
COHESIVE AUTONOMOUS NAVIGATION SYSTEM: IMAGE

PROCESSING AND DATA MANAGEMENT

A Thesis

by

DEREK J KUETHER

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Gregory Chamitoff
Committee Members, Daniele Mortari

Michael Bishop
Head of Department, Rodney D. W. Bowersox

May 2016

Major Subject: Aerospace Engineering

Copyright 2016 Derek J Kuether

ABSTRACT

The ability of a robotic system to fully and autonomously interact with its en-

vironment is key to the future of applications such as commercial package delivery

services, elderly robotic assistants, agricultural monitoring systems, natural disas-

ter search and rescue robots, civil construction monitoring systems, robotic satellite

servicing, and many more. An architecture that is conducive to Simultaneous Lo-

calization And Mapping (SLAM), path planning, and mission planning is a critical

element for a system to be robust enough to handle such applications with true

autonomy.

In this work, an architecture that lends itself to cohesive operation of all the

aforementioned goals is presented. The key components of this architecture are the

data management, image processing, SLAM, and path planning. The architecture

works through the implementation of a common core database to represent the en-

vironment. The database management tools use k-vector search techniques. Image

processing techniques are evaluated in a trade study where a graph-based approach

is selected. An outline of the SLAM approach and a description of the path planning

algorithm employed are briefly discussed. The Cohesive Autonomous Navigation

System (CANS) is successfully implemented at slower than real-time speeds and

future work is outlined to achieve a real-time system.

ii

ACKNOWLEDGEMENTS

I would like to thank first and foremost my colleagues Benjamin Morrell and

Mauricio Coen. They contributed just as much as I did into the development of

the work discussed in this thesis. I would also like to thank my advisor Dr. Gre-

gory Chamitoff for his invaluable guidance, critism, and encouragement in working

through many problems throughout this work. The contributions of my committee

(Dr Daniele Mortari, Dr Michael Bishop, and Dr Gregory Chamitoff) provided much

of the fundamental methods and tools that were expaned/tested here. A large part

of the work presented here would not have been possible if it weren’t for the Land,

Air, and Space Robotics (LASR) laboratory. I would also like to thank the many

others that discussed aspects of the problem and assisted in one way or another:

PhD candidate Joseph S. Lee, Dr. Dezhen Song, Dr. Steve Liu, Chip Hill, Dr. Peter

Gibbens, PhD candidate Austin Probe, and many others.

Of course, an acknowledgments section would not be complete without acknowl-

edging my loved ones - my mother, Dawn, father, Jim, step-father, Cal, sister,

Kendra, brother, Austin, and my supportive girlfriend, Chrisy. A particular ded-

ication is directed to my brother Austin who will forever be remembered as the

gentle giant he was.

I hope you enjoy this thesis as much as it excites me.

iii

NOMENCLATURE

Agent Operational sequence.

CANS Cohesive Autonomous Navigation System.

Channel An image holding a metric value.

CIE International Commission on Illumination.

Feature A modeled entity that exists in physical space.

GIS Geographic Information Science.

Label Map An image with labels, integers, where each label indicates which group

each pixel belongs to.

LOI Label of Interest: Label of the label map indicating which index of

the label map indicates a region to be modeled as an ellipsoid.

Luv Color space develeloped by CIE.

Metrics Random variable representing a descriptor of the pixel of an image.

Object See Feature.

OLT OverLaid Thresholding: Image segmenation technique.

RGB-D Set of channels with red intensity, green intensity, blue intensity, and

depth information of a field of view.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

NOMENCLATURE . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . viii

LIST OF TABLES . xii

CHAPTER

I INTRODUCTION . 1

I.A. Motivation . 1

I.B. Outline . 2

I.C. Background . 2

I.D. Contributions of Work 7

II CANS OVERVIEW . 8

III IMAGE PROCESSING . 10

III.A. Overview . 10

III.A.1. Image Pipeline 11

III.A.2. Image Analysis 11

III.A.3. Image Segmentation 14

III.A.4. Feature Classification 16

III.A.5. Feature Extraction 17

III.A.6. Image Processing Cycle 22

III.B. Segmentation Methods Investigated 23

III.B.1. Watershed . 23

III.B.2. Overlaid Thresholding 25

III.B.3. K-Means . 30

v

CHAPTER Page

III.B.4. Graph . 31

III.C. Method Trade Study 33

III.C.1. Experiment . 34

III.C.2. Performance Measures 35

III.C.3. Evaluating Performance Measures 36

III.C.4. Results . 37

III.D. Graph Based Method Investigation 44

IV DATA MANAGEMENT . 50

IV.A. Overview . 50

IV.B. Data Management Overview 50

IV.C. Functionality Discussion 51

IV.D. K-Vector Overview . 54

IV.E. In-Depth Investigation 57

IV.E.1. Performance Measures 58

IV.E.2. Evaluating Performance Measures 58

IV.E.3. Expectations 59

IV.E.4. Results . 60

IV.F. Dynamic K-Vector Study 63

V CANS PERFORMANCE . 69

V.A. SLAM . 71

V.B. Path Planning . 79

VI CONCLUSIONS & FUTURE WORK 81

VI.A. Conclusions . 81

VI.A.1. Image Processing 81

VI.A.2. Data Management 82

VI.A.3. CANS . 82

VI.B. Future Work . 83

VI.B.1. Image Processing 83

VI.B.2. Data Management 84

VI.B.3. CANS . 85

vi

REFERENCES . 86

APPENDIX A . 91

A.A Image Processing . 91

A.B Database Operations’ Static Speed Performance . . . 94

A.C Database Operations’ Dynamic Speed Performance . 100

A.D CANS Performance 107

vii

LIST OF FIGURES

FIGURE Page

II.1 System overview . 8

III.1 Image processing overview . 11

III.2 Example of segmentation. Top: original image. Bottom: cor-

responding segmentation. 14

III.3 Ellipsoid generation from observations of ellipsoids 20

III.4 Ellipsoid extraction from cabinet feature in point cloud image.

Left: with full point cloud. Right: only the region of interest. 21

III.5 Sample image processing cycle . 22

III.6 Sample image processing image . 24

III.7 Sample image segmentation - watershed algorithm 24

III.8 Sample segmentation: OLT (without N-CUT) 26

III.9 Sample segmentation: OLT (left) & OLT with N-Cut (right) 29

III.10 Sample segmentation: k-means. Left: original color image,

right: segmented image. This illustration uses a seed of 50

points and 10 iterations for the best compactness. 31

III.11 Sample segmentation: graph-based method. Left: original

color image, right: segmented image 32

III.12 Speed comparison . 37

III.13 Repeatability comparison . 39

III.14 Repeatability comparison: probability distribution 40

III.15 Whole segmentation comparison . 42

III.16 Simple sigmoid function . 45

viii

III.17 Sigmoid function example . 47

III.18 Sigmoid segmentation example . 48

IV.1 Database management overview . 51

IV.2 SLAM & database interface agent . 52

IV.3 Path planning & database interface agent 53

IV.4 Database utility agent - database upkeep 53

IV.5 Database k-vector relationship illustration 57

IV.6 All operations’ elapsed time as a function of objects in the database . 61

IV.7 Faster operations’ elapsed time as a function of objects in the database 62

IV.8 Loop time elapsed for dynamic k-vector ranging allowance 0 to 1 . . 67

IV.9 Loop time elapsed difference - with respect to allowance of 0

- for dynamic k-vector ranging allowance 0 to 1 67

IV.10 Thresholds and extremeties surpassed, suggesting number of

static builds. 68

V.1 System state time histories . 72

V.2 System spatial state time histories: blue - truth, red - SLAM estimate 73

V.3 System angular state time histories. blue - truth, red - SLAM estimate 74

V.4 Error time histories . 75

V.5 Time elapsed per time step . 76

V.6 CANS overview with elapsed time: elasped times for each

module are listed in the white boxes. 78

V.7 Image processing overview with elapsed time: elasped times

for each module are listed in the white boxes. 78

ix

V.8 SLAM overview with elapsed time: elasped times for each

module are listed in the white boxes. 79

V.9 ASTRO trajectory through demonstration dataset 80

A.1 Repeatability comparison: k-means with GIS 91

A.2 Repeatability comparison: k-means without GIS 92

A.3 Repeatability comparison: graph with GIS 92

A.4 Repeatability comparison: graph without GIS 93

A.5 Repeatability comparison: OLT with GIS 93

A.6 Add to buffer operational speed . 94

A.7 Add to database operational speed 95

A.8 Build operational speed . 95

A.9 Define search range operational speed 96

A.10 Search operational speed . 96

A.11 Sort operational speed . 97

A.12 Trim operational speed . 97

A.13 Update operational speed . 98

A.14 Loop operational speed . 98

A.15 Match operational speed . 99

A.16 Dynamic add to buffer operational speed 100

A.17 Dynamic add to database operational speed 101

A.18 Dynamic define search range operational speed 101

A.19 Dynamic search operational speed 102

x

A.20 Dynamic trim operational speed . 102

A.21 Dynamic match operational speed 103

A.22 Dynamic thresholds surpassed . 103

A.23 Dynamic extremeties surpassed . 104

A.24 Dynamic add to buffer operational speed (difference) 104

A.25 Dynamic add to database operational speed (difference) 105

A.26 Dynamic define search range operational speed (difference) 105

A.27 Dynamic search operational speed (difference) 106

A.28 Dynamic trim operational speed (difference) 106

A.29 Count of system parameters . 107

A.30 Time elapsed per time step: image processing 108

A.31 Time elapsed per time step: entire time step (no observation) 108

A.32 Time elapsed per time step: entire time step (observation) 109

A.33 Time elapsed per time step: entire time step (observation

excluding image processing) . 109

A.34 Number of calls per time step . 110

A.35 Number of features in database per time step 110

xi

LIST OF TABLES

TABLE Page

I.1 CANS simulation environment specifications 3

III.1 Sample segmentation: OLT simulation parameters 29

III.2 Segmentation evaluatuon: watershed verse OLT 33

III.3 Speed comparison of image segmentation techniques 38

III.4 Repeatability comparison . 40

III.5 Whole segmentation comparison . 42

III.6 Sample solved sigmoid parameters 47

III.7 Solved sigmoid parameters . 49

IV.1 Sample of first 4 columns of object set table 54

IV.2 Sample of first metric in sorting indices table 55

IV.3 RSME values for database operations; (N)RMSE with respect

to prediction from fit curves. 63

V.1 CANS simulation settings . 70

V.2 CANS RMSE for state time histories 73

xii

CHAPTER I

INTRODUCTION*

I.A. Motivation

The ability for a robotic system to fully and autonomously interact with its

environment is key to the future of applications such as commercial package delivery

services, elderly robotic assistants, agricultural monitoring systems, natural disas-

ter search and rescue robots, civil construction monitoring systems, robotic satellite

servicing, and many more. An architecture that is conducive to Simultaneous Lo-

calization And Mapping (SLAM), path planning, and mission planning is a critical

element of a system to be robust enough to handle such applications with true auton-

omy. Such a system involves an image processing methodology to extract relevant

and concise information from the environment. This methodology needs to be con-

sistent and robust to varying lighting conditions, types of objects in each scene, and

to represent sufficiently unique distinctions in the scenes. Additionally, the data

management scheme must be optimized for efficient utilization by SLAM processes,

path planning processes, and mission planning processes. Image processing and data

management are two key elements of a Cohesive Autonomous Navigation System

(CANS) that will be the focus of this study.

*Portions of this chapter are reprinted with permission from “Cohesive Autonomous Navigation

System” by Kuether, Derek J., et al., 2016. AIAA Guidance, Navigation, and Control Conference,

AIAA SciTech, Copyright 2016 by American Institute of Aeronautics and Astronautics, Inc.

1

I.B. Outline

In this thesis, an architecture developed with my colleagues [1] will be discussed.

This architecture lends itself to cohesive operation of all the aforementioned goals

through the implementation of a common core database to represent the environ-

ment. The key contributions to this architecture that are presented here are in the

areas of Image Processing and Data Management.

Section (II) will give brief overview of CANS. Section (III) will discuss the image

processing module in detail. Section (IV) will discuss the data management module

in detail. Section (V) will discuss the entire system’s performance. Section (VI.A)

presents conclusions. Section (VI.B) will highlight areas of future work and reference

information is presented in several appendices in Section (VI.B.3).

All the results presented here were run on a Yoga 2 Pro laptop. Additional

specifications are in Table (I.1).

I.C. Background

Key to fully autonomous robotic systems is the ability to navigate through an

environment without any prior knowledge. This can be broken down into three

operations: creating a map of your environment, finding out where you are in the

environment, and planning a time-dependent path1 through your environment. The

first two operations are typically done via a methodology called Simultaneous Lo-

calization And Mapping (SLAM) [2, 3]. Path planning and SLAM are generally

1From here on, trajectory and time-dependent path will be used interchangeably.

2

Table I.1. CANS simulation environment specifications

Parameter Value

Make Lenovo

Model Yoga 2 Pro

Operating System Ubuntu 15.10

Operating System Type 64-bit

Memory 7.7 GiB

Processor Intel Core i7-4500U CPU

Clock Speed 1.8 GHz x 4

Graphics Intel Haswell Mobile

Disk 243.5 GB

considered as two separate problems. SLAM looks at an environment and local-

izes itself within it while developing a model for the environment. This process is

circular: localization in the map depends on the current model, and generation of

the model depends on the current location. This process is most commonly tackled

with some variation of a Kalman filter, including the Extended Kalman Filter [2],

the Unscented Kalman Filter [4], and the Ensemble Kalman filter [5]. Major distin-

guishing factors in different SLAM techniques are: the choice of Kalman filter (or an

alternative estimation method [6, 7]), the nature of the features used as landmarks

and how the features are matched between two observations. Path planning, on the

other hand, takes a desired objective and plots a trajectory to obtain the objec-

tive through the known environment without violating constraints on the path, such

3

as the physical obstacles. There are many different approaches to path planning,

such as A* algorithms [8], Mixed Integer Programming [9], potential field minimiza-

tion [10,11], parameter optimization [12] and a suite of sampling based planners like

Rapidly Exploring Random Trees [13] (many available in the Open Motion Planning

Library [14]), each with their own strengths and weaknesses.

For a system to be truly autonomous, it needs to be capable of both SLAM

and path planning. So intuitively, it makes sense to develop an architecture which

is conducive to the efficient joint operation of the two processes. However, the

analyses of many SLAM techniques are demonstrated with the performance of just

the standalone process [15,16]. Similarly for path planning, approaches generally are

demonstrated with a known environment. There are key points that make combining

the two processes difficult. SLAM typically uses point locations as features to localize

the system and to match with previously observed features, a process termed data

association. Path planning necessitates a full 3-dimensional physical representation

of all features to define physical constraints. The key approach taken in this system is

to combine these elements by defining an observed feature with both a point location

as a centroid and a 3D physical description that can be used for data association and

as an obstacle for the path planner. Here ellipsoids and rectangular prisms (patches)

are used to represent these 3D features. They are convex shapes and relatively easy

to describe.

To have a 3D description of the environment, it is beneficial to have sensors that

can provide 3D information, such as stereo cameras, monocular cameras with ego-

motion, laser scanners or structured light sensors, such as the Kinect RGB-D (color

4

image and depth) sensor [17], which also provides RGB (color) information. The

active approaches (laser scanners and structured light sensors) can provide more

precise information for characterizing the environment, and hence are used in the

work presented in this thesis. Specifically, an ASUS Xtion Pro will be used in simu-

lation.

The criteria that identify points of interest to SLAM are often very simple

metrics that can be correlated to a point. Metrics such as color and texture do

not make physical sense for a point and are not unique when describing features

by points. While these point objects are often easy to identify, they are susceptible

to being associated with the incorrect feature in the database, which corrupts the

SLAM solution. By using color and texture to provide more complex representations

of features, the association between features becomes more certain. Features can be

described with location, size, orientation and color as well as structural information

that can be computed from a wide range of surface analysis algorithms.

Given some set of images, say color images (RGB) and depth image, there are

numerous methods to identify different distinct regions (or perform image segmenta-

tion). Generally speaking, they can be distinguished into two categories. These are

edge/threshold based detection algorithms and homogeneity algorithms. Edge-based

algorithms include Watershed [18], Oksu’s method [19], and overlaid thresholding.

Homogeneity algorithms include K-Means [20], graph-based [21], and mean-shift [22].

It is important to distinguish these algorithms from pattern recognition. Segmen-

tation algorithms themselves do not identify objects in scenes (as is the case with

pattern recognition); rather, they distinguish what data points belong to a different

5

object. The identity of the object is undefined.

A unique aspect of CANS is that GIS (Geographic Information Science) surface

feature analysis tools have been applied to the problem of autonomous robot navi-

gation. These GIS analytical techniques are extensively used to describe landscapes

with numerous metrics such as convergence, divergence, roughness, curvature, and

vegetation indices. [23,24] In many cases, these descriptors are used to identify areas

of interest, and uniquely describe features. In addition to providing information to

define distinct features, the GIS information also lends itself to being used in mission

planning, by classifying target areas of interest. Recording these target areas will

provide CANS with the necessary information to dynamically reassess the mission

and potentially redirect its mission objectives. Using complex, multi-dimensional fea-

tures helps make each feature unique, which enhances the certainty of associations

and thus certainty in state estimates. Extracting and matching these complex fea-

tures can become computationally expensive though, and hence requires a trade-off

between highly descriptive features and features that are computationally efficient.

The proposed architecture is designed to aid in this trade-off by using a database

structure and rapid search algorithms to facilitate efficient matching of features de-

scribed by multiple parameters. The search techniques utilize the novel k-vector

method, a technique that rapidly performs a range search that is independent of

database size [25].

6

I.D. Contributions of Work

Autonomous navigation systems are not a new field of study, so what is the

contribution of this work? CANS hosts several key aspects that make it a novel sys-

tem. First, CANS uses 3D features for SLAM (and the rest of the system). Second,

CANS uses a set of GIS information for operational means. Third, k-vector search

techniques are employed for database operations. In the journey to this end, lessons

are learned and the experiments conducted provide some interesting information.

7

CHAPTER II

CANS OVERVIEW

CANS is designed to maintain a set of software agents to interact between large

operations. These large operations, termed modules, consist of SLAM, image pro-

cessing (including feature extraction and matching), and path planning as can be

seen in Figure II.1.

Figure II.1. System overview

The image processing module takes the sensor information to extract and de-

scribe features in the environment. These extracted objects in the environment are

then passed to the SLAM module. The SLAM module takes the observed features

and passes search parameters based on each object to the database management

8

module. Suppose an image is captured viewing a water bottle lying on a table. The

image processing module will take this information and represent the water bottle

with 3D feature. The parameters of this 3D feature are passed to the SLAM module

which searches the database for a feature just like it.

The database management module passes back found objects. SLAM provides

the database management module updated features and new features to update and

add to the database. Continuing with the example, the database will pass back the

matched feature that represents the water bottle if it exists. SLAM will update the

feature with its new estimate of the parameters and any other new features observed.

SLAM passes a system state estimate to the path planning module. The path

planning module will pass search parameters to the database management module

to extract physical objects in the region where the trajectory is being planned. The

database management module returns the set of objects in the region of interest.

The path planning algorithm then plans the path and sends the waypoint trajectory

to the robot control, dynamics, and sensing module for the robot to follow. Finishing

with the same example, the SLAM module has a new estimate of where the system is

based on how the water bottle moved in its field of view. The path planning module

will request the database for all features in the space it is planning a path. Say the

database returns the water bottle because it is in this space. The path planning

algorithm will generate a path around the water bottle and provide this commanded

path to the robotic control, dynamics, and sensing module.

9

CHAPTER III

IMAGE PROCESSING

III.A. Overview

The image processing module extracts distinct features from sensor images and

describes them with physical metrics (centroid, size, orientation) and additional met-

rics (color, texture, slope, other GIS indices). To do this, the image undergoes a series

of operations. Figure III.1 illustrates the process of image processing. Each step of

the flow diagram will be discussed below followed by an illustration of the transition

between each intermediary step in a full image processing cycle.

10

Figure III.1. Image processing overview

III.A.1. Image Pipeline

To prepare the sensor data for the operations done in image processing, the

raw information gathered must be aligned. All the metrics gathered for each image

must align with the appropriate pixel. For example, the infrared camera of an ASUS

Xtion sensor does not perfectly align with the RGB camera. The image alignment

operation corrects the metric maps to align each pixel with the same point in physical

space.

III.A.2. Image Analysis

As one of the most beneficial characteristics of CANS, we can describe a feature

with many metrics. To do so we run the raw RGB-D through several filters to

produce channels of data. Here, a channel refers to a single image (pixel map, with

metric values assigned for each pixel) consisting of a single metric (e.g., X coordinate,

red intensity R, Z coordinate derivative, etc.). We will briefly discuss these filters.

11

The raw spatial data obtained by the ASUS Xtion sensor is a disparity map.

The disparity map is used to calculate the depth map in the RGB-D information.

The OpenNI library [26] is use to calculate the depth to each pixel, and then the

corresponding X, Y, and Z coordinates to give a 3D point cloud.

Although the RGB color space is very intuitive, it may not be ideal for SLAM.

For example, if the lighting conditions between image acquisitions are inconsistent,

the intensity of red, blue, and green will be different for the same object. This may

result in an false negative data association. A more appropriate color space may be

the CIE-Luv [27,28], where L stands for lightness. This color space has a dimension

(L) that is linear in lightness. Thus, a change in the shading of the object could be

directly characterized by L. This color space standard is also one of the two suggested

standards by CIE (International Commission on Illumination).

The field of Geographic Information Science (GIS) uses a suite of algorithms to

determine characteristics of an environment such as slope, roughness, curvatures, and

vegetation indices [23,24]. These metrics form what the GIS community call layers of

maps, where each map contains a different metric for the pixels (here we are instead

referring to layers as channels). Using these metrics, one can describe mountains,

lakes, corn fields, forests, etc. Simply overlapping these layers can highlight regions

otherwise indistinguishable by the human eye. This becomes especially true when

many of the metrics are determined from hyperspectral data. The ease with which

GIS algorithms can identify key areas in an image, and later in a 3-dimensional

world, make them excellent tools for feature identification. Thus, we utilize channels

of metrics to determine the features of interest, data association, and a potential tool

12

for science driven missions. In this work, the following GIS indices will be discussed:

• Slope Azimuth Divergence Index

• Slope Azimuth Convergence Index

• Slope Azimuth Homogeneity Index

• Surface Roughness Factor

• Tangential Curvature

• Planimetric Curvature

• Profile Curvature

• Unsphericity Curvature

• Difference Curvature

• Minimal Curvature

• Maximal Curvature

• Horizontal Excess Curvature

• Vertical Excess Curvature

• Mean Curvature

These metrics represent what their names might imply. The way these metrics

are calculated is protected by a non-disclosure agreement and thus are not presented

here.1

1If a determined reader is interested in the details of these metrics, they should refer to Dr.

Michael Bishop.

13

Figure III.2. Example of segmentation. Top: original image. Bottom:
corresponding segmentation.

III.A.3. Image Segmentation

Though we are modeling the environment with primitive shapes (ellipsoids and

simple prisms), the criteria to form the ellipsoids is based on more than just capturing

all the physical, 3D characteristics observed. Instead, we are interested in the most

unique features in the environment.

Figure III.2 shows three examples of what the segmentation may look like. The

top row shows the original color image for an image acquisition. The bottom row

shows the segmentation for the corresponding color image directly above it. The

distinct regions are indicated by a different color. This figure is used to illustrate

how the regions can be visualized. In reality, each different color represents a integer.

The pixels in each channel have a corresponding label pixel in this label map. All

the pixels with the same integer belong together and so do the corresponding pixels

in each channel.

14

The reader should note that the balls in the left-most image are clearly seg-

mented into distinct regions. The reader should also notice that the curtain in the

back is broken into seperate regions. Here lies a major challenge in this step. There

are many different ideas about what should be identified as distinct regions and then

how to conduct the segmentation (as discussed in Section (I.C)). One method may

work well in a specific environment, but finding a method that works for the more

general solution is difficult. On the right-most image, the reader will clearly see a

football (perhaps not so obvious it is a football). However, the segmentation below

shows no indication of it. This is due to the football being too close to the sensor,

thus providing null values for spatial information2. How to deal with imperfect or

very restricted information provides another challenge. In a more fully developed

system, CANS may wish to discern valuable differentiations between areas despite

invalid spatial information. Thus, this leads to another challenge.

2The sensor has a limited range. Outside the bounds of this range generates null or invalid depth

information.

15

III.A.4. Feature Classification

To be completely autonomous, the system must be able to identify which regions

are of interest for SLAM, path planning and mission planning. These regions are

represented by their labels in the label map and are aptly called Labels of Interest

(LOIs). In a system that uses RGB-D information, all regions are of interest to

path planning because they represent physical constraints that need to be avoided.

In order to determine what regions are of interest to SLAM, we run all the regions

through a series of predicates.

P1 = (Min Pixel Count < size(vi)) (3.1)

P2 = (Max Pixel Count > size(vi)) (3.2)

P3 = (Max Invalid P ixel Count > Invalid(vi)) (3.3)

P4 = (Max Distance > norm(vi(X), vi(Y), vi(Z))) (3.4)

P5 = (Min Distance < norm(vi(X), vi(Y), vi(Z))) (3.5)

where vi is the set of pixels for node i of the reduced graph 3. The predicate in

Eq. (3.1) provides a lower bound on the number of data points that must exist

in a region to be considered as an ellipsoid candidate. The predicate in Eq. (3.2)

provides an upper bound on the number of data points that must exist in a region

to be considered as an ellipsoid candidate. The data that we receive from the ASUS

Xtion is not high quality, hence there is likely to be invalid data. Invalid data is also

3Nodes of the graph represent regions of the graph that represents the iamge. A region may

contain one pixel or many more. The reduced graph is the graph of nodes less than the number of

total pixels, representing the image of segments.

16

introduced when the objects in line-of-sight are out of range for the IR camera. A

feature must be modeled with spatial validity; to the contrary would create inaccurate

estimates of physical metrics (such as centroid) which introduce errors in the SLAM

process. Thus, the predicate in Eq. (3.3) provides an upper bound on the number

of invalid data points allowable in an ellipsoid candidate.

If a feature passes all these predicates, we model the set of data points with an

ellipsoid. For features that do not pass all the predicates, they are labeled patches.

These patches (each a set of data points) are non-unique. The primary purpose of

the patches is to represent a physical obstruction for the path planning algorithm.

Thus, the patches are modeled as simple prisms with no regard for their boundaries

introduced via the segmentation process. The patch modeling is current work in

progress.

III.A.5. Feature Extraction4

The feature extraction step takes the regions of interest and extracts a physical

description of the feature from the corresponding 3D point cloud. The goal of the

feature extraction step is to quickly generate a representative physical description of

the feature that will be consistent through observations from different locations, and

hence be useful for data association when making multiple observations over time.

The defining descriptors are the location, the orientation and the size. We use ellip-

soids to represent features by these physical aspects, described by the centroid, three

orthogonal magnitudes and an orientation described by quaternions. One possible

4For completeness, here I will discuss some work conducted by my colleague Benjamin Morrell.

17

approach to compute this description is to compute the covariance matrix associated

with the 3D points, giving the orientation of the ellipsoid, and use an n × σ bound

to set the size of the ellipsoid (where n is a tuning parameter, and σ the standard

deviation). This approach is not taken, as it requires a Gaussian assumption on the

distribution of 3D points. While this might be well suited for observing ellipsoids,

it is an undesirable assumption for observations of the surface of general shapes.

Instead we use an averaging approach to capture the 3D structure of the observed

point cloud. The first step is computing the centroid, by taking the mean of the 3D

point cloud associated with the region of interest. Then a percentage (25% here) of

points furthest from the mean are excluded in the ellipsoid extraction. This is done

to ensure that outlier points do not skew the ellispoids. These outlier points may

belong to background features that were incorrectly assigned to the feature being

extracted. A series of simple computations are then employed to rapidly determine

the size and orientation of the ellipsoid. First, the region around the centroid is split

into 16, partially overlapping regions. The first 8 regions are given by the octant

attained from the division of 3D space by the coordinate axes. The second 8 are

the division of 3D space by the coordinate axes transformed by two 45 deg rotations

around the x and y axes respectively. The intention is to have a simple division of 3D

space, and avoid any common dividing lines between regions, where the averaging

approach described below would misrepresent the physical object. For each region,

a sum of the points in that region, weighted by the distances from the centroid is

computed:

18

Mi =
∑
∀pεRi

d2
p (3.6)

where Mi is the distance square sum for each segment Ri, p denotes each point and

dp is the distance of each point from the centroid. The vector from the centroid to

the mean of the points in the region with the largest Mi gives the direction of the

largest ellipsoid axis, which we call the primary axis. The process is repeated for two

overlapping quadrant sets around the primary axis, giving 8 regions. In this case, the

dp in equation 3.6 represents the perpendicular distance from the primary axis. The

vector from the centroid to the mean of the points in the region with the largest Mi

is again used, but gives a vector whose component perpendicular to the primary axis

gives the direction of the secondary axis. The final, tertiary axis, direction is given

by a cross product of the primary and secondary axes to complete a right handed

set. The orientation of this right handed set with respect to the camera frame gives

the orientation description of the ellipsoid, and is described with quaternions.

The size of the ellipsoid is represented by distances along each of the three axes

(as the semi-major axes of the ellipsoid). Each axis magnitude is the magnitude of

the standard deviation in the corresponding Ri, scaled by a factor α. By tuning α,

the ellipsoid size can be changed to balance the inclusion of some outlying points,

with being too large of an ellipsoid.

Figure III.3 shows three simple examples of ellipsoid generation, where point

clouds observations (blue dots) are modeled from a view of ellipsoids in physical

space (red), and are fit with ellipsoid representations (black). Only one face of the

red ellipsoid is visible, hence points on only one face can be observed. A closer match

19

Figure III.3. Ellipsoid generation from observations of ellipsoids

to the red ellipsoid cannot be achieved without making assumptions on the nature

of the true object: an undesirable step for generalization to a range of objects in the

environment. Nonetheless, the generated ellipsoid gives a good representation of the

shape, size and location. With multiple observations merged together, the observed

ellipsoids (black) will evolve to more closely match the true ellipsoids (red).

The results from a true point cloud are shown in Figure III.4. The results show

an ellipsoid extracted from the region of interest of a filing cabinet in the foreground

(represented by the purple points in Figure III.4, left). The right image in Figure III.4

shows just the points and the ellipsoid. The ellipsoid shows a good representation of

the orientation and size of the feature, but balanced with encompassing a majority

of the observed points (93.43% of the points, with α = 4). Parameter α could be

modified to encompass a greater percentage of the points.

To ensure that the ellipsoids created are valid, the extracted ellipsoids are passed

through a second series of predicates pertaining to the ellipsoid characteristics. These

are the predicates listed in Eqs. (3.7) to (3.10). As can be seen in Figure III.2, there

are regions that span a large portion of the image and lie on the perimeter of a series

20

Figure III.4. Ellipsoid extraction from cabinet feature in point cloud
image. Left: with full point cloud. Right: only the region of interest.

of physical objects. Additionally, a segmentation may merge a large set of outlier

pixels in the background to a foreground object. The result would skew the resulting

ellipsoid. As a means to remove these potential issues, the predicate in Eq. (3.7) is

used. Note that the seconday axis is used here. We do not want to exclude ellipsoids

that are relatively planar. This will often be the case when observing a side of flat

object since we have no information about how deep the object actually is.

P6 =

(
Max Aspect Ratio >

Major Axis Magnitude

Secondary Axis Magnitude

)
(3.7)

P7 = (Max Axis Magnitude > Major Axis Magnitude) (3.8)

P8 = (Min Axis Magnitude < Minor Axis Magnitude) (3.9)

P9 = (Min Largest Axis Magnitude < Major Axis Magnitude) (3.10)

Predicates in Eqs. (3.8) to (3.10) ensure that no abnormal ellipsoids are recorded.

Potential abnormal ellipsoids include partial segmentations of larger objects about a

21

Figure III.5. Sample image processing cycle

shadow or about a reflective edge.

III.A.6. Image Processing Cycle

Figure III.5 illustrates the entire image processing cycle from the raw data (the

color image on the left in addition to the depth map) to the set of ellipsoid models

(right most image) of regions extracted as ellipsoid candidates. Recalling the previous

sections, the first image on the left is the color image collected from the sensor

(a disparity map is also collected). The second image is the result of the image

segmentation. Note that this step follows the image analysis. The third image

highlights the regions that passed the predicates - both before and after the ellipsoid

extraction. The fourth image displays the point cloud and encapsulating ellipsoids

formed by the feature extraction. The descriptors of these ellipsoids and average

of their metrics for the points in the objects are passed as outputs of the image

processing module.

Note that there is more work to be done on the image processing to achieve the

level of performance desired. There are artifacts created in the image segmentation

that continue on to be selected as ellipsoid candidates. A more thorough discussion

22

of these challenges and future work will be discussed in section VI.B. For a more

interactive demonstration of the image processing, please refer to the accompanying

video5 of a full test set with the associated segmentations and extracted regions.

Thus far, an overview of the image processing module has been discussed. In Section

(III.B), an overview of different options for image segmentation will be discussed. In

Section (III.C), a trade study of these methods will be presented. In Section (III.D),

one method will be selected for futher investigation to suit the task at hand.

III.B. Segmentation Methods Investigated

The methods presented here, with the exception of OverLaid Thresholding

(OLT), are popular methods used in the field. This section will discuss each one

in some detail. The level of detail is presented to allow understanding of following

analysis. Further details are available in the referenced works. Following an overview

of all the methods, Section (III.C) will investigate different performance parameters.

III.B.1. Watershed

The watershed algorithm, as aptly named, is analogous to the basins and ridges

of a watershed. The algorithm is explained in much more detail in Meyer (1994) [18].

In basic principle, the algorithm follows the ridges of the image (i.e., the high value,

0 gradient pixels), creating branching edges accross the image. Figure (III.6) shows

the color image of a sample measurement. This measurement is accompanied with

a depth map. Figure (III.7) shows a sample segmentation of this image.

5Image Processing Animation. URL: https://www.youtube.com/watch?v=jA-yeVXIbG4

23

Figure III.6. Sample image processing image

Figure III.7. Sample image segmentation - watershed algorithm

24

Holding off on any premature conclusions about the algorithm, we can see that

the image is segmented into numerous different regions, where each region is rep-

resented by a different color. Due to the high number of segmentations, many of

the colors look alike. It is perhaps easier to distinguish between different regions

by the white lines seperating each region. Also note that the segments do not form

a boundary around any intuitive features in the environment. The watershed algo-

rithm is performed on a single grayscale image. A reduced number segmentation can

be produced if the image is smoothed.

III.B.2. Overlaid Thresholding

Another method investigated in this study is an algorithm called Overlaid Thresh-

olding (OLT) - created in this work. The algorithm is composed of two phases. A

primary segmentation followed by a region merging algorithm. The primary segmen-

tation is used to break up the image into regions of similarity. To define areas of

similarity, we threshold (θ) all the curvature of all the metrics’ values and overlay

them on each other. The threshold is defined in Eq. (3.11).

θ = M̄ + ασM (3.11)

where M :=An image of metrics (for example, red intesnity image), α:=A tunable

constant factor, M̄ := Mean of image metric, M , and σM :=Standard deviation of

image of metric, M . After thresholding the curvature metrics, we reduce the resulting

binary image into a skeleton6 (MS) by the Zhang-Suen thinning algorithm [29]. Each

6Given a binary image where 0’s represent edges, the original image has edges multiple pixels

wide. The skeleton of this image is one such that these wide edges are reduced to single pixel width.

25

Figure III.8. Sample segmentation: OLT (without N-CUT)

metric skeleton is overlaid on each other so that we create a binary image, B, that

follows the rule in Eq. (3.12).

B(i, j) =
λ∏
k=1

Ms(i, j, k) (3.12)

where λ:=number of metrics. The binary image B is an initial segmentation of the

image. Recall the sample image in Figure (III.6).

Figure (III.8) shows the segmentation of Figure (III.6) from the skeleton image

produced by Eq. (3.12). As can be noticed by inspecting Figure (III.8), several of

the regions break apart ’intuitive’ segmentations. Notice, for example, the book on

the left in the image. The segmentation breaks apart the image into several parts.

To address this, the primary segmentation is coupled with a region merging al-

gorithm called N-Cut [30]. Region merging is used to take the primary segmentation

and merge regions that are alike enough to be considered the same region. To do

26

this, we create a graph model (G) of the labeled image. G = (V,E), where V is the

set of nodes or regions of the image and E is the set of edges of the graph that can be

represented as an affinity matrix7 such that e(i, j)εE is the (i, j)th edge. The weight

of each edge e(i, j) is described in Eq. (3.13). The resulting e(i, j) is the negative

exponential of the weighted sum squared.

e(i, j) = exp
(
−
(
M(Vi)−M(Vj)

)
W
(
M(Vi)−M(Vj)

)T)
(3.13)

where W is a diagonal matrix of weights. The selection of W determines which

metrics are more critical for merging the regions and the selection of W may vary

between applications. For example, in an area that light is highly varying with time

(not location), we may want to neglect lightness as a metric to associate features, and

do so by reducing the weight associated with lightness. In neglecting lightness, we

allow shaded objects that are the same to be associated with each other. In another

example, let us suppose that we know that we will be in an environment that has color

difference over the duration of a mission with different lighting conditions. We may

want to neglect color as a matching criteria and use primarily physical characteristics.

In both of these scenarios, the metric weights are different. Using normalized cuts

(or N-cuts) we select edges that are high enough in magnitude to consider the pair

of nodes as one. If we let Vi, Vj denote two nodes, Eq. (3.14) describes the N-cut

relationship. The value of the Ncut(Vi, Vj) is the sum of the ratio (the edge being

7An affinity matrix represents relationships between nodes - often synonymous with similarity

matrix or connectivity matrix

27

evaluated by the sum of all edges for the node) for both nodes connected by the edge

being evaluated.

Ncut(Vi, Vj) =
E(Vi, Vj)∑
∀iE(Vi, Vj)

+
E(Vi, Vj)∑
∀j E(Vi, Vj)

(3.14)

By normalizing the cuts with the Ncut formulation, we remove the bias for nodes

with a large number of edges over other nodes to merge. The criteria for merging

two nodes is then:

1. Ncut(Vi, Vj) > Threshold

2. E(Vi, Vj) = max∀j(E(Vi, Vj))

3. E(Vi, Vj) = max∀i(E(Vi, Vj))

The regions that pass the criteria are merged, E is updated, and the process is

repeated until no regions pass the criteria or a max number of iterations are attained.

This process is very computationally expensive, but, like the initial segmentation,

has the potential to be sped up significantly via parallel computation. Figure (III.9)

illustrates the changes in the regions after this process. Table (III.2) shows the tuning

parameters in this simulation.

As can be seen in the weighting matrix W, the notebook in the original image,

Figure (III.6), is merged together. The background near the tissue box is merged

with the background correctly. The bag on the table remains intact.

28

Table III.1. Sample segmentation: OLT simulation parameters

Tuning Parameter Simulation Value

W [0, 0.2083, 2.0833, 2.0833, 0, 0.0174, 0.1736, 0.1736, 0, 0.0087, 0.0868, 0.0868]10−2

α [−0.1,−0.1,−0.1,−0.1]

Threshold 0.0036

Max Iterations 10

Figure III.9. Sample segmentation: OLT (left) & OLT with N-Cut (right)

29

III.B.3. K-Means

K-Means [20] is largely classified as a clustering algorithm. It falls in the category

with the likes of the Mean-Shift [22] algorithm. Clustering algorithms catergorize

data points together by their ’closeness’. Often, closeness is defined by the euclidean

distance. K-Means requires a set of ’seed points’ to be defined. Often these are

randomly selected, as in this study. The seed points represent the ’mean’ of a cluster.

Given a set of seed points, all points in the data set are assigned to one of these

clusters - the one with which its closeness is smallest. After this, the mean generally

is different from the seed point. The mean is recalculated and the process is repeated

until the clusters do not change. After the steady state is reached, the process is

repeated with a new random seeding. This repetition is done some defined number of

times. At the end of all the iterations, there is a defined value called the compactness.

This is given by Eq. (3.15). Compactness represents the distribution of each grouping

from the center. A single repetition may not find the optimal compactness. It is in

similar vein to finding a local minimum, but not a global minimum in a Newton

gradient descent method of a non-convex function.

C =
∑
j

∑
i

||dji −mj||2 (3.15)

The iteration with the lowest compactness is selected for the final clustering.

Note that this algorithm is by no means specific to images. This algorithm can be

used in any high or low dimensional space of data. As such, the clustering of data

may not be adjacent to each other. In other words, two blue balls sitting near each

other but not in contact may belong to the same cluster. So these clusters do not

30

Figure III.10. Sample segmentation: k-means. Left: original color image,
right: segmented image. This illustration uses a seed of 50 points and 10
iterations for the best compactness.

represent objects that can be accurately described by closed disconnected geome-

tries. To address this, OpenCV’s connectedcomponents function is used to identify

disconnected components [31]. Figure (III.10) shows a sample of the original color

image on the left and the segmented image on the right. Note that the curtain in

the backrgound is broken into many segments. The curtain in the image is indis-

tinguishable between each of these segments. The items on the floor are distinctly

distinguished however. There are a few segments near the objects that seem to cor-

respond to lighting variations and reflections. This highlights the major challenge in

the field of image procesing. Overall, the image segmentation works well; meaning

the objects on the floor that are intended to be used as objects in a SLAM process

are segmented from the surrounding regions.

III.B.4. Graph

The graph-based method is an extrapolation of the efficient graph-based method

developed by Felzenszwalb et. al (2014) [21]. Graph based methods represent the

data by a set of vertices and edges. In the context of this method, the vertices

31

Figure III.11. Sample segmentation: graph-based method. Left: original
color image, right: segmented image

represent each pixel and the edges represent the ’difference’ with adjacent pixels.

Felzenszwalb represents edges by a Euclidean distance between color intensities. This

is stated in Eq. (3.16).

w((vi, vj)) = |I(vi)− I(vj)| (3.16)

By extrapolating this to an N-dimensional image, we can calculate a weighted

Eulidean distance as seen in Eq. (3.17), where Mk is the kth metric.

w((vi, vj)) =
N∑
k=1

W (k)|Mk(vi)−Mk(vj)| (3.17)

The rest of the process introduced by Felzenszwalb remains the same. For a

detailed explanation of the process, refer to Felzenszwalb et. al (2014) [21]. Figure

(III.11) shows a sample segmentation using this method.

32

Table III.2. Segmentation evaluatuon: watershed verse OLT

Number of Segments Elapsed Time (ms)

Watershed Algorithm 9705 453.029

OLT 167 539.629

III.C. Method Trade Study

It is important to explain why one method was considered obsolete to the other

when progressing between each. Here it these trade-offs will be discussed.

In Figure III.7, you can see how the watershed algorithm oversegments the im-

age into many segments. In Figure III.8, OLT segments the image into intuitive

pieces. Though still oversegmented, this image far fewer less segments. This re-

duction greatly reduces the computational cost of region merging algorithms. If the

computational power of the system is low, the primary segmentation is still usable

for feature extraction. Table (III.2) compares each method.

It is worth noting that overlaid thresholding is approximately 20% slower than

the watershed algorithm on a single thread implementation. However, there are

approximately 98% less segments. Overlaid thresholding necessitates calculating

means and standard deviations of numerous layers of metrics and image multiplica-

tion. Both of these processes can be easily made in parallel to improve computation

time.

Even at a superficial level, it was easy to distinguish whether watershed or

OLT performs better. However, it is not so straight forward with OLT, K-Means,

and Graph-based methods. The distinguishing characteristics are blurry. So here,

33

the important characteristics with regard to image segmentation will be discussed.

Simply put, they are:

1. Speed,

2. Repeatability, &

3. Uniqueness.

The speed to take a set of data and produce a segmented image must be fast

enough to be implemented in real time. At this stage, it is important to not prema-

turely optimize. As such, the speed of the algorithm should be evaluated with the

likelihood for speed increase with parallel processing and other optimization tech-

niques. This makes this first performance characteristic much more qualitative than

quantitative. Repeatability means that a segmentation in one frame exists in the

next frame (which is nearly identical). An algorithm that is not repeatable does not

provide information that can be tracked. Additionally, in concert with repeatability,

the segmentations must be unique. The segmentations must segment the image in

such a way that unique features are highlighted as different objects. This allows for

a more robust data association process in SLAM.

III.C.1. Experiment

III.C.1.a. Objective

In order to qualitatively and quantitatively compare image processing tech-

niques, the key characteristics of the system that are important need to be iden-

tified. The characteristics that are important should directly reflect in the success

34

and performance of CANS. These characteristics should be observable, ideally quan-

titatively. It is not yet clear whether GIS metrics will be benefit image segmentation

or if they will affect the algorithms differently. For this reason, two variations of each

algorithm (with GIS information and without GIS information) were ran.

III.C.2. Performance Measures

The important characteristics are:

1. Speed

(a) In optimized framework, should be < 1 sec. That is a very conservative

bound.

2. Repeatable Labels of Interest (LOIs)

(a) Between successive frames, the same objects are segmented and identified

as LOIs.

3. Whole LOIs

(a) The LOIs are not partial elements of a larger object. It is a partial of a

large object if it exists inside a predefined whole object.

4. Extracts all LOIs

(a) Identifies all LOIs expected to be extracted.

(b) These must be predefined.

35

III.C.3. Evaluating Performance Measures

The next important point is how to evaluate the performane measures - either

qualitatively or quantitatively.

III.C.3.a. Speed

On a single platform, each algorithm was ran on a set of N images. The pro-

cessing time for each algorithm was recorded. The same set of N images was used

for each algorithm.

III.C.3.b. Repeatable LOIs

For a sequence of N images viewing a set of objects throughout, the following

test for each algorithm was ran:

1. Run algorithm.

2. Record which objects were extracted.

3. Repeat 2 through the sequence.

(a) Record whether the same objects from the first image were extracted.

III.C.3.c. Whole LOIs

For a set of N images, the bounds of whole objects were manually defined and

each algorithm was tested. If an LOI is part of but does not encompass all of one of

the defined bounds, a failure is recorded.

36

Figure III.12. Speed comparison

III.C.4. Results

III.C.4.a. Speed

Each algorithm (K-Means, Graph, OLT) was run with two variations (with and

without GIS information) on 60 images. The algorithms with GIS information used

4 additional metrics. Figure (III.12) shows a bar graph of this test. Note that blue

indicates with GIS and red indicates without. The error bars show a one standard

deviation from the mean.

The figure shows a clear distinction between K-Means, Graph, and OLT. OLT

is the fastest, followed by Graph and then K-Means. The corresponding values are

in Table (III.3).

37

Table III.3. Speed comparison of image segmentation techniques

Algorithm GIS/NO GIS Mean Time (Seconds) Standard Deviation Time (Seconds)

K-Means GIS 12.9762 0.3726

K-Means NO GIS 13.5384 2.2726

Graph GIS 3.1741 0.1135

Graph NO GIS 3.1442 0.1990

OLT GIS 0.2728 0.0557

OLT NO GIS 0.2327 0.0611

III.C.4.b. Repeatable LOIs

Given a set of objects that were extracted, how often does that object get high-

lighted? Using a set of 8 frames collected in succession, each algorithm (K-Means,

Graph, & OLT) were run with two variations (with and without GIS information).

The GIS metrics used were:

• Slope Azimuth Divergence Index

• Slope Azimuth Convergence Index

• Slope Azimuth Homogeneity Index

• Surface Roughness Factor

Figure (III.13) shows the liklihood that an object is identified if it is identified

once in the 8 image sequence. Note that K-Means without GIS information performs

the best, followed by Graph without GIS and then K-Means with GIS information.

Most notably OLT with GIS information performs the poorest. OLT without GIS

38

Figure III.13. Repeatability comparison

information was excluded since performance was poor (The images did not resemble

any intuitive segmentations and was not consistent between consecutive frames). The

corresponding values are listed in Table (III.4).

Figure (III.14) shows the probability distribution of the frequency in which an

object is repeatedly observerd. The figure displays a distribution for each algorithm

(K-Means, Graph, OLT) with two variation (with and without GIS information).

Note that OLT without GIS information is excluded. A more ideal algorithm has

a distribution shifted to the right (towards 100%). This would indicate a higher

frequency of objects being repeatly identified between successive frames. These dis-

tribution curves are fitted to the data. The actual frequency per object, per algorithm

is shown in Appendix (VI.B.3).

So what can we say about these results? Figure (III.14) also shows the distribu-

tion for each of the bars in bar graph of Figure (III.13). So in addition to what was

39

Table III.4. Repeatability comparison

Algorithm GIS/NO GIS Liklihood of Repeated Object

K-Means GIS 50.54%

K-Means NO GIS 56.62%

Graph GIS 41.67%

Graph NO GIS 52.94%

OLT GIS 30.00%

Figure III.14. Repeatability comparison: probability distribution

40

said about the bar graph, we see that K-Means (GIS), Graph (NO GIS), and Graph

(NO GIS) are more widely distributed than K-Means (NO GIS) and OLT (GIS).

In addition to the qualitative nature of this test, it was conducted with only one

scene and only 8 images; thus, the results should be regarded as suggestive and not

conclusive. If given a larger sequence and many more scenes, we could potentially

have a different result entirely.

III.C.4.c. Whole LOIs

Say we have extracted some set of objects, what is the impact of each object

being represented by several partial regions (or partials) by the image segmentation

process? What would happen if in one frame the object is entirely encompassed by

a segment, but in the next frame, the object is split into two (or more) separate

segments? I propose this is a non-ideal situation. If the proposed scenario occurs,

the position (along with all the other metrics) of the object will not accurately

represent the whole object. In particular, it will be biased to a particular direction.

If this partial object is matched to the whole object in the data association process

of SLAM, we introduce an error into the process that is not indicative of the system

motion. So, we desire a process that minimizes this as much as possible. Here is

presented a set of 8 images, there were 7 objects tracked. That makes for 56 data

points. For each data point, it is classsified as a ’Whole segment’, ’Partial segment’,

or not observed at all. Figure (III.15) represents this data in a bar graph. This

information is also listed explicitly in Table (III.5).

Here we see that OLT (with GIS information) provides the most percentage of

41

Table III.5. Whole segmentation comparison

Algorithm GIS/NO GIS Percentage Whole Percentage Partial Percentage None

K-Means GIS 25.00% 44.64% 30.36%

K-Means NO GIS 32.14% 8.93% 58.93%

Graph GIS 19.64% 16.07% 64.29%

Graph NO GIS 32.14% 42.86% 25.00%

OLT GIS 58.93% 5.36% 35.71%

Figure III.15. Whole segmentation comparison

42

segmentations as wholes and least as partials. This is the best in the performance

characteristic. This is followed by Graph (with GIS information). Note that this

is better than the other three methods because it minimizes the partial. The logic

is: Get a whole segmentation if possible. If not, don’t extract a partial. This is to

minimize the non-representative errors as mentioned previously.

III.C.4.d. Result Interpretation

So evaluating all the qualitative performance characteristics discussed in this

section, the following can be said. Speed tests show that K-Means is a significantly

slower method than both Graph-based and OLT. OLT shows better speed perfor-

mance than Graph-based. K-Means (with no GIS information) and Graph-based

(with no GIS information) show better repeatability performance. OLT (with GIS

information) outperforms all others in ensuring whole segments. So the results do

not declare a clear winner, but the Graph-based method seems to perform on par in

all regards whereas the others underperform in some regard. For this reason, we will

continue a more thorough analysis of the Graph-based method. Also take note that

the GIS information tests do not clearly perform consistently better or worse. This

is true even within one of the measures. The different algorithms vary whether GIS

information is beneficial or not. A strong statement cannot be made on the benefit

of GIS information without a more extensive sample space.

43

III.D. Graph Based Method Investigation

With the version of the graph-based segmentation developed by Felzenszwalb

et. al, there were two primary tuning parameters. These are the parameters k

and σ. The first serves as an initial thresholding parameter in the beginning of

the process and the second serves as a smoothing parameter for gaussian smoothing

of the image before processing. With the extrapolation proposed in Eq. (3.17),

we introduced N additional tuning parameters - one per metric. This provides a

challenge in identifying the best parameters for the task. Ideally, these parameters

are chosen methodologically with some basis of reasoning behind them. Due to

qualitative characteristics used to evaluate the techniques previously, it would be

mindful to perhaps base the methodology, not on empirical observations, but on a

fundamental line of reasoning. Here I suggest using a sigmoid function to represent

the difference function in Eq. (3.18).

w((vi, vj)) =
N∑
k=1

WkSk(Mk(vi),Mk(vj)) (3.18)

where the sigmoid function Sk is defined in Eq. (3.19).

Sk = Ck


1(

1 + Pke
−Ωk

(
x−Lk

2

)) − Zk
 (3.19)

There are a few key properties of this function that are quite convenient. These

are:

1. Ranges from 0 to 1.

44

Figure III.16. Simple sigmoid function

2. Nonlinear cap at extremities.

3. Linear in midrange.

4. Solvable for a set of higher level information.

These properties can be seen in the simple sigmoid function in Figure (III.16).

Here, it is discussed why each one of these characteristics are important. 1) Ranges

from 0 to 1. By knowing the upper and lower bounds of the differences, we may better

determine what the threshold parameter k should be. We know that if the threshold

parameter k is larger than N , then any two pixels that are previously unjoined will

be joined, regardless of their difference. 2) Nonlinear cap at extremities. It is very

likely that a difference that is moderate may provide increasingly less information as

the difference grows. For example, suppose that two pixels with a Z coordinate have

a difference of 1 meter. Does 2 meters provide much more infomation about whether

45

the two pixels should be joined? Depending on the application, the answer very well

may be no. Similarily, if two adjacent pixels have a Z coordinate difference of 0.01

mm, is that really a difference we can descernably say is different? Or is it possible

it may very well be noise? Again, depending on the application, it may be just

noise and should be neglected. 3) Linear in midrange. Though the extremities may

not provide linearly increasing amount information, there is likely a midrange that

provides this linearly increasing amount of information. The numerical difference in

this linear range may correspond to a linearily increasing distinction. Solvable for

a set of higher level information. Possibly the most important characteristic, we

can solve for the parameters of the sigmoid function as a function of higher level

information. This information is the noise level, linear region, and saturation level.

This forms a system of equations. For example, let’s look at a Red intensity sigmoid

function. Suppose we conside a difference of 10 as noise, a difference of 150 reaching

saturation, and 100 as the midrange. This creates the system of equations in Eqs.

(3.20) to (3.23). Here we solve this system of equations with one of MATLAB’s

numerical solvers [32].

0 = Ck

 1(
1 + Pke

−Ωk(0− 2∗100
2)

) − Zk
 (3.20)

0.1 = Ck

 1(
1 + Pke

−Ωk(10− 2∗100
2)

) − Zk
 (3.21)

0.9 = Ck

 1(
1 + Pke

−Ωk(150− 2∗100
2)

) − Zk
 (3.22)

46

Table III.6. Sample solved sigmoid parameters

C (Approx.) L P (Approx.) Z (Approx.) Ω (Approx.)

Value 1.2668 200 0.4412 0.1718 0.0239

Figure III.17. Sigmoid function example

1 = Ck

 1(
1 + Pke

−Ωk(2∗100− 2∗100
2)

) − Zk
 (3.23)

The solution to these equations are in Table (III.6). The sigmoid function that

results is depicted in Figure (III.18). Note that the 10% and 90% vertical lines

are depicted as well. These are vertical lines that are plotted to intersect with the

sigmoid function where the value is at 0.1 (or 10%) and 0.9 (or 90%). This coincides

with the noise and saturation levels.

So the next question is what noise levels and saturation levels are appropriate

47

Figure III.18. Sigmoid segmentation example

for each type of information. Here it is reasoned that it depends on application and

environment. In the test scenarios that are discussed here, the spatial information

only spans approximately 5 meters and the objects being observered are typically

about 250 mm in dimension. These are very rough numbers but can give an idea of

the scale we care about. So suppose a noise level at 120 mm, saturation level at 400

mm and midrange at 250 mm is set. Similarily, let the color intensity noise level at

30 points, saturation at 150 points and midrange at 90 points. We will also set our

graph threshold k at 1 and σ at 0.5. Note that all these parameters can be tuned

to the application. Figure (III.18) shows, side-by-side, the original color image, the

segmentation, and the regions of the segmentation to be modeled as ellipsoids (left

to right).

The segmentation highlights nearly all the major intuitive objects in the field

of view. It is important to note that the distinctness of the objects makes this an

easier test scenario. Nevertheless, it is a valid scene and one to build from. This

segmentation is done with the settings specified by Table (III.7). Here you can see

that W is set 1 to allow all channels to be equally weighted. This does not necessarily

48

Table III.7. Solved sigmoid parameters

Metric C (Approx.) L P (Approx.) Z (Approx.) Ω (Approx.) W

X,Y,Z 1.0638 500 1.2094 0.0245 0.0140 1

R,G,B 1.3876 180 0.7395 0.1893 0.0223 1

have to be the case and a methodology to select this has not been discussed. Choosing

this weighting value remains to be a relatively arbitrary selection.

49

CHAPTER IV

DATA MANAGEMENT

IV.A. Overview

The database management module discussed in Section II is designed around

the k-vector search techniques [25, 33]. To illustrate how the database management

component is designed, we will provide an overview of the component operation in

IV.B followed by a review of k-vector operations in IV.D.

IV.B. Data Management Overview

The database management module can be visualized in Figure IV.1. The database

interfaces with a series of functions (shown as orange boxes) that operate in parallel

loops. These loops are referred to as agents; agents that exchange information be-

tween the database and subsystems (i.e. SLAM, path planning, image processing).

As depicted in Figure IV.1, the database lends itself to be utilized by all operations

of the system.

50

Figure IV.1. Database management overview

IV.C. Functionality Discussion

Some of the agents exchange information with other agents, taking the last

produced set of data. For example, we will step through some of the key agents illus-

trated in Figure (IV.2) through Figure (IV.4). In these flow charts the grey rhombi

are data acquired from the subsystems, and the green rhombi are data generated

from the functions in one of the interfaces. Note that Metric Weights is a data ob-

ject that will be taken from the last generated output of another agent not shown.

The purpose of this agent is to add features to the buffer - to be later added to the

database. As illustrated in Figure (IV.2), the following process is undertaken.

1. Globalize features : Globalize the features acquired from the most recent image

acquisition by transforming from the body frame into a global reference frame.

2. Define search range: Define the search range that will be used to search through

the database for features that could be a match. This is a measure that could

51

Figure IV.2. SLAM & database interface agent

be variable for different environments and feature descriptions. The metric

weights determine the importance of each metric in the search.

3. Search database: Search the database in the range provided and select the

features that match the features from the image acquisition.

4. Add to buffer : Add the matched features and new features to a buffer to update

the database on the next update database cycle.

Figure (IV.3) shows the agent in the path planning interface. The purpose of

this agent is to grab relevant features from the database for path planning uses. As

illustrated in the figure, the following process is undertaken.

1. Define search range: Define the search range for features that may pose physical

constraints. The objective input is a goal vehicle state (position, attitude and

velocity).

2. Search database: Search the database through the range given for features and

patches within the range in a fashion consistent with the k-vector techniques.

Figure IV.4 shows an agent in the database utility tools. These tools maintain

the database and auxiliary data objects that are necessary for the system to operate.

52

Figure IV.3. Path planning & database interface agent

Figure IV.4. Database utility agent - database upkeep

As illustrated in Figure IV.4, the following process is undertaken.

1. Collapse buffer : Reduce the buffer by eliminating duplicate features and patches.

2. Update database: Update the parameters of features in the database and add

new features.

3. Re-sort database: Re-sort the sorting indices to reflect the newly updated

database in a fashion consistent with the k-vector techniques.

4. Rebuild database: Take the updated database (a list consisting of updated

features) and reconstruct database to include new and updated features in a

fashion consistent with the k-vector techniques.

53

The multiple agent architecture allows for the different tasks to operate sepa-

rately, in parallel, at frequencies that are appropriate to that task. Many additional

tools can be included in the database management system such as the estimation of

dynamic features, adjustment of metric importance to environment conditions, and

many more to be developed in future work.

IV.D. K-Vector Overview

Recall that the K-Vector is a searching technique. This technique intends to

minimize the time needed (and as a result the number of operations) to find a given

item in a list of items. Using such a technique necessitates organizing the data in

a special way. The database is formed by two tables. The first table is called the

Object Set. This table holds the objects (ellipsoids and patches) in the environment.

Each row of this table is a separate object. The columns consist of descriptors of the

object such as its metrics. For example, a field list is shown in Table IV.1.

This list continues to include Y Centroid, Z Centroid, ellipsoid axis, average

color, average GIS indices, and others along with their corresponding uncertainty.

The second table is called the Sorting Indices. This table holds the sorted Object

Table IV.1. Sample of first 4 columns of object set table

Object ID Object Type ID X Centroid X Centroid Uncertainty . . .

1 0 1 0.5

2 1 4 0.7

54

Table IV.2. Sample of first metric in sorting indices table

Sort ID X Centroid Sort Index X Centroid K-Vector . . .

1 6 0

2 2 2

3 3 5

4 5 5

5 1 5

6 4 6

ID list for each metric and the corresponding K-Vector. For example, an excerpt of

a possible table is shown in Table (IV.2). The majroity of the operations reside in

this table.

Similar to the Object Set table, this list continues to include sorted Object ID

sets for Y Centroid, Z Centroid, ellipsoid axis, average color, average GIS indices, and

others along with their corresponding k-vector. The sort operation sorts the object

ID’s by metric value. Each metric has a column (such as ’X Centroid Sort Index’)

where the object ID’s are sorted by that metric (such as ’X Centroid’). Build creates

the k-vector. Each metric has a column (such as ’X Centroid K-Vector’) where the

k-vector for that metric (such as ’X Centroid’) resides. The k-vector is constructed

to hold the indices of a sorted set such that solving Eqs. (4.1) & (4.2) will give the

upper and lower search bound indices in the sorted set for search bounds [a, b]. Build

also creates the polynomial cofficients, p & q, for each metric as seen in Eqs. (4.3)

55

and (4.4).

kstart = k(ja) + 1 (4.1)

kend = k(jb) (4.2)

where ja and jb are defined by Eq. (4.3) and Eq. (4.4), respectively.

ja =

⌊
a− q
p

⌋
(4.3)

jb =

⌈
b− q
p

⌉
(4.4)

The construction of the k-vector and a more thorough explanation of the theory

can be found in Mortari et al. [25]. Figure IV.5 illustrates a typical search operation.

The following steps walks through the diagram.

1. The search bounds [7, 11] are provided.

2. By Eqs. (4.1) & (4.2), the index of the sorted set is calculated.

• This is illustrated by the blue arrows in Figure IV.5.

3. The object IDs between kstart and kend are selected.

• This is illustrated by the red oval Figure IV.5.

4. The objects that are indicated by the selected Object IDs are grabbed.

• This is illustrated by the red circles and purple arrows Figure IV.5.

56

Figure IV.5. Database k-vector relationship illustration

This operation provides a set of matching objects for each metric. In practice

the bounds are defined by the uncertainty of the observed object formed in image

processing and a set intersection algorithm is performed on the set for each metric to

find the object(s) satisfying all bounds. If multiple matches are found, a trimming

routine is employed to find the match with the closest Euclidean distance to the

observed feature. Using the k-vector to perform these operations is efficient because

the position of search bounds in a sorted set is explicitly calculated by the solution

of a linear equation (Eqs. (4.1) to (4.4)). This is in contrast to comparing the values

of each element of the sorted set until the bounds are found.

IV.E. In-Depth Investigation

In order to qualitatively and quantitatively evaluate the database management

subsystem, we need to identify key characteristics of the system that are important.

57

The characteristics that are important should be directly reflected in the success

and performance of CANS. These characteristics should observable, ideally quanti-

tatively.

IV.E.1. Performance Measures

Here is a list of characteristics that impacts the perfomance of the overall system.

1. Speed

(a) Given a set of N database objects and Z metrics,

i. How fast is define search range?

ii. How fast is search?

iii. How fast is sort?

iv. How fast is build?

2. Accuracy

(a) Given N objects and bounds to include one object,

(b) How often is the correct object included?

(c) How many additional objects are included?

IV.E.2. Evaluating Performance Measures

To evaluate the characteristics, the following steps were repeated, measuring the

time elapsed at each point until the database had 1000 objects.

1. Define Search Range for object in previous addition.

58

(a) Except in the first step of the test.

2. Search database with calculated search range.

3. Trim result set to one object.

4. Add simulated found features and new features to buffer.

5. Add buffer to database.

6. Update found features in database.

7. Sort database.

8. Build database.

IV.E.3. Expectations

Generally, we expect the entire loop to decrease in speed as the number of objects

(N) in the database increases. By inspection1, We expect the time complexity of

Define Search Range to follow Eq. (4.5).

∝ NZ (4.5)

We expect Search to follow Eq. (4.6).

∝ (Z − 1) (4σMAX − 1) (4.6)

1Inspection here is closely related to big O analysis, but retains some lower order terms.

59

where σMAX is the maximum uncertainty of a metric in search object. We expect

Trim to follow Eq. (4.7).

∝ σMAX (4.7)

We expect Add to Buffer, Add to Database, & Update to be independent of N

and Z. We expect Sort to follow Eq. (4.8).

∝ ZN log2(N) (4.8)

We expect Build to follow Eq. (4.9).

∝ (BZ)N2 +
(
AZ − 1

2
BZ

)
N + (D − AZ) (4.9)

where A,B,D are constants.

IV.E.4. Results

Figure (IV.6) shows all the timed operations as function of the number of objects

in the database. Note that ‘Loop’ is the total time elapsed for an entire loop, or steps

1-8 in the above section. So this is approximately the sum of all the other operations.

Note that sort and build take majority of the elapsed time. So much so that the

other operations are not that visible in the figure. The K-Vector is designed for

static operations where sort & build are not frequently performed; so, it is expected

that sort and build are the primary culprits of undermining the performance. Let’s

return to this point shortly.

Figure (IV.7) shows the previously difficult-to-see operations. Note that all the

60

Figure IV.6. All operations’ elapsed time as a function of objects in the
database

operations are primarily constant, aside from the frequent spike, except the Define

Search Range operation. This matches our predictions from the previous section.

For individual plots of each operations with its corresponding fit curve (fit abides by

the predicted form), see Appendix (VI.B.3). Table (IV.3) show the RMSE and the

normalized RMSE (NRMSE) for each of operations with respected to the fitted line.

Here NRSME is defined to by Eq. (4.10).

NRMSE =

√√√√1

l

l∑
i=1

(
Yi −Di

Di

)
(4.10)

where D is the data, Y is the fitted function, and l is the length of the data set.

Note that the build operation has the largest deviation, followed by sort. These

are also the functions of largest value. NRMSE shows that build & sort are not the

61

Figure IV.7. Faster operations’ elapsed time as a function of objects in
the database

largest in this measure.2 Generally, these measures show that the predictions are

accruate.

2NRMSE gives a normalized error to offset any large variances due to the scale of larger measure-

ments. In essence, this captures the deviation as a ratio with the magnitude of the measurement.

62

Table IV.3. RSME values for database operations; (N)RMSE with respect
to prediction from fit curves.

Operations RMSE (ms) NRMSE (ms)

Add to Buffer 0.3685 0.9573

Add to Database 8.3897 0.5481

Sort 40.8561 0.0877

Build 70.2219 0.0735

Define Search Range 2.4756 0.1329

Search 1.0536 0.2752

Update 5.0257 0.6078

Trim 0.3025 0.2536

IV.F. Dynamic K-Vector Study

K-Vector was originally designed to be used with a static database. As was

seen in Section (IV.E), the sort and build operations take, by far, the most time.

As suggested by Mortari et. al [33], there may be ways to create a K-Vector for

a dynamic database. Here we investigate a method for going about this dynamic

K-Vector. When the K-Vector is used for operations, we are solving the linear Eq

(4.11).

x =
y − b
m

(4.11)

Building will create new m and b constants for each metric. Suppose that we

63

choose not to build and sort and instead just insert appropriate values where they

belong. The solution to the polynomial in Eq. (4.11) will become increasingly less

accurate. To see how innacurate, let’s review how m and b are calculated in Eqs.

(4.12) & (4.13).

m =
ymax − ymin + 2ζ

n− 1
(4.12)

b = ymin −m− ζ (4.13)

where n is the nummber of objects in the set, ζ is some small number, ymax is the

maximum value of the set, and ymin is the minimum value of the set. If we assume

that the objects coming in are not outside the extremities (i.e.< ymax and > ymin),

then m becomes increasingly less accurate as n grows. To determine how much, see

that the index A := 1−mOLD/mNEW is defined in Eq. (4.14).

A = 1− mOLD

mNEW

=
nB

1− nOLD
(4.14)

where nB is the number of objects added since the last static build, nOLD are the

number of objects in the database at the last build, mOLD is the m coefficient calcu-

lated from the last static build, and mNEW is what the coefficient should be. By using

this as a criteria for when the ‘Allowance’ has become to large (and thus too innacu-

rate), one can choose to do a static sort and build to reset A to 0. Let it be stressed

that this Allowance is calculated per metric and only the metric that surpassed its

Allowance will need to perform a static sort, build, & add to database. Now, that we

know when we are going to do a dynamic sort and build, let’s disucss exactly what

this entails. This operation, as performed here, combines the functionality of sort,

64

build, and add to database.

1. Acquire feature buffer to be added.

2. If A < ATHRESH , continue. If not:

(a) Revert to static sort, build, & add to database.

(b) Exit sequence

3. Solve Eq. (4.11) for index, x, in K-Vector for each feature.

4. Attain the K-Vector values at index (x) of the K-Vector.

(a) Compare with feature at index.

(b) If buffer feature metric is less-than database feature metric, decrease in-

dex.

(c) Repeat step (4b).

5. Compare values in sorted object ID set for proper placement of new feature.

6. Insert object ID.

7. Repeat through entire set.

8. Calculate A from Eq. (4.14).

To evaluate the performance of this method, a random object set of 1000 was

generated with a fixed uncertainty. A similar sequence to that followed in Section

(IV.E) was followed in these tests. The steps were revised to the following:

1. Define Search Range for object in previous addition.

65

(a) Except first step of the test.

2. Search database with calculated search range.

3. Trim result set to one object.

4. Add found object and new objects to buffer.

5. Add buffer to database.

6. Run Dynamic Add to database.

(a) Follows steps described above.

7. Record allowance thresholds surpassed and extremities surpassed.

Note that here Update is not used. The current state of the dynamic k-vector

operations is not yet setup to run Update. The other functionalities are sufficient

to demonstrate preliminary results on the benefit of a dynamic K-Vector. To do an

update, the K-Vector indices and sorting indices need to be relocated and the indices

in between the old and new location will be shifted. Additionally, we are recording

the allowance thresholds surpassed and the extremities (ymax, ymin) surpassed since

both mean a static sort, build, and add to database are run for the metric that

caused the flag. Figure (IV.8) shows the dynamic K-Vector operational loop elapsed

time for an allowance ranging 0 to 1. Note that there is no noticeable difference.

Figure (IV.9) shows the difference with respect to an Allowance of 0 (static sort,

build, add to database everytime) fo each of the allowance threshold settings.

Here it can clearly be seen there is no performance improvement despite the fact

that there are fewer static sorts and builds. This can be seen in Figure (IV.10). Recall

66

Figure IV.8. Loop time elapsed for dynamic k-vector ranging allowance
0 to 1

Figure IV.9. Loop time elapsed difference - with respect to allowance of
0 - for dynamic k-vector ranging allowance 0 to 1

67

Figure IV.10. Thresholds and extremeties surpassed, suggesting number
of static builds.

that, static builds and sorts only occur when that metric has a threshold surpassed

or extremity surpassed. So the count of these should scale with the number of static

sorts and builds. Figure (IV.10) then indicates that the static sorts and builds are

in fact decreasing despite minimal change in the time elapsed for the operation.

It is suspected that this is due to a large amount of disk operations that occur

in the current implementation. The disk operations occur at every instance of the

operational functions. In particular, sort and build operate on large amounts of the

data when shifting indices in the table. Appendix (VI.B.3) shows figures for all the

individual operations, corresponding difference plots, and measures of search success.

Though increased performance is not visible here, it is expected that this approach

will show significant improvement in a more appropriate implementation in RAM.

Discussion of steps to investigate this further will be discussed in Section (VI.B).

68

CHAPTER V

CANS PERFORMANCE

As mentioned at the beginning of this thesis, the overarching goal of this work is

a Cohesive Autonomous Navigation System (CANS). Recall how the system is formed

as depicted in Figure (II.1) in Section (II). In this section, the overall performance

of the system will be characterized. This will include work from the other modules

in addition to image processing and data management. Let’s start by recalling the

objective of CANS. The desire is to have an autonomous navigation system that

represents information in a way that is helpful to SLAM and path planning. Here,

autonomous navigation means that the system can localize, map the environment,

plan trajectories, and determine mission objectives. We also wish to use higher

level information, such as GIS metrics, to help with image segmentation and data

association. Excluding path planning in loop, we show results of the combined

system.

The settings used in these results are listed in Table (V.1). The uncertainties

listed under ‘Data Management’ are the values mentioned at the end of Section

(IV.D). The uncertainties listed under ‘SLAM’ are the values used to form the Q

and R matrix for the Unscented Kalman Filter used in the SLAM process (for process

model and observation model, respectively). For more information on the details of

a UKF refer to Wan et al [34]. Note that the uncertainty for attitude is listed as a

1Control is generated by estimating the acceleration (angular or translational) through forward

finite element differencing of the state trajectories recorded by the VICON system.

69

Table V.1. CANS simulation settings

Setting Value

Image Processing -

Segmentation Method Graph - Sigmoid

Metrics X,Y,Z,R,G,B

W [1, 1, 1, 1, 1, 1]

P ≈ [1.20941, 1.20941, 1.20941, 2.84293, 2.84293, 2.84293]

Ω ≈ [0.01397, 0.01397, 0.01397, 0.0503, 0.0503, 0.0503]

C ≈ [1.06384, 1.06384, 1.06384, 1.08637, 1.08637, 1.08637]

Z ≈ [0.02453, 0.02453, 0.02453, 0.04980, 0.04980, 0.04980]

L [500, 500, 500, 180, 180, 180]

σ 0.5

k 1

Predicate: Min Pixel Count 230

Predicate: Max Pixel Count 8000

Predicate: Invalid Pixel Count 25%

Predicate: Max Distance from sensor 2 meters

Predicate: Min Distance from sensor 0.2 meters

Point Exclusion 25%

Post-Extraction Predicate: Max Aspect Ratio 13

Post-Extraction Predicate: Max Axis Magnitude 0.3 meters

Post-Extraction Predicate: Min Axis Magnitude 0.001 meters

Post-Extraction Predicate: Min Largest Axis Magnitude 0.02 meters

Data Management -

X,Y,Z Centroid Uncertainty 0.1

Axis Magnitude Uncertainty 0.25

Quaternion Element Uncertainty 2

RGB Uncertainty 130

GIS Uncertainty 130

SLAM -

Process Model X,Y,Z Uncertainty 4.1 · 10−8

Process Model VX ,VY ,VZ Uncertainty [1.2, 1.2, 1.225 · 10−3] · 10−3

Process Model θ1,θ2,θ3 Uncertainty 3.6 · 10−6

Process Model ω1,ω,ω3 Uncertainty 1.6 · 10−1

Observation X,Y,Z Uncertainty 4.1 · 10−3

Observation Axis Magnitude Uncertainty [6.4, 6.4, 6.4 · 10−3] · 10−4

Observation θ1,θ2,θ3 Uncertainty 3.6 · 10−7

Observation ω1,ω2,ω3 Uncertainty 6.4 · 10−5

Control1 Attitude Control Only

70

three parameter set. However, the features and system attitude are represented with

a quaternion set. To avoid the nonlinearities of quaternions, the UKF uses a rotation

vector representation. For more details on the implementation of the quaternions in

a UKF refer to Kraft et al [35].

The following sections (V.A) and (V.B) will show results for SLAM and path

planning, respectively. These results are built off of the previous sections discussing

image processing and data management. The observations made for SLAM are the

outputs of the image processing module. SLAM stores these observations, repre-

sented in a global frame in the database. SLAM and path planning use the objects

stored in the database via data management tools for data association (SLAM) and

obstruction representation (path planning). All of these functions are derived from

the outputs of the image processing module.

V.A. SLAM

Figure (V.1) shows the system following a path. Note that the blue path is the

truth path as recorded by a VICON system. The red path is the SLAM estimated

path. The arrows on the trajectories show the orientation of the system (blue -

according to VICON, red - according to SLAM estimate). The square icons in the

figure represent the centroids of the ellipsoids stored in the database. At first glance,

the system does perform the required task with some level of noise. The system seems

to loose track (and recover) around the corners. In particular, the first and second

corners (the system starts on the right hand side and travels counter-clockwise). For

71

Figure V.1. System state time histories

a more interactive demonstration of the system, see the corresponding animation1.

Figures (V.2) & (V.3) show the time histories of spatial and angular state time

histories, respectively. Here, the discrepancy between the truth and estimate is

illustrated. As in Figure (V.1), the red plot indicates the SLAM estimate and the

blue plot indicates the VICON truth. The resulting RMSE values are listed in

Table (V.2). As can be seen in Figure (V.2) and Table (V.2), the Z direction has

the smallest spatial RMSE. Figure (V.2) shows the deviation from the path at the

bends. It can be seen in the 3D plot in Figure (V.1) as well. The SLAM estimate of

the translational velocities is a much smoother curve than the VICON information.

The body rotational rates matches very closely with the noisy VICON data. This

should be expected since this demonstration uses attitude control derived from the

VICON attitude track. Figure (V.4) shows the error explicitly per time step.

1Path animation. URL: https://www.youtube.com/watch?v=wH86OTOjB7A

72

Figure V.2. System spatial state time histories: blue - truth, red - SLAM
estimate

Table V.2. CANS RMSE for state time histories

X (m) Y (m) Z (m) VX m/s VY m/s VZ m/s φ (degrees)

0.1829 0.1653 0.0466 0.1187 0.1186 0.0793 12.1210

73

Figure V.3. System angular state time histories. blue - truth, red - SLAM
estimate

74

Figure V.4. Error time histories

This demonstration illustrates that the system successfully maps its environment

well enough to estimates its own location, but the computations were performed off-

line. The next stage is to reach real-time operational capability. To this end, the

timing of CANS was recorded. In each time step, CANS may or may not make

an observation. CANS was run with a 100 Hz data set with an observation (image

acquisition) at 30 Hz. So a time step makes an observation about every 3 time

steps. The image processing module contributes to the time elapsed during those

steps. Additionally, data association agent is ran in observation time steps- as seen

in Figure (IV.2) in Section (IV.C). Figure (V.5) shows the time elapsed in three

scenarios: 1) observation time steps, 2) observation without image processing elapsed

time, and 3) the non-observation time steps. This figure is very instructive because

it shows where computation speed can be improved. Image processing and database

operations are the primary contributors to the time elapsed in each observation step.

75

Figure V.5. Time elapsed per time step

Many more interesting parameters as a function of time are in Appendix (VI.B.3).

To further illustrate where speed performance most likely lies, Figure (V.6)

shows the overview of CANS with the respective time elapsed in a given time step.

Note that the path planning module is excluded since it was not run concurrently

in this demonstration. This time step is the next observation step after the half-

way point through the SLAM path shown in Figure (V.1). There are 60 objects

in the database. It can be seen that Image Processing takes the most time by a

large margin. The Image Processing module’s similar illustration is shown in Figure

(V.7). Here, note that the Patch Extraction is not shown as it is in Figure (III.1),

Section (III.A). As mentioned in that section, patches are still work in progress and

thus are not presented in the timing study. The sum of the times in Figure (V.7)

do not equal to the corresponding time elaspded in Figure (V.6). There is some

76

additional overhead time consumption. The time elapsed for the Image Pipeline

block is comprised of constructing strings for reading a .mat2 file. In a real-time

system, data would be read from a sensor such as the Xtion Pro - where this .mat

file originated. Though more distributed than Figure (V.6), the bulk of the time

elapsed occurs in the Segment block. Figure (V.8) shows the steps taken between

the SLAM module and the Data Management module. The grey block groups the

two filters together for the timing block indicated. The data management operations

are the blocks in green. These two blocks take more time than the operations by

SLAM. Similarily to the Image Processing module, the sum will not add up to the

overall time consumption. Figures (V.6) to (V.8) show good estimates of the timing

of their corresponding operations. These estimates are rounded to the nearest 1

millisecond.3

2MATLAB’s data storage structure.

3Recall all timing simulations were conducted on the system with the specifications listed in

Table (I.1).

77

Figure V.6. CANS overview with elapsed time: elasped times for each
module are listed in the white boxes.

Figure V.7. Image processing overview with elapsed time: elasped times
for each module are listed in the white boxes.

78

Figure V.8. SLAM overview with elapsed time: elasped times for each
module are listed in the white boxes.

V.B. Path Planning

The path planning algorithm is not the primary focus of this work, but it is

claimed that CANS allows a path planning algorithm to use the same data used

by SLAM. In this work, the ASTRO [12] path planning algorithm is used. This

algorithm plans a path from an intitial state to a final state and iteratively replans

until an optimal solution is found. In each iteration, a prism around the previous path

is formed to search the database for obstacles. This search follows the agent described

in Section (IV.C), Figure (IV.3). Figure (V.9) shows a planned path through the

dataset generated by the demonstration in Section (V.A). The algorithm planned

a trajectory from (−0.45,−1.3, 0.02) to (0.2, 0.25, 0.05) with zero initial and final

velocities. The blue ellispoids represent the ellipsoids attained through the search.

All ellispoids that exist in the database are displayed. Note the scene is awfully

79

Figure V.9. ASTRO trajectory through demonstration dataset

cluttered (60 ellispoids) though there less than 30 distinct objects in the scene. This

will be discussed in Section (VI.B).

80

CHAPTER VI

CONCLUSIONS & FUTURE WORK

VI.A. Conclusions

In this section, conclusions about the image processing and data management

are discussed. In addition, the entire system is discussed. Here, we wish to make

statements about the current state of the system and what further extrapolations we

can make from here. Naturally, a discussion of future work will follow this section.

VI.A.1. Image Processing

The image processing module was shown to be operating at a sufficient level.

The raw data was refomatted through the pipeline, produced higher level informa-

tion such as the GIS metrics, segmented consistently between frames, and was able

to extract elliposid representations of the objects in the frame. The algorithm chosen

with a series of relatively subjective and qualitative tests. The graph-based segmen-

tation method was selected. This graph-based method was investigated further for

potential means to improve performance. Different difference functions were inves-

tigated to some level of success. There is still some ambiguity in tuning parameter

selection. It is still not clear whether GIS information was beneficial in image seg-

mentation or data association. The image processing module used in end-to-end

system demonsration used X, Y, Z, R, G, & B metrics for segmentation. Though

many more (including GIS information) were calculated and used in data associa-

tion. More work is to be done before making a strong statement about the benefit

81

of GIS information.

VI.A.2. Data Management

The data management structure was explained. The K-Vector approach was

discussed in some detail to illustrate the means by which functions may use its

advantageous properties. An investigation in to the speed performance was discussed.

Results highlighted sorting and building as the primary performance penalties as

expected. A way to increase speed performance was investigated with the dynamic

k-vector. The implementation showed no noticeable improvement. It was suggested

that moving operations to memory operations, rather than disk, may allow more

insight in to potential improvements. From purely the number of operations needed,

it is expected that there is some improvement from using the dynamic k-vector.

VI.A.3. CANS

Recall the objective of CANS from Section (I):

An architecture that is conducive to Simultaneous Localization And Map-

ping (SLAM), path planning, and mission planning. . . . Such a system

involves an image processing methodology to extract relevant and concise

information from the environment. This methodology needs to be con-

sistent and robust to varying lighting conditions, types of objects in each

scene, and represent sufficiently unique distinctions in the scenes. Ad-

ditionally, the data management scheme must be optimized for efficient

82

utilization by SLAM processes, path planning proccesses, and mission

planning processes.

It is demonstrated that this architecture works offline (i.e. not in real-time). The

system was provided solely attitude accelerations, whereas a real system will likely

have accelerometer information as well. This should point to the success in a more

difficult problem. In other words, the system restrictions (no accelerometer) here is

a much more challenging problem than is likely to be done in practice and we should

expect improved performance with this additional information. The path planning

and SLAM modules successfully used the data management module operations to use

data generated by the image processing module. The mission planning component

of the objective was not implemented here. The data used in all the modules are

represented by ellipsoids - a primitive shape.

VI.B. Future Work

In this section, future work for the image processing and data management are

discussed. In addition, the entire system is discussed. Here, we wish to provide a

window into the future as to what is to come.

VI.B.1. Image Processing

The sensor used in this work was an ASUS Xtion Pro. As a cheap RGB-D

sensor, it proved to be a very good option. However, the depth data had range

limits that generated null data in an indoor environment. Improving the system

83

can first start with better input data. A sensor should be used to provide more

consistent depth information for indoor environments. The data generated from

the GIS algorithms are more accurate when given uniform images. To improve

this information, additional processing should take place in image analysis to create

uniform depth maps for these algorithms. Further investigation is needed to detemine

the appropriate staturation, noise, and midrange values for the GIS metrics. The

image segmentation worked well in the test environment under specified settings.

A more robust solution should be investigated. A more robust solution can handle

different lighting conditions, locations, distance to observations, and other variations

without manual tuning. Some of the predicates used in this work are relatively ad-

hoc. Steps should be taken to design predicates that are principle-based to take a

more methodical approach to ellipsoid selection.

VI.B.2. Data Management

To better understand the effect of the dynamic K-vector, the database should

be stored in RAM. The current implementation stores the database on disk and

thus requires reading/writing from/to the disk for any operation interfacing with the

database. This will increase speed and potentially shed light on any improvement a

dynamic K-vector provides. Recall that m is the 1st polyomial coefficient in the k-

vector definition. The dynamic K-vector approach proposed here uses the difference

between expected m and the m being used to give a measure of the innacuracy of by-

passing the static operations. The effect of simply updating the m with the expected

value should be investigated.

84

VI.B.3. CANS

The demonstration presented is a convincing example of a working end-to-end

system, however much work remains. To ensure a more robust system, CANS should

be run on a more complicated trajectory. The demonstation presented moved approx-

imately in a 2D plane (though the entire system is 3D). More complicated trajectories

may include moving above and through areas of obstruction. In order to test CANS

in a real-time environment, the speed performance must be improved. This can be

done through the steps mention in Sections (VI.B.1) & (VI.B.2). Additional steps

can be to evaluate the redundancy of some operations, hardware specific optimiza-

tions, parallelization of operations, and details lying within the SLAM process.

85

REFERENCES

[1] Kuether, D. J., Morrell, B. J., Chamitoff, G. E., Bishop, M., Mortari, D.,

Gibbens, P. W., and Coen, M., “Cohesive Autonomous Navigation System,”

Guidance Navigation and Control, SciTech 2016 Conference on, AIAA, 2016.

[2] Durrant-Whyte, H. and Bailey, T., “Simultaneous Localisation and Mapping

(SLAM): Part I The Essential Algorithms,” Tech. rep., Australian Centre for

Field Robotics, 2006.

[3] Durrant-Whyte, H. and Bailey, T., “Simultaneous Localisation and Mapping

(SLAM): Part II State of the Art,” Tech. rep., Australian Centre for Field

Robotics, 2006.

[4] Julier, S. J. and Uhlmann, J. K., “New extension of the Kalman filter to non-

linear systems,” AeroSense’97 , International Society for Optics and Photonics,

1997, pp. 182–193.

[5] Evensen, G., “The ensemble Kalman filter for combined state and parameter

estimation,” Control Systems, IEEE , Vol. 29, No. 3, 2009, pp. 83–104.

[6] Jaulin, L., “A nonlinear set membership approach for the localization and map

building of underwater robots,” IEEE Transactions on Robotics , Vol. 25, No. 1,

2009, pp. 88–98.

86

[7] Milford, M. and Wyeth, G., “Persistent Navigation and Mapping using a Biolog-

ically Inspired SLAM System,” The International Journal of Robotics Research,

Vol. 29, No. 9, August 2010, pp. 1191–1153.

[8] Nguyen, H. K. and Wongsaisuwan, M., “A study on Unscented SLAM with path

planning algorithm integration,” Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology (ECTI-CON), 2014 11th In-

ternational Conference on, IEEE, 2014, pp. 1–5.

[9] Richards, A. and How, J., “Aircraft Trajectory Planning with Collision Avoid-

ance Using Mixed Integer Linear Programming,” American Control Conference,

2002. Proceedings of the 2002 , Vol. 3, 2002, pp. 1936–1941 vol.3.

[10] Lalish, E., Morgansen, K. A., and Tsukamaki, T., “Decentralized Reactive Col-

lision Avoidance for Multiple Unicycle-Type Vehicles,” American Control Con-

ference, 2008 , IEEE, 2008, pp. 5055–5061.

[11] Chang, D. E., Shadden, S. C., Marsden, J. E., and Olfati-Saber, R., “Collision

Avoidance for Multiple Agent Systems,” Proceedings of the 42nd IEEE Confer-

ence on Decision and Control , IEEE, December 2003.

[12] Chamitoff, G. E., Saenz-Otero, A., Katz, J. G., and Ulrich, S., “Admissible

Subspace TRajectory Optimizer (ASTRO) for Autonomous Robot Operations

on the Space Station,” AIAA Guidance, Navigation, and Control Conference,

AIAA Reston, VA, 2014, pp. 1–17.

87

[13] Bruce, J. and Veloso, M., “Real-Time Randomized Path Planning for Robot

Navigation,” Intelligent Robots and Systems, 2002. IEEE/RSJ International

Conference on, Vol. 3, IEEE, 2002, pp. 2383–2388.

[14] Şucan, I. A., Moll, M., and Kavraki, L. E., “The Open Motion Planning Li-

brary,” IEEE Robotics & Automation Magazine, Vol. 19, No. 4, December 2012,

pp. 72–82, http://ompl.kavrakilab.org.

[15] Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., and Burgard,

W., “An Evaluation of the RGB-D SLAM System,” Robotics and Automation

(ICRA), 2012 IEEE International Conference on, IEEE, 2012, pp. 1691–1696.

[16] Eliazar, A. and Parr, R., “DP-SLAM: Fast, robust simultaneous localization and

mapping without predetermined landmarks,” IJCAI , Vol. 3, 2003, pp. 1135–

1142.

[17] Oliver, A., Kang, S., Wünsche, B. C., and MacDonald, B., “Using the Kinect as

a Navigation Sensor for Mobile Robotics,” Proceedings of the 27th Conference

on Image and Vision Computing New Zealand , ACM, 2012, pp. 509–514.

[18] Meyer, F., “Topographic distance and watershed lines,” Signal processing ,

Vol. 38, No. 1, 1994, pp. 113–125.

[19] Otsu, N., “A threshold selection method from gray-level histograms,” Automat-

ica, Vol. 11, No. 285-296, 1975, pp. 23–27.

88

[20] MacQueen, J. et al., “Some methods for classification and analysis of multivari-

ate observations,” Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability , Vol. 1, Oakland, CA, USA., 1967, pp. 281–297.

[21] Felzenszwalb, P. F. and Huttenlocher, D. P., “Efficient graph-based image seg-

mentation,” International Journal of Computer Vision, Vol. 59, No. 2, 2004,

pp. 167–181.

[22] Cheng, Y., “Mean shift, mode seeking, and clustering,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, Vol. 17, No. 8, 1995, pp. 790–799.

[23] Houser, C., Bishop, M. P., and Barrineau, P., “Characterizing instability of

aeolian environments using analytical reasoning,” Earth Surface Processes and

Landforms , Vol. 40, No. 5, 2015, pp. 696–705.

[24] Kargel, J. S., Abrams, M. J., Bishop, M. P., Bush, A., Hamilton, G., Jiskoot,

H., Kääb, A., Kieffer, H. H., Lee, E. M., Paul, F., et al., “Multispectral imaging

contributions to global land ice measurements from space,” Remote Sensing of

Environment , Vol. 99, No. 1, 2005, pp. 187–219.

[25] Mortari, D., “Search-less algorithm for star pattern recognition,” J ASTRO-

NAUT SCI , Vol. 45, No. 2, 1997, pp. 179–194.

[26] OpenNI2, “OpenNI 2 SDK Binaries and Docs,” Online:

http://structure.io/openni, November 2015, Last viewed 2015-11-28.

[27] Robertson, A. R., “The CIE 1976 Color-Difference Formulae,” Color Research

& Application, Vol. 2, No. 1, 1977, pp. 7–11.

89

[28] Ford, A. and Roberts, A., “Colour space conversions,” Westminster University,

London, Vol. 1998, 1998, pp. 1–31.

[29] Zhang, T. and Suen, C. Y., “A fast parallel algorithm for thinning digital pat-

terns,” Communications of the ACM , Vol. 27, No. 3, 1984, pp. 236–239.

[30] Shi, J. and Malik, J., “Normalized cuts and image segmentation,” Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on, Vol. 22, No. 8, 2000,

pp. 888–905.

[31] Bradski, G., Dr. Dobb’s Journal of Software Tools , 2000.

[32] MATLAB, version 8.6.0 (R2015b), The MathWorks Inc., Natick, Mas-

sachusetts, 2015.

[33] Mortari, D. and Neta, B., “K-vector range searching techniques,” 2014.

[34] Wan, E., Van Der Merwe, R., et al., “The unscented Kalman filter for nonlin-

ear estimation,” Adaptive Systems for Signal Processing, Communications, and

Control Symposium 2000. AS-SPCC. The IEEE 2000 , IEEE, 2000, pp. 153–158.

[35] Kraft, E., “A quaternion-based unscented Kalman filter for orientation track-

ing,” Proceedings of the Sixth International Conference of Information Fusion,

Vol. 1, 2003, pp. 47–54.

90

APPENDIX A

A.A Image Processing

Figure A.1. Repeatability comparison: k-means with GIS

91

Figure A.2. Repeatability comparison: k-means without GIS

Figure A.3. Repeatability comparison: graph with GIS

92

Figure A.4. Repeatability comparison: graph without GIS

Figure A.5. Repeatability comparison: OLT with GIS

93

A.B Database Operations’ Static Speed Performance

Figure A.6. Add to buffer operational speed

94

Figure A.7. Add to database operational speed

Figure A.8. Build operational speed

95

Figure A.9. Define search range operational speed

Figure A.10. Search operational speed

96

Figure A.11. Sort operational speed

Figure A.12. Trim operational speed

97

Figure A.13. Update operational speed

Figure A.14. Loop operational speed

98

Figure A.15. Match operational speed

99

A.C Database Operations’ Dynamic Speed Performance

Figure A.16. Dynamic add to buffer operational speed

100

Figure A.17. Dynamic add to database operational speed

Figure A.18. Dynamic define search range operational speed

101

Figure A.19. Dynamic search operational speed

Figure A.20. Dynamic trim operational speed

102

Figure A.21. Dynamic match operational speed

Figure A.22. Dynamic thresholds surpassed

103

Figure A.23. Dynamic extremeties surpassed

Figure A.24. Dynamic add to buffer operational speed (difference)

104

Figure A.25. Dynamic add to database operational speed (difference)

Figure A.26. Dynamic define search range operational speed (difference)

105

Figure A.27. Dynamic search operational speed (difference)

Figure A.28. Dynamic trim operational speed (difference)

106

A.D CANS Performance

Figure A.29. Count of system parameters

107

Figure A.30. Time elapsed per time step: image processing

Figure A.31. Time elapsed per time step: entire time step (no observa-
tion)

108

Figure A.32. Time elapsed per time step: entire time step (observation)

Figure A.33. Time elapsed per time step: entire time step (observation
excluding image processing)

109

Figure A.34. Number of calls per time step

Figure A.35. Number of features in database per time step

110

