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ABSTRACT

Honey bees (Apis mellifera) are arguably the most important beneficial insect in agricultural and
horticultural ecosystems in the United States. Despite their importance, honey bee populations
have been negatively impacted by a number of factors, including disease, pests, and exposure to
pesticides. Some of these pesticides are used to control mosquitoes, which are both a nuisance
and a vector of human and animal diseases. Therefore, public health districts have been
established around the U.S. to control mosquito populations through the controlled application of
insecticides. Spray drift is a common concern when applying pesticides, particularly with regard
to deposits onto highly sensitive unintended targets, such as waterways and honey bee hives.
Drift modeling is available for most sprayer models and application techniques, but the truck-

mounted spray systems used in public health insect control have much fewer options.

The fate and risk of commonly-used public health insecticides in waterways was evaluated in a
literature review. Not nearly enough is known about these pesticides and their chronic and sub-
lethal effects or their potential combined effects. Urban runoff is often much more contaminated

than agricultural runoff due to lack of monitoring and higher application rates per unit area.

The impact of commonly-used public health insecticides used for mosquito control on honey bee
mortality was assessed. The insecticides tested had negligible impact on honey bee mortality
even at maximum usage rates. Applicators should still use these products with caution when
making public-health applications in areas around apiaries because chronic and sub-lethal effects

were not tested.

AGDISP® with inputs that emulated a field study setup was used to determine drift from a
public health insecticide sprayer. Once the model was validated for this kind of application, the
model and the inputs were then used to determine depositions and concentrations at various
distances from the spray swath. The deposition and concentration values were then compared to
available honey bee and aquatic toxicity values for the specific products in question. These

comparisons showed that in these conditions, buffer zones were not needed for these products.
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CHAPTERI

INTRODUCTION

Application of public health insecticides for the control of mosquito populations has increased
dramatically with the introduction of West Nile Virus and its increasing incidence and
geographic dispersion, leading to the founding of permanent mosquito control districts in many
states (Schleier et al. 2008). Many of the pesticides used are pyrethroids aided by the synergist
piperonyl butoxide (PBO) and are generally regarded as safe for use near mammals (Schleier et
al. 2008). Their effects on non-target invertebrates are not as well documented, and they are
highly toxic to some aquatic organisms (Gan et al. 2005). The honey bee, Apis mellifera, is one
of the non-target invertebrate species that is at risk of exposure to pesticides used to control
insects that vector pathogens to humans and animals (Caron 1979, Pankiw and Jay 1992).
Exposure to pesticides has been long suspected to be a potential cause of declines in the
population of the honey bee (Faucon et al. 2002, Finley et al. 1996, Mullin et al. 2010, Johnson
2015), and with the appearance of Colony Collapse Disorder (CCD) pesticides have been under

more scrutiny.

Few pesticides have been extensively studied (Gilliom 2001), and there is still much more to
learn about how these compounds act in various natural systems. Out of the hundreds of
compounds registered for use in the United States, many do not have established standards for
drinking water and fewer have guidelines for aquatic life (Gilliom 2001). Those that do have
aquatic life standards are based on exposure over only a few days, not chronic exposure or
seasonal periods of high concentrations and organisms are often exposed to mixtures of various
contaminants but only individual compounds have guidelines (Gilliom 2001). Chapter Il is a

review of the literature covering the fate, transport, and risk of these insecticides.

Many insecticides are toxic to honey bees in varying doses (Halm et al. 2006; Decourtye et al.
2004; Desneux et al. 2007). Furthermore, Womeldorf et al. (1974) found that concentrated
applications of fenthion and dichlovos directly on honey bees caused high mortality rates;
however, the effects were not as drastic when using field colonies because the chemicals did not
persist in the environment long enough to enter the hives and expose the entire colony. The

authors commented that applying either fenthion or dichlovos on actively foraging bees would



never be wise, as this would result in high mortality for those colonies. Atkins et al. (1981) had
similar results with bendiocarb, malathion, and chlorpyrifos and found that, while these
chemicals were deadly to bees when applied directly on the bees, the mortality rate was
negligible when the bees were in their hive at the time of spraying. Atkins et al. (1981) also
found that pyrethrins (final concentration of 2.5% and applied at a rate of 2 fl 0z/min) had very
little effect when directly applied to caged honey bees. These findings implied that precautions
should be taken to ensure that honey bees are not foraging or clustering outside hives before
spraying agrochemicals near apiaries.

Chapter 11 assesses the impact on honey bee mortality of commonly-used public health
insecticides used for mosquito control. Honey bees were placed in a bioassay cage that was then
inserted into a wind tunnel. Through a series of serial dilutions and subsequent exposure of
honey bee workers to five products, the expected mortality of honey bees exposed to these
insecticides was determined after 24 hours, and the lethal concentrations (LC) values that
resulted in 10 and 50% mortality (LCy, and LCs, respectively) were determined.

Buffer zones, areas that set a minimum distance from a pesticide application swath to a sensitive,
non-target area to limit the impact of drifting pesticide (Payne et al. 1988), are common near
water bodies but not nearly as common around honey bee hives. Among the many variables that
affect the drift of applied chemicals, Hewitt (2000) found that across many studies, the most

important factors affecting drift were droplet size, boom height, and wind speed.

Several related studies have been done covering drift, environmental concentrations of
insecticides, and buffer zones. Payne et al. (1988) of the Canadian Forestry Service (CFS) came
up with a technique for estimating buffer zones using permethrin, a synthetic pyrethroid. The
procedure used a worst-case scenario to determine the suggested buffer. This approach, however,
did not reflect common application practices and resulted in a larger buffer than was necessary
for the majority of spray conditions. This large buffer, in turn, reduced deposition efficiency for
controlling the targeted pests (Payne et al. 1988). La Mer and Hochberg (1948), simply
suggested that selecting favorable meteorological conditions and carefully controlling droplet

size will give the most control over deposition.



The goal of the research in Chapter IV was to provide recommendations for buffer zones to
prevent contamination of adjacent water bodies and honey bee hives through field-measured

deposition data and associated AGDISP® modeling over a range of distances.



CHAPTER Il

TRANSPORT, FATE, AND RISK OF SELECTED PUBLIC HEALTH INSECTICIDES IN
WATERWAYS

2.1. Introduction

Application of public health insecticides for the control of mosquito populations has increased
dramatically with the introduction of West Nile Virus and its increasing incidence and
geographic dispersion, leading to the founding of permanent mosquito control districts in many
states (Schleier et al. 2008). Many of the pesticides used are pyrethroids aided by the synergist
piperonyl butoxide (PBO) and are generally regarded as safe for use near mammals (Schleier et
al. 2008). Their effects on non-target invertebrates are not as well documented, and they are
highly toxic to some aquatic organisms (Gan et al. 2005). Mosquito control is often controversial
because of the potential impacts on health and environment due to the chemicals used.

Few pesticides have been extensively studied (Gilliom 2001), and while most of the ones
included in this review have been included in many studies, there is still much more to learn
about how these compounds act in various natural systems. Out of the hundreds of compounds
registered for use in the United States, many do not have established standards for drinking water
and fewer have guidelines for aquatic life (Gilliom 2001). Those that do have aquatic life
standards are based on exposure over only a few days, not chronic exposure or seasonal periods
of high concentrations and organisms are often exposed to mixtures of various contaminants but

only individual compounds have guidelines (Gilliom 2001).

The emphasis in this review is to examine the transport, fate, and potential aquatic effects of the
active ingredients in selected public health insecticides used for mosquito control. The specific
products being investigated and their active ingredients are Aqua-Pursuit™ (permethrin, PBO),
Duet® (prallethrin, sumithrin, and PBO), Fyfanon® (malathion), Scourge® (resmethrin, PBO),
and Zenivex® (etofenprox). While permethrin, prallethrin, sumithrin (also called phenothrin),
resmethrin, and etofenprox are all pyrethroids, malathion is an organophosphate insecticide. This

review will cover all of these compounds with the exception of prallethrin and PBO. As far as
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the author is aware, no studies have been done on the fate and transport of prallethrin or its
toxicity to aquatic invertebrates. PBO is used as a synergist in many of the products, but it has

very low toxicity to invertebrates on its own (Schleier and Peterson 2013, Davis et al. 2007).
2.2. Transport, Fate, and Risk

Factors affecting the transportation of pesticides into bodies of water include drift (aerial
dispersion by wind), volatilization (Siebers et al. 2003), and runoff from rain or irrigation water.
Factors influencing pesticide runoff may include the severity of rainfall, length of time from
application of insecticide to rainfall, topography of the land, the physiochemical properties of the
pesticide (water solubility, degradation rate, volatility), agronomic methods (pesticide
formulation and placement), and various soil characteristics such as infiltration, water content
prior to rainfall event, cultivation, and surface crusting (Hill 1989). The length of time these
pesticides persist in the environment and their concentrations are the major factors when
determining toxicity (Medina et al. 1999). Their occurrence (where they are present, in what
concentrations, and for how long) is a function of many different chemical and physical
properties, such as pH, temperature, presence of organic material, sediment, or other dissolved
compounds, the presence or lack of light, and the presence of microbes (Lartiges and Garrigues
1995, Miles and Takashima 1991, Sharom and Solomon 1981, and Vasquez et al. 2011b).
Comparing results from different studies is difficult due to different approaches to data
collection and differences in geographic areas, such as quantity and types of pesticide used, time
of pesticide application, and differences in climate (Gilliom 2001, and Amweg et al. 2006).
Depending on the study, it might be deemed that stormflow conditions (Phillips and Bode 2004),
low flow conditions (Sengupta et al. 2013), or immediate post-application (Weston 2004) is the
best time for sample collection. However, the U.S. Geological Survey’s (USGS) National Water-
Quality Assessment (NAWQA) program found that concentrations of pesticides followed
seasonal patterns that reflected use and hydrologic conditions (Gilliom 2001). This implies that
both seasonal patterns of pesticide use and hydrologic patterns in a geographic area (including

irrigation and rainfall patterns) should be considered when sampling.



2.2.1 Transport into Waterways

Hewitt (2000) has summarized the findings from several spray drift studies by the Spray Drift
Task Force (SDTF), which is composed of several companies with registered pesticides with the
goal to conduct studies jointly to provide data on spray drift and droplet size for pesticides. The
studies conducted by the SDTF ranged from aerial and ground rig field studies to modeling spray
drift and atomization using AgDRIFT® and DropKick®, respectively. The SDTF studies found
the most important factors affecting drift to be spray quality, boom height, and wind speed.
Hewitt also cites AGDISP® as one of the useful models for predicting spray drift. Modeling and
predicting drift can help applicators understand what impact meteorological conditions and
application techniques have on drift. These studies, though, did not give in-depth discussions on
how to reduce spray drift or study drift reduction options.

In the case of volatilization as a transport mechanism, Siebers et al. (2003) took selected active
ingredients chosen for their physical and chemical properties. They then determined the
concentrations found in air and surface water after treating nearby fields using a range of
distances and weather conditions to emulate transport of these pesticides over short ranges. They
determined that volatilization and the deposition from it should, in fact, be considered when

looking at the entry of volatile pesticides into waterways.

2.2.2 Factors Affecting Occurrence and Toxicity

All of the pesticides examined in this review strongly sorb to sediment and soil (Miles and
Takashima 1991, Sharom and Solomon 1981, and Vasquez et al. 2010), and fine-grained
sediments of silt and clay have a greater capacity for binding contaminants than the coarse grains
of sandy soils (Key et al. 2011). This decreases the risk of groundwater contamination while
increasing the risk of surface water and sediment contamination through runoff (Miles and
Takashima 1991). While binding to sediment prevents bioavailability and limits detrimental
effects to many non-target organisms, it also limits the bioavailability of the compounds to be
broken down and can lead to build up of a contaminant (DeLorenzo and De Leon 2010).
Pesticide occurrence in ground water is most frequent where groundwater is shallow and
pesticide use is highest, though generally groundwater is more protected from pesticide
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contaminants (Gilliom 2001). Studies by the NAWQA program found that only about 25% of
groundwater samples contained 2 or more pesticides, compared to the occurrence of pesticides in
streams where 96% of agricultural streams and 99% of urban streams and 70% of the stream

water samples tested had five or more compounds (Gilliom 2001).

While knowing the physiochemical properties of a pesticide enables predictions of its fate
(Vasquez et al. 2010), it is also important to know the properties of the soil and waterbodies near
the application area in question and what other compounds may be present to know how a
compound will react and if it will degrade (Pehkonen and Zhang 2002, Lartiges and Garrigues
1995, and Druzina and Stegu 2007). According to the Canadian Forestry Service, when
predicting toxicity and the toxicological effects of insecticides in water bodies, many factors
must be considered, including the amount of insecticide, it’s formulation, organism sensitivity
and behavior, water flow and rainfall, pH, ionic content, and suspended solids in the water
(Payne et al. 1988).

Plants can also help to remove the pesticides from streams and soil. A review of plant-based
remediation of pesticides in soil and water can be found in Karthikeyan et al. (2004). Plants
release a number of nutrients into the soil around their root systems (the rhizosphere), making
these areas primary spots for microorganism growth, which can aid in the degradation of
pesticides. They also add organic matter to soil, which can increase the transformation rate of
pesticides. Aside from the soil around plants being better for the degradation of pesticides, the
plants themselves can help by drawing in pesticides with their water intake, adsorption from soil
water to roots, and adsorption from air onto plant stems and leaves. Once within the plant, they
may be retained or metabolized (Karthikeyan et al. 2004). Retaining the pesticides can slow the
release and decrease the concentrations in soil and waterways, and metabolizing the pesticides
can result in less toxic metabolites. Depending on the pesticide, however, the metabolites may be
just as toxic or more (Gilliom 2001). This is illustrated in a study of agricultural drainage ditches
where Bennett et al (2005) determined that no more than 300 m of vegetated ditch is needed to
remove pyrethroids successfully from runoff to levels below detection limits. The highest
concentrations of the tested pyrethroids in and on plants were within the first 50 m, and sorbed
into soil within the first 25 m. The pyrethroids were below detection limits on both soil and

plants before the study was initiated.



Among the many factors affecting the fate and occurrence of pesticides is whether the
application is done in agricultural or urban dominated watersheds. Phillips and Bode (2004)
studied pesticides in runoff in New York State. They chose to look at pesticide concentrations in
stormflow conditions assuming these conditions would result in higher concentrations. They
noted that the type of pesticides as well as the application rate and timing is significantly
different between developed and agricultural areas. Because of this and the differences in
pesticide movement to streams, studies done in agricultural areas have little application in
developed areas. It has been suggested that, while the actual values used are unavailable, the
higher concentrations in urban areas could potentially be due to increased rates per unit area.
They found that no concentrations surpassed any human health-based standards for the
compounds that had water quality standards, while some exceeded the standards for aquatic life
protection. Half of the compounds found had no such health-based or aquatic-life-based
standards, and this is not uncommon, as mentioned by Gilliom (2001). Phillips and Bode (2004)
found that mobility was a good predictor of whether the compounds would be detected; those
that had very low mobility were not detected very often, whereas those with the largest
concentrations were those with higher mobility. However mobility and persistence did not
explain all of the results, indicating that other factors had effects as well. This is illustrated most
simply by LeBlanc and Kuivila (2008), who found that while suspended sediment and bed
sediment concentrations did not show consistent trends, in both water and sediments the
pesticides most heavily used were most commonly present. While distribution and occurrence of
pesticides in water as well as suspended and bed solids is a complicated function of physical and
chemical properties, pesticide use, and watershed residence times, the pesticides most often

detected and in the highest concentrations were the most heavily used in the watershed.

Amweg et al. (2006) hoped to determine how widespread pyrethroids are in different urban
systems by comparing urban areas in Sacramento, California, and Nashville, Tennessee, and if
the concentrations were such that aquatic toxicity would be an issue. Differences in climate,
residential development, and pesticide use practices cause differences in the observed toxicity
among urban areas. Pyrethroids are used by professional applicators and are the active
ingredients in many insecticides available for use by homeowners. They found that 12 out of 15
creeks in California were toxic on at least one occasion and every sample had at least one

pyrethroid while most had five of the seven that were tested. Conversely, no creeks in Tennessee
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ever tested as toxic. In fact, pyrethroids were rarely detected or were barely above detection
levels in the sediments of Nashville creeks. Amweg et al. (2006) also used the toxic unit (TU)
approach using Hyalella azteca, but this method makes it impossible to determine if other
untested substances contribute to sediment toxicity. Permethrin made up 38% of the pyrethroids
present in the California samples, but because of the lower aquatic toxicity compared to other

pyrethroids, it was not a major contributor to observed mortality.

Jiang et al. (2011) used “C-permethrin on concrete to understand better the effects of adsorption
and desorption on stream loads in urban settings. In the adsorption experiment, they observed a
very rapid uptake of **C from the aqueous phase, with equilibrium being reached within 24
hours. The desorption experiment, intended to model the desorption of pesticides to runoff water
after a rainfall event or irrigation, showed that 60% of the total **C-permethrin desorbed over
300 h happened in the first 24 h, and slowed considerably over time.

Vegetated agricultural ditches appear to prevent pyrethroids from moving very far from their
source, but greater flow velocities due to impervious surfaces are likely in urban watersheds.

This can result in greater transport of sediment and adsorbed insecticides (Hintzen et al. 2009).

Ding et al. (2010) found that their urban samples had higher concentrations of measured
pyrethroids. Differences in concentrations are most likely due to a reduced use of insecticides
and greater use of herbicides on the major agricultural crops in Illinois, which are less toxic to
benthic organisms, and the financial restrictions of application costs of insecticides on multiple
acres of land (using it for profit in a business rather than to take care of pests around a personal
lawn). The pyrethroids in this study are all restricted-use in the state of lllinois, meaning
applicators employed to use them must have a license, while those applying to their private land
do not and may apply the products in greater quantities and more frequently than application
procedures dictate. At urban sites, the pyrethroid most frequently detected was bifenthrin, with
permethrin being second, but their half-lives are significantly different, ranging from 428 to 483
d and 60 to 312 d for bifenthrin and permethrin, respectively. The differences in half-lives or
differences in use could explain the occurrence differences between bifenthrin and permethrin.
All of the samples from urban sites contained at least one pyrethroid, while 68% contained two
or more. At agricultural sites, the most frequently detected pyrethroid was permethrin, though

always at low concentrations. Compared to other urban studies of pyrethroid use, Illinois had
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lower concentrations than similar studies in California and Texas, yet higher concentrations than
Tennessee (Hintzen et al. 2009, Holmes et al. 2008, Amweg et al. 2006, and Weston et al. 2005).
It should be noted that differences in the application time and the amounts, climatic differences
which affect the sediment loads, as well as differences in the sample collection times of these
different studies would affect the comparison here. The agricultural sites in this study can be
compared to the results of Weston (2004), where 32% of total samples and 42% of locations on
at least one occasion showed significant mortality to the test species. Differences in pesticide use
patterns between states due to differences in crops produced (field corn and soybeans in Illinois
for which aesthetic does not matter, fruits and vegetables in California that require large amounts
of pyrethroids) are the likely reason for this.

2.2.2.1 Pyrethroids

All the pyrethroids in this review are esters, with the exception of etofenprox, an ether
compound (DeLorenzo and De Leon 2010). Permethrin reportedly has the lowest aquatic
toxicity of all pyrethroids (Weston et al. 2005), though Vasquez et al. (2010) state that
etofenprox is even less lethal than permethrin, when it comes to aquatic species. In general,
pyrethroids are highly hydrophobic. Because of this, they sorb onto soil and partition into
organic matter (Vasquez et al. 2010). Pyrethroids’ strong affinity for the solid phase may lead to
offsite transport by sediment movement (Gan et al. 2005 and Schleier and Peterson 2013). In
fact, in their study, LeBlanc and Kuivila (2008) found permethrin only in sediment and not at all
in detectable aqueous concentrations. Sharom and Solomon (1981) found in their study that
permethrin applied to water and sediment, when shaken removed more than 95% of applied
permethrin in one minute. Then, after four consecutive 10 mL rinses of water, only 7-9% of the
adsorbed permethrin had desorbed. Aquatic plants are likely to take up hydrophobic pesticides
due to their large surface areas and their cuticles, which are comprised mostly of lipids

(Karthikeyan et al. 2004), making them excellent sinks for pyrethroids.

Many products containing organophosphates have been withdrawn from production for
residential use; and in their stead, pyrethroids have increased in use (Weston et al. 2005), even
though pyrethroids have high toxicity to many aquatic and benthic organisms. Gan et al. (2005)
examined the distribution of pyrethroids (bifenthrin and permethrin) as a function of sediment

location and found that concentrations increased with further distance downstream from the
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source. This implies that though concentrations may be low at the source, sediment from surface
erosion in runoff from storms or irrigation can lead to high concentrations in surface water. This
challenges any assumptions that pyrethroids are generally immobile because of their strong
adsorption onto soil. Palmquist et al. (2011) found that the rate of sedimentation and the
movement of particulates determine transport and fate of pyrethroids because of their affinity for
sediments, and while sediment bound pyrethroids accumulate with continuous runoff, major

rainfall events can wash away the built up contaminants.

In a study to determine the occurrence of chemicals of emerging concern, Sengupta et al. (2013)
assumed low flow conditions would lead to the least amount of dilution, resulting in the worst
case concentrations of the observed compounds. This study took place in coastal urban rivers
with wastewater effluent in a densely populated area with a semi-arid climate. Though
permethrin is among the most widely used and persistent synthetic pyrethroids, it was rarely
detected in most water column samples. The researchers in this study did not collect sediment,
which they acknowledge would have been useful in determining the role of sedimentation as a
removal mechanism for hydrophobic chemicals like pyrethroids. This study illustrates the need
to be aware of the physiochemical properties of compounds to predict their fate (Vasquez et al.
2010). Because pyrethroids are strongly hydrophobic, determining the toxicity of suspended and
bed sediments is more appropriate. Sediments from moving water, while having lower, less
extreme concentrations, can still be toxic to test species (Weston et al. 2004). Weston et al.
(2004) found that their data suggest that aquatic pyrethroid concentrations tend to be greatest
right after use, rather than after heavy rains. This is feasible through irrigation runoff and drift, as
well as the 1-2 month half-lives of pyrethroids in aerobic soils in the area of study (California’s
central valley), where pyrethroids are applied in the summer and most heavy rains occur in the

winter.

Schleier and Peterson (2013) used a maximum application rate of 7.745 g ha™, which is 2-4
times greater than the application rate most mosquito control districts use. Other assumptions
yielding a worst case scenario included no buffer, wind prevailing toward the water body,
ground sprayer truck traveling along the edge of the water, immediate dispersal of insecticide
into the water column, and a static water body. Their results suggest ground-based ultra-low

volume (ULV) application will not yield concentrations of bioavailable permethrin above
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detectable limits in aquatic systems. They determined that these pesticides most likely have very

little effects on aquatic organisms.

Hill (1989) found that modeling data showing any one rainfall event will rarely result in runoff
of more than 0.2% of the insecticide applied to the field in the case of pyrethroids. In most cases,
the entry of pyrethroids is periodic and into small areas, so if the water is flowing, they are
quickly diluted and adsorbed to reduce bioavailability. This results in very short exposure times
for non-benthic organisms. Hill concludes that spray drift and runoff of pyrethroids are not
hazardous to aquatic systems, though more sensitive macroinvertebrates especially near the
shoreline might show effects, though the effects should be localized and transient.

Similarly, Frank et al. (1989) found that when using a permethrin formulation with a similar
density to water near a slowly moving water body, it forms a surface film, which minimizes the
exposure to fish and bottom sediments. They did not examine contaminated sediment running
off. However, in both low and high velocity creeks, permethrin residues were low and
disappeared in 0 to 6 h after deposition. They concluded that not even sublethal effects would be
expected with these residue levels, though the wind never did blow directly toward the creeks in

guestion.

While Hill (1989), Frank (1989), and Schleier and Peterson (2013) have concluded that spray
application is unlikely to cause toxic concentrations in waterways, it is important to remember
that there are significant differences between professional use of these products and home owner
use (Amweg et al. 2006). In professional applications, financial considerations and restrictions
based on licensed applicators limit the amount per unit area that is applied (Phillips and Bode
2004), whereas private homeowner use can be significantly increased in urban and suburban
areas (Ding et al. 2010).

Hintzen et al. (2009) conducted studies in residential watersheds with the hope of quantifying the
occurrence of pyrethroids and other hydrophobic compounds in sediments, as well as
determining the sediment toxicity in relation to H. azteca. They conducted this study on urban
streams in central Texas and noticed no seasonal differences. This may be due to the climate and
application throughout the year. They took 50 sediment samples, each containing at least one

insecticide, and analyzed them looking for 12 insecticides and degradation products. Hintzen et

12



al. used a TU approach when determining toxicity. While all samples had at least one insecticide,
only 66% of the samples contained a minimum of one TU. Their data indicated that the TU
approach was a good indicator of toxicity, with significant mortality rates in 46% of the samples.
Any sites where toxicity was higher than the TU values predicted could be explained by the
presence of unanalyzed factors. This method of toxicity testing gives rise to several

uncertainties. The first is that other contaminants with similar occurrence patterns are potentially
responsible. Another uncertainty is inherent to the calculation of TU values. LCs, values are used
to calculate TU values, and there can be a significant amount of interlaboratory variability in the
determination of LCs, values. This study was not intended to determine the pervasiveness of
these compounds, how far they might travel downstream, or the correlation of watershed

characteristics and insecticide contamination.

Weston et al. (2005) chose a residential area near Sacramento, CA, with no industry, very little
commercial development, and very little agriculture, to limit pesticide sources to residential
application. During summer in this area, the primary source of water in streams would be runoff
from over-irrigation. Through using the TU method, they found extensive pyrethroid
contamination which was determined to be responsible for high toxicity to H. azteca. Contrary to
the findings of Gan et al. (2005) where concentrations increased with increasing distance,
sediment contamination was found to be localized near storm drain outfalls and tributary
entrances to main creeks, and outfalls could affect sediment quality 10s to 100s of meters
downstream. This results in small contaminated reaches that build up significantly with many
outfalls. They also found that when using toxic units to express concentration, nearly all of their
sites would be expected to be acutely toxic to H. azteca, and, in fact, while H. azteca is naturally
found in this area in these streams, its occurrence was inversely correlated with pyrethroid TUs.
Permethrin was commonly found to have the highest concentration of all the pyrethroids, but,

because of its low toxicity to H. Azteca, it contributed little to TUs.

The differences between Gan (2005) and Weston (2005) could be explained by different soil

characteristics in the areas of study. Soil characteristics have a large impact on whether or not

irrigation runoff dominates stream flow, meaning soil characteristics possibly have an impact on

concentrations of pyrethroids found in nearby streams (Domagalski et al. 2010). They found that

streams with greater discharge transport fine-grained sediment farther downstream, leaving less

accumulated pyrethroids. While pyrethroids were detected during winter storms (due to runoff)
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in suspended sediments in all tributaries and the San Joaquin River, they were undetected or had
very low detection in sandy sediments in the San Joaquin River. The pyrethroids found in the
river and tributaries within the San Joaquin Basin are due to agricultural use and structural pest

control in urban settings.

Holmes et al. (2008) also used a TU approach to determine the occurrence of pyrethroids in
urban waterways and determine the role of pyrethroids in toxic sediments. They found that
organic carbon content, grain size of sediments, and temperature all affect the bioavailability,
and therefore the toxicity of pyrethroids. Pyrethroids have a tendency to be more toxic at lower
temperatures due to slower metabolic rates. As long as the organic carbon content has been
broken down, it can decrease the bioavailability of pyrethroids, as Holmes et al. (2008) found
that in locations with intact reeds and leaves making up most of the carbon source, total carbon
had little effect on bioavailability. Palmquist et al. (2011) found that dissolved organic carbon
and dissolved organic matter (DOM) highly influence bioavailability of pyrethroids, and the type
and quality of the organic carbon is important. Any discrepancies between modeled and

observed toxicities can be explained as the result of differences in bioavailability.

Coarse sediments tended to have less pyrethroid contamination, but the fate of the pyrethroids in
these conditions have not been studied in depth. As mentioned previously, pyrethroids don’t bind

as well to coarser sediments (Key et al. 2011).

Using TU values in a study of pesticides in urban and agricultural waterways in Illinois, USA,
Ding et al. (2010) found that while testing for pyrethroids and other pesticides like
organochlorine pesticides, pyrethroids were still the major contributors to the TU values. They
found that the urban sediment samples were more toxic than agricultural, and that agricultural
sediments actually had negligible mortality of H. azteca. Insecticide concentrations and

composition differences between agricultural and urban areas likely caused these differences.

Like other pyrethroids, etofenprox has low water solubility and a high affinity for soil and
sediment. DeLorenzo and De Leon (2010) tested the toxicity of etofenprox on the estuarine
species the grass shrimp (Palaemonetes pugio). Grass shrimp are comparable in sensitivity to
Daphnia magna, the standard freshwater invertebrate toxicity test species, making it a good

estuarine test species (DeLorenzo and De Leon 2010). Aqueous exposure with sediment was
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used for adults and larvae, while only aqueous was used for embryos. Larval stage was found to
be the most sensitive, while embryos were the least due to a hard embryonic coat. Grass shrimp
consume DOM that has been sorbed to sediment; so if etofenprox is bound to sediment they
consume, the shrimp would be exposed orally as well as through the water column, though high
binding affinity to sediment may decrease its bioavailability. Presence of sediment was found to
decrease the toxicity of etofenprox to grass shrimp in adult and larval stages. Permethrin and
resmethrin follow these trends (Key et al. 2005, DeLorenzo et al. 2006). In the case of
phenothrin, however, the larval stage was not significantly more susceptible than the adult grass
shrimp, except in the presence of sediment. Embryos still had the expected low toxicity (Key et
al. 2011). Table 2.1 shows comparative toxicity values for D. magna and grass shrimp for each
of the pyrethroids.

Table 2.1. Toxicity of pyrethroids on aquatic organisms.

LC50 value .
Product (ug/L) Species Reference
0.05 grass shrimp larvae DeLorenzo et al. 2006
Permethrin 0.21 adult grass shrimp DelLorenzo et al. 2006
0.11 D. magna Davis et al. 2007
. 0.154 grass shrimp larvae Key et al. 2011
Phenothrin .
o 0.161 adult grass shrimp Key et al. 2011
(Sumithrin) 4
30000000 D. magna Davis et al. 2007
0.35 grass shrimp larvae Key et al. 2005
Resmethrin 0.53 adult grass shrimp Key et al. 2005
0.22 D. magna Davis et al. 2007
0.89 grass shrimp larvae  DeLorenzo and De Leon 2010
Etofenprox 1.26 adult grass shrimp  DeLorenzo and De Leon 2010
0.57 D. magna DeLorenzo and De Leon 2010

Environmental fate and toxicity of pyrethroids in water bodies are affected by several different

factors specific to the water body and the compound. A few of these include temperature,

dissolved organic carbon content, organic carbon content in sediment, grain size of sediment,
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adsorption affinity of specific compounds to sediment, and microbial presence and activity
(Palmquist et al. 2011).

House et al. (2000) explored the role of sediments in permethrin mobility. Permethrin degrades
slower in sediments than in overlying water, most likely due to decreased bioavailability to
microorganisms (Sharom and Solomon 1981) and has a tendency to be more persistent in
sediments of low pH. Mass balance calculations suggested that permethrin is adsorbed into
sediment during transport. They found that retention times for permethrin ranged from 4-26 d in
suspended sediment and 103-125 d in river bed sediments. House et al. (2002) stated that
retention times for permethrin in the river water samples was lower than that of suspended
sediment, but no specific numbers were given. However, Schleier and Peterson (2013) state that
pyrethroids have half-lives of less than one day in the water column. Because of this, while
benthic invertebrates may be at risk, invertebrates with no benthic part to their life cycle will
most likely not experience effects from even chronic exposure to pyrethroids (Schleier and
Peterson 2013).

As stated before, volatilization should not be overlooked as a potential pathway into waterbodies
(Siebers et al. 2003). For etofenprox, Vasquez et al. (2010) determined the Henry’s law constant
(H) to estimate volatilization from water, the soil-water distribution coefficient (the ratio of
concentrations in those phases), and the organic carbon-normalized distribution coefficient under
rice-field conditions to determine its partitioning. They found that H for etofenprox was quite
low making volatilization a very minor pathway. They also found that it was more likely to sorb

to glass and soil than to volatize.

Allan et al. (2005) conducted experiments with and without bed sediment in both light and dark
conditions to examine diffusion of permethrin in bed sediment. The experiment with bed
sediment in light conditions developed a thin surface biofilm. Concentrations reached 1 ug L™ in
dark and 0.1 pg L™ in light, which suggests that the biofilm provides more opportunity for
sorption. The highest concentrations were found in the top of the sediment, sharply decreasing
with depth.

Because pyrethroids are so sorptive, they do not move to subsurface soil layers. With or without

moisture, pyrethroids remain in what is known as the photolytic zone that is only down to 0.5
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mm below the soil surface (Vasquez et al. 2011b). This is the depth up to which photolysis is
thought to occur. However, permethrin was detected in pore water down to a depth of 30 mm by
Allan et al. (2005). In flooded conditions, light penetration may decrease, but a thin layer of
water can aid in indirect photo-induced chemical degradation by increasing the number of
reactive species, such as DOM, dissolved oxygen, and nitrates. Because of this, flooded systems
are much more complex than air-dried systems. Vasquez et al. (2011b) examined the
photodegradation of etofenprox, and found that on flooded soil, degradation happened faster
(half-life of 3.0 d) than on air dried surface (half-life of 18 d). They compared these results to
dark controls and found significant differences indicating photolysis as the main method of
degradation. Resmethrin also readily undergoes photodegradation with a half-life of 22 to 47
minutes (Rand 2002).

Vasquez et al. (2011a) found that when anaerobic and aerobic degradation of etofenprox were
compared, overall aerobic had a faster rate (half-life of 27.5 d) than anaerobic (half-life of 100
d). Using sterilized controls was significantly different than biologically active soils, implying
that microbes play a role in the degradation of etofenprox, though Gan et al. (2005) found that
pyrethroids had moderate-to-long persistence in sediment under both anaerobic and aerobic
conditions. When in anaerobic, dark conditions, resmethrin has a half-life of 682 d, but under
aerobic dark conditions, the degradation rate increased and the half-life was 30 d. However,

sterile water with sunlight yielded a half-life of 22-47 m.

Sharom and Solomon (1981) only detected (dichlorovinyl) dimethylcyclopropanecarboxylic
acid (DCVA) as a degradation product in their adsorption/desorption study of permethrin.
DCVA is much more water soluble than permethrin and therefore more of it remains in the
aqueous phase. Degradation products of resmethrin include chrysanthemic acid, ketoaldehyde,
and 5-benzyl-3-furoic acid (BFCA) (Rand 2002).

2.2.2.2 Organophosphates (Malathion)

Malathion is one of the most frequently detected pesticides in streams of urban areas (Gilliom
2001). Phillips and Bode (2004) found that the occurrence of malathion was more frequent in
urban than non-urban streams, and unlike agricultural areas, peak concentrations occurred
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continuously not just throughout the growing season, but even after, which implies several
applications were used throughout the year. LeBlanc and Kuivila (2008) found malathion only in
aqueous concentrations (not in suspended or bed sediment) in the Salton Sea Basin of California.
Malathion was among the most frequently detected pesticide with the highest aqueous
concentrations in samples. It was found to have the highest concentrations in late winter and
early spring, and at one point had a concentration of 1,100 ng/L. This is above the 48 h LCs
value of D. magna, which is 1000 ng/L (Cheminova Inc. 2002). It was also one of the few
pesticides detected offshore in the lake (LeBlanc and Kuivila 2008). Furthermore, in a study
comparing several mosquito control pesticides over several species and determining risk
guotients by comparing exposure to toxic endpoints (the acute LCs, values and the chronic, no
observed effect values), Davis et al. (2007) found that only amphipods exposed to
organophosphates exceeded U.S. Environmental Protection Agency levels of concern. The only
aquatic invertebrates in the study were amphipods and D. magna. In another study on the grass
shrimp by Key et al. (1998), newly hatched larvae were the most susceptible to malathion, with

18-day-old larvae and then adult grass shrimp following, as shown in Table 2.2.

Table 2.2. LCx, values of malathion for selected aquatic species.

LCs values

(ug/L) Aquatic Species Reference
9.06 Newly hatched grass shrimp larvae Key et al. 1998
13.24 18 day old grass shrimp larvae Key et al. 1998
38.19 adult grass shrimp Key et al. 1998
1.00 D. magna Cheminova Inc. 2002

Despite the occurrence of malathion, in a study to determine its fate in wastewater treatment
plants, sorption to activated sludge was found to be insignificant (Janeczko et al. 2014). In fact,
organophosphates may go through a wastewater treatment plant without any changes (Janeczko
et al. 2014). This brings awareness to the stability of these products, and it leads to questioning if

natural systems are any better at degrading and removing these compounds.
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In a study of the degradation kinetics of organophosphates, Lartiges and Garrigues (1995) found
that it is difficult to predict their fate and persistence due to the differences in half-life ranges of
each of the tested pesticides. Factors that influence the degradation of these pesticides include
temperature, pH, light, particulates in water (such as DOM and sediment for adsorption), other
compounds and ions in the water, and the chemical structure of the particular pesticide (Lartiges
and Garrigues 1995). Getenga et al. (2000) found organic content in the soil also to be an
important factor in the fate of malathion, as it absorbs the pesticide and keeps it from leaching.
Lartiges and Garrigues (1995) found increased temperature and increased pH generally increase
the degradation rate. This was also supported by Druzina and Stegu (2007). For
organophosphorus pesticides such as malathion, Medina et al. (1999) found even when
microorganisms are present in all samples, the fastest degradation occurred when sunlight,
particulates for adsorption, and volatilization were all present as well. Degradation in river,
ground, and seawater showed that photolysis and biodegradation were minor pathways, and an
elimination reaction controlled degradation (Miles and Takashima 1991), though there is

evidence that malathion undergoes direct and indirect photolysis (Remucal 2014).

In a study conducted on the dissipation of *“C-malathion in soil, Getenga et al. (2000) found that
there was a very fast initial decrease in extractable residues of malathion that slowed after the
first 20 days after application. Similarly, the bound residues showed an initial increase up until
20 days after application, after which they decreased. Both types of residues decreased faster
with more rainfall. The decrease of extractable residues was most likely due to binding to the
soil, then leaching with rainfall, vaporization, and biodegradation. This is supported by the rapid

degradation observed in the field by Miles and Takashima (1991) with half-lives of two hours.

According to Pehkonen and Zhang (2002), degradation of malathion can also take place due to
hydrolysis. While acid catalyzed hydrolysis is too slow to be a major pathway, alkaline
hydrolysis is fast enough to be important. While metal catalyzed hydrolysis shows an increased
rate, it is unclear if this is an important pathway in natural systems due to a lack of information
on the speciation of metal ions (the change in concentration of ions as pH changes) in the
presence of common river water components like humic and fulvic acids (Pehkonen and Zhang
2002).
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Miles and Takashima (1991) identified degradation products dimethyl phosphorodithioic acid
and diethyl fumarate, and Pehkonen and Zhang (2002) reported HCHO (formaldehyde) and
dialky! sulfides as degradation products. The major degradation products depend on which
mechanism dominates, and the dominant mechanism depends on the chemical and physical

properties of the location (Pehkonen and Zhang 2002).
2.3. Summary

It is difficult to summarize the findings of even a single group of pesticides into a simple
recommendation, as seen in Druzina and Stegu (2007), Simo and Zhang (2002), and Amweg et
al. (2006). This, combined with many potential entry points for pesticides, especially in urban
areas where their use is less monitored and they are applied in greater amounts per unit area,
leads to the suggestion that a potential focus might be on just how prevalent these pesticides are
and what the actual concentrations are in natural systems. Often the concentrations achieved
from a single application are not going to cause concerning mortality levels; but multiple,
unrelated applications are what cause concern, as seen in Weston (2005). It is also very difficult
to determine the sub-lethal chronic effects of exposure to pesticides and the unintended effects of
multiple pesticides working together to cause mortality. There’s much we do not know yet about
the way these compounds act in complicated natural systems, and more studies will need to be

performed involving specific compounds and their metabolites and specific areas of concern.

Preventing entrance to waterways should still be the main focus when applying these pesticides.
This can be done by applying in prime meteorological conditions in the case of drift and
volatilization and preventing runoff by using vegetated buffer zones in agricultural areas and

avoiding the application to pavement and hard surfaces in urban areas in the case of runoff.
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CHAPTER Il

TOXICITY OF PUBLIC HEALTH INSECTICIDES TO HONEY BEES

3.1 Introduction

Exposure to pesticides has been long suspected to be a potential cause of declines in the
population of the honey bee, A. mellifera (Faucon et al. 2002, Finley et al. 1996, Mullin et al.
2010, Johnson 2015). In addition to the potential exposure to pesticides used in agro-ecosystems,
honey bees are also at risk of exposure to pesticides used to control insects that vector pathogens
to humans and animals (Caron 1979, Pankiw and Jay 1992). To prevent outbreaks of vector-
borne diseases, public health insecticide spraying is widespread in the United States. Although
the Environmental Protection Agency regulates pesticide use nationwide and requires all
pesticides to be registered, individual states and sometimes counties or cities have the authority
to establish mosquito control districts. For instance, the Mosquito Abatement District Act of
[llinois establishes the legal process of mosquito abatement for “any contiguous territory having
a population of not less than 300 inhabitants” forming a district within the state of Illinois
(Ilinois General Assembly, 2015). Likewise, Division 3 Chapter 1 of the California Health and
Safety Code allows for the formation of Mosquito Abatement and Vector Control Districts.
Some states, like Delaware and Connecticut, have statewide mosquito control programs within

other divisions of the state government.

There are various methods to carry out bioassays to determine the toxicity of insecticides used
for mosquito abatement on non-target beneficial insects, including honey bees. One method is to
topically apply the pesticide directly on the bee’s thorax (Anderson and Atkins 1968). Another
method is to place bees in cages and spray the cages with the pesticides transported in a solvent
(Womeldorf et al. 1974, Anderson and Atkins 1968, Atkins et al. 1981). In any of these cage
bioassays, the density of the mesh covering the cage in which the test subjects are confined has a
significant effect on the results of the bioassays (Hoffmann et al. 2008). Lower mesh densities
result in higher mortality or greater effect of the pesticides on the bee mortality. Test cages also
introduce a chance for secondary exposure to the chemicals due to direct contact with the cage

surface (Bonds et al. 2010). Cage bioassays are simple and repeatable and when making
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comparisons between treatments, the technique can be quite useful (Bonds et al. 2010). For
instance, in a study involving mosquitos, Hoffmann et al. (2008) tested the efficacy of two types
of cages and a wind tunnel, and found that cage mesh density decreased the amount of spray,

size of droplets, and wind speed within the cages.

Extensive research on the effects of pesticides on honey bee health has shown that many of these
compounds are insecticides commonly used for the control of insect pests that cause damage to
agricultural crops and vector several diseases to humans and animals. Many of these insecticides
are toxic to honey bees in varying doses (Halm et al. 2006; Decourtye et al. 2004; Desneux et al.
2007). Furthermore, Womeldorf et al. (1974) found that concentrated applications of fenthion
and dichlovos directly on honey bees caused high mortality rates; however, the effects were not
as drastic when using field colonies because the chemicals did not persist in the environment
long enough to enter the hives and expose the entire colony. The authors commented that
applying either fenthion or dichlovos on actively foraging bees would never be wise, as this
would result in high mortality for those colonies. Atkins et al. (1981) had similar results with
bendiocarb, malathion, and chlorpyrifos and found that, while these chemicals were deadly to
bees when applied directly on the bees, the mortality rate was negligible when the bees were in
their hive at the time of spraying. Atkins et al. (1981) also found that pyrethrins (final
concentration of 2.5% and applied at a rate of 2 fl 0z/min) had very little effect when directly
applied to caged honey bees. These findings implied that precautions should be taken to ensure
that honey bees are not foraging or clustering outside hives before spraying agrochemicals near

apiaries.

In 1972, blueberry farmers in New Brunswick, Canada were concerned about the lack of
pollinators in fields where the insecticide fenitrothion had been sprayed. Kevan (1975) sampled
native bee populations for three consecutive days during the time of most pollinator activity and
tested dead bees were for the presence of fenitrothion. He examined the exact locations where
the insecticide had been sprayed and in what concentrations. He then compared the number of
bees collected across all areas near the spray site. Although the author was unable to count the
number of bees present at the test sites before sprays were applied, he concluded there had been

a decrease in pollinator diversity and abundance as a result of the application of the insecticide.
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More recently there has been an increased interest on the effects of neonicotinoid insecticides
and their mode of toxicity on honey bees (see Dively et al. 2015 for a review on the topic). For
example, Iwasa et al. (2004) made topical applications to the dorsal thorax with various types of
neonicotinoid insecticides (imidacloprid, clothianidin, thiamethoxam, dinotefuran, nitenpyram,
acetamiprid, and thiacloprid) to determine the toxicity of each chemical to honey bees. They
found that topically applied cyano-substituted neonicotinoids had much lower toxicity to bees
than nitro-substituted neonicotinoids. The toxicity levels for the seven neonicotinoids tested
ranged from LDs, (the lethal dose that resulted in 50% mortality) values of 18 ng/bee to 14600
ng/bee. Similar studies looking at the toxicity of mosquito abatement insecticides to honey bee
foragers is still lacking, however.

The goal of the present study was to assess the impact on honey bee mortality of commonly-used
public health insecticides used for mosquito control. Honey bees were placed in a bioassay cage
that was then inserted into a wind tunnel. Through a series of serial dilutions and subsequent
exposure of honey bee workers to five products, the expected mortality of honey bees exposed to
these insecticides was determined after 24 hours, and the lethal concentrations (LC) values that

resulted in 10 and 50% mortality (LC,o and LCs, respectively) were determined.
3.2 Materials and Methods
3.2.1 Wind Tunnel

A bioassay cage was inserted into a wind tunnel to study honey bee mortality after insecticide
exposure. Solutions with varying amounts of insecticide were sprayed through the tunnel. After
24 h, honey bee mortality was assessed to determine lethal concentration (LC) values that

resulted in 10% and 50% bee mortality, denoted as LC,, and LCsg, respectively.

The wind tunnel used in this study was based on a World Health Organization (WHO) design for
evaluating insecticidal activity of active ingredients used as space sprays (WHO 2009). The wind
tunnel was constructed from galvanized duct pipe with an internal diameter of 15 cm (Figure
3.1). The entrance of the tunnel was covered with an end cap with ten circular holes with a 2-cm
diameter, which regulated the airflow to 3.5 m*/s when the motor was adjusted to create airspeed
of 2.9 m/s inside the tunnel as specified by WHO (2009). An atomizer with a volume median
diameter of 15 + 2 um was inserted into the middle of the opening of the tunnel for each spray
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treatment to deliver droplets of the test insecticides (Figure 3.1). The droplet size produced by
the atomizer caused the carrier (acetone) to evaporate before the active ingredient entered the
bioassay cages. Nitrogen was used as the propellant and the pressure was regulated to ~70 kPa.
For each replication, a bioassay cage with honey bees was placed inside the tunnel, the nitrogen
was turned on, and 0.5 mL of the designated spray solution for that test was pipetted into the
opening of the nozzle. It took four seconds for an entire solution to be sprayed on a test cage.
After waiting for 10 s to ensure that all of the spray had been exhausted from the tunnel, the
bioassay cage was removed from the tunnel and another cage was kept in its place for the next

replication. Five mL of acetone was sprayed through the nozzle to remove any residual material.
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Figure 3.1. Schematic of the WHO Bioassay Wind Tunnel. (Courtesy of WHO 2009).
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3.2.2 Bioassay Cages

The honey bees used in this study were collected from hives located at the Janice and John G.
Thomas Honey Bee Facility of Texas A&M University, in College Station, TX (30.6014° N,
96.3144° W). Prior to the spraying of each treatment-replication combination for each cage
bioassay, approximately 25 worker and drone bees were placed in a round brass bioassay cage
15 cm in diameter and 2.5 cm deep. The mesh screen openings on the cage were 1.22 mm x 1.6
mm with a wire thickness of 0.28 mm. This cage was designed at the J. Mulrennan Sr. Public
Health Entomology and Research Education Center (PHEREC) in Panama City, FL.

After spraying a cage, the honey bees were transferred to clean, non-sprayed holding cups and
were given access to a 50:50 weight by volume sugar syrup feeder. Honey bees used in the
control were sprayed with only acetone, then moved to holding cups. The cups were placed in an
incubator kept at 34°C and 75% RH. After 24 h, the number of dead honey bees was counted and
recorded for each cage. Honey bee mortality was calculated from the observed mortality in the
cages (MO) and any mortality observed in the control (MC) using Abbott’s corrected mortality
equation (Abbott1925).

M (%) = [(MO - MC) /(100 — MC)] x 100 (3.1)
3.2.3 Insecticides and Dilutions

Five insecticides routinely used by mosquito control operators for public health spray

applications were selected for this study and include:

e Aqua-Pursuit " (EPA Reg. No. 53883-274-86291, Active Ingredients: 20.6%
Permethrin, 20.6 % Piperonyl Butoxide, Precision Control Technology Inc.,
Baltimore, MD), Maximum labeled rate: 1.7 g permethrin/ha.

e Duet® (EPA Reg. No. 1021-1795-8329, Active Ingredients: 1% Prallethrin, 5%
Sumithrin, 5% Piperonyl Butoxide, Clarke Mosquito Control Products, Inc., Roselle,
IL), Maximum labeled rate: 0.81 g prallethrin/ha.

e Fyfanon ULV® (EPA Reg. No. 67760, Active Ingredient: 96.5% Malathion,
Cheminova Inc., Research Triangle Park, NC), Maximum labeled rate: 67 g

malathion/ha.
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e Scourge® (EPA Reg. No. 432-716, Active Ingredients: 4.1% Resmethrin, 12.4%
Piperonyl Butoxide, Bayer Environmental Sciences, Montvale, NJ), Maximum
labeled rate: 7.9 g resmethrin/ha.

e Zenivex® E20 (EPA Reg. No. 2724-791, Active Ingredient: 20% Etofenprox,
Wellmark International, Schaumburg, IL), Maximum labeled rate: 2.0 g

etofenprox/ha.

The toxicity effects of these products on honey bees are relatively unknown because each of
these products has different active ingredients at different labeled rates, particularly for airborne
dosage levels. To determine the initial dosage levels for each product used, a few assumptions
were made. First, the initial maximum dosage level for each product was assumed based on the
maximum labeled rate (shown above) for that compound. Second, to determine the dilution rate
needed for each product, preliminary (unpublished) test data from a previous project the
organophosphate insecticide, naled (EPA Reg. No. 5481-481, AMVAC, Los Angeles, CA), were
used. A solution of 900 pg/mL of naled diluted into acetone (maximum labeled rate of 112 g/ha)
resulted in 100% honey bee mortality, while a 100 pg/mL of naled resulted in nearly 0%
mortality. Finally, the targeted maximum and minimum dilution rates for each of the five
products were calculated based on equivalence between the maximum targeted rate of the
product and that of naled. As an example, the maximum spray rate for Duet® was 0.81 g
resmethrin/ha compared to 112 g naled/ha. The maximum equivalent dilution for Duet® was then
calculated as (0.81/ 112) x 900 to equal 6.5 pg malathion/mL. Similarly, for Aqua-Pursuit ™ the
maximum spray rate was 1.7 g permethrin/ha, which resulted in a maximum equivalent dilution
rate of 13.7 pg/mL. The maximum equivalent dilutions for Scourge®, Zenivex® and Fyfanon®
were similarly determined to be 63.5, 15.8, and 540 pg/mL, respectively. Using the same
calculation but substituting 100 for 900 to denote the lowest dilution rate, the minimum
equivalent dilutions were determined to be 7.1, 1.5, 0.7, 1.8 and 60 pg/mL for Scourge®, Aqua-

Pursuit ™, Duet®, Zenivex® and Fyfanon®, respectively.

Using the determined maximum and minimum equivalent dilution rates for each of the five
products, a series of four dilutions were conducted. All dilutions were done with acetone as
described by the WHO method (WHO 2009). Acetone was used as a diluent because it
evaporates immediately upon spraying, leaving only the product being tested. The dilution

ranges were set by targeting as close as possible the maximum and minimum spray rates to those
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determined above. Some modification had to be made so that a lower volume requirement could
be accurately measured, however. For example, to obtain the required maximum concentration
equivalent of 6.5 pg/mL for Duet® an initial stock solution consisting of 150 mL acetone and
0.325 mL Duet®would be required. Further serial dilutions were adjusted to generate a uniform
range between the maximum and minimum dilutions established by adjusting both the volume of
concentrated solution and acetone used. As an example, the serial dilutions for the initial round
of testing using Scourge® are shown in Table 3.1. All dilution calculations were made and
recorded using Microsoft Excel. Scourge® contains 0.036 g resmethrin / mL, a concentration that
was used to generate a stock solution for subsequent serial dilutions by diluting 5 mL of the
formulated product into 100 mL of acetone, resulting in a mixture with 0.0018 g resmethrin /
mL. Further diluting 50 mL of this stock solution in 50 mL of acetone results in the first serial
dilution containing 900 g of resmethrin per mL, which is equivalent to 900 parts per billion
(ppb). In the table, this is represented as Treatment 5. The serial dilution for Treatment 4 was
generated by diluting 50 mL of the first serial dilution solution (Treatment 5) with 50 mL of
acetone to make a second serial dilution of 450 g resmethrin / mL solution. Similarly,
Treatment 3 was a dilution of 50 mL of second serial dilution solution (Treatment 4) with 100
mL of acetone to make a 150 pg resmethrin / mL solution. The final (minimum) serial dilution
(Treatment 1) was generated through the same process resulting in a solution with 25 ug
resmethrin / mL. The spreadsheet allowed for quick determination of serial dilutions to create
any desired concentration, which was critical as several additional rounds of testing were
required to pinpoint the honey bee mortality levels with several products. The treatments were
numbered and performed backwards such that the treatment with the lowest concentration of
chemicals was done first in order to minimize contamination between varying dilution levels.
This meant that Treatment 1, a control of only acetone, was used as a measure of contamination
between products. Subsequent dilution treatments went from lowest active product

concentrations to highest.
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Table 3.1. Protocol for the serial dilution of Scourge® in acetone to test its effects on honey bee
mortality at different concentrations. A.l. is the active ingredient and TRT is the treatment
number.

Insecticide: Scourge® (4% Resmethrin (0.3#/gal), 12.4% Piperonyl Butoxide)
A.l. Rate A.l. Rate Pesticide Acetone Result (g/mL) Stock  Acetone Final

TRT Ib/gal g/mL mL mL (g a.i./mL) (mL) (mL) (ng/mL)
5 0.3 0.036 5 100 0.001802 50 50 900
4 50 50 450
3 50 100 150
2 20 100 25
1 100 Control

The first set of trials did not result in mortality levels which contained the LCs, value (the
concentration that killed 50% of the caged honey bees). This required additional test runs with
serial dilutions resulting in new maximum and minimum equivalent dilutions for each of the
products tested. For Duet®, the second round of testing used dilution rates from 20 to 164 ug
prallethrin / mL, which still did not result in treatment levels with 50% mortality. Therefore
another set of trials was conducted with dilution rates from 830 to 9000 ug prallethrin / mL. The
other three products also required an additional two rounds of testing with adjusted dilution
rates. Dilutions with Zenivex® ranged from 27 to 320 pg etofenprox / mL for round two, and
from 1350 to 178,000 pg / mL for round three. Dilutions with Aqua-Pursuit ™ ranged from 114
to 912 ug permethrin / mL for round two, and from 780 to 200,000 pg/mL for round three.
Finally, dilutions with Fyfanon® ranged from 200 to 1130 ug malathion / mL for round two, and
from 670 pg to 1.2 g/mL for round three.

3.3 Results and Conclusions

To determine the LC,y, LCs, and LCq Values for each product tested, Morgan-Mercer-Flodin
(MMF) sigmoidal models (Eq. 2) (Morgan et al. 1975) were fit to honey bee mortality rates from
Abbott’s corrected mortality equation (Abbott, 1925) at 24 and 48 h post treatment using
CurveExpert (Version 2.0.2; Daniel G. Hyams©). Example plots for the 24 and 48 h mortality

data versus dosage levels of Aqua-Pursuit ™ are shown in Figures 3.2 and 3.3, respectively.
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Using equation 2, the LC4, LCsp, and LCq values (i.e., the concentration that killed 10%, 50%,
and 90% of the caged honey bees, respectively) for all five products at the 24 and 48 h points

were determined (Table 3.2).

ab+ cx?
b+ x4

24 or 48 hour mortality (%) =

(3.2)

Where:

x = Dosage or concentration of active product applied (pug/mL)

a, b, ¢, d = constants, determined in CurveExpert when the MMF curve was fit to the data,
dependent upon each product and 24 or 48 h mortality data, included in Tables 3.3 and 3.4,
respectively.
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Figure 3.2. Percent honey bee mortality 24 h after treatment with Aqua-Pursuit ™ (20.6%
Permethrin, 20.6 % Piperonyl Butoxide).
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Figure 3.3. Percent honey bee mortality 48 h after treatment with Aqua-Pursuit ™ (20.6%
Permethrin, 20.6 % Piperonyl Butoxide).

Normal operational usage rates resulted in no significant detrimental health effects on honey
bees as a result of exposure to airborne spray concentrations when using the dilution
concentrations corresponding to the maximum labeled rate for each product tested. In fact, based
on the equivalent maximum labeled rate dilution concentration, the expected mortalities for the
products tested would be <2%, near 0%, 11%, near 0%, and <2% for Aqua-Pursuit ™, Duet®,

Fyfanon®, Scourge®, and Zenivex®, respectively.
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Table 3.2. Dilution concentrations corresponding to the LCyq, LCso, and LCgy values for each

product evaluated for the 24 and 48 h honey bee mortality assessment.

Equivalent 24 h 48 h
Max Labeled
Products Rate Dilution
Concentration Co LCso LCo LCao LCso LCoo
(ug a.i./mL)
Aqua-Pursuit ™ 13.7 1350 2390 3940 1600 2620 4110
Duet® 6.5 395 2190 4680 380 2150 4620
Fyfanon® 540 516 2430 4960 483 2590 5440
Scourge® 63.5 129 351 607 119 345 607
Zenivex® 15.8 691 1370 2630 687 1380 2670
Table 3.3. 24 h constants used in Equation 3.2.
Chemical 24 h
emicals . b c q
Aqua-Pursuit ™ 1.82E+00 7.96E+13 1.02E+02 4.10E+00
Duet® -2.67E+00 6.71E+03 4.23E+02 8.91E-01
Fyfanon® -4.75E+00 9.28E+03 5.03E+02 9.00E-01
Scourge® -1.39E+01 3.47E+03 4.56E+02 1.08E+00
Zenivex® 1.43E+00 4.47E+10 1.00E+02 3.39E+00
Table 3.4. 48 h constants used in Equation 3.2.
hemical 48 h
Chemicals N b c q
Aqua-Pursuit™  9.26E-01  4.68E+15 1.02E+02 4.58E+00
Duet® -2.19E+00 6.78E+03 3.95E+02 9.03E-01
Fyfanon® -3.02E+00 8.93E+03 4.94E+02 8.87E-01
Scourge® -1.20E+01 3.28E+03 4.81E+02 1.05E+00
Zenivex® 1.73E+00 3.59E+10 1.00E+02 3.36E+00
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3.4 Summary

The effects on honey bee mortality of commonly-used public health insecticides for mosquito
control were assessed in this study. Five insecticides typically used for mosquito control were
tested to determine their potential effect on honey bees. Honey bees were exposed to varying
airborne concentrations of each insecticide in a wind tunnel and LC,, LCsg, and LCgyy vValues

were determined for 24 and 48 hours.

It was found that the insecticides tested had negligible impact on honey bee mortality even at
maximum usage rates except. The results from this study will provide guidance to mosquito
abatement district managers to properly select public health insecticides that cause minimum
toxicity effects on honey bees. Our results strengthen the notion that most public health sprays
should be done at dusk or later in the day when honey bees are not active outside and remain
inside their hives. It should be noted that this study did not examine the potential chronic effects
of any of these insecticides at sub-lethal doses.
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CHAPTER IV

MODELING SPRAY DISPERSION INTO WATERWAYS AND ONTO SENSITIVE AREAS
USING A TRUCK-MOUNTED GROUND SPRAYER

4.1 Introduction

Buffer zones, areas that set a minimum distance from a pesticide application swath to a sensitive,
non-target area to limit the impact of drifting pesticide (Payne et al. 1988), are common near
water bodies but not nearly as common around honey bee (A. mellifera) hives. Among the many
variables that affect the drift of applied chemicals, Hewitt (2000) found that across many studies,
the most important factors affecting drift were droplet size, boom height, and wind speed. Public
health spraying has become more widespread in the last few years with the increasing incidence
and geographic dispersion of West Nile Virus, causing many states to set up permanent mosquito
control districts (Schleier et al. 2008). Many of the pesticides used are pyrethroids and piperonyl
butoxide (PBO) and are generally regarded as safe for use near mammals (Schleier et al. 2008).
Their effects on non-target invertebrates are not as well documented, and they are highly toxic to

some aqguatic organisms (Gan et al. 2005).

Colony Collapse Disorder (CCD), the unexplained disappearance of whole honey bee colonies
from their hives (Dainat, et al. 2012), has become a growing concern since it first appeared in
2006. Therefore, the fate of the honey bee in relation to pesticide application has become a
subject of much scrutiny in recent years. Even pesticides with no visible ties to CCD are being
examined more closely for their sub-lethal effects on the honey bee and how they may interact
with other factors (Suryanarayanan and Kleinman 2012, Sanchez-Bayo and Goka 2014). Atkins
et al. (1981) and Womeldorf et al. (1974) found that direct exposure of fenthion, dichlovos,
bendiocarb, malathion, and chlorpyrifos caused high mortality rates in honey bees that have been
directly exposed, but otherwise would have little effect on the bees. It stands to reason that
applying insecticides to honey bees and their hives, whether directly or through accidental drift,

should be avoided.
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Several related studies have been done covering drift, environmental concentrations of
insecticides, and buffer zones. Payne et al. (1988) of the Canadian Forestry Service (CFS) came
up with a technique for estimating buffer zones using permethrin, a synthetic pyrethroid. The
procedure used a worst-case scenario to determine the suggested buffer. This approach, however,
did not reflect common application practices and resulted in a larger buffer than was necessary
for the majority of spray conditions. This large buffer, in turn, reduced deposition efficiency for
controlling the targeted pests (Payne et al. 1988). CFS used swath spacing based on operational
practices for the equipment and the predominant plant canopy that its organization would be
spraying, but otherwise used water to obtain worst-case volatility conditions, the smallest
operational drop size for worst-case drift, as well as worst-case but unlikely wind conditions.
While these assumptions may have suited the purposes for determining buffer zones, the
assumptions are not ideal for many situations. When it comes to controlling drift, Hewitt (2000)
stated that since the majority of drift came from the swath that was the most downwind, slight
adjustments to the swath were in reducing drift. La Mer and Hochberg (1948), however,
suggested that selecting favorable meteorological conditions and carefully controlling droplet

size will give the most control over deposition.

Payne et al. also looked into mortality rates in fish, but did not look into the mortality of food
supplies for the fish. They did, however, state that it would be wise to keep mortality levels of
the food supply below the levels that would result in fish mortality. Schleier et al. (2008) found
that the risk to aquatic life from pyrethrins and PBO, which are active ingredients in several
insecticides used in the study, was minimal when applied aerially. They did not take into account
the synergistic effects of pyrethrins from sources other than aerial. This study also did not
mention the potential effects these products would have on food sources, and if an impact of this
nature would indirectly affect the vertebrates. Because of these factors, the prevention of drift

into waterways is still a point of concern.

The goal of this research was to provide recommendations for buffer zones to prevent
contamination of adjacent water bodies and honey bee hives through field-measured deposition

data and associated AGDISP® modeling over a range of distances.
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4.2 Materials and Methods

AGDISP® (version 8.24, USDA Forest Service) was used to model deposition of five public
health insecticides into waterways and at terrestrial points at various wind speeds and distances
from the application. The model was first calibrated to field data obtained in a joint study with
East Baton Rouge Mosquito Abatement and Rodent Control and Louisiana State University.
AGDISP® is primarily an aerial application drift model that recently incorporated a mechanistic
ground boom sprayer drift model that is intended only for flat fan and air-induction type spray
nozzles (Teske et al. 2009). It has been extensively validated in these uses, and Thistle et al.
(2005) give a detailed description of the mathematics that run the model (Hewitt 2008, Duan et
al. 1992). Because of the absence of alternative spray drift models for use with truck-mounted,
air-assisted public health sprayers, a number of assumptions, discussed in the Modeling Inputs
section, were made in an effort to extrapolate buffer zone estimates based on matching modeled
predictions to field measured data.

4.2.1 Field Setup

Field trials were conducted with a truck-mounted, air-assisted sprayer (Curtis Dyna-Fog, Ltd.
Model LV-8). This configuration, while common for mosquito control operations, is not used in
agricultural spraying. The test field was 27 m by 91 m (90 ft by 300 ft) with three rows of
deposition sites set 9.1 m (30 ft) apart configured in six columns. The space between each
column was 15 m (50 ft) and the first column was 15 m (50 ft) from the spray swath. The field
was oriented with the wind blowing across the field from the spray line, as seen in Figure 4.1.
Each deposition site included a stand holding one vertical circular cage each of 15 mosquitos and
15 honey bees to measure mortality and one impinger (spinner) (Leading Edge Associates,
Waynesville, NC). The spinners used two 25mm uncoated glass microscope slides set 16¢cm
apart (outside edge to outside edge), and the slides rotated at a velocity of 5.6m/s to measure the
deposition concentration of each chemical at each site. Each chemical was applied in three
replications and was mixed with Tinopal® optical brightener (BASF, Research Triangle Park,
N.C.) at a concentration of 5g/L for a total of 15 test runs (5 pesticides x 3 replicates).
Meteorological data (wind speed and direction) were available from the National Climatic Data
Center (NCDC 2014). For each spray, the insects were counted for mortality. The exposed slides

were washed with 10mL per sample of water plus 10% v/v isopropyl alcohol with 5 ml of the
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final wash solution decanted in the borosilicate vials. The vials were processed for fluorescence
using a spectrofluorophotometer (Model RF5000U, Shimadzu, Kyoto, Japan) with an excitation
wavelength of 372nm, an emission at 427nm, and a minimum detection level of O.OOOO?mg/cm2
for Tinopal®. The measured fluorescence values were converted to volume of spray solution
using pre-mixed standard solutions of known dye concentration. These values were further
converted to a concentration of insecticide using the solution mixing rates from the field study.
Corrections were then made for the collection efficiency of the spinners and the results converted
to volume of active spray per area sampled, as detailed by Fritz, et al. (2011), these values were
used to validate the modeling results.

Wind Direction

50ft 100ft 150ft 200t 250ft 3001t

30ft

30ft

Spray Line

= cage location

Figure 4.1. The field configuration used in calibration data collection in Baton Rouge, Louisiana
June 2-6 and October 21-24, 2014.

4.2.2 Modeling Inputs

Using the meteorological conditions monitored at the time of the spray trials, AGDISP® input
values were established. A wind speed of 1.8 m/s (4 mph), a temperature of 18° C, and a relative

humidity of 50% were used. Atmospheric stability was assumed to be the default setting of
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“overcast.” The surface of the spray area was flat with no canopy. As mentioned previously,
AGDISP® is not designed to model the truck mounted, air-assist sprayer used as part of this
study; however, the inputs used for the ground sprayer model with AGDISP® can be modified to
fit the operational parameters of the sprayer used in the study. A number of engineering
judgments were required to determine these appropriate input conditions. The application
method was set to “Ground,” with the nozzle type selected as “Flat Fan” with a boom pressure of
414 kPa (60 psig) and a single spray line. The effective swath width was set at 15 m (50 ft) based
on the operational practices of the mosquito control district. Beyond these fairly basic inputs,
three other critical inputs had to be determined to represent most appropriately the conditions in
the field within the confines of the available modeling inputs. These include the Application
Technique (which incorporates number of nozzles and spray droplet size distribution), Spray
Material, and Release Height of the spray.

The Application Technique settings were modified from default such that the spray boom was
set to a single nozzle, centered on the boom. The droplet size distribution used the “Parametric”
option under the “User-defined” drop distribution type. The DV0.5 was entered as 55 um with a
relative span of RS=1.5. These values were based on previous evaluations of the LV-8 sprayer
conducted using a water and non-ionic solution (Hoffmann et al. 2010). The DV0.5 values for
the LV-8 sprayers tested by Hoffmann et al. ranged from 40 to 80 um with a mean of 58 um.
Previous sprayers tested with both BV A and water with non-ionic surfactant tend to show BVA
DV0.5 values that are approximately 5% less than the water solution, all other settings remaining

the same.

The Spray Material settings within AGDISP® were used to establish the fraction of the spray
material that is volatile and evaporates during the course of airborne transport. This results in
changes in both droplet size and concentration of spray material with increasing transport
distances. The spray solutions in this project were all oil-based and were further diluted into an
oil carrier (BVA 13, a light petroleum oil used as a carrier for public health and agricultural
sprays), meaning very little to no evaporation occurred. To aid in comparison with field data for
the initial modeling efforts, the percent of tank mixture set as “Active” was 100%; meaning that
the AGDISP® results for deposition that are reported as mass of active ingredient per area
actually represent the mass of the total spray solution (carrier oil plus active product) per area.
The last critical input within the Spray Material settings was the spray volume rate. The spray
37



plot established for the application field trials was 0.97 ha with each spray pass applying 239 mL
within the plot. This corresponds to 246 mL/ha, which equals 0.026 gal/ac (AGDISP® input

units).

The release height of the spray plume was the final critical input. While the spray nozzle exit
was at approximately 1.8 m (6 ft), the air-assisted sprayer propelled the spray cloud to an
estimated 3.7 - 4.6 m (12-15 ft) height prior to coming to ambient wind conditions. A series of
modeling runs were conducted adjusting the spray release height from 3.7 to 4.6 m, with the 3.7
m resulting in the closest fit to the field measured data.

4.2.3 Deposition Assessment

To determine properly how buffer zone distance based on aquatic and honey bee health affects
dosage levels, actual spray solution mixture rates of the active ingredients were needed. Each
product tested as part of this study was applied at both a high and low rate, as specified on the
label of each product. AGDISP® was used to model the active fraction deposition and
concentrations at terrestrial and aquatic locations as well as concentrations of material aloft at
specified distances, assuming the active fraction of the spray solution is known. For this study,
the active ingredient application rates were converted to active fraction rates with the remainder
of the solution being the carrier fraction (Table 4.1). These values were directly input into
AGDISP® under the Spray Material inputs with 100% of both the active and carrier being
specified as nonvolatile (Figure 4.2). As mentioned before, the spray volume rate was 0.026
gal/ac, and was the same for each trial. The rate was varied by changing the amount of active

ingredient (a.i.) in the carrier.
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Table 4.1. Insecticides and rates used with active and carrier fractions of the spray solution.

Insecticide Active Ingredient Active Carrier
Application Rate (g/ha) Fraction Fraction
L T™ High-7.9 0.03 0.97
Aqua-Pursuit Low 17 001 099
High-8.9 0.03 0.97
®
Duet Low - 3.0 0.01 0.99
High - 67.3 0.24 0.76
®
Fyfanon Low — 33.7 0.12 0.88
High-7.9 0.03 0.97
®
Scourge Low 1.7 001 0.99
. High-7.9 0.03 0.97
®
Zenivex Low—20 001 099
= Spray Material
Properties Fractions
Name: [Bya, 13
[ Spray Material E vaporates Active Fraction: W
Spray Volume Fate; W m el FEEE (I
Tark Mix

Active Solution

% of Tank Mix: 3
Fraction of Active
Solution that is 1
nionvalatile:

Additive Salution(s)

% of Tank Mix: 97
Fraction of Additive
Solution(s] thatis |1

Il Nonvolatile Active (3 %)
. Nonvolatile Additive(s) (97 %)
Il Cther Nonvolaties (-2.79E-06 %)

nonvolatile:
Carrier
% of Tank Mix: -2 79E-0F

Tatal

%of TarkMix 1100

Calclation Control

Enter (7 Fractions (¢ Tank Mix Cale | Cancel |

Figure 4.2. AGDISP® Spray Material input was specified as 100% nonvolatile.
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With all inputs specified, the model was run and the results processed. Deposition assessments
were performed for water bodies for each spray application to determine the required buffers
such that deposition into a water body was less than lethal based on specified toxicity levels for
each product applied. For the products used in this study, there were ranges in the published
toxicity data, depending on the species of concern and the study done. Rather than try to cover
full ranges for all species, a sampling of ranges is given in Table 4.2. Ideally, determining buffer
zones would depend on a specific species of concern. AGDISP® allows for a direct calculation of
distance and/or concentration for aquatic areas, terrestrial points and terrestrial areas. For aquatic
areas, the water body width and average depth can be defined. However, the default values of
208.7 m (684.7 ft) width and 6.559 m (21.52 ft) depth are prescribed for worst-case assessments
by the USEPA and were used for this work.

Table 4.2. Aquatic toxicity values used for the deposition assessment.

Aquatic Toxicity

Product Values (1g a.i/L) Reference
Aqua-Pursuit™ 18-25 Precision Control Technology, Inc. 2011
Duet® 0.154 - 19.55 Key et al. 2011
Fyfanon® 1-200 Cheminova Inc. 2002
Scourge® 1.25-100 Bayer Environmental Science 2013
Zenivex® 3.3-85 Wellmark International 2010

The previous work in Chapter 111 was used to define the airborne toxicity levels for each of the
products used to determine the buffer distance to prevent honey bee lethal toxicity. The previous
work used dilutions of the active products that were applied into a controlled bioassay wind

tunnel containing caged bees.

For each solution sprayed, the previous paper has LCsoand LC,, values in the form of pg of
active ingredient per mL of non-active and dilution material. It was necessary to make the

conversion to an estimated airborne density in pg/cm? that would be presented to the honey bees.
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The LCsoand LCy values in pg/mL were multiplied by the 0.5 mL spray volume used, then
divided by the tunnel’s area (15 cm diameter or 176.6 sz) (WHO 2009). The LCsp and LCyy

values for each product as well as the estimated airborne density are shown in Table 4.3.

Table 4.3. Conversion of LCs, and LCyq values from pg/mL to pg/cmz.

LC1o (U9 LCso (Ug Estimated Airborne Density
Product a.i/mL inactive a.i/mL inactive (ug/cm?)
dilutant) dilutant) LCyo LCsxo
Aqua-
Parsait™ 1350 2390 38 6.8
Duet® 395 2190 1.1 6.2
Fyfanon® 516 2430 1.5 6.9
Scourge® 129 351 0.4 0.99
Zenivex® 691 1370 2.0 3.9

4.3 Results and Discussion
4.3.1 Validation of Model

Model and field data are shown in Table 4.4. Both model and field data are representative of the
total spray volume (carrier plus active). As mentioned previously, the spray volume rate was the
same for each trial, and the rate was varied by changing the amount of active ingredient in the
carrier. Because of this, these values that used the total spray volume should all be similar.
Because these results are being used to validate the model, total spray volume is used for ease of
comparison. The transport aloft values from the model were quite close to the measured values
in the field and were considered a good fit for low wind speeds, similar oil based pesticides, and
the model of ground sprayer used. Weather in the field could not be controlled, while the
atmospheric variables remained constant in the model. Consequently, a much greater difference
in model and field data was expected. The values are decreasing in both data sets, with the
exception of the model values from 15 to 30 m (50 to 100 ft). This can be explained by the
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“perfect” atmospheric conditions in the model, where the release height of 3.7 m (12 ft) would
take more than 15 m (50 ft) of horizontal transport for the majority of the droplet cloud to come
down vertically to 1.8 m (6 ft), and the concentration at 1.8 m (6 ft) would peak somewhere after
15 m (50 ft), then decrease (Table 4.4). The field data, averaged over multiple repetitions,
generally show a steady and pronounced decrease in 1.8 m transport concentrations from 15 to

30 m. No field data was obtained for Zenivex®.

Table 4.4. A comparison of the 1.8 m transport aloft values from AGDISP® and the values
corrected for collection efficiency from the field study for both high and low application rates.

Field (ug/cm?)

Distance - Model Pﬁ‘gﬂ?{m Duet® Fyfanon®  Scourge®
(m) (Mg/lcm?)  Low High Low High Low High Low High
15 6.8 9.0 65 42 33 17 16 22 27
30 6.8 7.0 47 19 15 19 57 14 26
46 6.7 4.3 31 075 51 75 73 15 2.2
61 6.5 3.5 22 067 42 48 46 10 22
76 6.3 2.5 21 045 27 39 17 08 21
91 5.9 2.4 20 050 26 22 16 15 20

4.3.2 Deposition Assessment

To determine water body spray deposition at both the high and low application rates, AGDISP®
was run from 0 to 61 m (200 ft) (Tables 4.5, 4.6). Given the aquatic toxicity values presented in
Table 4.2, these spray rates do not produce concentrations at levels of concern. The model only

takes into account this spray, however, not any runoff or drift from other sources.
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Table 4.5. Model generated concentrations at high application rates.

Concentration (pg a.i./L)
Distance (m)  Aqua-Pursuit” ~ Duet®  Fyfanon® Scourge® Zenivex®

0.00 4.49E-03 4.49E-03 3.59E-02 4.49E-03 4.49E-03
15.2 4.42E-03 4.42E-03 3.54E-02 4.42E-03 4.42E-03
30.5 4.20E-03 4.20E-03 3.36E-02 4.20E-03 4.20E-03
61.0 3.67E-03 3.67E-03 2.94E-02 3.67E-03 3.67E-03

Table 4.6. Model generated concentrations at low application rates.

Concentration (ug a.i./L)
Distance (m) Aqua-Pursuit”  Duet®  Fyfanon® Scourge® Zenivex®

0.00 1.50E-03 1.50E-03 1.80E-02 1.50E-03 1.50E-03
15.2 1.47E-03 1.47E-03 1.77E-02 1.47E-03 1.47E-03
30.5 1.40E-03 1.40E-03 1.68E-02 1.40E-03 1.40E-03
61.0 1.22E-03 1.22E-03 147E-02 1.22E-03 1.22E-03

AGDISP® was run to determine the transport aloft at downwind distances out to a maximum of
61 m (200 ft) to estimate the buffer distance needed to reduce airborne spray concentrations to
that below the LCs, values for honey bees for each product. AGDISP® is only recommended out
to 305 m (1000 ft), so another model would need to be used for further distances. The maximum
airborne density at each distance was used, regardless of vertical height. For each distance of
interest, the distance was entered into AGDISP® under Transport. The model was run, and the
maximum airborne density determined from the Transport Aloft data (Table 4.7). None of the
products used reached the estimated airborne density that would cause 50% mortality (Table

4.3). In fact, all but Fyfanon® were below the LCy, values for honey bees.
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Table 4.7. Maximum transport aloft (ug a.i./cm? ) values up to 61 m.

Transport Aloft (ug a.i./cm?)

Aqua-Pursuit™ Duet® Fyfanon® Scourge® Zenivex®
Distance (m) Height (m)
High Low High Low High Low  High Low High Low

0.30 3.3 0.33 0.11 0.33 0.11 2.6 13 0.33 0.11 0.33 0.11
3.0 3.2 0.31 0.10 0.31 0.10 2.4 12 0.31 0.10 0.31 0.10
15 3.0 0.25 0.085 0.25 0.085 2.0 1.0 0.25 0.085 0.25 0.085
30 2.8 0.23 0.075 0.23 0.075 1.8 0.90 0.23 0.075 0.23 0.075
61 2.4 0.20 0.066 0.20 0.066 1.6 0.80 0.20 0.066 0.20 0.066

4.4 Conclusions

The AGDISP® model provided a good estimate of field data for a ground-mounted flat sprayer
when the correct parameter values were selected. For the mosquito control products tested there
was little need for buffer zones to protect honey bees or water bodies. The only exception was
Fyfanon®, which exceeded the LC,, values for honey bees at 61 m from the application point
when applied at the high application rate. There are obviously limits to this study, but one could
use the validation of the AGDISP® model for this type of application. Then altering the model
for different pesticides, wind speeds, or foggers could be relatively straight forward. It should be
noted that the analysis presented is an approximation. If a product is suspected to be deadly in
small doses to aquatic life or honey bees it should be rigorously field tested and a more

conservative approach should be taken before application.
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CHAPTER V

CONCLUSIONS

It is difficult to summarize the findings of even a single group of pesticides into a simple
recommendation, as seen in Druzina and Stegu (2007), Simo and Zhang (2002), and Amweg et
al. (2006). This, combined with many potential entry points for pesticides, especially in urban
areas where their use is less monitored and they are applied in greater amounts per unit area,
leads to the suggestion that a potential focus might be on just how prevalent these pesticides are
and what the actual concentrations are in natural systems. Often the concentrations achieved
from a single application are not going to cause concerning mortality levels, but multiple,
unrelated applications are what cause concern, as seen in Weston (2005). It is also very difficult
to determine the sub-lethal chronic effects of exposure to pesticides and the unintended effects of
multiple pesticides working together to cause mortality. There’s much we do not know yet about
the way these compounds act in complicated natural systems, and more studies will need to be

performed involving specific compounds and their metabolites and specific areas of concern.

In Chapter I, it was found that the insecticides tested had negligible impact on honey bee
mortality even at maximum usage. The results from this study will provide guidance to mosquito
abatement district managers to properly select public health insecticides that cause minimum
toxicity effects on honey bees. The results strengthen the notion that most public health sprays
should be done at dusk or later in the day when honey bees are not active outside and remain
inside their hives. It should be noted that this study did not examine the potential chronic effects

of any of these insecticides at sub-lethal doses.

In Chapter IV, the AGDISP® model provided a good estimate of field data for a ground-mounted
flat sprayer when the correct parameter values were selected. For the mosquito control products
tested there was little need for buffer zones to protect honey bees or water bodies. The only
exception was Fyfanon® (malathion), which exceeded the LCy, values for honey bees at 61 m
from the application point when applied at the high application rate. There are obviously limits
to this study, but one could use the validation of the AGDISP® model for this type of application.

Then altering the model for different pesticides, wind speeds, or foggers could be relatively
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straight forward. It should be noted that the analysis presented is an approximation. If a product
is suspected to be deadly in small doses to aquatic life or honey bees it should be rigorously field

tested and a more conservative approach should be taken before application.

Preventing entrance to waterways and deposition onto honey bee hives should still be the main
focus when applying these pesticides. This can be done by applying in prime meteorological
conditions in the case of drift and volatilization and preventing runoff by using vegetated buffer
zones in agricultural areas, avoiding the application to pavement and hard surfaces in urban areas
in the case of runoff. As well as being aware of honey bee hive locations downwind of the spray
swath.
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APPENDIX A

FIGURES
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Figure A-1. Chemical structure of phenothrin (sumithrin).
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Figure A-2. Chemical structure of etofenprox.
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Figure A-3. Chemical structure of permethrin.
Figure A-4. Chemical structure of resmethrin.

Figure A-5. Chemical structure of malathion.
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APPENDIX B

TABLES

Table A-1. Water solubility of the selected compounds.

Solubility in

Compound Water (mg/L) Reference

Malathion 148* WHO 2003
Permethrin 0.00450 Vasquez et al. 2010
Sumithrin 2.00* WHO 2004
Resmethrin insoluble Bayer Environmental Science 2013
Etofenprox 0.404 Vasquez et al. 2010

*At 25°C

Table A-2. Henry’s Law constants of the selected compounds.

Henry's Law Constant

Compound (Pa-m”"3/mol) Refrerence
Malathion 4.96E-04 NIH 2012
Permethrin 2.07E-01 Vasquez et al. 2010
Sumithrin 6.89E-01 EPA 2008
Resmethrin 1.32E-02 NIH 2010
Etofenprox 3.49E-03 Vasquez et al. 2010
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