bradbury et al., 2013).  In the context of management 

and conservation, adaptive genetic variation is important because it represents the 

component of the genome that allows individuals to survive and reproduce in local 

environmental conditions.  Characterizing genomic regions experiencing selective 

pressures in response to the environment is therefore important for establishing 

appropriate units of conservation (Waples, 1995; Fraser and Bernatchez, 2001).  In 

addition, because adaptive variation to some extent represents the evolutionary potential 

of a population (Waples, 1995), identification of adaptive variation is important for 

monitoring of a population's potential for response to environmental change or 

exploitation (Schwartz et al., 2007; Allendorf et al., 2008).  Moreover, adaptive 

variation is useful in the context of population-structure analysis because inclusion of 

loci under divergent selection can increase power to discriminate between populations 

that experience high levels of gene flow, which tends to homogenize neutral variation, or 
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that have diverged too recently for drift to have appreciably influenced neutral allele 

frequencies (Nielsen et al., 2009). 

 Red drum (Sciaenops ocellatus) is an estuarine-dependent, marine fish species in 

the U.S. Gulf of Mexico (hereafter Gulf) and U.S. South Atlantic (hereafter Atlantic).  

The species supports one of the largest recreational fisheries in the U.S. (NMFS, 2015b).  

Assessment of genetic structure of red drum populations in the Gulf and Atlantic began 

with assays of allozyme polymorphisms nearly 30 years ago (Ramsey and Wakeman, 

1987; Bohlmeyer and Gold, 1991), with subsequent studies utilizing improvements in 

genetic marker technology and population genetics analysis, including mitochondrial 

RFLPs (Gold and Richardson, 1991; Gold et al., 1993, 1999), mitochondrial sequencing 

(Seyoum et al., 2000), and microsatellites (Chapman et al., 2002; Gold and Turner, 

2002).  The consensus regarding population structure among prior studies is the 

existence of weak, but significant genetic differentiation between Gulf and Atlantic 

populations of red drum (Gold and Richardson, 1991; Gold et al., 1993, 1999; Seyoum 

et al., 2000; Chapman et al., 2002), and an isolation-by-distance pattern of 

differentiation among red drum in the Gulf (Gold et al., 1999, Gold and Turner 2002).  

Gold et al., (2001) reviewed the status of population genetics in red drum and 

hypothesized that because red drum rely on discrete estuarine habitat for successful 

reproduction and recruitment, populations in the Gulf could be described by a modified, 

one-dimensional, stepping-stone model where gene exchange occurs primarily between 

adjacent estuaries.  It could be further hypothesized that given the species’ dependence 
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on estuarine habitat, which tend to be environmentally heterogeneous (Schulte, 2007), 

the potential for local adaptive differences could be large. 

 The goal of this study was to conduct a more comprehensive population 

genomics assessment of red drum in U.S. waters, using high-resolution sequencing 

technologies, with the following specific objectives: i) to describe patterns of both 

neutral and putatively adaptive genetic variation in the species across the sampled range, 

and ii) to utilize a genetic linkage map, combined with population genomics data, to 

examine genomic patterns of local adaptation in the species. 

 

MATERIALS AND METHODS 

Reduced Representation Reference Genome Construction 

Prior to analysis of genetic data, a reduced representation, reference genome was 

constructed for red drum.  Twenty red drum individuals from across the species’ natural 

range, including parents from two mapping crosses, were used to produce a double-

digest restriction-site associated DNA (ddRAD) library, following standard procedures 

(Peterson et al., 2012).  The library was sequenced on an Illumina MiSeq DNA 

sequencer producing 300 bp, paired-end reads.  The raw sequencing reads were 

demultiplexed, using the program process_radtags from the Stacks package (Catchen et 

al., 2011), and a de novo reference genome was assembled with the dDocent pipeline 

(Puritz et al., 2013).  Because sampled RAD contigs had a mean size of 300 bp, the 

entire sequence of each RAD contig was recovered during reference assembly.  A 

preliminary annotation of the reference genome with the BLAST algorithm revealed the 
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presence of multi-copy nuclear ribosomal RNA genes.  To avoid problems with read 

mapping cause by multi-copy genes, a custom script was used to remove the rRNA 

contigs, as well as all contigs with a total length of less than 150 bp.  All further RAD 

sequencing analysis utilized this reference genome for read mapping and SNP calling. 

 

Linkage Map 

Sample Collection and Genotyping 

Tissue samples from the two, full-sibling mapping crosses used for generating a 

microsatellite linkage map (Portnoy et al., 2010, Hollenbeck et al., 2015) were extracted 

using Mag-Bind Tissue DNA kits (Omega Bio-Tek).  RAD libraries were constructed 

following procedures outlined in Chapter 3 and sequenced on two lanes of an Illumina 

HiSeq 2000 DNA sequencer.  Raw sequencing reads were demultiplexed, using the 

program process_radtags, to produce a file containing the raw reads for each individual.  

Read mapping and SNP calling were conducted for each family separately, using the 

dDocent pipeline and the reference genome described previously.  Raw SNP genotypes 

were stringently filtered based on numerous criteria, using the VCFtools package 

(Danecek et al., 2011).  First, individual genotypes called from less than ten reads were 

removed, followed by all loci with a mean Phred quality score of <20.  An iterative 

filtering process was then used to maximize the number of individuals and loci in the 

final dataset.  Loci with >50% missing data were excluded, followed by individuals with 

a mean depth of less than five reads and >95% missing data.  Next, loci and individuals 

with >25% missing data were then excluded, and loci with a minor allele frequency < 

https://dx.doi.org/10.1093%2Fbioinformatics%2Fbtr330
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0.05 were removed.  Next, the bash script dDocent_filters was used to remove loci based 

on numerous criteria, including mean site depth, the ratio of quality to depth, strand 

representation, allelic balance in heterozygous individuals, and proper read pairing.  

Complex polymorphisms were then decomposed to individual SNP or indel loci, using 

the vcfallelicprimitives command in the vcflib package.  Next, loci were collapsed into 

haplotypes within each RAD contig, using the program rad_haplotyper.  The program 

removed loci that were successfully haplotyped in <75% of individuals and kept indel 

loci when the indel was the only polymorphism on the contig; other indels were 

excluded from the analysis to avoid complications in haplotyping.  The resulting file for 

each family contained one diploid genotype per individual for each remaining RAD 

contig.  A custom script was used to convert the rad_haplotyper output files for both 

families to JOINMAP 4.1 (van Ooijen, 2012) format. 

 

Linkage Mapping 

RAD-based genotype data was combined with microsatellite genotype data obtained 

previously (Portnoy et al., 2010, 2012; Hollenbeck et al., 2015), and the resulting data 

file imported into JOINMAP.  RAD loci were then added to previously defined linkage 

groups (Portnoy et al., 2010, 2012; Hollenbeck et al., 2015).  To reduce the chance of 

incorrectly adding loci to existing groups, an initially conservative LOD score of 9.0 was 

applied, followed by two more rounds of grouping at an LOD of 6.0 and 3.0, 

respectively.  After assigning loci to linkage groups, groups of loci that exhibited parallel 

genotype distributions (an observed recombination rate = 0) were identified and only a 
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single representative locus was retained for initial ordering; the remaining loci were 

reserved for later addition to the map.  Tests for segregation distortion were carried out 

using chi-square goodness of fit tests, using JOINMAP.  Family-specific maps were 

generated by applying the multipoint maximum likelihood algorithm for outbred crosses, 

as implemented in JOINMAP.  Marker order for shared loci was compared between 

families, and incongruences were corrected by identifying and removing problematic 

loci, which most often displayed segregation distortion or contained probable genotyping 

errors.  Loci excluded initially because of lack of recombination with another locus were 

then added to family-specific maps by placing them into the same map position as the 

representative mapped locus.  Family-specific maps were then combined into a 

consensus sequence with the program MERGEMAP (Wu et al., 2011), using equal 

weights for both families. 

 

Population Genomics 

A total of 563 juvenile (0-3 year old) red drum were sampled between 2008 and 2015 

from 11 localities in the Gulf and Atlantic.  Sample localities (Figure 4.1) included three 

localities in Texas: Lower Laguna Madre (LLM), Matagorda Bay (MAT), and Sabine 

Lake (SAB); Mississippi (MIS); four localities in Florida (Apalachicola, APA; Cedar 

Key, CEK: Charlotte Harbor, CHA; and Indian River, IND); two localities in Georgia 

(Hampton River, HAR; and Wassaw Sound, WAS); and one locality in South Carolina
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Figure 4.1 A map of 11 sampling localities for red drum.  Numbers in parentheses represent the final, filtered sample size for each locality.  The two 

sample sizes for LLM and MAT represent the size of each temporal sample from both localities taken in the spring of 2008 (first value) and the winter 

of 2014/2015 (second value). 
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(SCA).  Because all samples consisted of juvenile fish, genetic differences observed 

between samples could arise in part by random recruitment variability in a particular 

year class.  To gauge the potential magnitude of between year variation in allele 

frequencies, two localities in Texas, LLM and MAT, were sampled in both 2008 and 

2014/2015 and compared to assess temporal stability of genomic variation. 

 

ddRAD Library Preparation and Bioinformatics Filtering 

RAD libraries were prepared as outlined in Chapter 3 and sequenced on five lanes of an 

Illumina HiSeq 2000 DNA sequencer.  Demultiplexing, read mapping, and SNP calling 

were performed as above, and SNP loci were filtered, using VCFtools.  Individual 

genotypes called with less than ten reads were excluded, as were all loci with a mean 

Phred score of <20.  Next, loci with >50% missing data were then excluded, followed by 

all individuals with a mean locus depth of less than ten and >75% missing data.  Loci 

with >25% missing data were then excluded, followed by individuals with >40% 

missing data.  Loci with a minor allele frequency of <0.05 were then excluded.  Next, 

genotypes of five individuals, intentionally duplicated in different RAD libraries, were 

compared for genotype discordance.  Loci which exhibited genotype differences across 

more than one set of replicates were discarded, and the individual from each set of 

duplicates that contained the most missing genotypes was subsequently removed from 

the data set.  Following these steps, suspected first-generation, hatchery-derived 

individuals in the samples from Texas waters were removed from the dataset.  Hatchery-

derived individuals from the Texas stock-enhancement program were identified based on 
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data from a previous study (Carson et al., 2014) or from high genetic relatedness (r > 

0.35; Yang et al., 2010) to at least one current hatchery brood fish; the latter had been 

genotyped with the same set of SNP loci for an ongoing study.  Because hatchery-

derived juveniles could only be identified directly in samples from Texas waters, highly 

related individuals from other samples, which potentially could reflect hatchery origin, 

also were identified using the method of Yang et al., (2010), as implemented in 

VCFtools.  One individual from each pair with a relatedness coefficient (r) > 0.2 and 

sampled from the same locality was removed from the dataset.  Next, the dDocent filters 

script was used to remove loci based on mean site depth, the ratio of quality to depth, 

strand representation, allelic balance in heterozygous individuals, and proper read 

pairing.  A maximum mean depth cutoff of 300 reads was applied in the script.  At this 

point, complex polymorphisms were decomposed to individual SNP or indel loci, using 

the vcfallelicprimitives command in the vcflib package.  Next, loci were tested for 

conformance to Hardy-Weinberg equilibrium within each locality, and loci failing (P < 

0.001) in more than two of the 13 samples were excluded.  Individuals with >25% 

missing data were then excluded, followed by loci >15% missing data in any single 

locality and more than five percent missing data across the entire data set.  SNP loci 

were then haplotyped across RAD contigs, using the script rad_haplotyper.pl.  The script 

removed any remaining indel loci, loci with more than five individuals with too few or 

too many haplotypes given the SNP genotypes, and loci with <95% successfully 

haplotyped individuals.  The resulting GENEPOP file contained one diploid genotype per 

individual for each remaining RAD contig. 
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 The necessity of sequencing individuals across multiple RAD libraries and HiSeq 

lanes can result in problematic SNP loci that differ in allele frequencies due to 

systematic bias in the library preparation and sequencing process (Meirmans et al., 

2015).  While stringent bioinformatic processing is intended to remove such loci, 

additional ad hoc testing for loci exhibiting effects caused by library organization is 

often necessary to ensure that the data are free from loci exhibiting such bias.  One 

strategy for identifying problematic loci is to plot the global FST of each locus as a 

function of expected heterozygosity and manually inspecting loci that appear as outliers 

in the distribution.  The program LOSITAN (Antao et al., 2008) was used to accomplish 

this, and the exercise repeated with various combinations of sample localities.  As a 

second assessment, a principal components analysis (PCA), implemented in the package 

adegenet (Jombart et al., 2008) in R (R Core Team 2015), was used to visualize the data, 

with individuals coded by RAD library rather than by sample locality. 

 

Assessment of Temporal Stability and Geographic Patterns 

Temporal stability of allele frequencies was assessed by comparing the two pairs of 

samples obtained from the same localities in different years (LLM 2008 vs. LLM 2014 

and MAT 2008 vs. MAT 2015).  Pairwise FST was calculated in ARLEQUIN (Excoffier 

and Lischer, 2010) and significance assessed by a permutation test, with 10,000 

permutations.  Pairwise FST did not differ significantly between years at either location: 

LLM (FST = -0.00017, P = 0.767) and MAT (FST = 0.00048, P = 0.179).  Inspection of 

the PCA (Supplemental Figure B1) also confirmed the similarity of the temporal 



 

83 

 

samples.  The 2008 samples from LLM and MAT were then removed for the remainder 

of the analyses.  In addition to establishing temporal stability, the PCA also revealed 

three distinct clusters of sample localities, corresponding to samples from the western 

Gulf (LLM, MAT, SAB, and MIS), the eastern Gulf (APA, CEK, and CHA), and the 

Atlantic (IND, HAR, WAS, and SCA).  These regional groupings (western Gulf: WG, 

eastern Gulf: EG, and Atlantic: ATL) were used in subsequent hierarchical analyses of 

population structure. 

 

Outlier Detection 

The data were screened for the presence of possible loci under selection, using three FST 

outlier-detection methods.  The first approach used the program LOSITAN, which 

implements the fdist method of outlier detection (Beaumont and Nichols, 1996) and 

employs coalescent simulations under a neutral island model to identify loci with FST 

values that are either higher or lower than expected, given the observed heterozygosity.  

LOSITAN was run with 100,000 simulations and a false-discovery rate (FDR; Benjamini 

and Hochberg, 1995) of 0.05.  The second approach employed a modified version of the 

fdist method, implemented in ARLEQUIN, which accounts for hierarchical population 

structure.  Localities were grouped into the three regions (ATL, EG, and WG) revealed 

by PCA, and the analysis run with 50,000 simulations, with an FDR of 0.05.  The last 

approach employed the program BAYESCAN (Foll and Gaggiotti, 2008), which uses a 

Bayesian approach to estimate the posterior probability that each locus is under selection 

by comparing models that either incorporate or exclude the effects of selection.  
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BAYESCAN was run with prior odds of selection relative to drift of 10:1 and a FDR of 

0.05.  Because loci with low minor allele frequencies can bias results of genome scans 

(Roesti et al., 2012), loci with a global, major-allele frequency above 0.95 were 

excluded from all three outlier-detection approaches.  The dataset was then split into 

‘neutral’ and ‘outlier’ components.  The final outlier dataset consisted of all loci that had 

been identified as outliers under directional selection by at least one of the three 

approaches; the neutral dataset consisted of all remaining loci.  All loci detected as 

outliers due to balancing selection had negative Fst values, suggesting that overall mean 

FST in the dataset was too low for reliable detection of balancing selection (Beaumont 

and Balding, 2004; Narum and Hess, 2011).  For this reason balancing selection 

‘outliers’ were considered to be neutral loci. 

 

Analysis of Population Structure 

Hierarchical analysis of molecular variance (AMOVA) was performed in ARLEQUIN, 

using regional groupings of localities and significance of variance components assessed 

by permutation test, with 10,000 permutations.  Pairwise FST indices between individual 

localities and between regions also were estimated using ARLEQUIN, with significance 

assessed by permutation, as above.  Existence of an isolation-by-distance effect was 

assessed using Mantel tests as implemented in the vegan package (Oksanen et al., 2015) 

in R, using a matrix of pairwise FST values, coded as FST/(1 - FST), and a pairwise matrix 

of approximate coastline, linear geographic distance (Supplemental Table B1).  Pairwise 
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FST, AMOVA, Mantel tests, and PCA also were conducted separately with neutral and 

outlier datasets. 

 

Redundancy Analysis 

Redundancy analysis (Meirmans, 2015) was employed to investigate the influence of 

geographic distance and environmental differences on patterns of observed genetic 

variation.  Redundancy analysis (RDA) combines PCA or principal co-ordinates analysis 

(PCoA) and multiple regression to measure the influence of a matrix of potential 

explanatory variables on a matrix of independent variables and has been used in a 

population-genetics context by Orsini et al., (2012) and Vangestel et al., (2012).  

Geographic distance between sample localities was coded as a one-dimensional vector of 

approximate, linear coastline distance (Supplemental Table A1).  Environmental data for 

each locality was obtained from the National Estuarine Eutrophication Assessment 

database (Bricker et al., 2007).  In three cases (WAS, HAR, and CEK), data were not 

available for the particular bay or estuary sampled; data for the nearest bay or estuary 

were used in these cases.  In all cases, the substituted site (Ossabaw Sound for WAS, 

Altamaha River for HAR, and Suwannee River for CEK) was less than 20 km from the 

original sampling locality.  A set of 49 environmental variables (Supplemental Table 2) 

was downloaded and standardized to avoid bias caused by unequal variances.  

Standardization involved centering each variable value by subtracting the among-locality 

mean from each value and scaling the centered variables by dividing each by the 

standard deviation of values among localities.  Analysis was performed in R, based on a 
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modified version (available upon request) of the method presented in Meirmans (2015).  

Genetic data were transformed into a set of synthetic variables describing the among-

locality genetic variation, using PCoA as implemented in the package adegenet.  The ten 

largest principal coordinate axes were retained and used as dependent variables in the 

RDA model.  Linear geographic distances (Supplemental Table A1) were converted to a 

matrix of polynomials, using the poly function in R.  To avoid overfitting the model due 

to correlation of independent variables, forward selection of geographic and 

environmental variables was conducted with the ordistep function in the vegan package.  

The ordistep function iteratively adds and drops variables from the model and assesses 

significance of the change by permutation test in order to select the variables that best 

explain the data.  This was applied to the geographic and environmental variables 

separately.  Following forward selection of variables, the RDA analysis was conducted 

with the rda function (vegan).  The varpart function (vegan) was used to partition the 

total genetic variance into components explained by geography, environment, and the 

‘shared’ component of variance, which represents the variance that is explained by both 

geography and environment but cannot be decomposed into one or the other due to 

correlation between the two.  Significance of the overall model and of each ‘testable’ 

variance component was conducted with the anova.cca function (vegan), using 1,000 

permutations.  While variance components attributable to independent variables alone 

(geography or environment, in this case) are testable under an RDA framework, the 

shared component of variance is not because it can only be estimated from the other 

components and thus has zero degrees of freedom (Borcard et al., 2011).  The RDA 
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analysis was conducted separately with datasets containing all loci, only neutral loci, and 

only outlier loci. 

 

Detection of Genomic Regions under Selection 

Global FST for each locus was calculated, using Weir and Cockerham’s (1984) estimator, 

as implemented in the pegas package (Paradis et al., 2010) in R.  FST values for loci that 

had been successfully incorporated into the linkage map were then plotted against 

genomic position, using ggplot2 (Wickham et al., 2009).  A set of high confidence 

outliers was identified by selecting loci that met at least one of the following criteria: i) 

the locus was identified by all three outlier-detection approaches, ii) the locus was within 

two cM of another outlier, and iii) the locus had a global FST of at least 0.1. 

 

Identification of Candidate Genes 

To develop a list of candidate genes potentially under the influence of selection, a PCA 

of outlier loci (see Results) was used to separate the loci into two ‘functional’ groups: 

PC1 (x-axis) placed ATL in an intermediate position to WG and EG, while PC2 (y-axis) 

separated regions in the Gulf from the Atlantic.  Using the PCA loadings, outlier loci 

were separated into two groups based on whether they contributed more to PC1 or PC2, 

respectively.  The reference sequences for the both lists of loci were compared to the 

annotated draft genome of the large yellow croaker (Larimichthys crocea), the closest 

relative to red drum for which a genome sequence was available (Wu et al., 2014).  The 

RefSeq (Pruitt et al., 2007) assembly of the large yellow croaker genome (GenBank 
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accession: ASM74293v1) was downloaded, along with information regarding the 

genomic positions of annotated proteins.  The croaker genome was converted to a 

BLAST database, using the makeblastdb function in NCBI’s Standalone BLAST 

package (Camacho et al., 2009).  The blastn algorithm was applied to match loci to the 

croaker genome.  Loci that mapped to more than one scaffold of the large yellow croaker 

genome were discarded.  For each remaining match, annotated genes that completely or 

partially overlapped the region defined by 100 kb before the start position and after the 

end position of the match were selected as candidate genes. 

 

RESULTS 

Reduced Representation Reference Genome Construction 

After assembly, the reduced-representation, reference genome contained 38,887 RAD 

contigs, with a mean size of 264.9 bp.  Additional filtering for contigs below minimum 

threshold size (<150 bp) and containing rRNA sequences resulted in exclusion of 4,848 

and 174 contigs, yielding a final reference assembly containing 33,865 RAD contigs, 

with mean size of 284.6 bp.  Assuming a total red drum genome size of ~ 810 MB (Gold 

et al., 1988), the total reference sequence length of 9,638,003 bp covered approximately 

1.19 percent of the entire genome.
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Linkage Map 

Sample Collection and Genotyping 

After filtering, the dataset for Family A consisted of 786 RAD contigs (containing 1,383 

SNPs) and 72 individual progeny.  The dataset for Family B consisted of 1,340 RAD 

contigs (containing 2,620 SNPs) and 81 individual progeny.  The final number of usable 

RAD contigs differed considerably between families (786 vs. 1,340), largely as a result 

of differences in overall tissue (DNA) quality of samples between the two families.  

After combining the RAD contig data with microsatellite and EST-SSR genotypes 

assayed previously from the same individuals (Portnoy et al., 2010, Hollenbeck et al., 

2015), the total mapping dataset consisted of 1,218 and 1,779 loci for Families A and B, 

respectively. 

 

Linkage Mapping 

The consensus linkage map (Supplemental Figure B2) contained a total of 2,275 loci, 

including 1,794 RAD contigs (consisting of 3,462 SNP loci), 437 anonymous 

microsatellite loci, and 44 EST-SSRs.  The mean number of loci per linkage group was 

94.79 and the mean marker interval was 0.94 cM.  The average length of a linkage group 

and the total map length were 87.72 cM and 2,105.30 cM, respectively.  However, 

because of the tendency of MERGEMAP to inflate the total size of linkage groups when 

combining maps (Kahn et al., 2012), the average of individual-specific maps may 

represent a more accurate estimate of total map size.  In this case, the mean length of
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Table 4.1 Summary statistics for red drum linkage maps.  Column names represent maps constructed using various subsets of mapping individuals: 

Consensus is consensus map with all individuals; Family A is family-specific map for Family A (male and female); Family B is family-specific map for 

Family B (male and female); AF is Family A female; AM is Family A male; BF is Family B female; and BM is Family B male. 

 

 Consensus Family A Family B AF AM BF BM 

Total Loci 2275 1001 1569 678 674 961 976 

Msat Loci 437 327 334 228 241 194 190 

EST-SSR Loci 44 33 32 26 25 23 20 

RAD Loci 1794 641 1203 424 408 744 766 

SNP Loci 3462 1170 2456 847 884 1693 1768 

Mean Linkage Group Size (cM) 87.72 77.74 70.08 76.08 74.10 73.42 63.63 

Mean Loci per Linkage Group 94.79 41.71 65.38 29.48 28.08 40.04 40.67 

Mean Marker Interval (cM) 0.94 1.91 1.09 2.64 2.73 1.87 1.59 

Total Map Length (cM) 2105.30 1865.65 1682.01 1749.84 1778.44 1762.12 1527.22 
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linkage groups and the total map length, averaged across individual-specific maps, was 

71.81 cM and 1,704.40 cM, respectively.  Summary statistics for the consensus map and 

family- and individual-specific maps are presented in Table 4.1. 

 

Population Genomics 

A summary of data filtering procedures, including number of sites, contigs, and 

individuals excluded at each filtering step, can be found in Supplemental Table A3.  The 

final dataset consisted of genotypes for 462 individuals and 1,539 (haplotyped) RAD 

contigs, consisting of 2,860 SNP loci. 

 

Outlier Detection 

Prior to outlier detection, 20 loci with a major allele frequency > 0.95 were excluded 

from the dataset for all analyses.  Following application of an FDR of 0.05, the three 

outlier-detection methods identified a total of 146 outliers (9.49% of all loci) putatively 

under directional selection and 37 outliers (2.40% of all loci) putatively under balancing 

selection.  Of the three outlier-detection methods, LOSITAN was the least conservative 

(142 directional, 37 balancing), BAYESCAN was intermediate (100 directional, 4 

balancing), and ARLEQUIN was the most conservative (52 directional, 10 balancing).  Of 

outliers under directional selection, 96 loci were classified as outliers by at least two 

methods; 52 loci were classified as outliers by all three methods.  All 52 loci classified 

as outliers by ARLEQUIN also were classified as outliers by the other two methods.  The 

distribution of FST values and expected heterozygosity for each locus, along with the
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Figure 4.2 FST and expected heterozygosity for each locus.  The plot shows FST (y-axis) and expected 

heterozygosity (x-axis) for each locus in the dataset.  Each point represents a locus, and the color of each 

point indicates the number of outlier detection methods that determined the locus to be an outlier. 
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number of methods for which each locus was determined to be an outlier, is presented in 

Figure 4.2).  The final neutral and outlier datasets consisted of 1,393 and 146 loci, 

respectively. 

 

Analysis of Population Structure 

Inspection of the PCA (Figure 4.3a) for all loci revealed three distinct clusters 

representing three geographic regions: WG, EG, and ATL.  The two largest principal 

components explained 1.04 percent and 0.71 percent of the variance, respectively.  

Hierarchical AMOVA (Table 4.2) revealed significant differences among regions and 

among localities within regions, with among-region and among-localities (within region) 

differences accounting for 1.37 percent and 0.09 percent of the total genetic variation, 

respectively.  Pairwise FST analysis (Figure 4.3b; Supplemental Table A4) reinforced the 

pattern of significant genetic differences among regions, as all pairwise comparisons 

between localities in different regions differed significantly following FDR correction; 

significant pairwise comparisons between localities within regions included APA and 

CHA (both in the EG), and IND which differed significantly from all other localities in 

ATL.  FST values between WG and EG generally were larger than FST values between 

WG and ATL (Figure 4.3b).  Pairwise estimates of FST between regions revealed that the 

FST for WG vs. EG (0.021, P = 0.000) was greater than that of WG vs. ATL (0.012, P = 

0.000) and EG vs. ATL (0.010, P = 0.000).  The Mantel test revealed a significant 

relationship between geographic distance and FST (r = 0.505, P-value = 0.008; Figure 

4.3c).
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Table 4.2 Hierarchical analysis of molecular variance.  Hierarchical analysis of molecular variance (AMOVA) was based on datasets containing all 

loci (n = 1,539), only neutral loci (n = 1,393), and only outlier loci (n = 146).  df is degrees of freedom; F is fixation index; P is probability that F = 0.  

Significant values of F are in bold.  Significance was assessed by permutation test with 10,000 permutations. 

 

Level df Sum of 

Squares 

Variance 

Component 

% 

Variation 

F P 

All Loci       

Among regions 2 2854.133 4.17574 1.37 0.01372 0 

Among localities within regions 8 2553.381 0.27101 0.09 0.0009 0.00178 

Within localities 789 236666.979 299.95815 98.54 0.01461 0 

Neutral Loci       

Among regions 2 1158.502 1.14044 0.42 0.00417 0.0003 

Among localities within regions 8 2214.052 0.06142 0.02 0.00023 0.8902 

Within localities 789 214924.738 272.40144 99.56 0.00439 0 

Outlier Loci       

Among regions 2 1695.632 3.03529 9.85 0.09854 0.0001 

Among localities within regions 8 339.329 0.20958 0.68 0.00755 0 

Within localities 789 21742.241 27.55671 89.47 0.10535 0 
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Figure 4.3 Population structure of red drum. Population structure was evaluated with datasets consisting of all loci (n = 1,539; panels a-c), only neutral loci (n = 1,393; panels d-f), and only outlier loci (n = 146; panels g-i).  Column 1 (panels a, d, and g) 

shows a principal components analysis (PCA), using each dataset.  Column 2 (panels b, e, and h) shows a heatmap of pairwise FST estimates for each locality, using each dataset; blue squares represent low FST values and red squares represent high FST values 

between localities.  Localities (left to right) are organized geographically (west to east) along the coastline, and putative regional groups (western Gulf, eastern Gulf, and Atlantic) are highlighted with yellow boxes.  Column 3 (panels c, f, and i) shows the 

relationship between genetic distance (FST; y-axis) and geographic distance (km; x-axis) for each pair of localities, using each dataset.  Pairings between localities in different regions are highlighted by different colors (within region comparisons = grey; eastern 

Gulf vs. Atlantic = green; western Gulf vs. eastern Gulf = red; western Gulf vs. Atlantic = blue).  The black line in each panel shows the best linear fit for the relationship. 
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 Inspection of the PCA for neutral loci (Figure 4.3d) also revealed three clusters 

corresponding to WG, EG, and ATL.  The two largest principal components explained 

0.63 percent and 0.49 percent of the total genetic variance, respectively.  EG was placed 

between WG and ATL along PC1 (x-axis), whereas WG and ATL were placed closer 

together along PC2 (y-axis).  Hierarchical AMOVA (Table 4.2), based on the neutral 

dataset, revealed significant among-region divergence (FCT = 0.0041, P = 0.000), but not 

among-localities within regions (FSC = 0.0002, P = 0.890).  Among-region genetic 

variation accounted for 0.42 percent of the total genetic variation.  FST estimates 

(Supplemental Table A4) for all pairwise comparisons between localities in different 

regions differed significantly from zero except for MIS vs. APA; the relative magnitude 

of FST values between localities was consistent with the geographic distribution of 

regions, with localities in WG and ATL having the highest pairwise FST values (Figure 

4.3e).  FST estimates for all pairwise comparisons between localities within regions 

except for IND vs. HAR were non-significant.  Estimates of pairwise FST between 

regional groupings confirmed the overall pattern; WG vs. ATL was the most divergent 

(FST = 0.005, P = 0.000), followed by EG vs. ATL (FST = 0.004, P = 0.000), and WG vs. 

EG (FST = 0.003, P = 0.000).  The Mantel test based on neutral loci (Figure 4.3f) 

revealed a strong, significant relationship between geographic and genetic distance (r = 

0.791, P = 0.001). 

 PCA for outlier loci (Figure 4.3g) similarly revealed three regional clusters.  The 

two largest principal components explained 7.76 and 2.49 percent of the total genetic 

variation, respectively.  ATL was placed in an intermediate position between WG and 
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EG along PC1 (x-axis), whereas WG and EG were placed closer together along PC2 (y-

axis).  Further, the orientation of EG localities relative to ATL was discordant with 

respect to the geographic relationship of the samples; APA, which is the EG locality 

most distant from ATL by coastal distance, was most similar to ATL (Figure 4.3g).  To 

test for the presence of a latitudinal effect on allele frequencies, association of allele 

frequencies to latitude in EG and ATL was assessed via linear regression.  Thirty-three 

outlier loci had alleles that were significantly associated with latitude among localities in 

the two regions (P < 0.05).  Based on PCA using only EG and ATL localities 

(Supplemental Figure B3), the 33 loci explained 21.79% of the variance along the 

primary PC axis (PC1).  Hierarchical AMOVA (Table 4.2) revealed significant 

differences among regions (FCT = 0.0985, P = 0.000) and among localities within 

regions (FSC = 0.0075, P = 0.000).  The proportion of genetic variation explained by 

among-region differences and among-localities within region differences was 9.85 and 

0.68 percent, respectively.  FST estimates (Supplemental Table A4) for all pairwise 

comparisons between localities in different regions differed significantly from zero; FST 

values between localities in WG and those in EG generally were larger than FST values 

between localities in WG and ATL (Figure 4.3h).  FST estimates for pairwise 

comparisons between localities within regions also differed significantly from zero 

except for LLM vs. SAB, SAB vs. MIS, and WAS vs. SCA.  Pairwise FST of regional 

groupings indicated a similar pattern; the estimate of FST between WG and EG (FST = 

0.168, P = 0.000) was over twice that of WG vs. ATL (FST = 0.076, P = 0.000) and EG 

vs. ATL (FST = 0.063, P = 0.000).
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Table 4.3 Redundancy analysis. Redundancy analysis (RDA) was based on all loci (n = 1,539), neutral 

loci (n = 1,393), and outlier loci (n = 146).  R2
Adj. is proportion of total among-locality genetic variation 

explained by all of the independent variables (geography + environment + shared); Geography is 

proportion of total among-locality genetic variation explained by geography alone; Environment is 

proportion of total among-locality genetic variation explained by environmental variables alone; Shared is 

proportion of total among-locality genetic variation explained by the combination of geography and 

environmental variables; Residual is proportion of total among-locality genetic variation not explained by 

the model.  Significant values (P < 0.05) are in bold. 

 

 All Loci Neutral Outlier 

Total Adjusted R2 0.252 0.126 0.691 

Geography 0.022 0.016 0.043 

Environment 0.062 0.017 0.219 

Shared 0.168 0.093 0.429 

Residual 0.748 0.874 0.309 
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The Mantel test (Figure 4.3i) revealed a weak, but significant relationship between 

genetic and geographic distance (r = 0.357, P = 0.033). 

 

Redundancy Analysis 

Forward selection of geographic distance variables in polynomial form resulted in 

selection of first- and second-order polynomials in the model; forward selection of 

environmental variables resulted in selection of three environmental variables: mean 

oceanic (outside of the estuary) concentration of dissolved inorganic phosphates 

(oceanic DIP), minimum oceanic salinity, and average wind speed.  A summary of 

results of redundancy analysis for all loci, only neutral loci, and only outlier loci is given 

in Table 4.3.  For all loci, the set of independent (constraining) variables, which included 

both geographic and environmental variables, explained a significant proportion of the 

total among-locality variance (R2
Adj = 0.252, P = 0.003).  Neither geography nor 

environment alone explained a significant component of among-locality variance, 

although the component of shared variance, while not testable for significance (see 

Methods), was relatively large.  For neutral loci, the set of independent variables 

explained a significant component of among-locality genetic variance (R2
Adj = 0.126, P = 

0.007), but neither geography nor environment alone were significant.  For outlier loci, 

the set of independent variables explained a large and significant proportion of among-

locality genetic variance (R2
Adj = 0.691, P = 0.009).  However, the component of 

variance attributable to geography was non-significant (R2
Adj. – 0.043, P = 0.079), 

whereas the component attributable to environment was significant (R2
Adj = 0.219, P = 
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0.015).  Inspection of the RDA eigenvalues computed with only outlier loci revealed that 

the constrained genetic variance (the variance attributable to the independent variables) 

was largely explained by the two largest RDA axes, which accounted for 69.03 and 

20.06 percent of the constrained genetic variance.  An RDA biplot for outlier loci 

(Figure 4.4) reveals the genetic relationships among localities overlain with vectors of 

environmental variables.  Oceanic DIP appears to be highest in the WG and lowest in the 

EG, minimum oceanic salinity appears lowest in the WG and highest in the ATL, and 

average wind speed appears highest in the ATL and lowest in the EG. 

 

Detection of Genomic Regions under Selection 

Of 1,539 RAD loci in the complete dataset, 746 (48.5%) were segregating in at least one 

mapping cross and were successfully added to the linkage map.  Of 746 mapped loci, 73 

were identified as outliers by at least one outlier-detection method.  Based on criteria 

noted above, i.e., identified as an outlier by all three methods, within two cM of another 

outlier, or with a global FST > 0.1, 45 loci were designated as high-confidence outliers.  

These outliers tended to be grouped non-randomly on linkage groups (Supplemental 

Figure B4); 39 of the 45 high-confidence outlier loci were located within two cM of 

another outlier locus and grouped into 15 clusters of outlier loci on ten different linkage 

groups (Figure 4.5). 

 The first two principal components of the PCA of outlier loci (Figure 4.3g) 

explained a majority of detected, among-region genetic variation; PC1 separated all 

three regions, with ATL localities positioned between WG and EG localities, while PC2



 

101 

 

  

 

Figure 4.4 A biplot from redundancy analysis.  Colored points are represent localities and positions are 

indicative of the genetic relationships between localities, generated with principal coordinates analysis 

(PCoA), using the outlier dataset.  Arrows represent the three environmental variables used in the 

redundancy analysis (RDA) model, and their directionality indicates the vector upon which each variable 

correlates with the genetic relationship among localities.  Oceanic DIP = annual mean oceanic (outside of 

the estuary) concentration of dissolved inorganic phosphates; Wind Speed = average estuary wind speed; 

Minimum Ocean Salinity = annual minimum oceanic (outside of the estuary) salinity.
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Figure 4.5 Location of 15 outlier clusters in the red drum genome.  Outlier clusters are regions 

containing at least two high-confidence outliers spaced less than 2 centiMorgans (cM) apart. Each panel 

represents one of the ten linkage groups where outlier clusters were identified and shows the global FST for 

each locus (y-axis) against position on the linkage group (cM; x-axis).  The shape of each point represents 

the type of locus: triangles = loci which contributed a larger proportion to the x-axis of the outlier PCA (x-

loci); squares = loci which contributed a larger proportion to the y-axis of the outlier PCA (y-loci); circles 

= not outliers.  Outlier clusters are highlighted with colored rectangles: blue rectangles = outlier clusters 

containing only x-loci; red rectangles = outlier clusters containing only y-loci; green rectangles = outlier 

clusters containing both x- and y-loci. 

 



 

103 

 

separated ATL localities from both WG and EG localities.  Of the 45 high-confidence 

outlier loci, 32 contributed to a larger proportion of the variance along PC1, while the 

remaining 13 loci contributed a larger proportion of the variance along PC2.  Of the 15 

clusters of outlier loci identified on the linkage map, five contained loci contributing to 

PC1, two clusters contained loci contributing to PC2, and eight clusters contained loci 

contributing to both PC1 and PC2. 

 

Identification of Candidate Genes 

The BLAST search of 32 outlier loci contributing to PC1 resulted in 20 strong matches 

to the large yellow croaker genome assembly.  The regions immediately surrounding 

each of the 20 hits (± 100 kb) contained 59 candidate genes.  The BLAST search of 13 

outlier loci contributing to PC2 resulted in nine matches.  The regions surrounding each 

of the nine hits contained 35 candidate genes.  A summary of these results is presented in 

Supplemental Table A5. 

 

DISCUSSION 

Linkage Map 

In total, 1,794 haplotyped RAD contigs, consisting of 3,462 SNP loci, were added to the 

red drum linkage map.  Addition of these loci reduced the mean marker interval to less 

than one cM.  The total length of the consensus map (2,105.30 cM) is larger than 

reported previously for microsatellite-based maps (1196.9 cM, Portnoy et al., 2010; 

1815.3, Hollenbeck et al., 2015).  Much of this discrepancy is probably a result of 
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combining maps from different families, using MERGEMAP, which has been reported to 

inflate total map length (Khan et al., 2012).  Relative to the average total length of 

individual-based maps reported in this study, the total length of the consensus map was 

inflated by ~24 percent, consistent with the results of McKinney et al., (2015) who 

found that MERGEMAP increased the size of the Chinook salmon consensus map by ~30 

percent per additional family.  However, there exists a tradeoff between accuracy of map 

lengths and inclusion of loci on the map (Chapter 2 of this dissertation). Because the 

purpose of the map in this study was to determine the relative positions of loci rather 

than the frequency of recombination between them, addition of more loci to the 

consensus map by combining information between mapping families at the expense of 

more accurate map distances is acceptable.  Overall, the dense linkage map will be a 

valuable resource for future studies of red drum, particularly for genetic improvement in 

commercial aquaculture where linkage maps are critical tools for QTL mapping and 

marker-assisted selection (Liu and Cordes, 2004). 

 

Population Genomics 

Temporal Stability 

Temporal stability of allele frequencies was documented by comparing samples 

collected at two localities, LLM and MAT, in spring 2008 and winter 2014/2015.  The 

>6 year sampling interval is sufficiently long to ensure that the temporal samples 

contained different juvenile cohorts, given that juvenile red drum typically inhabit natal 

bays and estuaries for 3-5 years before becoming reproductively mature and joining the 
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offshore adult population (Pattillo et al., 1997).  While temporal samples were obtained 

from these two localities only, the results provide additional evidence that observed 

genetic differences among geographic localities reflect relatively stable, long-term 

patterns and are not caused by year-to-year variability in juvenile recruitment (Scharf, 

2000, Gold and Turner, 2002). 

 

Outlier Detection 

The frequency of outliers (~9.5% of all loci analyzed) putatively under directional 

selection is consistent with results of a meta-analysis of 20 genome-scan studies by Nosil 

et al., (2009), wherein the average per cent of outlier loci was ~8.5.  Nevertheless, the 

total number of outliers observed in this study almost certainly represents an 

overestimate due to false positives arising from a number of factors (see Meirmans et al., 

2015 for discussion).  One potential source of false positives in genome scans is the 

presence of hierarchical structure among sample localities (Excoffier et al., 2009).  This 

is because when localities are structured hierarchically, individual localities do not 

represent independent pools of migrants, as is assumed under a typical island model 

(Wright, 1943), and the overall variance in FST will be inflated if structure is not 

accounted for in the null distribution of FST (Hermisson, 2009, Excoffier et al.,2009).  

This is a particularly important consideration for red drum given the hierarchical 

structure observed in this study.  Consistent with this, the outlier detection algorithm 

employed in ARLEQUIN, which accounts for the effects of predefined hierarchical 

structure and was the most conservative method applied, identified 52 outliers under 
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directional selection (52 loci; 3.4% of all loci assayed).  Notably, the other two 

approaches also identified the same 52 outliers.  We used all 146 identified outliers when 

defining neutral and outlier datasets in this study because a few outlier loci can 

dramatically influence patterns of variation if not removed from a ‘neutral’ dataset 

(Luikart et al., 2003). 

 

Population Genetic Structure 

Population-genetic analyses of neutral, outlier, and full (all loci) datasets revealed the 

existence of three, genetically distinct populations of red drum, where sample localities 

were grouped into WG, EG, and ATL regions.  The similarity in patterns of genetic 

variation and divergence between the full dataset and that containing FST outliers 

demonstrates that outlier loci strongly influenced the recovered pattern of population 

structure observed when all loci were analyzed together.  Because the patterns exhibited 

by the full dataset were so heavily influenced by the outlier loci, the remainder of the 

discussion will focus on only the neutral and outlier datasets. 

Genetic divergence among neutral loci was significant in pairwise comparisons 

between the three regions (ATL, EG, and WG), indicating existence of contemporary 

and/or historical barriers to gene flow.  The significant genetic differences between red 

drum in the Gulf and Atlantic has been reported previously (Gold and Richardson, 1991; 

Gold et al.,1993, 1999; Seyoum et al.,2000; Chapman et al.,2002), as have genetic 

differences between populations in the Gulf and Atlantic in a variety of other coastal 

marine species (Supplemental Table A6).  The marine fishes that differ genetically on 
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either side of the Florida peninsula include a broad range of taxonomic groups and 

general life histories (Supplemental Table A6), suggesting that both historical and 

contemporaneous barriers to gene flow likely occur around peninsular Florida (Reeb and 

Avise, 1990; Gold et al., 1993; Gold and Richardson, 1998; Seyoum et al., 2000; 

Portnoy et al., 2015).   

 The significant genetic discontinuity between red drum in the WG and EG adds 

to the list of other coastal marine species where genetic differences between the WG and 

EG regions has been reported (Supplemental Table A6).  There also are morphological 

and/or genetic data for more than 15 pairs of sister taxa that display a similar WG/EG 

distribution (reviewed in Portnoy and Gold, 2012).  Distributional data for the pairs of 

sister taxa (Figure 1 and Appendix S1 in Portnoy and Gold, 2012) indicated that the 

boundary between the regions was broad and in the area between longitude 84 W and 89 

W.  The boundary has been referred to as a vicariant (Dahlberg, 1970; McClure and 

McEachran, 1992) or marine suture-zone (Portnoy and Gold, 2012).  Because of the 

proximity of the zone to the Mississippi River, hypotheses proposed to account for the 

zone include physical and/or ecological barriers to gene flow stemming from the river’s 

outflow at different points in the past 2-3 million years (Karlsson et al., 2009; Portnoy 

and Gold, 2012; Portnoy et al., 2014).  The same or other barriers also could restrict 

contemporary gene flow.  Additional contemporary barriers might include the narrowing 

of the continental shelf around DeSoto Canyon at ~85 W (Johnson et al., 2009) and/or 

the Loop Current (Karlsson et al., 2009) which periodically forms an intense clockwise 



 

108 

 

flow that can reach as high as the Mississippi river delta and the continental Florida shelf 

(Huh et al., 1981; Wiseman and Dinnel, 1988).  

 Tests of genetic homogeneity, using neutral loci, among sample localities within 

the three regions were non-significant except for the comparison of IND versus HAR in 

the Atlantic.  However, there also was a strong and highly significant isolation-by-

distance effect (r2 = 0.626), based on neutral loci, consistent with prior genetic studies of 

red drum in the Gulf (Gold and Richardson 1991; Gold et al.,1993, 1999) and the model 

proposed by Gold et al., (2001), in which gene flow occurs primarily (but not 

exclusively) between adjacent bays and estuaries distributed linearly along the coastline 

and where the probability of gene exchange decreases with increasing geographic 

distance.  Interestingly, the test of pairwise genetic homogeneity between the samples 

from MIS in the WG and APA in the EG was non-significant, whereas all other tests of 

homogeneity between samples from different regions were significant.  The two 

localities (MIS and APA) are only 427 km from one another, well within the distances 

between most localities within regions.  This observation suggests that periodic gene 

flow still occurs between the two localities. 

 Genome scan approaches are a powerful tool for detecting loci under selection in 

natural populations; however, interpretation of the results of such strategies must be 

done with care, as non-selective forces such as demographic change can mimic the 

effects of selection in the genome (Teshima et al., 2006; Lotterhos et al., 2014; Poh et 

al., 2014).  Because of this, it is important to consider other sources of evidence for 

selection (Storz, 2005).  In this study, there are three lines of evidence indicating that 
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natural selection has played an important role in shaping the observed patterns of genetic 

variation in red drum.  These are: 1) differences in the patterns of divergence between 

regions based on neutral and putatively adaptive variation, 2) correlations between 

adaptive genetic variation and environmental factors, and 3) the presence of outlier loci 

which are non-randomly distributed in the genome. 

 Genetic divergence among outlier loci also was significant among regions but 

differed from genetic patterns indicated by neutral loci in that significant divergence also 

was found among localities within regions.  In addition and also in contrast to genetic 

patterns indicated by neutral loci, the degree of divergence between WG and EG among 

outlier loci was more than two-fold greater than that between EG and ATL and WG and 

ATL.  The same geographically discordant pattern also was indicated by the location of 

the three regional clusters along the primary axis (PC1) of the PCA analysis.  A second 

pattern indicated by the outlier loci, displayed on the second PCA axis (PC2) was a 

separation of Gulf localities from Atlantic localities, which suggests that divergent 

selection has operated between the two regions.  Further, a considerable proportion of 

the genetic variation explained by outlier loci between EG and ATL was correlated with 

latitude, a pattern that has been documented previously among bonnethead sharks in the 

same region (Portnoy et al., 2015).  Latitude-related genetic differences in populations of 

marine fishes have been attributed to temperature-dependent growth rates (Conover and 

Present, 1990) and differential parasite loads (Poulin and Morand, 2000), although other 

adaptive differences related to the transition from temperate to sub-tropical climate in 

southern Florida cannot be ruled out (Portnoy et al., 2015).  Overall, because the outlier 
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loci grouped the localities by region despite geographic discordance, it would appear that 

local adaptations may be driven largely by environmental factors that vary on a regional 

scale rather than at the level of individual bays and estuaries. 

 There also was evidence of significant heterogeneity, based on outlier loci, 

among localities within regions; significant FST values were found in all but three 

pairwise comparisons between localities in the same region: LLM/SAB and SAB/MIS in 

the WG and WAS/SCA in the ATL.  However, the magnitude of significant FST values 

for within-region comparisons were roughly an order of magnitude less than between-

region comparisons, suggesting that within-region differences, if any, are likely small.  

This bears further investigation because existence of temporally stable genetic 

differences within regions would have important implications for resource allocation and 

decision-making with regards to management of the red drum fishery. 

 Redundancy analysis supported the inferences of population structure indicated 

by neutral and outlier loci.  For all three datasets, the combination of geographic and 

environmental variables explained a significant proportion of the total among-locality 

variance.  Geography alone did not explain a significant proportion of the among-

locality genetic variance in any of the datasets; however, environmental variables alone 

did explain a significant proportion of the among-locality genetic variance for outlier 

loci (R2
Adj = 0.219, P = 0.015), further supporting the hypothesis that the patterns of 

population structure attributed to outlier loci are being driven by natural selection. 

 The three explanatory environmental variables chosen in model selection were 

oceanic DIP, minimum oceanic salinity, and average wind speed.  All three variables 
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differ on broad (regional) geographic scales rather than between geographically adjacent 

bays and estuaries, and all three would be expected to impact habitats where red drum 

are found.  DIP, for example, reflects phosphorus availability and has been shown to 

correlate with primary autotrophic production in marine and estuarine habitats (Howarth, 

1988; Paytan and McLaughlin, 2007) and thus to form the base of the food web and 

influence species distributions and ecosystem structure (Ryther, 1969).  The primary 

source of oceanic phosphorus is continental weathering and erosion (Paytan and 

McLaughlin, 2007), suggesting that concentration of DIP is likely correlated with 

freshwater inflow.  Salinity differences can also impact red drum survival, as hatching of 

red drum under experimental conditions and a range of salinities characteristic of natural 

conditions have shown that salinity differences significantly influence hatching success 

and 24-hour survival of larvae (Holt et al., 1981).  Finally, wind is a major driver of 

ocean currents and upwelling (Emerson and Hedges, 2008) and influences survival of 

fish eggs and larvae (Norcross and Shaw, 1984).  This is undoubtedly important for red 

drum given that adults spawn in nearshore habitats and the transport of larvae into bay 

and estuarine nurseries is dependent on favorable current conditions (Matlock, 1987; 

Rooker and Holt, 1997). 

 The WG is characterized by the highest levels of DIP and lowest minimum 

oceanic salinity, variables that are likely a function of the large amount of freshwater 

inflow from the Mississippi and Atchafalaya rivers (Rabalais et al., 1996; Huang et al., 

2004) and the scale of anthropogenic phosphorus sources such as agricultural runoff 

(Paytan and McLaughlin, 2007).  Wind speed is typically higher in both the WG and 
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ATL due to the direction of prevailing winds, which for most of the year move southeast 

to northwest across the southern U.S. (NREL, 2015).  For all three environmental 

variables, localities within regions were more similar in magnitude, and for oceanic DIP 

and wind speed, sample localities in WG were more similar to sample localities in ATL 

than to those in EG; these observations are consistent with the genetic patterns observed 

for the outlier dataset.  It should be noted that because these data are only appropriate for 

identifying correlations between environmental factors and genetic signal, it is only 

possible to speculate about potential factors driving natural selection.  Clearly, further 

study is needed to address specific hypotheses about environmental factors important for 

local adaptation in red drum. 

 The non-random grouping of outlier loci into clusters on different linkage groups 

is consistent with theoretical results (Beaumont, 2005) and observations from natural 

populations (Turner et al., 2005; Bradbury et al., 2010; Hemmer-Hansen et al., 2013) of 

ongoing or past divergent selection.  The patterns of variation in the genome also are 

consistent with the existence of ‘genomic islands of divergence’ (Wu, 2001; Turner et 

al., 2005) which contain loci under divergent selection.  It is difficult to ascertain 

whether individual clusters consist of a single locus under strong selection or multiple 

loci under selection because the number of outlier RAD loci in a given cluster is likely 

related to restriction-site frequency, which determines marker density of a given region, 

and to the local recombination rate, which modulates the extent to which loci in 

proximity of a specific locus or loci under selection can ‘hitchhike’ to elevated 

divergence (Barton, 2000).  However, it is predicted that loci of adaptive importance 
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should tend to aggregate together in the genome because mutations contributing to 

adaptive divergence tend to accumulate in regions where recombination is reduced 

(Navarro and Barton, 2003) or that already are under the influence of divergent selection 

(Nosil et al., 2009).  There is evidence that the observed outlier clusters in the red drum 

genome do contain multiple loci under selection because most outlier clusters contained 

loci that contributed heavily to the two functional groupings (PC1 and PC2 of the PCA 

analysis) that contributed to the distinct patterns of geographic divergence.  Further, loci 

under selection also are simultaneously under the influence of other population genetic 

forces, which makes it difficult to unambiguously assign loci to probable functional 

groupings.  Regardless, the candidate genes identified will be useful for future studies 

investigating the genetic basis of adaptation in red drum. 

 

Relative Role of Neutral and Adaptive Processes 

Separating genetic variation into neutral and adaptive components allowed unique 

insight into the way that different micro-evolutionary forces have influenced wild 

populations of red drum.  Based on significant heterogeneity in neutral loci between red 

drum on either side of the Florida Peninsula and a component (PC2 in PCA analysis) of 

variation in outlier loci that separated red drum in the Gulf from those in the Atlantic, it 

seems likely that both genetic drift and divergent selection have contributed to the 

genetically different populations in the Gulf and Atlantic. 

 The observed genetic differences between the WG and EG present a more 

interesting problem as heterogeneity in both neutral and outlier loci differences exist yet 
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there still appears to be gene flow between the eastern-most locality (MIS) sampled in 

the WG and the western-most locality (APA) in the EG.  This suggests the possibility 

that a contemporary, physical barrier to gene flow does exist between WG and EG and 

that divergent selection is acting in conjunction with genetic drift to drive genetic 

divergence between the two regions (Nosil et al., 2009).  Possible contemporary barriers 

to gene flow at the larval stage were noted above (DeSoto Canyon and the invasion of 

the Loop Current into the EG), but neither likely affect adult and sub-adult red drum 

movement over the long term given that red drum are long-lived (Ross et al., 1995) and 

are known to be capable of long-distance (>600 km) movement (Bacheler et al., 2009).  

 It also is possible is that ecological differences between the WG and EG promote 

important local adaptations that decrease effective levels of migration due to reduced 

survival and reproductive success of immigrant individuals; this also would impact 

divergence in neutral loci.  This process is termed isolation-by-adaptation or IBA (Nosil 

et al., 2008).  In addition to the environmental variables described above (oceanic DIP 

and minimum salinity, wind speed), the WG and EG are characterized by different 

sediment types: from terrigenous mud and silt in the WG to carbonate sediment in the 

EG (Wilhelm and Ewing, 1972; Bert, 1986); the two regions also have been identified as 

separate geological provinces (Uchupi, 1975).  On the other hand, the same pattern of 

divergence (WG vs. EG) has been documented in several, taxonomically diverse species 

with different life histories, suggesting that a common vicariant event (or events) that 

influenced them simultaneously, occurred at some point in the past.  If so, historical 
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vicariance could have initially promoted divergence in neutral loci between red drum in 

the two regions that was then reinforced by local adaptation. 

 

CONCLUSION 

 

Genomics techniques offer unprecedented insight into the micro-evolutionary forces that 

influence wild populations.  In this study, a genomic approach was used to study 

population structure of red drum in U.S. waters, to examine the relative effects of neutral 

and adaptive forces in shaping contemporary patterns of genetic variation and population 

structure, and to explore the genomic distribution of outlier loci.  The results of the study 

have implications for commercial aquaculture of red drum by providing a dense linkage 

map for future QTL mapping and marker-assisted selection (Liu and Cordes, 2004).  By 

describing the geographic scales of population structure and local adaptation, the study 

also provides useful information to inform selection of brood fish to mitigate possible 

genetic risks of escapement (Hindar et al., 1991) from red drum aquaculture facilities.  

Understanding the geographic scale of population structure and local adaptation also can 

benefit red drum restoration-enhancement programs (McEachron et al., 1993) by 

enabling the efficient matching of brood stock to release sites.  Finally, characterizing 

the geographic structuring of populations will enable managers to more efficiently 

manage the red drum fishery and conserve important adaptive genetic variation, which 

can be expected to lead to a more sustainable natural resource. 
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APPENDIX A 

SUPPLEMENTAL TABLES 

 

 

 

Supplemental Table A1 Pairwise matrix of approximate coastline geographic distance. Measurements were calculated with Google Earth® and are 

reported in in kilometers (km). 

 

 LLM MAT SAB MIS APA CEK CHA IND HAR WAS SCA 

LLM --           

MAT 290 --          

SAB 567 277 --         

MIS 1260 970 693 --        

APA 1687 1397 1120 427 --       

CEK 1961 1671 1394 701 274 --      

CHA 2248 1958 1681 988 561 287 --     

IND 2985 2695 2418 1725 1298 1024 737 --    

HAR 3306 3016 2739 2046 1619 1345 1058 321 --   

WAS 3391 3101 2824 2131 1704 1430 1143 406 85 --  

SCA 3537 3247 2970 2277 1850 1576 1289 552 231 146 -- 
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Supplemental Table A2 Environmental variables for each sampling locality, obtained from the National Estuarine Eutrophication Assessment database.  The descriptions of each variable can be found in the metadata from the database. 

 

Variable LLM MAT SAB MIS APA CEK CHA IND HAR WAS SCA 

Estuary Area (km2) 1308 1115 265 1581 593 165 502 866 39 88 85 

Tidal Fresh Zone Area (km2) 0 2 8 0 46 7 1 0 5 11 1 

Mixing Zone Area (km2) 27 918 257 1409 273 110 201 109 29 38 58 

Saltwater Zone Area (km2) 1281 195 0 172 274 48 300 757 5 38 25 

Estuary Depth (m) 0.76 1.41 2.49 2.43 1.81 1.17 1.63 0.77 1.96 3.35 4.99 

Estuary Perimeter (km) 1413 790 355 553 402 345 567 1383 215 320 313 

Percent Estuary Open (%) 0.04 0.76 0.17 1.99 2.99 11.89 2.64 0.21 1.63 1.75 0.83 

Catchment Area (km2) 13165 121762 53674 4050 52214 25989 8134 3093 36962 12133 41116 

Catchment Mean Elev. (m) 43 619 86 33 148 51 22 5 133 70 216 

Catchment Max Elev. (m) 257 1374 236 124 1250 139 75 14 459 244 1679 

Catchment/Estuary Area Ratio 10.1 109.2 202.5 2.6 88.1 157.5 16.2 3.6 947.7 137.9 483.7 

Total Land Cover (km2) 13048.362 121234.778 51999.1897 39069.94 51483.7999 25837.6779 11447.736 2944.811 36754.50998 12058.9776 39857.31 

Population (#) 616541 1432800 1230500 215299 2738086 417564 397072 471807 1681584 268166 3139518 

Pop / Estuary Area (#.km-2) 471.4 1285 4643.4 136.2 4617.3 2530.7 791 544.8 43117.5 3047.3 36935.5 

Tide Height (m) 0.4 0.2 0.47 0.51 0.58 0.76 0.65 0.32 1.9 1.93 1.45 

Tide Ratio 0.53 0.14 0.19 0.21 0.32 0.65 0.4 0.42 0.97 0.58 0.29 

Stratification Ratio 0.00146 0.04799 0.36975 0.00793 0.0976 0.10669 0.0085 0.00683 0.23917 0.02307 0.05799 

Percent Freshwater (%) 0 0.2 3.1 0 7.8 4.1 0.2 0 12 12.6 1.4 

Percent Mixed Water (%) 2.1 82.3 96.9 89.1 46.1 66.6 40.1 12.6 75.1 43.7 68.8 

Percent Seawater (%) 97.9 17.5 0 10.9 46.2 29.3 59.7 87.4 13 43.7 29.8 

Average Salinity (psu) 29 16 12 15 19 17 22 29 13 18 17 

Tidal Exchange (days) 233 82 10 336 8 4 59 36 1 19 16 

Tidal Freshwater Flush (d) 4 38 10 23 4 1 3 3 0 1 5 

Daily FW/Est Area (m.d-1) 1.575 8.906 166.415 1.961 107.926 155.758 10.1 3.441 876.923 84.886 161.176 

Daily Freshwater (m3.d-1) 2060000 9930000 44100000 3100000 64000000 25700000 5070000 2980000 34200000 7470000 13700000 

Flow / Estuary Area (m.d-1) 1.575 8.906 166.415 1.961 107.926 155.758 10.1 3.441 876.923 84.886 161.176 

Total FW Volume (1.d-1) 0.00074 0.00658 0.06743 0.00161 0.06044 0.13392 0.00655 0.00549 0.44801 0.02569 0.03256 

Daily Precipitation (m3.d-1) 2.41E+06 3.27E+06 1.05E+06 6.88E+06 2.30E+06 571000 1.72E+06 3.06E+06 138000 306000 293000 

Daily Evaporation (m3.d-1) 3.73E+06 2.86E+06 655000 3.80E+06 1.43E+06 417000 1.43E+06 2.38E+06 91800 203000 182000 

Daily Precip / Est Area (mm.d-1) 1.843 2.933 3.962 4.352 3.879 3.461 3.426 3.533 3.538 3.477 3.447 

Daily Evap / Est Area (mm.d-1) 2.852 2.565 2.472 2.404 2.411 2.527 2.849 2.748 2.354 2.307 2.141 

Flow (m3.d-1) 2.06E+06 1.26E+07 5.97E+07 1.84E+06 6.56E+07 3.37E+07 2.46E+06 1.22E+06 3.88E+07 1.17E+07 3.60E+07 

Air Temp Mean (C) 23.3 21.3 20.6 20.2 20.8 21.8 23.2 22.6 20.4 19.7 18.6 

Air Temp Std Dev (C) 4.8 5.9 6.2 6.2 5.7 5 3.8 4 5.8 6.3 6.4 

Frost Days (#) 3 9 15 21 16 13 1 3 28 29 41 
Supplemental Table A2 continued           
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Variable LLM MAT SAB MIS APA CEK CHA IND HAR WAS SCA 

Wind Speed (m.sec-1) 7.1 7 6.4 6.2 6 6 5.9 6.5 6.7 6.8 7.1 

Sea Surface Temp Mean (C) 24.6 24.1 23.4 23.2 23.7 24 25.5 26.1 23.8 23.8 23.9 

Sea Surface Temp Std Dev (C) 3.5 4.1 4.8 4.8 4.2 4 3.1 2.4 3.4 3.3 3.1 

Ocean Salinity Mean (psu) 35.1 34.6 33.9 32.7 35.3 35.2 35.9 36.1 35.2 35.2 35.6 

Ocean Salinity Max (psu) 36.6 36.2 35.8 35.1 36.4 36 36.3 36.3 35.8 35.8 36 

Ocean Salinity Min (psu) 31.9 30.5 30.7 30.2 32.9 33.3 34.7 36 34.6 34.5 34.9 

Oceanic DIP (µM) 0.2 0.21 0.32 0.27 0.13 0.12 0.1 0.16 0.17 0.16 0.16 

Oceanic NO3 (µM) 0.12 0.14 0.7 1.95 0.87 0.59 0.58 0.27 0.29 0.29 0.33 

TSS (tonne.y-1) 3.18E+06 1.14E+06 811000 563000 127000 175000 140000 39700 1960 17400 32200 

TN (kg.y-1) 9.13E+06 9.13E+06 2.34E+07 1.62E+06 2.59E+07 5.78E+06 1.85E+06 1.61E+06 1.53E+07 6.40E+06 2.00E+06 

TP (kg.y-1) 337900 830800 1.36E+06 166780 970300 2.46E+06 290780 187860 799800 440200 278380 

TSS/Est Area (tonne.km-2.y-1) 2431.2 1022.4 3060.4 356.1 214.2 1060.6 278.9 45.8 50.3 197.7 378.8 

TN/Est Area (kg.km-2.y-1) 6978.6 8186.5 88226.4 1027.2 43676.2 35042.4 3681.3 1859.1 391282.1 72704.5 23552.9 

TP/Est Area (kg.km-2.y-1) 258.33 745.11 5135.47 105.49 1636.26 14917.58 579.24 216.93 20507.69 5002.27 3275.06 
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Supplemental Table A3 A summary of data-filtering procedures for the population genomics dataset; rows refer to each filtering step and columns 

refer to statistics for each step.  In column names, ‘sites’ refer to individual polymorphisms (SNPs, indels, or complex polymorphisms), ‘loci’ refers to 

RAD contigs (each of which may contain multiple sites), and ‘Inds’ refers to individuals.  ‘Start’, ‘End’, and ‘Removed’ refer, respectively, to the 

number of each unit before the filtering step, the number after the filtering step, and the number removed with the filter. 

 

Filter Start 

sites 

End 

sites 

Removed 

sites 

Start 

loci 

End 

loci 

Removed 

loci 

Start 

Inds 

End 

Inds 

Removed 

Inds 

Genotype depth < 10 430466 430466 0 33170 33170 0 568 568 0 

Mean site quality < 20 430466 361415 69051 33170 32988 182 568 568 0 

Mean site call rate < 0.5 361415 98309 263106 32988 8647 24341 568 568 0 

Ind depth < 10 & call rate < 0.25 98309 98309 0 8647 8647 0 568 551 17 

Mean site call rate < 0.75 98309 69484 28825 8647 5946 2701 551 551 0 

Ind call rate < 0.6 69484 69484 0 5946 5946 0 551 531 20 

Minor allele frequency < 0.05 69484 7890 61594 5946 3751 2195 531 531 0 

Discordant sites between duplicates 7890 7811 79 3751 3740 11 531 531 0 

Remove duplicate individuals 7811 7811 0 3740 3740 0 531 526 5 

Remove known hatchery individuals 7811 7811 0 3740 3740 0 526 504 22 

Remove related individuals 7811 7811 0 3740 3740 0 504 496 8 

dDocent_filters script 7811 7351 460 3740 3633 107 496 496 0 

Decomposed to allelic primitives 7351 7839 -488 3633 3633 0 496 496 0 

Hardy-Weinberg equilibrium 7839 7539 300 3633 3563 70 496 496 0 

Mean site call rate < 0.75 7539 7539 0 3563 3563 0 496 470 26 

Mean site call rate by locality < 0.85 7539 3689 3850 3563 1804 1759 470 470 0 

Mean site call rate overall < 0.95 3689 3642 47 1804 1784 20 470 470 0 

Haplotyping 3642 2874 768 1784 1543 241 470 470 0 

Manual Inspection and Filtering 2874 2860 14 1543 1539 4 470 462 8 



 

136 

 

 

 

 

 

Supplemental Table A4 Estimates of pairwise FST for 11 sampled localities, using datasets consisting of all loci (n = 1,539), only neutral loci (n = 

1,393), and only outlier loci (n = 146).  Estimates of pairwise FST (lower diagonal); Probability (P) that FST = 0 (upper diagonal).  Significance was 

assessed by permutation test with 10,000 permutations.  Estimates in bold represent significant values following correction, using a false discovery rate 

(FDR) of 0.05. 

 

 

All Loci            

 LLM MAT SAB MIS APA CEK CHA IND HAR WAS SCA 

LLM -- 0.4825 0.8327 0.3551 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MAT 0.0005 -- 0.7704 0.3161 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

SAB -0.0001 0.0000 -- 0.4289 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MIS 0.0006 0.0006 0.0002 -- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

APA 0.0159 0.0149 0.0149 0.0125 -- 0.0782 0.0002 0.0000 0.0000 0.0000 0.0000 

CEK 0.0231 0.0222 0.0223 0.0193 0.0011 -- 0.5191 0.0000 0.0000 0.0000 0.0000 

CHA 0.0265 0.0251 0.0253 0.0227 0.0025 0.0004 -- 0.0000 0.0000 0.0000 0.0000 

IND 0.0152 0.0140 0.0136 0.0128 0.0068 0.0106 0.0123 -- 0.0000 0.0031 0.0049 

HAR 0.0131 0.0116 0.0129 0.0114 0.0091 0.0121 0.0142 0.0029 -- 0.0084 0.3804 

WAS 0.0141 0.0128 0.0133 0.0110 0.0086 0.0122 0.0136 0.0019 0.0020 -- 0.7662 

SCA 0.0130 0.0115 0.0119 0.0100 0.0075 0.0109 0.0128 0.0014 0.0006 0.0001 -- 
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Supplemental Table A4 continued         

Neutral Loci           

 LLM MAT SAB MIS APA CEK CHA IND HAR WAS SCA 

LLM -- 0.7251 0.8731 0.8625 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MAT 0.0002 -- 0.9355 0.8256 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

SAB -0.0002 -0.0004 -- 0.5500 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MIS -0.0002 -0.0001 0.0001 -- 0.1349 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

APA 0.0025 0.0023 0.0024 0.0011 -- 0.9224 0.6476 0.0000 0.0000 0.0000 0.0000 

CEK 0.0037 0.0039 0.0040 0.0027 -0.0002 -- 0.8543 0.0000 0.0000 0.0000 0.0000 

CHA 0.0042 0.0032 0.0037 0.0030 0.0003 0.0000 -- 0.0000 0.0000 0.0000 0.0000 

IND 0.0063 0.0060 0.0053 0.0058 0.0034 0.0051 0.0054 -- 0.0150 0.2711 0.1505 

HAR 0.0050 0.0043 0.0053 0.0045 0.0045 0.0044 0.0046 0.0019 -- 0.0818 0.7526 

WAS 0.0062 0.0056 0.0057 0.0042 0.0047 0.0048 0.0047 0.0008 0.0014 -- 0.8809 

SCA 0.0056 0.0049 0.0051 0.0041 0.0034 0.0040 0.0041 0.0008 0.0002 -0.0001 -- 

Outlier Loci           

 LLM MAT SAB MIS APA CEK CHA IND HAR WAS SCA 

LLM -- 0.0256 0.3258 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MAT 0.0034 -- 0.0117 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

SAB 0.0012 0.0041 -- 0.1308 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MIS 0.0087 0.0074 0.0020 -- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

APA 0.1350 0.1295 0.1258 0.1122 -- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

CEK 0.1846 0.1781 0.1753 0.1574 0.0141 -- 0.0053 0.0000 0.0000 0.0000 0.0000 

CHA 0.2100 0.2075 0.2024 0.1839 0.0234 0.0045 -- 0.0000 0.0000 0.0000 0.0000 

IND 0.0966 0.0893 0.0886 0.0755 0.0373 0.0591 0.0737 -- 0.0000 0.0000 0.0001 

HAR 0.0889 0.0819 0.0841 0.0737 0.0506 0.0803 0.0971 0.0122 -- 0.0017 0.0063 

WAS 0.0882 0.0823 0.0831 0.0724 0.0439 0.0781 0.0904 0.0120 0.0074 -- 0.1382 

SCA 0.0812 0.0733 0.0744 0.0635 0.0435 0.0718 0.0882 0.0068 0.0052 0.0020 -- 
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Supplemental Table A5 Summary of candidate genes for loci contributing primarily to PC1 and PC2 in the PCA of outlier loci.  Gene and protein annotations are predictions from the genome of the large yellow croaker in the RefSeq genome assembly 

annotation (GenBank accession: ASM74293v1).  The scaffold accession and start/stop coordinates refer to the same assembly version.  The RAD locus for each entry is the nearest outlier locus in proximity to the gene. 

 

Protein Name RAD Locus Scaffold Start Stop Strand Gene ID Gene Name Protein Accession Length 

PC1          

neurexin-2-like Contig_29149 NW_011322530.1 163264 483252 + 104919663 LOC104919663 XP_010730030.1 1061 

mitogen-activated protein kinase kinase kinase 11 Contig_29149 NW_011322530.1 528129 569008 - 104919676 map3k11 XP_010730045.1 1044 

histone-lysine N-methyltransferase 2A Contig_41916 NW_011322458.1 1398499 1434688 - 104936774 kmt2a XP_010751167.1 4489 

ubiquitin conjugation factor E4 A isoform X2 Contig_41916 NW_011322458.1 1442852 1451063 - 104936480 ube4a XP_010750832.1 1077 

bicaudal D-related protein 1-like Contig_41916 NW_011322458.1 1459180 1474837 - 104936494 LOC104936494 XP_010750843.1 538 

protein FAM98B-like Contig_41916 NW_011322458.1 1480104 1484531 + 104936503 LOC104936503 XP_010750854.1 349 

coiled-coil-helix-coiled-coil-helix domain-containing protein 2, mitochondrial Contig_41916 NW_011322458.1 1486676 1488853 + 104936513 chchd2 XP_010750867.1 169 

phosphorylase b kinase gamma catalytic chain, skeletal muscle/heart isoform Contig_41916 NW_011322458.1 1492117 1496362 + 104936522 phkg1 XP_010750875.1 394 

phosphoserine phosphatase isoform X1 Contig_41916 NW_011322458.1 1502505 1505300 + 104936532 psph XP_010750888.1 242 

protein NipSnap homolog 2 Contig_41916 NW_011322458.1 1506732 1512502 - 104936548 gbas XP_010750907.1 286 

elastin-like Contig_41916 NW_011322458.1 1571187 1602279 + 104936783 LOC104936783 XP_010751178.1 472 

elastin-like Contig_41916 NW_011322458.1 1607229 1617573 + 104936793 LOC104936793 XP_010751189.1 254 

intraflagellar transport protein 74 homolog Contig_53440 NW_011323504.1 2451 12001 + 104934431 ift74 XP_010748393.1 604 

zinc finger CCHC domain-containing protein 2 Contig_53440 NW_011323504.1 17169 39560 - 104934432 zcchc2 XP_010748394.1 1155 

collagen alpha-1(XXI) chain-like Contig_53440 NW_011323504.1 52247 111426 + 104934433 LOC104934433 XP_010748396.1 816 

dermatan-sulfate epimerase-like protein Contig_30010 NW_011323737.1 60418 64050 + 104936053 dsel XP_010750322.1 1210 

N-lysine methyltransferase setd6-like Contig_30010 NW_011323737.1 65618 72312 + 104936054 LOC104936054 XP_010750323.1 330 

CCR4-NOT transcription complex subunit 1 isoform X9 Contig_30010 NW_011323737.1 74834 91686 - 104936050 cnot1 XP_010750319.1 2372 

actin cytoskeleton-regulatory complex protein PAN1-like Contig_30010 NW_011323737.1 102129 114325 + 104936052 LOC104936052 XP_010750320.1 424 

relaxin receptor 1 Contig_12765 NW_011323281.1 69440 137956 + 104932580 rxfp1 XP_010746150.1 790 

protein diaphanous homolog 3 Contig_42920 NW_011322786.1 306926 462150 - 104926257 diaph3 XP_010738373.1 1206 

tudor domain-containing protein 3 isoform X1 Contig_42920 NW_011322786.1 469379 487009 + 104926258 tdrd3 XP_010738374.1 788 

catenin delta-2-like Contig_66331 NW_011323039.1 43512 165020 - 104929872 LOC104929872 XP_010742805.1 1181 

cAMP-dependent protein kinase inhibitor alpha Contig_66331 NW_011323039.1 213707 214752 + 104929873 pkia XP_010742806.1 79 

tyrosine-protein kinase Lyn isoform X1 Contig_66331 NW_011323039.1 221150 229509 + 104929874 lyn XP_010742808.1 511 

uroporphyrinogen decarboxylase-like, partial Contig_66331 NW_011323039.1 232289 234278 + 104929877 LOC104929877 XP_010742811.1 126 

dynein heavy chain 10, axonemal, partial Contig_67276 NW_011324625.1 537 18960 + 104939268 dnah10 XP_010754084.1 3255 

kelch-like protein 20 Contig_33200 NW_011323582.1 151033 152396 - 104934996 LOC104934996 XP_010749079.1 117 

CUB and sushi domain-containing protein 3 Contig_67449 NW_011322428.1 472682 719653 - 104919588 csmd3 XP_010729953.1 3552 

proteasome assembly chaperone 2 Contig_5976 NW_011322503.1 3260 5771 + 104918638 psmg2 XP_010728750.1 262 

tyrosine-protein phosphatase non-receptor type 2-like Contig_5976 NW_011322503.1 8800 20329 - 104918639 LOC104918639 XP_010728753.1 392 

E3 ubiquitin-protein ligase RNF19A-like Contig_5976 NW_011322503.1 37022 47893 + 104918640 LOC104918640 XP_010728754.1 858 

sperm-associated antigen 1A-like Contig_5976 NW_011322503.1 52053 63784 - 104918661 LOC104918661 XP_010728782.1 392 

DNA-directed RNA polymerases I, II, and III subunit RPABC4 Contig_5976 NW_011322503.1 66798 68311 - 104918641 polr2k XP_010728756.1 58 
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Supplemental Table A5 continued          

Protein Name RAD Locus Scaffold Start Stop Strand Gene ID Gene Name Protein Accession Length 

serine/threonine-protein kinase 3 Contig_5976 NW_011322503.1 68963 73628 + 104918642 stk3 XP_010728757.1 501 

ribonuclease UK114-like isoform X1 Contig_5976 NW_011322503.1 76582 80750 + 104918643 LOC104918643 XP_010728758.1 135 

60S ribosomal protein L30 Contig_5976 NW_011322503.1 96416 100475 + 104918646 rpl30 XP_010728760.1 116 

lysosomal-associated transmembrane protein 4B-like Contig_5976 NW_011322503.1 106763 116729 - 104918647 LOC104918647 XP_010728761.1 225 

tumor protein D52 isoform X1 Contig_22948 NW_011322601.1 190120 207173 + 104922215 tpd52 XP_010733284.1 201 

zinc finger protein 704 isoform X2 Contig_22948 NW_011322601.1 221698 265950 - 104922217 znf704 XP_010733287.1 521 

phosphoprotein associated with glycosphingolipid-enriched microdomains 1 Contig_22948 NW_011322601.1 270484 286243 - 104922218 pag1 XP_010733289.1 452 

39S ribosomal protein L53, mitochondrial Contig_22948 NW_011322601.1 327674 329817 + 104922220 mrpl53 XP_010733290.1 106 

myelin P2 protein Contig_22948 NW_011322601.1 331344 332570 + 104922221 pmp2 XP_010733291.1 134 

protein FAM8A1 Contig_22948 NW_011322601.1 346760 350872 + 104922222 fam8a1 XP_010733292.1 315 

protein phosphatase 1 regulatory subunit 36 Contig_10413 NW_011323196.1 31302 38217 - 104931679 ppp1r36 XP_010745046.1 456 

thiopurine S-methyltransferase isoform X1 Contig_10413 NW_011323196.1 38925 42214 - 104931680 tpmt XP_010745048.1 263 

exostosin-1c Contig_10413 NW_011323196.1 55497 134499 + 104931682 LOC104931682 XP_010745051.1 623 

isocitrate dehydrogenase Contig_10413 NW_011323196.1 134502 141801 + 104931681 idh1 XP_010745050.1 414 

homeobox protein PKNOX2 Contig_14312 NW_011323104.1 329703 359373 - 104930637 pknox2 XP_010743787.1 483 

transmembrane protein 218 Contig_14312 NW_011323104.1 405468 417594 + 104930639 tmem218 XP_010743791.1 90 

roundabout homolog 4 Contig_14312 NW_011323104.1 425862 444747 + 104930640 robo4 XP_010743792.1 1130 

roundabout homolog 3-like isoform X2 Contig_14312 NW_011323104.1 455457 462905 - 104930638 LOC104930638 XP_010743790.1 266 

roundabout homolog 2-like Contig_14312 NW_011323104.1 463140 495644 - 104930641 LOC104930641 XP_010743793.1 1025 

roundabout homolog 2-like Contig_14312 NW_011323104.1 495788 532651 - 104930642 LOC104930642 XP_010743794.1 124 

alpha-aminoadipic semialdehyde synthase, mitochondrial-like, partial Contig_7751 NW_011323997.1 211 9890 + 104937320 LOC104937320 XP_010751829.1 481 

receptor-type tyrosine-protein phosphatase zeta Contig_7751 NW_011323997.1 14338 57972 - 104937321 ptprz1 XP_010751830.1 1373 

alpha-aminoadipic semialdehyde synthase, mitochondrial, partial Contig_31777 NW_011322893.1 283 7862 - 104927983 aass XP_010740489.1 459 

fez family zinc finger protein 1 Contig_31777 NW_011322893.1 13585 19365 - 104927984 fezf1 XP_010740490.1 437 

calcium-dependent secretion activator 2 Contig_31777 NW_011322893.1 28785 260684 - 104927985 cadps2 XP_010740491.1 1295 

PC2          

neurexin-2-like Contig_22921 NW_011322530.1 163264 483252 + 104919663 LOC104919663 XP_010730030.1 1061 

neurobeachin-like Contig_37123 NW_011322641.1 414054 606100 - 104923311 LOC104923311 XP_010734670.1 2884 

protein mab-21-like 1 Contig_37123 NW_011322641.1 467423 468502 + 104923291 mab21l1 XP_010734646.1 359 

stAR-related lipid transfer protein 13-like isoform X1 Contig_37123 NW_011322641.1 610376 657531 - 104923292 LOC104923292 XP_010734647.1 1153 

melanocortin receptor 4-like Contig_14586 NW_011323077.1 130952 131938 + 104930272 LOC104930272 XP_010743320.1 328 

protein FAM19A2-like Contig_21372 NW_011322498.1 124714 159521 + 104918365 LOC104918365 XP_010728390.1 132 

monocarboxylate transporter 1-like Contig_21372 NW_011322498.1 279892 283931 + 104918366 LOC104918366 XP_010728391.1 456 

synaptonemal complex protein 1 isoform X1 Contig_21372 NW_011322498.1 286759 292231 + 104918367 sycp1 XP_010728392.1 720 

mucin-5B-like isoform X1 Contig_21372 NW_011322498.1 292846 294335 - 104918368 LOC104918368 XP_010728396.1 273 

sodium-coupled monocarboxylate transporter 1-like Contig_21372 NW_011322498.1 295455 302706 - 104918370 LOC104918370 XP_010728399.1 605 

thyrotropin subunit beta Contig_21372 NW_011322498.1 304788 305555 + 104918371 tshb XP_010728401.1 146 
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Supplemental Table A5 continued          

Protein Name RAD Locus Scaffold Start Stop Strand Gene ID Gene Name Protein Accession Length 

UPF0489 protein C5orf22 homolog Contig_64456 NW_011323556.1 2230 13248 + 104934799 LOC104934799 XP_010748847.1 447 

uncharacterized protein LOC104934800 Contig_64456 NW_011323556.1 18997 24937 + 104934800 LOC104934800 XP_010748848.1 306 

actin-related protein 2/3 complex subunit 5-like Contig_64456 NW_011323556.1 31981 36067 + 104934801 LOC104934801 XP_010748849.1 150 

E3 ubiquitin-protein ligase RING2 Contig_64456 NW_011323556.1 42062 46463 - 104934803 rnf2 XP_010748850.1 342 

ADAMTS-like protein 2 Contig_64456 NW_011323556.1 49815 67932 + 104934805 LOC104934805 XP_010748852.1 1021 

glycogen debranching enzyme Contig_64456 NW_011323556.1 80695 108664 - 104934804 agl XP_010748851.1 1542 

neurotrimin-like Contig_12224 NW_011323104.1 19286 160062 - 104930635 LOC104930635 XP_010743785.1 343 

myotubularin-related protein 4 isoform X1 Contig_19050 NW_011322948.1 67100 101737 - 104928772 mtmr4 XP_010741419.1 1224 

4-hydroxyphenylpyruvate dioxygenase Contig_19050 NW_011322948.1 110909 117837 + 104928774 LOC104928774 XP_010741422.1 395 

heat shock factor protein 5 Contig_19050 NW_011322948.1 207257 209076 - 104928775 hsf5 XP_010741423.1 455 

transcription elongation factor SPT4 Contig_19050 NW_011322948.1 216520 219462 + 104928780 supt4h1 XP_010741431.1 86 

peripheral-type benzodiazepine receptor-associated protein 1 Contig_19050 NW_011322948.1 234481 291269 - 104928781 bzrap1 XP_010741433.1 2208 

transmembrane protein 81 Contig_13928 NW_011323399.1 224792 226038 - 104933568 tmem81 XP_010747363.1 284 

ras-related protein Rab-7L1 Contig_13928 NW_011323399.1 230044 234337 + 104933566 rab29 XP_010747361.1 217 

pseudopodium-enriched atypical kinase 1 Contig_33160 NW_011322606.1 54124 78310 - 104922377 peak1 XP_010733483.1 1942 

sorting nexin-33 Contig_33160 NW_011322606.1 117444 136610 - 104922378 snx33 XP_010733484.1 561 

snurportin-1 isoform X1 Contig_33160 NW_011322606.1 137841 145434 + 104922379 snupn XP_010733485.1 389 

tyrosine-protein phosphatase non-receptor type 9 Contig_33160 NW_011322606.1 153207 171853 + 104922380 ptpn9 XP_010733487.1 570 

paired amphipathic helix protein Sin3a Contig_33160 NW_011322606.1 182112 197482 + 104922381 sin3a XP_010733488.1 1273 

cellular retinoic acid-binding protein 1 Contig_33160 NW_011322606.1 215994 233119 - 104922382 crabp1 XP_010733490.1 137 

WD repeat-containing protein 61 Contig_33160 NW_011322606.1 239002 244325 + 104922383 wdr61 XP_010733492.1 305 

solute carrier family 25 member 44-like Contig_33160 NW_011322606.1 246713 248766 - 104922385 LOC104922385 XP_010733494.1 317 

iron-responsive element-binding protein 2 Contig_33160 NW_011322606.1 253484 267283 + 104922384 ireb2 XP_010733493.1 972 

 sorting nexin-1-like Contig_33160 NW_011322606.1 274210 285368 - 104922386 LOC104922386 XP_010733496.1 807 
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Supplemental Table A6 List of species with similar patterns of genetic divergence. Gulf/Atlantic refers to species for which significant genetic 

differences have been observed between the Gulf of Mexico and the western Atlantic Ocean; Western Gulf/Eastern Gulf refers to species for which 

significant genetic differences have been observed between the western and eastern Gulf of Mexico. 

 

Common name Scientific Name Family Life History/Habitat 

Preference 

Citation 

Gulf/Atlantic     

black drum Pogonias cromis Sciaenidae Coastal demersal Leidig et al., 2015 

black sea bass Centropristis striata Serranidae Reef associated Bowen and Avise, 1990 

menhaden Breviorta tyrannus / 

B. patronus 

Clupeidae Coastal pelagic Bowen and Avise, 1990 

Atlantic sturgeon Acipenser 

oxyrhynchus 

Acipenseridae Anadromous demersal Bowen and Avise, 1990 

greater amberjack Seriola dumerili Carangidae Coastal Pelagic/Reef 

associated 

Gold and Richardson, 1998 

king mackerel Scomberomorus 

cavalla 

Scombridae Coastal pelagic Gold et al., 2002 

gray snapper Lutjanus griseus Lutjanidae Reef associated Gold et al., 2009 

southern flounder Paralichthys 

lethostigma 

Paralichthyidae Coastal demersal Anderson et al., 2012 

blacknose sharks Carcharhinus 

acronotus 

Carcharhinidae Coastal demersal Portnoy et al., 2014 

bonnethead sharks Sphyrna tiburo Sphyrnidae Coastal demersal Portnoy et al., 2015 

Western Gulf/Eastern Gulf     

lane snapper Lutjanus synagris Lutjanidae Reef associated Karlsson et al., 2009 

blacknose sharks Carcharhinus 

acronotus 

Carcharhinidae Coastal demersal Portnoy et al., 2014 
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APPENDIX B 

SUPPLEMENTAL FIGURES 

 

 

 

 

Supplemental Figure B1: Principal components analysis (PCA), using all loci (n = 1,539), and including 

two pairs of temporal samples from Lower Laguna Madre (LLM) and West Matagorda Bay (MAT).
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Supplemental Figure B2 Consensus linkage map for red drum, including data from two mapping crosses.  

Each grey, horizontal bar represents one of 24 red drum linkage groups (y-axis), and colored vertical bars 

represent genetic markers at a particular position (x-axis) on the linkage group.  Markers are colored by 

type: blue = haplotyped RAD loci (containing one or more SNP/indel loci); green = anonymous 

microsatellite loci; red = EST-derived (Type-I) microsatellite loci (EST-SSRs).
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Supplemental Figure B3 Principal components analysis (PCA), using outlier loci (n = 146), and 

including samples from eastern Gulf of Mexico (Apalachicola: APA, Cedar Key: CEK, Charlotte Harbor: 

CHA) and Atlantic Ocean (Indian River: IND, Hampton River: HAR, Wassaw Sound: WAS, South 

Carolina: SCA) regions.
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Supplemental Figure B4 A plot of global FST for each locus, organized by position on the 24 red drum linkage groups.  Each panel represents a single 

linkage group, with global FST displayed on the y-axis and position on the linkage group (centiMorgans) displayed on the x-axis.  The red line on each 

panel is a smoothed mean of FST for the group, calculated with a loess function, as implemented in the ggplot2 package in R.
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APPENDIX C 

USING LINKNE TO CALCULATE EFFECTIVE POPULATION SIZE 

 

The program LINKNE extends the method of calculating contemporary effective 

population size (Ne) from linkage disequilibrium (LD) by using unphased genotype data 

(Waples and Do, 2008) to incorporate the effects of linkage and (i) estimate Ne in past 

generations, and (ii) remove bias caused by violating the assumption that all pairs of loci 

in the dataset are unlinked. 

Following Waples (2006), the observed LD, as measured by r2, for a given pair 

of loci can be broken down into two components: one due to the effects of genetic drift 

in finite populations, and one due to the effects of sampling a limited number of 

individuals from the population. Thus: 

 

 𝐸(𝑟
^

total
2 ) = 𝐸(𝑟

^

drift
2 ) + 𝐸(𝑟

^

sample
2 ) (1) 

 

Effective population size (Ne) can be estimated by considering the effects of the 

component of LD due to drift alone, which can be obtained by rearrangement: 

 𝐸(𝑟
^

drift
2 ) = 𝐸(𝑟

^

total
2 ) − 𝐸(𝑟

^

sample
2 ) (2) 

 

Both values on the right side of the above equation can be estimated from observed 

genotype data. 
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Estimating LD Component Due to Sampling Variation 

Weir and Hill (1980) showed that for a randomly mating population, the contribution to 

LD of sampling a finite number of individuals could be estimated as 

 
𝐸(𝑟

^

sample
2 ) =

1

𝑆
 (3) 

 

where S is the number of individuals sampled.  However, England et al., (2006) found a 

large downward bias in estimates of effective size when using this equation, particularly 

if sample size was small relative to the true Ne. To address this bias, Waples (2006) 

suggested a bias correction, based on simulated data, which depended on the sample 

size:  For S > 30, 

 
𝐸(𝑟

^

sample
2 ) =

1

𝑆
+

3.19

𝑆2
 (4) 

 

and for S < 30: 

 
𝐸(𝑟

^

sample
2 ) = 0.0018 +

0.907

𝑆
+

4.44

𝑆2
 (5) 

 

Following Waples and Do (2008), r2
sample is averaged across pairs of alleles and loci.  To 

account for effects of different sample sizes (due to missing data) and number of alleles, 

a weighting factor is applied to each locus pair.  The weight of locus pair (i, j) is 

calculated as    

 𝑤𝑖𝑗 = 𝑛𝑖𝑗𝑆𝑖𝑗
2  (6) 
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where… 

𝑛𝑖𝑗 = (𝑛𝑖 − 1)(𝑛𝑗 − 1) 

and ni and nj are number of alleles at loci i and j, respectively, and Sij is the sample size 

of individuals genotypes at each locus. 

The weighted arithmetic mean across loci is then calculated as… 

 

𝑟
^

sample
2 =

1

𝑊
∑ ∑ 𝑤𝑖𝑗𝑟𝑖𝑗,𝑠𝑎𝑚𝑝𝑙𝑒

2

𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

 (7) 

 

where… 

𝑊 = ∑ ∑ 𝑤𝑖𝑗

𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

 

 

Estimating Total LD 

For each pair of alleles in pairwise comparisons of loci in the dataset, 𝑟
^

total
2  is estimated 

using Burrow's composite linkage disequilibrium measure (D), as in Weir (1996), with 

the formula: 

 
𝐷 = Δ

^

𝐴𝐵 =
𝑛𝐴𝐵

𝑛
− 2𝑝

^

𝐴𝑞
^

𝐵 (8) 
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where… 

𝑛 = number of individuals genotyped at both loci, 

𝑛𝐴𝐵 = 2𝑛1 + 𝑛2 + 𝑛3 +
𝑛4

2
, 

𝑛1 = count of double homozygous individuals, 

𝑛2 and 𝑛3 = counts of individuals heterozygous for one or the other allele, 

𝑛4 = count of double heterozygous individuals, and 

𝑝
^

𝐴 and 𝑞
^

𝐵 = allele frequencies of each allele among individuals genotyped at both loci. 

 

Burrow's D can be standardized by allele frequency to produce the correlation 

coefficient 𝑟
^

𝐴𝐵… 
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^
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𝐴(1 − 𝑝
^

𝐴) + (ℎ
^

𝐴𝐴 − 𝑝
^

𝐴
2)(𝑞

^

𝐵(1 − 𝑞
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𝐵) + (ℎ
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𝐵𝐵 − 𝑞
^

𝐵
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(9) 

 

where… 

ℎ
^

𝐴𝐴 and ℎ
^

𝐵𝐵 = the observed proportions of homozygous genotypes of each allele in the 

individuals genotyped at both loci, and 

𝑝
^

𝐴 and 𝑞
^

𝐵 = allele frequencies of each allele among individuals genotyped at both loci. 
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The square of this value (𝑟
^

𝐴𝐵
2 ) is calculated for each locus pair (averaging across all 

allelic combinations), weighted as in the previous section, and averaged across all pairs 

of loci as… 

 

𝑟
^

total
2 =

1

𝑊
∑ ∑ 𝑤𝑖𝑗𝑟𝑖𝑗,𝑡𝑜𝑡𝑎𝑙

2

𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

 

(10) 

 

 

Estimating Ne with LD from Markers with Known Linkage Relationships 

Binning Estimates 

To obtain precise estimates of Ne at multiple points in time, estimates from multiple 

locus pairs must be binned together across a range of recombination rates.  Hayes et al., 

(2003) derived an approximate relationship between recombination rate and time as… 

 
𝑡 =  

1

2𝑐
 (11) 

 

where… 

t = the number of generations in the past to which the estimate applies, and 

c = the recombination rate between a pair of loci (in Morgans) 
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Assuming this relationship holds for all possible recombination rates, this means 

that the majority of the spectrum of recombination rates reflects Ne at very recent 

generations.  For example, while t = 1 when loci are completely unlinked (c = 0.5), t 

does not reach two generations in the past until c = 0.25 and does not reach ten 

generations in the past until c = 0.1.  Because of this, binning locus pairs into equally 

sized windows, based on recombination rates, produces trend lines that are not very 

informative as they mostly reflect recent Ne and tend to collapse past estimates into a 

small region at the end of the trend line.  A more informative way of binning locus pairs 

is by generation, which allows finer scale changes to be revealed but requires that bins 

are larger at larger recombination rates.  LINKNE allows users to choose whether bins 

should be defined by equally sized recombination rate windows or by generations.  If 

generation-based bins are specified, the program first produces recombination rate-based 

bins (based on a size specified by the user) and then iteratively merges bins when the bin 

midpoints refer to time points within two generations of each other (based on the above 

equation). 

 

Calculating Ne for each bin 

As stated above, given 𝑟
^

total
2  and 𝑟

^

sample
2 , the component of LD due to drift can be 

calculated by Equation 2.  Weir and Hill (1980) showed that under the assumption of 

random mating and if Ne and S are relatively large, r2-drift can be written as a function 

of Ne and the recombination rate (c, in Morgans) between pairs of loci… 
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𝑟
^

drift
2 =

(1 − 𝑐)2 + 𝑐2

2𝑁𝑒𝑐(2 − 𝑐))
 (12) 

 

 

Hill (1981) simplified this equation by separating the term relating to recombination rate 

from the term relating to Ne… 

 𝑟
^

drift
2 =

γ

𝑁𝑒
 (13) 

 

where… 

γ = 
(1−𝑐)2+𝑐2

2𝑐(2−𝑐)
, and 

c = the mean recombination rate of a bin. 

This is rearranged to calculate Ne as… 

 𝑁𝑒 =
γ

𝑟
^

drift
2

 (14) 

 

 

 




