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ABSTRACT

Near Field Communication (NFC) is an RFID based proximity communication

technology. The extensive use of NFC technology for popular and sensitive applica-

tions such as financial transactions and content sharing necessitates the implemen-

tation of secure transmission standards for data exchange. NFC-SEC is one such

set of cryptographic standards that extends NFC to provide better security. How-

ever, NFC is still susceptible to Man-in-the-Middle (MITM) attacks due to the lack

of device authentication, which in turn allows for masquerading and other attacks.

Inclusion of a certification authority has commonly been proposed to resolve this

issue at the cost of significant additional communication overhead. In this thesis,

we first demonstrate a practical MITM attack on an NFC-SEC communication ses-

sion. We then present NonceCrypt, a light-weight countermeasure against this class

of attacks. NonceCrypt addresses the vulnerability of NFC-SEC by an added step

of authentication over a secure out-of-band communication channel. We implement

NonceCrypt on an Arduino platform and evaluate its implementation cost and run-

time overhead in a set of experiments. Results indicate that the increase memory

and time overhead for this scheme are negligible. It avoids involving any additional

entities in the communication and is based on a flexible implementation scheme that

can be used for both smartphones and contactless cards.
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NOMENCLATURE

AES Advanced Encryption Standard

CM Centimeters

ECDH Elliptic Curve Diffie-Hellman

ISO International Organization for Standardization

KB Kilo Bytes

MAC Message Authentication Code

MHz Megahertz

MITM Man-in-the-Middle

MS Milliseconds

NFC Near Field Communication

RFID Radio-Frequency Identification

SRAM Static Random Access Memory
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1. INTRODUCTION

Near field communication (NFC) [24] is a widely used proximity communication

technology. It is an RFID based radio communication [24] with a frequency of

13.56MHz and a typical operating distance of 10cm or less. It is most commonly

used to exchange a small amount of data or for authentication to communicate

using another technology such as Bluetooth [22]. Its applications include contactless

payment systems such as Android Pay [3], Apple Pay [4], Google Wallet [18] and

NFC enabled credit card systems [23], e-passports [25], social networking for content

sharing [6] and as smart card access tokens [26].

All NFC communication requires the participation of two entities, an initiator

and a target. The initiator, also known as the reader, initiates the communication

by selecting a target and communicating with it. The target, also known as the tag,

responds with its data when selected. NFC communication may occur in two forms:

passive or active. In passive communication, the initiator can generate its own power

but the target cannot. The target is powered by the RF field of the initiator, i.e.,

when the target is within the RF range of the initiator, then the former uses the

power from the RF field to communicate. The target loses power and returns to

idle state when it is out of range of the initiator. In active communication, both the

initiator and the target generate their own power and communicate by intermittently

turning the RF field on to send data and off to receive data.

With the increase in the use of NFC for sensitive applications such as monetary

transactions [3, 4, 18, 23], health applications [28, 29, 35] and electronic passports

[25], it is important to shield the communication against any possible security threat.

NFC security is based on the premise that, as the devices need to be in close prox-
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imity, it is not practical to carry out a number of attacks such as eavesdropping or

man-in-the-middle attacks [22]. Additional standards have been proposed to estab-

lish secure communication using NFC [7, 8]. In the following sections, we explore the

various threats possible on NFC and the safeguards provided by these standards.

1.1 Motivation

Multiple authors have demonstrated that the eavesdropping range of NFC com-

munication can be extended to one meter and beyond [20, 22]. The increase in the

range over which NFC communication can be observed, in turn increases the chances

of attacks that had been previously ruled out due to lack of proximity. Attacks such

as eavesdropping on the communication, relay attacks and denial of service have been

proven to be successful [13, 20, 21, 31]. These attacks have been carried out with

minimal additional equipment. Other attacks, such as data modification, are much

more complicated, but nevertheless possible to some extent [22]. These attacks suc-

cessfully manipulate the data by changing the bits from 0 to 1 and vice versa under

some coding schemes.

Eavesdropping attacks are the simplest to carry out and only require an antenna,

or an additional reader, to receive the communication. This could lead to invasion of

privacy and leakage of sensitive information if the information transmitted via NFC is

in plain text. Relay attacks require a proxy initiator to communicate with the genuine

target and relay the information to a proxy target, which in turn communicates with

a genuine initiator. Attackers can use relays to connect initiators and targets that

are not in close proximity, thus invalidating a basic premise of the security paradigm

for NFC. For example, this allows to establish connections and process transactions

between a reader and the NFC enabled credit card of an unsuspecting owner. Strict

timing constraints have been proposed as a solution to protect against relay attacks.
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This solution has issues in implementation as different devices have different timing

requirements, and it is hard to impose a universal timing constraint [14]. Denial-

of-Service attacks can be implemented by either corrupting the data by introducing

an additional RF field that just transmits random information at 13.56 MHz or by

keeping the initiator or target busy to prevent them from establishing communication

with one another [22, 31].

A suite of standards, collectively known as NFC-SEC, have been proposed to

reduce the effectiveness of attacks by establishing a secure channel [7, 8, 9, 10, 11].

The standards NFC-SEC-01 [8] and NFC-SEC-02 [9] describe the establishment of a

secure channel by a key exchange based on the Elliptic Curve Diffie-Hellman (ECDH)

protocol, followed by data encryption using the Advanced Encryption Scheme (AES).

NFC-SEC-03 [10] and NFC-SEC-04 [11] provide key agreement using asymmetric

and symmetric cryptography respectively. Specifically, NFC-SEC-03 [10] requires

certification provided by a trusted third party and NFC-SEC-04 [11] requires the

establishment of a pre-shared key, which may not be feasible. NFC-SEC-02 [9] is

a variation of NFC-SEC-01 [8]. Given the limited practicality of NFC-SEC-03 and

NFC-SEC-04, we limit the discussion to NFC-SEC-01 [8].

In NFC-SEC-01 [8], on establishment of a secure channel by Elliptic Curve Diffie-

Hellman, all the information that is transmitted by the two entities is encrypted using

a shared secret key, which is known only to the entities. This rules out the possibility

of eavesdropping attacks, as the attacker would not be able to read the encrypted

message [12]. In case of a relay attack, the relaying entity would not be able to

compute the secret key and decrypt the transmission to obtain the original message.

Here, message integrity may be kept intact, but there is no provision to verify if the

communicating device is authentic or a malicious entity relaying the communication

from an authentic device. Hence, NFC-SEC-01 alone cannot prevent relay attacks.

3



While encryption would ensure message authentication, and so prevent the attacker

from modifying message payloads, additional mechanisms are required in order to

prevent relay channels to be established.

1.2 Man-in-the-Middle Attacks in NFC

The NFC-SEC-01 protocol restricts many attacks that are otherwise possible with

no encryption mechanism. The proposed key exchange mechanism for NFC-SEC-

01 is based on a basic Diffie-Hellman scheme. Since this scheme does not consider

authentication of the two participants, this leaves it susceptible to man-in-the-middle

(MITM) attacks [12]. It has been argued that the proximity requirements for NFC

rule out the possibility for MITM attacks. Unfortunately, there exist scenarios where

the need for physical proximity alone does not secure the communication. In a normal

NFC communication scenario (Figure 1.1), a target (e.g. an NFC capable credit

card) triggers the communication when it comes in close proximity of an initiator (a

credit card reader). Immediate proximity of the target to the initiator in implicitly

assumed by the credit card reader, and the communication is deemed as secure. One

can envision a scenario the genuine initiator is blocked from directly communicating

with the genuine target despite the latter’s proximity. This in turn would lead to a

possibility for an MITM attack. For example, an attacker can block the initiator by

methods as simple as covering it with a Faraday cage or by forcing it to remain busy

using a denial of service attack [21]. Figure 1.2 depicts such a scenario.

Figure 1.1: Normal NFC Communication Scenario.
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Figure 1.2: MITM Attack Scenario by Blocking Communication Between the Gen-
uine Initiator and Target Using a Shield, Such as a Faraday Shield.

The MITM attack can be carried out by establishing two separate sessions with a

genuine initiator and a genuine target, as shown in Figure 1.3. As both the sessions

have been established with the attacker, the attacker has the secret key for both

the sessions. She can therefore use the secret key of the session with the initiator

to decrypt the message. The original message, which is now in plain text format,

may now be modified and encrypted using the other secret key. The message is

then passed on to the genuine target. As the protocol does not provide for any

form of signatures or certification authority, none of the entities involved in the

communication can determine the authenticity of the other entities. This creates a

situation where the entities may establish a secure channel with a deceptive entity,

which voids the effectiveness of the protocol.

We note that several variations of the scenario depicted in Figure 1.3 can be con-

structed. For example, a malicious target may contact the bona-fide initiator. In this

case, the attacker can eavesdrop on the encrypted conversation and/or modify the

content of the communication. This has been depicted in Figure 1.4. Alternatively, a

malicious initiator can directly act as a masquerading agent, without the need for an

additional bona-fide initiator, and thereby hijack the communication with the bona-
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Figure 1.3: MITM Attack Scenario with an Unintended Initiator.

fide target as depicted in Figure 1.2. This is possible because the bona-fide target

does not realize that the bona-fide initiator has been blocked from communicating

with it by using a shield (e.g. Faraday cage), and presumes that it is communicating

with the bona-fide initiator instead of realizing that it is actually communicating

with a malicious initiator. This leads to a masquerading attack where the malicious

initiator pretends to be the bona-fide initiator to communicate with the target.

Figure 1.4: MITM Attack Scenario with the Original Initiator.
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In summary, the lack of authentication of the communicating NFC devices opens

the door to a number of MITM attacks, ranging from eavesdropping to masquerading.
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2. SOLUTION CRITERIA

Clearly, a solution is needed to reliably authenticate the participants in a secure

NFC communication. As we pointed out in Chapter 1, a number of approaches exist,

such as NFC-SEC-03 and NFC-SEC-04, which have limited value in practice. The

reliance of NFC-SEC-03 on certification authorities is a major impediment in its

applicability to services that cannot contact the authority securely or without addi-

tional hardware. Similarly, NFC-SEC-04 uses a pre-shared key for authentication,

which leaves it susceptible to side-channel attacks. This chapter reflects on typical

usage scenarios for NFC to identify a set of criteria that any proposed solution needs

to satisfy in order to be viable.

2.1 Security

Any proposed solution needs to implement better security than NFC-SEC-01 [8]

to prevent MITM attacks while not compromising on other security features, such

as the encryption of data using a shared secret. NFC-SEC-01 [8] provides security

against attacks such as eavesdropping and data modification. The proposed solution

must not compromise the security provided against such attacks. Any untrustworthy

communication channels must be avoided.

2.2 Deployability

The solution must be easily deployable and must be cost-effective. Solutions that

require additional equipment be attached to the device or any additional hardware

for its implementation may not be very adaptable as they may cause inconvenience

to the user. Also, additional hardware for implementation would mean that there

would be extra costs for the solution to be implemented. Even then, the solution
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may not be compatible with the present device models and can be implemented only

in newer versions of the devices, which may cause a drastic reduction in the user

base.

2.3 Compatibility

The proposed solution must be compatible with the present usage model. It must

be viable for use in the different applications that already use NFC and must have

scope to be extended to future applications that may implement NFC transactions

as well. This implies that the solution must work both on active devices, such as

phones, as well as on passive devices, such as smart cards. The implementation must

not be computation intensive or require additional hardware, as this would hinder

its implementation on passive device platforms.

2.4 Overhead

NFC communications typically have transaction times in the order of millisec-

onds. The proposed solution must aim at keeping the time overhead as low as possible

so that they do not inconvenience the user. Also, most transactions require that the

interacting devices be kept in very close proximity, so increasing the transaction time

may be cumbersome. Solutions that suggest interaction with an additional entity,

such as a third-party trusted source, would add considerably to the overhead.

2.5 Ease of Use

Ease of use is an important criterion that decides the success of an application.

Solutions that require the user to interact in the transaction process, in addition

to holding the devices in proximity to facilitate NFC communication, may be cum-

bersome. Examples of such interactions may be requiring the user to enter a pass

code or even a considerable increase in the time for which the devices must be held
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in proximity. We note that it is also important that security of the application is

given priority over concerns of minor unease. There is a need to maintain a balanced

trade-off between security and user-friendliness.

The defined solution criteria provides a framework to build an efficient solution.

While solutions have been presented by various authors to address similar issues,

there is still a necessity for a comprehensive solution that addresses all the afore-

mentioned criteria. In Chapter 3, we identify drawbacks in the solutions offered by

different authors and present a comprehensive solution in Chapter 4. This solution

is later evaluated against the criteria to analyze its efficiency.

10



3. RELATED WORK

Various solutions have been proposed to secure NFC communication by the in-

clusion of a certification authority. The authors have suggested the addition of a

Certification Authority in [2]. They have suggested that adding authentication to

the Diffie-Hellman protocol can prevent MITM attacks. This is done by communi-

cating with a server to generate a signed message. Although this scheme provides

better security over a conventional Diffie-Hellman protocol, the added security comes

at the cost of added transaction time for communication with the server. Also, this

would require the system to be online and there must be uninterrupted access to the

server. The scheme also requires a lot of added infrastructure in the form of an on-

line server to manage the certification requests. The inclusion of a digital certificate

embedded in an inaccessible part of the tag for offline tag authentication has been

suggested in [33]. This proposed scheme is a solution that is specific to attacks that

use cloned tags and is not extended to other scenarios. In [27], the authors have sug-

gested registration with an authentication center to avoid MITM attacks. In many

situations, the inclusion of a certification authority is not an effective solution, as

this would require the establishment of a server that can constantly process the mul-

tiple requests for public keys and verification of identity. This would greatly increase

the communication overhead and the time for the transaction. Also, it would have

to rely on another communication channel such as internet or SMS, which may be

unreliable. The use of a secure Bluetooth based application for credit transfer has

been suggested in [30]. This approach assumes that the Bluetooth channel is secure.

It also requires that a network operator be contacted to evaluate the validity of the

transaction. The approach does not specify and cryptographic measures to secure

11



the communication in any of the channels.

In [12], the authors suggest the use of pseudonyms instead of public keys to

protect the privacy of users. This is done by additional cryptographic processing to

generate the pseudonym. Unfortunately, this comes at an additional cost of storage

space, computation time and transference time. This, in turn, leads to an increase

in the transaction time. In addition, while the privacy of the user is protected,

there is no additional security against MITM attacks. A system called Dhwani has

been proposed in [32], which is a ”secure peer-to-peer acoustic NFC” communication

technique that uses JamSecure. The idea is to jam the signal and then use self-

interference cancellation to recover the signal at the receiver. This approach requires

the use of a microphone and receiver. This precludes the use of this technique in

passive tags. Also, shielding the receiver, directional reception or suitable placement

of a malicious receiver may compromise the data.

The authors in [19] have proposed an improved NFC-SEC scheme for NFC-based

health care applications. The proposal involves the establishment of public key in-

frastructure including a certification authority for providing signed communication

exchanges. This is to eliminate any possible errors as health care is a critical appli-

cation. This proposal requires establishment of expensive additional infrastructure

which may not be necessary for other applications. Another health care application

based on NFC has been suggested in [34], which also suggests the use of a server for

verifying authenticity. But, all the communications do not need to contact the server

to verify authenticity and there is limited security on such channels, which leaves a

good scope for attacks.
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4. SOLUTION

A major drawback of the NFC-SEC-01 protocol is that it does not offer authenti-

cation, but rather relies on physical proximity to ensure authentication. We showed

in Chapter 1, a number of scenarios where the security of NFC-SEC communications

are violated despite physical proximity. The proposed solution rectifies this issue

by providing an ad-hoc off-line authentication scheme. The proposed solution shall

henceforth be referred to as ”NonceCrypt”.

NonceCrypt takes advantage of the typical usage scenario for NFC, where a user

tries to make a payment at an NFC terminal. The user would then be asked to enter

a nonce, randomly generated by the user’s device, into the NFC terminal before

the transaction can proceed. Now, both the participating entities shall have this

nonce. This nonce, henceforth known as ”ChannelKey”, can be used as a shared

key exchanged over a secure channel. To ensure that the ChannelKey is exchanged

securely, an out-of-bound channel may be used for its exchange. We will further

discuss the exchange of ChannelKey later in this chapter. This ChannelKey can be

used to encrypt and decrypt all the communication that is part of the NFC-SEC-01

protocol. As the ChannelKey is only shared by the authentic initiator and target, and

is a random nonce generated for each transaction, it is not possible for any entity

which does not already have the ChannelKey to establish the NFC-SEC protocol

with ether of the authentic entities.

4.1 Exchange of ChannelKey

The ChannelKey must be exchanged over a secure channel, for which we suggest

the use of an out-of-band communication channel. This is because, if the ChannelKey

were to be exchanged over the same NFC channel, then a malicious entity would

13



be able to eavesdrop over the communication. Once the malicious entity has the

ChannelKey, it could successfully attack the communication as before. This makes

the security of the exchange channel a critical component. Other wireless channels

such as Bluetooth may be used for this operation, but their vulnerability makes

them unsuitable for this transaction. The channels suggested for use would be the

visual band (for example, a QR code generated on the tag is read by a camera on

the reader) or a tactile channel where the user has to enter a value by hand. These

channels are deemed as more secure as they involve direct user interaction and could

not be imitated by a device as easily.

4.2 Encryption with ChannelKey

The ChannelKey could be used to provide an added layer of encryption. This is

done by using the ChannelKey to derive an encryption key or by using it directly as

an encryption key. As a malicious entity would not have access to the ChannelKey,

the data cannot be correctly decrypted by the malicious entity. For instance, the

public key of an authentic entity is encrypted by the ChannelKey before being sent

to the malicious entity. Similarly, the public key of the malicious entity is expected to

be encrypted by the ChannelKey, which is not possible. So, during the computation

of the shared secret, the decrypted public keys would be different from the original

public keys, which would result in different shared secrets for both entities. This

would ensure that none of the communication received by the malicious entity is

authentic and the communication would break down at the key confirmation phase

of NFC-SEC-01.

The ChannelKey is generated on each attempt and should be cryptographically

unrelated to any previous ChannelKey. This would ensure that there is no chance

for a replay attack.

14



Figure 4.1: NonceCrypt Architecture.

4.3 NonceCrypt Architecture

The architecture of NonceCrypt is described in Figure 4.1. The NonceCrypt

system has two more layers in addition to those present in NFC-SEC-01. When a

message is received from the user to initiate NFC communication, it first performs

a ChannelKey exchange through a secure channel. Once the ChannelKey has been

exchanged, the NFC communication is initiated. The NFC-SEC-01 layer initially

works with the Elliptic Curve Cryptography layer in establishing a shared secret using

the Elliptic Curve Diffie-Hellman protocol. The NFC-SEC-01 layer also interacts

with the AES encryption layer to generate multiple derived keys for encryption and

decryption, and to verify the integrity of the communication by checking the MAC.

All outgoing messages are encrypted using AES encryption before being transferred

over NFC. Similarly, incoming messages are decrypted before being passed on to

the user. The ChannelKey Encryption layer encrypts outgoing communication and

15



decrypts incoming communication with the ChannelKey. The NFC layer forms the

lowest layer of the communication and is used to send and receive messages over the

NFC channel.
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5. IMPLEMENTATION

In order to demonstrate the efficacy of the NonceCrypt approach, we implemented

and evaluated it on an Arduino platform. We first implemented a basic NFC-SEC-01

system. We then performed an MITM attack to demonstrate the vulnerability of

the NFC-SEC-01 approach. Once the vulnerability of NFC-SEC-01 had been clearly

demonstrated, we implemented NonceCrypt as an additional layer over the present

NFC-SEC-01 system.

5.1 Equipment

We selected the Arduino Uno [5] platform as a demonstration vehicle because

of its broad availability, the availability of an easy-to-program NFC infrastructure

and its ability to perform the relatively heavy computation for NFC-SEC-01 and the

NonceCrypt extension. The Arduino Uno [5] is an ATmega328P based 8-bit AVR

microcontroller board. It has 32KB of programmable Flash memory and a 2KB

SRAM. It is connected to a PN532 NFC transceiver [1] to be able to communicate

using NFC. The PN532 NFC breakout board [1] operates at 13.56 MHz and supports

both reader/writer mode and card emulation for ISO14443A.

The software for the system needed to have a very low memory footprint in order

to be used with the hardware. Hence, we chose the libraries with this parameter

in perspective. Also, we modified all the libraries to optimize their performance

and include the necessary features. We modified the Adafruit-PN532 library [15]

substantially to implement NFC functions and communicate with the PN532 boards.

This library provided the basic NFC functionality. Tag emulation had to be added

to the library to implement an NFC-SEC-01 card. We chose micro-ecc library [16] to

implement Elliptic Curve Cryptography needed to perform key exchange as it had a
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Figure 5.1: Equipment Used for Implementation of the Reader, Tag and Malicious
Entity.

very low memory footprint. We used tiny-AES-128-C library [17] to implement AES

encryption for key derivation and data encryption. We added AES-XCBC-PRF-128,

AES-XCBC-MAC-96 and AES-CTR modes to the library to perform key derivation,

MAC derivation and encryption respectively. Figure 5.1 shows the equipment used

for the implementation.

5.2 Implementation of NFC-SEC-01 System

We implement an NFC reader and a tag, each created by connecting an Arduino

Uno to a PN532 board. Both the entities have the NFC-SEC-01 protocol built into

them. The base layer consists of the NFC communication layer, which defines the

functionality of the reader and the tag. Key exchange, derivation, and confirmation
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are built into the data exchanges between the reader and tag as part of the NFC-

SEC-01 layer. Performing a MITM attack on this system requires an additional

entity, which can be modeled as a malicious reader connected to a malicious tag.

The malicious reader and tag function similar to the genuine entities, except that

they can exchange and modify data. This is accomplished by having two PN532

boards, one behaving as a reader and the other as a tag, connected to a single

Arduino Uno platform that provides a medium to exchange data, as shown in Figure

5.1. During an MITM attack, communication is channeled from a genuine tag to

a malicious reader, which receives the plain text data, modifies it and transmits it

from malicious tag to the genuine reader.

5.3 Implementation of NonceCrypt System

The NonceCrypt system can be implemented using a few additions to the NFC-

SEC-01 system. A few additional layers need to be included in the software while

keeping the hardware implementation constant for the reader, tag and the malicious

entity. As part of the NonceCrypt system, ChannelKey needs to be exchanged prior

the communication. A layer of encryption then needs to be added between the NFC-

SEC-01 and NFC communication layers such that any message generated in the

NFC-SEC-01 layer is encrypted before sending over the NFC communication layer.

For simplicity, a hard-coded ChannelKey is used on the reader and the tag, and

a slightly different ChannelKey is used for the malicious entity to mimic the secure

transfer of the ChannelKey from the reader to the tag without the knowledge of the

malicious entity. Also, all encryptions can be performed using a simple XOR cipher.

The implementation of the NFC-SEC-01 system using AES encryption can have

a huge memory footprint, that may be reduced by the use of XOR encryption, as

presented in Table 5.1. The reader requires 13kB of program storage space and 1.4kB
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of dynamic memory when using AES encryption, which can be reduced to 10kB and

562 bytes respectively, by using XOR encryption. The total program storage space

is 32kB and dynamic memory is 2kB.

Entity
AES Encryption XOR Encryption

Flash memory SRAM Flash memory SRAM
Reader 13590 (42%) 1400 (68%) 10430 (32%) 562 (27%)
Tag 13568 (42%) 1349 (65%) 10824 (33%) 601 (29%)

Table 5.1: Comparison of memory footprint for NFC-SEC-01 implementations with
AES encryption and XOR encryption.

In Table 5.2, the memory footprint of the NFC-SEC-01 system is compared to

the memory footprint of the NonceCrypt system. The increase in memory usage is

almost negligible with an increase of 140 bytes for program storage space and 24

bytes for dynamic memory for the reader. The increase in memory for the tag is 90

bytes of program storage space and 16 bytes of dynamic memory.

Entity
NFC-SEC-01 System NonceCrypt System

Flash memory SRAM Flash memory SRAM
Reader 10430 (32%) 562 (27%) 10570 (32%) 586 (28%)
Tag 10824 (33%) 601 (29%) 10914 (33%) 617 (30%)
Malicious 12110 (37%) 689 (33%) 12310 (38%) 705 (34%)

Table 5.2: Comparison of memory footprint for NFC-SEC-01 system and NonceCrypt
system implementations with XOR encryption.
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6. EVALUATION

In this chapter, we evaluate the strengths and weaknesses of NFC-SEC-01 and

NonceCrypt against the Criteria provided in Chapter 2. We analyze NFC-SEC-01

first and later evaluate how NonceCrypt improves on the flaws present in the former.

We also discuss how the flexibility of NonceCrypt is a great advantage that lets it

be easily adapted to suit the application.

6.1 Evaluation of NFC-SEC-01

6.1.1 Security

NFC-SEC-01 provides security by encrypting data with a key available only to the

participating entities. Hence, any communication between the entities is encrypted

and cannot be availed by any other entity, such as an eavesdropper. This provides se-

curity against eavesdropping. Also, in case of a relay attack, the communication may

be relayed without the relay channel gaining any knowledge of the communication.

But, this form of security relies on the assumption that the participating entities are

authentic. There is no entity authentication to verify that the participating entities

are indeed authentic. If one of the participating entities is malicious, the encryption

can be broken and plain text data may be obtained. This data may be eavesdropped

upon or manipulated. This is a major drawback in the scheme. NonceCrypt resolves

this by providing entity authentication.

6.1.2 Deployability

NFC-SEC-01 can be implemented in software and integrated into the present

NFC system as specifies in [7]. Every device has a choice of whether to include or

exclude NFC-SEC-01 as part of the protocol. It can be implemented on both active
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and passive devices. NFC-SEC-01 would require some additional computation power

as compared to a simple NFC transaction because of the key exchange and encryption

components involved.

6.1.3 Compatibility

NFC-SEC-01 is implemented as part of the NFC transaction and can occur with-

out any interaction from the user. Hence, it would be compatible with any current

user model for NFC, which involves a tag to be placed against a reader for a trans-

action to occur.

6.1.4 Overhead

The time overhead for NFC-SEC-01 increases in comparison to a normal NFC

transaction. This is because of additional computation time required for key deriva-

tion and encryption. There is also an increase in the number of exchanges between

the sender and receiver for the establishment of a secure channel, which causes an

increase in the overhead time. The overhead time can be approximated as 6.3 sec-

onds.

6.1.5 Ease of Use

NFC-SEC-01 is very user friendly as there is no required user interaction. Es-

tablishment of the secure channel is carried out as part of the NFC transaction and

may occur without the knowledge of the user.

6.2 Evaluation of NonceCrypt

6.2.1 Security

NonceCrypt provides better security than simply using NFC-SEC-01 by the inclu-

sion of a separate authentication factor. NFC-SEC has inherent protection against

eavesdropping, and its major vulnerability, which is MITM attacks. NonceCrypt
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provides an authentication mechanism by which the only the genuine entities can

decrypt the encrypted public keys. As the ChannelKey is a random value that

changes for every transaction, it is not easy to guess it based on the encrypted data.

It differs in this aspect from a constant password. A critical component of Non-

ceCrypt is the ability to transfer the ChannelKey over a secure channel. Though

this could be done by methods such as transmission over another wireless channel,

capturing photographs via cameras, bar codes, the most secure method would be to

include user interaction as, in the other methods, there could be a chance for manip-

ulation using advanced equipment. This implementation detail can be decided based

on the application. The ChannelKey is never transmitted as plain text through an

NFC channel and is only used to encrypt the communication thereby nullifying the

risk of a malicious entity eavesdropping to recover it. Also, as all the data is en-

crypted using the ChannelKey, it would protect the genuine entity from establishing

a secure channel with the malicious entity by terminating the communication at the

key confirmation phase.

6.2.2 Deployability

NonceCrypt is an entirely software implementation except for the method of

exchange of the ChannelKey. So, any NFC system that is already present can simply

be updated to improve its security. The method of exchange of ChannelKey would

be decided based on the application. Most ideas are easy to implement on active

NFC platforms such as smart phones and issue would arise out of implementation

constraints on passive devices such as smart cards. But, as the system does not

require much more computation power or storage space than NFC-SEC-01 already

does, it would not present much of a challenge.
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Figure 6.1: Comparison of Memory Requirements for the Reader and Tag of the
NFC-SEC-01 System and NonceCrypt System.

6.2.3 Compatibility

The flexibility of implementation provided by NonceCrypt is a major advantage

as it would allow the implementation to be customized according to the typical usage

model for the application. The common model involves the tag to be placed next

to the reader for a transaction to occur. NonceCrypt can be implemented for both

active and passive devices by designing the implementation accordingly. It does

not require much more computation or storage space as compared to NFC-SEC-

01. A comparison of the memory requirements for the NFC-SEC-01 system and

NonceCrypt system is presented in Figure 6.1.
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System.

6.2.4 Overhead

The increase in time overhead caused by computation can be neglected for Non-

ceCrypt. A substantial component of the increase would be caused due to user inter-

action. In applications which are time sensitive, the implementation can be modeled

such that there is no user interaction involved and the protocol is completely au-

tomated. But, in case security is a major concern for the application, it would be

advisable to include minimal user interaction. Ignoring the time for user interaction,

the latency for the NonceCrypt system has been computed to be approximately 6.3

seconds, which is the same as for the NFC-SEC-01 system. The latencies of the

NFC-SEC-01 system and NonceCrypt system over 100 iterations of the experiment

have been presented in Figure 6.2. Thus, the increase in the time overhead for the

NonceCrypt system caused by additional computation is negligible.
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6.2.5 Ease of Use

NonceCrypt can be designed as a user-friendly application as the requirements

for implementation are very similar to password based systems that exist. Also,

as there is a possibility to automate the protocol, it can be made to avoid all user

interaction. But, user interaction is a very useful component of security as some

extra security may be provided as part of user intelligence. The user might be able

to better discriminate between situations that are safe and those that may involve a

malicious entity. Hence, the trade-off between security and ease of use is balanced.
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7. CONCLUSION

The ubiquitous use of NFC increases the need for better secure standards. A

failure in security may lead to loss of private data, possible malicious software being

loaded on to the device to compromise its security, and financial frauds. As the

risks associated are high, there is a strong need for better security standards to be

incorporated into NFC. In the present day, most standards followed by institutions

are private secrets and there is a need for a universal set of standards that can be

followed.

NFC-SEC provides a security standard that protects against simple attacks, such

as eavesdropping, but it does not protect against a more complicated attack such

as an MITM attack. As the sensitive data in a transaction can be modified in an

MITM attack, this presents a serious drawback. NonceCrypt reduces the scope of

attacks that can be carried out by providing protection against MITM attacks and

terminating the communication before the data transfer phase, thereby reducing the

chance of a malicious entity gaining access to the data. The flexibility of NonceCrypt

provides an avenue to tailor the implementation to the purpose of the application.

The proposed added layer of encryption will greatly improve the security of NFC

transaction at a very small added cost of time and convenience. Hence, NonceCrypt

is a robust and general solution.
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