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ABSTRACT 

 

The presence of circadian rhythms during early development has been poorly 

examined until very recently in vertebrate species. Previous studies have focused on the 

development of specific structures involved in the control of circadian regulation; 

however, these structures develop relatively late during development and, in most cases, 

only mature after parturition. The experiments in this thesis aim to answer the basic 

question, “When do circadian rhythms first appear?” with a comparative approach 

utilizing mouse embryonic stem cells in culture and chicken embryos in ovo to 1) 

establish the first appearance of the full complement of canonical clock genes, 2) 

analyze the temporal expression patterns at the earliest stages of development, and 3) 

determine whether external cues can induce a functional molecular clockwork in these 

tissues. The role of pineal melatonin in regulating circadian rhythms of developing 

astrocytes is also investigated. The results of these studies show that, while the putative 

molecular clock is not functional in undifferentiated embryonic stem cells, a 

physiological rhythm of glucose utilization is present. This metabolic rhythm is 

amplified upon non-specific differentiation, at which point the molecular clock also 

starts. In contrast, circadian rhythms of chick embryos in ovo do not appear 

spontaneously, although all components of the molecular machinery are expressed. The 

clock in early chick embryos can be driven by – but not entrained to – temperature 

cycles, but is not responsive to light cycles. Finally, some clock gene rhythms can be 

driven by rhythmic melatonin signals; however, glucose utilization is fully entrained 
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after several days of rhythmic exposure. Remarkably, pineal melatonin increases mitotic 

activity in these cells in a dose-dependent fashion, suggesting an auxiliary role of 

melatonin in embryonic development. While these studies show the earliest observed 

circadian rhythms in both mammalian and avian model systems, they also show that 

metabolic rhythms precede those of the molecular mechanism and provide compelling 

evidence that the ontogeny of circadian time-keeping lies outside of the canonical 

molecular clockworks.  
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1. INTRODUCTION 

 

1.1 Formal Properties of Circadian Rhythms 

Life on Earth has evolved around an environment that is constantly changing.  

These changes pose direct and indirect challenges to organisms that are competing to 

survive under such conditions.  While some of these changes are unpredictable, others 

appear periodically:  temperature minima and maxima across seasons in temperate 

zones, tidal volume in coastal areas and, the most universal across the planet, daily 

changes that occur with the rising and setting of the sun.  It is the precision with which 

the latter phenomenon occurs – and has occurred for billions of years – that provides 

organisms with the ability to anticipate the challenges that coincide with it.  For 

example, increased humidity in the early morning hours is crucial for the emergence of 

larvae from their eggs to prevent desiccation.  Similarly, the ebb and flow of the tides 

change the environment from terrestrial to aquatic at certain times of day.  These and 

other environmental fluctuations that coincide with the daily light cycle have imposed a 

selective pressure on all organisms to evolve mechanisms, collectively referred to as 

circadian rhythms, to anticipate and respond to daily changes in the environment.  The 

term circadian is literal in its description of rhythms that occur with a period of about 

(Circa) a day (Diem).  Although it is now believed that circadian rhythms evolved 

multiple times across different taxa, the primary effect remains universal:  to maintain a 

synchrony between molecular, physiological, and behavioral processes and the external 

environment (Pittendrigh, 1993, Menaker et al., 1997).   
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Several biological processes coincide with daily occurring phenomena; however 

some of these occur as a direct response to environmental conditions.  While these 

diurnal rhythms are important, they are fundamentally different from circadian rhythms.  

Experimentally, a rhythmic process can be defined as circadian if it exhibits 3 properties.  

Firstly, the rhythm must be maintained under constant conditions, - such as constant dark 

(DD), and thus be capable of free-running with a period (τ) of close to – but not exactly 

– 24 hours (Pittendrigh, 1993, Bell-Pedersen et al., 2005).  The persistence of circadian 

rhythms under constant conditions serves as proof that the mechanism underlying the 

rhythm is generated endogenously, as opposed to reactively in response to an external 

oscillation. 

The intimate relationship between organism and environment has provided the 

former with a milieu of stimuli, many of which occur at the same time each day.  When 

such a stimulus is strong enough to impose the phase (φ) of its rhythm onto the 

endogenous mechanism of an organism, thereby creating a stable phase relationship (Ψ) 

between the two, the stimulus can be referred to as a “zeitgeber”, literally time giver.  

Several environmental cues have been shown to entrain circadian rhythms, including 

light, temperature, and food availability, with light being the most efficacious 

(Pittendrigh, 1981).  The process of establishing a stable phase relationship between 

zeitgeber and endogenous clock is referred to as entrainment and is the second formal 

property of circadian rhythms.  Although the period of artificial zeitgebers is usually 

constant (12:12 light:dark cycles, for example) the variability observed in any organism's 

τ, in that it is rarely exactly 24 hours, provides an adaptive advantage to re-entrain its 
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timekeeping mechanism to naturally occurring zeitgebers that may vary in their 

periodicities throughout the year.   

While our understanding of entrainment, especially at the molecular level, is 

limited, there are two models describing the mechanism underlying a zeitgeber's ability 

to synchronize an oscillator: the so-called parametric and non-parametric entrainment 

models (Pittendrigh, 1981, Daan, 2000).  Parametric – or tonic – entrainment posits that 

the zeitgeber acts on the oscillator continuously, and the oscillator responds by changing 

its angular velocity towards a new phase.  The empirical basis of the parametric model 

lies in the lengthening and shortening of τ as a result of different intensities of constant 

light, where entrainment is achieved by sinusoidal oscillations of the light intensity 

(Daan, 1977). The nonparametric model regards the zeitgeber as a discrete signal; a 

singular event that, dependent upon the phase at which it occurs, can shift the phase of 

the oscillator forwards or back.  The nonparametric model can be – and almost always is 

– illustrated by a phase response curve (PRC), the graphical representation of the 

resulting phase shifts based on the times at which the zeitgeber is administered 

(Decoursey, 1960, Pittendrigh, 1981).   

The third trait shared by all circadian rhythms is that they remain stable – with 

respect to period length – across a wide range of physiologically permissible 

temperatures.  Most biochemical processes are dependent upon thermodynamic 

properties such that increases in temperature speed up reactions while decreases have the 

inverse effect.  Mathematically, the temperature coefficient of a chemical/biochemical 

reaction based on the reaction speed after a change in temperature of 10˚C is designated 
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as the Q10 value.  While most biological processes exhibit a Q10 of 2.0 to 3.0, circadian 

rhythms express Q10 values between 0.6 and 1.2 (Kalmus, 1940, Pittendrigh, 1954, 

Zimmerman et al., 1968, Reyes et al., 2008).  Of course this compensation has its limits:  

period length will remain mostly unchanged under a range of constantly held 

temperatures, but amplitude and phase may be affected.  Additionally, the incubation 

temperature itself must be physiologically tolerable to the preparation or organism to 

survive.  Although little is understood regarding the mechanism of temperature 

compensation, it lends itself to a wide variety of mathematical modeling paradigms in 

various plant, animal, and tissue culture systems (Jolma et al., 2010). 

 

1.2 Hierarchical Organization of Circadian Clocks 

Despite the myriad differences in how circadian timekeeping mechanisms have 

evolved among various organisms – the autoregulatory rhythm in Synechococcus KAI-C 

protein vs. transcription-translation feedback loops in vertebrates comes to mind, the 

mechanism itself is made up of three universally shared components, in their broadest 

sense:  input pathways, central pacemakers, and output pathways.  Input pathways to the 

clock include the organs and/or proteins (and the signal transduction cascades they 

activate or repress) that receive external signals, i.e., zeitgebers, and relay those signals 

to the pacemaker, thus establishing entrainment.  The most obvious input pathway that 

comes to mind is light-sensing retina in animals, although other photoreceptive 

structures have been found to act directly upon pacemakers such as the pineal gland in 

non-mammalian vertebrates.  However, it should be noted that input pathways are not 
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relegated to photoreception, as food-restriction and temperature also can act as 

zeitgebers.  Neither are input pathways restricted to complex organs; in unicellular 

cyanobacteria (Synechococcus) and multicellular fungi (Neurospora) protein complexes 

within each cell are responsible for transducing time of day information and providing it 

to the central machinery.  That machinery, the central pacemaker, is responsible for 

conferring time of day information, as interpreted by the input pathway, to the rest of the 

organism, be it within a single cell or across multiple organ systems (Pittendrigh, 1993, 

Dunlap, 1999, Bell-Pedersen et al., 2005).  Regardless of the complexity underlying any 

given clockworks, the pacemaker by definition must be capable of entrainment, self-

sustained rhythmicity, and regulation of downstream processes that make up the output 

pathways as manifest in cellular physiology and/or overt behavior. 

In mammals – as well as birds, to some extent – the central pacemaker resides in 

the suprachiasmatic nuclei (SCN), a bilateral cluster of 20,000 or so neurons at the base 

of the hypothalamus just above the optic chiasm.  The SCN receives photic input from 

the retinae via the retinohypothalamic tract (RHT) that originates with intrinsically 

photo-receptive ganglion cells and terminates in the SCN (Cassone et al., 1988, Hannibal 

and Fahrenkrug, 2002, Antle and Silver, 2005, Lupi et al., 2006).  The SCN itself is 

comprised of disparate populations of neurons, most broadly grouped into a dorsal 

“shell” and ventral “core”, which differ in their pacemaking capacity, neurotransmitter 

accoutrement, and downstream targets among others (Aton and Herzog, 2005).  As a 

whole, the SCN in mammals is necessary and sufficient to entrain overt rhythmicity as 

seen in ablation studies (Stephan and Zucker, 1972) as well as transplantation studies 
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with SCN tissue (Sherwin et al., 2004) and immortalized SCN cells (Earnest et al., 

1999a).   

In birds, the SCN homologue is divided between two separate nuclei within the 

hypothalamus:  the medial SCN (mSCN) and visual SCN (vSCN), the former of which is 

situated in a similar location as in mammals.  Both structures are retinorecipient through 

a similar RHT as in mammals (Cassone and Moore, 1987, Cantwell and Cassone, 

2006a), however only the vSCN expresses melatonin receptors and rhythmic melatonin 

binding (Lu and Cassone, 1993b).  The vSCN also exhibits rhythmic metabolism as 

measured by 14C-2-deoxyglucose (2DG) uptake (Cassone, 1988, Cantwell and Cassone, 

2002).  Evidence for the mSCN as a pacemaker in birds comes from ablation studies 

where lesion of the mSCN, but not the vSCN, was sufficient to abolish locomotor 

activity in pigeons (Yoshimura et al., 2001).  Comprehensive chemoarchitecture analysis 

of both nuclei showed that both areas share similar neurochemical immunoreactivity as 

the mammalian SCN (Cantwell and Cassone, 2006b).  Furthermore, the avian SCN are 

connected by an “astrocyte bridge” that may facilitate communication between the two 

structures (Cantwell and Cassone, 2006b).  While the specific roles of each structure 

have yet to be numerated, it is clear that both structures participate in the central time-

keeping mechanism of the organism. 

In addition to the SCN, the pineal gland also plays a significant role in the 

establishment and maintenance of circadian rhythms.  In birds, the pineal gland is also 

photoreceptive by way of pineal-specific photoreceptors and photoisomerases (Bailey 

and Cassone, 2004).  In addition, the pineal gland also contains the necessary molecular 
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machinery to sustain circadian outputs; primarily the neurohormone melatonin.  In this 

way, the pineal gland is also considered a pacemaker in birds and other non-mammalian 

vertebrates.  Evidence of this has been established along similar empirical studies as the 

mammalian SCN:  pinealectomy abolishes locomotor behavior in some species of birds, 

and transplantation of the pineal gland restores rhythmicity to that of the donor pineal 

(Gaston and Menaker, 1968).  Furthermore, the phase of the rhythm is conferred by 

melatonin itself, as transplantation of the pineal to the anterior chamber of the eye is 

sufficient to re-establish rhythmicity before neuronal integration (Zimmerman and 

Menaker, 1979).  These and other studies have been coalesced into the “neuroendocrine 

loop” model where the pineal gland (and retinae, which also can secrete melatonin and 

serve as pacemaker in the absence of the pineal in some species) secretes melatonin 

during the night, inhibiting electrical activity the SCN via melatonin receptor-based 

signaling.  As dawn approaches, pineal melatonin decreases, releasing SCN inhibition.  

The SCN projects to the pineal via the superior cervical ganglia (SCG) and – during the 

day – inhibits pineal melatonin production via inhibitory norepinephrine (NE) signaling 

(Cassone and Menaker, 1984). 

 

1.3 Molecular Basis of Circadian Rhythms 

Notwithstanding the systems level coordination of circadian rhythms by the 

central pacemakers mentioned above, within each cell lies a molecular clockworks, first 

established in Drosophila with the period gene mutant by Ron Konopka (Konopka and 

Benzer, 1971). Since that time, so-called “clock genes” have been demonstrated in all 
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model organisms in which circadian rhythms are studied (Bell-Pedersen et al., 2005). 

Most of these are driven by a transcriptional-translational feedback loop wherein 

transcriptional activation and repression of a subset of genes throughout a 24 hour period 

constitute the core oscillator (Dunlap, 1999). In birds and mammals, this feedback loop 

is largely the same, and depicted in Figure 1. The “positive limb” of transcriptional 

activators consists of the CLOCK and BMAL1 proteins. These basic Helix-Loop-Helix 

(bHLH) – PAS (Per, Arnt, Sim) domain-binding proteins heterodimerize and bind E-box 

(5'-CACGTG-3') and E'-box (5'-CACGTT-3') motifs to activate transcription in a 

number of genes, including those that make up the “negative limb”, periods (per) and 

cryptochromes (cry). The protein products of these genes, the PERs – PER1 and PER2 

in mammals and PER2 and PER3 in birds – and CRYs (CRY1 and CRY2) form a 

complex and enter the nucleus where they inhibit CLOCK/BMAL1 transcriptional 

activity, thereby inhibiting their own expression. The repressive activity of PER/CRY is 

what drives the period of the rhythm, and proteosomal degradation – induced via 

phosphorylation by CASEIN KINASE I – lifts the repression of CLOCK/BMAL1 

activity to renew the cycle (Bell-Pedersen et al., 2005, Koike et al., 2012, Buhr and 

Takahashi, 2013). Additionally, there is a second loop involving the orphan nuclear 

receptors RORα and REVERBα that compete for binding onto the retinoic acid-related 

orphan receptor response element (RORE) of the bmal1 promoter region to activate or 

repress its transcription, respectively (Guillaumond et al., 2005). Although little data 

exists on putative ligands of these orphan receptors, it is known that REVERBa 

reversibly 
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Figure 1.  The mammalian/avian molecular clockworks is a 

transcriptional/translational feedback loop. Positive elements BMAL1 and CLOCK 

heterodimerize to initiate transcription of genes containing E-box promoter 

elements, such as the negative clock components PERs and CRYs. The negative 

elements act to repress BMAL1/CLOCK activity and, thus, their own transcription. 

In addition, the orphan nuclear receptors RORα and REVERBα, both encoded by 

E-box containing genes, competitively bind to ROR elements within the promoter 

region of bmal1 to, respectively, activate and repress its transcription. 
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associates with heme and, once bound, acts as a redox sensor (Guillaumond and Teboul, 

2008). Furthermore, Rora disruption results in decreased robustness of circadian 

rhythms, suggesting a role in circadian time-keeping maintenance (Teboul et al., 2009).  

While the “core clock” consists of only a handful proteins, the regulatory 

network created by the transcriptional-translational feedback loop encompasses multiple 

pathways that affect every aspect of cellular activity (Zhang et al., 2009). It comes as no 

surprise then that the molecular clockworks is present in nearly every cell of the body, 

and that each can act as a cell-autonomous oscillator, with the aggregate organ and tissue 

systems being synchronized by the pacemaker (Yoo et al., 2004). Although several 

peripheral tissue preparations are capable of sustaining rhythmicity ex vivo, the rhythms 

damp out over time in a process thought to be linked to desynchrony among cells 

(Dibner et al., 2010).  

The notion that individual cells can maintain rhythmicity in a variety of 

metabolic and homeostatic pathways is indicative of the overall importance of circadian 

rhythms to cellular and organismal physiology. This has been punctuated most recently 

by the discovery of transcription-independent oscillations within human red blood cells 

and a single-celled eukaryote (O'Neill and Reddy, 2011, O'Neill et al., 2011)). Both 

studies show a persistent circadian rhythm in the oxidation state of a highly conserved 

peroxiredoxin protein. Later, these studies were expanded to include representative 

model organisms from nearly all taxa, including Synechecoccus, Neurospora, and Mus 

(Edgar et al., 2012). Edgar, et al. also showed that mutations in the molecular oscillator 

have little effect on the redox oscillator and vice versa, suggesting an independent role of 
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the metabolic circadian rhythm that is coupled to, but not reliant upon, the transcriptional 

machinery.  

 

1.4 Circadian Rhythms in Development 

Until recently, the role of circadian rhythms in embryonic development has 

focused specifically on the pacemaking structures: the SCN in mammals and the pineal 

in birds. In rodents, the SCN as a structure begins developing relatively late in gestation 

at approximately embryonic day 14 and gradually continues through parturition (Seron-

Ferre et al., 2007, Vallone et al., 2007, Serón-Ferré et al., 2011). Although 

synaptogenesis is not complete until weeks after birth, circadian variation in 2-

deoxyglucose (2DG) uptake – indicative of metabolic activity – is observed as early as 

E19 (Reppert and Schwartz, 1984). Remarkably, the 2DG uptake rhythm in the SCN 

precedes that of the core molecular clock which becomes rhythmic between postnatal 

days 3-10 (Shimomura et al., 2001, Ohta et al., 2002, Sládek et al., 2004). Furthermore, 

ontogeny of peripheral circadian rhythms has been shown to be tissue specific, ranging 

from days to weeks after birth (Sumová et al., 2008, Dolatshad et al., 2010, Sumová et 

al., 2012). SCN ablation of the mother during gestation is not sufficient to disrupt post-

natal rhythms, but does cause desynchronization among litter-mates (Reppert and 

Schwartz, 1986, Reppert et al., 1988, Shibata and Moore, 1988). Similarly, clock gene 

knockout females – when mated with wild-type males – produce heterozygous offspring 

with functional rhythms (Jud and Albrecht, 2006, Serón-Ferré et al., 2007, Serón-Ferré 

et al., 2011). The interpretation of these data liken the developing fetus as analogous to a 
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peripheral or slave oscillator to the mother's master pacemaker (Serón-Ferré et al. 2011; 

Serón-Ferré et al. 2007), capable of entrainment within or outside of the context of the 

womb.  

In contrast, examination of earlier expression of clock gene expression in the 

developing mouse embryo has not so been comprehensive. A comprehensive screen of 

clock gene expression by Johnson et al. found transcripts of all “core” clock genes in 

post-fertilization zygote to blastocyst stages (Johnson et al., 2002). Real-time 

bioluminescence imaging has also shown per1:luc expression in utero as early as E9 

(Saxena et al., 2007), however neither of these were time-series studies. Whole embryos 

at E10-11 were shown to be not rhythmic in a later study, however the authors conceded 

that individual cells within the embryos may be rhythmic (Dolatshad et al., 2010).  

Similar to the mammalian models, studies on circadian development in birds has 

focused on the pineal gland and melatonin secretion, as these are the primary pacemaker 

and entraining signal, respectively. Virtually all ex vivo studies utilize late embryonic 

pineal glands for measurement of melatonin and molecular rhythms, due to the intrinsic 

ability of isolated pinealocytes to detect light. Previous studies have shown that isolated 

pineal glands from chick embryos express rhythmic melatonin secretion no earlier than 

day 16 (Lamosová et al., 1995), and at the same time gPer2 transcript expression is 

rhythmic in the SCN (Okabayashi et al., 2003). Interestingly, the early rhythms of gPer2 

require light:dark cycles to entrain, but melatonin secretion can also be entrained by 

exposure to temperature cycles (Lamosová et al., 1995, Okabayashi et al., 2003). The 

ontogeny of rhythmic melatonin in birds occurs earlier than in mammals, presumably 
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due to lack of maternal melatonin in the former (Zeman and Herichová, 2011). However, 

maternal deposits of melatonin and its synthesis components, AANAT and HIOMT 

(transcripts and activities), are found in the yolk and albumen of Japanese Quail eggs 

(Olszańska et al., 2007) This would suggest a role for melatonin in early avian 

development, and it has been postulated that melatonin's potent antioxidant activity is 

beneficial during embryogenesis (Olszańska et al., 2007). As is the case in mammalian 

studies, examination for circadian clock presence/activity is severely lacking. 

 

1.5 Objectives 

Since the first elucidation of circadian clock function, a great deal of attention 

has been directed towards understanding circadian rhythms from the physiological level 

down to the molecular underpinnings. Furthermore, several lines of evidence from 

different model organisms suggest that the circadian clock is initiated very early in 

embryogenesis, earlier even than the formation of central pacemaking structures within 

the vertebrate brain. However, the field still lacks a comprehensive investigation into the 

earliest stages of development and an answer to the question, “When does the clock 

start?”  This dissertation aims to answer that question through a comparative approach, 

utilizing primary mouse embryonic stem cells (mESCs) and chick embryos at the onset 

of differentiation. 

The mammalian studies were conducted using standard cell culture techniques. 

We exploited mESCs tendency towards differentiation to establish different 

cellular/physiological states for comparison. We utilized new (quantitative, real-time 



 

14 

 

PCR) and classic (2-deoxyglucose method) technologies to establish a temporal profile 

of core clock gene transcript abundance as well as glucose utilization and associated 

transcripts. Similarly, the earliest available tissues from fertilized chick eggs were 

isolated and assayed for presence of core clock genes. Embryos were then subjected to 

time-course analysis using either light or temperature cycles to determine if the 

embryonic clock could be entrained. Here, transcript abundance was quantified using the 

relatively new NanoString technology. Finally, we investigated the role of pineal 

melatonin as an entraining signal for embryonic astrocytes using a co-culture system to 

simulate the transport of melatonin from the pineal gland to peripheral brain cells. 

These studies allowed us to approach the following hypotheses: 1) mouse 

embryonic stem cells express all of the required clock genes, however circadian 

oscillations of clock gene expression and glucose uptake do not begin until after 

differentiation, 2) chick embryos similarly express all clock genes and that these clock 

genes are entrained by temperature cycles, but not light, and 3) pineal melatonin acts as 

an entraining signal to isolated chick astrocytes ex vivo. We show that circadian rhythms, 

even at the embryonic cell level, are complex and not necessarily coupled to clock gene 

expression, and that pineal melatonin may play a previously unnoticed role in central 

nervous system development through regulation of mitosis. 
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2. CIRCADIAN RHYTHMS IN MOUSE EMBRYONIC STEM CELLS* 

 

2.1 Introduction 

Previously, investigations into the development of the mammalian circadian 

system have concentrated primarily on the development of the SCN pacemaker (Seron-

Ferre et al., 2007) or, more recently, on the ontogeny of rhythms in peripheral tissues 

(Sládek et al., 2004, Sládek et al., 2007). These studies showed that the onset of 

molecular circadian rhythms in the brain occurs just after birth, followed by rhythms 

expressed by peripheral tissues. However, the postnatal rhythms of clock gene 

expression and electrical activity in the SCN are preceded by rhythmic glucose uptake 

3–4 days before parturition and well before the completion of synaptogenesis within the 

SCN (Reppert and Schwartz, 1984). Several studies have investigated clock gene 

expression earlier in mammalian embryogenesis. Saxena et al (2007) investigated 

embryonic mPer1 expression in utero using live fluorescence imaging. Although this 

was a proof of concept study, the authors clearly showed mPer1::luciferase expression as 

early as day 7. Earlier, Johnson et al. (2002) showed evidence of zygotic expression of 

several clock genes in the pre-implantation embryo as well as uterine tissues, suggesting 

that perhaps clock gene expression plays a role in embryo-uterus interaction during early 

embryogenesis. It is important to note, however, that these studies were from embryos 

taken directly from the uterus, placing the expression of embryonic genes in the context 

                                                 

* Reprinted with permission from “Toward the beginning of time: Circadian Rhythms in Metabolism 

Precede Rhythms in Clock Gene Expression in Mouse Embryonic Stem Cells” by Paulose, et al, 2012. 

PLoS One, DOI:10.1371/journal.pone.0049555, Copyright [2012] by Paulose, et al. 



 

16 

 

of the uterine environment. Recently, two independent groups have investigated 

circadian rhythms in embryonic stem cells. Yagita et al. (2010) used ES cells stably 

transfected with bioluminescent luciferase driven by either an mBmal1 promoter or 

clock-controlled gene mDbp promoter. The results from this study showed that 

undifferentiated cells were not rhythmic with respect to mBmal1 or mDbp, but cells that 

were directed toward a neural fate were rhythmic after synchronization with forskolin. 

Kowalska et al. (2010) expanded on those experiments and showed that individual 

undifferentiated ESCs are not rhythmic. Both of these studies provided ample evidence 

that the canonical molecular clock is not rhythmic in ESCs and concluded that the clock 

is not functional this early in development. However, given the previous evidence that 

glucose uptake – a well-established physiological output of the circadian clock - is 

rhythmic in the SCN before clock genes are rhythmic during development, it is 

premature to equate lack of canonical clock gene rhythmicity to a lack of a functional 

timekeeping mechanism. Here we present evidence that rhythmicity in ESCs precedes 

the development of clock gene rhythms. In addition, we show a dissociation in 

rhythmicity after further differentiating ESCs towards a neural fate. Primary ESCs were 

cultured either in the presence or absence of the differentiation inhibitor Leukemia 

Inhibitory Factor (LIF) to promote spontaneous differentiation. ESCs were also 

subjected to a directed differentiation towards a neural fate. 2-DG uptake was assayed as 

a physiologically relevant output of the clock and a comprehensive profile of transcripts 

from both positive and negative limbs of the molecular clock was analyzed for 

rhythmicity over 2 days in culture, as well as the ‘‘stabilizing loop’’ consisting of 
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mReverb-α and mRor-α. 

 

2.2 Materials and Methods 

Cell Culture 

ES cells were derived from blastocysts of SV129 mice for molecular studies and 

C57BL/6 mice for the real-time analyses. Females (3 weeks of age, n = 3–5) were 

superovulated by intraperitoneal injection of pregnant mare serum gonadotropin (PMSG, 

5IU, Sigma, St. Louis, MO) followed by human chorionic gonadotropin (hCG, 2.5IU, 

Sigma, St. Louis, MO) prior to mating with males of the same respective genotype). ES 

colonies were initially expanded from a 96-well format to 24-well plates, and finally to 

6-well plates while being maintained on mitomycin C-inactivated STO feeder cells. For 

the experiments, ES cells were passaged nine times into feeder-free cultures, resulting in 

pure ESC cultures that were maintained as pluripotent ESCs or allowed to differentiate 

by the removal of LIF, which was done one passage prior to experimentation (passage 

8). The culture environment consisted of a standard water-jacketed incubator held at 

37°C and 5% CO2 and controlled humidity. Standard ES media (ES-DMEM), 

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 15% fetal bovine 

serum, sodium bicarbonate (2.2 g/L), MEM Non-Essential Amino Acids (0.1 mM), L-

glutamine (2 mM), β-mercaptoethanol (0.1 mM), penicillin (50 U/ml)/streptomycin (50 

µg/ml) antibiotic, and LIF (500–1000 U/ml, Millipore, MA) was used for maintenance 

of ES cell pluripotency. Differentiation medium was identical to ES-DMEM but without 

LIF. Neural differentiation was directed using a well-established protocol of retinoic 
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acid incubation (Bain et al. 1995). Briefly, ESCs were incubated without LIF to promote 

the formation of embryoid bodies (EBs). EBs were gently passaged and maintained as 

free-floating cultures for four days in DMEM without LIF before incubating for four 

days in DMEM with 50g of retinoic acid. Induced neural stem cells (NSCs) were 

dissociated during passage and maintained in DMEM supplemented with N12 as 

dispersed NSCs. Confirmation of neural differentiation was accomplished by 

immunocytochemistry (ICC) using anti-nestin antibody (developed by S. Hockfield, 

Cold Spring Harbor Laboratory and obtained from the Developmental Studies 

Hybridoma Bank, created by the NICHD of the NIH and maintained at The University 

of Iowa, Department of Biology, Iowa City, IA 52242). Cultures were maintained in 100 

mm, gelatin-coated culture dishes, fed daily, passaged every 2 days and replated at 1x106 

per well into 6-well culture plates (BD Bioscience) for experiments. Cells were allowed 

to grow for 12 hours after final passage before sampling began, at which point time is 

referred to as 0 hours on each graph. 

14C-2-DG Uptake Assay 

At the onset of each timepoint, one 6-well plate from each cell type was 

incubated with 14C-2-deoxyglucose (2-DG, 0.1 mCi/ml; American Radiolabeled 

Chemicals, St. Louis, MO) for one hour by complete removal and replacement of the 

medium. The medium was then removed and the cells rinsed twice with Dulbecco’s PBS 

(Invitrogen). Cells were harvested in 1 ml Trizol reagent (Invitrogen) to extract cellular 

RNA and soluble protein. 200 µl of cell lysate was placed in 5 ml of scintillant and each 

sample counted in duplicate on a Beckman scintillation counter. Disintegrations per 
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minute (DPM) were converted to molar quantities as per Sokoloff’s method (Sokoloff et 

al. 1977). 2-DG uptake was normalized to total RNA as measured by spectrophotometry 

on a Nanospec 1000 (Nanometrics, Milpitas, CA). Total RNA was isolated from the 

remaining cell lysate and subsequently treated with DNase I (Invitrogen) for quantitative 

PCR analysis of gene expression. 

Real-Time Quantitative Polymerase Chain Reaction 

DNase-treated cDNA from total RNA was generated using Superscript II reverse 

transcriptase (Invitrogen). Relative quantification of clock genes and stem cell marker 

genes was accomplished using SYBR chemistry-based qPCR on either ABI Prism 7500 

Fast or StepOne Plus system (Applied Biosystems Foster, CA). Both machines are 

capable of generating identical thermal profiles and this was confirmed by testing 

identical samples on both machines. Table 1 lists all genes profiled and the 

corresponding primer sequences which were identified through literature search or using 

Primer Express software (Applied Biosystems). The relative quantification was based on 

a standard curve of dilutions 1:50, 1:100, 1:250, 1:500, and 1:1000 with triplicate 

samples diluted 1:100. All transcripts were normalized to corresponding values of 

mCyclophilin D. 

Real-Time Bioluminescent Protein Expression 

ESCs of C57Bl/6/SV129 hybrid mice expressing the PER2::LUCIFERASE  

fusion protein (Yoo et al., 2004) were used to monitor the real-time expression of mPER2 

throughout differentiation. For these studies, feeder-free ESCs or dESCs (passage 9) 

were plated onto gelatin-coated 35 mm dishes (n = 10 for both ESCs and dESCs) (BD-
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Falcon) in ES media at 1×105 cells per plate and allowed to attach and grow for 12–15 

hours. At the onset of the experiment, media was replaced with ES media with the 

following modifications: Sodium bicarbonate concentration reduced to 0.35 g/L and 10 

mM HEPES added to compensate for atmospheric conditions. The dishes were sealed 

with glass coverslips and vacuum grease and placed in a Lumicycle luminometer 

(Actimetrics, IL). One group of cells was maintained in the undifferentiated state via LIF 

administration, while another group of cells, passaged from the same initial culture, did 

not receive LIF and, therefore, underwent differentiation. Bioluminescence recording 

and detrended plotting of the counts from the cells was accomplished using a Lumicycle 

photomultiplier detection system and Lumicycle software, respectively (Actimetrics, IL). 

Statistics 

Time course data were subjected to cosinor analysis based on linear harmonic 

regression (Circwave Software, Roelof Hut) where each 24-hour period was tested 

separately. The software assumes a 24 hour period and applies harmonics to the basic 

sinusoidal function. These attributes allowed us to use the software to determine whether 

the data were rhythmic for each day of the 2 day sampling as well as providing centers 

of gravity to determine acrophase for each day. The criteria for determining bona fide 

circadian rhythms were as follows: a) both days show statistically significant rhythms 

using Circwave analysis and b) the acrophases of day 1 and day 2 occur within 23–25 

hours of each other. Data were also tested using ANOVA for non-rhythmic expression      
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Table 1.  Primers used for qPCR on embryonic stem cells 

Gene Forward Primer Seq. 5’-3’ Reverse Primer Seq. 5’-3’ 

mCycD CTCATCTGGACGGGAAAAT CCAGTCATCCCCTTCTTTCA 

mGlut8 GCTCTCAGTGTCCTATTCA AAATGGGCTGTGACTTGT 

mGlut1 CAGGAGGATATTCAGGACTT CAGTGTGGAGATAGGAGAG 

mClock GGCGTTGTTGATTGGACTAGG GAATGGAGTCTCCAACACCCA 

mBmal1 GGACTTCGCCTCTACCTGTTCA AACCATGTGCGAGTGCAGGCGC 

mRor-a CCAACCGTGTCCATGGCAGAAC GCACACAGCTGCACATCACCT 

mPer1 GCTGGGCCGGTTTTGTG CACTTTATGGCGACCCAAC 

mPer2 ATTGGGAGGCACAAAGTCAG ATCAGTAGCCGGTGGATTTG 

mCry1 TACAGCAGCCACAAACAACC TTCTTGTCCCAAGGGATCTG 

mReverb-a CCCTGGACTCCAATAACAACACA GCCATTGGAGCTGTCACTGTAG 
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profiles to determine significant changes over time. ANOVA was performed using 

Sigmastat software (Systat Software Inc., Point Richmond, CA). Where performed, 

amplitudes were calculated by subtracting absolute peak levels from previous or 

following trough levels – as previously determined using ANOVA – and dividing by 2. 

 

2.3 Results 

Stem Cell Morphology/Identity 

ESCs maintained under LIF displayed morphology consistent with that of 

undifferentiated embryonic stem cells when imaged just before sampling (Fig. 2A). 

Multiple cells formed isolated colonies in which individual cell borders were indistinct 

and colony edges rounded. Flattened cells, indicative of differentiation are minimal 

across cultures. Additionally, mOct4 expression was high during the first day of culture 

and decreased during the second, suggesting that some of the cells began differentiating 

on the second day (Fig. 2A, inset). Acutely differentiated cells, also imaged just before 

sampling began, were morphologically distinct from undifferentiated cultures. Individual 

cells were easily identifiable and flattened in appearance (Fig. 2B). Furthermore, mOct4 

expression was very low across both days of sampling, confirming that the cultures were 

differentiated (Fig. 2B, inset). Neural differentiation proceeded as expected with EB 

formation (Figure 2C, left), and NSCs showed robust staining of nestin antibody, 

confirming neural differentiation after incubation with retinoic acid (Figure 2C, right). 

2-DG Uptake 

ESCs cultured in the presence of LIF exhibited two-fold oscillations of 2-DG  
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Figure 2.  Identification of different stages of ES cell development by 

morphology and molecular marker.  A) ESCs exhibited expression of mOct4 

mRNA and grew as tightly clustered colonies of rounded cells (inset). B) Upon 

differentiation, mOct4 expression was nearly undetectable, and dESCs exhibited 

a flattened appearance (inset). C) Left, Neural differentiation began with cells 

forming EBs in culture before retinoic acid administration.  Right, NSCs stained 

positively for anti-nestin antibody, confirming the neural progenitor identity. 
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uptake over two cycles, with peaks occurring at 9 and 33 hours of sampling (p<0.001, 

Fig. 3A). Acutely differentiated cells were similarly rhythmic with peak uptake 

occurring at approximately 9 and 37 hours (p<0.001, Fig. 3B). There was no significant 

difference in acrophase between ESCs and dESCs. Furthermore, the amplitude of 2-DG 

uptake in dESCs was markedly increased, as was the basal level of uptake, each being 

almost 10-fold higher than the corresponding level in undifferentiated ESCs (p<0.001). 

2-DG uptake in NSCs varied greatly over time and exhibited significant peaks at 13, 21, 

and 33 hours of sampling (p<0.001, Figure 3C).  

Glucose Transporter Gene Expression 

The rhythms in 2-DG uptake indicate that glucose transporter (mGlut) expression 

might also be rhythmic. qPCR analysis of 6 different mGlut members revealed only two 

that were detectable: mGlut1 and mGlut8. Of these two, mGlut1 was not rhythmic in 

either ESCs or dESCs (Fig. 4A). mGlut8 was rhythmic in both ESCs and dESCs 

(p<0.001, Fig. 4B). In both cell types, the expression profile of mGlut8 was phase 

delayed to that of the 2-DG uptake; the rhythms peaked between 17 and 21 hours and 

again towards the end of the sampling period, around 45 hours. There was no 

statistically significant difference in overall expression levels of mGlut8 between either 

cell types.  

Clock Gene Expression 

Rhythmic 2-DG uptake and glucose transporter expression in both ESCs and 

dESCs suggested that the canonical molecular clockwork may be present in these  
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Figure 3. Glucose utilization is rhythmic in ESCs, dESCs, and possibly 

in NSCs.  ESCs (A) displayed peaks in glucose utilization at 9 hours 

and 33 hours.  DESCs (B) peaked in glucose utilization at 9 hours and 

37 hours.  NSC (C) glucose utilization showed peaks at 13, 21, and 33 

hours.  Lines connecting data points indicate significant rhythmicity 

across 24 hour periods as tested by Circwave software. 
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Figure 4.  Glucose transporter gene expression reflects glucose utilization 

rhythms in ESCs (white circles) and dESCs (black circles).  mGlut1 

expression (A) is not rhythmic in either cell type.  mGlut8 expression (B) 

is rhythmic in both, as indicated by lines connecting time points.   
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cultures. However, quantitative, real-time PCR against clock gene transcripts revealed 

differential expression patterns both within and among the three conditions. The positive 

elements, mClock and mBmal1 were not rhythmic in ESCs (white circles, Fig. 5A and B, 

respectively). Upon differentiation, however, only mBmal1 displayed circadian 

rhythmicity in dESCs (p<0.05, Fig. 5A, black circles), and low-amplitude rhythmicity in 

NSCs, peaking at 9 and 33 hours (p<0.05, Figure 5B, gray circles). mRor-α was not 

detectable in ESCs, but was rhythmic in dESCs, peaking at approximately 17 hours and 

again at approximately 41 hours (p<0.001, Fig. 5C, black circles). In NSCs, mRor-α 

abundance peaked at approximately 21 hours with a second peak at approximately 37 

hours (Fig. 5C, gray circles). Among the negative elements, neither mPer1 nor mPer2 

transcripts were rhythmic in ESCs, but the temporal profiles of both were similar (Fig. 

6A and B, respectively, white circles). Both mPer1 and mPer2 were rhythmic in dESCs, 

however, with peaks occurring at 21 hours of sampling in both (p<0.001, Fig. 6A and B, 

respectively, black circles. Neither mCry1 nor mReverb-α were rhythmic in ESCs or 

dESCs (Fig. 6C and D, respectively), however mReverb-αdid show an oscillatory 

expression pattern, troughing at approximately 17 hours and again at 41 hours. The 

expression pattern of mPER2 protein, as visualized by real-time bioluminescence, was 

similarly non-rhythmic in ESCs, but highly rhythmic in dESCs (p<0.001, Fig. 7A and B, 

respectively). Furthermore, the rhythm in dESCs was reinstated by culture medium 

exchange (Fig. 7B, arrow) despite a diminishing baseline of protein expression which 

may be attributed to cell death over time.  
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Figure 5.  Positive regulators of the putative molecular clock vary in 

rhythmicity across differentiation.  ESCs, dESCs, and NSCs (n=6 per 

cell type per timepoint) are indicated by white, black, and grey 

circles, respectively.  Lines connecting timepoints indicate rhythmic 

expression in mBmal1 (A), mClock (B), and mRor-α (C) expression 

levels. 
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Figure 6.  Clock genes comprising the inhibitory arm of feedback loop are rhythmic 

in dESCs and NSCs, but not ESCs.  Relative abundance of A) mPer1, B) mPer2, C) 

mCry1, and D) mReverb-α mRNAs were measured every 4 hours for 2 days in 

constant conditions.  ESCs (white circles, n=6 per timepoint) displayed no rhythms.  

dESCs (black circles, n=6 per timepoint) showed rhythmic expression of both 

period mRNAs.  NSCs (grey circles, n=6 per timepoint) displayed rhythmic 

expression of both period mRNAs as well as mCry1, but was not tested for mReverb-

α.  Solid lines between data points indicate statistically significant circadian 

rhythms. 
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Figure 7.  Real-time bioluminescence of mPER2::LUCIFERASE protein 

shows no rhythmicity in ESCs (A, top) and robust circadian rhythms in 

dESCs (A, bottom).  Panel A show baseline subtracted counts per 

second.  Raw counts of dESCs (B) show damping rhythmicity that is re-

established upon culture medium exchange (arrows in A, bottom and B). 
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2.4 Discussion 

Rhythmic glucose utilization precedes the development of the molecular 

clockworks in embryonic stem cells; however clock gene expression becomes rhythmic 

upon short-term differentiation. Previous investigations of the ontogeny of circadian 

rhythms concluded that undifferentiated mouse embryonic stem cells do not contain a 

functional clock based upon the lack of molecular rhythmicity in the expression of 

known components of the molecular clock (Bell-Pedersen et al., 2005), both in 

synchronized cultures as well as at the single cell level (Kowalska et al., 2010, Yagita et 

al., 2010). These studies, however, limited their analyses to some, but not all, putative 

clock genes. Here we show – in agreement with those studies as well as in a more 

comprehensive manner – that undifferentiated cells indeed do not possess a functioning 

canonical molecular clock, based upon expression of mRNA of most of these genes as 

well as protein expression of PER2. Undifferentiated cells were not rhythmic with 

respect to the clock genes tested, which is also in accord with previous studies. Upon 

non-specific differentiation, however, all of the tested clock genes were expressed 

rhythmically, with the exception of mClock, mCry1, and mReverb-α. Furthermore, the 

rhythm of luciferase bioluminescence in mPER2::LUC dESCs confirms the expression 

data. Although previous studies also looked at differentiated cells, the fate of those 

cultures was directed towards that of neural tissues. These data show the earliest 

developmental point at which clock genes exhibit circadian rhythms. This study 

investigated gene expression rhythms in primary cell cultures without the use of 

chemical synchronization as well as a physiological output of the clock, glucose uptake, 
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which is a measure directly indicative of glucose utilization (Sokoloff et al., 1977). In 

addition to investigating whether undifferentiated cells exhibit uninduced rhythmicity, 

undirected differentiation was included in this set of experiments in order to observe any 

potential reorganization of clock elements in a manner that recapitulates the 

development of the embryo in utero. 

Remarkably, rhythmic glucose utilization in undifferentiated stem cells does not 

necessarily coincide with rhythmic canonical clock gene expression; these processes are 

developmentally and experimentally separable. Previous studies in juvenile chicks 

showed that enucleation abolishes 2-DG uptake in the brain while clock genes remained 

rhythmic (Karaganis et al., 2009). Along with the previously mentioned rhythm of 2-DG 

uptake in neonatal rats (Reppert and Schwartz, 1984) as well as the recently discovered 

transcription-independent rhythm of red-ox cycles in human red blood cells (O'Neill and 

Reddy, 2011) the data presented here provide compelling evidence that metabolic 

rhythms are not regulated solely by the canonical molecular clockworks. 

The glucose utilization rhythms in both ESCs and dESCs were corroborated by 

rhythmic glucose transporter expression, mGlut8 in both ESCs and dESCs, indicating 

that the rhythms are driven by a transcriptional mechanism separate from the rhythmic 

expression of the canonical clock genes. Previously, Tonack, et al. (2006) showed that 

ESCs expressed several mGlut transcripts throughout embryoid body differentiation, 

including glut1 and glut8 in undifferentiated cultures. Although neither mGlut1 nor 

mGlut8 have been implicated in circadian rhythms, mGlut1 is necessary for ESC 

viability (Heilig et al., 2003) and up-regulation of mGlut8 in embryoid bodies suggests 
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an increased need for glucose in differentiating cells (Tonack et al., 2006). Interestingly, 

the amplitude of mGlut8 in both cultures remained the same, while the average glucose 

utilization was markedly increased in differentiated cells. Despite rhythmic expression of 

mBmal1 and mCry1, glucose utilization in NSCs was ultradian, with peaks occurring 

approximately 8 hours and 20 hours after the initial peak. The intermediate peak may be 

indicative of a harmonic of the rhythm, as described by Hughes and colleagues (Hughes 

et al., 2009). If so, it would appear that the circadian rhythm of glucose utilization 

persists across multiple cell lineages. In this case, it would also appear that the phase of 

the rhythm is, on the whole, maintained across differentiation. 

The rhythmic clock gene expression upon differentiation is quite remarkable for 

a number of reasons. The relative profiles of those genes that were rhythmic are 

consistent with the canonical molecular mechanism of circadian transcription, the 

negative elements mPer1 and mPer2 were identical in their phasing, and the positive 

element mBmal1 was expressed in anti-phase. Also, the cultures were rhythmic in the 

absence of any chemical synchronization. Previous studies had used dexamethasone 

(Kowalska et al., 2010, Yagita et al., 2010) or forskolin (Yagita et al., 2010) to 

synchronize cultures, as is common practice. In this study, the only conceivable 

synchronizing factors could have been centrifugation during passage or the absence of 

LIF, however there is no evidence of either phenomenon occurring in ESCs. Despite 

this, rhythms in 2-DG and clock genes were synchronized differentially between ESCs, 

dESCs, and NSCs. Secondly, the signal for differentiation away from the pluripotent 
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state immediately synchronized the cultures in this study, as seen in the bioluminescence 

data. 

In contrast with the data presented here, Yagita et al (2010) showed that an 

mBmal1 reporter remained arrhythmic throughout an induced differentiation process and 

required over two weeks of incubation with retinoic acid to obtain rhythmic 

bioluminescence, whereas we observed a low-amplitude oscillation after eight days of 

incubation. We also observed a more robust rhythm in mCry1 expression, which would 

suggest, at the very least, that the monitoring of a single clock gene is insufficient to 

draw conclusions regarding the molecular clockworks. In combination with the data 

presented here, it would appear that clock gene rhythmicity is a dynamic phenomenon 

that can change depending on developmental stage, and perhaps within developmental 

contexts. Indeed, previous studies have shown that the synchrony of clock genes changes 

throughout development in both the SCN (Sládek et al., 2004) and the liver (Sládek et 

al., 2007). The nature of this synchronization is unknown but, considering the aggregate 

nature of the cultures, functional gap junctions between cells may facilitate 

communication and synchrony (Wong et al., 2008). Finally, the relative phases of the 

clock genes, once synchronized, align in a manner that would suggest functional 

molecular clockworks, with the positive and negative elements expressed anti-phase to 

each other. 

Unlike previous studies examining rhythms in fate-specific differentiated cells, 

the media in this study differed with respect to one ingredient; the differentiation 

inhibitor LIF. LIF acts as a cytokine binding to a heterodimeric receptor complex of its 
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own receptor, LIFR, and gp130. The pathway ultimately leads to activation and 

translocation of STAT3 to the nucleus where it binds and activates various genes, 

presumably those involved in maintaining pluripotency (Chambers and Smith, 2004). 

However, there is no known, direct link between the LIF pathway and glucose 

transporter/uptake. The absence of LIF in differentiated cultures may account for the 

rhythmic expression of clock genes, but it does not explain the persistence of the 2-DG 

uptake rhythm in undifferentiated cells. 

These data cannot be explained by possible effects of 2-DG on metabolism itself. 

While high mM concentrations of 2-DG inhibit cellular metabolism in vitro (Krieglstein 

et al., 1982), and high dosages of 2-DG can affect circadian clock light sensitivity in vivo 

(Challet et al., 1999), the concentrations of 14C-2DG employed here (8 µM) and 

elsewhere in vitro (Earnest et al., 1999b), and the dosages employed for metabolic 

markers in vivo have no effect on metabolism (Sokoloff et al., 1977, Swanson and 

Benington, 1996) or circadian clock function (Schwartz and Gainer, 1977). Further, the 

2-DG concentrations employed here are 0.4% of the 2 mM Kondoh et al. (2007) have 

shown to have no effect on ES cell proliferation: much higher concentrations than 2 mM 

are required to affect differentiation. Moreover, these data cannot be explained by cell 

cycle effects on clock gene expression and/or metabolism, since cell-cycle period for 

these cells is 11–12 hours rather than the 24 hours observed here (Stead et al., 2002). 

The most parsimonious explanation of the present results is that a circadian clockworks 

that does not entail the rhythmic expression of clock genes is present in mouse 

embryonic stem cells before differentiation into germ lines. 
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Thus, although undifferentiated ESCs do not possess a functioning canonical 

molecular clock, a circadian rhythm of glucose utilization persists in these cells. This 

rhythm is coincident with rhythmic expression of one glucose transporter gene, 

suggesting rhythmic transcriptional control of glucose utilization. Whether this rhythm is 

initiated intrinsically or in response to glucose availability is unknown. In addition, acute 

differentiation by withdrawal of LIF increases the amplitude of glucose utilization 

rhythms and initiates rhythms of the expression of canonical clock genes, suggesting a 

potential role for the cytokine in initiating the transcriptional-translational feedback loop. 

Finally, differentiation to a neural state further reorganizes rhythmic clock gene 

expression, and glucose utilization rhythmicity may persist, albeit with an intermediary 

harmonic. 
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3. ONTOGENY OF CIRCADIAN RHYTHMS IN CHICK EMBRYOS

3.1 Introduction 

Unlike viviparous organisms, avian development proceeds – for the most part – 

in the absence of nutritive contribution afforded within the womb. As such, the myriad 

environmental signals relayed from the mother to the gestating embryo are absent, 

including those encoding time-of-day information. However, the lack of maternal 

signaling does not preclude a role of the clock in ovo, as mid-gestation chicken embryos 

have been shown to exhibit rhythms in melatonin production from the pineal gland 

(Lamosová et al., 1995) and clock gene expression in both the SCN and pineal gland 

(Okabayashi et al., 2003). The developing avian embryo does not benefit from circadian 

signals passed through the circulatory system as in mammals, but there is evidence that 

information pertinent to initiating the rhythm may be imparted maternally. Indeed, 

follicular development in chickens is regulated in part via clock genes, where the surge 

in luteinizing hormone influences clock gene expression specifically within the ovary 

(Tischkau et al., 2011). Similarly, egg laying in quails appears to be under the control of 

a circadian mechanism (Houdelier et al., 2002). One conclusion from these data is that, 

as is the case in mammals, avian maternal germline tissues contain a functional clock 

mechanism. It would not be unreasonable, especially in light of the data presented 

previously, to hypothesize the presence of a circadian clock in early avian 

embryogenesis. 



38 

Until recently, it was not known whether clock genes are present at all in early 

embryonic tissues. In situ analysis showed that two clock gene mRNAs, gBmal1 and 

gClock are expressed throughout early chick embryos (Gonçalves et al., 2012). 

Remarkably, Gonçalves and colleagues showed a decrease in expression of the two 

clock genes between the first and fourth Hamilton and Hamburger stages of 

development and suggested that this may be evidence of maternal contribution of clock 

genes in early embryogenesis, before the transition to zygotic transcription (Gonçalves et 

al., 2012). Similarly, melatonin and transcripts of Aanat and Hiomt were found in 

fertilized, unincubated quail eggs as well as in the yolk (Olszańska et al., 2007). Again, 

the data suggest that the fertilized egg is supplied with low levels of transcript that 

quickly disappear, only to increase when zygotic transcription has taken over. 

The presence of melatonin and its synthesizing hormones in the egg yolk would 

imply that the embryo can make use of melatonin at some point during development. 

Synthesis of melatonin by embryonic pineal glands in vitro is detectable in cultures from 

embryos as early as 10 days post incubation (Möller and Möller, 1990), however 

rhythmic melatonin secretion in DD is only seen in cultures from embryos at least 18-

days post incubation (Akasaka et al., 1995). Akasaka et al, also found that 14-day old 

pineal cultures were able to entrain to L:D cycles, which suggests the presence of an 

underlying molecular clockworks. 

While these studies are compelling, they are insufficient in demonstrating a 

functional circadian mechanism in embryogenesis. Here, we extend the previous in situ 

data with RT-PCR analysis of all clock gene transcripts from early chick embryos and, 
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using a no amplification-based method of RNA quantification, examine the molecular 

clock function under entraining cycles of incubation temperature. 

3.2 Methods 

Embryos 

Fertilized chick eggs (Hyline Strain W38) were obtained from the University of 

Kentucky Poultry Science Research Institute for all studies. Eggs were incubated in 

Sportsman 1502 Egg Incubators with automatic turning (GQF Manufacturing, Savannah, 

GA) at 37.5°C except during temperature entrainment. For time series experiments, 

embryos were split into three incubation groups: constant high temperature (39°C, H:H), 

constant low temperature (36°C, L:L), or transferred every 12 hours between the two, 

thus establishing a potential temperature zeitgeber (H:L). Zeitgeber time (ZT) was 

defined in reference to when H:L embryos were transferred to low temperature, i.e. ZT 

12 was when embryos were transferred from low to high temperature. After 3 days of 

incubation, timepoint samples were taken every four hours and consisted of removal of 

embryos (n = 5 per timepoint per treatment) from the egg, with care taken to eliminate as 

much yolk material as possible. Embryos were placed directly into 500ul of Trizol 

reagent in silicon/graphite bead-filled tubes and homogenized in a Thermo FastPrep 

sample homogenizer. Homogenates were stored at -80°C until RNA isolation. 

RNA Isolation 

Whole embryos, brain, and pineal glands, as applicable, were isolated and placed 

directly in homogenizing vials containing 500 μL of Trizol reagent. Samples were 
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(MolBio, OH). RNA was isolated using Directzol RNA purification kits (Zymo 

Research, Irvine, CA) with in-column DNAse treatment to remove genomic DNA. Total 

RNA was quantified using spectrophotometry (Nanodrop 1000, Thermo Fisher) to 

determine concentration and purity (260:280 and 260:230 ratios). 

Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

For RT-PCR, total RNA was reverse-transcribed using Q-script cDNA synthesis 

kits (Quanta Biosciences, Gaithersburg, MD) and cDNA amplified with primers for 

clock genes and melatonin biosynthesis and receptor genes (Table 2). PCR products 

were visualized on 1% agarose gels by electrophoresis and digitized by Bio-Docit gel 

documentation system (UVP, Upland, CA). 

NanoString Analysis 

For quantitative expression analysis, 100ng of total RNA was hybridized to a 

commercially designed array of 23 probes targeting various transcripts of interest as per 

manufacturer-supplied protocol (Geiss et al., 2008), Nanostring Technologies, Seattle, 

WA, abbreviated target sequences summarized in Table 3). Each sequence-specific 

probe also contained a multi-unit fluorescent barcode for downstream identification. 

RNA/probe hybrid structures were placed on a charged substrate to allow presentation of 

fluorescent signal to a CCD-cooled camera. Images taken from the camera were 

analyzed in situ and raw counts of positive controls, negative controls, and sequence 

specific probes were determined. Total counts of RNA species were normalized using 

the R package NanoStringNorm (Waggott et al., 2012). 

homogenized using a Thermo FastPrep homogenizer and MolBio lysing matrix F tubes 
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Statistical Analysis 

Normalized transcript levels obtained from qPCR or NanoStringNorm were  

compared among temperature groups and among timepoints within each group using  

one-way ANOVA. Bona fide circadian rhythmicity was defined by significant difference  

between timepoints spaced ~12 hours apart and by adherence to putative transcriptional 

relationships; e.g. gBmal1 and gPer3 transcript should be anti-phase to one another.  

Statistical tests were carried out using Systat software. 

3.3 Results 

Gene Expression in Early Embryos 

To determine the early progression of clock gene and melatonin receptor gene 

expression, RT-PCR was performed on cDNAs derived from whole embryos at 

embryonic days 1 and 4 (E1, and E4, respectively), and whole brain from E10. At E1, all 

clock genes and melatonin receptors showed expression, however melatonin 

biosynthesis genes gAanat and gHiomt were not detected (Figure 8A). E4 and E10 

samples also showed expression of all clock genes (Figure 8B), however E4 embryos 

only expressed gMel1a (Figure 8C). Samples were also taken from newly hatched pineal 

and retinae for comparison and processed in parallel with E4 and E10 samples. gmel1b 

and gMel1c expression was also detected in E7 brain tissues, in addition to gMel1a 

(Figure 8D). 

Temperature Entrainment 

To determine if temperature affects clock gene expression in early 
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Table 2.  Primers used for qPCR on chick embryos 

 

Gene Forward Primer Sequence 5'-3' Reverse Primer Sequence 5'-3' 

gAanat AGCCTTCATCTCCGTCTC GTACCGCCACATCAGGAT 

gBmal GCCATCACGACTATGTTCT AGCGACTCCTCAAGGTAA 

gClock GTTACTGTTCCTGAGATGTTC TGTTGCTGCTGTGTTACT 

gCry1 ATGTGGCTATCCTGTAGTTC AAGTGTGATTGCTGATTGTC 

gCry2 CATTCTTCCAGCAGTTCTTC TTCAGCACTCTCATTCTTCA 

gHiomt TCTACCTTACGAAGTCAAGTC CTCTCCAGCATCAGTCAG 

gMel1A ATGGGCCTAAGTGTCATTGG AGGTTGGGCACAATAGCAAC 

gMel1B AGTGGCTTTGTGATGGGACT GGAGCTTGCAGTCTGAACAA 

gMel1C CTCTTTGTTGGCTCCTTGC GTCTCACCCGGTGTTTGACT 

gPer2 TGTTCCAATCAAGGTGTAGT ATCATAACGGTGTCATCTGT 

gPer3 ATGGTAGCCTTGGTAGCA ACTTGGAGACCTGTTGGA 
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Table 3.  Probes used for NanoString Analysis 

Gene Target Sequence 

gAanat CAGCGAGTTCCGCTGCCTCAGCCCCGAGGATGCCGTCAGCGTGTTC 

gβ-Actin CTCTGACTGACCGCGTTACTCCCACAGCCAGCCATGGATGATGATATT 

gVaOpn CTGGTGGCACCATCAGCTTTTTAGCCAACCTAAAAGGCTATTTCTATA 

gBmal1 CAGTTAAAACTGATATAACACCCGGGCCATCACGACTATGTTCTGGA 

gClock CAGTCTCAACACCTTTGTATAACACTATGGTGATTTCTCAGCCAACAG 

gCry1 TTTTGGCAGAAGAACTGACCCAAATGGAGATTACATCAGACGTTACT 

gCry2 CCAGCAACTATCACGCTACAGGGGGCTCTGTTTATTGGCATCAGTCC 

gCycA GCGTCACCTTCGAGCTCTTCGCTGACAAGGTGCCCATAACAGCAGA 

gFblx3 ACGAGGAGCTGATCCGTATCGCAGAGCGGTGCAAGTATTTGTCAGCT 

gGlut1 TCTACTACTCCACCAGCATCTTTGAGAAGTCAGGTGTGGAGCAGCCC 

gHsp90 GGAAGTGATCTACATGATTGAGCCTATTGATGAATATTGTGTGCAGCA 

gHiomt TACTGCATTTGACCTTTCCCCTTTCACACAGATTTATGACCTGGGAGG 

gMel1c TCTGGATTTTGGTGATTCAAGTCAAACACCGGGTGAGACAAGACTG 

gRor-a AGTTCACTGCCCAGACTTCTGACAGAACAATCAATTTGTTGATCAGA 

gMel1b TGGTGGCCTTGTATCCATACCCACTGGTGCTCTTAGCTATTTTCCACA 

gMel1a TGGTCTTATCTGGGTCCTAACAGTTGTTGCTATTGTGCCCAACCTGTT 

gOpn4 ATTTTTGGTGAGAAAGGCTGTGAGCTGTATGCCTTCTGCGGAGCTCT 

gOpn5 GCCTTATTACCATGACAGCCGTCAGCCTGGATAGATACTTAAAAATCT 

gPer2 AGCGTGAAAATGAGATTTGCTATCACCCATTTCGGATGACTCCTTACC 

gPer3 TCCAGGAAATCAAAAAGTGTTTGCCTGAAGAGAAAAGGAGTTCCAG 
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Figure 8.  Clock genes and melatonin receptor transcripts are present throughout 

early chick development.  Gel electrophoresis of RT-PCR against A) clock genes, 

melatonin receptors, and melatonin biosynthesis genes in E1 whole embryos, B) 

clock genes in E4 whole embryos, E10 brains, and P0 pineal glands, C) melatonin 

receptors at E4, E10, P0 retina and pineal, and D) melatonin receptors in E7 

telencephalon (tel), optic tecta (TeO), diencephalon (dien), and retina show 

presence of all transcripts, with the exception of gMel1B and gMel1C in E4 

embryos. 
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Figure 9.  Temperature cycles drive rhythmicity in putative clock genes and glucose 

transporter expression.  Clock gene expression under constant temperature 

conditions (A) varied over time, but not in a circadian fashion.  Exposure to 

temperature cycles (B) drove rhythms in all clock genes except gClock.  

Temperature cycles (black circles) also drove gGlut1 (C) and gMel1C (D) rhythms 

while no rhythms were apparent in constant conditions (white circles).  Solid lines 

indicate rhythmic expression as determined by Circwave software from n=5 

embryos per timepoint per condition. 
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before collection of whole embryos at four hour intervals. In constant incubation 

temperature of 37.5º C, embryos showed no rhythms in any clock genes (Figure 9 A). In 

contrast, exposure to 12 hours of 39º C followed by 12 hours of 36º C drove rhythms in 

almost all clock genes, with the exception of gClock (Figure 9 B). gGlut1 was also 

rhythmic during temperature entrainment, exhibiting a nearly identical phase to that of 

gPer3 (Figure 9 C). 

Morphometrics and Transcriptomics Under Free-running Conditions 

In order to determine whether early embryos were entraining to imposed 

temperature cycles, as opposed to being driven by them, E0 embryos were incubated in a 

temperature cycle as before and subsequently released into constant 39ºC, at which point 

sample collection commenced. Control groups included embryos incubated at constant 

high and constant low temperatures. At each timepoint, prior to collection in Trizol 

reagent, each embryo was photographed to estimate developmental age by the 

Hamburger and Hamilton scale (Figure 10 A, B, C). Averaged estimates from three 

independent observations showed that constant low temperature incubation significantly 

delayed development, however linear regression analysis showed no difference in the 

rate of development among the three incubation conditions (Figure 10 D). RNA 

expression analysis of canonical clock genes showed no discernible free-running rhythm 

after three days of entrainment to temperature cycles (Figure 11A), however gPer3 and 

gBmal1 showed slight, anti-phase oscillations. Although the expression of gCry1 was 

not rhythmic, its abundance in all three treatments was significantly higher in all three 

embryogenesis, fertilized embryos were placed under a temperature cycle for 3 days 
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Figure 10.  Lower temperatures delay early developmental progression; 

rhythmic temperature has no effect. Photographs of embryos sampled at 29 

hours showed that embryos incubated at 36°C (A) were developmentally 

behind compared to embryos incubated at 39°C (B) or on temperature 

cycles (C). Time-series analysis across 48 hours showed that embryos 

incubated at a lower temperature were consistently delayed compared to 

embryos incubated at constant high temperature and cyclic conditions (D). 
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Figure 11.  Clock genes are not rhythmic in free-running or constant conditions. 

Clock gene expression in A) free-running conditions after 12:12 high:low 

temperature cycles, B) constant high temperature, and C) constant low 

temperature conditions revealed no circadian patterns of expression. 
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As expected, neither gAanat nor gHiomt transcripts were detectable (not shown), 

however mRNA of all three melatonin receptors was present in all temperature 

conditions. In both H:H and H:L treated embryos, gMel1a and gMel1b were expressed in 

similar patterns over time, exhibiting early peaks of expression and low to nearly 

undetectable levels by day two of sampling (Figure 12 A,B). Conversely, those 

transcripts in L:L embryos exhibited low amplitude oscillations that increased on day 

two of sampling (Figure 12 C). Similar to gCry1, gMel1c mRNA was consistently higher 

than the other two receptor transcripts. 

Although none of the clock genes were statistically rhythmic, Circwave analysis 

showed gGlut1 to be rhythmic in constant low conditions for at least one day, and a clear 

peak is seen between 5 and 9 hours of sampling. The oscillations are not apparent on the 

second day of sampling, at which point expression levels match that of free-running 

embryos. In contrast, embryos kept at 39 C showed non-oscillating expression over 41 

hours, with a single peak 4 hours before the final time point (Figure 13). 

3.4 Discussion 

Similar to the case in mammals, clock gene transcripts, as well as melatonin 

receptor transcripts, are all expressed from the very beginning of development in chicks. 

The molecular clockworks in birds is nearly identical to that in mammals, with the 

exception of period gene variants (per2 and per3 in birds vs. per1, per2, and per3 in 

mammals, (Bell-Pedersen et al., 2005), which makes the chick embryo a suitable model 

groups compared to other clock genes. 
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Figure 12.  Melatonin receptors are differentially expressed, but 

not rhythmic in early chick embryos. gMel1A (filled circles), 

gMel1B (white circles), and gMel1C (filled triangles) were 

expressed in A) free-running after 12:12 high:low temperature 

cycles, B) constant high, and C) constant low temperature 

conditions. 
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Figure 13.  Glucose transporter expression exhibits circadian rhythmicity in 

embryos incubated at 36° C. Neither free-running embryos (filled circles) nor 

embryos incubated at 39° C (white circles) exhibited rhythmic expression of gGlut1. 

Circwave analysis (significance indicated by connected plots) did show significant 

rhythms in embryos incubated at constant low temperature (36° C, filled triangles). 
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examined mammalian circadian development, however in the artificial environment of a 

culture dish. While this approach eliminated all influences of the maternal clock, it was 

also, by nature, devoid of any physiological context. The fertilized chick egg was chosen 

because it is its own incubator and contextually more appropriate to study the 

development of circadian rhythms. Notwithstanding, the chick embryo also presented 

disadvantages compared to mouse embryonic stem cells, namely that 2-DG could not be 

reliably administered and subsequently measured due to variability in embryo position 

and yolk volume. However, glut1 expression was used as a proxy for glucose utilization, 

as the previous study established a correlation between the two. Similarly, the “egg as a 

womb” is not an equivalent situation to that in mammals: the egg is not a euthermic 

organ, and avian embryos are ectothermic until late gestation (Seebacher et al., 2006). 

This paradigm does however allow for the administration of natural zeitgebers, such as 

light and temperature. 

The presence of clock gene and melatonin receptor mRNAs in the early embryo 

is not surprising. As previously stated, gClock and gBmal1 transcripts appear to be 

provided maternally and are expressed by the embryo from the initial stages of 

development (Gonçalves et al., 2012). Here we expand upon those data and show that E1 

embryos express all putative clock gene transcripts as early as E1 (figure 8A), and are 

expressed throughout early gestation. It is surprising that all of the melatonin receptors 

are expressed at E1 even though neither gAanat nor gHiomt transcripts were detectable 

(Figure 8A). Given the previous data – that maternally-contributed melatonin and its 

to compare the developmental origin of the circadian mechanism. The previous study 
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2007) – it could be that the early embryo utilizes the deposited melatonin as well as its 

own. The previous study showed a coincident presence of melatonin and enzyme 

activity, with the latter levels decreasing with time through HH stage 11. The absence of 

gAanat and gHiomt transcripts in this study would confirm a lack of melatonin 

production by the embryo at this stage, while the persistence of receptor transcripts 

suggests that melatonin is still present. This is confirmed by the variable expression of 

receptors in E4-E5 embryos (Figure 12). Surprisingly, the greatest variation over time is 

observed under constant conditions, where expression of gMel1A and gMel1B appear 

circadian, but for the lack of statistical significance (Figure 12). gMel1C expression is 

more highly expressed regardless of temperature, which is consistent with data from 

adult zebra finch (Jones et al., 2012), however differential expression patterns are 

observed depending on temperature treatment. 

Similar to clock gene expression, gGlut1 was driven to rhythmicity by 

temperature cycles given from day 0 to day 3 of incubation, while no significant 

variation was observed in constant conditions. Surprisingly, gGlut1 expression in 

constant low temperature conditions was rhythmic for at least one day of sampling, and 

contrasted almost exactly with gCry1 expression as well as gMel1C. Although neither of 

the latter two transcripts passed Circwave analysis for rhythmicity, and several data 

points within both data sets exhibited much higher variability, the coincidence of 

phasing between clock genes in both entrained embryos and low-temperature 

compensated embryos – which would have been at the same developmental age – 

formative enzymes are present in the yolk and decrease over time (Olszańska et al., 
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embryonic stem cells, tightly coupled. Even more interesting, in both entrained and free-

running conditions, glucose transport – and likely glucose utilization, is also tightly 

coupled to melatonin receptor expression. 

When viewed in the light of natural conditions, so to speak, the presence of an 

entrainable clockworks in oviparous embryos is not so surprising. Eggs in a nest would 

be exposed to the naturally-occurring light:dark cycle automatically, and even dim light 

cycles are sufficient to entrain melatonin secretion in starlings (Gwinner et al., 1997). 

The studies here show that, with the exception of gVaOpsin, none of the photoreceptors 

are expressed early on in embryogenesis. Furthermore, imposition of a light:dark cycle 

had no effect on clock gene expression. It could be postulated that hens might impose a 

temperature cycle on embryos; the periodic attendance of eggs interspersed with 

foraging behavior by hens could raise the incubation temperature, with highest 

temperatures occurring during the night phase when hens sleep on their nests. This 

hypothesis is supported by a comparative study investigating nest temperatures in 

auklets, gulls, and albatrosses that found highly variable, sometimes circadian, patterns 

of daily temperatures (Shaffer et al., 2014). Previous to this, Cooper and Voss 

demonstrated that thermogenesis in the growing embryo is itself a modulator of egg 

attendance in chickadee hens (Cooper and Voss, 2013). Progression of development 

naturally changes the thermogenic properties of the embryo, the heat retention and 

radiation of embryos affects nest attendance, which therefore affects embryo 

temperature. Taken together, these data suggest that the temperature of the embryo 

suggests that glucose utilization and clock gene expression are, as seen in mouse 
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(potentially) diurnally fluctuating temperature, which would impose temperature cycles 

early on in embryogenesis. It is likely not coincident that pineal melatonin production 

and the transition to homeothermic metabolism occur at the same time during 

incubation. The results here indicate that melatonin sensitivity and metabolism are 

coupled long before the embryo makes its own melatonin. 

proper strives to remain constant, albeit surrounded by a nest environment with a 
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4. EFFECTS OF PINEAL MELATONIN ON ASTROCYTE CIRCADIAN RHYTHMS

AND DEVELOPMENT* 

4.1 Introduction 

The avian circadian system comprises multiple circadian oscillators, pacemakers, 

and photosensitive structures (Cassone and Menaker, 1984, Cassone, 1990). These 

include the retina (Ebihara and Kawamura, 1981, Underwood et al., 1984), the avian 

homolog of the suprachiasmatic nucleus (SCN; (Ebihara and Kawamura, 1981, 

Takahashi and Menaker, 1982, Cassone et al., 1990) , and the pineal gland (Gaston and 

Menaker, 1968, Zimmerman and Menaker, 1979). The pineal gland, and in some 

species, the retina, influence the system by secreting the neurohormone melatonin during 

the night (Hamm and Menaker, 1980, Adachi et al., 1995, Klein et al., 1997). However, 

the molecular mechanisms by which melatonin influences physiology and circadian 

behavior are not completely known. Birds express three melatonin receptor subtypes: the 

Mel1A or MT1 receptor, the Mel1B or MT2 receptor, and the Mel1C receptor (Natesan 

and Cassone, Reppert et al., 1995, Adachi et al., 2002). Based on receptor binding 

studies and in situ hybridization of the three receptor subtypes in chick diencephalic 

astrocytes, our laboratory (Adachi et al., 2002) demonstrated that approximately 25% of 

these cells express Mel1A receptor mRNA, none express Mel1b receptor mRNA, and 

* Reprinted with permission from “Pineal melatonin acts as a circadian zeitgeber and growth factor in

chick astrocytes” by Paulose, et al, 2009. J Pineal Res, 46(3), 286-94, Copyright [2009] by John Wiley and 

Sons. 
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nearly all express Mel1C receptor mRNA. Additionally, when melatonin was 

rhythmically administered to these cultures, rhythms in glucose utilization and in the 

release of the glycolytic end products pyruvate and lactate were observed, with a 

circadian phase that corresponds to that of the melatonin cycle (Adachi et al., 2002). 

There is also evidence that rhythmic melatonin administration can entrain some clock 

genes in astrocytes (Peters, 2005).  

One of the great surprises in the discovery of molecular components of circadian 

oscillators of animal species ranging from Drosophila to mammals (Bell-Pedersen et al., 

2005) was the observation that clock gene rhythmicity is not restricted to pacemaker 

tissues such as the pineal gland, retina, and SCN. Rather, rhythmic clock gene 

expression is a global phenomenon raising the current consensus view that the role of 

pacemaker tissues is to entrain peripheral oscillators rather than to drive them. In 

Drosophila, for example, the molecular clockworks within olfactory tissues are sufficient 

to drive rhythms in olfactory sensation (Tanoue et al., 2004). Consistent with this view, 

certain peripheral tissues including cornea, liver, and lung explanted from transgenic 

mice containing an mPER2 promoter- driven luciferase gene exhibited rhythmicity in 

culture for several days before damping out. Furthermore, peripheral tissues from SCN-

lesioned mice maintained PER2 rhythms that could be sustained by media exchange, 

although with some disruption in phase (Yoo et al., 2004). To differentiate pacemaker 

from downstream oscillators, our laboratory has previously employed a coculture 

preparation of immortalized SCN cells and target fibroblast cell lines (Allen et al., 2001, 

Allen et al., 2004). Here, we cocultured chick pinealocytes with target diencephalic 
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astrocytes. These studies support the view that the pineal gland regulates target cells 

through the rhythmic secretion of melatonin, which may involve rhythmic clock gene 

expression. These data also indicate that pineal melatonin can regulate astrocyte 

development and mitosis. 

 

4.2 Materials and Methods 

Astrocyte Cultures 

Astrocytes were harvested from embryonic day 17 chick brains (Hyline 

Hatcheries, Bryan, TX, USA). Embryos were extracted and the brains were removed. 

Diencephalic tissue was dissected and placed in Dulbecco’s modified Eagle’s medium 

(DMEM; Sigma Corp., St. Louis, MO, USA), then dissociated by triturating with 1% 

trypsin. Cells were filtered through nylon mesh (180 μm pore diameter) and centrifuged 

for 5 min at 1000 x g. The supernatant was removed and the pellet was resuspended in 

DMEM with 10% fetal bovine serum and a 1% PSN antibiotic cocktail (penicillin, 

streptomycin, and neomycin). The suspension was filtered again through nylon mesh (77 

μm pore diameter) and seeded into 75-cm2 tissue culture flasks. Cultures were 

maintained in darkness at 37°C with 95% air and 5% CO2 in a humidified Napco CO2 

incubator. Culture media was changed every other day until cell cultures reached 

confluence. Confluent cultures were processed for immunocytochemical analysis of glial 

fibrillary acidic protein (GFAP) to determine the purity of the cultures. Cultures were 

plated on glass-bottom dishes for 5–7 days. Cells were fixed with 4% p-formaldehyde 

(PFA) for 10 min, washed, and processed for immunocytochemical identification of 
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GFAP (1:1000; Incstar, Stillwater, MN, USA) as previously described (Peters, Cassone, 

et al. 2005). Differential interference contrast (DIC) microscopic images of cell cultures 

were captured using Simple PCI software (C-imaging, Hamamatsu Corp., Sewickley, 

PA, USA), and dual captures of DIC images and GFAP-immunoreactivity were 

superimposed to estimate the percentage of cultured cells that were actually GFAP 

immunoreactive astrocytes. In these parallel cultures, 87.1±4.8% of the cells was 

immunoreactive to GFAP. The remaining cells may have been fibroblasts or astrocytes 

that did not react to the antiserum. 

Pinealocyte:Astrocyte Coculture 

Confluent astrocyte cultures were passaged into six-well plates (BD Biosciences, 

San Jose, CA, USA) designed to accommodate insert dishes for coculture and then 

cultured for 2days to allow sufficient time to adhere. Pinealocytes were cultured as 

previously described (Zatz et al., 1988) with modifications. Briefly, newly hatched 

White Leghorn chicks were killed by decapitation and the pineal glands transferred to 

sterile Dulbecco’s phosphate-buffered saline (PBS) with d-glucose. After 30 min of 

digestion in 0.05% trypsin with periodic trituration, the remaining debris was removed 

from the media and the cells were pelleted at 1000 x g for 10min. The pellet was 

resuspended in sufficient volume of McCoy’s 5a media supplemented with 1% KCl and 

1% PSN to allow for the plating of two glands per well. Pinealocytes were cultured 

directly onto 0.2 μm mesh inserts (BD Biosciences) which were subsequently returned to 

their companion well on the six-well plate containing the 2-day-old astrocyte cultures  
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Figure 14.  Coculture of chick pinealocytes and diencephalic 

astrocytes. A) Astrocytes were cultured in standard 6-well 

plates. B) Cross-sectional diagram of trans-well inserts 

containing dispersed pinealocytes suspended over astrocytes 

showing media exchange in the absence of physical contact. 
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(Figure 14). Control plates contained inserts without pinealocytes. Astrocytes were 

maintained in 3 mL of the DMEM-based medium while pinealocytes (and empty inserts) 

were administered 2 mL of the McCoy’s 5A-based medium. All media and supplements 

were purchased from Gibco/Invitrogen Corp (Grand Island, NY, USA) unless otherwise  

stated. Cultures were placed in 12:12 light:dark cycles for 7 days, as we have previously 

determined this to be sufficient time for the pinealocytes to confer rhythmicity to the 

astrocytes. On the eighth day, cultures were placed in constant darkness and samples 

taken every 4 hours for 48 hours. 

2-Deoxy [14C]-Glucose Collection and Quantification 

One hour prior to sampling, the cells were incubated with [14C]-2-deoxyglucose 

(2DG; 0.2 μCi/mL; American Radiolabeled Chemicals, St. Louis, MO, USA). Following 

incubation, media was removed and saved for melatonin quantification. Cells were 

rinsed twice with Dulbecco’s PBS (Gibco/Invitrogen Corp.), and harvested in Trizol 

reagent (Invitrogen Corp.) to extract total cellular RNA and soluble protein. Duplicate 

aliquots of cell lysate (200 μL) were placed in scintillant and counted on a Beckman 

scintillation counter. Uptake of 2DG was normalized to protein or total RNA content. 

Melatonin Quantification 

Melatonin was measured using a radioimmunoassay method as in Fraser, et al. 

(1983) with modifications. Briefly, media samples from cocultured and control astrocyte 

cultures were incubated with melatonin antibody (Stockgrand Ltd., Surrey, UK) in 

tricine buffer (Sigma-Aldrich, Inc., St. Louis, MO) followed by incubation with 

competing [H3]-melatonin (Perkin Elmer, Waltham, MA, USA). After incubation, free 
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melatonin was separated from bound melatonin using dextran-coated charcoal (Sigma-

Aldrich, Inc.) and the bound melatonin counted using the above scintillation counter. 

Quantities are reported here as relative to the maximum amount of melatonin among all 

timepoints. 

Astrocyte Growth Study 

For cell growth studies, astrocytes and pinealocytes were cocultured as before. 

Images of the astrocytes were taken at zeitgeber time (ZT8) every day for 7 days using 

an Olympus (Center Valley, PA, USA) IX-70 inverted microscope fitted with a 

Hamamatsu camera controller and processed using Simple PCI software. Quantitative 

measurements of cell coverage were analyzed using the public domain ImageJ program 

(developed at the U.S. National Institutes of Health and available on the Internet at 

http://rsb.info.nih.gov/nih-image/) and were determined as the ratio of the number of 

pixels in a specific area of the well covered by cells to the total number of pixels in that 

area. Six areas per well were quantified. To evaluate the rate of cell growth, confluent 

astrocyte cultures were passaged into 24 well plates (BD-Falcon, San Jose, CA, USA) 

and cultured for 2 days in complete darkness (DD). On the third day, and every 24 hours 

thereafter, the media was replaced at ZT12 with astrocyte media alone, or with media 

supplemented with 10 μm, 1 μm, 100 nm, 10 nm, 1 nm, 100 pm, or 10 pm melatonin 

(Sigma Corp.) in dimethyl sulfoxide (DMSO). Six wells per concentration of melatonin 

were analyzed. Beginning on day 3, samples were taken at the time of media 

replacement (ZT12) every day for 6 days to observe mitotic growth by DAPI staining. 

Cells were fixed in 4% PFA overnight at 4°C, washed with PBS, and incubated in 4′,6-
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Diamidino-2-phenylindole (DAPI) for 20 minutes. Staining was visualized on the same 

imaging system fitted with a DAPI filter. Images were analyzed using ImageJ and 

stained nuclei were counted by hand from six regions per well, each region being 2.025 

mm2 in area. 

Quantitative Real-Time Polymerase Chain Reaction 

Total RNA, isolated with Trizol as above and subsequently treated with DNase I 

(Invitrogen Corp.), was primed with random hexamers and cDNA was synthesized by 

reverse transcription using a Superscript II RT polymerase chain reaction (PCR) kit 

(Invitrogen Corp.). An additional control reaction was performed in each experimental 

run by replacing reverse transcriptase enzyme with water for a selected duplicate sample. 

Relative quantification of selected genes was achieved by performing SYBR green-

based real-time PCR using an ABI Prism 7500 Fast Sequence Detection instrument 

following the standard curve method outlined in the user protocol from Applied 

Biosystems (Foster City, CA, USA). Primers optimized for SYBR green real-time PCR 

amplification were designed for selected genes using Primer Express software (Applied 

Biosystems), and synthesized at our local gene technologies laboratory. Primer 

sequences used are as follows: gCry1, forward primer: CCGGGAAACGCCCAAA and 

reverse primer: TGCTCTGCCGCTGGACTT; gPer3, forward primer: 

CAGAATGGAAACGATCAGCCTAT and gPer3 reverse primer: 

TCGGGAGAAAACAGGAAGCA; and gPer2 forward primer: 

CCCCAGTAGTTGGTGCTCACTT; gPer2 reverse primer: 

GACTGGTGAGCGATACAACACTTT. Standard curves were generated from target 
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gene cDNAs diluted at 1:50, 1:100, 1:250, 1:500, and 1:1000. Identical standard curves 

were generated for gCyclophilinA used here as an endogenous control. The cDNA for 

each timepoint was loaded in triplicate at 1:100 dilution, amplified using a preloaded, 

9600 emulation protocol, and quantified based on the standard curves generated for each 

target gene. Target gene expression levels were first normalized to corresponding 

endogenous control values, and the resulting value normalized to a calibrator (a mixture 

of each timepoint cDNA). Each plate included a no template control set (replacing 

sample with water) and a RT-control set (no reverse transcriptase added) to check 

against contamination. 

Statistical Analysis 

Changes in 2DG uptake and of relative levels of clock gene mRNA were tested 

with ANOVA. When significant changes (P < 0.05) were found a Newman–Keuls post 

hoc test was performed on those data. Astrocyte growth studies were analyzed by one of 

two methods: for the growth area study, cocultured astrocytes were compared with solo 

cultures using a Student’s t-test. For the melatonin dose–response study, the number of 

DAPI-positive cells was plotted over time for each concentration. The resulting data 

points were fitted to a nonlinear polynomial using SigmaPlot software (Systat Software 

Inc., Richmond, CA, USA). These regressions yielded equations that contained a 

coefficient of slope, and the respective slopes at each dose were compared with that of 

the vehicle treated control by ANOVA. A Holm–Sidak post hoc test was performed on 

significantly different data sets. All statistical tests were performed using SigmaStat 

software (Systat Software Inc.). 
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Figure 15.  Rhythmic melatonin release from dispersed 

pinealocytes confers rhythmicity to co-cultured astrocytes. 

Melatonin release from cultured pinealocytes (top, n=6) remained 

rhythmic after 7 days of co-culture with astrocytes, with a 

decrease in amplitude by the second day of collection. 2-DG 

uptake in astrocytes (bottom n=6 per treatment) is rhythmic 

when cells are in co-culture (black circles), and not rhythmic in 

solo culture (white circles). Symbols indicate statistical 

significance (*=p<0.001, #=p<0.05) when compared to succeeding 

peak as tested by ANOVA. 
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4.3 Results 

The rhythm of melatonin release from the pinealocytes in pineal–astrocyte 

cocultures persisted for 2 days of constant darkness (Figure 15, top). As expected, the 

first peak in melatonin levels occurred at circadian time 17, near the middle of subjective  

night. Two factors impeded a clear resolution of the second peak in melatonin 

production: the melatonin levels did not return to baseline levels after the initial peak, 

and the rhythm damped out by the end of the second day. This may be due to the static 

nature of the culture as the medium was not changed/removed during the course of the 

sampling. 2DG uptake from astrocytes also exhibited a circadian rhythm when 

cocultured with pinealocytes, but not in astrocytes cultured alone (Figure 15, bottom). 

On the first cycle, peak uptake coincides with increasing melatonin levels, but by the 

second day in DD, 2DG uptake and melatonin levels were near anti-phase to each other 

(29 hours in DD, Figure 15). Interestingly, the basal metabolic rate was higher in 

astrocytes cocultured with pinealocytes than in astrocytes cultured alone. The expression 

of two clock genes was profiled from astrocytes cultured alone and in coculture with 

pinealocytes (Figure 16). Unlike the clear metabolic rhythm, real-time PCR analysis of 

gper3 and gcry1 revealed differential effects of pineal-secreted melatonin on astrocyte 

gene expression. Gper3 expression in cocultured astrocytes entrained to pineal-secreted 

melatonin for one cycle, with mRNA levels peaking between 13 and 17 hours and 

subsequently dropping before the onset of the second day (21 hours into DD, (Figure 

16A). Surprisingly, gcry1 expression in co-cultured astrocytes did not differ significantly 

from monocultures (Figure 16B).  It was noted throughout the course of the entrainment  
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Figure 16 Clock genes are differentially affected by 

melatonin cycles. gPer3 (A) expression in astrocytes co-

cultured with pinealocytes (black circles, n = 6) showed 

statistically significant rhythmicity on the first day of 

sampling compared to solo cultures (white circles, n = 6). 

gCry1 (bottom) expression showed no significant change in 

either culture condition. 
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studies that the astrocytes co-cultured with pinealocytes grew to confluence much more 

quickly than did monocultured astrocytes. When confluence of the cultures was 

compared over time (Figure17A), an increase in astrocyte density was observed as early 

as 2 days after pinealocyte introduction. When compared with control cultures, the 

increase in density remained statistically greater from days 3 to 6 at which point the 

monolayer of astrocytes in co-culture reached 100% confluence, defined here as when 

cultures begin to lift off the plate for lack of space. We hypothesized that melatonin may 

be responsible for this increased growth rate. To test this hypothesis and determine 

whether the increased cell density was due to increased cell size or an increase in cell 

number, different doses of melatonin were administered to primary astrocytes daily at 

ZT12. Several cultures treated with different concentrations of melatonin were stained 

with DAPI and compared (Figure 17B). The number of astrocytes increased in a dose-

dependent fashion (Figure 17C). While picomolar and 1 nM concentrations of melatonin 

had no effect on mitotic growth when compared with DMSO-treated controls (data not 

shown), the growth rate in cells treated with 10 nm, 1 μm, and 10 μm melatonin differed 

significantly from control cultures, as measured by regression analysis (Figure 17C). The 

rate of growth of the astrocytes, as measured by the slopes calculated from Figure 17C 

was also dependent on the concentration of melatonin administered throughout the 7 

days of sampling (Figure 17D). 
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Figure 17. Exogenous melatonin stimulates mitotic growth in astrocytes. A) Cocultured 

astrocytes (n = 6 replicates) grew to confluence faster than monocultures, as measured 

by the average percent of cell coverage over six regions of interest per replicate; *P < 

0.001, #P < 0.05 using t-test. B) Representative images of DAPI stained astrocytes 

administered 10 μm melatonin (top panel), 10 nm melatonin (middle panel), or vehicle 

control (bottom panel). C) Mitotic growth in astrocytes administered 10 μm melatonin 

(black circles), 10 nm melatonin (black squares), or DMSO control (white circles) as 

measured by number of DAPI stained cells on a given day; *P < 0.001 comparing slopes 

to vehicle control. D) Growth rates, calculated as the coefficients of slope of the 

respective line equations from (C), compared among cells given increasing doses of 

melatonin; *P < 0.001 compared with control (no melatonin), #P < 0.05 compared with 

control, and a P < 0.05 compared with 1 nm melatonin. Other doses are mentioned in 

the Materials and methods section. 
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4.4 Discussion 

In the present study, rhythmic exposure to melatonin synchronized rhythms in 

glucose uptake, corroborating and extending our previous observations that timed 

melatonin administration entrains and/or drives 2DG uptake rhythms (Adachi et al., 

2002). Exogenous melatonin cycles also synchronized rhythms in clock gene expression 

and induced an increase in growth rate in cultured chick astrocytes. Consistent with the 

hypothesis that melatonin is an ‘internal Zeitgeber’ for downstream oscillators within the 

circadian system and in peripheral tissues (Adachi et al., 1995), precise melatonin cycles 

synchronized rhythms of gper3 and gper2 mRNA levels. This is the first demonstration 

that melatonin affects clock gene expression in birds, in spite of the fact that melatonin is 

known to profoundly affect circadian patterns of behavior and physiology in several 

vertebrate groups, such as birds, reptiles, and mammals, including humans (Cassone, 

1998). These data stand in sharp contrast to two studies that report no role for melatonin 

in the regulation of clock gene expression. First, Yasuo et al. (2002) showed that while 

Japanese quail that received intra-peritoneal implants of crystalline melatonin in silastic 

capsules had elevated or constantly high levels of blood melatonin, there was no effect 

on per2 or per3 expression in the medial SCN (mSCN) of the mediobasal hypothalamus. 

These authors suggested that the circadian clock within the quail mSCN was ‘tightly 

coupled,’ making it immune to external signals. Secondly, Abraham et al. (2003) have 

shown in house sparrows that hypothalamic expression of per2 is not affected by 

pinealectomy after 1 day in constant darkness. However, pinealectomized house 

sparrows exhibit rhythmic locomotor behavior and brain glucose utilization after 1 day 
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in DD (Abraham et al., 2003), and neither of these processes become arrhythmic until 10 

days in DD. 

Although the present study appears to contradict the previous findings, the 

previous studies’ direct relevance to the present work is only marginal. While it is true 

that melatonin can acutely affect rhythmic processes in behavior (Lu and Cassone, 

1993a) and physiology (Cassone et al., 1986), most of its effects on circadian and 

seasonal rhythms require multiple days or even weeks of rhythmic administration in vivo 

(Cassone et al., 1986, Cassone et al., 1988, Cassone, 1990, McArthur et al., 1991, Peters, 

2005). 

The fact that gper3 expression rhythms are entrained by exogenous melatonin 

cycles in astrocytes is intriguing for several reasons. First, in spite of the fact that per3 

does not appear to contribute to circadian rhythm generation in mice (Adachi et al., 

2002), recent studies have shown that polymorphisms in the human per3 gene are 

associated with several sleep disorders, including delayed sleep phase syndrome (Bae et 

al., 2001). Secondly, the long transcript allele in this polymorphism is associated with 

preference for diurnal activity (Ebisawa et al., 2001). Along these lines, it is interesting 

that astrocytes are the sole source for brain glycogen biosynthesis, which has been 

shown to increase during sleep and anesthesia (Pereira et al., 2005). Since we have 

previously shown that exogenous melatonin administration increases glycogen 

biosynthesis in addition to synchronizing metabolic coupling in chick astrocytes (Brown, 

2004), it is intriguing to speculate that regulation of this particular clock gene by 

melatonin is linked to birds’ sleep wake cycle. 
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Whether or not astrocyte metabolism and clock genes are affected by melatonin 

in vivo is still under investigation. Several areas of the brain, such as the visual SCN, 

exhibit 2DG uptake rhythms such that uptake is higher during the day during the night 

(Adachi et al., 2002) when melatonin is present (Yasuo et al., 2002). Pinealectomy 

abolishes 2DG uptake rhythms in house sparrows (Klein et al., 1997), and rhythmic 

administration of melatonin to arrhythmic sparrows restores daily patterns of both 

locomotor behavior and brain 2DG uptake (Lu and Cassone, 1993a). Finally acute 

administration of melatonin to both house sparrows (Lu and Cassone, 1993a) and chicks 

(Cassone and Brooks, 1991) inhibits hypothalamic 2DG uptake. Since vertebrate 

astrocytes are known to mediate most glucose uptake and glycolysis in the central 

nervous system (Cantwell and Cassone, 2002), it is likely that these effects are at least 

partially mediated by these cells. 

The mechanisms by which melatonin entrains gper3 and gper2 mRNA rhythms 

are less clear as we know little about the promoter regions of these genes in this species. 

In mammals, the mper1 and mper2 promoters contain bona fide 3′,5′-cyclic adenosine 

monophosphate (cAMP)-responsive elements (CREs) that link gene expression to 

dynamic changes in cellular cAMP (Magistretti, 2000). Since the known melatonin 

receptors in chicks are associated with Gi-guanosine triphosphate-binding proteins, 

(Travnickova-Bendova et al., 2002), it is possible that activation of the Mel1A and 

Mel1C receptors found on chick astrocytes (Reppert et al., 1995) may directly affect 

gper3 expression by decreasing cellular cAMP levels. However, the mammalian mper3 

promoter does not contain a known CRE, and the times at which both gper2 and gper3 
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mRNA peak in a melatonin cycle coincide with peak melatonin levels, making a direct 

regulation of these clock genes’ expression through these inhibitory receptors unlikely. 

Alternatively, there is some controversial evidence that melatonin may also act via 

binding to a retinoid-related orphan receptor (RZR/ROR) intracellularly (Adachi et al., 

2002). This is interesting, since ROR has recently been implicated as a regulatory 

element controlling mammalian Bmal1 (Carlberg, 2000), which controls the expression 

of the per genes in all animal species studied (Sato et al., 2004). 

Another question that arises from these studies is whether mammalian astrocytes 

are similarly sensitive to melatonin. Exogenous melatonin inhibits 2DG uptake within 

the rat SCN in vivo in a dose- and phase-dependent fashion (Cassone et al., 1986), and 

the rat SCN is replete with astrocytes (Cassone et al., 1986). Furthermore, our previous 

demonstration of melatonin receptors in mammalian astrocytes, (Van den Pol, 1980, 

Güldner, 1983) coupled with other studies demonstrating that the response of 

mammalian astrocytes to oxidative stress is ameliorated by melatonin (Peters et al., 

2005b), indicate a possible function for melatonin in the regulation of various astrocyte 

functions, which could thereby affect metabolic activity in the SCN. However, Poirel et 

al. have shown that a single injection of melatonin to rats in the late subjective day, 

which is known to phase shift circadian activity patterns (Poirel et al., 2003), has no 

effect on SCN clock gene expression. These authors suggested that melatonin might only 

affect posttranscriptional events within the clock. 

Remarkably, both pineal secreted and exogenously administered melatonin also 

affected the development of astrocytes by increasing mitotic growth in a dose-dependent 
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manner (Figure 15). This observation contrasts with previous studies that report an 

inhibitory effect of melatonin on mitotic division of various tumor cells (Warren et al., 

1993, Yasuo et al., 2002), and reviewed in (Jung and Ahmad, 2006). Perhaps, the effect 

of melatonin is different between neoplastic cells and diencephalic astrocytes. However, 

a role for melatonin as a potential developmental factor has been implicated in several 

systems, most notably in a mouse neural stem cell line, which expresses a functional 

MT1 receptor and GFAP (Niles et al., 2004). Exposure to physiological doses of 

melatonin in these cells induced glial-derived neurotrophic factor mRNA expression, 

implicating a direct link between melatonin and astrocytes in a developmental context. 

Another explanation for these contradictory data may lie in the concentrations of 

melatonin used. (Sainz et al., 2003) showed that melatonin reduces cell proliferation in 

Chinese hamster ovarian cells in a dose-dependent fashion, such that only millimolar 

concentrations were sufficient to inhibit mitotic growth. Indeed, in previous experiments 

low physiological concentrations of melatonin (10 fM and 10 pM) increased resting 

calcium levels in chick diencephalic astrocytes, whereas pharmacological doses of 

melatonin decreased resting calcium levels (Peters et al., 2005a) and Peters, unpublished 

data). More recently, nanomolar concentrations of melatonin were shown to increase the 

rate of in vitro development of porcine embryos (Sainz et al., 2003). Perhaps, the 

stimulatory effects we see here are linked to a global role for the pineal hormone in the 

maintenance of astrocyte function and the temporal organization of the avian brain 

during development. 
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5. CONCLUSIONS 

The importance of the endogenous circadian clockworks in various physiological 

processes and behaviors is well-established and continues to be tested at various 

biological levels. However, the role of the clock in a developmental context is only now 

being investigated in earnest. The experiments presented above provide a comparative 

framework to further advance our knowledge of how this conserved mechanism may 

influence – or even direct – the developmental programming of early embryogenesis. 

Our hypothesis in chapter 2, regarding the ontogeny of mammalian circadian rhythms, 

focused on the earliest possible stage of development: the pluripotent embryonic stem 

cell. We posited that undifferentiated ESCs would not exhibit circadian rhythms, and 

that acute differentiation would initiate circadian expression of clock genes and glucose 

utilization. Coincident studies done by Yagita et al. (2010) and Kowalska et al. (2010) 

corroborate our findings that clock gene expression in ESCs is not rhythmic. However, 

glucose utilization was found to be rhythmic in the undifferentiated cells. Furthermore, 

the expression of glucose transporter mglut8 was also rhythmic. The presence of a 

circadian rhythm exclusive of the putative molecular clockworks is not unheard of, 

however this study does show the earliest incidence of circadian rhythms in 

development. Most recently, two groups have shown that peroxiredoxin abundance is 

regulated in a circadian manner in the absence of any transcription (O'Neill and Reddy, 

2011, O'Neill et al., 2011, Reddy and O'Neill, 2011, Edgar et al., 2012). In contrast here, 

there is a transcriptional rhythm that correlates highly with glucose utilization. Indeed, 

the phases of mglut8 and 2DG content in both ESCs and dESCS would suggest a 
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common regulatory pathway. It is impossible to know if the transcriptional rhythm 

precedes the physiology in this case, as glucose levels are also known to modulate glut 

transcription in ESCs (Tonack et al., 2006). However, the lack of rhythmicity in all clock 

genes measured could suggest that the glucose utilization rhythm is driving the rhythm 

in transporter expression. Upon differentiation, all clock genes become rhythmic and 

2DG rhythms increase in amplitude. Surprisingly, the phase of 2DG uptake is unchanged 

during this process. Further differentiation to neural progenitor cells results in 

maintained rhythmicity and, if the presence of harmonics is set aside, the phase of 

glucose utilization is still maintained. This would suggest that glucose metabolism as a 

process does not change during early embryogenesis, and perhaps even that this rhythm 

remains unmodified while individual cells are undergoing fate determination. If this is 

the case, one would predict that glucose utilization would be rhythmic during the 

retinoic-acid induced cultivation of nSCs, when mBmal1 is not rhythmic (Yagita et al., 

2010), and would maintain its phase from pluripotency throughout neural differentiation. 

Alternatively, the 12-hour rhythm observed in nSCs could be the result of two separate 

populations of cells, however the immunocytochemistry data indicate that all of the cells 

are committed to a neural fate. 

While the evidence above clearly shows that clock gene rhythms are not 

necessary for metabolic rhythmicity during early ontogenesis, the biological context of 

these cells is wholly removed: embryonic stem cells do not naturally grow in monolayer 

or as separated embryoid bodies, nor are they capable of completing development within 

a dish. In order to test the refined hypothesis that glucose utilization rhythms appear 
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early in embryogenesis and independent of putative clock genes, the domestic chick 

embryo was chosen as a model due to its well-characterized and mammal-like molecular 

clockworks (Bell-Pedersen et al., 2005). After confirming that clock genes, as well as 

melatonin receptors, are expressed from the earliest stages of development, it was shown 

that transcript abundance was not affected by light – dark cycles. Although attempts at 

measuring C14-labeled 2DG ultimately failed, the expression of Glut1 transcript served 

as a proxy to glucose utilization rhythms in further studies. Time-series analysis from 

day 3 to day 5 of development under different temperature conditions revealed that, 

while temperature cycles can drive rhythms in clock gene and glucose transporter 

rhythms, those rhythms are lost upon release into constant conditions. Remarkably, the 

comparisons of free-running embryos vs. those in constant conditions revealed that 

glucose transporter expression and the expression of one melatonin receptor subtype 

correlate very highly, suggesting that the two processes are coupled. This hypothesis was 

confirmed in chapter 4 using chick embryonic astrocytes, in which rhythmic melatonin 

from free-running pinealocytes in coculture was able to entrain glucose utilization. 

These rhythms were, as in the mammalian study, not dependent upon an intact molecular 

clockworks, as gCry1 was not entrained by melatonin cycles.  Unfortunately, the fact 

that chick embryos are ectothermic until hatching is likely a major contributor to the 

inability of the embryos to entrain to temperature cycles.  However, the data do show 

that the two arms of the transcriptional-translational feedback loop behave as they 

should when driven by temperature cycles, indicating that the clockworks are functional 

at such an early stage. 
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The persistence of glucose utilization rhythms, as seen in mammalian ESCs and 

chick embryonic astrocytes, in the absence of an intact molecular clockworks would 

suggest that the two pathways are separable. Furthermore, the correlation between 

glucose transporter expression and melatonin receptor expression also points to a 

relationship involving circadian regulation of metabolism that is governed by a 

maternally – sourced signal. Lastly, melatonin itself is capable of entraining glucose 

utilization, but not clock genes. These three relationships share similarities despite 

occurring in different organisms. Melatonin is produced in uterine tissues as well as by 

the placenta, but these factors are removed in the case of ESC culture. Similarly, the 

maternal source of melatonin is constantly available – if not diminishing over time – to 

the chick embryo in ovo.  It would also appear that the presence of melatonin in the egg 

may abrogate the need for multiple days of entrainment seen in astrocytes.  If the 

pathways of glucose utilization and melatonin signaling are assumed to be interactive, 

one possible explanation of the data would be that the origin of these rhythms (or the 

point of entrainment) is the mitochondria. 

The mitochondrion itself displays circadian rhythms of ATP accumulation and 

release that is mediated by rhythmic calcium signaling and is absent without a functional 

molecular clock (Womac et al., 2009, Burkeen et al., 2011, Marpegan et al., 2011). The 

loss of rhythmicity in clock gene mutants could be an immediate indicator that the 

molecular clockworks is solely responsible for regulating mitochondrial rhythms, but 

Marpegan and colleagues observed circadian rhythms in individual astrocytes taken 

from clock mutant mice. The luciferase reporter used in that study was linked to Bmal1 
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expression, which may provide a stronger link between mitochondrial rhythmicity and 

the nuclear transcriptional-translational feedback loop (Marpegan et al., 2011). The 

rhythmic expression of Bmal1 is regulated at its promoter by ROR elements, which are 

bound by ROR and REVERB proteins to activate and inhibit transcription, respectively 

(Bell-Pedersen et al., 2005, Guillaumond et al., 2005). Remarkably, Reverb-α has been 

shown to modulate mitochondrial function in skeletal muscle, acting through a known 

pathway that links nuclear and mitochondrial gene expression (Woldt et al., 2013). That 

is not to say that Reverb-a – or any of the RORs for that matter – are the only link 

between the mitochondria and the molecular clockworks.  Indeed, studies from multiple 

taxa including Arabidopsis thaliana, where mitochondrial genes interact with nuclear-

encoded genes (Giraud et al., 2010), in Neurospora crassa, where resistance to a 

mitochondria – inhibiting antibiotic results in a shortened period (Diekmann and Brody, 

1980), as well as in the mammalian SCN, where circadian expression of enolase is 

dependent upon functioning mitochondria (Isobe et al., 2011) show that there are 

multiple pathways through which such communication may occur.  More specifically, 

however, is that several of these intersects involve redox-sensitive reactions and 

oxidative stress.  With respect to the studies performed here, the proliferative capacity of 

embryonic stem cells has been shown to rely heavily on mitochondrial activity, as an 

increase in oxidative phosphorylation (OXPHOS) is critical for differentiation, while a 

switch to glycolytic activity, which decreases OXPHOS, appears to be important in 

cellular reprogramming (Xu et al., 2013).  The latter pathway is of critical interest here, 

as both acute and directed differentiation, i.e. reprogramming, coincide with large 
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increases in glucose utilization.   

 The relationship between mitochondrial function and the clock within the context 

of redox-sensing is not limited to rhythmic mitochondrial activity.  Several reports have 

indicated that the antioxidant properties of melatonin play a role in the daily sequestering 

of potentially damaging free radicals generated by mitochondrial respiration (Hardeland 

et al., 2003, Acuna-Castroviejo et al., 2007, Luchetti et al., 2010, Sarti et al., 2013).  

While some studies have shown that rhythmic mitochondrial function requires an intact 

molecular clockworks (Masri et al., 2013, Peek et al., 2013), the recent discovery of 

transcriptionally untethered rhythms in a class of peroxiredoxins (O'Neill and Reddy, 

2011, O'Neill et al., 2011, Edgar et al., 2012) suggests that the mitochondria may be 

capable of self-sustaining rhythmicity, given the right conditions.  It may be that the 

rhythmic availability of melatonin is capable of entraining such activity.  In the data 

presented here using pineal melatonin, as well as in previous studies using exogenous 

melatonin (Adachi et al., 2002, Peters, 2005), entrainment of glucose utilization, as well 

as release of lactate and pyruvate, require 6 – 8 days of exposure to rhythmic melatonin 

to entrain.  If the sites of action for melatonin are the mitochondria (incidentally also a 

site of lactate and pyruvate metabolism), it is plausible that several days are required to 

synchronize the multiple hundreds to thousands of mitochondria within each cell and 

then each cell to its neighboring cells, before a consolidated rhythm can be seen.  

Moreover, this process would be in response to the rhythmic change in redox state of the 

immediate environment of the mitochondria, for which the putative transcriptional 

oscillator is not necessary.   



 

81 

 

While the above postulates address the results observed in ESCs and embryonic 

astrocytes, mitochondria also play a significant role in the transition from ectothermy to 

endothermy in developing birds.  As demonstrated by Walter and Seebacher, the increase 

in mitochondrial uncoupling that is partly responsible for homeothermic transition is 

regulated by the action of thyroid hormone on PGC1-a, which is a known circadian 

controlled gene (Walter and Seebacher, 2009). 

 As previously stated, redox state-related circadian rhythms are broadly seen 

across taxa, including as yet not mentioned prokaryotes.  Until recently, Synechococcus 

elongatus was the only prokaryote to exhibit demonstrable circadian rhythms, and the 

molecular/genetic basis of its oscillations have been well-characterized (Dunlap, 1999, 

Bell-Pedersen et al., 2005, Kondo, 2007, Johnson et al., 2008, Ito et al., 2009).  

However, the discovery of transcription-independent peroxiredoxin rhythms in 

eukaryotes was accompanied by the discovery of similar rhythms in cyanobacteria 

bacteria and one member of archaea (Edgar et al., 2012).  This apparently universal 

rhythm is relevant to this discussion as it hearkens to the evolutionary development of 

circadian rhythms, as postulated by the authors.  If further study into redox-state sensing 

mechanisms in other prokaryotes results in confirmation of this hypothesis, then it could 

be extrapolated that the bacterial ancestor of the mitochondria also possessed such a 

mechanism which would have been beneficial to the developing eukaryote.  As an 

independent, but potentially related line of study, the data in Appendix A show a novel 

rhythm of motility in a human commensal bacterium, Enterobacter aerogenes.  

Although the mechanism of this rhythm is still being ascertained, it is intriguing that the 
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swarming response and synchronization of motility rhythms in E. aerogenes is directly 

caused by melatonin, an agent of potent antioxidant capability (Bubenik, 2002, Sainz et 

al., 2003, Juknat et al., 2005, Deng et al., 2015).    Furthermore, the E. aerogenes 

genome contains several proteins similar to those found in the KAI complex as well as 

orthologues to the class of peroxiredoxins.  

Although the independent rhythm of glucose utilization observed here is 

remarkable in its novelty, the results should be cautiously interpreted as the source of the 

data is wildly out of biological context.  ESCs are never spread in a monolayer and, 

although LIF is secreted from the uterine walls to promote implantation, the developing 

embryo is not subjected to prolonged exposure to a differentiation-inhibitor.  In order to 

test the hypothesis that the phase of ESC rhythms is inherited via the mitochondria of the 

oocyte one could use an in vitro preparation to establish pre- and post- fertilization 

phases.  Relatively new and medium – throughput respiration monitoring devices such as 

the SeaHorse or Oroboros systems measure several outputs of mitochondrial and cellular 

physiology and could be used to assay sperm, and oocytes separately, and then together 

during the fertilization event and afterwards.  This would provide a phase reference, 

presumably from the unfertilized oocyte, that could then be compared to the fertilized 

zygote.  As an extension, multiple oocytes from the same donor could be synchronized 

at different phases and assayed simultaneously, as both of the above systems utilize 

multi-well platforms.  Some caveats to this proposal are that the duration of time needed 

to measure any potential inheritance of rhythm might be longer than the commercially 

available systems allow.  Alternatively, if the fertilization event itself is the zeitgeber, 
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multiple zygotes from synchronized oocytes would end up having multiple phases.  This 

hypothesis seems less likely, as the data gathered here were cultured from different 

trophoblasts and the culture conditions were such that no feeding/passaging event 

occurred at the same time. 

As stated previously, the experiments performed here are by no means definitive 

in defining “the beginning of time”.  However, they do provide concrete evidence that 

embryos, both avian and mammalian, are inherently endowed with the ability to perceive 

time of day and possess the molecular components and physiological pathways to 

initiate circadian timing.  In the case of avian embryos, a consistent relationship was 

observed between glucose transporter expression and melatonin receptor expression, 

which was extended to show that melatonin affects circadian rhythms of glucose 

utilization as well as mitotic development in embryonic astrocytes.  Furthermore, the 

evidence from these data suggest that, as seen in every other taxa, the circadian 

clockworks may be a requirement for anticipation of redox-state changes that are ever 

present in the differentiating environment of the embryo, be that in ovo or in utero.  

Indeed, it seems that every taxa in which circadian mechanisms are studied, there is at 

least one pathway that involves redox sensing, including the Cyanobacteria that do not 

possess mitochondria.  It may be that the mitochondria, some different cytosolic 

machinery, or both are the true origins of circadian rhythmicity; surely, time will tell.   
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APPENDIX A: CIRCADIAN RHYTHMS IN COMMENSAL GUT BACTERIA* 

 

Introduction 

In contrast to the situation in the animal clock, which involves a transcriptional, 

translational feedback of “clock genes” such as Per, Cry, Bmal1 and Clock, prokaryotic 

circadian clocks, demonstrated only in the cyanobacterium Synechococcus elongatus, are 

post-transcriptional in nature.  These bacteria express circadian patterns of gene 

expression, photosynthesis and nitrogen fixation (Bell-Pedersen et al., 2005, Johnson et 

al., 2008, Mackey et al., 2011), but the molecular mechanism for this cyanobacterial 

clock is the result of rhythmic autokinase activity of the hexamer-forming ATPase KaiC 

that is enhanced by KaiA binding and subsequent autophosphatase activity of KaiC that 

is modulated by KaiB binding to the KaiA-KaiC complex (Kitayama et al., 2003).  

Remarkably, the three purified proteins, when provided free ATP, exhibit rhythmic 

phosphorylation of KaiC in vitro for many cycles (Nakajima et al., 2005).  Although S. 

elongatus is the only cyanobacterium studied in much detail, the Kai proteins are found 

extensively within the Phylum Cyanobacteria (Axmann et al., 2014). 

 As stated above, vertebrate circadian organization results from the rhythmic 

expression of “clock genes” whose products interact in a dynamic 

transcription/translation feedback loop (Bell-Pedersen et al., 2005, Partch et al., 2013).  

“Positive elements” Clock and Bmal1 are transcribed and translated in the cytoplasm, 

                                                 

* Reprinted with permission from “Human Gut Bacteria Are Sensitive to Melatonin and Express 

Endogenous Circadian Rhythmicity” by Paulose, et al, 2016. PLoS One, DOI: 

10.1371/journal.pone.0146643, Copyright [2016] by Paulose, et al. 
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where they dimerize, reenter the nucleus and activate expression of genes containing an 

E-box element in their promoter regions.  Among these, “negative elements” Period 

(per1, 2 and 3) and Cryptochrome (cry1 and 2) are transcribed, translated and then 

feedback within the nucleus by interfering with Clock/Bmal1 transcriptional activation 

(Panda et al., 2002, Bell-Pedersen et al., 2005, Partch et al., 2013).  The molecular 

feedback loop is expressed in multiple tissues in the body, where they regulate rhythmic 

processes locally, but they are coordinated by pacemakers such as the hypothalamic 

suprachiasmatic nucleus (SCN) in mammals (Reppert and Weaver, 2002). 

 Among the vertebrate peripheral tissues that express circadian rhythms is the 

gastrointestinal system, which exhibit circadian rhythms in gene expression (including 

clock genes), motility and secretion in vivo and in vitro (Hoogerwerf et al., 2007, 

Hoogerwerf et al., 2008, Hoogerwerf et al., 2010).  These rhythms depend upon a patent 

molecular clock, since they are abolished in per1/per2 double knockout mice 

(Hoogerwerf et al., 2010). They are also coordinated by SCN input via the sympathetic 

nervous system (Malloy et al., 2012).  

The emerging role of the gut microbiome as an important modulator of 

gastrointestinal function has recently included the role of circadian rhythms.  Recent 

studies have suggested that microbial signaling plays a critical role in homeostatic 

maintenance of intestinal function along with the host circadian mechanism (Mukherji et 

al., 2013, de Kivit et al., 2014).  Further studies have expanded this view and have 

shown that disruption of the circadian clock, either via dietary restriction or phase 

shifting (e.g. jet-lag) affects temporal distribution of the gut microbiome constituents 
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(Liang et al., 2014, Thaiss et al., 2014, Voigt et al., 2014, Zarrinpar et al., 2014).  While 

it is clear from these studies that commensal bacteria and gut tissues do communicate, it 

is not clear which signaling modality or modalities the microbiome exploits to sustain its 

own homeostasis. 

 Here we present evidence for one possible modality, the indole hormone 

melatonin, which is present at high levels in the gut and which induces swarming 

activity in a clinical isolate of Enterobacter aerogenes.  Further investigation of the 

motility patterns in this bacterium evinced an endogenous circadian rhythm within 

cultures, which is enhanced and synchronized by melatonin. 

 

Materials and Methods 

Strains and culture conditions  

E. aerogenes and E. coli clinical isolates  (gift from Dr. John Seabolt, U. of 

Kentucky), K. pneumoniae Isolate-1 (NR-15410, BEI resources, NIAID, NIH), and 

DH5α with luxcdabe driven by the promoter region of MotA  ((Goodier and Ahmer, 

2001), gift from Brian Ahmer, Ohio State University), were initially cultured in LB 

Broth at 37°C in a shaking incubator.  Motility assays were conducted on Eosin-

Methylene Blue Agar (EMB) plates (Difco, 1984) with a 50% reduction in agar to 

facilitate motility.  All chemicals used in motility assays were purchased from Sigma (St. 

Louis, MO) and diluted in water. 
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Motility Assays  

100mm petri dishes were visually divided into quadrants, filled with 30mls of 

EMB agar with or without specified concentration of chemicals, and allowed to dry for 

~4 hours in a sterile hood.  2μl of overnight culture were stabbed and released into the 

center of each quadrant and allowed to grow for 48 hours at 37°C.  Each plate was 

imaged on a light box by digital camera using qCapture Pro software (Media 

Cybernetics, MD) and areas measured by ImageJ (Rasband). 

Transformation of MotA::luxcdabe into E. aerogenes  

E. aerogenes were made competent by CaCl2 method and MotA::luxcdabe 

plasmid extracted from the host strain was transformed into E. aerogenes by heat shock.  

Transformants were selected for on tetracycline-supplemented medium and stored as 

glycerol stocks for future studies.  

Bioluminescence monitoring  

2μl of overnight cultures were stabbed and released into the center of 35mm 

culture dishes containing 5mls of EMB agar with or without 1nM melatonin.  Plates 

were sealed with 40mm cover glass by sterile vacuum grease and placed into an 

automated photomultiplier-based bioluminescence recorder (Lumicycle, Actimetrics, 

IL).  Each sample was counted for 70 seconds on a rotating platform.  Raw 

bioluminescence baselines were subtracted using a 24-hour running average via 

Lumicycle Analysis software (Actimetrics, IL).  Cultures were photographed as above 

and used for illustrative purposes here. 

 



 

106 

 

Bioinformatics  

Initial protein searches were performed by BLASTp (NCBI) using human 

MEL1A and MEL1B protein sequences against a protein database from the curated 

human microbiome project (HMP) repository (NCBI).  Clock protein comparisons were 

performed by PsiBLAST program (NCBI) using Uniref_50 clusters against the available 

proteomes of E. aerogenes strains KCTC2190 and EA1509E (Uniprot.org taxonomy IDs 

1028307 and 935296, respectively).  Unique microbial proteins were aligned to the 

original clock gene clusters using MUSCLE and trees generated by PhyML software 

with 100 bootstraps. 

Motif analysis  

KAI complex protein sequences, including positive PsiBLAST hits above, were 

entered into the online MEME suite (Bailey and Gribskov, 

1998),http://meme.nbcr.net/meme) under Multiple Em for Motif Elicitation (MEME) 

and subsequent Motif Alignment and Search Tool (MAST,(Bailey and Elkan, 1994)).  

The output of MAST for each protein is included here in supplemental data. 

Statistics  

Circadian rhythmicity was determined by Circwave, Circwave Batch software 

v3.3 (Oster et al., 2006) and periodogram analysis (Wichert et al., 2004).  Each day of 

bioluminescence recording was separated and analyzed for periods of 24 hours 

(Circwave and periods between 19 and 28 hours (Circwave Batch, p<0.02).  

Periodogram analysis was performed using R statistical program and the GeneCycle 

package (Wichert et al., 2004) followed by Fisher's exact g Test to obtain p-values of 



 

107 

 

each culture. Spread/motility measures, periods, amplitudes, and damping coefficients 

were compared by 1- or 2-way ANOVA, where appropriate. All analyses were 

performed using SigmaStat software (Systat, CA).   

 

Results and Discussion 

 We hypothesized that one potential human signal that may affect gastrointestinal 

microbiota is the secretion of melatonin into the lumen of the gut.  Although melatonin 

is widely regarded as a pineal and retinal neuromodulator of circadian and photoperiodic 

function (Acuña-Castroviejo et al., 2014, Brzozowski and Jaworek, 2014), it is present 

throughout the gastrointestinal system (Bubenik, 2002, Acuña-Castroviejo et al., 2014, 

Brzozowski and Jaworek, 2014), in part from pineal melatonin secretion (Bubenik and 

Brown, 1997, Reiter et al., 2011), but there is evidence for melatonin biosynthetic 

enzymes in biliary cholangiocytes, enterochromaffin cells and intestinal mucosa (Chen 

et al., 2011, Reiter et al., 2011). In addition, many foods contain melatonin (Reiter et al., 

2011, Acuña-Castroviejo et al., 2014). In all, melatonin content has been reported to be 

10-400x levels found in the serum (Chen et al., 2011, Reiter et al., 2011). We identified 

from metagenomics data in GenBank several enteric bacteria that expressed sequences 

with 24-42% identity to known melatonin binding sites in the human genome (Figure 

A1). These included receptors in Enterobacter aerogenes, but not in Escherichia coli or 

Klebsiella pneumoniae. 

 Colonies formed by clinical isolates of Enterobacter aerogenes, a Gram 

negative, indole-negative motile bacterium, proliferated on semi-solid Agar significantly 
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more rapidly in the presence of melatonin in a specific, dose-dependent fashion, with 

maximal response coinciding within the physiological range of gut melatonin levels 

(Figures A2 and A3 A and B). This effect was specific for melatonin, as E. aerogenes 

spread further in the presence of melatonin than in the presence of equimolar 

concentrations of tryptophan, serotonin or N-acetylserotonin (Figure A3 D).  In contrast, 

Klebsiella pneumoniae, a closely related but non-motile, indole-negative member, and 

Escherichia coli, an indole-positive but motile member of the Enterobacteriacea Family, 

do not respond to melatonin or the other indoles tested (Figure A3 E and Figure A4). 

 The larger cultures of E. aerogenes in the presence of melatonin exhibited 

patterns of swarming within the cultures, evidenced by stereotypical, concentric rings of 

colonies (Figure A3 A), similar to recently reported diurnal swarming in Listeria 

monocytogenes (Kaval et al., 2015) and identical to the bulls-eye pattern of swarming 

commonly seen in Proteus mirabilis, another intestinal commensal that is also in the 

Enterobacter family (Pearson et al., 2010). These patterns were less apparent in the 

smaller, control cultures of E. aerogenes in melatonin’s absence (Figure A2).  

Remarkably, the number of rings consistently coincided with the number of incubation 

days.  Calculation of banding periodicity – the number of bands visually observed 

divided by the number of hours of incubation – revealed a period of much greater than 

24 hours in control-treated cultures.  In contrast, in 1nM melatonin’s presence, the 

period of swarming behavior was 25.1 + 1.4 (S.D. hours (Figure A3 C). 
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Figure A1: Multiple sequence alignment of protein BLAST hits to human MEL1A 

and MEL1B receptors show several areas of identity with protein sequences taken 

from the Human Microbiome Project (HMP).  Alignments shown are a selection of 

positive BLAST hits (e-value < 0.001) aligned using MUSCLE that show several 

conserved residues and regions of high identity. 
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Figure A2: Exposure to physiological levels of melatonin induce swarming in E. 

aerogenes.  100mm EMB agar plates were inoculated with 2ul of overnight cultures 

(n=4/plate, replicated with 4 different starter cultures) and incubated for 48 hours.  

Rosette patterns of swarming increased with increasing concentrations of 

melatonin on the plates. 
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Figure A3: Swarming behavior in E. aerogenes is induced by melatonin and occurs 

with a circadian frequency.  A Swarming behavior in control treated (left cultures 

vs. treatment with 1nM melatonin (right.  Images were equally enhanced using 

“Bump Map” in GIMP software to highlight banding patterns.  B The increase in 

swarming was only seen at 100pM and 1nM concentrations of melatonin, * = p 

value < 0.001 compared to vehicle treated cultures, n=16 cultures per treatment.  C 

Period of swarming as calculated by the number of rings observed per culture 

period of 4 days in n=16 cultures per treatment, * = p value < 0.001.  D Area of 

bacterial spread was unaffected by tryptophan (left, serotonin (middle and N-

acetylserotonin (right, n=16 cultures per treatment.  E  Melatonin did not affect 

growth in K. pneumoniae (left or clinical or lab strains of E. coli (middle and right, 

respectively, n=16 cultures per strain per treatment. 
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From the above banding period data, we hypothesized that the swarming rhythms 

might represent the output of a circadian clock. To test this, cultures of E. aerogenes 

were transformed to express luciferase using a luxcdabe construct driven by the MotA 

promoter ((Goodier and Ahmer, 2001), Figure A5 A). Bioluminescence from these 

cultures measured in a Lumicycle photomultiplier system indicated robust circadian 

patterns in 31-44% of cultures when maintained in temperatures ranging from ambient 

270C to those corresponding to human body temperatures  (TB) of 340C, 370C and 400C 

(Figures A6 A-C).  The circadian periods of these bioluminescence rhythms were 

temperature compensated with a Q10 = 0.96 from 270C to 400C. While there was no 

effect of melatonin on circadian period (Figure A5 C), there was a significant effect of 

melatonin on the phase of peak bioluminescence (Figure A5 B). In the absence of 

melatonin, the circadian phases of multiple replicates were highly variable. However, in 

the presence of 1 nM melatonin the phases of these rhythms were synchronized, 

especially at temperatures closely corresponding to body temperature (34-37OC) (Figure 

A6 A, B). In contrast, the plasmid donor strain of DH5-α E. coli failed to exhibit daily 

patterns of bioluminescence in the presence or absence of melatonin, despite having a 5-

fold higher raw bioluminescence level (Figure A5 B, C), which may be attributed to a 

higher plasmid copy number.  
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Figure A4: Neither lab nor clinical strains of E. coli nor K. pneumoniae show 

swarming response to other indoles.  Cultures of clinical isolates of E. coli (left 

panels, DH5-α (middle panels, and K. pneumoniae (right panels were tested for 

swarming/growth in the presence of tryptophan (top row, serotonin (middle row, 

and N-acetylserotonin (bottom row, n=16 cultures per strain per treatment. 
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Figure A5: MotA::luxcdabe is expressed rhythmically in E. aerogenes, not in DH5-

α.  A Representative map of plasmid pRG19 showing MotA upstream of luxcdabe 

complex and tetracycline resistance.  B) DH5-α cultures (left) are not rhythmic 

regardless of presence of melatonin, however, raw trace of E. aerogenes cultures 

(right) transformed with MotA::luxcdabe plasmid show rhythmic expression with 

damping over time both in the presence and absence of melatonin.  C) Melatonin 

increased the average amplitude of cultures exhibiting circadian rhythms at 27°C 

and 37°C, but not 40°C, * = p value < 0.05 as tested by one-way ANOVA.  D) 

Neither temperature nor melatonin affected the damping rate of the cultures 

exhibiting circadian rhythms. 
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This is the first demonstration of a circadian clock in a prokaryote outside 

Phylum Cyanobacteria. The fact that this species exists primarily as a commensal 

bacterium raises the possibility that the circadian clockworks driving these rhythms in E. 

aerogenes may have arisen from horizontal gene transfer of human and/or ancestral 

vertebrate clock genes into these bacteria (Jones, 2010, Aminov, 2011). However, 

comparison of the E. aerogenes proteome to known members of the vertebrate biological 

clock mechanism revealed no relationship between BMAL1, CLOCK, OR PER1 and 

any sequence within the E. aerogenes proteome (Figure A7 A, B, and C, respectively). 

On the other hand, comparison of the E. aerogenes proteome data set to the 

cyanobacteria KAIABC complex revealed several sequences nested within trees for each 

of the Kai proteins (Figure A7 D, E, and F).  Although position-specific iterated BLAST 

(PsiBLAST) provided significant alignments, motif-specific analysis using MEME and 

MAST software showed little similarity to conserved motifs within the KAI proteins 

(Figure A8).  Despite a lack of similarity at the sequence level, there may be an 

underlying similarity in cellular functions of related proteins.  One KaiC ortholog found 

here, Dephospho-Coa Kinase, is also known to act with a phosphatase in bacteria and 

mammals, with the latter relationship in the form of a bi-functional single enzyme 

(Worrall and Tubbs, 1983, Martin and Drueckhammer, 1993, Mishra et al., 2001).  In S. 

elongatus, the Kai complex drives circadian rhythms of multiple processes through a 

post-translational molecular mechanism that persists even outside the bacterial cell; 
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Figure A6: Bioluminescence recording of MotA::luxcdabe transformed E. aerogenes confirms a temperature compensated circadian rhythm. 

A) Normalized bioluminescence rhythms from control-treated (top panels) and melatonin-treated (bottom panels) cultures show circadian 

rhythms at (from left to right) 27° (n=5/treatment), 34° (n=5/treatment), 37° (n=5 control and 7 melatonin-treated) and 40° (n=6 control and 6 

melatonin-treated).  Time scales represent days after plates were inoculated with bacteria, which varied in the amount of time needed to 

stabilize and begin outgrowth. B) Periodogram analysis-derived peak phases of rhythmic cultures from (A) reveal that control-treated cultures 

(white circles) show greater variation in peak phase than melatonin-treated cultures (black circles), which are more synchronized at all three 

temperatures. C) Periods of rhythms varied between 22 and 28 hours among temperature and melatonin treatments, but were not significantly 

affected by temperature or melatonin.
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Figure A7: Phylogenetic relationships exist between Cyanobacteria clock proteins 

and E. aerogenes, not vertebrate clock proteins.  Bootstrapped trees (iterations 

shown between branches) show no homology among E. aerogenes proteins and 

vertebrate clock proteins BMAL1 (A), CLOCK (B), or PER1 (C). Similar analyses 

using Uniprot clusters of KAI A (D), KAI B (E), and KAI C (F) show potential 

homology with specific E. aerogenes proteins.  G) E. aerogenes proteins share 

conservation with redox-related proteins across several taxa. 
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the combination of the three Kai proteins and ATP reconstitutes a circadian pattern of 

phosphorylation and dephosphorylation for many cycles in vitro (Nakajima et al., 2005).  

The major component of the complex, KaiC, expresses both kinase and phosphatase 

activities, the latter of which occurs in a manner similar to ATP synthase (Egli et al., 

2012).  In vivo, this oscillator responds to light, temperature, and metabolic state through 

the CikA, LdpA, and Pex pathways, each of which can entrain the Kai oscillator to 

environmental cues (Kondo, 2007, Johnson et al., 2008, Mackey et al., 2011).  This 

relatively simple oscillator in turn regulates a wide array of processes through 

transcriptional regulation (Ito et al., 2009, Hosokawa et al., 2011).  Other factors must 

influence this oscillator, however, since in vivo, the periods of multiple circadian 

rhythms differ, depending on the promoter, the presence or absence of promoter 

recognition subunits of RNA polymerase, and environmental conditions, including light 

intensity and growth phase of the culture (Clerico et al., 2009).  Our data cannot exclude 

this possibility in E. aerogenes, as we have only examined rhythmicity as it manifests in 

MotA motor protein expression, which – although an established proxy for motility – is 

likely to be an output of the mechanism.  Alternatively, but not exclusively, circadian 

rhythms in E. aerogenes may derive from rhythmic peroxiredoxin activity, since this 

mechanism has been identified only recently in eukaryotes as well as prokaryotes (Edgar 

et al., 2012).  Bioinformatics analysis reveals several sequences that share similarity to 

peroxiredoxin and thiol redoxins from various taxa (Figure A7 G).  Contrary to earlier 

studies investigating the structure and function of KaiB and SasA proteins (Klewer et al., 

Hitomi et al., 2005) our analysis showed no similarity between KaiB and thioredoxins or 
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Figure A8: Kai protein orthologs in E. aerogenes do not share motif-level similarity 

with other Kai proteins. Proteins with sequence homology via PSI-BLAST share 

some motif-level sequences with A) KaiA and B) KaiB, but not C) KaiC. 
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between KaiB orthologs and peroxiredoxin orthologs.  However, the candidate proteins 

from our analysis are all linked to redox-sensitive pathways, including the manganese 

transporter MntH that initiated this investigation (Imlay, 2008).  Recent reports of the 

anti-oxidant properties of melatonin in a neurodegenerative mouse model would support 

a mechanism involving melatonin and redox-state sensing (Deng et al., 2015).  We are 

currently exploring these candidate proteins to determine the mechanism or mechanisms 

behind the observed rhythms.     

 Importantly, the present observations indicate that at least one member of the 

human microbiome may synchronize to its host through synchronization of an 

endogenous, temperature-compensated circadian clock. The detailed mechanism for this 

synchronization is at this stage not completely known.  However, it is remarkable that 

the presence of melatonin in the culture medium synchronizes the periodicity and phases 

of multiple clonal populations across different culture plates (Figure 4).  The latter 

phenomenon suggests melatonin as a novel source of host-commensal communication 

within the gut, if not the internal Zeitgeber itself. The existence of a circadian rhythm 

within a commensal bacterium that responds to an endocrine signal that is regulated by 

the circadian mechanism of the host gives further credence to the concept of the 

microbiome as a “meta-organism”; one with an endogenous clock that is entrained by its 

host's clock-driven signals.  If we regard our own circadian mechanism as an evolved 

adaptation to environmental phenomena governed by 24-hour periods, organs and organ 

systems could be perceived as the entraining environment for resident microflora.  As 

such, perturbations to the environment (i.e. circadian disruptions) will affect rhythms 
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within the microbiome as previously demonstrated (Zarrinpar et al., 2014, Thaiss et al., 

2015).  However, it is not known whether or not, nor to what extent, the microbiome can 

recover from these challenges.  Furthermore, the effect of host: commensal signaling is 

likely not relegated to one species, as we are limited to here, but to the community at 

large.  If this phenomenon modulates quorum sensing, as is suggested by observations, 

there would be systemic alterations to the microbial community as a whole, as well as to 

the physiology of the host. 




