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ABSTRACT

There is an increasing interest in high power proton accelerators for use as neu-

tron and muon sources, accelerator driven systems (ADS) for nuclear waste trans-

mutation, high energy physics, medical physics, nuclear physics, and medical isotope

production. Accelerating high current beams has a number of challenges; including

avoiding harmful resonance crossing, space charge effects and, specific to cyclotrons,

sufficient turn separation at injection and extraction. The Accelerator Research

Laboratory at Texas A&M University is developing a high-power strong-focusing

cyclotron with two main technologies to overcome these challenges. The first is a

superconducting RF cavity to provide the energy gain required for fully separated

turns. The second is the use of superconducting beam transport channels within

the sectors of the cyclotron to provide strong-focusing with alternating focusing and

defocusing quadrupoles. A method has been developed to find the equilibrium spiral

orbit through the cyclotron which maintains isochronicity. The isochronous spiral

orbit was then used to perform full linear optics calculations. The strengths of the

quadrupoles were adjusted to hold the horizontal and vertical betatron tunes con-

stant per turn to avoid resonance crossing. Particle tracking was performed with a

modified MAD-X-PTC code and Synergia to provide a framework for future space

charge studies. Magnetic modeling was performed on a 2D cross section of the beam

transport channel. The wire locations were adjusted to reduce the higher order mul-

tipoles and a good field region was obtained at 70% of the beam pipe aperture with

multipoles less than 10−4. The 2D model was also used to determine the required

current density needed to produce the quadrupole gradients. MgB2 superconducting

wire was chosen as it meets all the field and current requirements and can operate
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at a reduced cryogenic cost. A winding mandrel was also designed and fabricated

which minimized the bend radius for the superconducting MgB2 wire.
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1. INTRODUCTION

One of the goals of the Accelerator Research Lab at Texas A&M University is to

develop an accelerator-driven sub-critical molten salt system (ADSMS) to destroy

long lived nuclear waste. The accelerator portion of the system needs to produce

a 10 mA 800 MeV proton beam to obtain the required spallation neutron flux and

spectrum. No cyclotron to date is capable of producing such a high-power proton

beam. There are a number of challenges in accelerating high current beams in cy-

clotrons; intense space charge forces, neighboring beam interactions, sitting on or

crossing harmful resonances, and sufficient separation at extraction. Currently, the

high power record is held by the Paul Scherrer Institute (PSI) with a 2 mA 590

MeV ring cyclotron (Figure 1.1). The right hand side of Figure 1.2 shows the last

few turns of the PSI cyclotron. In the plot, the three turns previous to extraction

are overlapping with one another [2]. The tune plot of PSI displaying coupling and

Walkinshaw resonance line crossing as the tune of the machine drifts from initial to

final energy is shown on the left in Figure 1.2. Both the beam overlap and resonance

crossing can lead to beam blow up.

The Accelerator Research Lab is developing a strong-focusing cyclotron with two

key innovations to overcome the challenges in accelerating high currents; a supercon-

ducting RF cavity capable of providing sufficient turn separation and a beam trans-

port channel which will provide strong focusing. One of the main advantages in our

strong-focusing cyclotron design, is the ability to set and maintain the tune to avoid

any major resonance crossing. This is accomplished with the addition of beam trans-

port channels within the sectors which contain alternating focusing and defocusing

quadrupoles. The beam dynamics of the strong focusing cyclotron and the develop-

1



Figure 1.1: Top view of the PSI ring cyclotron [1].

ment of the transport channel will be the focus of this dissertation. Section 2 gives

a brief history of cyclotron development with a concentration on focusing methods.

The separated orbit cyclotron and previous designs are discussed. The section wraps

up with a description of the proposed Texas A&M strong-focusing cyclotron system.

Section 3 presents the method developed to find the equilibrium isochronous orbit.

The orbit is then used to perform linear beam optics and the quadrupole strengths

are adjusted to control the beam size and phase advance through the machine. The

results of the beam dynamics studies and simulations in the TAMU100 cyclotron

are presented. The section also describes the two particle tracking methods used

and the differences in their results. Section 4 discusses the detailed design of the

beam transport channel. The 2D magnetic model of the quadrupole is presented and

a comparison is made with previous strong focusing designs. Results of magnetic

2



Figure 1.2: (Left) Position of the last eight turns of the PSI Ring Cyclotron. (Right)
PSI Tune plot

modeling in 3D as well as the mechanical winding mandrel design are presented.

Section 5 briefly covers the properties of the superconductor MgB2, including the

pros and cons of this superconductor for the beam transport channel. Section 6

contains a conclusion of the work and goals for future work.
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2. STRONG-FOCUSING CYCLOTRON

2.1 Cyclotron History and Basics

The cyclotron was first proposed by E. O. Lawrence in 1930 [3] with the goal of

accelerating protons to 1 MeV for use in nuclear studies. The idea was to accelerate

protons in a circular path in an external magnetic field produced by two D-shaped

pole pieces with alternating voltage. Within a year of the proposal, Lawrence and

Livingston were able to experimentally verify the concept and accelerate protons up

to 1 MeV. The Lorentz force causes particles with massM , velocity v, and charge q, in

an external magnetic field Bz, to move in a circle of radius r in a plane perpendicular

to the field according to:

qvBz =
Mv2

r
(2.1)

The revolution frequency, or cyclotron frequency, of the ion is then given by:

ω =
qB

M
(2.2)

It was also found that the curvature in the magnetic field lines from a radially

decreasing magnetic field would create a restoring force for particles which deviate

vertically from the central plane (Figure 2.1). A field index, n, can be defined

according to:

n = − r
B

dB

dr
, (2.3)

such that the equations of motion take the form:

r′′ + (1− n)r = 0, y′′ + ny = 0. (2.4)

4



Figure 2.1: Restoring force on particles in a radially decreasing magnetic field [4]

For the vertical direction, dB
dr
< 0 which makes n > 0. Similarly, (1-n)>0 must

be true for oscillations about the radial position. This condition is known as weak

focusing. The sinusoidal motion in both the radial and vertical directions are referred

to as betatron oscillations. The number of betatron oscillations made in one full turn

is the betatron tune (Q or sometimes ν), which is defined below for the vertical and

radial directions. For weak focusing, the tunes are less than one.

Qr =
√

1− n, Qy =
√
n (2.5)

Only seven years after its invention, H. Bethe and M. Rose[5] reported what they

considered to be a serious issue in obtaining higher energies in cyclotrons. The in-

creasing relativistic mass, equation 2.6, would require a corresponding increase in the

bending magnetic field to maintain isochronicity, or constant revolution frequency.

M =
M0√
1− β2

= γM0 (2.6)

Where β and γ are defined as:

β = v/c, γ =
1√

1− β2
. (2.7)
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The increase in radial field would in turn destroy focusing and limit the obtainable

energy to 5 MeV for protons, a number they later increased to 12 MeV.

2.2 Focusing

2.2.1 Transverse Focusing

In response to Bethe and Rose, L.H. Thomas[6] proposed that an azimuthally

varying magnetic field would provide sufficient axial focusing to overcome the defo-

cusing from an increasing radial field. The Thomas field would vary azimuthally as

cos(nθ) and increase radially with nearly the relativistic mass increase to produce

stable orbits. Although there was focusing due to the varying magnetic field in the

Thomas cyclotron, the main source of focusing was from the distortion the field cre-

ated in the orbits. Instead of circular orbits, the orbits become scalloped and the

particles experience an edge focusing (Figure 2.2 and Figure 2.3).

Figure 2.2: Scalloped orbits in a cyclotron with an azimuthally varying magnetic
field [6]
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Figure 2.3: Edge focusing of particles above a below the midplane in a sector cy-
clotron [7].

D.W. Kerst[8] suggested increasing the edge focusing by increasing the angle

the particles make with the sector by spiraling the sectors. There are a number of

facilities with this style of cyclotron, including, the 500 MeV cyclotron at TRIUMF,

the K500 at Texas A&M University and Michigan State University, and the ring

cyclotron at the Paul Scherrer Institute. The downside of this geometry is the spiral

sectors either greatly reduce the space for the RF cavity or the RF cavity is forced

to have a complicated geometry [9, 10].

The idea of strong focusing, defined here as focusing in both planes and tunes

larger than one, was proposed by Courant, Livingston and Snyder in 1952 [12];

although it was later discovered that Christofilos [13] had patented the idea two years

before. To achieve strong focusing, alternating converging and diverging magnetic

lenses are placed in series, focusing (F) and defocusing (D), to create an overall net

focusing (Figure 2.5).

2.2.2 Longitudinal Focusing

The previous sections dealt only with focusing in the transverse direction due to

magnetic fields but there is also a mechanism for longitudinal, or phase, focusing due

to the RF cavities. In an ideal isochronous cyclotron, all particles arrive at the same
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Figure 2.4: Six sector cyclotron design with spiral edge geometry[11].

time regardless of energy. This is because particles with a higher energy travel at a

larger radius and similarly for lower energies, particles are on a smaller radius. In an

actual cyclotron though this will not be the case, so longitudinal focusing becomes

important. The cyclotron is designed so the reference particle hits the RF wave

at a desired phase (φs), as shown in Figure 2.6. All other particles in the bunch

will be slightly ahead (early) or slightly behind (late) the reference particle. This is

due to slight differences in energy and leads to particles with higher energy hitting

the RF wave earlier in its ramp up cycle and receiving a smaller energy gain. The

slower particles hit the RF wave after the reference particle where the RF wave has

risen higher and thus receive a larger energy gain. By the next RF cavity, or on the

next RF cycle, the particles have been adjusted toward the timing of the reference

particle, and oscillate about its timing.
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Figure 2.5: Strong focusing in a doublet of alternating divergent and convergent
magnetic forces [12]

Figure 2.6: RF cavity acceleration cycle
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2.3 Separated Orbit Cyclotron

There have been a few proposals to fully separate and focus beams along their

orbits in accelerators. The first separated orbit cyclotron (SOC) was put forth by

Russell in 1963[10] and had a helical orbit (Figure 2.7). He was unable to arrange

the orbits in a flat plane since the higher energy orbits would overlap. The main

reason for this overlap was the 150 kV accelerating voltage did not provide enough

energy gain for sufficient turn separation. A machine of this type was never built.

Figure 2.7: Beehive structure from Russell’s separated orbit cyclotron.

Lord and Hudson [14], in 1965, proposed a magnet for an 800 MeV planar sepa-

rated orbit cyclotron. The contoured pole tips, shown in Figure 2.8, provide bending
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and focusing with alternating gradient fields. The design was able to get 15 T/m in

the 1.5 in beam tube, but the spacing between beam tubes needed to be 4.5-5 in,

which would produce a large machine. A 1
8

scale model of the sector magnet was

fabricated, but a full machine was never created.

Figure 2.8: Cross section of four of the Lord and Hudson poles [14].

Another SOC, put forth by Martin [15], used the shape of the pole tip to produce

about a 3 T/m gradient along the turns, which is not sufficient for our machine.

Both the Martin and Lord and Husdon SOCs rely on the main dipole field and

iron shape to produce the focusing and so cannot be adjusted individually. The

TRITRON [16], the only SOC that was actually built, had dipole windings for each

beam tube in a coil-dominated setup. The axial focusing was produced by two

methods, edge focusing with a tilt of 9 degrees at the entrance to the sectors, and
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gradient windings along the length of the sector arc. When the TRITRON was built,

it was unknown if the designed superconducting cavities would work and as a result

the turn separation, and beam aperture, were kept as small as possible, limiting the

TRITRON to low beam currents. The TRITRON group came to the conclusion that

”future separated orbit cyclotrons can be planned with enlarged turn separation, say

10 cm, which would leave a geometrical aperture for the beam of about 5cm. This

would reduce the requirements on the stability of the injector considerably and make

the acceleration of high intensity beams with low losses much easier [17].”

Figure 2.9: Top view cross section of the TRITRON cyclotron [16].
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Figure 2.10: Cross section of two channels from the TRITRON [18] (Left). Top view
of sector edge showing 9 degree tilt [16] (Right).

2.4 TAMU Strong-Focusing Cyclotron

The accelerator portion of the ADS system, shown in Figure 2.11, consists of the 

front end, an injector or booster cyclotron (TAMU100), and a main cyclotron 

(TAMU800). The front end [19] contains a dual ECR ion source, a low energy beam 

transport (LEBT) line, a radio-frequency quadrupole (RFQ), an interdigital H-type 

structure (IH) [20], and a medium energy beam transport (MEBT) line to bring the 

protons to an energy of 6.5 MeV. The TAMU100 has six sectors with a sector angle 

of just under 60 degrees and four RF cavities. Each sector is a straight edge wedge 

that has been offset from the center to create a gap for the RF cavities. The RF 

cavities will be made of superconducting niobium and have a tapered shape (Figure 

2.12). TAMU800 consists of 12 sectors, with a sector angle of 30 degrees, and ten RF 

cavities. Like the TAMU100, the sectors are straight edge and offset from the center 

of the cyclotron to provide spacing for the RF cavities. Both cyclotrons are 

isochronous continuous wave (CW) separated sector cyclotrons. The parameters of 

the TAMU100 and TAMU800 cyclotrons are given in Table 2.1. Each sector will 

house a focusing and defocusing superconducting beam transport channel to
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provide the required strong focusing. The layout of the beam transport channels

on one of the sectors is shown in Figure 2.13. The details of the beam transport

channel (Figure 2.14) will be given in chapter 4. Unless otherwise stated, the booster

cyclotron, TAMU100, will be the cyclotron referred to for the remainder of this thesis.

Figure 2.11: TAMU ADS accelerator system. The TAMU100 accelerates protons
from 6.5 MeV to 100 MeV and feeds into the TAMU800 which accelerates the protons
to a final energy of 800 MeV.

14



Figure 2.12: Tapered RF cavity to be used in both the TAMU100 and TAMU800 [21].

Figure 2.13: View of the bottom cold face of a sector magnet. The top plate and
warm iron return have been removed to show the placement of two beam transport
channels per turn.
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Figure 2.14: Isometric view of beam transport channel.

Table 2.1: Parameters of the TAMU100 and TAMU800 cyclotrons

Parameter TAMU100 TAMU800
Injection Energy 6.5 MeV 100 MeV
Extraction Energy 100 MeV 800 MeV
Injection Radius 1.12 m 3.28 m
Extraction Radius 4.26 m 6.47 m
B (Inj./Ext.) 1.1/0.5 T 0.92/1.16 T
Dipole Aperture 7 cm 7 cm
Number of Sectors 6 12
Number of RF Cavities 4 10
Frequency 117 MHz 117 MHz
Harmonic 25 19
Number of Orbits 14 20
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3. BEAM DYNAMICS

3.1 Reference Orbit

The equilibrium orbit in an accelerator is the path which a particle with the

designed momentum would travel and is used as a reference system to discuss particle

motion and for calculations in most optics codes. For cyclotrons, the equilibrium

orbit and corresponding magnet parameters are often calculated based on a series of

closed orbits, assuming no energy gain through one turn of the machine. Although

the actual orbit is a spiral, this approximation works because the actual path of the

beam is allowed to drift within the cyclotron. In the TAMU cyclotron, the path

of the beam will not be allowed to drift and will need to be clearly defined to live

inside the beam transport channels in each sector. As described in the previous

chapter, the TAMU100 consists of six separated sector magnets, a series of beam

transport channels, and four superconducting RF cavities. The general layout of the

TAMU100 cyclotron can be seen in Figure 3.1. A geometric approach was used to

determine the isochronous spirals which maintain a minimum 6 cm spacing between

successive turns and a path which passes straight through the RF cavities. A set of

parametric equations were developed to describe a spiral path through the sectors and

RF cavities, based on initial inputs and parameters to be optimized. An optimization

was then performed using these equations combined with the energy in each section

of the cyclotron to bring the total time to the isochronous time.

3.1.1 Geometric Layout and Constraints

In order to determine parametric equations, the geometry of the system must

first be defined. The six sectors are offset from the machine center on a circle of

radius a. The minimum of the circle radius is set by the width of the required RF
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Figure 3.1: Layout of the TAMU100. The six wedge shaped sectors are separated to
allow room for the 4 tapered RF cavities. The remaining two gaps allow room for
injection and extraction. The upper half of two of the sectors have been removed to
show the cold iron pole piece and the layout of the beam transport channels on the
cold iron pole piece (bottom middle sector). A portion of the front end MEBT is
shown in the left gap.

cavity gap. This is a result of each sector being centered on a multiple of 60 degrees

around the circle, forming an equilateral triangle with the space required for the

RF cavity as one side of the triangle. Since each sector is less than 60 degrees, the

gap between the sectors increases toward the outside of the machine, creating room

for the tapered cavities (Figure 3.2). By setting the initial injection radius (ri) and

angle (θi) of approach to the first sector, requiring the straight path of the particle

to be tangent to the circular path within the sector, and requiring the path out of

the sector to be perpendicular to the centerline of the following cavity, the center
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Figure 3.2: Cross section of the tapered RF cavity between the sectors.

location (s1 in Figure 3.3 and 3.4 ) and radius of the path within the first sector

is fully determined. A similar set of requirements determines all but two of the

remaining centers, those in sector three and sector six (s3 and s6). Sector three and

sector six are followed by a gap for injection or extraction, which does not contain

a cavity, so the constraint on the path through the gap being perpendicular to the

cavity is removed. Adjusting the position of s3 or s6 is equivalent to shortening or

lengthening the total path through the sector, which in turn affects the total path

length through the entire machine. The full set of parametric equations can be found

in reference 22.

3.1.2 Optimization

A Mathematica [23] script was written to perform the calculation and optimiza-

tion of the isochronous orbit. The optimization takes two forms, one for the first orbit

and another for the subsequent orbits. In the first orbit, the inputs are the initial in-

jection radius, initial angle of injection, and the injection energy. The initial injection

radius is found by calculating the circumference as (harmonicnumber/RFfrequency)∗
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Figure 3.3: Geometric layout and optimization variables for the isochronous orbit

initialvelocity and dividing by 2π as though the particle travels in a closed circle.

The variables which are used in the first optimization are the tilt of each cavity, the

distance each cavity is offset, a gain factor for each cavity, and the location of s3

and s6. These variables are each given an optimization range to avoid unrealistic

solutions, such as cavities overlapping sectors. The path lengths in each sector, gap

between sectors, and cavity are calculated based on the initial values of the variables.

The energy gained [24] in each cavity is calculated based on

∆E ≈ qV (r)[2βc
sin(ωRFL

2βc
)

ωRFL
]cos(ωRFT − φs), (3.1)

where V is the radial dependent voltage from the cavity shown in Figure 3.5, ωRF

is the frequency of the cavity, φs is the phase the particle hits the cavity, and the

bracketed value is the transit time factor across the cavity gap L. In this equation,
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Figure 3.4: Geometry and variables used to describe the equations through the first
sector.

the assumption has been made that the change in the particle velocity going through

the cavity is small. Once the total path length is found, the time is then obtained

by dividing each path segment by its corresponding velocity. A change in the cavity

offset, which is the distance the cavity is placed from the center of the machine, would

cause the particle to have a higher or lower energy gain in the subsequent sections.

A change in the cavity tilt, which is allowed to run from zero to an angle projecting

the particles away from the center of the machine, would cause a larger path length

through the subsequent sections. The goal is for all path times between cavities,

calculated as path length divided by velocity, to be the corresponding isochronous

time. A minimization is performed to bring the total time to the isochronous time by

varying the tilt angle of each cavity,the cavity offset, the total gain of the cavity, and
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the location of s3 and s6. There is also a set of constraints imposed by the minimum

spacing of successive orbits.

Figure 3.5: Raw gain for the TAMU100 cavity

In the first orbit optimization, the distance from the center of the first cavity to

the center of the second cavity (T2 in Figure 3.6) is minimized to equal one sixth the

isochronous time, the time from the second cavity to the third (T3) minimized to one

third the isochronous time, the time from the third to the fourth (T4) is minimized

to one sixth the isochronous time, and the time from injection to the first cavity

plus the time from the fourth cavity to injection (T1) is minimized to one third the

isochronous time. The isochronous time is defined as harmonic/fRF .

After the first orbit optimization is performed, the tilt angle, the cavity offset,
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Figure 3.6: Cavity time definitions for isochronous orbit

and the cavity gain factor for each cavity is set. The phase, φs from equation 3.1, of

each cavity with respect to the global time is also set so the reference particle hits the

cavity at 15 degrees behind the RF maximum for the first orbit. The optimization

for the remaining orbits only use two times, T1 and T3, since the only parameters

left to optimize are the location of s3 and s6. These two parameters are equivalent

to changing the center location of the arc through two of the sector magnets. During

these optimizations, the energy gain depends not only on the radial position in the

cavity, but also the time, or phase, the particle hits the cavity. An example of the

isochronous spiral and phase at each cavity are shown in figures 3.7 and 3.8.

In the reference orbit method described above, the energy of the particle was

determined during the optimization. Assuming a hard edge model, the magnetic

field profile for each sector can be calculated from the energy, path length, and
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Figure 3.7: Isochronous spiral orbit

bending angle. An example profile of the magnetic field calculated for one sector is

shown in Figure 3.9.
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Figure 3.8: Phase the particle hits the RF cavities. The zero point corresponds to
-15 degrees from the RF wave crest.

Figure 3.9: Profile of mid-plane dipole calculated for one of the sectors
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3.2 Beam Optics

3.2.1 Linear Beam Optics

For the case of our strong focusing cyclotron, the bending of the beam is assumed

to occur only in the x direction with focusing in both x and y. The magnetic fields

produced by the dipole and quadrupole are

Bx = −gy, By = Bd + gx, (3.2)

where Bd is the dipole field and g is the gradient of the quadrupole. The transverse

equations of motion can be written as [25]

x′′ − (k + k2d)x = 0, y′′ − ky = 0. (3.3)

For simplicity, the dipole and quadrupole parameter can be combined as κ = k+ k2d,

where k = eG
p

and kd = 1
ρ
, and the equations of motion, for either x or y, take the

form of Hill's equation:

u′′ + κu = 0, (3.4)

with known solutions of the form:

u(s) = C(s)ui + S(s)u′i, (3.5)

For κ >0:

C(s) = cos(
√
κs), S(s) =

1√
κ
sin(
√
κs), (3.6)

and for κ <0:

C(s) = cosh(
√
κs), S(s) =

1√
κ
sinh(

√
κs), (3.7)
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Any general solution to the equations can be expressed as a linear combination of

the pair of equations,

u(s) = C(s)ui + S(s)u′i (3.8)

u′(s) = C ′(s)ui + S ′(s)ui, (3.9)

or in matrix form u(s)

u′(s)

 =

C(s) S(s)

C ′(s) S ′(s)


ui
u′i

 (3.10)

Each matrix transporting a particle from the initial conditions ui, u’i to a location

s, is only valid over a region of constant κ, so a transport matrix must be defined

for each element in the strong-focusing cyclotron. Information on the particle after

the nth element can be found by combining the transport matrices according to:

M = MnMn−1...M2M1 (3.11)

The initial hard edge model consists of drifts, combined function magnets, and

sector dipoles whose transport matrices are:

Drift =

1 L

0 1

 , (3.12)

Combined Function =

 cos(
√
κL) sin(

√
κL)√
κ

)

−
√
κsin(

√
κL) cos(

√
κL)

 , (3.13)

Sector Dipole =

 cos(kdL) sin(kdL)
kd

)

−kdsin(kdL) cos(kdL)

 . (3.14)

The sector dipole uses the same matrix as the combined function with the quadrupole
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strength set to 0.

Instead of transporting a particle from a single point in phase space to the next,

it is often more useful to work with the overall beam ellipse. The solution to Hill's

equations can also be written in phase amplitude form as:

u(s) =
√
ε
√
β(s)cos[ψ(s)− ψ0], (3.15)

where ε and ψ0 are integration constants, and β(s) is the betatron function mentioned

in section 2.1.

Liouville's Theorem states the area of phase space remains constant under linear

transformations, which allows, in a similar manner as the single particle case, the

parameters of the ellipse to be propagated with a transport matrix. The beam

ellipse and orientation can be written in terms of the Courant-Snyder [26] parameters

(equation. 3.16) and describe the shape of the ellipse according to Figure 3.10.

ε = γ(s)u2 + 2α(s)uu′ + β(s)u′2, γ =
1 + α2

β
(3.16)

The transport matrix in equation 3.10 can also be written in terms of the Courant-

Snyder parameters:

uf
u′f

 =


√

βf
βi

(cos(∆ψ) + αisin(∆ψ))
√
βiβfsin(∆ψ)

−1+αiαf√
βiβf

sin(∆ψ) +
αi−αf√
βiβf

cos(∆ψ)
√

βi
βf

(cos(∆ψ)− αfsin(∆ψ))


ui
u′i


(3.17)

The functions, beta, alpha, and gamma can also be transformed using the ele-
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Figure 3.10: Phase ellipse parameters

ments of the transport matrix M :


β(s)

α(s)

γ(s)


f

=


M2

11 −2M11M12 M2
12

−M11M21 1 + 2M12M21 −M12M22

M2
21 −2M21M22 M2

22



β(s)

α(s)

γ(s)


i

(3.18)

The phase advance is given by:

ψ(s) =

∫ s

0

ds

β(s)
, (3.19)

and the number of oscillations for one turn can be obtained by integrating equa-

tion 3.19 around a complete turn and dividing by 2π. The total number of oscilla-

tions in known as the tune, and is found for both transverse planes. If the values for
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the tunes are not carefully chosen, it can lead to harmful resonances which in turn

can lead to beam blow-up. Integer values for the tune in both x and y should be

avoided. If, for example, one of the sectors was misaligned, then at every turn an

integer tune would get an error kick in the same location.

Although the transverse directions have been treated as being separate, coupling

between the two planes can arise from a number of sources, such as alignment errors

and magnetic field errors. A few of the coupling tunes to avoid are: an integer sum

of the two tunes, Qx+Qy=m; the half-integers tunes, 2Qx=±m and 2Qy=±m; the

Walkinshaw [27] resonance, Qx-2Qy=m; ±3Qx=m and many higher order resonances.

A plot of the tunes in x and y with the resonances to avoid up to third order are

shown in Figure 3.11. The marked spot on the plot shows an example working

location of the tunes for the TAMU100.

3.2.2 MAD-X

A variety of computational tools are available to study the beam properties in

an accelerator with a large number of matrix elements. One standard code used

in particle accelerator design is the Methodical Accelerator Design (MAD) [28] code

developed at CERN. MAD-X is the successor of MAD8 which was originally designed

for the LHC, so the code is well suited for high energy, large radius circular machines.

As a result, the code does not have the acceleration capabilities to properly model

the TAMU100. MAD-X reads in a sequence file, which is a list of beamline elements,

and a corresponding energy. The momentum is then internally computed and used

to determine the beamline element strengths. Each time the energy in a sequence

changes (a cavity is encountered), a new sequence file must be read and reference

momentum changed. In order to model the TAMU100, 84 (6 sectors and 14 turns)

sequence files had to be generated. As an example, the breakup of the first orbit,
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Figure 3.11: Tune diagram showing the first(red), second(blue), and third(green) or-
der resonances. The point indicates one example working location for the TAMU100

Figure 3.12, is shown in Figure 3.13. The section is set up as a drift, combined

function focusing magnet, bending magnet, combined function defocusing magnet

and drift. At this stage, since MAD-X is not able to handle the RF cavity, the cavity

is treated as two drifts, the first half with the initial energy and the second half with

the energy gained after going through the cavity. The MAD-X representation of one

of these sections is shown in Figure 3.14.

In order to create the MAD-X sequence file, a MATLAB [29] script was created to

read in the output of the Mathematica isochronous spiral code. As an initial step, the

entire cyclotron was entered as one sequence with the initial energy used throughout.

Constraints were placed on the phase advance per turn and the maximum allowable

beta functions in x and y. The focusing quadrupole strengths (kF ) and defocusing
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Figure 3.12: Layout of elements in the first orbit

quadrupole strengths (kD) were kept constant for all quadrupoles in a single turn.

The beta functions for one of the initial runs is shown in Figure 3.15. Although this

method is incorrect for every section after the first cavity, it gives an initial idea of

the required quadrupole strengths (Figure 3.16).

The next step was to divide the sequence files into single turns. This time the

strength of each quadrupole were allowed to change for a total of 6 kF s and 6 kDs

per turn. Again, this is only correct for the portion of the turn before the first cavity,

but is more accurate than the total cyclotron case. A set of plots, Figure 3.17, show

the beta functions through each of the 14 turns in which the tune per turn is kept

constant. Figure 3.18 shows the required quadrupole strengths for this setup. The

quadrupole strengths are then entered into 84 sequence files, for all 84 individual cells,

and the total tune of the machine, with the correct energy being taken into account,
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Figure 3.13: Sections of the first orbit broken into regions of constant energy

Figure 3.14: MAD-X representation of a combined function sector bend and drifts
for one orbit. Each sector is divided into three parts, the focusing combined function
sector bend, a plain sector bend, and a defocusing combined function sector bend.

is calculated. The resulting tune plot, for all 14 turns, is shown in Figure 3.19 where

many of the points overlap one another as desired.

The final step, for proper quadrupole strengths, is to run the individual sections.

Unfortunately, the total tune per turn cannot be held with this method as the code

only has information about one section, not the global tune. The individual section

tunes can be added up, and individual quadrupole strengths adjusted to ensure the
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Figure 3.15: Beta functions through TAMU100.

tune per turn remains constant.
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Figure 3.16: Initial quadrupole strengths which hold the tune constant while treating
the whole machine at the constant injection energy.
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Figure 3.17: Beta functions for the 14 turns with phase advance held constant per
turn. The first turn starts at the top left and the last turn on the bottom right.
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Figure 3.18: Quadrupole strengths which hold the tune constant when treating each
turn at a constant energy.

37



Figure 3.19: Tune plot for the 14 turns after optimization. As is desired for a constant
tune, many of the points overlap.
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3.3 Particle Tracking Simulations

A more complete picture of the behavior of particles in an accelerator can be

obtained through particle tracking. A large number of particles can be tracked

simultaneously and the individual particles can be allowed to interact with each

other, as in space charge effects, or interact with the machine itself, impedance

effects. The quality of the results, like many codes, depends largely on the input,

which for particle tracking is the initial distribution. A realistic particle bunch has

the shape of a 6D ellipsoid. Within this ellipsoid, the particles have a Gaussian

distribution according to

ρ(x, y, z) =
Nq

(2π)3/2σxσyσz
exp

− x2

2σ2x
− y2

2σ2y
− z2

2σ2z (3.20)

where N is the number of particles per bunch and q is the charge per particle. The

”waterbag” distribution is often used, which is a simplified model where the 6D

ellipsoid is uniformly populated. Figure 3.20 shows a comparison between the two

distributions.

Another important requirement, to ensure accurate results, is that the particle

tracking code be symplectic. The symplectic condition guarantees that the area of

the phase space is conserved through the mapping or integration of the beamline

elements [25]. Mathematically, a transport matrix is said to be symplectic if it

satisfies:

S = MTSM, (3.21)

where
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Figure 3.20: 6D ellipsoid with Gaussian(Left) and Waterbag (Right) particle distri-
butions.

S =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


. (3.22)

Another condition for symplecticity is

detM = 1. (3.23)

The determinant of the map gives the amount of magnification of the phase space

area, so if det = 1, the phase space area is conserved.

There are two types of symplectic tracking codes: the matrix or polynomial codes,

which use a Taylor series expansion to generate a map; and the symplectic integration
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codes. The matrix codes (such as TRANSPORT [30], MARYLIE [31], COSY [32])

use an expansion about the design trajectory to map through each type of magnet or

beamline element. The final state may be written as an expansion about an initial

phase space point, ui = (x, px, y, py, z, pz), as a power series [33]:

uf1 = T1(u
i
1, ....., u

i
m),

.

.

ufm = Tm(ui1, ...., u
i
m),

(3.24)

where the Tj are a set of Taylor series expanded about the initial point.

ufa = Ka +
∑
b

Rabu
i
b +

∑
bc

Tabcu
i
bu
i
c +

∑
bcd

Uabcdu
i
bu
i
cu
i
d + . . . . (3.25)

Here the indices a, b, c.. run from 1 to 6 for the dimension of the phase space. The

Ka terms are constants, the Rab term is the first order transfer matrix, and the Tabc

and Uabcd are higher-order transfer matrices. Since the expansion is about the design

trajectory, the map can only be trusted up to some radius in phase space. The main

drawback of the Taylor map method is the series must be truncated at some order.

This truncation, if not handled properly, will violate the symplectic condition and

may add artificial components to the magnet. The Taylor method also requires a

large number of expansion coefficients to be calculated and stored in the code for

each element.

A solution to the truncation issue can be found using Lie algebraic methods. The

mapping from an initial phase space point to a final phase space point can also be

written as:
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uf =Mui, M = e:f :. (3.26)

The Lie transformation, e:f :, is defined by:

e:f : =
∞∑
n=0

: f :n

n!
, (3.27)

and the Lie operator has the form:

: f :=
∑
i

(
∂f

∂qi

∂

∂pi
− ∂f

∂pi

∂

∂qi
). (3.28)

If M is a symplectic map with a Taylor expansion of the form in equation 3.25,

then M can be written in the Lie factored product form [33]:

M = e:f1:e:f
c
2 :e:f

a
2 :e:f3:e:f4: . . . . (3.29)

Each of the functions fm is a polynomial of degree m with independent coefficients.

The number of coefficients for a Lie factored map is less than a Taylor series map

through the same order, and so take less computer memory. Also, since the coef-

ficients for each order are independent, truncation at any order will still produce a

symplectic map. The total map though will only be symplectic to that order and

will only represent a symplectic approximation to the original map M.

The method which has become increasingly viewed as the more reliable method

for particle tracking [34, 35, 36], is that of symplectic integration. This method uses

a split of the Hamiltonian into two (or more) parts,

H = H1 +H2. (3.30)
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If a mapM1 can be found corresponding to H1 and a mapM2 corresponding to H2,

a map which is accurate through second order can be written:

M(τ) =M1(
τ

2
)M2(τ)M1(

τ

2
). (3.31)

This map can be extended up to fourth order [37] with the following algorithm:

M(τ) =M1(
s

2
)M2(s)M1(

αs

2
)M2((α− 1)s)M1(

αs

2
)M2(s)M1(

s

2
), (3.32)

with

α = 1− 2(1/3), s =
τ

1 + α
. (3.33)

Finally, this map can be extended up to any order 2n + 2 if the map of order 2n is

known. This method, developed by Yoshida [38], is given by:

M2n+2(τ) =M2n(z0τ)M2n(z1τ)M2n(z0τ), (3.34)

where

z0 =
1

2− 21/(2n+1)
, and z1 =

−21/(2n+1)

2− 21/(2n+1)
. (3.35)

There are a number of particle tracking codes, but like the optics codes, no

code, in its present state, was capable of accurately tracking in our strong-focusing

cyclotron. Two codes, MAD-X-PTC and Synergia, have been modified toward this

purpose. The modifications and results from these codes are presented in the next

sections.

3.3.1 MAD-X-PTC

The Polymorphic Tracking Code [39] (PTC) exists as a module within MAD-X

and allows tracking through thick elements. Similar to MAD-X, it was designed for
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circular machines and requires the sequences be divided into sections with constant

energy.

In order to add acceleration, a MATLAB code was written which externally adds

the acceleration and feeds it back into the PTC tracking in MAD-X. The code works

as follows (and is shown graphically in Figure 3.21):

1. The output of the isochronous spiral code is used to create a series of sequence

files. This is the same as was done for the MAD-X runs.

2. An initial particle distribution is created and input into a MAD-X PTC file.

3. The PTC module in MAD-X is used to track particles through a constant

energy sequence.

4. The particle data, {X,PX,Y,PY,T,PT} is read from the output file.

5. Acceleration is applied, described in detail below, and the new particle distri-

bution is created within a MAD-X PTC file.

6. The next sequence is called. Steps 3 through 6 are repeated until the end of

the cyclotron has been reached.

3.3.1.1 Acceleration Module

The particle data output by MAD-X-PTC must be properly handled to perform

acceleration. The horizontal and vertical position (x and y) are measured as an offset

of the ideal orbit, and do not need to be unnormalized. The horizontal and vertical

momentum have both been normalized with respect to the reference momentum,

PX = px/p0 and PY = py/p0. The value output for time has been multiplied by the

speed of light and is the difference between the particle and the time of the reference

particle, T = −ct. The sign is set so that a particle arriving before the reference
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Figure 3.21: Sequence of steps for MAD-X-PTC with the MATLAB acceleration
module

particle will have a positive value, and the reference particle arrives at the end of

the sequence with a time of zero. The transverse momentum is the change in energy

between the particle and reference particle energy, normalized to the longitudinal

portion of the reference momentum and the speed of light PT = ∆E/psc. For each

call to the acceleration module, the reference momentum for the previous sequence

(prevmom) and the reference momentum(refmom) for the sequence following are

calculated from the known energies from the sequence file. The horizontal and ver-

tical momentum for each particle are unnormalized then renormalized according to:

PX = prevmom ∗ PX

refmom
, PY = prevmom ∗ PY

refmom
. (3.36)

The time difference T is divided by the speed of light to get the relative time for

each particle to the reference particle and saved in the variable relativetime. The
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energy for each particle is pulled from the PT variable in a similar unnormalization

process as with momentum,

EbeforeCavity = PT ∗ prevmom ∗ c+ prevenergy, (3.37)

where the prevenergy is from the previous sequence file. The energy gain is calcu-

lated with the same form as equation 3.1, and the resulting energy, EafterCavity =

EbeforeCavity + ∆E, is renormalized and saved as the new PT value.

PT =
(EafterCavity − refenergy)

(refmom ∗ c)
. (3.38)

3.3.1.2 Combined Function Magnet

As the TAMU100 is mainly composed of combined function magnets, separated

only by drifts and RF cavities, it is important to look at how these are treated within

MAD-X-PTC. PTC is a symplectic integration code using a second order integration

method. For a combined function sector bend there are two main options for how

the Hamiltonian can be split. The TEAPOT split [40]:

H = −(1 +
x

ρ
)
√

(1 + pt)2 − p2x − p2y︸ ︷︷ ︸
T1

+V (x, y : ρ−1)︸ ︷︷ ︸
T2

, (3.39)

which is a drift-kick split, where T1 represents a drift in polar coordinates and T2 is

the kick described by equation 3.41, and the second Hamiltonian split is written as:

H = −(1 +
x

ρ
)
√

(1 + pt)2 − p2x − p2y + b1(x+
x2

2ρ
)︸ ︷︷ ︸

H1

+V (x, y : ρ−1)− b1(x+
x2

2ρ
)︸ ︷︷ ︸

H2

,

(3.40)
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where H1 is the Hamiltonian of a sector bend with a vertical field and H2 is the

kick portion. According to Etienne Forest [39], PTC must compute a template from

which it extracts the B field from the multipole components. The potential is given

by:

{(pd + x)(
∂2

∂x2
+

∂2

∂y2
− ∂

∂x
)− ∂

∂x
}V = 0, (3.41)

and solved by an iterative process to order SECTOR NMUL, which is a variable

set by the user. When SECTOR NMUL=2 the results are consistent with the

Ripken [41] formalism, and when SECTOR NMUL=3 the results line up with

those of MAD-X based on the work by Karl Brown [42]. The user is also able to set

the number of integration steps per element.

3.3.1.3 Results

A sequence file was created from the isochronous spiral code output which con-

tains 84 sequences (6 cells per turn for 14 turns). A marker was placed after each

cavity, or in the middle of the drift space for sequences without cavities, to record

the six phase space coordinates for each particle. The sequence file used for the

MAD-X-PTC particle tracking can be found in appendix A. The MAD-X conven-

tion is a phase lag of 1 corresponds to 360 degrees. In order to operate at 15 degrees

behind the crest, which is located at 90 degrees, the desired phase lag is set in the

sequence file to 5/24. Since space charge is not being considered in this model, the

distribution of the particles is not as critical and instead of a Gaussian bunch, a wa-

terbag distribution is sufficient. Injection into the TAMU100 is expected to have an

initial transverse emittance of 1 mm-mrad and a longitudinal spread of 6◦. The size

of the beam pipe is also specified in the sequence file as an aperture in the combined

function magnets and sector bends(labeled sbends in MAD). The aperture sets the

radial dimension, and all particles going beyond this radius are removed or ”lost”.
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The code does not allow a beam pipe aperture to be set for the drift regions. The

initial particle distribution and phase space distribution in x and y are plotted in Fig-

ure 3.22. The energy gain through the machine (Figure 3.23) is consistent with the

expected energy gain obtained with the isochronous spiral code. As an initial run,

Figure 3.22: The initial waterbag particle distribution used for tracking in x-y(Top),
x-py(Middle), and y-py(Bottom)

the particles were tracked through the machine with the quadrupoles set to nearly

zero. The initial x-y distribution and phase space plots are shown in Figure 3.22. In

this arrangement the beam grows significantly in the y direction (Figure 3.24).
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Figure 3.23: Energy gain through the TAMU100

Two methods of particle tracking were then performed using the strengths for

the quadrupoles which maintain constant tunes per turn, as found from the MAD-X

runs. For each of these two methods, an emittance of 1, 5, and 10 mm-mrad were used

for the initial particle distributions, with the 1 mm-mrad shown in Figure 3.22. One

method is characterized by setting the flag in PTC to use the ”exact” Hamiltonian,

which is of the form found in equation 3.39 or 3.40. The final phase space plots in

x and y and the final particle x-y distribution for the ”exact” Hamiltonian cases are

shown in Figure 3.25. In the figure, the emittance increases from top to bottom. The

other method had the PTC flag set to ”extended” Hamiltonian, which expands the

square root portion of the exact Hamiltonian. The results of the final phase space

plots and distribution for the expanded Hamiltonian cases are shown in Figure 3.26.
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Figure 3.24: The final particle distribution for the case with the quadrupole strengths
set to nearly zero in x-y(Top), x-py (Middle), and y-py (Bottom)

3.3.2 Synergia

Synergia [43] is a particle tracking code out of Fermilab with the capability for

single or multiple bunch tracking. The code can include collective effects, such as

space charge, which is important for high intensity beams, and one of the main rea-

sons it is of interest for simulating the TAMU100. Similar to MAD-X and PTC, the

code was designed for high energy, large circumference rings and had the same issues

with acceleration as was dealt with in MAD-X. A new element has been built within

the CHEF portion of Synergia to handle an RF cavity of a given length. This ele-

ment takes into account the transit time factor and phase according to equation 3.1.
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Figure 3.25: The final particle distribution for the constant tune case using the
”exact” Hamiltonian form of PTC. Emittances shown are 1 mm-mrad(Top), 5
mm=mrad(Middle), and 10 mm-mrad(Bottom) Plots are x-y(Left), x-py(Middle),
and y-py(Right)

Although this modification is not available in the main Synergia distribution, there

are future plans to implement it.

3.3.2.1 Combined Function Magnet

Synergia, or more accurately CHEF which is called within Synergia, treats the

combined function as a pure dipole with thin quadrupole kicks. The element is

divided into two ends and a body. The body section is based on a unit of four thin

quadrupoles and three dipole sections, and can be made of any number of units (with

40 units the current default). The position of the thin quadrupoles within the unit

51



Figure 3.26: The final particle distribution for the constant tune case using the
”expanded” Hamiltonian form of PTC. Emittances shown are 1 mm-mrad(Top), 5
mm-mrad (Middle), and 10 mm-mrad(Bottom) Plots are x-y(Left), x-py (Middle),
and y-py (Right)

is based on the work of R. Talman [40]. A visual representation of the optimum

quadrupole placement and strength for four quadrupoles can be seen in the bottom

of Figure 3.27. The length of the total quadrupole is L and the quadrupole strength

is 4q. In the four thin quadrupole setup, the end sections have length 6
15
L
4

and the

equal strength quadrupoles are separated by a distance 16
15
L
4
. Two ends and three

separations make 2∗6
15

L
4

+ 3∗16
15

L
4

= L. When there are n of these units, the L
4

term

becomes L
n4

and the strength of each quadrupole becomes q
n
. Tracking of the particles

through the dipole section is done as an exact map of a charged particle traveling on
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a helical path through a magnetic field. The details can be found in reference 44.

Figure 3.27: Representation of thick quadrupole by n thin quadrupoles, for n=1
(top) through n=4 (bottom) [40].

3.3.2.2 Results

The same initial waterbag particle distribution used in the MAD-X-PTC tracking

was used for the Synergia simulations. The sequence file used for Synergia particle

tracking can be found in appendix A. The sequence file differs from the MAD version

since the RF cavities could be directly added. The sequence still has to be split into

84 cells since Synergia scales the strength of the elements (dipoles,quadrupoles, etc.)

following a cavity to the energy of the reference particle after the cavity. In order to

avoid this rescaling, the energy is explicitly set at the beginning of the 84 sequence

files, and the RF cavity is placed at the end of the cell. The results of the simulation
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with the quadrupole strength set nearly to zero (Figure 3.28) agrees with the MAD-

X-PTC results fairly well. The final particle distribution is the same size and the

phase space plots have a similar shape and size. A second simulation was also run

with the strengths of the quadrupoles set to maintain a constant tune, these were

the same strengths used for the MAD-X-PTC run. Compared to the MAD run,

the y dimension is the same, but the x dimension is a factor of 100 larger. This

is due to the x dimension of the beam blowing up toward extraction. This blowup

can be seen in the top plot of Figure 3.31. The results of this run are plotted in

Figure 3.30. This is also reflected in the phase space plots. The x and y position of

a few of the particles is shown in Figure 3.31. Toward the end of the cyclotron, what

appears to be a resonance buildup can be seen. In fact, if they tunes are not properly

adjusted, nearly all particles are lost. In order to calculate the tunes in Synergia,

the transfer matrix for each section was output. Using the matrix elements and the

transfer matrix form of equation 3.17, the phase advance(∆ψ), beta at the end of

the section(βf ), and alpha(alphaf ) at the end of the section can be found according

to:

∆ = arctan[
m12βi

βi(m11βi − αim12)
], (3.42)

βf =
1

βi
(

m12

sin(∆ψ)
)2, (3.43)

and

αf = −

√
βf
βi
m22 − cos(∆ψ)

sin(∆ψ)
. (3.44)

The Synergia tune plot, which uses the same quadrupoles as the MAD tune plot in

Figure 3.19, is shown in Figure 3.32. The tunes have clearly shifted compared to the
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desired working point and MAD tunes. The differences in the two codes is discussed

further in the following section.

Figure 3.28: The final Synergia particle distribution for the case with the quadrupole
strengths set to zero in x-y(Top), x-py (Middle), and y-py (Bottom).

3.3.3 Comparison of MAD-X-PTC and Synergia

As a form of benchmarking, the results of the modified MAD-X-PTC tracking and

Synergia tracking were compared. Initially the energy gain plots did not agree, which

led to the previously mentioned modification of the RF cavity module in Synergia.

Since Synergia had been designed for high energy machines, the length of the RF

55



Figure 3.29: A few of the Synergia particle trajectories showing the x, y, z, and
energy gain through the length of the cyclotron for the case with the quadrupole
strengths set to zero.

cavity had been ignored, and the transit time factor had not been included. Once

this fix was in place, both energy gains agreed. The next disagreement showed up in

the particle positions after going through a single sector. This disagreement is due to

the different treatments of the combined function magnet as outlined in the previous

sections. As this was a known issue, a version of Synergia had already been created

to make the results agree between MAD-X-PTC and Synergia. In this version of

Synergia (which will be referred to as Synergia-PTC), a few modifications needed
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Figure 3.30: The final Synergia particle distribution for the case with the quadrupole
strengths set to hold the tunes constant in x-y(Top), x-py (Middle), and y-py (Bot-
tom).

to be made, one of which is the combined function magnet has a term subtracted

in order to make the two codes agree [45]. The term is the second term in the H2

portion of equation 3.40,

b1 = (x+
x2

2ρd
). (3.45)

Using this modified Synergia-PTC to compare to the MAD-X-PTC with acceler-

ation runs, the difference in particle position, after the first sector, agrees to less than

10−9. This comparison does not show that either code is correct, only that the treat-

ment of the TAMU100 in the modified MAD-X-PTC code agrees with what would be
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Figure 3.31: A few of the Synergia particle trajectories showing the x, y, z, and
energy gain through the length of the cyclotron for the case with the quadrupole
strengths set to maintain tune.

expected out of MAD-X-PTC and verified with Synergia-PTC. These comparisons

assumed an initial x-y particle distribution as in Figure 3.22, but the transverse mo-

mentums, Px and Py, were set to zero. The momentums, Px and Py, are assigned

using randomly generated numbers and would add an un-necessary difficulty in try-

ing to compare the two codes. The quadrupole strengths for this run were also set

to nearly zero. The difference in the x and y position are plotted in Figure 3.33.

The correct treatment of the combined function magnet is an active research area
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Figure 3.32: Tune plot from Synergia with the quadrupole values set to those in
MAD-X-PTC.

for both MAD-X-PTC and Synergia.
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Figure 3.33: Difference between MAD-X-PTC and Synergia-PTC in the x position
(left) and y position (right) of the particles after the first section.
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4. BEAM TRANSPORT CHANNEL

The beam transport channel (BTC) is the heart of the strong-focusing cyclotron.

It is composed of a curved beam pipe which lies along the arc of the particle tra-

jectories in the mid-plane of the sector magnets. Surrounding the beam pipe is a

quadrupole magnet, to supply the required strong-focusing, and a trim dipole magnet

to help correct sector field errors. A first step in the design of the beam transport

channel is an understanding of how magnetic fields are calculated and how these

calculations are implemented in finite element modeling codes (FEM).

4.1 Magnetic Field Calculations

The magnetic field, in free space, must obey Maxwell’s Equations:

∇ · ~B = 0 (4.1)

∇× ~H = 0, (4.2)

with ~B = µ ~H. For the transverse field, these equations become:

∂Bx

∂x
+
∂By

∂y
= 0 (4.3)

∂By

∂x
=
∂Bx

∂y
. (4.4)

The magnetic field can be expanded in a series of multipoles according to [46]:

Bx = B0

∞∑
n=0

(
r

Rref

)n(ancos(nθ) + bnsin(nθ)), (4.5)
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By = B0

∞∑
n=0

(
r

Rref

)n(bncos(nθ)− ansin(nθ)). (4.6)

Here the B0 is the amplitude of the main field and Rref is the reference radius

taken to be at 70% of the beam aperture. The bn coefficients are called the normal

multipoles and the an are the skew multipoles, which are the same as the normal

multipoles, but rotated about the z axis. The bn or an coefficients give the relative

strength of the 2(n+1) pole. The strength of the multipoles are commonly described

in ”units”, and are often reported by multiplying by 104, which are defined as:

bn =
Bn

B0

(Rref )
n, an =

An
B0

(Rref )n. (4.7)

Where n=0 corresponds to a dipole, n=1 to a quadrupole, and so on. Upon

current reversal, the dipole has π rotational symmetry, the quadrupole has π/2 ro-

tational symmetry, and an n pole has 2π/n symmetry. These forced symmetries

only allow certain higher order multipoles. The dipole can have a sextupole (n=2),

decapole (n=4), and other higher orders according to (n+1)(2i+1)-1, where i is an

integer which starts at zero. The first allowed multipole for the quadrupole is the

dodecapole (n=5).

4.2 Quadrupoles

Quadrupoles are used as the main focusing element in most accelerator sys-

tems. For the TAMU100, the choice of quadrupole is limited to superconducting

quardrupoles, given the limited dipole aperture and required gradients in the strong

focusing cyclotron. Superconducting quadrupoles can be classified into two types:

iron-dominated, where the iron pole tips shape the fields, and coil-dominated, where

the current distribution dominates the field shaping. Since the beam transport chan-
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nel, containing the quadrupole, will be housed in the main dipole aperture, any iron

used for the quadrupole would alter or short the main dipole field. This limits the

choice to a coil-dominated quadrupole.

4.2.1 Coil-dominated Quadrupoles

A number of coil-dominated quadrupole designs have been built or proposed, with

the most common being the cos(2θ), first discussed by Beth at Brookhaven [47] and

shown in Figure 4.1. The current distribution is described by Iθ = I0cos(2θ), which

is where it derives its name. Another winding scheme is the Panofsky [48] quadrupole,

which is a winding on a rectangular aperture. The currents lie along the aperture,

as shown in Figure 4.2, with the top and bottom current sheets flowing in the same

direction and opposite the side currents. Although we have not completely ruled out

using a cos(2θ) design, there are a number of issues which make the Panofsky-style

quadrupole more attractive. One of these issues is supporting and aligning the BTC

within the sector magnets. The surface of the sector dipole, on which the BTC will

sit, will be flat and and would provide a reasonable mating surface for the flat edges

of the Panofsky quadrupole.
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Figure 4.1: Current distribution for a Cos(2θ) magnet [49]

Figure 4.2: Current arrangement in a Panofsky [48] quadrupole
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4.3 Trim Dipoles

The other component of the BTC is the outer window-frame dipole winding.

Similar to the quadrupole, a dipole winding can be made around a circular aperture

with a current distribution according to Iθ = I0cos(θ). The decision to go with a

Panofsky style quadrupole though forces the dipole to also have a rectangular form.

The role of this dipole is to provide a correction knob for the main sector dipoles.

The quadrupole and trim dipole in the BTC will be powered separately, so the dipole

can be add to or reduce the main field.

4.4 Magnetic Modeling

4.4.1 2D

The initial modeling consisted of a 2D cross-section of the beam transport chan-

nel with rectangles of iron above and below. Dimensions for the model were set

by the main cyclotron parameters and initial beam optics calculations. Magnetic

modeling is performed using COMSOL [50], a finite element method (FEM) code.

COMSOL has been benchmarked against ROXIE, CERN’s widely used software for

magnet calculations, and was found to give good agreement and, in some cases,

to be faster [50]. The B-H curve used for the iron was taken from Vector Fields

OPERA [51] and manually inserted into COMSOL (Figure 4.3).

In a traditional Panofsky quadrupole, the current distribution required for an

ideal quadrupole is uniform across the square or rectangular aperture. In our case,

the quadrupole is not surrounded by iron, but sits between two iron pole pieces, above

and below, which causes an asymmetry in the image currents. This asymmetry in

turn produces unwanted higher-order multipoles. The placement of the wires were

optimized to reduce the normalized multipoles to the order of 10−4. The higher-order

multipoles were calculated at 70% of the beam tube using the Taylor series expansion
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Figure 4.3: B-H curve for Iron according to Vector Fields.

of the B field due to a current carrying wire. The model included a 1T external field

which serves two purposes; it ensures a proper magnetic response from the iron and

it provides an estimate of the maximum magnetic field the superconducting wire

will experience. The 2D model setup and example wire placement can be seen in

Figure 4.4. The strengths of the higher order multipoles after optimization are in

table 4.1. In COMSOL, the calculation is performed by doing a line integral at the

reference radius. The equations for multipole components are given by:

∮
By

2πRref

(Dipole) (4.8)

∮
Bycos(tan(y, x))

πR2
ref

(Quadrupole) (4.9)

∮
Bycos(ntan(y, x))

πRn+1
ref

(n− pole), (4.10)

where the integral is around the circle at the reference radius.

The construction of the BTC with the stainless steel fins and square spacer rods
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Table 4.1: Multipole coefficients for the optimized wire placement in the 2D BTC
model

n b2 b3 b4 b5 b6 b7
normalized
coefficient

-6.36x10−7 2.01x10−4 -7.32x10−7 6.95x10−4 1.25x10−7 -1.37x10−7

added a small gap to the center of the wire winding space, this can be seen in

Figure 4.4. This gap is unfortunately located as this is where we would like the

largest current to be located. This gap was able to be compensated with proper

wire spacing and the addition of two gaps in the horizontal plane and another gap in

vertical plane. In order to achieve a 6 T/m quadrupole strength across the beam pipe,

a maximum field strength of less than 1.5 T will be experienced by the wire. This

is within the acceptable field limits for MgB2 at the desired operating temperature

and current (more on this in the following chapter).

Figure 4.4: (Left) Cross section of beam transport channel with current coming out
in blue and going into the page in red. The outermost circles in the image represent
the beam pipe, and the inner circle is the reference radius. (Right) Magnetic field in
the beam tube with the external dipole subtracted out.
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4.4.1.1 Previous BTC Models

Simple 2D models were also made to compare the previous TRITRON and Lord

and Hudson designs (Figure 4.5). The achievable gradient in the Lord and Hudson

design was to small for our requirements. The issues with TRITRON were discussed

previously, and have already been incorporated into our design, namely a larger beam

aperture.

Figure 4.5: COMSOL model of TRITRON (Top) and the Lord and Hudson (Bottom)
focusing channels. The non-uniform field in the beam tubes are show to the right of
each model

4.4.2 3D

The main body of the BTC is assumed to be uniform, but the regions of the

endcap where the wires overlap and turn around introduce higher order multipoles.

The modeling of this endcap region must be done as a 3D model. A Solidworks [52]
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model of the wires was created and inserted as a sheet current around the endcap

(Figure 4.6). This was done to get an initial value for the integrated multipoles

through the endcap before a more computationally intensive model of the individual

wires was created. The strength of the multipoles are plotted in Figure 4.7 starting

from the main body at zero and moving out of the endcap. The integrated multi-

pole components are shown in Figure 4.8 and show the largest multipole to be the

dodecapole. Further optimization of individual wire placement would need to be

completed to reduce the multipoles in the endcap.
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Figure 4.6: (Top) Model showing the quadrupole wires wrapping around the endcap.
(Middle) A sheet current approximation to the wires. (Bottom) The meshed Comsol
model.
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Figure 4.7: Multipoles in the BTC endcap as a function of distance from the body
out through the endcap. The multipoles are normalized to the body quadrupole and
expressed in ”units”.

Figure 4.8: Integrated multipoles in the BTC endcap normalized to the main body
quadrupole expressed in ”units”.
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4.5 Winding Mandrel

In many magnets a pancake style winding can be used, where the wire is wound

on a flat surface around a central mandrel. Panofsky-style magnets can also be

wound this way, but the ends of the coil must then be bent up and around to avoid

blocking the aperture (Figure 4.9). This out of plane bending would require more

space than is available between iron pole pieces in the main cyclotron. The curve of

the beam transport channel adds another complication. In large circular machines,

SSC or LHC scale, the magnets can be wound as though straight and bent to match

the radius of the machine. Unfortunately, this technique cannot be used for small

bend radii and an alternative method must be developed. A properly designed

winding mandrel must maximize the aperture in the beam transport channel, fit in

the opening between pole pieces and neighboring beams, and obey the minimum

bend radius set by the superconductor. A corresponding winding technique must

also be developed.

Figure 4.9: (Left) Sketch of rectangular quadrupole from original Panofsky pa-
per [48]. (Right) Brookhaven Superconducting Panofsky quadrupole [53]
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4.5.1 Design

4.5.1.1 Initial BTC

The difficulty in winding small round wire, as opposed to Rutherford style cable,

on a curved winding mandrel were not completely understood until it was attempted.

A previous winding mandrel had been designed and fabricated (Figure 4.10), but no

winding attempts had been made. A first round of winding revealed insufficient

wire support to hold the wire in place on the endcaps or the main body, where the

wire pulled away from the curved portion of the body (Figure 4.11). The wire must

be wound on the mandrel and then go through a heat treatment (more about the

wire in the following chapter), so no glue or epoxy can be used to secure the wire.

Another issue was from interference of the end-cap in the winding process. In order

to overcome these issues a number of models, some as exotic as the Brookhaven

superconducting quadrupole [53](Figure 4.9), were considered. The wires pulling

away from the concave body was expected, and the original idea had been to push

the wires in place with a sheet of stainless steel before the heat treatment, but with

all the additional problems, a complete redesign was needed.

Figure 4.10: Initial beam transport channel model and winding mandrel
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Figure 4.11: Initial curved mandrel and beam pipe

4.5.1.2 Second BTC

The redesign of the BTC focused on securing the wires to the curved portion of

the body. A square grove was machined down the middle of each side of the BTC. A

square rod was then laser welded into this grove to create a raised surface above the

main body. Stainless steel fins with holes drilled equally spaced down the middle,

were then laser welded to the square rods. The raised fins allowed the wires to slip

between the fin and the main body. On the side of the BTC where the winding

for the trim dipole is located, two layers of fins were added. Figure 4.12 shows the

square rod, fins, and holes in the fins used for laser welding. Another improvement

was a series of nesting end-cap pieces to avoid interference while winding. The first

layer of the endcap would be welded to the main body. This endcap would allow

the winding of two of the four windings (the blue windings in Figure 4.13) required

for the quadrupole. After these windings were in place, then next endcap layer

would slide on and the remaining two windings (black wires in Figure 4.13) for the

quadrupole could be added. The next endcap layer is then added to allow for the

first dipole winding, then the remaining endcap piece is slid on to finalize the dipole.

The exploded view of the endcap and a cross section of the BTC with quadrupole
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and dipole windings are shown in Figure 4.13.

Figure 4.12: Stainless steel fins added to secure the wires to the winding mandrel

The first attempt winding the new mandrel brought out the next issue, the prob-

lem of wire climbing from round wires under tension, an example of this can be seen

in Figure 4.14. To overcome this issue, a series of tapped holes were added to the

endcaps, and a set of winding guides and ”cookies” were designed. The guides are

temporary aluminum fixtures which act, in a similar manner as the fins, to provide

a small channel for the wires to slide into and prevent wire climbing. One of the alu-

minum winding guides can be seen in Figure 4.15. Once the layer has been wound,

the guides are carefully removed and the cookies, which are thinner stainless steel
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Figure 4.13: (Left) Cross section of the wire windings. The two black and blue inner
windings make up the quadrupole, while the two outer green windings are for the
trim dipole. (Exploded view of the endcap layers designed to avoid interference while
winding.)

pieces, are used to secure the wires for the remainder of the winding process and will

remain on the BTC through the heat treatment. An example of a cookie can be seen

in Figure 4.16. Although the stainless steel fins hold the wires to the curved side of

the body, the curved top wires still want to flex out of place. Two pusher bars were

cut on the EDM to match the inner and outer curves of the BTC and hold the wires

in after each turn. The pusher bars must be removed, the next wire wound in, and

the pusher bars repositioned and clamped after each turn. The pusher bar for the

inner curve is pictured in Figure 4.17.

Other winding methods were considered including the direct-wind method at

Brookhaven National Lab. In this method the winding mandrel is wrapped with a

B-stage epoxy and the wire is also coated with a thin layer of epoxy. Using a large

3-axis machine, they are able to wind the wire on the mandrel in a very precise

computer controlled way and using ultrasonics they can locally heat the epoxy on

the wire as they push it on the mandrel [54]. The method weakly bonds the wire

to the mandrel and must be more securely attached with an outer wrap. All of the
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Figure 4.14: Round wires under tension exhibit wire climbing

magnets which have been created this way use reacted wire which does not require

any further heat treatment. In order to use this method for MgB2, unreacted wire

must be used, as the minimum bend radius for reacted MgB2 is on the order of

0.5m. MgB2 must go through a heat treatment of 650-700 ◦C for about 30 min

and no known B-stage epoxy can survive these temperatures. Another complication

for using the direct-wind method for our beam transport channel is the rectangular

mandrel. Brett Parker at Brookhaven had already considered winding on non-circular

shapes, Figure 4.18, and is confident our geometry could be accomplished with his

machine, but until another epoxy or attachment method can be found, this method

will not work.
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Figure 4.15: Top view of the updated winding mandrel and one of the temporary
aluminum winding guides on the endcap.

Figure 4.16: Wires held in place by a winding cookie which is screwed into the endcap
and holds down the wires

Figure 4.17: A pusher bar for holding the wires in the curve along the top and bottom
of the BTC during winding.
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Figure 4.18: Non-circular geometry for direct-wind at BNL. (image courtesy of Brett
Parker)
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4.6 Winding Table

Having a curved mandrel adds an additional complication to the winding table.

The path of the wires over the endcap require the mandrel to be rotated 90 degrees

about an axis running through the beam tube. Then, holding this rotated position,

the winding table and mandrel must rotate about an axis through the center of

the BTC perpendicular to the first rotation. The required range of motion was

achieved by mounting a plate on the shaft of the winding table. Two locking pillow

block bearings were attached to this table to hold the shaft the mandrel would be

mounted on to provide the 90 degree tilt. Winding fixtures were created to hold the

BTC up away from the surface of the table to allow room to swing the 90 degrees.

Figure 4.19 shows a sketch of the winding table and special endcap winding fixtures.

Figure 4.19: CAD drawing of the BTC mounted on the winding table.
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5. MAGNESIUM DIBORIDE

5.1 History

The superconducting properties of MgB2 were only recently discovered in 2001 [55].

The low material cost and relative ease of fabrication make this an attractive super-

conductor for low field applications. MgB2 has already been used to wind MRI

magnets [56], as potential Fault Current Limiters [57], as superconducting induction

heaters [58], and in multiple research magnets. MgB2 has a higher critical temper-

ature than the the commonly used Nb3Sn and NbTi [59] of 39K which reduces the

overall cryogenic costs. The raw materials costs are also about half that for Nb-

Ti [60]. Although relatively new to the superconducting scene, MgB2 wire can be

purchased off the shelf from multiple vendors [61, 62].

5.2 Properties

Superconductors used for magnet applications are characterized by three main

parameters, the critical temperature (Tc), the critical field (Bc), and the critical

current density (Jc). These three parameters are dependent on each other and can be

plotted to show the critical surface, above which a superconductor becomes resistive.

The critical surface for MgB2 is shown in Figure 5.1.

The choice of superconductor is narrowed by the required current density, external

field, and desired operating temperature. The list of operating parameters for the

beam transport channel, Table 5.1, led us to chose MgB2 for our superconducting

wire. The approximately 1 T main dipole field, in which the superconducting beam

transport channel will sit, is well below the critical field for MgB2 at 15 K.

Strain

One major drawback in using MgB2 wire is the sensitivity to strain for both
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Figure 5.1: Critical surface of MgB2 [63].

reacted and unreacted wire. The irreversible strain limit for reacted MgB2 is just

under 0.4% [63](Figure 5.2).

strain =
wirediameter

benddiameter
. (5.1)

Using a 1 mm wire, this strain would limit the bend radius to a 25 cm bend diameter,

which is much larger than the full width of the endcap. For this reason, a wind

and react method will need to be used. Few strain degradation studies have been

performed for small diameter bend radii on unreacted MgB2 wire. A 0.689 mm

diameter wire wound on a 38.1 mm diameter bend, which according to equation 5.1

corresponds to a 1.8% strain, was found to have no noticeable current degradation
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Table 5.1: Operating parameters for the BTC

Parameter Desired Value
Engineering Current Density 320 A

mm2

Operating Temperature 15 K
Max External Field 1.5 T

compared to the short sample [64]. The study also tried a 0.834 mm diameter wire

on a 63.5 mm bend, a 1.3% strain, with no degradation. For the beam transport

channel, the minimum bend radius which can be achieved is 1.25 cm, or a 2.5 cm

diameter, and with a 1 mm diameter wire this corresponds to a 4% strain. Our group

has tested MgB2, which was provided by HyperTech, at radii above and below 1.25

cm with initial promising results [65]. The wire specifications for the Hypertech wire

are listed in table 5.2 and a cross section of the wire is shown in Figure 5.3.

Table 5.2: Properties of the MgB2 wire provided by HyperTech.

Parameter Value
Number of filaments 30 mono
Barrier Material Niobium
Sheath Material Monel
Twist Pitch 350 mm
Powder 18%
Bare Wire Diameter 0.99 mm
Insulated Wire Diameter 1.24 mm
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Figure 5.2: Irreversible strain limit in MgB2 [63].

Figure 5.3: Cross section of MgB2 wire provided by HyperTech.
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6. CONCLUSION

6.1 Summary

The Accelerator Research Laboratory has developed a design for a high-power

strong-focusing cyclotron. The cyclotron uses two main technologies: a supercon-

ducting RF cavity to fully separate the turns and a series of beam transport channels

which contains alternating focusing and defocusing quadrupoles to provide the strong

focusing. Two major efforts were undertaken in order to validate this design, the

linear beam dynamics through the entire TAMU100 and the model and winding of

the beam transport channel.

As an initial step in the linear beam dynamics studies, an equilibrium orbit for an

ideal particle through the machine was determined. No available optics codes were

suitable to complete this task, so a method and Mathematica script was developed.

The script started with the overall geometric layout of the sectors and the spacing

required for the RF cavities, as well as the RF energy gain profile. An optimization

was performed to determine the isochronous spiral orbit given the injection radius,

injection energy, and minimum orbit separation. Assuming a hard edge model, the

magnetic field, energy in each sector, cavity phase, and trajectory information was

determined. The results of this code were used to create 64 sequence files which

were used in MAD-X for linear optics calculations. Using MAD-X, the lattice was

optimized by adjusting the strengths of the quadrupoles to maintain beam size and

to obtain a desired phase advance per cell, for an overall constant horizontal and

vertical betatron tune per turn.

The goal for the strong-focusing cyclotron is to accelerate a large current so space

charge effects need to be taken into account through particle tracking. As a step in
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the direction of this goal, particle tracking was set up in two codes; MAD-X-PTC

and Synergia. Both codes needed modifications to properly model our machine.

Synergia was chosen for its particle in cell space charge capabilities. A Matlab

script was written to add acceleration to MAD-X-PTC for particle tracking. This

modified MAD-X-PTC was used as a benchmark against Synergia. In the process

of benchmarking, several differences in the codes emerged. Synergia was assuming

an RF cavity of zero length so a module was written to add length and the transit

time factor to the code. As a default, Synergia also renormalized the strengths of

the beamline elements after an RF cavity and this was dealt with by using the 84

sequence file method as in MAD. The main difference found between the two codes

is the handling of the curved combined function magnets. The correct treatment of

the combined function in MAD-X-PTC and Synergia is still being investigated.

The design and feasibility of the beam transport channel was also investigated.

Non-linear magnetic modeling was performed for a 2D cross section of the beam

transport channel to determine the required current density for the quadrupole gra-

dient strengths. The placement of the wires were optimized to reduce higher order

multipoles induced by the iron in the dipoles above and below the beam transport

channels. 3D modeling was also performed on the endcap regions of the beam trans-

port channels to find the integrated multipoles through the endcap.MgB2 was chosen

for the superconductor as it met all design requirements and can operate at a higher

critical temperature reducing cryogenic costs. One drawback of MgB2 is the bend ra-

dius limitation. A winding mandrel was designed and built to minimize the bending

radius of the MgB2 wire and to withstand the 600-700◦C heat treatment. A series of

modifications were made to the mandrel to secure the wires during the winding pro-

cess. A winding table was designed with a mount to provide the full rotation needed

in winding the complex beam transport channel magnet. A copper wire winding was
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performed to test the winding procedure.

6.2 Future Work

The next main step for the validating the design of the TAMU100 is to include

the effects due to space charge. The ability to turn on space charge was one of the

main reasons for using, and benchmarking, against Synergia. The framework for this

next step has been provided with the sequence files, main scripts, and modifications

made to Synergia. Before the space charge can be added, the disagreement on

the treatment of the curved combined function magnets must be resolved. Other

nonlinear and collective effect for high-current beam transport will also need to be

investigated.

The current design for the winding mandrel of the beam transport channel should

also be updated. In addition to a simplified endcap winding method, a body design

which would eliminate the need for the pusher bar should be used. This new endcap

design should include a wire placement scheme to minimize the integrated multi-

poles through the endcap. Magnetic modeling at the individual wire level should be

performed in the endcap region.

Although initial strain tests have been performed on MgB2, the results were not

conclusive. Further testing should be performed to determine the minimum bend

radius. A full MgB2 winding should also be completed.
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APPENDIX A. SEQUENCE FILES FOR MAD-X-PTC AND SYNERGIA

MAD-X-PTC Sequence File

sF11: SBEND,L=0.2279007900,ANGLE=0.4472556077,K1:=kqf1a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s11: SBEND,L=0.0700000000,ANGLE=0.1373750944,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD11: SBEND,L=0.2279007900,ANGLE=0.4472556077,K1:=kqd1a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF21: SBEND,L=0.2393637800,ANGLE=0.4656413252,K1:=kqf1b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s21: SBEND,L=0.0700000000,ANGLE=0.1361730366,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD21: SBEND,L=0.2393637800,ANGLE=0.4656413252,K1:=kqd1b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF31: SBEND,L=0.2404674250,ANGLE=0.4528404554,K1:=kqf1c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s31: SBEND,L=0.0700000000,ANGLE=0.1324295258,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD31: SBEND,L=0.2404674250,ANGLE=0.4549283866,K1:=kqd1c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF41: SBEND,L=0.2433484100,ANGLE=0.4589988987,K1:=kqf1d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s41: SBEND,L=0.0700000000,ANGLE=0.1320325985,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD41: SBEND,L=0.2433484100,ANGLE=0.4589988987,K1:=kqd1d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF51: SBEND,L=0.2461707650,ANGLE=0.4470921312,K1:=kqf1e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s51: SBEND,L=0.0700000000,ANGLE=0.1271330866,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD51: SBEND,L=0.2461707650,ANGLE=0.4470921312,K1:=kqd1e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF61: SBEND,L=0.2639128900,ANGLE=0.4740745785,K1:=kqf1f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s61: SBEND,L=0.0700000000,ANGLE=0.1257430832,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD61: SBEND,L=0.2639128900,ANGLE=0.4740745785,K1:=kqd1f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d11: DRIFT, L=0.4019962300;

d2a1: DRIFT, L=0.3968689400;

c11: DRIFT, L=0.0374087700;

d2c1: DRIFT, L=0.3344657900;

d3a1: DRIFT, L=0.3665938500;

c21: DRIFT, L=0.0374081950;

d3c1: DRIFT, L=0.3664306900;

d41: DRIFT, L=0.4041549250;

d5a1: DRIFT, L=0.3711367300;

c31: DRIFT, L=0.0366568500;

d5c1: DRIFT, L=0.3645031300;

d6a1: DRIFT, L=0.4164455700;

c41: DRIFT, L=0.0369916000;

d6c1: DRIFT, L=0.3219282100;

d61: DRIFT, L=0.4076247000;

m11: marker;
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m21: marker;

m31: marker;

m41: marker;

m51: marker;

m61: marker;

sF12: SBEND,L=0.2685317600,ANGLE=0.4559444620,K1:=kqf2a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s12: SBEND,L=0.0700000000,ANGLE=0.1188541435,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD12: SBEND,L=0.2685317600,ANGLE=0.4559444620,K1:=kqd2a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF22: SBEND,L=0.2806405100,ANGLE=0.4745450918,K1:=kqf2b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s22: SBEND,L=0.0700000000,ANGLE=0.1183655076,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD22: SBEND,L=0.2806405100,ANGLE=0.4745450918,K1:=kqd2b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF32: SBEND,L=0.2893448750,ANGLE=0.3966910088,K1:=kqf2c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s32: SBEND,L=0.0700000000,ANGLE=0.0989464087,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD32: SBEND,L=0.2893448750,ANGLE=0.4089948039,K1:=kqd2c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF42: SBEND,L=0.3722747100,ANGLE=0.5371859440,K1:=kqf2d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s42: SBEND,L=0.0700000000,ANGLE=0.1010087848,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD42: SBEND,L=0.3722747100,ANGLE=0.5371859440,K1:=kqd2d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF52: SBEND,L=0.3828398550,ANGLE=0.4675002117,K1:=kqf2e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s52: SBEND,L=0.0700000000,ANGLE=0.0854796448,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD52: SBEND,L=0.3828398550,ANGLE=0.4675002117,K1:=kqd2e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF62: SBEND,L=0.4038510550,ANGLE=0.4957461446,K1:=kqf2f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s62: SBEND,L=0.0700000000,ANGLE=0.0859282889,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD62: SBEND,L=0.4038510550,ANGLE=0.4957461446,K1:=kqd2f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d12: DRIFT, L=0.4076247000;

d2a2: DRIFT, L=0.3975249400;

c12: DRIFT, L=0.0407436300;

d2c2: DRIFT, L=0.3387204100;

d3a2: DRIFT, L=0.3690705900;

c22: DRIFT, L=0.0407819100;

d3c2: DRIFT, L=0.3689169400;

d42: DRIFT, L=0.4198962050;

d5a2: DRIFT, L=0.3786526900;

c32: DRIFT, L=0.0477271200;

d5c2: DRIFT, L=0.3732725400;

d6a2: DRIFT, L=0.4156055500;

c42: DRIFT, L=0.0482606200;

d6c2: DRIFT, L=0.3393825000;

d62: DRIFT, L=0.4273608900;

m12: marker;
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m22: marker;

m32: marker;

m42: marker;

m52: marker;

m62: marker;

sF13: SBEND,L=0.4075657250,ANGLE=0.4729890940,K1:=kqf3a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s13: SBEND,L=0.0700000000,ANGLE=0.0812365578,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD13: SBEND,L=0.4075657250,ANGLE=0.4729890940,K1:=kqd3a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF23: SBEND,L=0.4218007200,ANGLE=0.4928336985,K1:=kqf3b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s23: SBEND,L=0.0700000000,ANGLE=0.0817882883,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD23: SBEND,L=0.4218007200,ANGLE=0.4928336985,K1:=kqd3b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF33: SBEND,L=0.4241715800,ANGLE=0.4753403473,K1:=kqf3c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s33: SBEND,L=0.0700000000,ANGLE=0.0788851767,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD33: SBEND,L=0.4241715800,ANGLE=0.4780121431,K1:=kqd3c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF43: SBEND,L=0.4331058150,ANGLE=0.4891727565,K1:=kqf3d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s43: SBEND,L=0.0700000000,ANGLE=0.0790617253,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD43: SBEND,L=0.4331058150,ANGLE=0.4891727565,K1:=kqd3d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF53: SBEND,L=0.4378921100,ANGLE=0.4723798648,K1:=kqf3e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s53: SBEND,L=0.0700000000,ANGLE=0.0755130996,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD53: SBEND,L=0.4378921100,ANGLE=0.4723798648,K1:=kqd3e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF63: SBEND,L=0.4602635950,ANGLE=0.5007925508,K1:=kqf3f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s63: SBEND,L=0.0700000000,ANGLE=0.0761639177,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD63: SBEND,L=0.4602635950,ANGLE=0.5007925508,K1:=kqd3f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d13: DRIFT, L=0.4273608900;

d2a3: DRIFT, L=0.3997683700;

c13: DRIFT, L=0.0521483400;

d2c3: DRIFT, L=0.3532705600;

d3a3: DRIFT, L=0.3775406500;

c23: DRIFT, L=0.0523195100;

d3c3: DRIFT, L=0.3774195400;

d43: DRIFT, L=0.4305798200;

d5a3: DRIFT, L=0.3816802200;

c33: DRIFT, L=0.0521863800;

d5c3: DRIFT, L=0.3768049800;

d6a3: DRIFT, L=0.4152671700;

c43: DRIFT, L=0.0527999450;

d6c3: DRIFT, L=0.3464133300;

d63: DRIFT, L=0.4353591150;

m13: marker;
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m23: marker;

m33: marker;

m43: marker;

m53: marker;

m63: marker;

sF14: SBEND,L=0.4641985950,ANGLE=0.4774444363,K1:=kqf4a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s14: SBEND,L=0.0700000000,ANGLE=0.0719974401,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD14: SBEND,L=0.4641985950,ANGLE=0.4774444363,K1:=kqd4a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF24: SBEND,L=0.4793417250,ANGLE=0.4974086518,K1:=kqf4b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s24: SBEND,L=0.0700000000,ANGLE=0.0726383784,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD24: SBEND,L=0.4793417250,ANGLE=0.4974086518,K1:=kqd4b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF34: SBEND,L=0.4889286350,ANGLE=0.4391922054,K1:=kqf4c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s34: SBEND,L=0.0700000000,ANGLE=0.0641368209,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD34: SBEND,L=0.4889286350,ANGLE=0.4479761186,K1:=kqd4c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF44: SBEND,L=0.5578391500,ANGLE=0.5326916304,K1:=kqf4d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s44: SBEND,L=0.0700000000,ANGLE=0.0668443836,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD44: SBEND,L=0.5578391500,ANGLE=0.5326916304,K1:=kqd4d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF54: SBEND,L=0.5698917400,ANGLE=0.4804630108,K1:=kqf4e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s54: SBEND,L=0.0700000000,ANGLE=0.0590154382,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD54: SBEND,L=0.5698917400,ANGLE=0.4804630108,K1:=kqd4e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF64: SBEND,L=0.5955816600,ANGLE=0.5089646466,K1:=kqf4f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s64: SBEND,L=0.0700000000,ANGLE=0.0598197152,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD64: SBEND,L=0.5955816600,ANGLE=0.5089646466,K1:=kqd4f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d14: DRIFT, L=0.4353591150;

d2a4: DRIFT, L=0.4006828600;

c14: DRIFT, L=0.0567972300;

d2c4: DRIFT, L=0.3592016200;

d3a4: DRIFT, L=0.3809932900;

c24: DRIFT, L=0.0570225700;

d3c4: DRIFT, L=0.3808854500;

d44: DRIFT, L=0.4454073050;

d5a4: DRIFT, L=0.3889393900;

c34: DRIFT, L=0.0628784150;

d5c4: DRIFT, L=0.3852747600;

d6a4: DRIFT, L=0.4144558500;

c44: DRIFT, L=0.0636839500;

d6c4: DRIFT, L=0.3632712700;

d64: DRIFT, L=0.4545829400;

m14: marker;
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m24: marker;

m34: marker;

m44: marker;

m54: marker;

m64: marker;

sF15: SBEND,L=0.6005918050,ANGLE=0.4851694927,K1:=kqf5a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s15: SBEND,L=0.0700000000,ANGLE=0.0565473325,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD15: SBEND,L=0.6005918050,ANGLE=0.4851694927,K1:=kqd5a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF25: SBEND,L=0.6179765200,ANGLE=0.5051196558,K1:=kqf5b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s25: SBEND,L=0.0700000000,ANGLE=0.0572163743,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD25: SBEND,L=0.6179765200,ANGLE=0.5051196558,K1:=kqd5b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF35: SBEND,L=0.6219284700,ANGLE=0.4842746520,K1:=kqf5c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s35: SBEND,L=0.0700000000,ANGLE=0.0548552001,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD35: SBEND,L=0.6219284700,ANGLE=0.4873715806,K1:=kqd5c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF45: SBEND,L=0.6375578000,ANGLE=0.5037071659,K1:=kqf5d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s45: SBEND,L=0.0700000000,ANGLE=0.0553040079,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD45: SBEND,L=0.6375578000,ANGLE=0.5037071659,K1:=kqd5d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF55: SBEND,L=0.6446622600,ANGLE=0.4836456748,K1:=kqf5e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s55: SBEND,L=0.0700000000,ANGLE=0.0525161768,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD55: SBEND,L=0.6446622600,ANGLE=0.4836456748,K1:=kqd5e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF65: SBEND,L=0.6722318950,ANGLE=0.5122062825,K1:=kqf5f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s65: SBEND,L=0.0700000000,ANGLE=0.0533364157,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD65: SBEND,L=0.6722318950,ANGLE=0.5122062825,K1:=kqd5f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d15: DRIFT, L=0.4545829400;

d2a5: DRIFT, L=0.4028861600;

c15: DRIFT, L=0.0679979050;

d2c5: DRIFT, L=0.3734914600;

d3a5: DRIFT, L=0.3893118200;

c25: DRIFT, L=0.0683537600;

d3c5: DRIFT, L=0.3892359500;

d45: DRIFT, L=0.4590446750;

d5a5: DRIFT, L=0.3930513000;

c35: DRIFT, L=0.0689348700;

d5c5: DRIFT, L=0.3900724300;

d6a5: DRIFT, L=0.4139962800;

c45: DRIFT, L=0.0698491400;

d6c5: DRIFT, L=0.3728203700;

d65: DRIFT, L=0.4654721800;

m15: marker;
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m25: marker;

m35: marker;

m45: marker;

m55: marker;

m65: marker;

sF16: SBEND,L=0.6778510750,ANGLE=0.4882338248,K1:=kqf6a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s16: SBEND,L=0.0700000000,ANGLE=0.0504186967,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD16: SBEND,L=0.6778510750,ANGLE=0.4882338248,K1:=kqd6a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF26: SBEND,L=0.6965055300,ANGLE=0.5081908181,K1:=kqf6b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s26: SBEND,L=0.0700000000,ANGLE=0.0510740486,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD26: SBEND,L=0.6965055300,ANGLE=0.5081908181,K1:=kqd6b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF36: SBEND,L=0.7065994350,ANGLE=0.4627409094,K1:=kqf6c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s36: SBEND,L=0.0700000000,ANGLE=0.0465062548,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD36: SBEND,L=0.7065994350,ANGLE=0.4694470482,K1:=kqd6c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF46: SBEND,L=0.7661604900,ANGLE=0.5292794539,K1:=kqf6d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s46: SBEND,L=0.0700000000,ANGLE=0.0483574424,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD46: SBEND,L=0.7661604900,ANGLE=0.5292794539,K1:=kqd6d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF56: SBEND,L=0.7795555800,ANGLE=0.4879103833,K1:=kqf6e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s56: SBEND,L=0.0700000000,ANGLE=0.0438117919,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD56: SBEND,L=0.7795555800,ANGLE=0.4879103833,K1:=kqd6e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF66: SBEND,L=0.8105163900,ANGLE=0.5165678901,K1:=kqf6f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s66: SBEND,L=0.0700000000,ANGLE=0.0446132278,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD66: SBEND,L=0.8105163900,ANGLE=0.5165678901,K1:=kqd6f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d16: DRIFT, L=0.4654721800;

d2a6: DRIFT, L=0.4041342100;

c16: DRIFT, L=0.0743424750;

d2c6: DRIFT, L=0.3815858800;

d3a6: DRIFT, L=0.3940238000;

c26: DRIFT, L=0.0747722550;

d3c6: DRIFT, L=0.3939660400;

d46: DRIFT, L=0.4748200200;

d5a6: DRIFT, L=0.4004696000;

c36: DRIFT, L=0.0798612950;

d5c6: DRIFT, L=0.3987278900;

d6a6: DRIFT, L=0.4131671700;

c46: DRIFT, L=0.0809717450;

d6c6: DRIFT, L=0.3900478700;

d66: DRIFT, L=0.4851174250;

m16: marker;
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m26: marker;

m36: marker;

m46: marker;

m56: marker;

m66: marker;

sF17: SBEND,L=0.8172342500,ANGLE=0.4923568063,K1:=kqf7a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s17: SBEND,L=0.0700000000,ANGLE=0.0421727019,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD17: SBEND,L=0.8172342500,ANGLE=0.4923568063,K1:=kqd7a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF27: SBEND,L=0.8381794250,ANGLE=0.5123342173,K1:=kqf7b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s27: SBEND,L=0.0700000000,ANGLE=0.0427872531,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD27: SBEND,L=0.8381794250,ANGLE=0.5123342173,K1:=kqd7b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF37: SBEND,L=0.8434605650,ANGLE=0.4911850253,K1:=kqf7c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s37: SBEND,L=0.0700000000,ANGLE=0.0410209923,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD37: SBEND,L=0.8434605650,ANGLE=0.4942798482,K1:=kqd7c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF47: SBEND,L=0.8623471500,ANGLE=0.5106426064,K1:=kqf7d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s47: SBEND,L=0.0700000000,ANGLE=0.0414508037,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD47: SBEND,L=0.8623471500,ANGLE=0.5106426064,K1:=kqd7d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF57: SBEND,L=0.8715857700,ANGLE=0.4900902565,K1:=kqf7e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s57: SBEND,L=0.0700000000,ANGLE=0.0393608055,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD57: SBEND,L=0.8715857700,ANGLE=0.4900902565,K1:=kqd7e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF67: SBEND,L=0.9048602000,ANGLE=0.5188070257,K1:=kqf7f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s67: SBEND,L=0.0700000000,ANGLE=0.0401349201,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD67: SBEND,L=0.9048602000,ANGLE=0.5188070257,K1:=kqd7f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d17: DRIFT, L=0.4851174250;

d2a7: DRIFT, L=0.4063858100;

c17: DRIFT, L=0.0857886850;

d2c7: DRIFT, L=0.3961889700;

d3a7: DRIFT, L=0.4025246900;

c27: DRIFT, L=0.0863518400;

d3c7: DRIFT, L=0.4024995900;

d47: DRIFT, L=0.4905982800;

d5a7: DRIFT, L=0.4055307000;

c37: DRIFT, L=0.0873157900;

d5c7: DRIFT, L=0.4046330300;

d6a7: DRIFT, L=0.4126015100;

c47: DRIFT, L=0.0885600750;

d6c7: DRIFT, L=0.4018012300;

d67: DRIFT, L=0.4985202850;

m17: marker;
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m27: marker;

m37: marker;

m47: marker;

m57: marker;

m67: marker;

sF18: SBEND,L=0.9123276900,ANGLE=0.4944734875,K1:=kqf8a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s18: SBEND,L=0.0700000000,ANGLE=0.0379393769,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD18: SBEND,L=0.9123276900,ANGLE=0.4944734875,K1:=kqd8a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF28: SBEND,L=0.9348357050,ANGLE=0.5144663592,K1:=kqf8b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s28: SBEND,L=0.0700000000,ANGLE=0.0385229671,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD28: SBEND,L=0.9348357050,ANGLE=0.5144663592,K1:=kqd8b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF38: SBEND,L=0.9446379700,ANGLE=0.4799062686,K1:=kqf8c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s38: SBEND,L=0.0700000000,ANGLE=0.0359351259,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD38: SBEND,L=0.9446379700,ANGLE=0.4849383490,K1:=kqd8c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF48: SBEND,L=0.9924152950,ANGLE=0.5247459647,K1:=kqf8d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s48: SBEND,L=0.0700000000,ANGLE=0.0370129498,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD48: SBEND,L=0.9924152950,ANGLE=0.5247459647,K1:=kqd8d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF58: SBEND,L=1.0064791000,ANGLE=0.4925896292,K1:=kqf8e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s58: SBEND,L=0.0700000000,ANGLE=0.0342593046,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD58: SBEND,L=1.0064791000,ANGLE=0.4925896292,K1:=kqd8e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF68: SBEND,L=1.0431447050,ANGLE=0.5213809275,K1:=kqf8f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s68: SBEND,L=0.0700000000,ANGLE=0.0349871545,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD68: SBEND,L=1.0431447050,ANGLE=0.5213809275,K1:=kqd8f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d18: DRIFT, L=0.4985202850;

d2a8: DRIFT, L=0.4079219500;

c18: DRIFT, L=0.0935978050;

d2c8: DRIFT, L=0.4061518600;

d3a8: DRIFT, L=0.4083243700;

c28: DRIFT, L=0.0942519500;

d3c8: DRIFT, L=0.4083215600;

d48: DRIFT, L=0.5072350550;

d5a8: DRIFT, L=0.4131454300;

c38: DRIFT, L=0.0982422200;

d5c8: DRIFT, L=0.4130920600;

d6a8: DRIFT, L=0.4169626700;

c48: DRIFT, L=0.0996826800;

d6c8: DRIFT, L=0.4138384700;

d68: DRIFT, L=0.5181655300;

m18: marker;
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m28: marker;

m38: marker;

m48: marker;

m58: marker;

m68: marker;

sF19: SBEND,L=1.0517108600,ANGLE=0.4969065489,K1:=kqf9a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s19: SBEND,L=0.0700000000,ANGLE=0.0330732141,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD19: SBEND,L=1.0517108600,ANGLE=0.4969065489,K1:=kqd9a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF29: SBEND,L=1.0765095950,ANGLE=0.5169214443,K1:=kqf9b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s29: SBEND,L=0.0700000000,ANGLE=0.0336127994,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD29: SBEND,L=1.0765095950,ANGLE=0.5169214443,K1:=kqd9b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF39: SBEND,L=1.0819769500,ANGLE=0.4994406268,K1:=kqf9c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s39: SBEND,L=0.0700000000,ANGLE=0.0324761099,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD39: SBEND,L=1.0819769500,ANGLE=0.5019771757,K1:=kqd9c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF49: SBEND,L=1.0957912550,ANGLE=0.5116023448,K1:=kqf9d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s49: SBEND,L=0.0700000000,ANGLE=0.0326815568,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD49: SBEND,L=1.0957912550,ANGLE=0.5116023448,K1:=kqd9d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF59: SBEND,L=1.1060604900,ANGLE=0.4940549457,K1:=kqf9e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s59: SBEND,L=0.0700000000,ANGLE=0.0312675903,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD59: SBEND,L=1.1060604900,ANGLE=0.4940549457,K1:=kqd9e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF69: SBEND,L=1.1452295450,ANGLE=0.5228940481,K1:=kqf9f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s69: SBEND,L=0.0700000000,ANGLE=0.0319609143,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD69: SBEND,L=1.1452295450,ANGLE=0.5228940481,K1:=kqd9f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d19: DRIFT, L=0.5181655300;

d2a9: DRIFT, L=0.4193671700;

c19: DRIFT, L=0.1050440150;

d2c9: DRIFT, L=0.4115613300;

d3a9: DRIFT, L=0.4168514600;

c29: DRIFT, L=0.1058315350;

d3c9: DRIFT, L=0.4168288900;

d49: DRIFT, L=0.5239237900;

d5a9: DRIFT, L=0.4195311800;

c39: DRIFT, L=0.1063083650;

d5c9: DRIFT, L=0.4185723400;

d6a9: DRIFT, L=0.4296232000;

c49: DRIFT, L=0.1078936450;

d6c9: DRIFT, L=0.4132836100;

d69: DRIFT, L=0.5326681050;

m19: marker;
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m29: marker;

m39: marker;

m49: marker;

m59: marker;

m69: marker;

sF110: SBEND,L=1.1546067900,ANGLE=0.4983368935,K1:=kqf10a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s110: SBEND,L=0.0700000000,ANGLE=0.0302125216,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD110: SBEND,L=1.1546067900,ANGLE=0.4983368935,K1:=kqd10a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF210: SBEND,L=1.1810965950,ANGLE=0.5183668308,K1:=kqf10b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s210: SBEND,L=0.0700000000,ANGLE=0.0307220242,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD210: SBEND,L=1.1810965950,ANGLE=0.5183668308,K1:=kqd10b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF310: SBEND,L=1.1895958150,ANGLE=0.4937695889,K1:=kqf10c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s310: SBEND,L=0.0700000000,ANGLE=0.0292642205,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD310: SBEND,L=1.1895958150,ANGLE=0.4973227753,K1:=kqd10c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF410: SBEND,L=1.2211713350,ANGLE=0.5193192530,K1:=kqf10d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s410: SBEND,L=0.0700000000,ANGLE=0.0297684253,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD410: SBEND,L=1.2211713350,ANGLE=0.5193192530,K1:=kqd10d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF510: SBEND,L=1.2348857200,ANGLE=0.4956097813,K1:=kqf10e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s510: SBEND,L=0.0700000000,ANGLE=0.0280938423,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD510: SBEND,L=1.2348857200,ANGLE=0.4956097813,K1:=kqd10e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF610: SBEND,L=1.2773483700,ANGLE=0.5243789950,K1:=kqf10f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s610: SBEND,L=0.0700000000,ANGLE=0.0287365064,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD610: SBEND,L=1.2773483700,ANGLE=0.5243789950,K1:=kqd10f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d110: DRIFT, L=0.5326681050;

d2a10: DRIFT, L=0.4301084000;

c110: DRIFT, L=0.1134938800;

d2c10: DRIFT, L=0.4132626300;

d3a10: DRIFT, L=0.4231510200;

c210: DRIFT, L=0.1143798550;

d3c10: DRIFT, L=0.4231045500;

d410: DRIFT, L=0.5404859550;

d5a10: DRIFT, L=0.4277922200;

c310: DRIFT, L=0.1167432750;

d5c10: DRIFT, L=0.4256620000;

d6a10: DRIFT, L=0.4460017200;

c410: DRIFT, L=0.1185159050;

d6c10: DRIFT, L=0.4125658100;

d610: DRIFT, L=0.5514622550;

m110: marker;
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m210: marker;

m310: marker;

m410: marker;

m510: marker;

m610: marker;

sF111: SBEND,L=1.2881311950,ANGLE=0.4999852446,K1:=kqf11a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s111: SBEND,L=0.0700000000,ANGLE=0.0271703436,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD111: SBEND,L=1.2881311950,ANGLE=0.4999852446,K1:=kqd11a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF211: SBEND,L=1.3168678300,ANGLE=0.5199095725,K1:=kqf11b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s211: SBEND,L=0.0700000000,ANGLE=0.0276365397,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD211: SBEND,L=1.3168678300,ANGLE=0.5199095725,K1:=kqd11b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF311: SBEND,L=1.3211667800,ANGLE=0.5084517329,K1:=kqf11c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s311: SBEND,L=0.0700000000,ANGLE=0.0270274818,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD311: SBEND,L=1.3211667800,ANGLE=0.5101115871,K1:=kqd11c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF411: SBEND,L=1.3216350650,ANGLE=0.5090521288,K1:=kqf11d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s411: SBEND,L=0.0700000000,ANGLE=0.0269617915,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD411: SBEND,L=1.3216350650,ANGLE=0.5090521288,K1:=kqd11d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF511: SBEND,L=1.3315178300,ANGLE=0.4965834065,K1:=kqf11e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s511: SBEND,L=0.0700000000,ANGLE=0.0261061757,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD511: SBEND,L=1.3315178300,ANGLE=0.4965834065,K1:=kqd11e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF611: SBEND,L=1.3763548250,ANGLE=0.5255110283,K1:=kqf11f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s611: SBEND,L=0.0700000000,ANGLE=0.0267269539,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD611: SBEND,L=1.3763548250,ANGLE=0.5255110283,K1:=kqd11f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d111: DRIFT, L=0.5514622550;

d2a11: DRIFT, L=0.4440523000;

c111: DRIFT, L=0.1244632000;

d2c11: DRIFT, L=0.4154712000;

d3a11: DRIFT, L=0.4313289000;

c211: DRIFT, L=0.1254769900;

d3c11: DRIFT, L=0.4312513900;

d411: DRIFT, L=0.5567740950;

d5a11: DRIFT, L=0.4339888400;

c311: DRIFT, L=0.1245705250;

d5c11: DRIFT, L=0.4309799700;

d6a11: DRIFT, L=0.4582872800;

c411: DRIFT, L=0.1264836850;

d6c11: DRIFT, L=0.4120273900;

d611: DRIFT, L=0.5655026850;

m111: marker;
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m211: marker;

m311: marker;

m411: marker;

m511: marker;

m611: marker;

sF112: SBEND,L=1.3875684200,ANGLE=0.5008107139,K1:=kqf12a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s112: SBEND,L=0.0700000000,ANGLE=0.0252648803,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD112: SBEND,L=1.3875684200,ANGLE=0.5008107139,K1:=kqd12a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF212: SBEND,L=1.4178868850,ANGLE=0.5208703539,K1:=kqf12b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s212: SBEND,L=0.0700000000,ANGLE=0.0257149743,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD212: SBEND,L=1.4178868850,ANGLE=0.5208703539,K1:=kqd12b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF312: SBEND,L=1.4231883500,ANGLE=0.5077145485,K1:=kqf12c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s312: SBEND,L=0.0700000000,ANGLE=0.0250654821,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD312: SBEND,L=1.4231883500,ANGLE=0.5096128881,K1:=kqd12c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF412: SBEND,L=1.4281646650,ANGLE=0.5114779447,K1:=kqf12d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s412: SBEND,L=0.0700000000,ANGLE=0.0250695575,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD412: SBEND,L=1.4281646650,ANGLE=0.5114779447,K1:=kqd12d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF512: SBEND,L=1.4394490650,ANGLE=0.4975200246,K1:=kqf12e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s512: SBEND,L=0.0700000000,ANGLE=0.0241942578,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD512: SBEND,L=1.4394490650,ANGLE=0.4975200246,K1:=kqd12e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF612: SBEND,L=1.4870503750,ANGLE=0.5263835265,K1:=kqf12f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s612: SBEND,L=0.0700000000,ANGLE=0.0247784792,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD612: SBEND,L=1.4870503750,ANGLE=0.5263835265,K1:=kqd12f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d112: DRIFT, L=0.5655026850;

d2a12: DRIFT, L=0.4544271000;

c112: DRIFT, L=0.1326248000;

d2c12: DRIFT, L=0.4171144600;

d3a12: DRIFT, L=0.4374135500;

c212: DRIFT, L=0.1337336900;

d3c12: DRIFT, L=0.4373129500;

d412: DRIFT, L=0.5715187750;

d5a12: DRIFT, L=0.4409100200;

c312: DRIFT, L=0.1333130100;

d5c12: DRIFT, L=0.4369197700;

d6a12: DRIFT, L=0.4720093900;

c412: DRIFT, L=0.1353831350;

d6c12: DRIFT, L=0.4114260100;

d612: DRIFT, L=0.5812507700;

m112: marker;
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m212: marker;

m312: marker;

m412: marker;

m512: marker;

m612: marker;

sF113: SBEND,L=1.4994623800,ANGLE=0.5018313001,K1:=kqf13a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s113: SBEND,L=0.0700000000,ANGLE=0.0234271906,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD113: SBEND,L=1.4994623800,ANGLE=0.5018313001,K1:=kqd13a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF213: SBEND,L=1.5316683800,ANGLE=0.5218041491,K1:=kqf13b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s213: SBEND,L=0.0700000000,ANGLE=0.0238473882,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD213: SBEND,L=1.5316683800,ANGLE=0.5218041491,K1:=kqd13b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF313: SBEND,L=1.5366475350,ANGLE=0.5103054850,K1:=kqf13c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s313: SBEND,L=0.0700000000,ANGLE=0.0233218786,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD313: SBEND,L=1.5366475350,ANGLE=0.5119643886,K1:=kqd13c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF413: SBEND,L=1.5371902250,ANGLE=0.5109004267,K1:=kqf13d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s413: SBEND,L=0.0700000000,ANGLE=0.0232651947,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD413: SBEND,L=1.5371902250,ANGLE=0.5109004267,K1:=kqd13d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF513: SBEND,L=1.5485278450,ANGLE=0.4983368159,K1:=kqf13e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s513: SBEND,L=0.0700000000,ANGLE=0.0225269292,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD513: SBEND,L=1.5485278450,ANGLE=0.4983368159,K1:=kqd13e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF613: SBEND,L=1.5988204150,ANGLE=0.5273306376,K1:=kqf13f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s613: SBEND,L=0.0700000000,ANGLE=0.0230877366,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD613: SBEND,L=1.5988204150,ANGLE=0.5273306376,K1:=kqd13f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d113: DRIFT, L=0.5812507700;

d2a13: DRIFT, L=0.4661126200;

c113: DRIFT, L=0.1418175100;

d2c13: DRIFT, L=0.4189653200;

d3a13: DRIFT, L=0.4442669300;

c213: DRIFT, L=0.1430335150;

d3c13: DRIFT, L=0.4441403100;

d413: DRIFT, L=0.5872450000;

d5a13: DRIFT, L=0.4479048000;

c313: DRIFT, L=0.1421484500;

d5c13: DRIFT, L=0.4429227200;

d6a13: DRIFT, L=0.4858774000;

c413: DRIFT, L=0.1443772100;

d6c13: DRIFT, L=0.4108182400;

d613: DRIFT, L=0.5971070300;

m113: marker;
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m213: marker;

m313: marker;

m413: marker;

m513: marker;

m613: marker;

sF114: SBEND,L=1.6118015600,ANGLE=0.5025307832,K1:=kqf14a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s114: SBEND,L=0.0700000000,ANGLE=0.0218247430,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD114: SBEND,L=1.6118015600,ANGLE=0.5025307832,K1:=kqd14a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF214: SBEND,L=1.6458052350,ANGLE=0.5226138382,K1:=kqf14b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s214: SBEND,L=0.0700000000,ANGLE=0.0222280060,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD214: SBEND,L=1.6458052350,ANGLE=0.5226138382,K1:=kqd14b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF314: SBEND,L=1.6511458300,ANGLE=0.5110977292,K1:=kqf14c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s314: SBEND,L=0.0700000000,ANGLE=0.0217381986,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD314: SBEND,L=1.6511458300,ANGLE=0.5127562280,K1:=kqd14c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF414: SBEND,L=1.6517280550,ANGLE=0.5116903411,K1:=kqf14d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s414: SBEND,L=0.0700000000,ANGLE=0.0216853639,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD414: SBEND,L=1.6517280550,ANGLE=0.5116903411,K1:=kqd14d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF514: SBEND,L=1.6638387350,ANGLE=0.4990861803,K1:=kqf14e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s514: SBEND,L=0.0700000000,ANGLE=0.0209972468,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD514: SBEND,L=1.6638387350,ANGLE=0.4990861803,K1:=kqd14e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF614: SBEND,L=1.7170301850,ANGLE=0.5281095045,K1:=kqf14f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s614: SBEND,L=0.0700000000,ANGLE=0.0215300032,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD614: SBEND,L=1.7170301850,ANGLE=0.5281095045,K1:=kqd14f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d114: DRIFT, L=0.5971070300;

d2a14: DRIFT, L=0.4778346400;

c114: DRIFT, L=0.1510389300;

d2c14: DRIFT, L=0.4208219700;

d3a14: DRIFT, L=0.4511417000;

c214: DRIFT, L=0.1523623850;

d3c14: DRIFT, L=0.4509890000;

d414: DRIFT, L=0.6034360800;

d5a14: DRIFT, L=0.4552992200;

c314: DRIFT, L=0.1514886900;

d5c14: DRIFT, L=0.4492686400;

d6a14: DRIFT, L=0.5005377300;

c414: DRIFT, L=0.1538851450;

d6c14: DRIFT, L=0.4101757400;

d614: DRIFT, L=0.5971070300;

m114: marker;
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m214: marker;

m314: marker;

m414: marker;

m514: marker;

m614: marker;

Beam,particle=proton,sequence=tamusq11,energy=0.94477;

tamusq11: sequence, refer=entry,l = 1.3620755200;

startcell11: marker, at = 0;

m11, at = 0.0000000000;

d11, at = 0.0000000000;

sF11, at = 0.4019962300;

s11, at = 0.6298970200;

sD11, at = 0.6998970200;

d2a1, at = 0.9277978100;

c11, at = 1.3246667500;

endcell11: marker, at = 1.3620755200;

endsequence;

Beam,particle=proton,sequence=tamusq21,energy=0.94539;

tamusq21: sequence, refer=entry,l = 1.3246041650;

startcell21: marker, at = 0;

c11, at = 0.0000000000;

m21, at = 0.0374087700;

d2c1, at = 0.0374087700;

sF21, at = 0.3718745600;

s21, at = 0.6112383400;

sD21, at = 0.6812383400;

d3a1, at = 0.9206021200;

c21, at = 1.2871959700;

endcell21: marker, at = 1.3246041650;

endsequence;

Beam,particle=proton,sequence=tamusq31,energy=0.94602;

tamusq31: sequence, refer=entry,l = 1.3589286600;

startcell31: marker, at = 0;

c21, at = 0.0000000000;

m31, at = 0.0374081950;

d3c1, at = 0.0374081950;

sF31, at = 0.4038388850;

s31, at = 0.6443063100;

sD31, at = 0.7143063100;
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d41, at = 0.9547737350;

endcell31: marker, at = 1.3589286600;

endsequence;

Beam,particle=proton,sequence=tamusq41,energy=0.94602;

tamusq41: sequence, refer=entry,l = 1.3686453250;

startcell41: marker, at = 0;

m41, at = 0.0000000000;

d41, at = 0.0000000000;

sF41, at = 0.4041549250;

s41, at = 0.6475033350;

sD41, at = 0.7175033350;

d5a1, at = 0.9608517450;

c31, at = 1.3319884750;

endcell41: marker, at = 1.3686453250;

endsequence;

Beam,particle=proton,sequence=tamusq51,energy=0.94665;

tamusq51: sequence, refer=entry,l = 1.4169386800;

startcell51: marker, at = 0;

c31, at = 0.0000000000;

m51, at = 0.0366568500;

d5c1, at = 0.0366568500;

sF51, at = 0.4011599800;

s51, at = 0.6473307450;

sD51, at = 0.7173307450;

d6a1, at = 0.9635015100;

c41, at = 1.3799470800;

endcell51: marker, at = 1.4169386800;

endsequence;

Beam,particle=proton,sequence=tamusq61,energy=0.94728;

tamusq61: sequence, refer=entry,l = 1.3643702900;

startcell61: marker, at = 0;

c41, at = 0.0000000000;

m61, at = 0.0369916000;

d6c1, at = 0.0369916000;

sF61, at = 0.3589198100;

s61, at = 0.6228327000;

sD61, at = 0.6928327000;

d61, at = 0.9567455900;

endcell61: marker, at = 1.3643702900;
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endsequence;

Beam,particle=proton,sequence=tamusq12,energy=0.94728;

tamusq12: sequence, refer=entry,l = 1.4529567900;

startcell12: marker, at = 0;

m12, at = 0.0000000000;

d12, at = 0.0000000000;

sF12, at = 0.4076247000;

s12, at = 0.6761564600;

sD12, at = 0.7461564600;

d2a2, at = 1.0146882200;

c12, at = 1.4122131600;

endcell12: marker, at = 1.4529567900;

endsequence;

Beam,particle=proton,sequence=tamusq22,energy=0.94794;

tamusq22: sequence, refer=entry,l = 1.4205975600;

startcell22: marker, at = 0;

c12, at = 0.0000000000;

m22, at = 0.0407436300;

d2c2, at = 0.0407436300;

sF22, at = 0.3794640400;

s22, at = 0.6601045500;

sD22, at = 0.7301045500;

d3a2, at = 1.0107450600;

c22, at = 1.3798156500;

endcell22: marker, at = 1.4205975600;

endsequence;

Beam,particle=proton,sequence=tamusq32,energy=0.94858;

tamusq32: sequence, refer=entry,l = 1.4782848050;

startcell32: marker, at = 0;

c22, at = 0.0000000000;

m32, at = 0.0407819100;

d3c2, at = 0.0407819100;

sF32, at = 0.4096988500;

s32, at = 0.6990437250;

sD32, at = 0.7690437250;

d42, at = 1.0583886000;

endcell32: marker, at = 1.4782848050;

endsequence;

Beam,particle=proton,sequence=tamusq42,energy=0.94858;
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tamusq42: sequence, refer=entry,l = 1.6608254350;

startcell42: marker, at = 0;

m42, at = 0.0000000000;

d42, at = 0.0000000000;

sF42, at = 0.4198962050;

s42, at = 0.7921709150;

sD42, at = 0.8621709150;

d5a2, at = 1.2344456250;

c32, at = 1.6130983150;

endcell42: marker, at = 1.6608254350;

endsequence;

Beam,particle=proton,sequence=tamusq52,energy=0.94930;

tamusq52: sequence, refer=entry,l = 1.7205455400;

startcell52: marker, at = 0;

c32, at = 0.0000000000;

m52, at = 0.0477271200;

d5c2, at = 0.0477271200;

sF52, at = 0.4209996600;

s52, at = 0.8038395150;

sD52, at = 0.8738395150;

d6a2, at = 1.2566793700;

c42, at = 1.6722849200;

endcell52: marker, at = 1.7205455400;

endsequence;

Beam,particle=proton,sequence=tamusq62,energy=0.95006;

tamusq62: sequence, refer=entry,l = 1.6927061200;

startcell62: marker, at = 0;

c42, at = 0.0000000000;

m62, at = 0.0482606200;

d6c2, at = 0.0482606200;

sF62, at = 0.3876431200;

s62, at = 0.7914941750;

sD62, at = 0.8614941750;

d62, at = 1.2653452300;

endcell62: marker, at = 1.6927061200;

endsequence;

Beam,particle=proton,sequence=tamusq13,energy=0.95006;

tamusq13: sequence, refer=entry,l = 1.7644090500;

startcell13: marker, at = 0;
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m13, at = 0.0000000000;

d13, at = 0.0000000000;

sF13, at = 0.4273608900;

s13, at = 0.8349266150;

sD13, at = 0.9049266150;

d2a3, at = 1.3124923400;

c13, at = 1.7122607100;

endcell13: marker, at = 1.7644090500;

endsequence;

Beam,particle=proton,sequence=tamusq23,energy=0.95089;

tamusq23: sequence, refer=entry,l = 1.7488805000;

startcell23: marker, at = 0;

c13, at = 0.0000000000;

m23, at = 0.0521483400;

d2c3, at = 0.0521483400;

sF23, at = 0.4054189000;

s23, at = 0.8272196200;

sD23, at = 0.8972196200;

d3a3, at = 1.3190203400;

c23, at = 1.6965609900;

endcell23: marker, at = 1.7488805000;

endsequence;

Beam,particle=proton,sequence=tamusq33,energy=0.95174;

tamusq33: sequence, refer=entry,l = 1.7786620300;

startcell33: marker, at = 0;

c23, at = 0.0000000000;

m33, at = 0.0523195100;

d3c3, at = 0.0523195100;

sF33, at = 0.4297390500;

s33, at = 0.8539106300;

sD33, at = 0.9239106300;

d43, at = 1.3480822100;

endcell33: marker, at = 1.7786620300;

endsequence;

Beam,particle=proton,sequence=tamusq43,energy=0.95174;

tamusq43: sequence, refer=entry,l = 1.8006580500;

startcell43: marker, at = 0;

m43, at = 0.0000000000;

d43, at = 0.0000000000;
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sF43, at = 0.4305798200;

s43, at = 0.8636856350;

sD43, at = 0.9336856350;

d5a3, at = 1.3667914500;

c33, at = 1.7484716700;

endcell43: marker, at = 1.8006580500;

endsequence;

Beam,particle=proton,sequence=tamusq53,energy=0.95259;

tamusq53: sequence, refer=entry,l = 1.8428426950;

startcell53: marker, at = 0;

c33, at = 0.0000000000;

m53, at = 0.0521863800;

d5c3, at = 0.0521863800;

sF53, at = 0.4289913600;

s53, at = 0.8668834700;

sD53, at = 0.9368834700;

d6a3, at = 1.3747755800;

c43, at = 1.7900427500;

endcell53: marker, at = 1.8428426950;

endsequence;

Beam,particle=proton,sequence=tamusq63,energy=0.95345;

tamusq63: sequence, refer=entry,l = 1.8250995800;

startcell63: marker, at = 0;

c43, at = 0.0000000000;

m63, at = 0.0527999450;

d6c3, at = 0.0527999450;

sF63, at = 0.3992132750;

s63, at = 0.8594768700;

sD63, at = 0.9294768700;

d63, at = 1.3897404650;

endcell63: marker, at = 1.8250995800;

endsequence;

Beam,particle=proton,sequence=tamusq14,energy=0.95345;

tamusq14: sequence, refer=entry,l = 1.8912363950;

startcell14: marker, at = 0;

m14, at = 0.0000000000;

d14, at = 0.0000000000;

sF14, at = 0.4353591150;

s14, at = 0.8995577100;
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sD14, at = 0.9695577100;

d2a4, at = 1.4337563050;

c14, at = 1.8344391650;

endcell14: marker, at = 1.8912363950;

endsequence;

Beam,particle=proton,sequence=tamusq24,energy=0.95438;

tamusq24: sequence, refer=entry,l = 1.8826981600;

startcell24: marker, at = 0;

c14, at = 0.0000000000;

m24, at = 0.0567972300;

d2c4, at = 0.0567972300;

sF24, at = 0.4159988500;

s24, at = 0.8953405750;

sD24, at = 0.9653405750;

d3a4, at = 1.4446823000;

c24, at = 1.8256755900;

endcell24: marker, at = 1.8826981600;

endsequence;

Beam,particle=proton,sequence=tamusq34,energy=0.95530;

tamusq34: sequence, refer=entry,l = 1.9311725950;

startcell34: marker, at = 0;

c24, at = 0.0000000000;

m34, at = 0.0570225700;

d3c4, at = 0.0570225700;

sF34, at = 0.4379080200;

s34, at = 0.9268366550;

sD34, at = 0.9968366550;

d44, at = 1.4857652900;

endcell34: marker, at = 1.9311725950;

endsequence;

Beam,particle=proton,sequence=tamusq44,energy=0.95530;

tamusq44: sequence, refer=entry,l = 2.0829034100;

startcell44: marker, at = 0;

m44, at = 0.0000000000;

d44, at = 0.0000000000;

sF44, at = 0.4454073050;

s44, at = 1.0032464550;

sD44, at = 1.0732464550;

d5a4, at = 1.6310856050;
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c34, at = 2.0200249950;

endcell44: marker, at = 2.0829034100;

endsequence;

Beam,particle=proton,sequence=tamusq54,energy=0.95634;

tamusq54: sequence, refer=entry,l = 2.1360764550;

startcell54: marker, at = 0;

c34, at = 0.0000000000;

m54, at = 0.0628784150;

d5c4, at = 0.0628784150;

sF54, at = 0.4481531750;

s54, at = 1.0180449150;

sD54, at = 1.0880449150;

d6a4, at = 1.6579366550;

c44, at = 2.0723925050;

endcell54: marker, at = 2.1360764550;

endsequence;

Beam,particle=proton,sequence=tamusq64,energy=0.95741;

tamusq64: sequence, refer=entry,l = 2.1427014800;

startcell64: marker, at = 0;

c44, at = 0.0000000000;

m64, at = 0.0636839500;

d6c4, at = 0.0636839500;

sF64, at = 0.4269552200;

s64, at = 1.0225368800;

sD64, at = 1.0925368800;

d64, at = 1.6881185400;

endcell64: marker, at = 2.1427014800;

endsequence;

Beam,particle=proton,sequence=tamusq15,energy=0.95741;

tamusq15: sequence, refer=entry,l = 2.1966506150;

startcell15: marker, at = 0;

m15, at = 0.0000000000;

d15, at = 0.0000000000;

sF15, at = 0.4545829400;

s15, at = 1.0551747450;

sD15, at = 1.1251747450;

d2a5, at = 1.7257665500;

c15, at = 2.1286527100;

endcell15: marker, at = 2.1966506150;
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endsequence;

Beam,particle=proton,sequence=tamusq25,energy=0.95860;

tamusq25: sequence, refer=entry,l = 2.2051079850;

startcell25: marker, at = 0;

c15, at = 0.0000000000;

m25, at = 0.0679979050;

d2c5, at = 0.0679979050;

sF25, at = 0.4414893650;

s25, at = 1.0594658850;

sD25, at = 1.1294658850;

d3a5, at = 1.7474424050;

c25, at = 2.1367542250;

endcell25: marker, at = 2.2051079850;

endsequence;

Beam,particle=proton,sequence=tamusq35,energy=0.95980;

tamusq35: sequence, refer=entry,l = 2.2304913250;

startcell35: marker, at = 0;

c25, at = 0.0000000000;

m35, at = 0.0683537600;

d3c5, at = 0.0683537600;

sF35, at = 0.4575897100;

s35, at = 1.0795181800;

sD35, at = 1.1495181800;

d45, at = 1.7714466500;

endcell35: marker, at = 2.2304913250;

endsequence;

Beam,particle=proton,sequence=tamusq45,energy=0.95980;

tamusq45: sequence, refer=entry,l = 2.2661464450;

startcell45: marker, at = 0;

m45, at = 0.0000000000;

d45, at = 0.0000000000;

sF45, at = 0.4590446750;

s45, at = 1.0966024750;

sD45, at = 1.1666024750;

d5a5, at = 1.8041602750;

c35, at = 2.1972115750;

endcell45: marker, at = 2.2661464450;

endsequence;

Beam,particle=proton,sequence=tamusq55,energy=0.96101;
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tamusq55: sequence, refer=entry,l = 2.3021772400;

startcell55: marker, at = 0;

c35, at = 0.0000000000;

m55, at = 0.0689348700;

d5c5, at = 0.0689348700;

sF55, at = 0.4590073000;

s55, at = 1.1036695600;

sD55, at = 1.1736695600;

d6a5, at = 1.8183318200;

c45, at = 2.2323281000;

endcell55: marker, at = 2.3021772400;

endsequence;

Beam,particle=proton,sequence=tamusq65,energy=0.96226;

tamusq65: sequence, refer=entry,l = 2.3226054800;

startcell65: marker, at = 0;

c45, at = 0.0000000000;

m65, at = 0.0698491400;

d6c5, at = 0.0698491400;

sF65, at = 0.4426695100;

s65, at = 1.1149014050;

sD65, at = 1.1849014050;

d65, at = 1.8571333000;

endcell65: marker, at = 2.3226054800;

endsequence;

Beam,particle=proton,sequence=tamusq16,energy=0.96226;

tamusq16: sequence, refer=entry,l = 2.3696510150;

startcell16: marker, at = 0;

m16, at = 0.0000000000;

d16, at = 0.0000000000;

sF16, at = 0.4654721800;

s16, at = 1.1433232550;

sD16, at = 1.2133232550;

d2a6, at = 1.8911743300;

c16, at = 2.2953085400;

endcell16: marker, at = 2.3696510150;

endsequence;

Beam,particle=proton,sequence=tamusq26,energy=0.96360;

tamusq26: sequence, refer=entry,l = 2.3877354700;

startcell26: marker, at = 0;
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c16, at = 0.0000000000;

m26, at = 0.0743424750;

d2c6, at = 0.0743424750;

sF26, at = 0.4559283550;

s26, at = 1.1524338850;

sD26, at = 1.2224338850;

d3a6, at = 1.9189394150;

c26, at = 2.3129632150;

endcell26: marker, at = 2.3877354700;

endsequence;

Beam,particle=proton,sequence=tamusq36,energy=0.96495;

tamusq36: sequence, refer=entry,l = 2.4267571850;

startcell36: marker, at = 0;

c26, at = 0.0000000000;

m36, at = 0.0747722550;

d3c6, at = 0.0747722550;

sF36, at = 0.4687382950;

s36, at = 1.1753377300;

sD36, at = 1.2453377300;

d46, at = 1.9519371650;

endcell36: marker, at = 2.4267571850;

endsequence;

Beam,particle=proton,sequence=tamusq46,energy=0.96495;

tamusq46: sequence, refer=entry,l = 2.5574718950;

startcell46: marker, at = 0;

m46, at = 0.0000000000;

d46, at = 0.0000000000;

sF46, at = 0.4748200200;

s46, at = 1.2409805100;

sD46, at = 1.3109805100;

d5a6, at = 2.0771410000;

c36, at = 2.4776106000;

endcell46: marker, at = 2.5574718950;

endsequence;

Beam,particle=proton,sequence=tamusq56,energy=0.96642;

tamusq56: sequence, refer=entry,l = 2.6018392600;

startcell56: marker, at = 0;

c36, at = 0.0000000000;

m56, at = 0.0798612950;
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d5c6, at = 0.0798612950;

sF56, at = 0.4785891850;

s56, at = 1.2581447650;

sD56, at = 1.3281447650;

d6a6, at = 2.1077003450;

c46, at = 2.5208675150;

endcell56: marker, at = 2.6018392600;

endsequence;

Beam,particle=proton,sequence=tamusq66,energy=0.96792;

tamusq66: sequence, refer=entry,l = 2.6471698200;

startcell66: marker, at = 0;

c46, at = 0.0000000000;

m66, at = 0.0809717450;

d6c6, at = 0.0809717450;

sF66, at = 0.4710196150;

s66, at = 1.2815360050;

sD66, at = 1.3515360050;

d66, at = 2.1620523950;

endcell66: marker, at = 2.6471698200;

endsequence;

Beam,particle=proton,sequence=tamusq17,energy=0.96792;

tamusq17: sequence, refer=entry,l = 2.6817604200;

startcell17: marker, at = 0;

m17, at = 0.0000000000;

d17, at = 0.0000000000;

sF17, at = 0.4851174250;

s17, at = 1.3023516750;

sD17, at = 1.3723516750;

d2a7, at = 2.1895859250;

c17, at = 2.5959717350;

endcell17: marker, at = 2.6817604200;

endsequence;

Beam,particle=proton,sequence=tamusq27,energy=0.96956;

tamusq27: sequence, refer=entry,l = 2.7172130350;

startcell27: marker, at = 0;

c17, at = 0.0000000000;

m27, at = 0.0857886850;

d2c7, at = 0.0857886850;

sF27, at = 0.4819776550;
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s27, at = 1.3201570800;

sD27, at = 1.3901570800;

d3a7, at = 2.2283365050;

c27, at = 2.6308611950;

endcell27: marker, at = 2.7172130350;

endsequence;

Beam,particle=proton,sequence=tamusq37,energy=0.97122;

tamusq37: sequence, refer=entry,l = 2.7363708400;

startcell37: marker, at = 0;

c27, at = 0.0000000000;

m37, at = 0.0863518400;

d3c7, at = 0.0863518400;

sF37, at = 0.4888514300;

s37, at = 1.3323119950;

sD37, at = 1.4023119950;

d47, at = 2.2457725600;

endcell37: marker, at = 2.7363708400;

endsequence;

Beam,particle=proton,sequence=tamusq47,energy=0.97122;

tamusq47: sequence, refer=entry,l = 2.7781390700;

startcell47: marker, at = 0;

m47, at = 0.0000000000;

d47, at = 0.0000000000;

sF47, at = 0.4905982800;

s47, at = 1.3529454300;

sD47, at = 1.4229454300;

d5a7, at = 2.2852925800;

c37, at = 2.6908232800;

endcell47: marker, at = 2.7781390700;

endsequence;

Beam,particle=proton,sequence=tamusq57,energy=0.97291;

tamusq57: sequence, refer=entry,l = 2.8062819450;

startcell57: marker, at = 0;

c37, at = 0.0000000000;

m57, at = 0.0873157900;

d5c7, at = 0.0873157900;

sF57, at = 0.4919488200;

s57, at = 1.3635345900;

sD57, at = 1.4335345900;
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d6a7, at = 2.3051203600;

c47, at = 2.7177218700;

endcell57: marker, at = 2.8062819450;

endsequence;

Beam,particle=proton,sequence=tamusq67,energy=0.97463;

tamusq67: sequence, refer=entry,l = 2.8686019900;

startcell67: marker, at = 0;

c47, at = 0.0000000000;

m67, at = 0.0885600750;

d6c7, at = 0.0885600750;

sF67, at = 0.4903613050;

s67, at = 1.3952215050;

sD67, at = 1.4652215050;

d67, at = 2.3700817050;

endcell67: marker, at = 2.8686019900;

endsequence;

Beam,particle=proton,sequence=tamusq18,energy=0.97463;

tamusq18: sequence, refer=entry,l = 2.8946954200;

startcell18: marker, at = 0;

m18, at = 0.0000000000;

d18, at = 0.0000000000;

sF18, at = 0.4985202850;

s18, at = 1.4108479750;

sD18, at = 1.4808479750;

d2a8, at = 2.3931756650;

c18, at = 2.8010976150;

endcell18: marker, at = 2.8946954200;

endsequence;

Beam,particle=proton,sequence=tamusq28,energy=0.97647;

tamusq28: sequence, refer=entry,l = 2.9419973950;

startcell28: marker, at = 0;

c18, at = 0.0000000000;

m28, at = 0.0935978050;

d2c8, at = 0.0935978050;

sF28, at = 0.4997496650;

s28, at = 1.4345853700;

sD28, at = 1.5045853700;

d3a8, at = 2.4394210750;

c28, at = 2.8477454450;
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endcell28: marker, at = 2.9419973950;

endsequence;

Beam,particle=proton,sequence=tamusq38,energy=0.97832;

tamusq38: sequence, refer=entry,l = 2.9690845050;

startcell38: marker, at = 0;

c28, at = 0.0000000000;

m38, at = 0.0942519500;

d3c8, at = 0.0942519500;

sF38, at = 0.5025735100;

s38, at = 1.4472114800;

sD38, at = 1.5172114800;

d48, at = 2.4618494500;

endcell38: marker, at = 2.9690845050;

endsequence;

Beam,particle=proton,sequence=tamusq48,energy=0.97832;

tamusq48: sequence, refer=entry,l = 3.0734532950;

startcell48: marker, at = 0;

m48, at = 0.0000000000;

d48, at = 0.0000000000;

sF48, at = 0.5072350550;

s48, at = 1.4996503500;

sD48, at = 1.5696503500;

d5a8, at = 2.5620656450;

c38, at = 2.9752110750;

endcell48: marker, at = 3.0734532950;

endsequence;

Beam,particle=proton,sequence=tamusq58,energy=0.98026;

tamusq58: sequence, refer=entry,l = 3.1109378300;

startcell58: marker, at = 0;

c38, at = 0.0000000000;

m58, at = 0.0982422200;

d5c8, at = 0.0982422200;

sF58, at = 0.5113342800;

s58, at = 1.5178133800;

sD58, at = 1.5878133800;

d6a8, at = 2.5942924800;

c48, at = 3.0112551500;

endcell58: marker, at = 3.1109378300;

endsequence;
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Beam,particle=proton,sequence=tamusq68,energy=0.98223;

tamusq68: sequence, refer=entry,l = 3.1879760900;

startcell68: marker, at = 0;

c48, at = 0.0000000000;

m68, at = 0.0996826800;

d6c8, at = 0.0996826800;

sF68, at = 0.5135211500;

s68, at = 1.5566658550;

sD68, at = 1.6266658550;

d68, at = 2.6698105600;

endcell68: marker, at = 3.1879760900;

endsequence;

Beam,particle=proton,sequence=tamusq19,energy=0.98223;

tamusq19: sequence, refer=entry,l = 3.2159984350;

startcell19: marker, at = 0;

m19, at = 0.0000000000;

d19, at = 0.0000000000;

sF19, at = 0.5181655300;

s19, at = 1.5698763900;

sD19, at = 1.6398763900;

d2a9, at = 2.6915872500;

c19, at = 3.1109544200;

endcell19: marker, at = 3.2159984350;

endsequence;

Beam,particle=proton,sequence=tamusq29,energy=0.98433;

tamusq29: sequence, refer=entry,l = 3.2623075300;

startcell29: marker, at = 0;

c19, at = 0.0000000000;

m29, at = 0.1050440150;

d2c9, at = 0.1050440150;

sF29, at = 0.5166053450;

s29, at = 1.5931149400;

sD29, at = 1.6631149400;

d3a9, at = 2.7396245350;

c29, at = 3.1564759950;

endcell29: marker, at = 3.2623075300;

endsequence;

Beam,particle=proton,sequence=tamusq39,energy=0.98646;

tamusq39: sequence, refer=entry,l = 3.2805381150;
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startcell39: marker, at = 0;

c29, at = 0.0000000000;

m39, at = 0.1058315350;

d3c9, at = 0.1058315350;

sF39, at = 0.5226604250;

s39, at = 1.6046373750;

sD39, at = 1.6746373750;

d49, at = 2.7566143250;

endcell39: marker, at = 3.2805381150;

endsequence;

Beam,particle=proton,sequence=tamusq49,energy=0.98646;

tamusq49: sequence, refer=entry,l = 3.3113458450;

startcell49: marker, at = 0;

m49, at = 0.0000000000;

d49, at = 0.0000000000;

sF49, at = 0.5239237900;

s49, at = 1.6197150450;

sD49, at = 1.6897150450;

d5a9, at = 2.7855063000;

c39, at = 3.2050374800;

endcell49: marker, at = 3.3113458450;

endsequence;

Beam,particle=proton,sequence=tamusq59,energy=0.98860;

tamusq59: sequence, refer=entry,l = 3.3445185300;

startcell59: marker, at = 0;

c39, at = 0.0000000000;

m59, at = 0.1063083650;

d5c9, at = 0.1063083650;

sF59, at = 0.5248807050;

s59, at = 1.6309411950;

sD59, at = 1.7009411950;

d6a9, at = 2.8070016850;

c49, at = 3.2366248850;

endcell59: marker, at = 3.3445185300;

endsequence;

Beam,particle=proton,sequence=tamusq69,energy=0.99077;

tamusq69: sequence, refer=entry,l = 3.4143044500;

startcell69: marker, at = 0;

c49, at = 0.0000000000;
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m69, at = 0.1078936450;

d6c9, at = 0.1078936450;

sF69, at = 0.5211772550;

s69, at = 1.6664068000;

sD69, at = 1.7364068000;

d69, at = 2.8816363450;

endcell69: marker, at = 3.4143044500;

endsequence;

Beam,particle=proton,sequence=tamusq110,energy=0.99077;

tamusq110: sequence, refer=entry,l = 3.4554839650;

startcell110: marker, at = 0;

m110, at = 0.0000000000;

d110, at = 0.0000000000;

sF110, at = 0.5326681050;

s110, at = 1.6872748950;

sD110, at = 1.7572748950;

d2a10, at = 2.9118816850;

c110, at = 3.3419900850;

endcell110: marker, at = 3.4554839650;

endsequence;

Beam,particle=proton,sequence=tamusq210,energy=0.99304;

tamusq210: sequence, refer=entry,l = 3.4964805750;

startcell210: marker, at = 0;

c110, at = 0.0000000000;

m210, at = 0.1134938800;

d2c10, at = 0.1134938800;

sF210, at = 0.5267565100;

s210, at = 1.7078531050;

sD210, at = 1.7778531050;

d3a10, at = 2.9589497000;

c210, at = 3.3821007200;

endcell210: marker, at = 3.4964805750;

endsequence;

Beam,particle=proton,sequence=tamusq310,energy=0.99532;

tamusq310: sequence, refer=entry,l = 3.5271619900;

startcell310: marker, at = 0;

c210, at = 0.0000000000;

m310, at = 0.1143798550;

d3c10, at = 0.1143798550;
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sF310, at = 0.5374844050;

s310, at = 1.7270802200;

sD310, at = 1.7970802200;

d410, at = 2.9866760350;

endcell310: marker, at = 3.5271619900;

endsequence;

Beam,particle=proton,sequence=tamusq410,energy=0.99532;

tamusq410: sequence, refer=entry,l = 3.5973641200;

startcell410: marker, at = 0;

m410, at = 0.0000000000;

d410, at = 0.0000000000;

sF410, at = 0.5404859550;

s410, at = 1.7616572900;

sD410, at = 1.8316572900;

d5a10, at = 3.0528286250;

c310, at = 3.4806208450;

endcell410: marker, at = 3.5973641200;

endsequence;

Beam,particle=proton,sequence=tamusq510,energy=0.99764;

tamusq510: sequence, refer=entry,l = 3.6466943400;

startcell510: marker, at = 0;

c310, at = 0.0000000000;

m510, at = 0.1167432750;

d5c10, at = 0.1167432750;

sF510, at = 0.5424052750;

s510, at = 1.7772909950;

sD510, at = 1.8472909950;

d6a10, at = 3.0821767150;

c410, at = 3.5281784350;

endcell510: marker, at = 3.6466943400;

endsequence;

Beam,particle=proton,sequence=tamusq610,energy=0.99999;

tamusq610: sequence, refer=entry,l = 3.7072407100;

startcell610: marker, at = 0;

c410, at = 0.0000000000;

m610, at = 0.1185159050;

d6c10, at = 0.1185159050;

sF610, at = 0.5310817150;

s610, at = 1.8084300850;
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sD610, at = 1.8784300850;

d610, at = 3.1557784550;

endcell610: marker, at = 3.7072407100;

endsequence;

Beam,particle=proton,sequence=tamusq111,energy=0.99999;

tamusq111: sequence, refer=entry,l = 3.7662401450;

startcell111: marker, at = 0;

m111, at = 0.0000000000;

d111, at = 0.0000000000;

sF111, at = 0.5514622550;

s111, at = 1.8395934500;

sD111, at = 1.9095934500;

d2a11, at = 3.1977246450;

c111, at = 3.6417769450;

endcell111: marker, at = 3.7662401450;

endsequence;

Beam,particle=proton,sequence=tamusq211,energy=1.00241;

tamusq211: sequence, refer=entry,l = 3.8004759500;

startcell211: marker, at = 0;

c111, at = 0.0000000000;

m211, at = 0.1244632000;

d2c11, at = 0.1244632000;

sF211, at = 0.5399344000;

s211, at = 1.8568022300;

sD211, at = 1.9268022300;

d3a11, at = 3.2436700600;

c211, at = 3.6749989600;

endcell211: marker, at = 3.8004759500;

endsequence;

Beam,particle=proton,sequence=tamusq311,energy=1.00484;

tamusq311: sequence, refer=entry,l = 3.8258360350;

startcell311: marker, at = 0;

c211, at = 0.0000000000;

m311, at = 0.1254769900;

d3c11, at = 0.1254769900;

sF311, at = 0.5567283800;

s311, at = 1.8778951600;

sD311, at = 1.9478951600;

d411, at = 3.2690619400;
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endcell311: marker, at = 3.8258360350;

endsequence;

Beam,particle=proton,sequence=tamusq411,energy=1.00484;

tamusq411: sequence, refer=entry,l = 3.8286035900;

startcell411: marker, at = 0;

m411, at = 0.0000000000;

d411, at = 0.0000000000;

sF411, at = 0.5567740950;

s411, at = 1.8784091600;

sD411, at = 1.9484091600;

d5a11, at = 3.2700442250;

c311, at = 3.7040330650;

endcell411: marker, at = 3.8286035900;

endsequence;

Beam,particle=proton,sequence=tamusq511,energy=1.00729;

tamusq511: sequence, refer=entry,l = 3.8733571200;

startcell511: marker, at = 0;

c311, at = 0.0000000000;

m511, at = 0.1245705250;

d5c11, at = 0.1245705250;

sF511, at = 0.5555504950;

s511, at = 1.8870683250;

sD511, at = 1.9570683250;

d6a11, at = 3.2885861550;

c411, at = 3.7468734350;

endcell511: marker, at = 3.8733571200;

endsequence;

Beam,particle=proton,sequence=tamusq611,energy=1.00975;

tamusq611: sequence, refer=entry,l = 3.9267234100;

startcell611: marker, at = 0;

c411, at = 0.0000000000;

m611, at = 0.1264836850;

d6c11, at = 0.1264836850;

sF611, at = 0.5385110750;

s611, at = 1.9148659000;

sD611, at = 1.9848659000;

d611, at = 3.3612207250;

endcell611: marker, at = 3.9267234100;

endsequence;
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Beam,particle=proton,sequence=tamusq112,energy=1.00975;

tamusq112: sequence, refer=entry,l = 3.9976914250;

startcell112: marker, at = 0;

m112, at = 0.0000000000;

d112, at = 0.0000000000;

sF112, at = 0.5655026850;

s112, at = 1.9530711050;

sD112, at = 2.0230711050;

d2a12, at = 3.4106395250;

c112, at = 3.8650666250;

endcell112: marker, at = 3.9976914250;

endsequence;

Beam,particle=proton,sequence=tamusq212,energy=1.01223;

tamusq212: sequence, refer=entry,l = 4.0266602700;

startcell212: marker, at = 0;

c112, at = 0.0000000000;

m212, at = 0.1326248000;

d2c12, at = 0.1326248000;

sF212, at = 0.5497392600;

s212, at = 1.9676261450;

sD212, at = 2.0376261450;

d3a12, at = 3.4555130300;

c212, at = 3.8929265800;

endcell212: marker, at = 4.0266602700;

endsequence;

Beam,particle=proton,sequence=tamusq312,energy=1.01472;

tamusq312: sequence, refer=entry,l = 4.0589421150;

startcell312: marker, at = 0;

c212, at = 0.0000000000;

m312, at = 0.1337336900;

d3c12, at = 0.1337336900;

sF312, at = 0.5710466400;

s312, at = 1.9942349900;

sD312, at = 2.0642349900;

d412, at = 3.4874233400;

endcell312: marker, at = 4.0589421150;

endsequence;

Beam,particle=proton,sequence=tamusq412,energy=1.01472;

tamusq412: sequence, refer=entry,l = 4.0720711350;
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startcell412: marker, at = 0;

m412, at = 0.0000000000;

d412, at = 0.0000000000;

sF412, at = 0.5715187750;

s412, at = 1.9996834400;

sD412, at = 2.0696834400;

d5a12, at = 3.4978481050;

c312, at = 3.9387581250;

endcell412: marker, at = 4.0720711350;

endsequence;

Beam,particle=proton,sequence=tamusq512,energy=1.01722;

tamusq512: sequence, refer=entry,l = 4.1265234350;

startcell512: marker, at = 0;

c312, at = 0.0000000000;

m512, at = 0.1333130100;

d5c12, at = 0.1333130100;

sF512, at = 0.5702327800;

s512, at = 2.0096818450;

sD512, at = 2.0796818450;

d6a12, at = 3.5191309100;

c412, at = 3.9911403000;

endcell512: marker, at = 4.1265234350;

endsequence;

Beam,particle=proton,sequence=tamusq612,energy=1.01973;

tamusq612: sequence, refer=entry,l = 4.1721606650;

startcell612: marker, at = 0;

c412, at = 0.0000000000;

m612, at = 0.1353831350;

d6c12, at = 0.1353831350;

sF612, at = 0.5468091450;

s612, at = 2.0338595200;

sD612, at = 2.1038595200;

d612, at = 3.5909098950;

endcell612: marker, at = 4.1721606650;

endsequence;

Beam,particle=proton,sequence=tamusq113,energy=1.01973;

tamusq113: sequence, refer=entry,l = 4.2581056600;

startcell113: marker, at = 0;

m113, at = 0.0000000000;
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d113, at = 0.0000000000;

sF113, at = 0.5812507700;

s113, at = 2.0807131500;

sD113, at = 2.1507131500;

d2a13, at = 3.6501755300;

c113, at = 4.1162881500;

endcell113: marker, at = 4.2581056600;

endsequence;

Beam,particle=proton,sequence=tamusq213,energy=1.02221;

tamusq213: sequence, refer=entry,l = 4.2814200350;

startcell213: marker, at = 0;

c113, at = 0.0000000000;

m213, at = 0.1418175100;

d2c13, at = 0.1418175100;

sF213, at = 0.5607828300;

s213, at = 2.0924512100;

sD213, at = 2.1624512100;

d3a13, at = 3.6941195900;

c213, at = 4.1383865200;

endcell213: marker, at = 4.2814200350;

endsequence;

Beam,particle=proton,sequence=tamusq313,energy=1.02468;

tamusq313: sequence, refer=entry,l = 4.3177138950;

startcell313: marker, at = 0;

c213, at = 0.0000000000;

m313, at = 0.1430335150;

d3c13, at = 0.1430335150;

sF313, at = 0.5871738250;

s313, at = 2.1238213600;

sD313, at = 2.1938213600;

d413, at = 3.7304688950;

endcell313: marker, at = 4.3177138950;

endsequence;

Beam,particle=proton,sequence=tamusq413,energy=1.02468;

tamusq413: sequence, refer=entry,l = 4.3216787000;

startcell413: marker, at = 0;

m413, at = 0.0000000000;

d413, at = 0.0000000000;

sF413, at = 0.5872450000;
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s413, at = 2.1244352250;

sD413, at = 2.1944352250;

d5a13, at = 3.7316254500;

c313, at = 4.1795302500;

endcell413: marker, at = 4.3216787000;

endsequence;

Beam,particle=proton,sequence=tamusq513,energy=1.02718;

tamusq513: sequence, refer=entry,l = 4.3823814700;

startcell513: marker, at = 0;

c313, at = 0.0000000000;

m513, at = 0.1421484500;

d5c13, at = 0.1421484500;

sF513, at = 0.5850711700;

s513, at = 2.1335990150;

sD513, at = 2.2035990150;

d6a13, at = 3.7521268600;

c413, at = 4.2380042600;

endcell513: marker, at = 4.3823814700;

endsequence;

Beam,particle=proton,sequence=tamusq613,energy=1.02966;

tamusq613: sequence, refer=entry,l = 4.4199433100;

startcell613: marker, at = 0;

c413, at = 0.0000000000;

m613, at = 0.1443772100;

d6c13, at = 0.1443772100;

sF613, at = 0.5551954500;

s613, at = 2.1540158650;

sD613, at = 2.2240158650;

d613, at = 3.8228362800;

endcell613: marker, at = 4.4199433100;

endsequence;

Beam,particle=proton,sequence=tamusq114,energy=1.02966;

tamusq114: sequence, refer=entry,l = 4.5195837200;

startcell114: marker, at = 0;

m114, at = 0.0000000000;

d114, at = 0.0000000000;

sF114, at = 0.5971070300;

s114, at = 2.2089085900;

sD114, at = 2.2789085900;
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d2a14, at = 3.8907101500;

c114, at = 4.3685447900;

endcell114: marker, at = 4.5195837200;

endsequence;

Beam,particle=proton,sequence=tamusq214,energy=1.03206;

tamusq214: sequence, refer=entry,l = 4.5369754550;

startcell214: marker, at = 0;

c114, at = 0.0000000000;

m214, at = 0.1510389300;

d2c14, at = 0.1510389300;

sF214, at = 0.5718609000;

s214, at = 2.2176661350;

sD214, at = 2.2876661350;

d3a14, at = 3.9334713700;

c214, at = 4.3846130700;

endcell214: marker, at = 4.5369754550;

endsequence;

Beam,particle=proton,sequence=tamusq314,energy=1.03443;

tamusq314: sequence, refer=entry,l = 4.5790791250;

startcell314: marker, at = 0;

c214, at = 0.0000000000;

m314, at = 0.1523623850;

d3c14, at = 0.1523623850;

sF314, at = 0.6033513850;

s314, at = 2.2544972150;

sD314, at = 2.3244972150;

d414, at = 3.9756430450;

endcell314: marker, at = 4.5790791250;

endsequence;

Beam,particle=proton,sequence=tamusq414,energy=1.03443;

tamusq414: sequence, refer=entry,l = 4.5836801000;

startcell414: marker, at = 0;

m414, at = 0.0000000000;

d414, at = 0.0000000000;

sF414, at = 0.6034360800;

s414, at = 2.2551641350;

sD414, at = 2.3251641350;

d5a14, at = 3.9768921900;

c314, at = 4.4321914100;
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endcell414: marker, at = 4.5836801000;

endsequence;

Beam,particle=proton,sequence=tamusq514,energy=1.03684;

tamusq514: sequence, refer=entry,l = 4.6528576750;

startcell514: marker, at = 0;

c314, at = 0.0000000000;

m514, at = 0.1514886900;

d5c14, at = 0.1514886900;

sF514, at = 0.6007573300;

s514, at = 2.2645960650;

sD514, at = 2.3345960650;

d6a14, at = 3.9984348000;

c414, at = 4.4989725300;

endcell514: marker, at = 4.6528576750;

endsequence;

Beam,particle=proton,sequence=tamusq614,energy=1.03920;

tamusq614: sequence, refer=entry,l = 4.6652282850;

startcell614: marker, at = 0;

c414, at = 0.0000000000;

m614, at = 0.1538851450;

d6c14, at = 0.1538851450;

sF614, at = 0.5640608850;

s614, at = 2.2810910700;

sD614, at = 2.3510910700;

d614, at = 4.0681212550;

endcell614: marker, at = 4.6652282850;

endsequence;

Synergia Sequence File

sF11: SBEND,L=0.2279007900,ANGLE=0.4472556077,K1:=kqf1a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s11: SBEND,L=0.0700000000,ANGLE=0.1373750944,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD11: SBEND,L=0.2279007900,ANGLE=0.4472556077,K1:=kqd1a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF21: SBEND,L=0.2393637800,ANGLE=0.4656413252,K1:=kqf1b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s21: SBEND,L=0.0700000000,ANGLE=0.1361730366,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD21: SBEND,L=0.2393637800,ANGLE=0.4656413252,K1:=kqd1b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF31: SBEND,L=0.2404674250,ANGLE=0.4528404554,K1:=kqf1c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s31: SBEND,L=0.0700000000,ANGLE=0.1324295258,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD31: SBEND,L=0.2404674250,ANGLE=0.4549283866,K1:=kqd1c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF41: SBEND,L=0.2433484100,ANGLE=0.4589988987,K1:=kqf1d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;
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s41: SBEND,L=0.0700000000,ANGLE=0.1320325985,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD41: SBEND,L=0.2433484100,ANGLE=0.4589988987,K1:=kqd1d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF51: SBEND,L=0.2461707650,ANGLE=0.4470921312,K1:=kqf1e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s51: SBEND,L=0.0700000000,ANGLE=0.1271330866,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD51: SBEND,L=0.2461707650,ANGLE=0.4470921312,K1:=kqd1e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF61: SBEND,L=0.2639128900,ANGLE=0.4740745785,K1:=kqf1f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s61: SBEND,L=0.0700000000,ANGLE=0.1257430832,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD61: SBEND,L=0.2639128900,ANGLE=0.4740745785,K1:=kqd1f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d11: DRIFT, L=0.4019962300;

d2a1: DRIFT, L=0.3968689400;

c11: RFCAVITY,L=0.0748175400,VOLT=0.71496327,LAG=0.208330,HARMON=1,FREQ=117;

d2c1: DRIFT, L=0.3344657900;

d3a1: DRIFT, L=0.3665938500;

c21: RFCAVITY,L=0.0748163900,VOLT=0.71495631,LAG=0.208330,HARMON=1,FREQ=117;

d3c1: DRIFT, L=0.3664306900;

d41: DRIFT, L=0.4041549250;

d5a1: DRIFT, L=0.3711367300;

c31: RFCAVITY,L=0.0733137000,VOLT=0.70608807,LAG=0.208330,HARMON=1,FREQ=117;

d5c1: DRIFT, L=0.3645031300;

d6a1: DRIFT, L=0.4164455700;

c41: RFCAVITY,L=0.0739832000,VOLT=0.70998016,LAG=0.208330,HARMON=1,FREQ=117;

d6c1: DRIFT, L=0.3219282100;

d61: DRIFT, L=0.4076247000;

sF12: SBEND,L=0.2685317600,ANGLE=0.4559444620,K1:=kqf2a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s12: SBEND,L=0.0700000000,ANGLE=0.1188541435,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD12: SBEND,L=0.2685317600,ANGLE=0.4559444620,K1:=kqd2a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF22: SBEND,L=0.2806405100,ANGLE=0.4745450918,K1:=kqf2b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s22: SBEND,L=0.0700000000,ANGLE=0.1183655076,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD22: SBEND,L=0.2806405100,ANGLE=0.4745450918,K1:=kqd2b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF32: SBEND,L=0.2893448750,ANGLE=0.3966910088,K1:=kqf2c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s32: SBEND,L=0.0700000000,ANGLE=0.0989464087,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD32: SBEND,L=0.2893448750,ANGLE=0.4089948039,K1:=kqd2c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF42: SBEND,L=0.3722747100,ANGLE=0.5371859440,K1:=kqf2d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s42: SBEND,L=0.0700000000,ANGLE=0.1010087848,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD42: SBEND,L=0.3722747100,ANGLE=0.5371859440,K1:=kqd2d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF52: SBEND,L=0.3828398550,ANGLE=0.4675002117,K1:=kqf2e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s52: SBEND,L=0.0700000000,ANGLE=0.0854796448,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD52: SBEND,L=0.3828398550,ANGLE=0.4675002117,K1:=kqd2e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF62: SBEND,L=0.4038510550,ANGLE=0.4957461446,K1:=kqf2f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;
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s62: SBEND,L=0.0700000000,ANGLE=0.0859282889,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD62: SBEND,L=0.4038510550,ANGLE=0.4957461446,K1:=kqd2f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d12: DRIFT, L=0.4076247000;

d2a2: DRIFT, L=0.3975249400;

c12: RFCAVITY,L=0.0814872600,VOLT=0.75992358,LAG=0.208330,HARMON=1,FREQ=117;

d2c2: DRIFT, L=0.3387204100;

d3a2: DRIFT, L=0.3690705900;

c22: RFCAVITY,L=0.0815638200,VOLT=0.76049104,LAG=0.208330,HARMON=1,FREQ=117;

d3c2: DRIFT, L=0.3689169400;

d42: DRIFT, L=0.4198962050;

d5a2: DRIFT, L=0.3786526900;

c32: RFCAVITY,L=0.0954542400,VOLT=0.88109019,LAG=0.208330,HARMON=1,FREQ=117;

d5c2: DRIFT, L=0.3732725400;

d6a2: DRIFT, L=0.4156055500;

c42: RFCAVITY,L=0.0965212400,VOLT=0.89170946,LAG=0.208330,HARMON=1,FREQ=117;

d6c2: DRIFT, L=0.3393825000;

d62: DRIFT, L=0.4273608900;

sF13: SBEND,L=0.4075657250,ANGLE=0.4729890940,K1:=kqf3a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s13: SBEND,L=0.0700000000,ANGLE=0.0812365578,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD13: SBEND,L=0.4075657250,ANGLE=0.4729890940,K1:=kqd3a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF23: SBEND,L=0.4218007200,ANGLE=0.4928336985,K1:=kqf3b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s23: SBEND,L=0.0700000000,ANGLE=0.0817882883,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD23: SBEND,L=0.4218007200,ANGLE=0.4928336985,K1:=kqd3b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF33: SBEND,L=0.4241715800,ANGLE=0.4753403473,K1:=kqf3c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s33: SBEND,L=0.0700000000,ANGLE=0.0788851767,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD33: SBEND,L=0.4241715800,ANGLE=0.4780121431,K1:=kqd3c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF43: SBEND,L=0.4331058150,ANGLE=0.4891727565,K1:=kqf3d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s43: SBEND,L=0.0700000000,ANGLE=0.0790617253,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD43: SBEND,L=0.4331058150,ANGLE=0.4891727565,K1:=kqd3d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF53: SBEND,L=0.4378921100,ANGLE=0.4723798648,K1:=kqf3e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s53: SBEND,L=0.0700000000,ANGLE=0.0755130996,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD53: SBEND,L=0.4378921100,ANGLE=0.4723798648,K1:=kqd3e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF63: SBEND,L=0.4602635950,ANGLE=0.5007925508,K1:=kqf3f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s63: SBEND,L=0.0700000000,ANGLE=0.0761639177,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD63: SBEND,L=0.4602635950,ANGLE=0.5007925508,K1:=kqd3f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d13: DRIFT, L=0.4273608900;

d2a3: DRIFT, L=0.3997683700;

c13: RFCAVITY,L=0.1042966800,VOLT=0.97430008,LAG=0.208330,HARMON=1,FREQ=117;

d2c3: DRIFT, L=0.3532705600;
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d3a3: DRIFT, L=0.3775406500;

c23: RFCAVITY,L=0.1046390200,VOLT=0.97813660,LAG=0.208330,HARMON=1,FREQ=117;

d3c3: DRIFT, L=0.3774195400;

d43: DRIFT, L=0.4305798200;

d5a3: DRIFT, L=0.3816802200;

c33: RFCAVITY,L=0.1043727600,VOLT=0.97515129,LAG=0.208330,HARMON=1,FREQ=117;

d5c3: DRIFT, L=0.3768049800;

d6a3: DRIFT, L=0.4152671700;

c43: RFCAVITY,L=0.1055998900,VOLT=0.98899022,LAG=0.208330,HARMON=1,FREQ=117;

d6c3: DRIFT, L=0.3464133300;

d63: DRIFT, L=0.4353591150;

sF14: SBEND,L=0.4641985950,ANGLE=0.4774444363,K1:=kqf4a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s14: SBEND,L=0.0700000000,ANGLE=0.0719974401,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD14: SBEND,L=0.4641985950,ANGLE=0.4774444363,K1:=kqd4a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF24: SBEND,L=0.4793417250,ANGLE=0.4974086518,K1:=kqf4b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s24: SBEND,L=0.0700000000,ANGLE=0.0726383784,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD24: SBEND,L=0.4793417250,ANGLE=0.4974086518,K1:=kqd4b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF34: SBEND,L=0.4889286350,ANGLE=0.4391922054,K1:=kqf4c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s34: SBEND,L=0.0700000000,ANGLE=0.0641368209,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD34: SBEND,L=0.4889286350,ANGLE=0.4479761186,K1:=kqd4c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF44: SBEND,L=0.5578391500,ANGLE=0.5326916304,K1:=kqf4d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s44: SBEND,L=0.0700000000,ANGLE=0.0668443836,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD44: SBEND,L=0.5578391500,ANGLE=0.5326916304,K1:=kqd4d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF54: SBEND,L=0.5698917400,ANGLE=0.4804630108,K1:=kqf4e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s54: SBEND,L=0.0700000000,ANGLE=0.0590154382,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD54: SBEND,L=0.5698917400,ANGLE=0.4804630108,K1:=kqd4e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF64: SBEND,L=0.5955816600,ANGLE=0.5089646466,K1:=kqf4f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s64: SBEND,L=0.0700000000,ANGLE=0.0598197152,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD64: SBEND,L=0.5955816600,ANGLE=0.5089646466,K1:=kqd4f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d14: DRIFT, L=0.4353591150;

d2a4: DRIFT, L=0.4006828600;

c14: RFCAVITY,L=0.1135944600,VOLT=1.08391772,LAG=0.208330,HARMON=1,FREQ=117;

d2c4: DRIFT, L=0.3592016200;

d3a4: DRIFT, L=0.3809932900;

c24: RFCAVITY,L=0.1140451400,VOLT=1.08950047,LAG=0.208330,HARMON=1,FREQ=117;

d3c4: DRIFT, L=0.3808854500;

d44: DRIFT, L=0.4454073050;

d5a4: DRIFT, L=0.3889393900;

c34: RFCAVITY,L=0.1257568300,VOLT=1.24207252,LAG=0.208330,HARMON=1,FREQ=117;
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d5c4: DRIFT, L=0.3852747600;

d6a4: DRIFT, L=0.4144558500;

c44: RFCAVITY,L=0.1273679000,VOLT=1.26407040,LAG=0.208330,HARMON=1,FREQ=117;

d6c4: DRIFT, L=0.3632712700;

d64: DRIFT, L=0.4545829400;

sF15: SBEND,L=0.6005918050,ANGLE=0.4851694927,K1:=kqf5a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s15: SBEND,L=0.0700000000,ANGLE=0.0565473325,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD15: SBEND,L=0.6005918050,ANGLE=0.4851694927,K1:=kqd5a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF25: SBEND,L=0.6179765200,ANGLE=0.5051196558,K1:=kqf5b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s25: SBEND,L=0.0700000000,ANGLE=0.0572163743,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD25: SBEND,L=0.6179765200,ANGLE=0.5051196558,K1:=kqd5b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF35: SBEND,L=0.6219284700,ANGLE=0.4842746520,K1:=kqf5c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s35: SBEND,L=0.0700000000,ANGLE=0.0548552001,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD35: SBEND,L=0.6219284700,ANGLE=0.4873715806,K1:=kqd5c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF45: SBEND,L=0.6375578000,ANGLE=0.5037071659,K1:=kqf5d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s45: SBEND,L=0.0700000000,ANGLE=0.0553040079,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD45: SBEND,L=0.6375578000,ANGLE=0.5037071659,K1:=kqd5d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF55: SBEND,L=0.6446622600,ANGLE=0.4836456748,K1:=kqf5e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s55: SBEND,L=0.0700000000,ANGLE=0.0525161768,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD55: SBEND,L=0.6446622600,ANGLE=0.4836456748,K1:=kqd5e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF65: SBEND,L=0.6722318950,ANGLE=0.5122062825,K1:=kqf5f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s65: SBEND,L=0.0700000000,ANGLE=0.0533364157,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD65: SBEND,L=0.6722318950,ANGLE=0.5122062825,K1:=kqd5f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d15: DRIFT, L=0.4545829400;

d2a5: DRIFT, L=0.4028861600;

c15: RFCAVITY,L=0.1359958100,VOLT=1.38525067,LAG=0.208330,HARMON=1,FREQ=117;

d2c5: DRIFT, L=0.3734914600;

d3a5: DRIFT, L=0.3893118200;

c25: RFCAVITY,L=0.1367075200,VOLT=1.39547103,LAG=0.208330,HARMON=1,FREQ=117;

d3c5: DRIFT, L=0.3892359500;

d45: DRIFT, L=0.4590446750;

d5a5: DRIFT, L=0.3930513000;

c35: RFCAVITY,L=0.1378697400,VOLT=1.41222519,LAG=0.208330,HARMON=1,FREQ=117;

d5c5: DRIFT, L=0.3900724300;

d6a5: DRIFT, L=0.4139962800;

c45: RFCAVITY,L=0.1396982800,VOLT=1.43873796,LAG=0.208330,HARMON=1,FREQ=117;

d6c5: DRIFT, L=0.3728203700;

d65: DRIFT, L=0.4654721800;

sF16: SBEND,L=0.6778510750,ANGLE=0.4882338248,K1:=kqf6a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;
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s16: SBEND,L=0.0700000000,ANGLE=0.0504186967,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD16: SBEND,L=0.6778510750,ANGLE=0.4882338248,K1:=kqd6a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF26: SBEND,L=0.6965055300,ANGLE=0.5081908181,K1:=kqf6b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s26: SBEND,L=0.0700000000,ANGLE=0.0510740486,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD26: SBEND,L=0.6965055300,ANGLE=0.5081908181,K1:=kqd6b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF36: SBEND,L=0.7065994350,ANGLE=0.4627409094,K1:=kqf6c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s36: SBEND,L=0.0700000000,ANGLE=0.0465062548,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD36: SBEND,L=0.7065994350,ANGLE=0.4694470482,K1:=kqd6c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF46: SBEND,L=0.7661604900,ANGLE=0.5292794539,K1:=kqf6d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s46: SBEND,L=0.0700000000,ANGLE=0.0483574424,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD46: SBEND,L=0.7661604900,ANGLE=0.5292794539,K1:=kqd6d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF56: SBEND,L=0.7795555800,ANGLE=0.4879103833,K1:=kqf6e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s56: SBEND,L=0.0700000000,ANGLE=0.0438117919,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD56: SBEND,L=0.7795555800,ANGLE=0.4879103833,K1:=kqd6e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF66: SBEND,L=0.8105163900,ANGLE=0.5165678901,K1:=kqf6f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s66: SBEND,L=0.0700000000,ANGLE=0.0446132278,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD66: SBEND,L=0.8105163900,ANGLE=0.5165678901,K1:=kqd6f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d16: DRIFT, L=0.4654721800;

d2a6: DRIFT, L=0.4041342100;

c16: RFCAVITY,L=0.1486849500,VOLT=1.57129044,LAG=0.208330,HARMON=1,FREQ=117;

d2c6: DRIFT, L=0.3815858800;

d3a6: DRIFT, L=0.3940238000;

c26: RFCAVITY,L=0.1495445100,VOLT=1.58412495,LAG=0.208330,HARMON=1,FREQ=117;

d3c6: DRIFT, L=0.3939660400;

d46: DRIFT, L=0.4748200200;

d5a6: DRIFT, L=0.4004696000;

c36: RFCAVITY,L=0.1597225900,VOLT=1.73726064,LAG=0.208330,HARMON=1,FREQ=117;

d5c6: DRIFT, L=0.3987278900;

d6a6: DRIFT, L=0.4131671700;

c46: RFCAVITY,L=0.1619434900,VOLT=1.77081250,LAG=0.208330,HARMON=1,FREQ=117;

d6c6: DRIFT, L=0.3900478700;

d66: DRIFT, L=0.4851174250;

sF17: SBEND,L=0.8172342500,ANGLE=0.4923568063,K1:=kqf7a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s17: SBEND,L=0.0700000000,ANGLE=0.0421727019,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD17: SBEND,L=0.8172342500,ANGLE=0.4923568063,K1:=kqd7a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF27: SBEND,L=0.8381794250,ANGLE=0.5123342173,K1:=kqf7b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s27: SBEND,L=0.0700000000,ANGLE=0.0427872531,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD27: SBEND,L=0.8381794250,ANGLE=0.5123342173,K1:=kqd7b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF37: SBEND,L=0.8434605650,ANGLE=0.4911850253,K1:=kqf7c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;
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s37: SBEND,L=0.0700000000,ANGLE=0.0410209923,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD37: SBEND,L=0.8434605650,ANGLE=0.4942798482,K1:=kqd7c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF47: SBEND,L=0.8623471500,ANGLE=0.5106426064,K1:=kqf7d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s47: SBEND,L=0.0700000000,ANGLE=0.0414508037,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD47: SBEND,L=0.8623471500,ANGLE=0.5106426064,K1:=kqd7d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF57: SBEND,L=0.8715857700,ANGLE=0.4900902565,K1:=kqf7e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s57: SBEND,L=0.0700000000,ANGLE=0.0393608055,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD57: SBEND,L=0.8715857700,ANGLE=0.4900902565,K1:=kqd7e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF67: SBEND,L=0.9048602000,ANGLE=0.5188070257,K1:=kqf7f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s67: SBEND,L=0.0700000000,ANGLE=0.0401349201,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD67: SBEND,L=0.9048602000,ANGLE=0.5188070257,K1:=kqd7f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d17: DRIFT, L=0.4851174250;

d2a7: DRIFT, L=0.4063858100;

c17: RFCAVITY,L=0.1715773700,VOLT=1.91590643,LAG=0.208330,HARMON=1,FREQ=117;

d2c7: DRIFT, L=0.3961889700;

d3a7: DRIFT, L=0.4025246900;

c27: RFCAVITY,L=0.1727036800,VOLT=1.93275824,LAG=0.208330,HARMON=1,FREQ=117;

d3c7: DRIFT, L=0.4024995900;

d47: DRIFT, L=0.4905982800;

d5a7: DRIFT, L=0.4055307000;

c37: RFCAVITY,L=0.1746315800,VOLT=1.96151929,LAG=0.208330,HARMON=1,FREQ=117;

d5c7: DRIFT, L=0.4046330300;

d6a7: DRIFT, L=0.4126015100;

c47: RFCAVITY,L=0.1771201500,VOLT=1.99846264,LAG=0.208330,HARMON=1,FREQ=117;

d6c7: DRIFT, L=0.4018012300;

d67: DRIFT, L=0.4985202850;

sF18: SBEND,L=0.9123276900,ANGLE=0.4944734875,K1:=kqf8a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s18: SBEND,L=0.0700000000,ANGLE=0.0379393769,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD18: SBEND,L=0.9123276900,ANGLE=0.4944734875,K1:=kqd8a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF28: SBEND,L=0.9348357050,ANGLE=0.5144663592,K1:=kqf8b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s28: SBEND,L=0.0700000000,ANGLE=0.0385229671,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD28: SBEND,L=0.9348357050,ANGLE=0.5144663592,K1:=kqd8b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF38: SBEND,L=0.9446379700,ANGLE=0.4799062686,K1:=kqf8c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s38: SBEND,L=0.0700000000,ANGLE=0.0359351259,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD38: SBEND,L=0.9446379700,ANGLE=0.4849383490,K1:=kqd8c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF48: SBEND,L=0.9924152950,ANGLE=0.5247459647,K1:=kqf8d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s48: SBEND,L=0.0700000000,ANGLE=0.0370129498,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD48: SBEND,L=0.9924152950,ANGLE=0.5247459647,K1:=kqd8d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF58: SBEND,L=1.0064791000,ANGLE=0.4925896292,K1:=kqf8e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;
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s58: SBEND,L=0.0700000000,ANGLE=0.0342593046,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD58: SBEND,L=1.0064791000,ANGLE=0.4925896292,K1:=kqd8e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF68: SBEND,L=1.0431447050,ANGLE=0.5213809275,K1:=kqf8f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s68: SBEND,L=0.0700000000,ANGLE=0.0349871545,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD68: SBEND,L=1.0431447050,ANGLE=0.5213809275,K1:=kqd8f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d18: DRIFT, L=0.4985202850;

d2a8: DRIFT, L=0.4079219500;

c18: RFCAVITY,L=0.1871956100,VOLT=2.14519769,LAG=0.208330,HARMON=1,FREQ=117;

d2c8: DRIFT, L=0.4061518600;

d3a8: DRIFT, L=0.4083243700;

c28: RFCAVITY,L=0.1885039000,VOLT=2.16383378,LAG=0.208330,HARMON=1,FREQ=117;

d3c8: DRIFT, L=0.4083215600;

d48: DRIFT, L=0.5072350550;

d5a8: DRIFT, L=0.4131454300;

c38: RFCAVITY,L=0.1964844400,VOLT=2.27485552,LAG=0.208330,HARMON=1,FREQ=117;

d5c8: DRIFT, L=0.4130920600;

d6a8: DRIFT, L=0.4169626700;

c48: RFCAVITY,L=0.1993653600,VOLT=2.31365771,LAG=0.208330,HARMON=1,FREQ=117;

d6c8: DRIFT, L=0.4138384700;

d68: DRIFT, L=0.5181655300;

sF19: SBEND,L=1.0517108600,ANGLE=0.4969065489,K1:=kqf9a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s19: SBEND,L=0.0700000000,ANGLE=0.0330732141,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD19: SBEND,L=1.0517108600,ANGLE=0.4969065489,K1:=kqd9a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF29: SBEND,L=1.0765095950,ANGLE=0.5169214443,K1:=kqf9b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s29: SBEND,L=0.0700000000,ANGLE=0.0336127994,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD29: SBEND,L=1.0765095950,ANGLE=0.5169214443,K1:=kqd9b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF39: SBEND,L=1.0819769500,ANGLE=0.4994406268,K1:=kqf9c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s39: SBEND,L=0.0700000000,ANGLE=0.0324761099,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD39: SBEND,L=1.0819769500,ANGLE=0.5019771757,K1:=kqd9c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF49: SBEND,L=1.0957912550,ANGLE=0.5116023448,K1:=kqf9d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s49: SBEND,L=0.0700000000,ANGLE=0.0326815568,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD49: SBEND,L=1.0957912550,ANGLE=0.5116023448,K1:=kqd9d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF59: SBEND,L=1.1060604900,ANGLE=0.4940549457,K1:=kqf9e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s59: SBEND,L=0.0700000000,ANGLE=0.0312675903,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD59: SBEND,L=1.1060604900,ANGLE=0.4940549457,K1:=kqd9e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF69: SBEND,L=1.1452295450,ANGLE=0.5228940481,K1:=kqf9f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s69: SBEND,L=0.0700000000,ANGLE=0.0319609143,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD69: SBEND,L=1.1452295450,ANGLE=0.5228940481,K1:=kqd9f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d19: DRIFT, L=0.5181655300;
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d2a9: DRIFT, L=0.4193671700;

c19: RFCAVITY,L=0.2100880300,VOLT=2.45085683,LAG=0.208330,HARMON=1,FREQ=117;

d2c9: DRIFT, L=0.4115613300;

d3a9: DRIFT, L=0.4168514600;

c29: RFCAVITY,L=0.2116630700,VOLT=2.46993202,LAG=0.208330,HARMON=1,FREQ=117;

d3c9: DRIFT, L=0.4168288900;

d49: DRIFT, L=0.5239237900;

d5a9: DRIFT, L=0.4195311800;

c39: RFCAVITY,L=0.2126167300,VOLT=2.48133464,LAG=0.208330,HARMON=1,FREQ=117;

d5c9: DRIFT, L=0.4185723400;

d6a9: DRIFT, L=0.4296232000;

c49: RFCAVITY,L=0.2157872900,VOLT=2.51841629,LAG=0.208330,HARMON=1,FREQ=117;

d6c9: DRIFT, L=0.4132836100;

d69: DRIFT, L=0.5326681050;

sF110: SBEND,L=1.1546067900,ANGLE=0.4983368935,K1:=kqf10a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s110: SBEND,L=0.0700000000,ANGLE=0.0302125216,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD110: SBEND,L=1.1546067900,ANGLE=0.4983368935,K1:=kqd10a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF210: SBEND,L=1.1810965950,ANGLE=0.5183668308,K1:=kqf10b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s210: SBEND,L=0.0700000000,ANGLE=0.0307220242,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD210: SBEND,L=1.1810965950,ANGLE=0.5183668308,K1:=kqd10b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF310: SBEND,L=1.1895958150,ANGLE=0.4937695889,K1:=kqf10c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s310: SBEND,L=0.0700000000,ANGLE=0.0292642205,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD310: SBEND,L=1.1895958150,ANGLE=0.4973227753,K1:=kqd10c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF410: SBEND,L=1.2211713350,ANGLE=0.5193192530,K1:=kqf10d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s410: SBEND,L=0.0700000000,ANGLE=0.0297684253,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD410: SBEND,L=1.2211713350,ANGLE=0.5193192530,K1:=kqd10d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF510: SBEND,L=1.2348857200,ANGLE=0.4956097813,K1:=kqf10e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s510: SBEND,L=0.0700000000,ANGLE=0.0280938423,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD510: SBEND,L=1.2348857200,ANGLE=0.4956097813,K1:=kqd10e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF610: SBEND,L=1.2773483700,ANGLE=0.5243789950,K1:=kqf10f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s610: SBEND,L=0.0700000000,ANGLE=0.0287365064,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD610: SBEND,L=1.2773483700,ANGLE=0.5243789950,K1:=kqd10f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d110: DRIFT, L=0.5326681050;

d2a10: DRIFT, L=0.4301084000;

c110: RFCAVITY,L=0.2269877600,VOLT=2.63822502,LAG=0.208330,HARMON=1,FREQ=117;

d2c10: DRIFT, L=0.4132626300;

d3a10: DRIFT, L=0.4231510200;

c210: RFCAVITY,L=0.2287597100,VOLT=2.65543145,LAG=0.208330,HARMON=1,FREQ=117;

d3c10: DRIFT, L=0.4231045500;
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d410: DRIFT, L=0.5404859550;

d5a10: DRIFT, L=0.4277922200;

c310: RFCAVITY,L=0.2334865500,VOLT=2.69877560,LAG=0.208330,HARMON=1,FREQ=117;

d5c10: DRIFT, L=0.4256620000;

d6a10: DRIFT, L=0.4460017200;

c410: RFCAVITY,L=0.2370318100,VOLT=2.72872610,LAG=0.208330,HARMON=1,FREQ=117;

d6c10: DRIFT, L=0.4125658100;

d610: DRIFT, L=0.5514622550;

sF111: SBEND,L=1.2881311950,ANGLE=0.4999852446,K1:=kqf11a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s111: SBEND,L=0.0700000000,ANGLE=0.0271703436,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD111: SBEND,L=1.2881311950,ANGLE=0.4999852446,K1:=kqd11a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF211: SBEND,L=1.3168678300,ANGLE=0.5199095725,K1:=kqf11b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s211: SBEND,L=0.0700000000,ANGLE=0.0276365397,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD211: SBEND,L=1.3168678300,ANGLE=0.5199095725,K1:=kqd11b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF311: SBEND,L=1.3211667800,ANGLE=0.5084517329,K1:=kqf11c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s311: SBEND,L=0.0700000000,ANGLE=0.0270274818,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD311: SBEND,L=1.3211667800,ANGLE=0.5101115871,K1:=kqd11c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF411: SBEND,L=1.3216350650,ANGLE=0.5090521288,K1:=kqf11d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s411: SBEND,L=0.0700000000,ANGLE=0.0269617915,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD411: SBEND,L=1.3216350650,ANGLE=0.5090521288,K1:=kqd11d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF511: SBEND,L=1.3315178300,ANGLE=0.4965834065,K1:=kqf11e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s511: SBEND,L=0.0700000000,ANGLE=0.0261061757,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD511: SBEND,L=1.3315178300,ANGLE=0.4965834065,K1:=kqd11e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF611: SBEND,L=1.3763548250,ANGLE=0.5255110283,K1:=kqf11f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s611: SBEND,L=0.0700000000,ANGLE=0.0267269539,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD611: SBEND,L=1.3763548250,ANGLE=0.5255110283,K1:=kqd11f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d111: DRIFT, L=0.5514622550;

d2a11: DRIFT, L=0.4440523000;

c111: RFCAVITY,L=0.2489264000,VOLT=2.81169031,LAG=0.208330,HARMON=1,FREQ=117;

d2c11: DRIFT, L=0.4154712000;

d3a11: DRIFT, L=0.4313289000;

c211: RFCAVITY,L=0.2509539800,VOLT=2.82294000,LAG=0.208330,HARMON=1,FREQ=117;

d3c11: DRIFT, L=0.4312513900;

d411: DRIFT, L=0.5567740950;

d5a11: DRIFT, L=0.4339888400;

c311: RFCAVITY,L=0.2491410500,VOLT=2.81292304,LAG=0.208330,HARMON=1,FREQ=117;

d5c11: DRIFT, L=0.4309799700;

d6a11: DRIFT, L=0.4582872800;

c411: RFCAVITY,L=0.2529673700,VOLT=2.83322480,LAG=0.208330,HARMON=1,FREQ=117;
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d6c11: DRIFT, L=0.4120273900;

d611: DRIFT, L=0.5655026850;

sF112: SBEND,L=1.3875684200,ANGLE=0.5008107139,K1:=kqf12a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s112: SBEND,L=0.0700000000,ANGLE=0.0252648803,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD112: SBEND,L=1.3875684200,ANGLE=0.5008107139,K1:=kqd12a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF212: SBEND,L=1.4178868850,ANGLE=0.5208703539,K1:=kqf12b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s212: SBEND,L=0.0700000000,ANGLE=0.0257149743,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD212: SBEND,L=1.4178868850,ANGLE=0.5208703539,K1:=kqd12b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF312: SBEND,L=1.4231883500,ANGLE=0.5077145485,K1:=kqf12c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s312: SBEND,L=0.0700000000,ANGLE=0.0250654821,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD312: SBEND,L=1.4231883500,ANGLE=0.5096128881,K1:=kqd12c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF412: SBEND,L=1.4281646650,ANGLE=0.5114779447,K1:=kqf12d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s412: SBEND,L=0.0700000000,ANGLE=0.0250695575,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD412: SBEND,L=1.4281646650,ANGLE=0.5114779447,K1:=kqd12d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF512: SBEND,L=1.4394490650,ANGLE=0.4975200246,K1:=kqf12e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s512: SBEND,L=0.0700000000,ANGLE=0.0241942578,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD512: SBEND,L=1.4394490650,ANGLE=0.4975200246,K1:=kqd12e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF612: SBEND,L=1.4870503750,ANGLE=0.5263835265,K1:=kqf12f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s612: SBEND,L=0.0700000000,ANGLE=0.0247784792,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD612: SBEND,L=1.4870503750,ANGLE=0.5263835265,K1:=kqd12f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d112: DRIFT, L=0.5655026850;

d2a12: DRIFT, L=0.4544271000;

c112: RFCAVITY,L=0.2652496000,VOLT=2.87568195,LAG=0.208330,HARMON=1,FREQ=117;

d2c12: DRIFT, L=0.4171144600;

d3a12: DRIFT, L=0.4374135500;

c212: RFCAVITY,L=0.2674673800,VOLT=2.87941882,LAG=0.208330,HARMON=1,FREQ=117;

d3c12: DRIFT, L=0.4373129500;

d412: DRIFT, L=0.5715187750;

d5a12: DRIFT, L=0.4409100200;

c312: RFCAVITY,L=0.2666260200,VOLT=2.87814907,LAG=0.208330,HARMON=1,FREQ=117;

d5c12: DRIFT, L=0.4369197700;

d6a12: DRIFT, L=0.4720093900;

c412: RFCAVITY,L=0.2707662700,VOLT=2.88262248,LAG=0.208330,HARMON=1,FREQ=117;

d6c12: DRIFT, L=0.4114260100;

d612: DRIFT, L=0.5812507700;

sF113: SBEND,L=1.4994623800,ANGLE=0.5018313001,K1:=kqf13a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s113: SBEND,L=0.0700000000,ANGLE=0.0234271906,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD113: SBEND,L=1.4994623800,ANGLE=0.5018313001,K1:=kqd13a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF213: SBEND,L=1.5316683800,ANGLE=0.5218041491,K1:=kqf13b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;
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s213: SBEND,L=0.0700000000,ANGLE=0.0238473882,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD213: SBEND,L=1.5316683800,ANGLE=0.5218041491,K1:=kqd13b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF313: SBEND,L=1.5366475350,ANGLE=0.5103054850,K1:=kqf13c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s313: SBEND,L=0.0700000000,ANGLE=0.0233218786,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD313: SBEND,L=1.5366475350,ANGLE=0.5119643886,K1:=kqd13c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF413: SBEND,L=1.5371902250,ANGLE=0.5109004267,K1:=kqf13d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s413: SBEND,L=0.0700000000,ANGLE=0.0232651947,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD413: SBEND,L=1.5371902250,ANGLE=0.5109004267,K1:=kqd13d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF513: SBEND,L=1.5485278450,ANGLE=0.4983368159,K1:=kqf13e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s513: SBEND,L=0.0700000000,ANGLE=0.0225269292,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD513: SBEND,L=1.5485278450,ANGLE=0.4983368159,K1:=kqd13e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF613: SBEND,L=1.5988204150,ANGLE=0.5273306376,K1:=kqf13f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s613: SBEND,L=0.0700000000,ANGLE=0.0230877366,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD613: SBEND,L=1.5988204150,ANGLE=0.5273306376,K1:=kqd13f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d113: DRIFT, L=0.5812507700;

d2a13: DRIFT, L=0.4661126200;

c113: RFCAVITY,L=0.2836350200,VOLT=2.86665146,LAG=0.208330,HARMON=1,FREQ=117;

d2c13: DRIFT, L=0.4189653200;

d3a13: DRIFT, L=0.4442669300;

c213: RFCAVITY,L=0.2860670300,VOLT=2.85826162,LAG=0.208330,HARMON=1,FREQ=117;

d3c13: DRIFT, L=0.4441403100;

d413: DRIFT, L=0.5872450000;

d5a13: DRIFT, L=0.4479048000;

c313: RFCAVITY,L=0.2842969000,VOLT=2.86454367,LAG=0.208330,HARMON=1,FREQ=117;

d5c13: DRIFT, L=0.4429227200;

d6a13: DRIFT, L=0.4858774000;

c413: RFCAVITY,L=0.2887544200,VOLT=2.84690477,LAG=0.208330,HARMON=1,FREQ=117;

d6c13: DRIFT, L=0.4108182400;

d613: DRIFT, L=0.5971070300;

sF114: SBEND,L=1.6118015600,ANGLE=0.5025307832,K1:=kqf14a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s114: SBEND,L=0.0700000000,ANGLE=0.0218247430,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD114: SBEND,L=1.6118015600,ANGLE=0.5025307832,K1:=kqd14a,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF214: SBEND,L=1.6458052350,ANGLE=0.5226138382,K1:=kqf14b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s214: SBEND,L=0.0700000000,ANGLE=0.0222280060,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD214: SBEND,L=1.6458052350,ANGLE=0.5226138382,K1:=kqd14b,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF314: SBEND,L=1.6511458300,ANGLE=0.5110977292,K1:=kqf14c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s314: SBEND,L=0.0700000000,ANGLE=0.0217381986,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD314: SBEND,L=1.6511458300,ANGLE=0.5127562280,K1:=kqd14c,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF414: SBEND,L=1.6517280550,ANGLE=0.5116903411,K1:=kqf14d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;
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s414: SBEND,L=0.0700000000,ANGLE=0.0216853639,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD414: SBEND,L=1.6517280550,ANGLE=0.5116903411,K1:=kqd14d,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF514: SBEND,L=1.6638387350,ANGLE=0.4990861803,K1:=kqf14e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s514: SBEND,L=0.0700000000,ANGLE=0.0209972468,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD514: SBEND,L=1.6638387350,ANGLE=0.4990861803,K1:=kqd14e,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sF614: SBEND,L=1.7170301850,ANGLE=0.5281095045,K1:=kqf14f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

s614: SBEND,L=0.0700000000,ANGLE=0.0215300032,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

sD614: SBEND,L=1.7170301850,ANGLE=0.5281095045,K1:=kqd14f,THICK=TRUE,APERTYPE=CIRCLE,APERTURE=0.03;

d114: DRIFT, L=0.5971070300;

d2a14: DRIFT, L=0.4778346400;

c114: RFCAVITY,L=0.3020778600,VOLT=2.75666440,LAG=0.208330,HARMON=1,FREQ=117;

d2c14: DRIFT, L=0.4208219700;

d3a14: DRIFT, L=0.4511417000;

c214: RFCAVITY,L=0.3047247700,VOLT=2.73169298,LAG=0.208330,HARMON=1,FREQ=117;

d3c14: DRIFT, L=0.4509890000;

d414: DRIFT, L=0.6034360800;

d5a14: DRIFT, L=0.4552992200;

c314: RFCAVITY,L=0.3029773800,VOLT=2.74844912,LAG=0.208330,HARMON=1,FREQ=117;

d5c14: DRIFT, L=0.4492686400;

d6a14: DRIFT, L=0.5005377300;

c414: RFCAVITY,L=0.3077702900,VOLT=2.69993888,LAG=0.208330,HARMON=1,FREQ=117;

d6c14: DRIFT, L=0.4101757400;

d614: DRIFT, L=0.5971070300;

Beam,particle=proton,sequence=tamusq11,energy=0.94477;

tamusq11: sequence, refer=entry,l = 1.3994842900;

startcell11: marker, at = 0;

d11, at = 0.0000000000;

sF11, at = 0.4019962300;

s11, at = 0.6298970200;

sD11, at = 0.6998970200;

d2a1, at = 0.9277978100;

c11, at = 1.3246667500;

endcell11: marker, at = 1.3994842900;

endsequence;

Beam,particle=proton,sequence=tamusq21,energy=0.94539;

tamusq21: sequence, refer=entry,l = 1.3246035900;

startcell21: marker, at = 0;

d2c1, at = 0.0000000000;

sF21, at = 0.3344657900;
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s21, at = 0.5738295700;

sD21, at = 0.6438295700;

d3a1, at = 0.8831933500;

c21, at = 1.2497872000;

endcell21: marker, at = 1.3246035900;

endsequence;

Beam,particle=proton,sequence=tamusq31,energy=0.94602;

tamusq31: sequence, refer=entry,l = 1.3215204650;

startcell31: marker, at = 0;

d3c1, at = 0.0000000000;

sF31, at = 0.3664306900;

s31, at = 0.6068981150;

sD31, at = 0.6768981150;

d41, at = 0.9173655400;

endcell31: marker, at = 1.3215204650;

endsequence;

Beam,particle=proton,sequence=tamusq41,energy=0.94602;

tamusq41: sequence, refer=entry,l = 1.4053021750;

startcell41: marker, at = 0;

d41, at = 0.0000000000;

sF41, at = 0.4041549250;

s41, at = 0.6475033350;

sD41, at = 0.7175033350;

d5a1, at = 0.9608517450;

c31, at = 1.3319884750;

endcell41: marker, at = 1.4053021750;

endsequence;

Beam,particle=proton,sequence=tamusq51,energy=0.94665;

tamusq51: sequence, refer=entry,l = 1.4172734300;

startcell51: marker, at = 0;

d5c1, at = 0.0000000000;

sF51, at = 0.3645031300;

s51, at = 0.6106738950;

sD51, at = 0.6806738950;

d6a1, at = 0.9268446600;

c41, at = 1.3432902300;

endcell51: marker, at = 1.4172734300;

endsequence;

Beam,particle=proton,sequence=tamusq61,energy=0.94728;

148



tamusq61: sequence, refer=entry,l = 1.3273786900;

startcell61: marker, at = 0;

d6c1, at = 0.0000000000;

sF61, at = 0.3219282100;

s61, at = 0.5858411000;

sD61, at = 0.6558411000;

d61, at = 0.9197539900;

endcell61: marker, at = 1.3273786900;

endsequence;

Beam,particle=proton,sequence=tamusq12,energy=0.94728;

tamusq12: sequence, refer=entry,l = 1.4937004200;

startcell12: marker, at = 0;

d12, at = 0.0000000000;

sF12, at = 0.4076247000;

s12, at = 0.6761564600;

sD12, at = 0.7461564600;

d2a2, at = 1.0146882200;

c12, at = 1.4122131600;

endcell12: marker, at = 1.4937004200;

endsequence;

Beam,particle=proton,sequence=tamusq22,energy=0.94794;

tamusq22: sequence, refer=entry,l = 1.4206358400;

startcell22: marker, at = 0;

d2c2, at = 0.0000000000;

sF22, at = 0.3387204100;

s22, at = 0.6193609200;

sD22, at = 0.6893609200;

d3a2, at = 0.9700014300;

c22, at = 1.3390720200;

endcell22: marker, at = 1.4206358400;

endsequence;

Beam,particle=proton,sequence=tamusq32,energy=0.94858;

tamusq32: sequence, refer=entry,l = 1.4375028950;

startcell32: marker, at = 0;

d3c2, at = 0.0000000000;

sF32, at = 0.3689169400;

s32, at = 0.6582618150;

sD32, at = 0.7282618150;

d42, at = 1.0176066900;
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endcell32: marker, at = 1.4375028950;

endsequence;

Beam,particle=proton,sequence=tamusq42,energy=0.94858;

tamusq42: sequence, refer=entry,l = 1.7085525550;

startcell42: marker, at = 0;

d42, at = 0.0000000000;

sF42, at = 0.4198962050;

s42, at = 0.7921709150;

sD42, at = 0.8621709150;

d5a2, at = 1.2344456250;

c32, at = 1.6130983150;

endcell42: marker, at = 1.7085525550;

endsequence;

Beam,particle=proton,sequence=tamusq52,energy=0.94930;

tamusq52: sequence, refer=entry,l = 1.7210790400;

startcell52: marker, at = 0;

d5c2, at = 0.0000000000;

sF52, at = 0.3732725400;

s52, at = 0.7561123950;

sD52, at = 0.8261123950;

d6a2, at = 1.2089522500;

c42, at = 1.6245578000;

endcell52: marker, at = 1.7210790400;

endsequence;

Beam,particle=proton,sequence=tamusq62,energy=0.95006;

tamusq62: sequence, refer=entry,l = 1.6444455000;

startcell62: marker, at = 0;

d6c2, at = 0.0000000000;

sF62, at = 0.3393825000;

s62, at = 0.7432335550;

sD62, at = 0.8132335550;

d62, at = 1.2170846100;

endcell62: marker, at = 1.6444455000;

endsequence;

Beam,particle=proton,sequence=tamusq13,energy=0.95006;

tamusq13: sequence, refer=entry,l = 1.8165573900;

startcell13: marker, at = 0;

d13, at = 0.0000000000;

sF13, at = 0.4273608900;
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s13, at = 0.8349266150;

sD13, at = 0.9049266150;

d2a3, at = 1.3124923400;

c13, at = 1.7122607100;

endcell13: marker, at = 1.8165573900;

endsequence;

Beam,particle=proton,sequence=tamusq23,energy=0.95089;

tamusq23: sequence, refer=entry,l = 1.7490516700;

startcell23: marker, at = 0;

d2c3, at = 0.0000000000;

sF23, at = 0.3532705600;

s23, at = 0.7750712800;

sD23, at = 0.8450712800;

d3a3, at = 1.2668720000;

c23, at = 1.6444126500;

endcell23: marker, at = 1.7490516700;

endsequence;

Beam,particle=proton,sequence=tamusq33,energy=0.95174;

tamusq33: sequence, refer=entry,l = 1.7263425200;

startcell33: marker, at = 0;

d3c3, at = 0.0000000000;

sF33, at = 0.3774195400;

s33, at = 0.8015911200;

sD33, at = 0.8715911200;

d43, at = 1.2957627000;

endcell33: marker, at = 1.7263425200;

endsequence;

Beam,particle=proton,sequence=tamusq43,energy=0.95174;

tamusq43: sequence, refer=entry,l = 1.8528444300;

startcell43: marker, at = 0;

d43, at = 0.0000000000;

sF43, at = 0.4305798200;

s43, at = 0.8636856350;

sD43, at = 0.9336856350;

d5a3, at = 1.3667914500;

c33, at = 1.7484716700;

endcell43: marker, at = 1.8528444300;

endsequence;

Beam,particle=proton,sequence=tamusq53,energy=0.95259;
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tamusq53: sequence, refer=entry,l = 1.8434562600;

startcell53: marker, at = 0;

d5c3, at = 0.0000000000;

sF53, at = 0.3768049800;

s53, at = 0.8146970900;

sD53, at = 0.8846970900;

d6a3, at = 1.3225892000;

c43, at = 1.7378563700;

endcell53: marker, at = 1.8434562600;

endsequence;

Beam,particle=proton,sequence=tamusq63,energy=0.95345;

tamusq63: sequence, refer=entry,l = 1.7722996350;

startcell63: marker, at = 0;

d6c3, at = 0.0000000000;

sF63, at = 0.3464133300;

s63, at = 0.8066769250;

sD63, at = 0.8766769250;

d63, at = 1.3369405200;

endcell63: marker, at = 1.7722996350;

endsequence;

Beam,particle=proton,sequence=tamusq14,energy=0.95345;

tamusq14: sequence, refer=entry,l = 1.9480336250;

startcell14: marker, at = 0;

d14, at = 0.0000000000;

sF14, at = 0.4353591150;

s14, at = 0.8995577100;

sD14, at = 0.9695577100;

d2a4, at = 1.4337563050;

c14, at = 1.8344391650;

endcell14: marker, at = 1.9480336250;

endsequence;

Beam,particle=proton,sequence=tamusq24,energy=0.95438;

tamusq24: sequence, refer=entry,l = 1.8829235000;

startcell24: marker, at = 0;

d2c4, at = 0.0000000000;

sF24, at = 0.3592016200;

s24, at = 0.8385433450;

sD24, at = 0.9085433450;

d3a4, at = 1.3878850700;
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c24, at = 1.7688783600;

endcell24: marker, at = 1.8829235000;

endsequence;

Beam,particle=proton,sequence=tamusq34,energy=0.95530;

tamusq34: sequence, refer=entry,l = 1.8741500250;

startcell34: marker, at = 0;

d3c4, at = 0.0000000000;

sF34, at = 0.3808854500;

s34, at = 0.8698140850;

sD34, at = 0.9398140850;

d44, at = 1.4287427200;

endcell34: marker, at = 1.8741500250;

endsequence;

Beam,particle=proton,sequence=tamusq44,energy=0.95530;

tamusq44: sequence, refer=entry,l = 2.1457818250;

startcell44: marker, at = 0;

d44, at = 0.0000000000;

sF44, at = 0.4454073050;

s44, at = 1.0032464550;

sD44, at = 1.0732464550;

d5a4, at = 1.6310856050;

c34, at = 2.0200249950;

endcell44: marker, at = 2.1457818250;

endsequence;

Beam,particle=proton,sequence=tamusq54,energy=0.95634;

tamusq54: sequence, refer=entry,l = 2.1368819900;

startcell54: marker, at = 0;

d5c4, at = 0.0000000000;

sF54, at = 0.3852747600;

s54, at = 0.9551665000;

sD54, at = 1.0251665000;

d6a4, at = 1.5950582400;

c44, at = 2.0095140900;

endcell54: marker, at = 2.1368819900;

endsequence;

Beam,particle=proton,sequence=tamusq64,energy=0.95741;

tamusq64: sequence, refer=entry,l = 2.0790175300;

startcell64: marker, at = 0;

d6c4, at = 0.0000000000;
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sF64, at = 0.3632712700;

s64, at = 0.9588529300;

sD64, at = 1.0288529300;

d64, at = 1.6244345900;

endcell64: marker, at = 2.0790175300;

endsequence;

Beam,particle=proton,sequence=tamusq15,energy=0.95741;

tamusq15: sequence, refer=entry,l = 2.2646485200;

startcell15: marker, at = 0;

d15, at = 0.0000000000;

sF15, at = 0.4545829400;

s15, at = 1.0551747450;

sD15, at = 1.1251747450;

d2a5, at = 1.7257665500;

c15, at = 2.1286527100;

endcell15: marker, at = 2.2646485200;

endsequence;

Beam,particle=proton,sequence=tamusq25,energy=0.95860;

tamusq25: sequence, refer=entry,l = 2.2054638400;

startcell25: marker, at = 0;

d2c5, at = 0.0000000000;

sF25, at = 0.3734914600;

s25, at = 0.9914679800;

sD25, at = 1.0614679800;

d3a5, at = 1.6794445000;

c25, at = 2.0687563200;

endcell25: marker, at = 2.2054638400;

endsequence;

Beam,particle=proton,sequence=tamusq35,energy=0.95980;

tamusq35: sequence, refer=entry,l = 2.1621375650;

startcell35: marker, at = 0;

d3c5, at = 0.0000000000;

sF35, at = 0.3892359500;

s35, at = 1.0111644200;

sD35, at = 1.0811644200;

d45, at = 1.7030928900;

endcell35: marker, at = 2.1621375650;

endsequence;

Beam,particle=proton,sequence=tamusq45,energy=0.95980;
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tamusq45: sequence, refer=entry,l = 2.3350813150;

startcell45: marker, at = 0;

d45, at = 0.0000000000;

sF45, at = 0.4590446750;

s45, at = 1.0966024750;

sD45, at = 1.1666024750;

d5a5, at = 1.8041602750;

c35, at = 2.1972115750;

endcell45: marker, at = 2.3350813150;

endsequence;

Beam,particle=proton,sequence=tamusq55,energy=0.96101;

tamusq55: sequence, refer=entry,l = 2.3030915100;

startcell55: marker, at = 0;

d5c5, at = 0.0000000000;

sF55, at = 0.3900724300;

s55, at = 1.0347346900;

sD55, at = 1.1047346900;

d6a5, at = 1.7493969500;

c45, at = 2.1633932300;

endcell55: marker, at = 2.3030915100;

endsequence;

Beam,particle=proton,sequence=tamusq65,energy=0.96226;

tamusq65: sequence, refer=entry,l = 2.2527563400;

startcell65: marker, at = 0;

d6c5, at = 0.0000000000;

sF65, at = 0.3728203700;

s65, at = 1.0450522650;

sD65, at = 1.1150522650;

d65, at = 1.7872841600;

endcell65: marker, at = 2.2527563400;

endsequence;

Beam,particle=proton,sequence=tamusq16,energy=0.96226;

tamusq16: sequence, refer=entry,l = 2.4439934900;

startcell16: marker, at = 0;

d16, at = 0.0000000000;

sF16, at = 0.4654721800;

s16, at = 1.1433232550;

sD16, at = 1.2133232550;

d2a6, at = 1.8911743300;
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c16, at = 2.2953085400;

endcell16: marker, at = 2.4439934900;

endsequence;

Beam,particle=proton,sequence=tamusq26,energy=0.96360;

tamusq26: sequence, refer=entry,l = 2.3881652500;

startcell26: marker, at = 0;

d2c6, at = 0.0000000000;

sF26, at = 0.3815858800;

s26, at = 1.0780914100;

sD26, at = 1.1480914100;

d3a6, at = 1.8445969400;

c26, at = 2.2386207400;

endcell26: marker, at = 2.3881652500;

endsequence;

Beam,particle=proton,sequence=tamusq36,energy=0.96495;

tamusq36: sequence, refer=entry,l = 2.3519849300;

startcell36: marker, at = 0;

d3c6, at = 0.0000000000;

sF36, at = 0.3939660400;

s36, at = 1.1005654750;

sD36, at = 1.1705654750;

d46, at = 1.8771649100;

endcell36: marker, at = 2.3519849300;

endsequence;

Beam,particle=proton,sequence=tamusq46,energy=0.96495;

tamusq46: sequence, refer=entry,l = 2.6373331900;

startcell46: marker, at = 0;

d46, at = 0.0000000000;

sF46, at = 0.4748200200;

s46, at = 1.2409805100;

sD46, at = 1.3109805100;

d5a6, at = 2.0771410000;

c36, at = 2.4776106000;

endcell46: marker, at = 2.6373331900;

endsequence;

Beam,particle=proton,sequence=tamusq56,energy=0.96642;

tamusq56: sequence, refer=entry,l = 2.6029497100;

startcell56: marker, at = 0;

d5c6, at = 0.0000000000;
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sF56, at = 0.3987278900;

s56, at = 1.1782834700;

sD56, at = 1.2482834700;

d6a6, at = 2.0278390500;

c46, at = 2.4410062200;

endcell56: marker, at = 2.6029497100;

endsequence;

Beam,particle=proton,sequence=tamusq66,energy=0.96792;

tamusq66: sequence, refer=entry,l = 2.5661980750;

startcell66: marker, at = 0;

d6c6, at = 0.0000000000;

sF66, at = 0.3900478700;

s66, at = 1.2005642600;

sD66, at = 1.2705642600;

d66, at = 2.0810806500;

endcell66: marker, at = 2.5661980750;

endsequence;

Beam,particle=proton,sequence=tamusq17,energy=0.96792;

tamusq17: sequence, refer=entry,l = 2.7675491050;

startcell17: marker, at = 0;

d17, at = 0.0000000000;

sF17, at = 0.4851174250;

s17, at = 1.3023516750;

sD17, at = 1.3723516750;

d2a7, at = 2.1895859250;

c17, at = 2.5959717350;

endcell17: marker, at = 2.7675491050;

endsequence;

Beam,particle=proton,sequence=tamusq27,energy=0.96956;

tamusq27: sequence, refer=entry,l = 2.7177761900;

startcell27: marker, at = 0;

d2c7, at = 0.0000000000;

sF27, at = 0.3961889700;

s27, at = 1.2343683950;

sD27, at = 1.3043683950;

d3a7, at = 2.1425478200;

c27, at = 2.5450725100;

endcell27: marker, at = 2.7177761900;

endsequence;
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Beam,particle=proton,sequence=tamusq37,energy=0.97122;

tamusq37: sequence, refer=entry,l = 2.6500190000;

startcell37: marker, at = 0;

d3c7, at = 0.0000000000;

sF37, at = 0.4024995900;

s37, at = 1.2459601550;

sD37, at = 1.3159601550;

d47, at = 2.1594207200;

endcell37: marker, at = 2.6500190000;

endsequence;

Beam,particle=proton,sequence=tamusq47,energy=0.97122;

tamusq47: sequence, refer=entry,l = 2.8654548600;

startcell47: marker, at = 0;

d47, at = 0.0000000000;

sF47, at = 0.4905982800;

s47, at = 1.3529454300;

sD47, at = 1.4229454300;

d5a7, at = 2.2852925800;

c37, at = 2.6908232800;

endcell47: marker, at = 2.8654548600;

endsequence;

Beam,particle=proton,sequence=tamusq57,energy=0.97291;

tamusq57: sequence, refer=entry,l = 2.8075262300;

startcell57: marker, at = 0;

d5c7, at = 0.0000000000;

sF57, at = 0.4046330300;

s57, at = 1.2762188000;

sD57, at = 1.3462188000;

d6a7, at = 2.2178045700;

c47, at = 2.6304060800;

endcell57: marker, at = 2.8075262300;

endsequence;

Beam,particle=proton,sequence=tamusq67,energy=0.97463;

tamusq67: sequence, refer=entry,l = 2.7800419150;

startcell67: marker, at = 0;

d6c7, at = 0.0000000000;

sF67, at = 0.4018012300;

s67, at = 1.3066614300;

sD67, at = 1.3766614300;
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d67, at = 2.2815216300;

endcell67: marker, at = 2.7800419150;

endsequence;

Beam,particle=proton,sequence=tamusq18,energy=0.97463;

tamusq18: sequence, refer=entry,l = 2.9882932250;

startcell18: marker, at = 0;

d18, at = 0.0000000000;

sF18, at = 0.4985202850;

s18, at = 1.4108479750;

sD18, at = 1.4808479750;

d2a8, at = 2.3931756650;

c18, at = 2.8010976150;

endcell18: marker, at = 2.9882932250;

endsequence;

Beam,particle=proton,sequence=tamusq28,energy=0.97647;

tamusq28: sequence, refer=entry,l = 2.9426515400;

startcell28: marker, at = 0;

d2c8, at = 0.0000000000;

sF28, at = 0.4061518600;

s28, at = 1.3409875650;

sD28, at = 1.4109875650;

d3a8, at = 2.3458232700;

c28, at = 2.7541476400;

endcell28: marker, at = 2.9426515400;

endsequence;

Beam,particle=proton,sequence=tamusq38,energy=0.97832;

tamusq38: sequence, refer=entry,l = 2.8748325550;

startcell38: marker, at = 0;

d3c8, at = 0.0000000000;

sF38, at = 0.4083215600;

s38, at = 1.3529595300;

sD38, at = 1.4229595300;

d48, at = 2.3675975000;

endcell38: marker, at = 2.8748325550;

endsequence;

Beam,particle=proton,sequence=tamusq48,energy=0.97832;

tamusq48: sequence, refer=entry,l = 3.1716955150;

startcell48: marker, at = 0;

d48, at = 0.0000000000;
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sF48, at = 0.5072350550;

s48, at = 1.4996503500;

sD48, at = 1.5696503500;

d5a8, at = 2.5620656450;

c38, at = 2.9752110750;

endcell48: marker, at = 3.1716955150;

endsequence;

Beam,particle=proton,sequence=tamusq58,energy=0.98026;

tamusq58: sequence, refer=entry,l = 3.1123782900;

startcell58: marker, at = 0;

d5c8, at = 0.0000000000;

sF58, at = 0.4130920600;

s58, at = 1.4195711600;

sD58, at = 1.4895711600;

d6a8, at = 2.4960502600;

c48, at = 2.9130129300;

endcell58: marker, at = 3.1123782900;

endsequence;

Beam,particle=proton,sequence=tamusq68,energy=0.98223;

tamusq68: sequence, refer=entry,l = 3.0882934100;

startcell68: marker, at = 0;

d6c8, at = 0.0000000000;

sF68, at = 0.4138384700;

s68, at = 1.4569831750;

sD68, at = 1.5269831750;

d68, at = 2.5701278800;

endcell68: marker, at = 3.0882934100;

endsequence;

Beam,particle=proton,sequence=tamusq19,energy=0.98223;

tamusq19: sequence, refer=entry,l = 3.3210424500;

startcell19: marker, at = 0;

d19, at = 0.0000000000;

sF19, at = 0.5181655300;

s19, at = 1.5698763900;

sD19, at = 1.6398763900;

d2a9, at = 2.6915872500;

c19, at = 3.1109544200;

endcell19: marker, at = 3.3210424500;

endsequence;
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Beam,particle=proton,sequence=tamusq29,energy=0.98433;

tamusq29: sequence, refer=entry,l = 3.2630950500;

startcell29: marker, at = 0;

d2c9, at = 0.0000000000;

sF29, at = 0.4115613300;

s29, at = 1.4880709250;

sD29, at = 1.5580709250;

d3a9, at = 2.6345805200;

c29, at = 3.0514319800;

endcell29: marker, at = 3.2630950500;

endsequence;

Beam,particle=proton,sequence=tamusq39,energy=0.98646;

tamusq39: sequence, refer=entry,l = 3.1747065800;

startcell39: marker, at = 0;

d3c9, at = 0.0000000000;

sF39, at = 0.4168288900;

s39, at = 1.4988058400;

sD39, at = 1.5688058400;

d49, at = 2.6507827900;

endcell39: marker, at = 3.1747065800;

endsequence;

Beam,particle=proton,sequence=tamusq49,energy=0.98646;

tamusq49: sequence, refer=entry,l = 3.4176542100;

startcell49: marker, at = 0;

d49, at = 0.0000000000;

sF49, at = 0.5239237900;

s49, at = 1.6197150450;

sD49, at = 1.6897150450;

d5a9, at = 2.7855063000;

c39, at = 3.2050374800;

endcell49: marker, at = 3.4176542100;

endsequence;

Beam,particle=proton,sequence=tamusq59,energy=0.98860;

tamusq59: sequence, refer=entry,l = 3.3461038100;

startcell59: marker, at = 0;

d5c9, at = 0.0000000000;

sF59, at = 0.4185723400;

s59, at = 1.5246328300;

sD59, at = 1.5946328300;
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d6a9, at = 2.7006933200;

c49, at = 3.1303165200;

endcell59: marker, at = 3.3461038100;

endsequence;

Beam,particle=proton,sequence=tamusq69,energy=0.99077;

tamusq69: sequence, refer=entry,l = 3.3064108050;

startcell69: marker, at = 0;

d6c9, at = 0.0000000000;

sF69, at = 0.4132836100;

s69, at = 1.5585131550;

sD69, at = 1.6285131550;

d69, at = 2.7737427000;

endcell69: marker, at = 3.3064108050;

endsequence;

Beam,particle=proton,sequence=tamusq110,energy=0.99077;

tamusq110: sequence, refer=entry,l = 3.5689778450;

startcell110: marker, at = 0;

d110, at = 0.0000000000;

sF110, at = 0.5326681050;

s110, at = 1.6872748950;

sD110, at = 1.7572748950;

d2a10, at = 2.9118816850;

c110, at = 3.3419900850;

endcell110: marker, at = 3.5689778450;

endsequence;

Beam,particle=proton,sequence=tamusq210,energy=0.99304;

tamusq210: sequence, refer=entry,l = 3.4973665500;

startcell210: marker, at = 0;

d2c10, at = 0.0000000000;

sF210, at = 0.4132626300;

s210, at = 1.5943592250;

sD210, at = 1.6643592250;

d3a10, at = 2.8454558200;

c210, at = 3.2686068400;

endcell210: marker, at = 3.4973665500;

endsequence;

Beam,particle=proton,sequence=tamusq310,energy=0.99532;

tamusq310: sequence, refer=entry,l = 3.4127821350;

startcell310: marker, at = 0;
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d3c10, at = 0.0000000000;

sF310, at = 0.4231045500;

s310, at = 1.6127003650;

sD310, at = 1.6827003650;

d410, at = 2.8722961800;

endcell310: marker, at = 3.4127821350;

endsequence;

Beam,particle=proton,sequence=tamusq410,energy=0.99532;

tamusq410: sequence, refer=entry,l = 3.7141073950;

startcell410: marker, at = 0;

d410, at = 0.0000000000;

sF410, at = 0.5404859550;

s410, at = 1.7616572900;

sD410, at = 1.8316572900;

d5a10, at = 3.0528286250;

c310, at = 3.4806208450;

endcell410: marker, at = 3.7141073950;

endsequence;

Beam,particle=proton,sequence=tamusq510,energy=0.99764;

tamusq510: sequence, refer=entry,l = 3.6484669700;

startcell510: marker, at = 0;

d5c10, at = 0.0000000000;

sF510, at = 0.4256620000;

s510, at = 1.6605477200;

sD510, at = 1.7305477200;

d6a10, at = 2.9654334400;

c410, at = 3.4114351600;

endcell510: marker, at = 3.6484669700;

endsequence;

Beam,particle=proton,sequence=tamusq610,energy=0.99999;

tamusq610: sequence, refer=entry,l = 3.5887248050;

startcell610: marker, at = 0;

d6c10, at = 0.0000000000;

sF610, at = 0.4125658100;

s610, at = 1.6899141800;

sD610, at = 1.7599141800;

d610, at = 3.0372625500;

endcell610: marker, at = 3.5887248050;

endsequence;
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Beam,particle=proton,sequence=tamusq111,energy=0.99999;

tamusq111: sequence, refer=entry,l = 3.8907033450;

startcell111: marker, at = 0;

d111, at = 0.0000000000;

sF111, at = 0.5514622550;

s111, at = 1.8395934500;

sD111, at = 1.9095934500;

d2a11, at = 3.1977246450;

c111, at = 3.6417769450;

endcell111: marker, at = 3.8907033450;

endsequence;

Beam,particle=proton,sequence=tamusq211,energy=1.00241;

tamusq211: sequence, refer=entry,l = 3.8014897400;

startcell211: marker, at = 0;

d2c11, at = 0.0000000000;

sF211, at = 0.4154712000;

s211, at = 1.7323390300;

sD211, at = 1.8023390300;

d3a11, at = 3.1192068600;

c211, at = 3.5505357600;

endcell211: marker, at = 3.8014897400;

endsequence;

Beam,particle=proton,sequence=tamusq311,energy=1.00484;

tamusq311: sequence, refer=entry,l = 3.7003590450;

startcell311: marker, at = 0;

d3c11, at = 0.0000000000;

sF311, at = 0.4312513900;

s311, at = 1.7524181700;

sD311, at = 1.8224181700;

d411, at = 3.1435849500;

endcell311: marker, at = 3.7003590450;

endsequence;

Beam,particle=proton,sequence=tamusq411,energy=1.00484;

tamusq411: sequence, refer=entry,l = 3.9531741150;

startcell411: marker, at = 0;

d411, at = 0.0000000000;

sF411, at = 0.5567740950;

s411, at = 1.8784091600;

sD411, at = 1.9484091600;
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d5a11, at = 3.2700442250;

c311, at = 3.7040330650;

endcell411: marker, at = 3.9531741150;

endsequence;

Beam,particle=proton,sequence=tamusq511,energy=1.00729;

tamusq511: sequence, refer=entry,l = 3.8752702800;

startcell511: marker, at = 0;

d5c11, at = 0.0000000000;

sF511, at = 0.4309799700;

s511, at = 1.7624978000;

sD511, at = 1.8324978000;

d6a11, at = 3.1640156300;

c411, at = 3.6223029100;

endcell511: marker, at = 3.8752702800;

endsequence;

Beam,particle=proton,sequence=tamusq611,energy=1.00975;

tamusq611: sequence, refer=entry,l = 3.8002397250;

startcell611: marker, at = 0;

d6c11, at = 0.0000000000;

sF611, at = 0.4120273900;

s611, at = 1.7883822150;

sD611, at = 1.8583822150;

d611, at = 3.2347370400;

endcell611: marker, at = 3.8002397250;

endsequence;

Beam,particle=proton,sequence=tamusq112,energy=1.00975;

tamusq112: sequence, refer=entry,l = 4.1303162250;

startcell112: marker, at = 0;

d112, at = 0.0000000000;

sF112, at = 0.5655026850;

s112, at = 1.9530711050;

sD112, at = 2.0230711050;

d2a12, at = 3.4106395250;

c112, at = 3.8650666250;

endcell112: marker, at = 4.1303162250;

endsequence;

Beam,particle=proton,sequence=tamusq212,energy=1.01223;

tamusq212: sequence, refer=entry,l = 4.0277691600;

startcell212: marker, at = 0;
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d2c12, at = 0.0000000000;

sF212, at = 0.4171144600;

s212, at = 1.8350013450;

sD212, at = 1.9050013450;

d3a12, at = 3.3228882300;

c212, at = 3.7603017800;

endcell212: marker, at = 4.0277691600;

endsequence;

Beam,particle=proton,sequence=tamusq312,energy=1.01472;

tamusq312: sequence, refer=entry,l = 3.9252084250;

startcell312: marker, at = 0;

d3c12, at = 0.0000000000;

sF312, at = 0.4373129500;

s312, at = 1.8605013000;

sD312, at = 1.9305013000;

d412, at = 3.3536896500;

endcell312: marker, at = 3.9252084250;

endsequence;

Beam,particle=proton,sequence=tamusq412,energy=1.01472;

tamusq412: sequence, refer=entry,l = 4.2053841450;

startcell412: marker, at = 0;

d412, at = 0.0000000000;

sF412, at = 0.5715187750;

s412, at = 1.9996834400;

sD412, at = 2.0696834400;

d5a12, at = 3.4978481050;

c312, at = 3.9387581250;

endcell412: marker, at = 4.2053841450;

endsequence;

Beam,particle=proton,sequence=tamusq512,energy=1.01722;

tamusq512: sequence, refer=entry,l = 4.1285935600;

startcell512: marker, at = 0;

d5c12, at = 0.0000000000;

sF512, at = 0.4369197700;

s512, at = 1.8763688350;

sD512, at = 1.9463688350;

d6a12, at = 3.3858179000;

c412, at = 3.8578272900;

endcell512: marker, at = 4.1285935600;
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endsequence;

Beam,particle=proton,sequence=tamusq612,energy=1.01973;

tamusq612: sequence, refer=entry,l = 4.0367775300;

startcell612: marker, at = 0;

d6c12, at = 0.0000000000;

sF612, at = 0.4114260100;

s612, at = 1.8984763850;

sD612, at = 1.9684763850;

d612, at = 3.4555267600;

endcell612: marker, at = 4.0367775300;

endsequence;

Beam,particle=proton,sequence=tamusq113,energy=1.01973;

tamusq113: sequence, refer=entry,l = 4.3999231700;

startcell113: marker, at = 0;

d113, at = 0.0000000000;

sF113, at = 0.5812507700;

s113, at = 2.0807131500;

sD113, at = 2.1507131500;

d2a13, at = 3.6501755300;

c113, at = 4.1162881500;

endcell113: marker, at = 4.3999231700;

endsequence;

Beam,particle=proton,sequence=tamusq213,energy=1.02221;

tamusq213: sequence, refer=entry,l = 4.2826360400;

startcell213: marker, at = 0;

d2c13, at = 0.0000000000;

sF213, at = 0.4189653200;

s213, at = 1.9506337000;

sD213, at = 2.0206337000;

d3a13, at = 3.5523020800;

c213, at = 3.9965690100;

endcell213: marker, at = 4.2826360400;

endsequence;

Beam,particle=proton,sequence=tamusq313,energy=1.02468;

tamusq313: sequence, refer=entry,l = 4.1746803800;

startcell313: marker, at = 0;

d3c13, at = 0.0000000000;

sF313, at = 0.4441403100;

s313, at = 1.9807878450;
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sD313, at = 2.0507878450;

d413, at = 3.5874353800;

endcell313: marker, at = 4.1746803800;

endsequence;

Beam,particle=proton,sequence=tamusq413,energy=1.02468;

tamusq413: sequence, refer=entry,l = 4.4638271500;

startcell413: marker, at = 0;

d413, at = 0.0000000000;

sF413, at = 0.5872450000;

s413, at = 2.1244352250;

sD413, at = 2.1944352250;

d5a13, at = 3.7316254500;

c313, at = 4.1795302500;

endcell413: marker, at = 4.4638271500;

endsequence;

Beam,particle=proton,sequence=tamusq513,energy=1.02718;

tamusq513: sequence, refer=entry,l = 4.3846102300;

startcell513: marker, at = 0;

d5c13, at = 0.0000000000;

sF513, at = 0.4429227200;

s513, at = 1.9914505650;

sD513, at = 2.0614505650;

d6a13, at = 3.6099784100;

c413, at = 4.0958558100;

endcell513: marker, at = 4.3846102300;

endsequence;

Beam,particle=proton,sequence=tamusq613,energy=1.02966;

tamusq613: sequence, refer=entry,l = 4.2755661000;

startcell613: marker, at = 0;

d6c13, at = 0.0000000000;

sF613, at = 0.4108182400;

s613, at = 2.0096386550;

sD613, at = 2.0796386550;

d613, at = 3.6784590700;

endcell613: marker, at = 4.2755661000;

endsequence;

Beam,particle=proton,sequence=tamusq114,energy=1.02966;

tamusq114: sequence, refer=entry,l = 4.6706226500;

startcell114: marker, at = 0;
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d114, at = 0.0000000000;

sF114, at = 0.5971070300;

s114, at = 2.2089085900;

sD114, at = 2.2789085900;

d2a14, at = 3.8907101500;

c114, at = 4.3685447900;

endcell114: marker, at = 4.6706226500;

endsequence;

Beam,particle=proton,sequence=tamusq214,energy=1.03206;

tamusq214: sequence, refer=entry,l = 4.5382989100;

startcell214: marker, at = 0;

d2c14, at = 0.0000000000;

sF214, at = 0.4208219700;

s214, at = 2.0666272050;

sD214, at = 2.1366272050;

d3a14, at = 3.7824324400;

c214, at = 4.2335741400;

endcell214: marker, at = 4.5382989100;

endsequence;

Beam,particle=proton,sequence=tamusq314,energy=1.03443;

tamusq314: sequence, refer=entry,l = 4.4267167400;

startcell314: marker, at = 0;

d3c14, at = 0.0000000000;

sF314, at = 0.4509890000;

s314, at = 2.1021348300;

sD314, at = 2.1721348300;

d414, at = 3.8232806600;

endcell314: marker, at = 4.4267167400;

endsequence;

Beam,particle=proton,sequence=tamusq414,energy=1.03443;

tamusq414: sequence, refer=entry,l = 4.7351687900;

startcell414: marker, at = 0;

d414, at = 0.0000000000;

sF414, at = 0.6034360800;

s414, at = 2.2551641350;

sD414, at = 2.3251641350;

d5a14, at = 3.9768921900;

c314, at = 4.4321914100;

endcell414: marker, at = 4.7351687900;
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endsequence;

Beam,particle=proton,sequence=tamusq514,energy=1.03684;

tamusq514: sequence, refer=entry,l = 4.6552541300;

startcell514: marker, at = 0;

d5c14, at = 0.0000000000;

sF514, at = 0.4492686400;

s514, at = 2.1131073750;

sD514, at = 2.1831073750;

d6a14, at = 3.8469461100;

c414, at = 4.3474838400;

endcell514: marker, at = 4.6552541300;

endsequence;

Beam,particle=proton,sequence=tamusq614,energy=1.03920;

tamusq614: sequence, refer=entry,l = 4.5113431400;

startcell614: marker, at = 0;

d6c14, at = 0.0000000000;

sF614, at = 0.4101757400;

s614, at = 2.1272059250;

sD614, at = 2.1972059250;

d614, at = 3.9142361100;

endcell614: marker, at = 4.5113431400;

endsequence;
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