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ABSTRACT

My dissertation includes two essays studying the forecasting of financial returns.

In the first essay, I study the temporal dependence structures of financial returns

by using a mixture copula model. A mixture copula is a linear combination of

several single copulas. It is more flexible than a single copula and can capture

various dependence structures in financial data. Therefore, instead of choosing a

single copula based on certain statistical criteria, I propose to use a model average

approach to estimate the temporal dependence structure of a stationary Markov

process in a mixture copula framework. The asymptotic properties of the model

average estimator are established under some regularity conditions. Simulations show

that the model average approach gives the most accurate estimation and predicting

results compared to some competing methods, when the working mixture model

is misspecified. Using a real data example, we demonstrate the usefulness of our

proposed method.

In the second essay, I suggest a robust test that is a data-dependent weighted 

average of the regression-based test and the covariance-based test. This new 

test allows for multivariate cases and yields chi-squared inference regardless of 

whether predictors are stationary, local-to-unity or I(1). No prior knowledge of the 

orders of integration or bias corrections are required. Furthermore, the new test 

does not force the dependent variable and predictors to share the same order of 

integration under the alternative hypothesis. It is very important because in 

practice the dependent variable usually appears to be stationary while predictors 

may be (near) nonstation-ary. This test shows good simulation results. In the 

empirical application section, we test for the predictability of excess stock returns 

using a large set of predictors.

ii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction to the First Essay . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to the Second Essay . . . . . . . . . . . . . . . . . . . . 5

2. INVESTIGATING TEMPORAL DEPENDENCE IN FINANCIAL DATA
VIA MIXTURE COPULAS . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Copula-Based Markov Models . . . . . . . . . . . . . . . . . . . . . . 9
2.2 An Introduction to Mixture Copula . . . . . . . . . . . . . . . . . . . 11
2.3 Theoretic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Simulation Case I . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Simulation Case II . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 An Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3. A ROBUST TEST FOR PREDICTABILITY WITH UNKNOWN PER-
SISTENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 The Bonferroni Method . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 A Quasi Restricted Likelihood Ratio Test (QRLRT) . . . . . . 32
3.1.3 A Robust Bootstrap and Subsampling Approach . . . . . . . . 32
3.1.4 Differencing Transformations . . . . . . . . . . . . . . . . . . . 33
3.1.5 The Linear Projection Method . . . . . . . . . . . . . . . . . . 34

3.2 The IVX Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Model and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Predictors Are I(1) or Local-To-Unity . . . . . . . . . . . . . . 38
3.3.2 Predictors Are Stationary . . . . . . . . . . . . . . . . . . . . 42

iii



3.4 The Robust Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 DGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.2 Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.3 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.4 Sensitivity to Parameter Choice . . . . . . . . . . . . . . . . . 79

3.6 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6.2 Single-Predictor Model . . . . . . . . . . . . . . . . . . . . . . 82
3.6.3 Multivariate Model . . . . . . . . . . . . . . . . . . . . . . . . 87

4. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

APPENDIX A   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

APPENDIX B   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

iv



LIST OF FIGURES

FIGURE Page

2.1 Time series plots and scatter plots for three single copulas . . . . . . 12

2.2 Time series plots and scatter plots for three mixture copulas . . . . . 13

3.1 Finite sample power against equation (3.11), T = 100 . . . . . . . . . 63

3.2 Finite sample power against equation (3.11), T = 200 . . . . . . . . . 64

3.3 Finite sample power against equation (3.11), T = 500 . . . . . . . . . 65

3.4 Finite sample power against equation (3.12), T = 100 . . . . . . . . . 69

3.5 Finite sample power against equation (3.12), T = 200 . . . . . . . . . 70

3.6 Finite sample power against equation (3.12), T = 500 . . . . . . . . . 71

v



LIST OF TABLES

TABLE Page

2.1 Mean of squared out-of-sample prediction losses for Type I simulation 22

2.2 Mean of squared estimation losses of 0.01 conditional quantile for Type
I simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Mean of squared out-of-sample prediction losses for Type II simulation 25

2.4 Mean of squared estimation losses of 0.01 conditional quantile for Type
II simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 The summary statistics for daily log-returns . . . . . . . . . . . . . . 26

2.6 Mean of in-sample estimation errors based on MA, MML and BIC . . 29

2.7 Mean of out-of-sample predicting errors based on MA, MML and BIC 30

3.1 The new t-statistic: Size . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Maynard and Shimotsu (2009) t-statistic: Size . . . . . . . . . . . . . 52

3.3 Regression t-statistic: Size . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 DFGLS pre-test t-statistic: Size . . . . . . . . . . . . . . . . . . . . . 54

3.5 KPSS pre-test: Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 The t-statistic: Power (against equation 3.11) . . . . . . . . . . . . . 57

3.7 Maynard and Shimotsu (2009) t-statistic: Power (against equation 3.11) 58

3.8 Regression t-statistic: Power (against equation 3.11) . . . . . . . . . . 59

3.9 DFGLS pre-test: Power (against equation 3.11) . . . . . . . . . . . . 60

3.10 KPSS pre-test: Power (against equation 3.11) . . . . . . . . . . . . . 61

3.11 The t-statistic: Power (against equation 3.12) . . . . . . . . . . . . . 67

3.12 Maynard and Shimotsu (2009) t-statistic: Power (against equation 3.12) 68

vi



3.13 Regression t-statistic: Power (against equation 3.12) . . . . . . . . . . 72

3.14 DFGLS pre-test: Power (against equation 3.12) . . . . . . . . . . . . 73

3.15 KPSS pre-test: Power (against equation 3.12) . . . . . . . . . . . . . 74

3.16 The IVX method: Size . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.17 The IVX method: Power (against equation 3.11) . . . . . . . . . . . . 77

3.18 The IVX method: Power (against equation 3.12) . . . . . . . . . . . . 78

3.19 Comparison of different c . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.20 Tests on monthly excess stock returns (single-predictor model) . . . . 83

vii



1. INTRODUCTION

This dissertation includes two essays, the name of the first essay is “Investigating

Temporal Dependence in Financial Data via Mixture Copulas”, and the name of the

second essay is “A Robust Test for Predictability with Unknown Persistence”.

1.1 Introduction to the First Essay

A substantial body of literature is available in economics and finance, which stud-

ies the temporal dependence of financial returns. A good knowledge of the temporal

dependence structures is essential for many important financial applications, such

as risk management and financial variables forecasting. However, much literature

focuses only on linear temporal dependence through linear autocorrelation analysis,

although more general dependence patterns could exist. To model nonlinear tempo-

ral dependence in a time series, a copula-based method can be a good choice because

it is flexible enough to separate the temporal dependence from the marginals. There-

fore, by choosing different forms of margins and copula functions, one can model a

wide variety of temporal dependence properties (such as asymmetry or clusters) and

marginal behaviors (such as fat tails).

By the theorem shown in Sklar (1959), any multivariate joint distribution can

be written in terms of its marginal distributions and a copula function. Because of

its flexibility, the copula model has been widely used in finance and economics. For

example, Li (2000) and Frey and McNeil (2001) propose the use of copula models

to estimate default correlations. Chollete et al. (2005), Hu (2006), Chollete et al.

(2009), and Long et al. (2015) apply the copula method to study the contempo-

raneous dependence structure among international stock markets. Cherubini et al.

(2004) uses a copula-based approach to measure the portfolio Value-at-Risk.
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To describe the temporal dependence of a univariate time series, Joe (1997) stud-

ies a class of stationary Markov models by using parametric margins and copula

functions. He applies the parametric copula method to daily environmental data.

Bouyé et al. (2002) measure the temporal dependence in a time series by using

different types of Archimedean copula functions for nonlinear dependence. Chen

and Fan (2006) and Chen et al. (2009) propose a semiparametric copula approach

characterized by nonparametric margins and parametric copula functions.

For empirical studies, a crucial question is how to choose an appropriate copula

to satisfactorily capture the dependence patterns. In the context of modeling the

contemporaneous dependence among several variables, there have been some efforts

in the literature to choose an individual copula from a candidate set, usually based on

certain statistical criteria1. One may consider extending these methods to univariate

time series. However, two disadvantages of using an individual copula should be

considered. First of all, there are many different varieties of copulas. In fact, one

can always create a new copula by making some transformations on an existing

copula2. However, taking a large candidate set is usually very inefficient in practice.

Most empirical users only consider several commonly used copulas, such as Gaussian,

Clayton, and Gumbel, to build their candidate sets. Considering the fact that the

true copula model is never known to econometricians, it is highly probable that one’s

candidate set fails to include the true copula or all the candidates are not very close

to the true dependence function. Under these circumstances, the selected “most

appropriate” copula might fail to capture the true dependence structure. Second,

1For example, Chen, Fan, and Patton (2003), Fermanian (2005), and Scaillet (2007) propose
the use of Goodness-of-Fit (GoF) tests to select a copula. Manner and Reznikova (2012), Patton
(2012), and Fan and Patton (2014) compare the log-likelihood function values of each copula and
choose the one having the largest value.

2For example, Patton (2006) proposes a Joe-Clayton copula by taking a particular Laplace
transformation on the BB7 copula of Joe (1997).
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there is usually no single copula that applies to all cases in practice. For example,

when studying the dependence structure across international stock markets, different

pairs of markets may exhibit different dependence structures; therefore, they can not

be captured by one individual copula (see Hu, 2006).

To overcome the shortcomings of using an individual copula function, Chollete,

Peña, and Lu (2005) and Hu (2006) suggest using mixture copulas in the context of

multivariate models. A mixture copula is a linear combination of several individual

copulas. The weight of each individual copula is non-negative and the weights add up

to one. Compared to an individual copula, a mixture copula is more flexible and can

generate dependent structures that do not belong to any single copula. Therefore,

by arranging different weights on components of copulas in a mixture model, one can

capture various dependence structures in the financial data, such as tail dependence

or asymmetric dependence. For example, Chollete et al. (2005) and Hu (2006)

consider mixture models, including Gaussian, Gumbel, and rotated Gumbel copulas,

to estimate the dependence structures among international stock markets. They

find strong left tail dependence as the weight parameter associated with the Gumbel

copula is almost zero, while the rotated Gumbel tends to be significant due to its

positive weight.

When modeling the temporal dependence structure of a univariate time series,

most of the previous literature rely only on a single copula (e.g., Bouyé et al., 2002,

Chen and Fan, 20063, and Chen et al., 2009). Because of the disadvantages associ-

ated with the use of a single copula, we use a mixture copula model to study the

temporal dependence in time series (copula-based stationary Markov models) in this

paper. Although a mixture copula model is much more flexible than a single copula,

3Although the two-step Quasi-MLE method proposed in Chen and Fan (2006) can be easily
extended to estimate a mixture copula model.
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it is still highly probable that one’s working model is misspecified. That is, the true

copula may not be included in the working mixture copula candidate set because the

true data dependence structure is unknown to econometricians. To handle copula

misspecification cases, we propose to use a model average approach to estimate a

mixture copula4. Specifically, we first fit observations to each component copula in

the mixture model, and then we estimate their associated weights by minimizing a

cross-validation criterion in a manner similar to the one proposed by Hansen (2007).

Similar to Chen and Fan (2006), we estimate the unknown margins by nonparamet-

ric methods, such as the rescaled empirical distribution function, while assuming

that copulas belong to some parametric families. We show that our model average

approach can generate an asymptotically optimal estimator in the sense of achieving

the infeasible lowest possible squared estimation losses. That is, the model average

approach asymptotically minimizes the distance between the estimated mixture cop-

ula and the unknown true model when the working model is misspecified. This is

important in practice, considering the fact that empirical researchers usually take a

small copula candidate set, and the misspecification problem should be common.

The simulation results indicate the superiority of the model average approach in

capturing the temporal dependence in the time series. Compared with a mixture

copula estimated by Chen and Fan’s (2006) two-step Quasi-MLE method (MML)

and a single copula selected by the standard BIC method (BIC), our model average

approach generates estimation results with the smallest mean square errors, espe-

cially when the copula model is misspecified. Estimating conditional quantiles (VaR)

of financial returns is important in risk management; therefore, we also compare the

4In a different context, Long et al., 2015 use the model average approach to estimate the con-
temporaneous dependence patterns among several variables. To the best of our knowledge, there is
no other paper that considers using a mixture copula and/or a model average approach to estimate
the temporal dependence of copula-based Markov models.
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plug-in estimators of conditional quantiles estimated via different methods. Again,

our model average approach surpasses the other two methods by registering the

smallest errors. In the empirical application, we apply the model average approach

to estimate the temporal dependence of the daily returns of several equity indexes

(NASDAQ, SHASHR, KOSPI, and TAIEX). The empirical results show our model

average approach can be a useful tool in describing and predicting the temporal

dependence structures of financial returns and in risk management.

Finally, I would like to clarify that the model average method and the results

shown in this paper can be easily extended to copula-based Markov processes of any

finite order, although we only present results for first-order Markov models for the

sake of clarity in this paper.

1.2 Introduction to the Second Essay

Many papers in economics and finance study the predictability of financial re-

turns. The traditional framework assumes a linear regression

yt = β0 + β1xt−1 + εt, (1.1)

where yt is financial returns such as stock or bond returns during period t, xt−1 is

a lagged variable which could be, for example, dividend yields or interest rates at

the end of period t − 1, and εt is usually assumed to be serially uncorrelated and

E(εt | xt−1, xt−2, ..., x1) = 0, E(εt | xt) 6= 0. When xt is stationary and the sample

size is large, this kind of predictive regression works well and so does the standard

t-ratio test, since the finite sample bias disappears asymptotically. However, when
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xt is local-to-unity, for example,

xt = ρxt−1 + υt,

ρ = (1 + c/T ) and c < 0,

and

E(εtυt) 6= 0,

it is well-known that the bias is still present even for a large sample and is uncor-

rectable as it depends on the local-to-unity parameter c, which can not be consistently

estimated (e.g., Cavanagh, Elliott, and Stock, 1995). Thus, predictive regression tests

suffer from substantial size distortion.

Moreover, the predictive regression forces the dependent variable and the inde-

pendent variable to have the same orders of integration under a fixed alternative.

In other words, if xt is (near) nonstationary, yt is implicitly assumed to be (near)

nonstationary and cointegrated with xt. With yt (such as stock returns) empirically

showing only weak serial correlation, it is reasonable to think the dependent vari-

able is always stationary. This predictive regression does not allow the case that xt

is (near) nonstationary while yt is stationary unless β1 is zero. In consequence, the

power of predictive regression tests is very weak and the test statistics do not diverge

to infinity under fixed and unbalanced alternatives.

The size distortion problem mentioned above has recently generated a large vol-

ume of literature aimed at correcting inference. However, most of the existing liter-

ature is based on the predictive regression and studies test performance and asymp-

totics only under the null hypothesis (and the local alternatives), forgoing problems

of imbalance under the fixed alternative (e.g., Cavanagh, Elliott, and Stock, 1995;
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Torous, Valkanov, and Yan, 2004; Valkanov, 2003; Campbell and Yogo, 2006; Mag-

dalinos and Phillips, 2009b; Kostakis et al., 2010; Phillips and Lee, 2013; Cai and

Wang, 2014). Therefore, although these procedures can effectively control the size,

they are usually hard to maintain a strong power against fixed alternatives. More-

over, a common assumption in the predictive model literature is that there is no drift

in the AR(1) model for the regressors. That is because for the predictive regression

models, fitting a drift to the regressiors often affects asymtotics in nonstationary

cases. However, this assumption may not hold for all applications.

In contrast to regression-based tests, Maynard and Shimotsu (2009) develop a

test based on the covariance between yt and xt−1. This kind of covariance-based test

allows unbalanced fixed alternatives that are not covered by the regression model,

i.e., when xt is I(1) or local-to-unity, yt can still maintain stationary behavior. The

covariance-based test allows either a nonzero intercept or a linear trend in (yt, xt)

and has a same limiting distribution using demeaned or detrended residuals.

Another favorable property of the covariance-based method is that it generates

a single t-type test that has the same asymptotic distribution under either unit root

or local-to-unity assumption. That is, when xt is local-to-unity, the t-type statistic

has a standard normal limit distribution which does not depend on the local-to-

unity parameter c. Therefore, there is no need to worry about the uncorrectable

bias problem as in the predictive regression model. This covariance-based test is also

shown to be consistent against the local o(n−1/2) versions of the traditional linear

regression alternative although it can not provide consistency against local regression

alternatives of order n−1.

However, the covariance-based t test performs poorly when both of yt and xt

are modeled as stationary processes. The test is undersized and the test statistic

converges to zero in probability under the null. Another drawback is that Maynard
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and Shimotsu (2009) retrict the covariance-based test to the case of a single predictive

variable, which is not general in practice.

From what has been discussed above, if we know the orders of integration of

the dependent variable and the predictors before testing, we may choose either the

standard test from the predictive regression model which is good enough when both

yt and xt are stationary, or, the covariance-based test when yt and xt have different

orders of integration. However, in practice, we are not equipped with much prior

information about whether a predictor is stationary, local-to-unity or I(1), although

the dependent variable can be always treated as a stationary process. Therefore,

we construct a new test statistic that is a data-dependent weighted average of the

regression-based test and the covariance-based test. Our test can automatically

select the regression-based test statistic when predictors are stationary, and select

the covariance-based test statistic when predictors are (near) nonstationary.

This test has many desirable properties. First of all, it allows the existence of

unbalanced alternatives. Second, no bias corrections are needed. Third, we extend

Maynard and Shimotsu (2009)’s covariance-based test to a multivariate system. Our

test allows more than one predictor in the model. Fourth, neither a nonzero intercept

nor a linear trend in (yt, xt) would affect the limiting distribution. Finally, our

test yields a test statistic that has a standard χ2 limiting distribution regardless of

whether the regressors are stationary, local-to-unity or I(1), i.e., no prior knowledge

of the orders of integration is required, which is very important empirically. This

test could successfully control the size while maintaining a strong power against both

local and fixed alternatives in either balanced or unbalanced case.
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2. INVESTIGATING TEMPORAL DEPENDENCE IN FINANCIAL DATA VIA

MIXTURE COPULAS

2.1 Copula-Based Markov Models

Several previous papers, including Darsow et al. (1992), Victor et al. (2006),

and Ibragimov (2009) have presented characterizations of a copula-based time series

to be a Markov process. A brief review can be found in Nelsen (2006, section 6.4).

In this paper, we denote {Yt}Tt=1 as a first-order stationary Markov process with

continuous state space and a marginal distribution which is denoted as G. Then, the

probabilistic properties of {Yt}Tt=1 are captured by the joint distribution function of

Yt and Yt−1, which is denoted as F (y1, y2). According to Sklar (1959), one can always

model F (y1, y2) by modeling the marginal distribution G and the copula function of

Yt−1 and Yt separately, and the copula model does not constrain the choice of margins

F (y1, y2) ≡ C(G(y1), G(y2)).

Thus, the copula approach is a useful tool in modeling the temporal dependence of

a stationary Markov model. Because of the flexibility of the copula approach, we can

model a wide variety of marginal behaviors (such as fat tails and/or skewness) and

temporal dependence properties (such as asymmetry and/or clusters) by coupling

different forms of margins and copula functions together.

Following Chen and Fan (2006) and Chen et al. (2009), we have the assumption

about the true data generating process (DGP):

Assumption 1. (i) {Yt}Tt=1 is a sample of a strictly stationary first-order Markov

process generated from (G0(·), C0(·, ·; θ0)), where G0(·) is the true invariant distri-
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bution that is absolutely continuous with respect to the Lebesgue measure on the

real line; C0(·, ·; θ0) is the true parametric copula for Yt−1 and Yt up to the unknown

value θ0 and is absolutely continuous with respect to the Lebesgue measure on [0,1]2.

(ii) The true marginal density g0(·) of G0(·) is positive on its support and the true

copula density c0(·, ·; θ0) of C0(·, ·; θ0) is positive on (0,1)2.

Remark 1. The absolute continuity assumption of the bivariate copula C0(·, ·; θ0)

stated in Assumption 1(i) rules out the Fréchet–Hoeffding upper and lower bounds,

as well as their linear combinations.

Remark 2. As indicated by Chen and Fan (2006), any process satisfying As-

sumption 1 is a β-mixing process.

Under Assumption 1(i), one can easily derive the true conditional density function

of Yt given Yt−1 (say f0(· | Yt−1)):

f0(· | Yt−1) = g0(·)c0(G0(Yt−1), G0(·); θ0),

where g0(·) is the marginal density function and c0(·, ·; θ0) is the copula density

function.

We can easily see that under Assumption 1(i), the transformed process Ut ≡

G0(Yt) is a stationary first-order Markov process with uniform margins. The true

copula for Ut−1 and Ut is C0(·, ·; θ0). Then, C2|1[· | u; θ0] ≡ ∂
∂u
C0(u, ·; θ0) ≡ C1(u, ·; θ0)

is the conditional distribution of Ut ≡ G0(Yt) given Ut−1 = u; and C−1
2|1 [q | u; θ0] is the

qth, q ∈ (0, 1), conditional quantile of Ut given Ut−1 = u. Finally, the qth conditional

quantile of Yt given Yt−1 is

QY
q (y) = G−1

0 (C−1
2|1 [q | G0(y); θ0]).

10



By definition, C−1
2|1 [q | u; θ0] is monotonic across different q values. Therefore, QY

q (y),

the qth conditional quantile of Yt given Yt−1, also increases in q. As indicated by

Chen and Fan (2006) and Chen et al. (2009), this is another attractive feature of

the copula-based Markov model 1.

2.2 An Introduction to Mixture Copula

Since the true joint distribution and the true copula function are always unknown,

one may use a mixture copula to estimate the joint distribution. A mixture copula

is a weighted average of several individual copulas. Specifically, a mixture copula

model is formulated as

C(u;θ, ω) =
L∑
k=1

ωkCk(u; θk) =
L∑
k=1

ωkCk {G0(y1), G0(y2); θk} , (2.1)

where {C1(·), ..., CL(·)} is a set of candidate copulas with unknown associated pa-

rameters θ = (θ1, . . . , θL)T and marginal distribution u = (G0(y1), G0(y2)).

The unknown parameters that needed to be estimated in equation (1) could be

separated into three categories: θ = (θ1, . . . , θL)T is a vector of dependence param-

eters which control the degree of dependence. ω = {ω1, . . . , ωL} denote the weight

parameters. The weight parameters are also called shape parameters as they reflect

the shape or the structure of dependence for the mixture copula and indicate how

much credence we should place in the estimated dependence parameters for the asso-

ciated candidate copula. As ω represents the weight, constraints should be imposed

to guarantee that 0 ≤ ωl ≤ 1 and
∑L

l=1 ωl = 1. The unknown marginal distributions

can be estimated using either parametric or nonparametric method.

It is straightforward to show that a mixture copula is also a copula and thus have

all copula properties. Comparing with individual copula, mixture copula is more

1See also Bouyé and Salmon (2009)
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flexible and can generate dependent structures that do not belong to any individual

copula. By arranging weights on different component copulas in the mixture model,

we can capture various dependence structures in data. Although ideally one should

include as many as possible component copulas into the mixture model to cover every

possible dependent pattern, this would make the mixture model too complicated and

the estimation burden too heavy.
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(a) Gaussian Copula
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(b) Clayton Copula
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(c) Gumbel Copula

Figure 2.1: Time series plots and scatter plots for three single copulas

In practice, we usually consider only a few candidate copulas, which is simple but

flexible enough to capture the data dependence structure. Figure 2.1 display time
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Figure 2.2: Time series plots and scatter plots for three mixture copulas
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series plots and the corresponding scatter plots of realizations generated from three

individual copula functions: Gaussian, Clayton, and Gumbel. By selecting the copula

parameter for each copula function, we generate these three different dependence

structures with the same degree of dependence (Kendall’s τ = 0.5). Moreover, all

margins are generated from the standard normal distributions. We could observe

from Figure 2.1 that Gaussian copula exhibits symmetric dependence structure, while

Clayton copula and Gumbel copula show asymmetric dependence structures. In

particular, Clayton copula shows strong left tail dependence and Gumbel copula

displays strong right tail dependence. We then generate three different mixture

copulas with equal weights (1/2) on each component, shown in Figure 2.2. It could

be observed that after mixing individual copulas, a mixture copula could exhibit

a totally new dependence structure which is not existing in component copulas.

For example, the mixture copula of Gaussian and Clayton (or Gumbel) shows only

moderate asymmetric tail dependence, and the mixture of Clayton and Gumbel

exhibit an almost symmetric dependence structure.

In the next section, we discuss our procedure of estimating a mixture copula model

and prove that our estimation method lead to asymptotically minimum estimation

loss.

2.3 Theoretic Model

We use a mixture copula model to estimate the true copula function C0(·, ·; θ0).

The estimation procedure includes three stages. In the first stage, we estimate the

marginal distribution using a nonparametric method. Then, the copula parameters in

each component copula can be estimated by the Quasi-MLE (QMLE) after replacing

the unknown margins with the estimators obtained from the first stage. In the last

stage, we select the weight of each component copula by the Cross-Validation (CV)
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method.

Specifically, assuming our mixture copula candidate set includes K−1 individual

copulas, we denote each candidate copula as

Ck(u;θk) = Ck {G0(y1), G0(y2);θk} , k = 1, . . . , K − 1, (2.2)

where G0(·) is the true (but unknown) marginal density of Yt, u = (G0(y1), G0(y2))

is an arbitrary point in [0, 1]2, and θk is a finite dimensional parameter associated

with the kth copula.

Write C0(u;θ0) = C0 {G0(y1), G0(y2);θ0} as the true copula. Note that C0(u;θ0)

can be neither an individual copula inside the candidate set nor a mixture copula

that is a linear combination of {C1(u;θ1), . . . , CK−1(u;θK−1)}. In other words, the

working mixture model may be misspecified.

In the first stage, we use the rescaled empirical distribution function to estimate

the marginal distribution of Yt:

F̃ (y) =
1

T + 1

T∑
t=1

I {Yt ≤ y} .

Then we plug the estimated marginal distribution F̃ into each component copula

function and estimate the parameters of the kth copula θk by QMLE, as stated in

Chen and Fan (2006). In other words, when estimating θk, we assume {Yt}T
t=1 is

generated solely from the kth copula Ck. Let ũ = (F̃ (y1), F̃ (y2)), and we denote the

resulting estimator as

Ck(ũ; θ̂k) = Ck

{
F̃ (y1), F̃ (y2); θ̂k

}
, k = 1, . . . , K − 1. (2.3)
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Because if the candidate set includes only single copulas, a mixture of them can

lead to poor fit, especially when the true copula is not close to any of these single

copulas. To make our estimation method more general, we also include a mixture

of the K − 1 copulas into the candidate set, denoted as the Kth copula. We use the

rescaled empirical distribution to replace the unknown margins, and implement the

QMLE method to estimate the finite dimensional parameter of the mixture.

Let

CK(ũ; θ̂K) = CK

{
F̃ (y1), F̃ (y2); θ̂K

}
≡

K−1∑
k=1

ω̆kCk

{
F̃ (y1), F̃ (y2); θ̆k

}
,

where ω̆1, . . . , ω̆K−1 and θ̆1, . . . , θ̆K−1 are the QML estimators. ω̆k is constrained to

be between 0 and 1 and add up to 1. For each copula k, θ̆k also has its own constraint.

For example, the parameter (the correlation coefficient) for Gaussian copula need to

be between -1 and 1.

Denote w = (w1, . . . , wK)T as weight vector, taking values in the following set

W =
{
w ∈ [0, 1]K :

∑K

k=1
wk = 1

}
.

Then, the third stage of our estimation procedure is to use the model average method

to select the weights of all candidate copulas in the following model

C(ũ; θ̂,w) =
K∑
k=1

wkCk(ũ; θ̂k), (2.4)

where θ̂ =
(
θ̂
>
1 , . . . , θ̂

>
K

)>
. Note that the model specified in (2.4) is very general

and could cover many popular copula estimation methods mentioned in previous

literature. For example, if w1 equals one and all other weights are zeros, then (2.4)
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is equivalent to estimating an individual copula through QMLE.

In this paper we select the weights by using the Cross-Validation (CV) method,

which is similar to the method presented in Hansen (2007). Specifically, denote an

empirical estimator of C0(u;θ0) as

C̃(y1, y2) =
1

T

T∑
t=1

I(Yt ≤ y1 and Yt−1 ≤ y2), (2.5)

where y = (y1, y2) is an arbitrary point in R2, I(·) is an indicator function.

Define U0t ≡ (G0(Yt), G0(Yt−1)) and Ũt ≡ (F̃ (Yt), F̃ (Yt−1)), and we use the fol-

lowing CV criterion to select the weight w

CV (w) =
T∑
t=1

{
C(Ũt; θ̂,w)− C̃(Yt, Yt−1)

}2

. (2.6)

and

ŵ = argminw∈WCV (w).

Replacing w in (2.4) with ŵ, we estimate the true copula C0(u;θ0) by the model

average estimator C(ũ; θ̂, ŵ).

The notations used in this paper are summarized as follows.

The T × 1 vector of the true copula evaluated at (Y0, Y1), ..., (YT−1, YT ):

C0 = {C0(U01;θ0), . . . , C0(U0T ;θ0)}> , (2.7)

the T × 1 vector of the estimated kth candidate copula using all observations (when

k = K, the candidate copula is a mixture of the candidate copulas) evaluated at
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(Y0, Y1), ..., (YT−1, YT ):

Ĉk =
{
Ck(Ũ1; θ̂k), . . . , Ck(ŨT ; θ̂k)

}>
, (2.8)

the vector of weighted average of estimated candidate copulas
{
Ĉ1, . . . , ĈK

}
evalu-

ated at (Y0, Y1), ..., (YT−1, YT ):

Ĉ(w) =
K∑
k=1

wkĈk =
{
C(Ũ1; θ̂,w), . . . , C(ŨT ; θ̂,w)

}>
, (2.9)

the vector of empirical estimator of C0 evaluated at (Y0, Y1), ..., (YT−1, YT ):

C̃ =
{
C̃(Y1, Y0), ..., C̃(YT , YT−1)

}>
, (2.10)

and the vector of model average estimator of C0 evaluated at (Y0, Y1), ..., (YT−1, YT ):

Ĉ(ŵ) =
{
C(Ũ1; θ̂, ŵ), . . . , C(ŨT ; θ̂, ŵ)

}>
. (2.11)

Please note that in general we use the ‘hat’ notation to define estimators based

on parametric model estimation methods, and use the ‘tilde’ notation to define esti-

mators based on nonparametric estimation methods (such as empirical function).

Now, the CV criterion can be rewritten as

CV (w) =
∥∥∥Ĉ(w)− C̃

∥∥∥2

= w ˘>H>H̆w,

where h̆k = Ĉk − C̃ and H̆ = (h̆1, . . . , h̆K). Therefore, the CV criterion CV (w) is a

quadratic function of w and can be minimized with respect to w easily.

18



We define a quadratic loss function of the model average estimator as

LT (w) = ‖Ĉ(w)−C0‖2. (2.12)

Like previous papers on model selection and model averaging such as Shao (1997)

and Hansen (2007), our goal is to use model averaging to reduce the quadratic loss.

The following theorem demonstrates that our method can asymptotically minimize

the quadratic loss function.

Theorem 1 Under Assumption 1 and Conditions C.1 – C.3 presented in Appendix

A.1,

LT (ŵ)

infw∈W LT (w)
→ 1 in probability (as T →∞). (2.13)

Theorem 1 shows that the model average estimator Ĉ(ŵ) is asymptotically op-

timal by registering the infeasible lowest possible squared estimation losses: the

squared loss of Ĉ(ŵ) is asymptotically identical to that of the infeasible best possi-

ble model average estimator. The proof for Theorem 1 can be found in the Appendix.

2.4 Numerical Studies

We compare estimation results of the proposed model average approach on a mix-

ture copula (MA) with two other methods: Chen and Fan (2006)’s QMLE method

on a mixture copula (MML), and a standard BIC method which selects only a single

copula from the candidate set (BIC). For Monte Carlo setup, we consider two cases

of simulation. In Case I simulation, a strictly stationary first-order Markov process

{Yt}Tt=1 is generated from copulas which are included in the mixture copula model.

So the working mixture copula is correctly specified in that case. On the contrary,

in Case II simulation, the working mixture copula model is misspecified. That is,

{Yt}Tt=1 is generated from copulas which are not components of the working mix-
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ture model. We want to compare which method can better describe the temporal

dependence of {Yt}Tt=1 under the two types of settings.

Following Chen et al. (2009), a strictly stationary first-order Markov process can

be generated by following steps:

1. Generate an i.i.d. sequence of uniform random variables {Vt}Tt=1.

2. Set U1 = V1, and Ut = C−1
2|1 [Vt | Ut−1; θ0].

3. Set Yt = G−1
0 (Ut) for t = 1, ..., T .

The true marginal distribution of the Markov process is set to be a standard

normal distribution. The simulation considers the sample size T = 500 and 1000.

For T = 500 cases, we generate a time series with 2000 observations, but delete the

first 1000. For the remaining 1000 observations, we use the first 500 data points

to estimate and fit the mixture model, and the last 500 to evaluate the out-of-

sample predicting performance. For T = 1000 cases, we generate a time series

with 3000 observations. After deleting the first 1000, we use the first half of the

remaining 2000 to estimate, and the second half of the remaining 2000 to predict.

Therefore, the number of out-of-sample observations is equal to the number of in-

sample observations. All simulations are repeated 500 times.

2.4.1 Simulation Case I

Case I simulation considers the scenario that data are generated from copulas

which are included in our working model. the working mixture model includes three

individual copulas: Gaussian, Clayton, and Gumbel. These three copulas are widely

used in empirical studies. Gaussian copula shows symmetric dependence structure,

while Clayton copula exhibits strong left tail dependence and Gumbel copula displays
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strong right tail dependence. The presumed mixture can be constructed as

C(u, v;θ,ω) = ωGaCGa(u, v; θ1) + ωClCCl(u, v; θ2) + ωGuCGu(u, v; θ3),

where CGa, CCl, and CGu stand for Gaussian, Clayton, and Gumbel copula, respec-

tively, and u, v denote the two margins.

Observations are simulated from different copulas by the following DGPs. We

simulate three single copulas (the weights on the other two copulas are zero) and

three mixture copulas with two components. Specifically, we have the following six

cases for the setup of weights:

Case 1: ωGa = 1, ωCl = 0, ωGu = 0;

Case 2: ωGa = 0, ωCl = 1, ωGu = 0;

Case 3: ωGa = 0, ωCl = 0, ωGu = 1;

Case 4: ωGa = 1/2, ωCl = 1/2, ωGu = 0;

Case 5: ωGa = 1/2, ωCl = 0, ωGu = 1/2;

Case 6: ωGa = 0, ωCl = 1/2, ωGu = 1/2.

For every case of weight above, we consider two sets of copula parameters:

Parameter setting 1: θGa = 0.3, θCl = 2.0, θGu = 2.0;

Parameter setting 2: θGa = 0.6, θCl = 5.0, θGu = 3.5.

Thus we will totally have 6× 2 = 12 groups of DGPs.

Table 2.1 presents how close the estimated copula is to the true copula in terms of

mean squared errors (MSEs) using the three methods we mentioned at the beginning
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of this section (MA, MML and BIC). To save space, we only present the out-sample

predicting errors of each competing method. For expositional ease, the MSEs in each

case is multiplied by 1000.

Table 2.1: Mean of squared out-of-sample prediction losses for Type I simulation

Sample Size=500; Out=500
θGa = 0.3, θCl = 2.0, θGu = 2.0 θGa = 0.6, θCl = 5.0, θGu = 3.5

MA MML BIC MA MML BIC
ωGa = 1, ωCl = 0, ωGu = 0 0.5276 0.5450 0.5330 0.9596 0.9903 0.9630
ωGa = 0, ωCl = 1, ωGu = 0 1.6650 1.8634 1.6901 6.8191 7.0379 6.7958
ωGa = 0, ωCl = 0, ωGu = 1 1.5113 1.5536 1.5264 4.3578 4.3900 4.3452
ωGa = 0.5, ωCl = 0.5, ωGu = 0 0.7327 0.7296 0.7858 1.5419 1.5361 1.6589
ωGa = 0.5, ωCl = 0, ωGu = 0.5 0.7993 0.8046 0.8220 1.5712 1.5693 1.6066
ωGa = 0, ωCl = 0.5, ωGu = 0.5 1.2887 1.2820 1.3521 3.7591 3.7580 3.8774

Sample Size=1000; Out=1000
θGa = 0.3, θCl = 2.0, θGu = 2.0 θGa = 0.6, θCl = 5.0, θGu = 3.5

MA MML BIC MA MML BIC
ωGa = 1, ωCl = 0, ωGu = 0 0.2412 0.2547 0.2424 0.4438 0.4666 0.4435
ωGa = 0, ωCl = 1, ωGu = 0 0.8059 0.9554 0.8222 3.3414 3.4751 3.3762
ωGa = 0, ωCl = 0, ωGu = 1 0.7142 0.7396 0.7211 2.3615 2.3905 2.3594
ωGa = 0.5, ωCl = 0.5, ωGu = 0 0.3592 0.3570 0.4188 0.7213 0.7231 0.8476
ωGa = 0.5, ωCl = 0, ωGu = 0.5 0.3603 0.3685 0.3823 0.7886 0.7877 0.8337
ωGa = 0, ωCl = 0.5, ωGu = 0.5 0.6003 0.5998 0.6413 1.8218 1.8260 1.9008

We make a few observations from Table 2.1. First, when the data are generated

from a single copula (the first three rows of each subtable in Table 2.1), MML

which uses Quasi-MLE to estimate a mixture copula gives the largest predicting

errors in all settings. Our model average approach and the BIC method show similar

performances. Second, when the true copula is a mixture copula (the last three

rows of each subtable in Table 2.1), The BIC method which selects a single copula

performs worst. The performances of the two mixture copula estimation methods:

MA and MML are quite similar to each other. Hence, Table 2.1 shows in terms of out-

of-sample predicting errors, our model average method gives satisfactory estimation
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Table 2.2: Mean of squared estimation losses of 0.01 conditional quantile for Type I
simulation

Sample Size=500; Out=500
θGa = 0.3, θCl = 2.0, θGu = 2.0 θGa = 0.6, θCl = 5.0, θGu = 3.5
MA MML BIC MA MML BIC

ωGa = 1, ωCl = 0, ωGu = 0 29.33 34.00 29.98 30.32 34.06 28.68
ωGa = 0, ωCl = 1, ωGu = 0 20.03 71.20 21.51 20.77 51.54 35.84
ωGa = 0, ωCl = 0, ωGu = 1 34.90 51.54 37.20 36.35 44.73 42.07
ωGa = 0.5, ωCl = 0.5, ωGu = 0 31.16 31.38 63.82 35.70 36.28 75.83
ωGa = 0.5, ωCl = 0, ωGu = 0.5 29.72 32.13 36.75 30.00 30.21 52.26
ωGa = 0, ωCl = 0.5, ωGu = 0.5 43.12 42.90 62.85 30.92 30.63 59.60

Sample Size=1000; Out=1000
θGa = 0.3, θCl = 2.0, θGu = 2.0 θGa = 0.6, θCl = 5.0, θGu = 3.5
MA MML BIC MA MML BIC

ωGa = 1, ωCl = 0, ωGu = 0 14.81 18.08 14.44 14.94 17.62 14.53
ωGa = 0, ωCl = 1, ωGu = 0 11.66 41.10 12.02 12.62 33.64 17.13
ωGa = 0, ωCl = 0, ωGu = 1 19.05 34.22 19.35 20.63 30.08 23.96
ωGa = 0.5, ωCl = 0.5, ωGu = 0 17.17 16.41 54.32 19.92 20.21 63.63
ωGa = 0.5, ωCl = 0, ωGu = 0.5 15.52 16.02 22.20 15.83 15.93 41.79
ωGa = 0, ωCl = 0.5, ωGu = 0.5 15.84 15.33 33.93 16.69 16.49 46.78

results no matter whether the true copula is a single copula or a mixture.

Since estimating conditional quantiles (VaR) of financial returns is important

in risk management, we also compare the plug-in estimators of the 1% conditional

quantiles via the three competing methods. The results are presented in Table 2.2.

Again, our model average approach shows relatively small estimation errors no matter

whether the true copula is a single copula or a mixture.

2.4.2 Simulation Case II

In Case II simulations, we assume the working mixture model is misspecified.

That is, observations are generated from copulas which are out of our candidate

set. Considering the fact that the true dependence structure is always unknown to

econometricians, the misspecification cases should be common in empirical studies.

Therefore, we want to see how our model average approach performs in these cases.

In the simulation setup, our working mixture model still include Gaussian, Clay-
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ton, and Gumbel copulas but the true observations are generated from a mixture

copula which is a weighted average of Frank, Survival Gumbel (SG) and Survival

Clayton (SC) copulas, another three widely used copulas. Frank copula is similar

to Gaussian copula as both exhibit symmetric dependence structure, while Frank

copula has relatively stronger dependence in the center of the distribution. Survival

Gumbel (Clayton) copula is a 180◦ rotation of Gumbel (Clayton), so it exhibits left

(right) tail dependence as the Clayton (Gumbel) copula does. Similarly to what we

did in Simulation Case I, we consider six cases of weighting setups with three single

copulas and three mixture copulas:

Case 1: ωFrank = 1, ωSG = 0, ωSC = 0;

Case 2: ωFrank = 0, ωSG = 1, ωSC = 0;

Case 3: ωFrank = 0, ωSG = 0, ωSC = 1;

Case 4: ωFrank = 1/2, ωSG = 1/2, ωSC = 0;

Case 5: ωFrank = 1/2, ωSG = 0, ωSC = 1/2;

Case 6: ωFrank = 0, ωSG = 1/2, ωSC = 1/2;,

and two different copula parameter settings:

Parameter setting 1: θFrank = 2.0, θSG = 2.0, θSC = 2.0;

Parameter setting 2: θFrank = 5.7, θSG = 3.5, θSC = 5.0.

In Table 2.3 we present the out-of-sample predicting performance using the three

methods when the mixture model is misspecified. We could observe from Table 2.3

that our model average approach performs the best among three methods and gives
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Table 2.3: Mean of squared out-of-sample prediction losses for Type II simulation

Sample Size=500; Out=500
θFrank = 2.0, θSG = 2.0, θSC = 2.0 θFrank = 5.7, θSG = 3.5, θSC = 5.0

MA MML BIC MA MML BIC
ωF = 1, ωSG = 0, ωSC = 0 0.5852 0.6440 0.6100 1.4253 1.4843 1.5100
ωF = 0, ωSG = 1, ωSC = 0 1.5028 1.5764 1.6149 4.7470 4.8817 4.9128
ωF = 0, ωSG = 0, ωSC = 1 2.2280 2.3376 2.2316 8.2011 8.2833 8.4504
ωF = 0.5, ωSG = 0.5, ωSC = 0 0.8567 0.8983 0.9254 2.0935 2.2006 2.2375
ωF = 0.5, ωSG = 0, ωSC = 0.5 0.9299 1.0138 0.9459 2.2517 2.4923 2.3500
ωF = 0, ωSG = 0.5, ωSC = 0.5 1.4682 1.5086 1.5087 4.0592 4.2301 4.1841

Sample Size=1000; Out=1000
θFrank = 2.0, θSG = 2.0, θSC = 2.0 θFrank = 5.7, θSG = 3.5, θSC = 5.0

MA MML BIC MA MML BIC
ωF = 1, ωSG = 0, ωSC = 0 0.2704 0.3122 0.2865 0.6648 0.7020 0.7420
ωF = 0, ωSG = 1, ωSC = 0 0.6217 0.6730 0.7328 2.0133 2.1365 2.1615
ωF = 0, ωSG = 0, ωSC = 1 1.0832 1.1831 1.0862 3.9171 4.1216 3.9406
ωF = 0.5, ωSG = 0.5, ωSC = 0 0.3487 0.3803 0.4138 0.9183 0.9862 1.0387
ωF = 0.5, ωSG = 0, ωSC = 0.5 0.4025 0.4357 0.4118 1.0786 1.2043 1.1427
ωF = 0, ωSG = 0.5, ωSC = 0.5 0.6349 0.6619 0.6738 1.9116 2.0132 2.0003

the most accurate results in terms of the predicting errors. These results support

the point that the model average method outperforms other methods especially in

misspecification cases.

We also check the performances of the three methods in estimating the condi-

tional quantiles in misspecification cases. The results are displayed in Table 2.4. As

expected, conditional quantile estimated by our model average method is much more

accurate than those estimated by the MML and the BIC methods.

2.5 An Empirical Study

In this section we consider an empirical example to evaluate the performance of

our method. Specifically, we consider the daily log-returns for four indices: Nas-

daq 100 (NASDAQ), Shanghai Stock Exchange A Share Index (SHASHR), Korea

Composite Stock Price Index (KOSPI), and Taiwan Capitalization Weighted Stock

Index (TAIEX), from January 1991 (or from January 1996 for SHASHR) to March

2015. The sample size is T = 6320 for NASDAQ, KOSPI and TAIEX, or T = 5016

25



Table 2.4: Mean of squared estimation losses of 0.01 conditional quantile for Type
II simulation

Sample Size=500; Out=500
θFrank = 2.0, θSG = 2.0, θSC = 2.0 θFrank = 5.7, θSG = 3.5, θSC = 5.0

MA MML BIC MA MML BIC
ωF = 1, ωSG = 0, ωSC = 0 34.07 44.57 39.47 54.06 64.49 62.44
ωF = 0, ωSG = 1, ωSC = 0 27.76 63.07 35.72 24.86 40.79 41.29
ωF = 0, ωSG = 0, ωSC = 1 115.49 185.46 115.71 159.61 293.93 159.96
ωF = 0.5, ωSG = 0.5, ωSC = 0 39.02 44.59 71.17 47.95 63.76 74.13
ωF = 0.5, ωSG = 0, ωSC = 0.5 42.15 52.90 43.32 71.61 130.37 92.21
ωF = 0, ωSG = 0.5, ωSC = 0.5 38.31 57.47 53.39 64.11 90.66 84.97

Sample Size=1000; Out=1000
θFrank = 2.0, θSG = 2.0, θSC = 2.0 θFrank = 5.7, θSG = 3.5, θSC = 5.0

MA MML BIC MA MML BIC
ωF = 1, ωSG = 0, ωSC = 0 18.68 26.03 22.90 39.98 47.83 46.08
ωF = 0, ωSG = 1, ωSC = 0 20.69 48.21 27.93 21.19 28.41 38.09
ωF = 0, ωSG = 0, ωSC = 1 108.67 178.65 110.66 159.88 229.80 159.92
ωF = 0.5, ωSG = 0.5, ωSC = 0 24.70 27.87 60.27 32.68 44.94 59.91
ωF = 0.5, ωSG = 0, ωSC = 0.5 28.43 35.53 29.95 57.99 123.72 78.91
ωF = 0, ωSG = 0.5, ωSC = 0.5 31.03 38.95 42.34 50.22 74.27 71.09

Table 2.5: The summary statistics for daily log-returns

NASDAQ SHASHR KOSPI TAIEX
Mean 0.0495 0.0393 0.0174 0.0130

Median 0.0663 0.0000 0.0000 0.0000
min -11.110 -10.450 -12.800 -9.9360
max 17.200 9.4810 11.280 9.0590
S.D. 1.7465 1.6379 1.7120 1.5169

Skewness 0.0798 -0.2458 -0.1532 -0.1118
Kurtosis 8.9987 8.5920 8.3973 6.4268

for SHASHR. The daily log-returns of the four markets are calculated from their

respective price indices in their own currencies.2 The main purpose of the empirical

study is to model the temporal dependence of returns for the four indices.

We divide the data equally into two groups. The first group contains the first half

sample (3160 observations for NASDAQ, KOSPI and TAIEX, and 2508 observations

2We also consider using price indices whose currencies are converted into US dollars. The results
are similar and do not change the conclusion.
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for SHASHR), and the second group includes the remained data points. We use

the first group (training set) to estimate and fit the mixture model, and the second

group (testing set) to evaluate the out-sample predicting performance. The summary

statistics for daily log-returns for four indices are displayed in Table 2.5. During the

sample period, NSDAQ showed the highest average and median daily return. The

skewness is negative for SHASHR, KOSPI and TAIEX, indicating higher probability

in having extreme daily losses. Kurtosis for all four markets is greater than 3,

implying a deviation from Normality. These statistics show that it can be difficult

to correctly specify marginal distributions in practice and nonparametric methods

should be used to estimate the margins.

We fit the data into a mixture copula model which is a weighted average of Gaus-

sian, Clayton, and Gumbel. These three component copulas are widely used and are

applied in Long et al. (2015) for constructing their mixture models. We implement

the model average method, Chen and Fan (2006)’s QMLE method on a mixture cop-

ula, and the BIC method to estimate the mixture copula model respectively. Since

the true copula is unknown, we compare the performances across different meth-

ods following the procedure described in Genest and Rivest (1993). The purpose of

this exercise is to examine whether our model average estimation results have rela-

tively smaller estimation losses and satisfactorily capture the temporal dependence

structures of financial returns.

Specifically, for each of the four returns, we build four 7× 7 cross-classifications.

These cross-classifications are available upon request. For each time series, the

observed frequencies are displayed by the cross-classifications in the first column,

and the estimated results through the three methods (MA, MML and BIC)are pre-

sented in the second, third and fourth columns, respectively. Let H denote a cross-

classification table with 7 rows and 7 columns, and H(i, j) represent the cell in the
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ith row and the jth column of H, where i, j = 1, ..., 7. The number recorded in

H(i, j) is the number of times that Yt is between the (i − 1)/7 and the i/7 per-

centile of its range, while Yt−1 is within the (j− 1)/7 and j/7 percentile of its range.

Specifically, define ui and uj as the i/7 and j/7 percentiles for {Yt}. Then H(i, j)

shows the number of paris of observations (Yt, Yt−1) such that ui−1 < Yt ≤ ui and

uj−1 < Yt−1 ≤ uj. For example, the cell (5, 6) records the number of times that

Yt is within the 57th (4/7) and the 71st (5/7) percentile of its range, while Yt−1 is

between 71st (5/7) and 86th (6/7) percentile of its range. Therefore, if Yt and Yt−1

are perfectly positively correlated, it could be observed that the numbers on the

principal diagonal are much bigger than those on other places. If Yt and Yt−1 are

independent, then the number in each cell of the cross-classification should be similar

to each other. If the process has a symmetric temporal dependence structure, then

the numbers displayed in the cells at the top-left (top-right) and the bottom-right

(bottom-left) of the cross-classification should be close.

We first focus on the cross-classifications of the observed frequencies. Taking

NASDAQ as an example. The cell at the top-left displays the frequency that Yt

and Yt−1 are both below the 14th (1/7) percentile of the range; Correspondingly,

the cell at the bottom-right represents the number of times that Yt and Yt−1 are

between the 86th (6/7) and 100th (7/7) percentile of the range. It could be observed

that during the period between January 1991 and March 2015, there are 176 times

that Yt and Yt−1 are both lower than their 14th percentile, which is much higher

than 126, the number of times that Yt and Yt−1 are both higher than their 86th

percentile. Therefore, the daily returns of NASDAQ shows a left tail dependence

structure. SHASHR and KOSPI display a similar left tail dependence structure.

Such a pattern is not significant in TAIEX.

The estimated frequencies are obtained as follows: we first estimate the true
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Table 2.6: Mean of in-sample estimation errors based on MA, MML and BIC

QMA QMML QBIC

NASDAQ 178.72 179.76 203.79
SHASHR 260.20 294.06 445.63
KOSPI 74.76 88.20 117.51
TAIEX 124.50 137.34 142.14

copula of the four markets using one of the three methods and denote the estimated

copula as Ĉ. Then we calculate the estimated probability p̂ij for each cell H(i, j)

through the following equation

p̂ij =



Ĉ(ui, uj) for i = 1 and j = 1,

Ĉ(ui, uj)− Ĉ(ui, uj−1) for i = 1 and j = 2, ..., 7,

Ĉ(ui, uj)− Ĉ(ui−1, uj) for i = 2, ..., 7 and j = 1,

Ĉ(ui, uj)− Ĉ(ui, uj−1)− Ĉ(ui−1, uj) + Ĉ(ui−1, uj−1) for i, j = 2, ..., 7,

and the estimated frequency in each cell H(i, j) can be obtained by multiplying the

estimated probability p̂ij to the number of observations.

We examine the performance of the three methods by comparing their estimated

frequencies with the observed frequencies of all the cells. Denote Hi,j, H
MA
i,j , HMML

i,j

and HBIC
i,j as the observed frequency and the estimated frequency by MA, MML and

BIC in cell (i, j) respectively. The estimation errors are defined as:

QMA =
1

k2

k∑
i=1

k∑
j=1

(Hi,j −HMA
i,j )2,

QMML =
1

k2

k∑
i=1

k∑
j=1

(Hi,j −HMML
i,j )2,

QBIC =
1

k2

k∑
i=1

k∑
j=1

(Hi,j −HBIC
i,j )2,
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Table 2.7: Mean of out-of-sample predicting errors based on MA, MML and BIC

QMA QMML QBIC

NASDAQ 125.65 144.69 128.85
SHASHR 162.80 207.20 239.36
KOSPI 120.14 126.97 128.99
TAIEX 183.81 196.05 207.56

where k = 7. We present the estimation errors in Table 2.6. Among all cases,

the MA method generates the smallest estimation errors, while the BIC method

which selects an individual copula based on the comparison of BIC among Gaussian,

Clayton, and Gumbel copulas exhibits the largest estimation errors. The real data

example again demonstrates that the model average estimators could satisfactorily

capture the temporal dependence structures compared with results estimated by

other competing methods.

We next evaluate the out-sample predicting accuracy among different methods

based on the second half of the data set. We calculate the out-sample predicting

losses in the same way as the in-sample estimation errors are calculated. Table 2.7

shows the results. It can be seen from Table 2.7 that the model average approach

gives satisfactory estimates that achieve the smallest predicting losses. Thus, the

model average method also provides relatively satisfactory predicting performance.
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3. A ROBUST TEST FOR PREDICTABILITY WITH UNKNOWN

PERSISTENCE

3.1 Literature Review

Section 3.1 provides literature review.

3.1.1 The Bonferroni Method

Cavanagh, Elliott, and Stock (1995) (and then Campbell and Yogo, 2006) provide

a Bonferroni method that first finds a confidence interval for c as in Stock (1991),

and then for each possible value of c, calculates a confidence interval for β given c.

Finally, the confidence interval for β without c could be obtained as

CIβ(α) =
⋃

CIc(αc)

CIβ|c(αβ)

where αc, αβ and α are significant levels in each step respectively. By Bonferroni’s

inequality, α is no more than αc + αβ.

When the predictor is local-to-unity, this method could successfully control the

size while maintain the local power. However, Phillips (2014) points out that Stock’s

confidence intervals are seriously biased asymptotically in the stationary case and

vicinities of unity that are wider than O(n−1/3). Therefore, predictive regression tests

based on the Bonferroni method do not work well when xt is stationary. Moreover,

it is hard to extend this approach to multivatiate models. Finally, since this method

still assumes a linear regression model like (1), yt has to share the same order of

integration as xt under a fixed alternative, as previously mentioned.
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3.1.2 A Quasi Restricted Likelihood Ratio Test (QRLRT)

Chen, Deo and Yi (2013) suggested a quasi restricted likelihood ratio test (QRLRT).

Their idea, which bases on predictive regression models, is as follows. Although it

has been shown in Chen and Deo (2009) that the restricted likelihood (RL) of AR

processes have good properties such as very small deviation of the restricted likeli-

hood ratio test (RLRT) distribution from the χ2 when ρ approaches unity, it is hard

to obtain the limiting distribution of the RLRT when ρ is close to one. Therefore,

they construct a weighted least squares approximation to the RL (WLSRL) which

is easy to estimate and share the good properties of the RL estimators. Then they

have the asymptotic distribution of the QRLRT based on the WLSRL. The QRLRT

statistic is defined as

ΛT = QT (0, ρ̂0
WLS)−QT (β̂WLS, ρ̂WLS),

and (1), If ρ ∈ (−1, 1) and ρ is fixed, ΛT →d χ
2
1

(2), If ρ = 1− c/kT , where kT = T λ,λ ∈ (0, 1), ΛT →d χ
2
1

(3), If ρ = 1− c/T , ΛT →d Λc,σ, where

Λc,σ =
(
σg1/2

c,σ
τc +

√
1− σ2gc,σZ

)2

,τc =
∫
Jc(λ)dW (λ)√∫
J2
c (λ)d(λ)

,Z ∼ N(0, 1). And it has been

shown that the right tail of Λc,σ is very close to that of a χ2
1. Their simulations show

that the resulting sup bound test maintain size without significant power loss. The

undesirable properties include weak test power (only about 10%) when c is large (20)

and β1 is not far from zero.

3.1.3 A Robust Bootstrap and Subsampling Approach

Camponovo, Scaillet and Trojani (2013) provide a robust bootstrap and subsam-

pling approach. They claim that conventional hypothesis testing methods including
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bias correction methods and bootstrap and subsampling tests may suffer from non-

resistance to even small fractions of anomalous observations in the data. Thus they

develop a class of robust resampling tests. This method bases on the predictive

regression model

yt = θ′wt−1 + εt,

with θ = (β0, β1)′ and wt−1 = (1, xt−1)′ and denote zt = (yt, w
′
t−1)′.

Given a positive constant a, θ̂RT is the M -estimatior solve the equation

ψT,a(z(T ), θ̂
R
T ) = 1/T

T∑
t=1

(yt − w′t−1θ̂
R
T )wtha(zt, θ̂

R
T ) = 0

where ha(zt, θ) = min(1, a
‖(yt−w′t−1θ)wt−1‖), and

θ̂RT = (
T∑
t=1

(wt−1w
′
t−1)hat)

−1

T∑
t=1

(ytwt−1)hat,

Thus, the Huber weight 0 ≤ hat ≤ 1 reduces the influence of potential anoma-

lous observations. The sampling distribution of the nonstudentized statistic tNST =
√
T (θ̂RT − θ0) can be estimated using the robust fast resampling distribution

LNS,K∗T,m (x) = 1/N
N∑
t=1

II(
√
k(−

[
∇θψT,a(z(T ), θ̂T )

]−1

ψk,a(z
K∗
(T,m),s, θ̂T )) ≤ x), K = B, S

where s indexes the N possible random samples generated by the bootstrap and sub-

sampling procedures, k = T for the block bootstrap and k = m for the subsampling.

3.1.4 Differencing Transformations

Camponovo (2012) develops a class of estimators and test statistics based on

differencing transformations. Specifically, he proves that the instruments wt =
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∆xt−1
t−l + (1− ρl−1)∆xt−1

t−l−1 satisfy the moment conditions that

E
[
(∆ytt−1 − β∆xt−1

t−l−1)wt
]

= 0.

where ∆xtt−l = xt − xt−l, ∆ytt−l = yt − yt−l, t = l + 1, ..., T , and l ≥ 2. Therefore, he

defines the new class of estimators as

β̂T,l,ρ =

∑T
t=l+1 ∆ytt−lwt∑T

t=l+1 ∆xt−1
t−l−1wt

.

and shows the test statistic

tT,l(β0) =
√
T (

√
Vl,ρ̂T
Jl,ρ̂T

)−1(β̂T,l,ρ̂T − β0)→d N(0, 1),

under H0 : β = β0, for ρ ∈ (−1, 1], and l/T → ∞, as l → ∞ and T → ∞.

ρ̂T is a consistent estimator of ρ. Vl,ρ̂T and Jl,ρ̂T are functions of ρ̂T , l, σ2
ε , σ

2
υ and

σεσυ.Therefore, the test statistic has a normal limit distribution no matter whether

the predictor is stationary, nonstationary or local-to-unity. The author also provides

a data-driven method to select l for the finite sample.

The undesirable points include that people have to choose the optimal l each time

when applying this approach in empirical studies.

3.1.5 The Linear Projection Method

Amihud and Hurvich (2004) and Amihud et al. (2009) propose the two-stage

least squares (linear projection method) estimator to correct the finite sample bias

of the OLS estimates assuming the regressors are stationary. Cai and Wang (2014)

apply this method to (near) integrated cases and derive the asymptotic distribution

of the two-step estimator. As we know, for predictive regression models, fitting an
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drift to the regressior often affects asymtotic properties when the regessor is (near)

nonstationary. Therefore, they consider two cases: without and with drift. The

asymptotic distribution is the mixed normal for the former, and normal for the latter.

Since the limiting distribution in the zero-drift case is nonstandard, when doing tests,

one needs to use Monte Carlo simulation method to get critical values. According

to their simulation results, the size and the local power in both cases are proper.

The limitation of this method includes the nonstandard asymptotic distribution and

requiring the prior knowledge of the order of integration and the drift. Also, based

on a linear regression model, the tests lack power under fixed alternatives.

3.2 The IVX Approach

Magdalinos and Phillips (2009b), Kostakis et al. (2010), and Phillips and Lee

(2013) suggest another solution to predictive regressions, which is called the IVX

method. This approach has many good properties comparing with other tests based

on predictive regressions. First, it is robust to a very general class of degree of persis-

tence in the regressors, ranging from mildly integrated to mildly explosive processes.

Second, this framework is easy to extend to multivariate systems while the Bonfer-

roni method is restricted to the case of a scalar predictor. Third, the resulting test

statistic has standard chi-squared inference under the null hypothesis and is conve-

nient to implement. The IVX approach assume the following predictive regression

framework

yt = βxt−1 + εt,

xt = Rxt−1 + υt,

R = Ip +
C

Tα
, C ≤ 0 and α >

1

2
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The idea of this method is to generate an instrument that is mildly integrated. More

specifically, the instrument takes the form

z̃t =
t∑

j=1

Rt−j
z ∆xj,

Rz = Ip +
Cz
T δ
, Cz < 0 and δ ∈ (

2

3
, 1)

Then,

β̂IV X = (Y ′Z̃ − T Λ̂ευ)(X
′Z̃)−1

where Y = [y1, ..., yT ]′, X = [x′1, ...,x
′
T ]′ and Z̃ = [z̃′1, ..., z̃

′
T ]′. Λ̂ευ is the estimator of

the one-sided long run covariance between εt and υt, Λευ. And

Λ̂ευ =
1

T

M∑
h=1

(1− h

M + 1
)

T∑
t=h+1

ε̂tυ̂
′
t−h

where

ε̂t = yt − β̂OLSxt−1

υ̂t−h = xt−h − R̂OLSxt−h−1.

Let Ω̂εε be any consistent estimator of Ωεε, the two-sided long run covariance between

εt and υt. The Wald statistic,

WIV X = vec(β̂IV X − β)′[(X ′PZ̃X)−1 ⊗ Ω̂εε]
−1vec(β̂IV X − β)

→ dχ
2(p),

no matter whether the regressors are mildly integrated, local-to-unity or I(1). How-

ever, this approach maintains a predictive regression setting that forces yt and xt
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to have the same orders of integration under a fixed alternative. In fact, as shown

below, as long as we allow yt and xt to have different orders of integration, the IVX

test statistic never converges to infinity, even if cov(yt,xt−1) 6= 0.

Theorem 1. Let

xt = Rxt−1 + υt,

R = Ip +
C

Tα
, C ≤ 0 and α >

1

2

where xt is an p×1 vector and C = diag(c1,c2, ···, cp) is a diagonal matrix of localizing

coefficients. And

ut =

yt
υt

 = F (L)ςt =
∞∑
j=0

Fjςt−j,
∞∑
j=0

j ‖ Fj ‖<∞, δ > 1;

where F (z) =
∞∑
j=0

Fjz
j, F0 = Ip+1, F (1) has full rank and ςt ∼ IID(0,Σ) satisfying

Σ > 0 and the moment condition E ‖ ς1 ‖4< ∞. Therefore, xt could be integrated,

local-to-unity or mildly integrated regressors while yt is always stationary. Then we

have

WIV X = vec(β̂IV X)′[(X ′PZ̃X)−1 ⊗ Ω̂εε]
−1vec(β̂IV X)

→ dχ
2(p).

Remark 1. In the previous theorem and proof, we do not impose any restrictions on

the covariance between yt and xt−1. Therefore, no matter whether the true covariance

is zero or not, the IVX test statistic does not diverge to infinity.
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3.3 Model and Estimation

Instead of testing coefficients of predictors in predictive regressions, we are inter-

ested in testing

H0 : cov(yt,xt−1) = 0 (3.1)

This restriction allows for more general cases that yt and xt are of different orders

of integration. If both yt and xt are stationary, then testing (3.1) are equivalent to

testing the coefficient of xt−1 equals zero.

In practice, the predictor xt, such as interest rates and/or dividend-price ratios,

can be either (near) nonstationary or stationary. On the other hand, yt, such as a

stock return, is usually stationary. Therefore, we consider two situations: (1) xt is

I(1) or local-to-unity, yt is stationary; (2) both of xt and yt are stationary.

3.3.1 Predictors Are I(1) or Local-To-Unity

When xt is I(1) or local-to-unity and yt is I(0) and generated by

Assumption 1.

xt = Rxt−1 + υt, t = 2, ..., T, (3.2)

R = Ip +
C

T
(3.3)

where xt is an p×1 vector and C = diag(c1,c2, ···, cp) is a diagonal matrix of localizing

coefficients with C = 0 or C ≤ 0, and we allow general linear dependence in υt

zt =

yt
υt

 = F (L)ςt =
∞∑
j=0

Fjςt−j,
∞∑
j=0

jδ ‖ Fj ‖<∞, δ > 1;

where F (z) =
∞∑
j=0

Fjz
j, F0 = Ip+1, F (1) has full rank and ςt ∼ IID(0,Σ) satisfying
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Σ > 0 and the moment condition E ‖ ς1 ‖4<∞,

∞∑
h=−∞

| h |δ‖ Γ(h) ‖<∞, Γ(h) = Eztz
′
t+h,

they are of different orders of integration. Tests based on predictive regressions

such as IVX tests can not maintain a strong power against the fixed alternative.

A covariance-based test should be used. However, as xt is I(1), cov(yt,xt−1) is no

longer a constant and depends on t. Therefore, We follow Maynard and Shimotsu

(2009, MS henceforth) that define λy,∆x = limt→∞ cov(yt,xt−1) and base the test on

λy,∆x

H0 : λy,∆x = 0. (3.4)

And

λy,∆x = (λy,∆x1 , λy,∆x2 , · · ·λy,∆xp)′,

where λy,∆xi = limt→∞ cov(yt, xit−1) for i = 1, · · ·, p.

If xt is I(1) (C = 0) and we assume limt→∞ cov(yt,x0)→ 0, then

λy,∆x = lim
t→∞

cov(yt,xt−1) =
∞∑
h=1

cov(yt,∆xt−h), (3.5)

which is well defined when
∞∑
h=1

| cov(yt,∆xit−h) |<∞ for i = 1, · · ·, p.

If xt is local-to-unity (C ≤ 0) with xt ≡ 0 for t ≤ 0, then directly following

equation (6) in MS, we obtain

λy,∆x =
∞∑
h=1

cov(yt, υt−h).+O(T−1) = λy,v +O(T−1),

and is well defined as long as
∞∑
h=1

| cov(yt, υit−h) |<∞ for i = 1, · · ·, p.
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The one-sided kernel estimator of λy,∆x is

λ̂y,∆x =
T−1∑
h=1

k(
h− 1

m
)Γ̂∆xy(h), Γ̂∆xy(h) =

1

T

T∑
t=h+1

yt∆xt−h,

where m is the bandwidth and k(x) is the kernel. And

λ̂y,∆x = (λ̂y,∆x1 , λ̂y,∆x2 , · · ·λ̂y,∆xp)′,

where λ̂y,∆xi =
T−1∑
h=1

k(h−1
m

)Γ̂∆xiy(h) =
T−1∑
h=1

k(h−1
m

)( 1
T

T∑
t=h+1

yt∆xit−h) for i = 1, · · ·, p.

Assumption 2. The kernel k(x) is continuous at x = 0 and uniformly bounded

with k(0) = 1,
∫∞

0
k̄(x)dx <∞, and limx→0+(1−k(x))/(| x |q) = kq <∞ with δ ≥ q,

where k̄(x) = supy≥x | k(y) |.

Assumption 3. 1
m

+ mmax{1,q}

T
−→ 0 as T −→∞.

First of all, if C = 0 and xt is integrated, we have the following properties.

Lemma 1. If Assumption 1, 2 and 3 hold, then

(i) limT→∞m
qE(λ̂y,∆x − λy,∆x) = −kq

∞∑
h=1

Γ∆xy(h)hq,

(ii) λ̂y,∆x −→
p
λy,∆x as T →∞,

(iii) limT→∞ Tm
−1var(λ̂y,∆x) = V ≡ 4π2fyy(0)[f∆xi∆xj(0)]p×p

∫∞
0
k2(x)dx, where

fyy(τ) denote the spectral density of yt,and f∆xi∆xj(τ) denote the cross spectral

density between ∆xit and ∆xjt.

Lemma 2. If Assumption 1, 2 and 3 hold, V > 0 and m2/T + T/m2q+1 → 0,

then √
T

m
(λ̂y,∆x − λy,∆x)→d N(0,V), as T →∞,

As stated in MS, neither a nonzero intercept in (yt,xt) nor a linear trend in xt

affects the limiting distribution.

When C ≤ 0, xt is local-to-unity.
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Define λ̂y,v, λ̂y,vi , Γ̂υy(h) and Γ̂υiy(h) analogously to λ̂y,∆x, λ̂y,∆xi , Γ̂∆xy(h) and

Γ̂∆xiy(h) respectively, with vt or υit replacing ∆x or ∆xit.

By Lemma 3 of MS,

λ̂y,∆xi =
T−1∑
h=1

k(
h− 1

m
)Γ̂υiy(h) +Op(m/T ) −→

p
λ̂y,vi

for each i. Therefore, we have the following properties.

Lemma 3. Suppose Assumption 1, 2 and 3 hold. Then λ̂y,∆x −→
p

λ̂y,v −→
p

λy,v −→
p
λy,∆x. If, in addition, Vv > 0 and m2/T + T/m2q+1 → 0, then

√
T

m
(λ̂y,∆x − λy,∆x) −→

p

√
T

m
(λ̂y,v − λy,v)→d N(0,Vv),

where Vv = 4π2fyy(0)[fvivj(0)]p×p
∫∞

0
k2(x)dx, and fvivj(τ) denote the cross spectral

density between vit and vjt.

Thus, when xt are local-to-unity, the test has the same limiting distribution as

I(1) cases and does not depend on the local-to-unity parameter C.

Assumption 4. The kernel k̃(x) satisfies Assumption 2 with q̃ replacing q,

k̃(x) = 0 if | x |> 1, and 1/m̃+ m̃max{1,q̃}/T → 0 as T →∞.

Lemma 4. If Assumption 1, 2, 3 and 4 hold, then Ṽ −→
p

V or Vv as T →∞.

The definition of Ṽ can be found in Appendix B. k̃(x) and m̃ are a kernel and a

bandwidth that are not necessarily the same as k(x) and m. In the simulation part,

we take Bartlett kernel for both k(x) and k̃(x), and set m̃ = m0.9.

The proof is omitted because it is the same as that of Lemma 5 in MS.

Finally, W1 can be defined as

W1 ≡
T

m
(λ̂y,∆x − λy,∆x)′Ṽ−1(λ̂y,∆x − λy,∆x),
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Corollary 5. If the assumptions of Lemma 2 or Lemma 3 and Lemma 4 hold,

then

W1 →d χ
2(p) as T →∞.

3.3.2 Predictors Are Stationary

When xt is staionary, the covariance-based test does not have a χ2 limiting dis-

tribution. Therefore, If we know both xt and yt are stationary before testing, a

regression-based test should be implemented..

Assumption 5. (yt,xt) is generated by

w =

yt
xt

 = B(L)%t =
∞∑
j=0

Bj%t−j,
∞∑
j=0

j ‖ Bj ‖<∞,

where %t ∼ IID(0,Σ) satisfying Σ > 0 and the moment condition E ‖ %1 ‖4<∞.

∞∑
h=−∞

| h |δ‖ γ(h) ‖<∞, δ > 1; γ(h) =

 γyy(h) γy∆x(h)

γ∆xy(h) γ∆x∆x(h)

 = Ewtw
′
t+h.

Since var(xt−1) are finite in stationary cases, testing (3.1) is then equivalent to

testing β = 0 in the following linear regression

yt = βxt−1 + εt, E(εt | Ix,t−1) = 0,

where Ix,t−1 denotes the information set which contains the past values of xt.We

impose E(εt | Ix,t−1) = 0 to ensure that there is non-predictability of yt under the

null hypothesis.

Under this framework, the usual OLS estimators and tests are good enough since

the finite sample bias disappears asymptotically. Denote β̂ and ε̂t as OLS estimators
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and residuals, respectively. And

̂
Avar(β̂) = (

1

T

T∑
t=1

xt−1x
′
t−1)−1 ̂lrv(xt−1εt)(

1

T

T∑
t=1

xt−1x
′
t−1)−1.

where ̂lrv(xt−1εt) is Newey and West’s (1987) estimator of the long run variance of

xt−1εt.

Corollary 6. If Assumption 5 holds, then

W0 ≡ T (β̂ − β)′[
̂
Avar(β̂)]−1(β̂ − β)→d χ

2(p) as T →∞. (3.6)

3.4 The Robust Process

Since the integration order of xt is unknown in practice, we need to construct

a process such that W0 is automatically selected when xt is stationary and W1 is

selected when xt is (near) nonstationary.

We follow the approach of Harvey, Leybourne and Taylor (2007, HLT henceforth)

that constructs a new statistic which is a data-dependent weighted average of W0

and W1. We define the statistic W as

W = {1− λ(U,S)}W0 + λ(U,S)W1,

where λ(U,S) is the weight that need to satisfy the following condition.

Assumption 6. λ(U,S) is a function on [0,1] and for suitable choice of U and

S,

λ(U,S) =

 op(1), if xt is I(0)

1 + op(T
−1/2), if xt is I(1) or local-to-unity.

Under this condition, λ(U,S)
p→ 0 when predictors are I(0), and λ(U,S)

p→ 1
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when predictors are local to unity or I(1).

For the choice of the weight, we take

λ(U,S) = exp

(
−
∑p

i=1 U
2
i∑p

i=1 S
2
i

)
,

where Ui = DF − GLSµi and Si = η̂µi are the local GLS-demeaned Dickey-Fuller

statistic and the level-stationary KPSS statistic respectively for xi.

In the stationary case, Ui diverges at at rate Oe(T
δU )1, δU > 0 and Si = Op(1).

We have

λ(U,S) = exp

(
−
∑p

i=1 | Oe(T
2δU ) |∑p

i=1 | Op(1) |

)
= op(1).

In the (near) nonstationary case, Ui = Op(1) and Si diverges at at rate Oe(T
δS),

δS > 1/4. We have

λ(U,S) = exp

(
−
∑p

i=1 | Op(1) |∑p
i=1 | Oe(T 2δS) |

)
= 1 +Oe(T

−2δS) = 1 + op(T
−1/2).

Next, we look at the orders of W0 and W1 under different assumptions.

Lemma 7. If Assumption 1 holds, W0 = T β̂′[
̂
Avar(β̂)]−1β̂ is of Op(1) under

either the null or the alternative hypothesis.

When both xt and yt are stationary, we have the following properties for W1.

Lemma 8. If Assumption 5, 2, 3 and 4 hold, and k(x) is Lipschitz(1), then W1 =

T
m

(λ̂y,∆x)′Ṽ−1(λ̂y,∆x) is of Op([m(m̃−q̃+m̃1/2T−1/2)]−1) under the null hypothesis that

λy,∆x = 0 , and of Op(T [m(m̃−q̃ + m̃1/2T−1/2)]−1) under the alternative hypothesis.

Theorem 2. If Assumptions 2, 3, 4 and 6 hold, and in addition, m2/T +

T/m2q+1 → 0, k(x) is Lipschitz(1). And any of the following conditions is satisfied:

(1), q = 1 and q̃ = 1; (2), q = 2 and q̃ = 1, m̃ ≤ min{T 1/3,m} or m̃ > max{T 1/3, T
m2};

1For here, Oe(T
k) denotes exact order in probability.
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(3), q = 1 and q̃ = 2, m̃ ≤ min{T 1/5,m1/2} or m̃ > max{T 1/5, T
m2} or (4), q = 2 and

q̃ = 2, m̃ ≤ min{T 1/5,m1/2} or m̃ > max{T 1/5, T
m2}. Then we have under the null

hypothesis,

W =



{1 + op(1)} ·W0 + op(1) ·Op([m(m̃−q̃ + m̃1/2T−1/2)]−1))

= W0 + op(1), if xt is I(0)

op(T
−1/2) ·Op(1) + {1 + op(T

−1/2)} ·W1 = W1 + op(1),

if xt is I(1) or local-to-unity,

and under the althernatives,

W =

 Op(T ), if xt is I(0)

Op(T/m), if xt is I(1) or local-to-unity.

Remark 3. MS (2009) impose that k̃(x) have to be the Bartlett kernel and m̃

must be smaller than m to ensure the size of W1 is conservative in stationary cases.

While for here, our test allows more flexible choices for k̃(x) and m̃. For the choice

of m, from Lemma 1, we know the optimal bandwidth is m∗ = cT 1/2q+1. However,

to obain Lemma 2, m needs to grow faster than m∗. Therefore, in practice, we can

select m as small as possible and slightly larger than the m∗.

Remark 4. Under the null hypothesis, the test statistic W is asymptotically

equivalent to W0 in stationary cases, and to W1 in (near) nonstationary cases. Our

test can sucessfully control the size. On the other hand, under the alternatives, the

test has a very strong power no matter whether the predictors are I(0), local-to-unity

or I(1).

Remark 5. When there is an intercept or a linear trend in (yt,xt), demeaned or

detrended residuals should be employed and our test still works.
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Remark 6. When there is only one predictor, one may also implement a t version

of the test. That is,

t = {1− λ(U, S)}t0 + λ(U, S)t1,

where

t1 =

√
T
m

(λ̂y,∆x − λy,∆x)√
Ṽ

→d N(0, 1) as T →∞,

t0 =

√
T (β̂ − β)√
̂
Avar(β̂)

→d N(0, 1) as T →∞,

and

λ(U, S) = exp

(
−U

2

S2

)
= exp(−(

DF −GLSµ

η̂µ
)2).

And under the assumptions of Theorem 2, we have

t =



{1 + op(1)} · t0 + op(1) ·Op([m(m̃−q̃ + m̃1/2T−1/2)]−1/2) = t0 + op(1),

if xt is I(0)

op(T
−1/2) ·Op(1) + {1 + op(T

−1/2)} · t1 = t1 + op(1),

if xt is I(1) or local-to-unity

under the null hypothesis, and

t =

 Op(T
1/2), if xt is I(0)

Op(
√
T/m), if xt is I(1) or local-to-unity

under the alternatives. This t test version is more convenient when comparing with

previous literature. In simulation part, we take this version2.

2Similar results were found using the Wald test version.
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3.5 Simulation Results

3.5.1 DGP

This section provides simulation results. For simplicity, we consider only single

predictor cases. We use the following data generating process:

xt = ρxt−1 + u2t, (3.7)

where ρ ∈ {1, 0.99, 0.95, 0.90, 0.80, 0.50, 0.10, 0}.

For the null hypothesis, we specify

yt = a+ u1t (3.8)

where a = 0 and

(u1t, u2t)
′ = Σ1/2vt, vt ∼ NIID(0, I2)

Σ =

 1 σ12

σ12 1

 (3.9)

where σ12 ∈ {0, 0.25, 0.50, 0.75, 0.95}.

We choose two alternative hypotheses

yt = a+ βxt−1 + u1t, (3.10)

and

yt = a+ γ(xt−1 − (1 + c/T )xt−2) + u1t = a+ γu2,t−1 + u1t, (3.11)

The second one allows yt to keep stationary when xt is (near) I(1).
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Since our new test statistic tW equals the weighted average of t0 and t1, we first

need to estimate t0 and t1 separately. t0 is estimated following equations (3.6). For t1

part, to calculate λ̂y,∆x and Ṽ , we need to choose appropriate kernel and bandwitch.

Bartlett kernel is used for both k(x) and k̃(x)3. Following Andrews (1991), the

optimal bandwidth m∗ is estimated by

m̂∗ = 1.1447(α̂(1)T )1/3, (3.12)

and α̂(1) is got through equation (6.4) in Andrews (1991)

α̂(1) =

p∑
a=1

wa
4ρ̂2

aσ̂
4
a

(1− ρ̂a)6(1 + ρ̂a)2
/

p∑
a=1

wa
σ̂4
a

(1− ρ̂a)4
.

In the above equation, (ρ̂a, σ̂
2
a) are AR parameters and innovation variance from

AR(1) models for a = 1, ..., p. In our simulation, we choose two AR(1) models

yt = ρ̂1yt−1 + ε̂t and 4xt = ρ̂24 xt−1 + ε̂t. We take wa = 1 for a = 1, 2.

The bandwidth m̃ in estimating V is set to m̃ = (m̂∗)0.9.

For better comparison with tests developed under the commonly used assumption

that yt (for example, one-period returns) is a martingale difference sequence (MDS)

under the null, we follow MS and simplify Ṽ as

ṼMDS =
1

m

T−1∑
h′=1

T−1∑
h=1

k(
h′ − 1

m
)k(

h− 1

m
)× k̃(

h′ − h
m̃

)Γ̂∆x∆x(h
′ − h)Γ̂yy(0),

although our test allows for serial correlation in yt.

3Other kernels were also considered, including the Parzen, Quadratic Spectral and Tukey–
Hannning kernels. This do not change our results much.
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For the weight λ(U, S), based on simulation results, we set

λ(U, S) = exp[−c(DF −GLS
µ

η̂µ
)2],

c = 0.006,

to acquire numerically the best overall finite sample performance4. DF−GLSµ is the

local GLS-demeaned Dickey-Fuller statistics and the number of lagged different terms

is determined by the MAIC method of Ng and Perron (2001), with the maximum at

the integer part of 12(T/100)1/4. η̂µ is the level-stationary KPSS statistic. Following

Kwiatkowski, Phillips, Schmidt and Shin (1992), we have

η̂µ =

∑T
t=1(
∑t

i=1 ei)
2

T 2ω̂2
, ei = xi − x̄,

where ω̂2 is the long run variance estimator and takes the form: ω̂2 = T−1
T∑
t=1

e2
t +

2T−1
l∑

j=1

w(j, l)
T∑

t=j+1

etet−j; w(j, l) = 1− j
l+1

and l is the integer part of 12(T/100)1/4.

To differentiate our test from those based on pre-test methods, we also construct

two test statistics using the DF-GLS and the KPSS as pre test respectively. More

specifically, in the first step, we test xt by the DF-GLS (or the KPSS) at 5% sig-

nificance level. And then, if we can reject the null hypothesis (xt is nonstationary

when the DF-GLS test is used, and stationary when the KPSS test is used), we set

t − DFGLS = t0 (or t − KPSS = t1). If we can not reject the null hypothesis in

the first step, we set t−DFGLS = t1 (or t−KPSS = t0).

All simulation results are based on 2000 replications and sample sizes of T =

100, 200 and 500.

4We discuss the choice of the parameter c in section 3.5.4.
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3.5.2 Size

Table 3.1 shows rejection rates for the weighted average test t with a nominal

significant level of 5%. These results are reliable in either stationary cases or non-

stationary cases, even when the sample size T is not very large (for example, when

T = 100).

By contrast, although rejection rates for the covariance-based test t1, provided in

Table 3.2, have good performance when xt is I(1) or local-to-unity, this test becomes

quite conservative for I(0) cases and the results do not improve as the sample size

grows larger. For example, in the worst case for ρ = 0.1 and σ12 = 0, the size is only

0.007 even for a large sample size of 500. This corroborates that t1 converges to zero

in probability in stationary cases.

Table 3.3 shows that the rejection rates for the regression-based test statistic t0

are reasonable when xt is stationary or σ12 is small but very unreliable when xt is

nonstationary and σ12 is large. The rejection rates can even exceed 30%.
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Table 3.1: The new t-statistic: Size

ρ σ12 = 0 0.25 0.50 0.75 0.95

T = 100

1.000 0.0405 0.0425 0.0505 0.0575 0.0675

0.990 0.0440 0.0395 0.0365 0.0595 0.0650

0.950 0.0360 0.0350 0.0420 0.0615 0.0640

0.900 0.0380 0.0380 0.0455 0.0525 0.0680

0.800 0.0405 0.0400 0.0615 0.0620 0.0530

0.500 0.0485 0.0450 0.0450 0.0505 0.0555

0.100 0.0450 0.0460 0.0445 0.0375 0.0450

0.000 0.0355 0.0380 0.0390 0.0440 0.0435

T = 200

1.000 0.0495 0.0465 0.0470 0.0455 0.0520

0.990 0.0370 0.0345 0.0435 0.0540 0.0575

0.950 0.0325 0.0420 0.0445 0.0510 0.0525

0.900 0.0370 0.0495 0.0440 0.0510 0.0570

0.800 0.0510 0.0465 0.0415 0.0510 0.0535

0.500 0.0420 0.0465 0.0470 0.0400 0.0515

0.100 0.0320 0.0375 0.0330 0.0325 0.0440

0.000 0.0360 0.0410 0.0285 0.0370 0.0385

T = 500

1.000 0.0425 0.0510 0.0360 0.0405 0.0410

0.990 0.0380 0.0355 0.0405 0.0380 0.0435

0.950 0.0300 0.0275 0.0355 0.0390 0.0450

0.900 0.0310 0.0385 0.0395 0.0460 0.0545

0.800 0.0505 0.0480 0.0475 0.0535 0.0435

0.500 0.0415 0.0395 0.0400 0.0350 0.0615

0.100 0.0350 0.0395 0.0390 0.0415 0.0385

0.000 0.0365 0.0345 0.0370 0.0325 0.0390
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Table 3.2: Maynard and Shimotsu (2009) t-statistic: Size

ρ σ12 = 0 0.25 0.50 0.75 0.95

T = 100

1.000 0.0515 0.0470 0.0490 0.0470 0.0455

0.990 0.0535 0.0460 0.0315 0.0460 0.0300

0.950 0.0430 0.0420 0.0420 0.0410 0.0335

0.900 0.0380 0.0430 0.0465 0.0370 0.0315

0.800 0.0430 0.0415 0.0360 0.0350 0.0360

0.500 0.0290 0.0265 0.0300 0.0270 0.0275

0.100 0.0165 0.0145 0.0160 0.0155 0.0155

0.000 0.0100 0.0125 0.0105 0.0130 0.0170

T = 200

1.000 0.0530 0.0525 0.0475 0.0405 0.0415

0.990 0.0495 0.0435 0.0370 0.0425 0.0410

0.950 0.0435 0.0525 0.0450 0.0460 0.0360

0.900 0.0485 0.0485 0.0425 0.0445 0.0380

0.800 0.0435 0.0505 0.0390 0.0430 0.0355

0.500 0.0260 0.0270 0.0265 0.0215 0.0310

0.100 0.0120 0.0170 0.0100 0.0150 0.0160

0.000 0.0070 0.0110 0.0130 0.0120 0.0090

T = 500

1.000 0.0450 0.0530 0.0375 0.0410 0.0370

0.990 0.0480 0.0435 0.0420 0.0380 0.0380

0.950 0.0450 0.0355 0.0470 0.0455 0.0345

0.900 0.0445 0.0420 0.0505 0.0395 0.0440

0.800 0.0415 0.0425 0.0355 0.0335 0.0410

0.500 0.0220 0.0260 0.0190 0.0235 0.0315

0.100 0.0070 0.0140 0.0135 0.0125 0.0125

0.000 0.0095 0.0100 0.0115 0.0115 0.0090
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Table 3.3: Regression t-statistic: Size

ρ σ12 = 0 0.25 0.50 0.75 0.95

T = 100

1.000 0.0860 0.1000 0.1640 0.2385 0.3485

0.990 0.0855 0.0915 0.1515 0.2040 0.2705

0.950 0.0930 0.0860 0.1040 0.1430 0.1570

0.900 0.0955 0.0840 0.0995 0.1170 0.1330

0.800 0.0740 0.0815 0.1000 0.0995 0.0985

0.500 0.0835 0.0780 0.0760 0.0880 0.1005

0.100 0.0800 0.0800 0.0820 0.0790 0.0825

0.000 0.0790 0.0775 0.0850 0.0850 0.0905

T = 200

1.000 0.0745 0.0815 0.1395 0.2065 0.3150

0.990 0.0685 0.0795 0.1135 0.1585 0.1990

0.950 0.0575 0.0710 0.0825 0.0890 0.1120

0.900 0.0710 0.0825 0.0750 0.0870 0.0895

0.800 0.0725 0.0815 0.0640 0.0710 0.0780

0.500 0.0655 0.0685 0.0710 0.0625 0.0680

0.100 0.0620 0.0675 0.0630 0.0635 0.0755

0.000 0.0600 0.0685 0.0515 0.0595 0.0685

T = 500

1.000 0.0720 0.0785 0.1375 0.1890 0.2950

0.990 0.0690 0.0660 0.0775 0.1030 0.1270

0.950 0.0650 0.0555 0.0555 0.0705 0.0760

0.900 0.0450 0.0635 0.0615 0.0680 0.0780

0.800 0.0655 0.0645 0.0620 0.0640 0.0575

0.500 0.0545 0.0570 0.0500 0.0475 0.0720

0.100 0.0530 0.0520 0.0545 0.0575 0.0510

0.000 0.0640 0.0555 0.0590 0.0575 0.0560
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Table 3.4: DFGLS pre-test t-statistic: Size

ρ σ12 = 0 0.25 0.50 0.75 0.95

T = 100

1.000 0.0510 0.0495 0.0550 0.0650 0.0870

0.990 0.0525 0.0490 0.0555 0.0730 0.1045

0.950 0.0665 0.0685 0.0740 0.0975 0.1170

0.900 0.0650 0.0800 0.0710 0.0850 0.1005

0.800 0.0730 0.0710 0.0840 0.0740 0.0735

0.500 0.0535 0.0575 0.0555 0.0500 0.0420

0.100 0.0280 0.0295 0.0330 0.0260 0.0300

0.000 0.0250 0.0260 0.0300 0.0355 0.0235

T = 200

1.000 0.0525 0.0595 0.0625 0.0670 0.0775

0.990 0.0435 0.0610 0.0770 0.0795 0.1000

0.950 0.0570 0.0655 0.0725 0.0820 0.0985

0.900 0.0595 0.0685 0.0665 0.0750 0.0840

0.800 0.0630 0.0625 0.0710 0.0700 0.0535

0.500 0.0565 0.0545 0.0450 0.0525 0.0505

0.100 0.0335 0.0320 0.0360 0.0240 0.0375

0.000 0.0305 0.0315 0.0240 0.0230 0.0340

T = 500

1.000 0.0515 0.0495 0.0520 0.0680 0.0800

0.990 0.0500 0.0580 0.0620 0.0895 0.1105

0.950 0.0580 0.0565 0.0580 0.0640 0.0820

0.900 0.0635 0.0560 0.0675 0.0715 0.0715

0.800 0.0535 0.0565 0.0580 0.0665 0.0665

0.500 0.0450 0.0430 0.0380 0.0515 0.0465

0.100 0.0355 0.0245 0.0315 0.0345 0.0340

0.000 0.0380 0.0315 0.0375 0.0330 0.0300
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Table 3.5: KPSS pre-test: Size

ρ σ12 = 0 0.25 0.50 0.75 0.95

T = 100

1.000 0.0595 0.0780 0.1080 0.1710 0.2290

0.990 0.0745 0.0740 0.1065 0.1570 0.2090

0.950 0.0875 0.0790 0.0920 0.1065 0.1405

0.900 0.0770 0.0875 0.0935 0.0940 0.1155

0.800 0.0885 0.0830 0.1015 0.1010 0.1065

0.500 0.0740 0.0895 0.0845 0.0795 0.0850

0.100 0.0735 0.0800 0.0775 0.0740 0.0855

0.000 0.0730 0.0690 0.0740 0.0910 0.0825

T = 200

1.000 0.0555 0.0645 0.0845 0.1225 0.1720

0.990 0.0520 0.0615 0.0975 0.1120 0.1485

0.950 0.0520 0.0720 0.0735 0.0880 0.0940

0.900 0.0550 0.0680 0.0705 0.0745 0.0885

0.800 0.0635 0.0640 0.0725 0.0730 0.0580

0.500 0.0730 0.0720 0.0590 0.0675 0.0690

0.100 0.0600 0.0595 0.0670 0.0550 0.0695

0.000 0.0560 0.0695 0.0560 0.0660 0.0665

T = 500

1.000 0.0470 0.0495 0.0655 0.0870 0.0910

0.990 0.0525 0.0575 0.0590 0.0820 0.0965

0.950 0.0620 0.0585 0.0545 0.0640 0.0810

0.900 0.0600 0.0520 0.0660 0.0690 0.0665

0.800 0.0510 0.0535 0.0615 0.0680 0.0670

0.500 0.0515 0.0445 0.0435 0.0600 0.0535

0.100 0.0625 0.0440 0.0460 0.0520 0.0505

0.000 0.0650 0.0545 0.0565 0.0550 0.0515
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We next consider the two pretest-based statistics: t −DFGLS and t −KPSS.

The rejection rates are shown in Table 3.4 and 3.5. From these two tables, we find the

pretest-based test can not completely solve the size problem and their performances

are much worse than our test’s, especially for a small sample size. For example, when

T = 100, ρ = 0.99 and σ12 = 0.95, the size is over 20% for t−KPSS and over 10%

for t−DFGLS. On the other hand, when both ρ and σ12 approach zero, t−DFGLS

becomes quite conservative.

3.5.3 Power

We first consider the power of the weighted average test t against equation (3.11)

with β 6= 0, which is the standard regression alternative. This alternative implies

that xt and yt have the same order of integration. When ρ is equal to one, xt and

yt are cointegrated, and when ρ � 1 , both of xt and yt are stationary. Since yt is

usually stationary in practice, we should focus more on those results when ρ is not

that close to one, for example, ρ = 0.9, 0.8, 0.5, 0.1 and 0. Table 3.6 gives the results.

As expected, the power of the test is strong and increases in both sample size and β.
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Table 3.6: The t-statistic: Power (against equation 3.11)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.4605 0.7080 0.8595 0.9915 1.0000
0.95 0.4310 0.6590 0.8350 0.9890 0.9995

ρ = 0.99 0.50 0.3755 0.6335 0.8490 0.9955 1.0000
0.95 0.3445 0.5620 0.7810 0.9885 1.0000

ρ = 0.95 0.50 0.3925 0.6385 0.8085 0.9890 1.0000
0.95 0.3835 0.6210 0.8005 0.9885 0.9995

ρ = 0.90 0.50 0.4285 0.6630 0.8310 0.9845 0.9995
0.95 0.4205 0.6690 0.8385 0.9920 1.0000

ρ = 0.80 0.50 0.3690 0.6005 0.7625 0.9770 0.9985
0.95 0.3985 0.6215 0.7860 0.9755 0.9995

ρ = 0.50 0.50 0.2255 0.4270 0.5875 0.9295 0.9965
0.95 0.3065 0.5000 0.6715 0.9530 0.9975

ρ = 0.10 0.50 0.2480 0.4055 0.5775 0.9320 0.9980
0.95 0.2115 0.3565 0.5455 0.9305 0.9955

ρ = 0 0.50 0.2310 0.3740 0.5550 0.9315 0.9955
0.95 0.2125 0.3500 0.5405 0.9345 0.9975

T = 200
ρ = 1 0.50 0.6460 0.8920 0.9760 1.0000 1.0000

0.95 0.6895 0.8960 0.9820 0.9995 1.0000
ρ = 0.99 0.50 0.5665 0.8635 0.9720 1.0000 1.0000

0.95 0.6075 0.8800 0.9685 0.9995 1.0000
ρ = 0.95 0.50 0.6745 0.8890 0.9740 1.0000 1.0000

0.95 0.6760 0.8875 0.9725 1.0000 1.0000
ρ = 0.90 0.50 0.7125 0.8955 0.9775 1.0000 1.0000

0.95 0.7055 0.8805 0.9675 1.0000 1.0000
ρ = 0.80 0.50 0.5840 0.8360 0.9450 0.9990 1.0000

0.95 0.6410 0.8750 0.9575 0.9985 1.0000
ρ = 0.50 0.50 0.4495 0.7115 0.8780 0.9995 1.0000

0.95 0.4275 0.7185 0.8835 0.9990 1.0000
ρ = 0.10 0.50 0.3635 0.6075 0.8470 0.9985 1.0000

0.95 0.3780 0.6620 0.8410 0.9985 1.0000
ρ = 0 0.50 0.3835 0.6585 0.8565 1.0000 1.0000

0.95 0.3980 0.6565 0.8525 0.9995 1.0000
T = 500

ρ = 1 0.50 0.9510 0.9980 0.9995 1.0000 1.0000
0.95 0.9540 0.9990 1.0000 1.0000 1.0000

ρ = 0.99 0.50 0.9045 0.9985 1.0000 1.0000 1.0000
0.95 0.9025 0.9960 1.0000 1.0000 1.0000

ρ = 0.95 0.50 0.9470 0.9960 1.0000 1.0000 1.0000
0.95 0.9595 0.9970 1.0000 1.0000 1.0000

ρ = 0.90 0.50 0.9580 0.9960 0.9995 1.0000 1.0000
0.95 0.9620 0.9960 0.9995 1.0000 1.0000

ρ = 0.80 0.50 0.9095 0.9910 0.9995 1.0000 1.0000
0.95 0.9170 0.9925 1.0000 1.0000 1.0000

ρ = 0.50 0.50 0.7860 0.9795 0.9975 1.0000 1.0000
0.95 0.7510 0.9640 0.9945 1.0000 1.0000

ρ = 0.10 0.50 0.7120 0.9430 0.9970 1.0000 1.0000
0.95 0.7200 0.9495 0.9960 1.0000 1.0000

ρ = 0 0.50 0.6710 0.9430 0.9945 1.0000 1.0000
0.95 0.6735 0.9335 0.9950 1.0000 1.0000
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Table 3.7: Maynard and Shimotsu (2009) t-statistic: Power (against equation 3.11)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.4070 0.6175 0.7615 0.9735 0.9990
0.95 0.4035 0.6065 0.7585 0.9625 0.9965

ρ = 0.99 0.50 0.2835 0.4870 0.6670 0.9665 0.9985
0.95 0.3095 0.4835 0.6705 0.9530 0.9975

ρ = 0.95 0.50 0.2015 0.3200 0.5110 0.9240 0.9970
0.95 0.2340 0.3825 0.5510 0.9365 0.9965

ρ = 0.90 0.50 0.1845 0.3150 0.4640 0.8795 0.9925
0.95 0.1800 0.3185 0.5075 0.9085 0.9950

ρ = 0.80 0.50 0.1640 0.2915 0.4100 0.8410 0.9795
0.95 0.1860 0.3250 0.4715 0.8775 0.9900

ρ = 0.50 0.50 0.1785 0.3100 0.4660 0.8450 0.9865
0.95 0.2145 0.3340 0.5020 0.8740 0.9885

ρ = 0.10 0.50 0.2420 0.3810 0.5400 0.9135 0.9970
0.95 0.1865 0.3150 0.4935 0.9065 0.9940

ρ = 0 0.50 0.2120 0.3405 0.5245 0.9135 0.9935
0.95 0.1955 0.3215 0.5010 0.9145 0.9970

T = 200
ρ = 1 0.50 0.5815 0.8205 0.9450 1.0000 1.0000

0.95 0.6445 0.8300 0.9545 0.9990 1.0000
ρ = 0.99 0.50 0.4085 0.7275 0.8995 0.9995 1.0000

0.95 0.4570 0.7560 0.9145 0.9980 1.0000
ρ = 0.95 0.50 0.2990 0.5480 0.8085 0.9970 1.0000

0.95 0.3050 0.5670 0.8115 0.9985 1.0000
ρ = 0.90 0.50 0.2860 0.5025 0.7425 0.9955 1.0000

0.95 0.2895 0.5110 0.7590 0.9950 1.0000
ρ = 0.80 0.50 0.2705 0.4825 0.6880 0.9885 1.0000

0.95 0.2725 0.5380 0.7275 0.9930 1.0000
ρ = 0.50 0.50 0.3510 0.5555 0.7495 0.9940 1.0000

0.95 0.3050 0.5480 0.7350 0.9910 1.0000
ρ = 0.10 0.50 0.3145 0.5570 0.8090 0.9950 1.0000

0.95 0.3360 0.5865 0.8000 0.9960 1.0000
ρ = 0 0.50 0.3270 0.6065 0.8235 0.9985 1.0000

0.95 0.3535 0.6020 0.8220 0.9995 1.0000
T = 500

ρ = 1 0.50 0.9195 0.9960 0.9995 1.0000 1.0000
0.95 0.9255 0.9950 0.9995 1.0000 1.0000

ρ = 0.99 0.50 0.7635 0.9900 0.9985 1.0000 1.0000
0.95 0.7580 0.9810 0.9975 1.0000 1.0000

ρ = 0.95 0.50 0.6090 0.9240 0.9965 1.0000 1.0000
0.95 0.6485 0.9480 0.9965 1.0000 1.0000

ρ = 0.90 0.50 0.5090 0.8595 0.9850 1.0000 1.0000
0.95 0.5950 0.8975 0.9880 1.0000 1.0000

ρ = 0.80 0.50 0.5060 0.8265 0.9755 1.0000 1.0000
0.95 0.5550 0.8780 0.9835 1.0000 1.0000

ρ = 0.50 0.50 0.6165 0.9155 0.9875 1.0000 1.0000
0.95 0.5995 0.8970 0.9795 1.0000 1.0000

ρ = 0.10 0.50 0.6700 0.9275 0.9940 1.0000 1.0000
0.95 0.6890 0.9390 0.9925 1.0000 1.0000

ρ = 0 0.50 0.6470 0.9340 0.9945 1.0000 1.0000
0.95 0.6460 0.9210 0.9945 1.0000 1.0000
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Table 3.8: Regression t-statistic: Power (against equation 3.11)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.8795 0.9730 0.9955 1.0000 1.0000
0.95 0.8975 0.9730 0.9890 1.0000 1.0000

ρ = 0.99 0.50 0.8340 0.9565 0.9880 1.0000 1.0000
0.95 0.8445 0.9600 0.9855 1.0000 1.0000

ρ = 0.95 0.50 0.7075 0.8970 0.9650 0.9985 1.0000
0.95 0.7470 0.9075 0.9655 0.9995 1.0000

ρ = 0.90 0.50 0.6445 0.8350 0.9455 0.9985 1.0000
0.95 0.6045 0.8335 0.9315 0.9985 1.0000

ρ = 0.80 0.50 0.4375 0.6950 0.8625 0.9965 1.0000
0.95 0.4600 0.6875 0.8460 0.9930 1.0000

ρ = 0.50 0.50 0.2595 0.4690 0.6725 0.9695 0.9990
0.95 0.3500 0.5555 0.7290 0.9760 0.9995

ρ = 0.10 0.50 0.2590 0.4405 0.6145 0.9550 0.9985
0.95 0.2440 0.4020 0.5965 0.9595 0.9995

ρ = 0 0.50 0.2565 0.4140 0.6230 0.9540 0.9985
0.95 0.2605 0.4265 0.6225 0.9645 1.0000

T = 200
ρ = 1 0.50 0.9900 0.9995 1.0000 1.0000 1.0000

0.95 0.9920 0.9995 1.0000 1.0000 1.0000
ρ = 0.99 0.50 0.9895 0.9990 1.0000 1.0000 1.0000

0.95 0.9700 0.9970 1.0000 1.0000 1.0000
ρ = 0.95 0.50 0.9315 0.9930 1.0000 1.0000 1.0000

0.95 0.9260 0.9855 0.9985 1.0000 1.0000
ρ = 0.90 0.50 0.8605 0.9820 0.9985 1.0000 1.0000

0.95 0.8490 0.9710 0.9960 1.0000 1.0000
ρ = 0.80 0.50 0.6910 0.9160 0.9880 1.0000 1.0000

0.95 0.6910 0.9210 0.9795 1.0000 1.0000
ρ = 0.50 0.50 0.4865 0.7730 0.9200 1.0000 1.0000

0.95 0.4610 0.7620 0.9225 0.9990 1.0000
ρ = 0.10 0.50 0.3915 0.6475 0.8815 0.9990 1.0000

0.95 0.3995 0.6990 0.8775 0.9995 1.0000
ρ = 0 0.50 0.4005 0.6880 0.8870 1.0000 1.0000

0.95 0.4175 0.6885 0.8825 1.0000 1.0000
T = 500

ρ = 1 0.50 1.0000 1.0000 1.0000 1.0000 1.0000
0.95 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.99 0.50 1.0000 1.0000 1.0000 1.0000 1.0000
0.95 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.95 0.50 0.9995 1.0000 1.0000 1.0000 1.0000
0.95 0.9995 1.0000 1.0000 1.0000 1.0000

ρ = 0.90 0.50 0.9960 1.0000 1.0000 1.0000 1.0000
0.95 0.9890 1.0000 1.0000 1.0000 1.0000

ρ = 0.80 0.50 0.9595 0.9990 1.0000 1.0000 1.0000
0.95 0.9550 0.9995 1.0000 1.0000 1.0000

ρ = 0.50 0.50 0.8120 0.9860 0.9985 1.0000 1.0000
0.95 0.7935 0.9795 0.9975 1.0000 1.0000

ρ = 0.10 0.50 0.7405 0.9570 0.9985 1.0000 1.0000
0.95 0.7610 0.9645 0.9975 1.0000 1.0000

ρ = 0 0.50 0.6920 0.9500 0.9970 1.0000 1.0000
0.95 0.7030 0.9490 0.9975 1.0000 1.0000
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Table 3.9: DFGLS pre-test: Power (against equation 3.11)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.4150 0.6410 0.7895 0.9825 0.9995
0.95 0.4000 0.6090 0.7715 0.9700 0.9975

ρ = 0.99 0.50 0.2910 0.5225 0.7135 0.9720 0.9985
0.95 0.3065 0.4980 0.7040 0.9670 0.9980

ρ = 0.95 0.50 0.2975 0.5015 0.6770 0.9610 0.9985
0.95 0.2620 0.4930 0.6975 0.9635 0.9990

ρ = 0.90 0.50 0.4690 0.6600 0.7950 0.9645 0.9985
0.95 0.4240 0.6545 0.8100 0.9785 1.0000

ρ = 0.80 0.50 0.3570 0.5825 0.7155 0.9350 0.9915
0.95 0.4035 0.5865 0.7455 0.9545 0.9965

ρ = 0.50 0.50 0.2205 0.3935 0.5280 0.8755 0.9850
0.95 0.2775 0.4480 0.6155 0.9150 0.9940

ρ = 0.10 0.50 0.2440 0.3925 0.5610 0.9155 0.9965
0.95 0.1930 0.3250 0.5090 0.8975 0.9930

ρ = 0 0.50 0.2035 0.3355 0.5165 0.9035 0.9930
0.95 0.2095 0.3380 0.5200 0.9150 0.9965

T = 200
ρ = 1 0.50 0.6180 0.8545 0.9590 1.0000 1.0000

0.95 0.6650 0.8575 0.9665 0.9995 1.0000
ρ = 0.99 0.50 0.4995 0.7935 0.9415 0.9995 1.0000

0.95 0.5240 0.8130 0.9490 0.9985 1.0000
ρ = 0.95 0.50 0.7560 0.8870 0.9590 1.0000 1.0000

0.95 0.7865 0.9080 0.9670 0.9995 1.0000
ρ = 0.90 0.50 0.7945 0.9110 0.9615 0.9995 1.0000

0.95 0.7900 0.9135 0.9615 0.9985 1.0000
ρ = 0.80 0.50 0.6045 0.8270 0.9275 0.9935 1.0000

0.95 0.6315 0.8520 0.9405 0.9990 1.0000
ρ = 0.50 0.50 0.4025 0.6490 0.8210 0.9935 1.0000

0.95 0.4025 0.6635 0.8390 0.9940 1.0000
ρ = 0.10 0.50 0.3435 0.5890 0.8160 0.9970 1.0000

0.95 0.3585 0.6200 0.8175 0.9975 1.0000
ρ = 0 0.50 0.3650 0.6340 0.8355 0.9990 1.0000

0.95 0.3655 0.6015 0.8105 0.9985 1.0000
T = 500

ρ = 1 0.50 0.9470 0.9985 0.9995 1.0000 1.0000
0.95 0.9470 0.9965 0.9995 1.0000 1.0000

ρ = 0.99 0.50 0.9010 0.9990 1.0000 1.0000 1.0000
0.95 0.9040 0.9945 1.0000 1.0000 1.0000

ρ = 0.95 0.50 0.9930 0.9985 1.0000 1.0000 1.0000
0.95 0.9925 0.9995 1.0000 1.0000 1.0000

ρ = 0.90 0.50 0.9910 0.9980 1.0000 1.0000 1.0000
0.95 0.9845 0.9990 0.9990 1.0000 1.0000

ρ = 0.80 0.50 0.9380 0.9930 1.0000 1.0000 1.0000
0.95 0.9415 0.9955 0.9995 1.0000 1.0000

ρ = 0.50 0.50 0.7665 0.9630 0.9945 1.0000 1.0000
0.95 0.7235 0.9440 0.9870 1.0000 1.0000

ρ = 0.10 0.50 0.7005 0.9360 0.9950 1.0000 1.0000
0.95 0.6860 0.9300 0.9925 1.0000 1.0000

ρ = 0 0.50 0.6375 0.9220 0.9925 1.0000 1.0000
0.95 0.6345 0.9110 0.9920 1.0000 1.0000
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Table 3.10: KPSS pre-test: Power (against equation 3.11)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.6390 0.8515 0.9335 0.9945 1.0000
0.95 0.5415 0.7770 0.9035 0.9960 0.9995

ρ = 0.99 0.50 0.5850 0.8125 0.9270 0.9970 1.0000
0.95 0.5350 0.7685 0.8950 0.9955 1.0000

ρ = 0.95 0.50 0.5740 0.7705 0.8760 0.9870 0.9995
0.95 0.6225 0.8110 0.9070 0.9955 1.0000

ρ = 0.90 0.50 0.5590 0.7545 0.8885 0.9850 1.0000
0.95 0.5435 0.7785 0.8890 0.9930 1.0000

ρ = 0.80 0.50 0.4150 0.6575 0.8210 0.9810 0.9985
0.95 0.4330 0.6480 0.8130 0.9825 1.0000

ρ = 0.50 0.50 0.2470 0.4555 0.6565 0.9535 0.9975
0.95 0.3335 0.5420 0.7135 0.9735 0.9990

ρ = 0.10 0.50 0.2610 0.4370 0.6090 0.9465 0.9975
0.95 0.2395 0.3950 0.5890 0.9535 0.9990

ρ = 0 0.50 0.2620 0.4135 0.6195 0.9535 0.9970
0.95 0.2575 0.4195 0.6195 0.9595 0.9995

T = 200
ρ = 1 0.50 0.7630 0.9165 0.9775 1.0000 1.0000

0.95 0.7710 0.9250 0.9860 0.9995 1.0000
ρ = 0.99 0.50 0.7265 0.9050 0.9695 1.0000 1.0000

0.95 0.7650 0.9275 0.9790 0.9995 1.0000
ρ = 0.95 0.50 0.7565 0.8810 0.9570 1.0000 1.0000

0.95 0.7740 0.9000 0.9675 1.0000 1.0000
ρ = 0.90 0.50 0.7660 0.9015 0.9615 0.9995 1.0000

0.95 0.7560 0.9065 0.9655 0.9990 1.0000
ρ = 0.80 0.50 0.6445 0.8745 0.9570 0.9985 1.0000

0.95 0.6575 0.8850 0.9530 0.9985 1.0000
ρ = 0.50 0.50 0.4820 0.7625 0.9120 1.0000 1.0000

0.95 0.4590 0.7590 0.9125 0.9985 1.0000
ρ = 0.10 0.50 0.3885 0.6430 0.8690 0.9985 1.0000

0.95 0.3990 0.6905 0.8650 0.9990 1.0000
ρ = 0 0.50 0.4030 0.6805 0.8835 0.9995 1.0000

0.95 0.4145 0.6840 0.8720 0.9985 1.0000
T = 500

ρ = 1 0.50 0.9475 0.9975 0.9995 1.0000 1.0000
0.95 0.9485 0.9965 0.9995 1.0000 1.0000

ρ = 0.99 0.50 0.8710 0.9960 1.0000 1.0000 1.0000
0.95 0.8865 0.9905 0.9985 1.0000 1.0000

ρ = 0.95 0.50 0.8755 0.9785 0.9990 1.0000 1.0000
0.95 0.9105 0.9905 1.0000 1.0000 1.0000

ρ = 0.90 0.50 0.9260 0.9790 0.9980 1.0000 1.0000
0.95 0.9300 0.9840 0.9990 1.0000 1.0000

ρ = 0.80 0.50 0.9190 0.9850 0.9990 1.0000 1.0000
0.95 0.9160 0.9875 0.9995 1.0000 1.0000

ρ = 0.50 0.50 0.8030 0.9835 0.9985 1.0000 1.0000
0.95 0.7850 0.9720 0.9965 1.0000 1.0000

ρ = 0.10 0.50 0.7380 0.9535 0.9980 1.0000 1.0000
0.95 0.7545 0.9600 0.9970 1.0000 1.0000

ρ = 0 0.50 0.6980 0.9500 0.9970 1.0000 1.0000
0.95 0.7010 0.9480 0.9980 1.0000 1.0000
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For comparison, we also provide simulation results for the power of t1 against

equation (3.11) (Table 3.7). Comparing Table 3.7 with Table 3.6, it can be found

that t1 has a much weaker power than t in stationary cases (ρ = 0.9, 0.8 or 0.5).

For instance, when ρ = 0.9, σ12 = 0.50, β = 0.1 and T = 200, the power for the

covariance-based test t1 is only about 29%, while the weighted average test t has a

power of almost 70%. Moreover, the difference does not disappear when the sample

size becomes larger. Even for a sample size of T = 500, the power for t1 is only about

50% when ρ = 0.8, σ12 = 0.50 and β = 0.1, while the weighted average test t has a

very strong power of more than 90%. These results are due to the fact that t diverges

to infinity faster than t1. Figures 3.1, 3.2 and 3.3 which present finite sample power

curves for the tests also show our test (“—–”) dominates Maynard and Shimotsu

(2009)’s test (“· · ·”) in stationary cases.

Table 3.8, 3.9 and 3.10 present finite sample power for t0, t − DFGLS and

t − KPSS. As expected, t0 has the strongest power in stationary cases. But the

difference between the power of t0 and our weighted average test t is very small for a

large sample size. As shown in Figures 3.1–3.3, the pretest-based tests t−DFGLS

(“−·−”) and t−KPSS (“−−”) have similar power to t when both xt and yt behave

in a stationary manner.

62



Figure 3.1: Finite sample power against equation (3.11), T = 100
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Figure 3.2: Finite sample power against equation (3.11), T = 200
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Figure 3.3: Finite sample power against equation (3.11), T = 500

We next look at the power of the weighted average test t and the covariance-

based test t1 against equation (3.12). This alternative allows that when xt is I(1) or

local-to-unity, yt can still keep stationary. Therefore, we should focus more on those

results when ρ is equal or close to one, for example, ρ = 1, 0.99 and 0.95. Table

3.11 and 3.12 give the test results. As expected, t and t1 have very similar power
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when xt is I(1) or local-to-unity since the weight for t1, λ(U, S), is almost one under

nonstationary cases. This can be seen more clearly from Figures 3.4–3.6 in which

the lines of t and t1 are very close.

On the other hand, the regression-based test t0 shows very weak power when xt

becomes nonstationary and the alternative is unbalanced (Table 3.13). Furthermore,

the power does not improve as the sample size goes larger. For instance, the power

is only about 5% for ρ = 1, σ12 = 0.50, γ = 0.1 and a large sample size of 500. These

simulation results corroborate that t0 is only Op(1) and does not diverge.

The pretest-based tests have generally much higher power than the regression-

based test t0 and the power improves in both sample size and γ in nonstationary

and unbalanced cases (Table 3.14 and Table 3.15). However, from Figures 3.4–3.6,

it is easy to see that the power of t − KPSS (“−−”) is always much weaker than

the power of t, although it dominates the power of t0 (“· × ·”). On the other hand,

the power of t − DFGLS (“− · −”) is very close to the power of t when ρ = 1

and 0.99 (for T = 500, only when ρ = 1), and when ρ = 0.95, the differences are

obvious. This is easy to understand. Since when ρ = 1 or 0.99, xt is nonstationary

for sure and the DFGLS pretest can easily make right choices (t −DFGLS = t1),

and when ρ = 0.95, it is somewhat harder for the DFGLS pretest to choose the

right t statistics and the power is weaker.
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Table 3.11: The t-statistic: Power (against equation 3.12)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.2280 0.3435 0.5185 0.8535 0.9385
0.95 0.1900 0.3400 0.4410 0.7475 0.8890

ρ = 0.99 0.50 0.2150 0.3490 0.5195 0.8315 0.9300
0.95 0.2050 0.3200 0.4540 0.7410 0.8755

ρ = 0.95 0.50 0.2600 0.3880 0.5210 0.8265 0.9150
0.95 0.2260 0.3225 0.4345 0.7210 0.8500

ρ = 0.90 0.50 0.2125 0.3175 0.4560 0.8005 0.9255
0.95 0.2000 0.3130 0.4355 0.7250 0.8950

ρ = 0.80 0.50 0.2160 0.3335 0.4545 0.8215 0.9640
0.95 0.1980 0.3460 0.4795 0.8395 0.9755

ρ = 0.50 0.50 0.2215 0.3445 0.5365 0.9090 0.9940
0.95 0.1950 0.3660 0.5080 0.9200 0.9970

ρ = 0.10 0.50 0.2230 0.3595 0.5410 0.9235 0.9970
0.95 0.2230 0.3880 0.5920 0.9470 0.9990

ρ = 0 0.50 0.2500 0.4365 0.6065 0.9400 0.9985
0.95 0.2025 0.3560 0.5250 0.9160 0.9960

T = 200
ρ = 1 0.50 0.3195 0.5470 0.7460 0.9620 0.9840

0.95 0.3410 0.5230 0.7055 0.9380 0.9730
ρ = 0.99 0.50 0.3430 0.5745 0.7470 0.9525 0.9730

0.95 0.3040 0.4865 0.6765 0.8915 0.9505
ρ = 0.95 0.50 0.3095 0.4920 0.6745 0.8830 0.9575

0.95 0.2825 0.4345 0.5830 0.8120 0.8970
ρ = 0.90 0.50 0.2800 0.4570 0.6145 0.8875 0.9750

0.95 0.2635 0.3960 0.5680 0.8625 0.9765
ρ = 0.80 0.50 0.2480 0.4500 0.6035 0.9465 0.9985

0.95 0.2715 0.4940 0.6670 0.9745 1.0000
ρ = 0.50 0.50 0.3910 0.6345 0.8210 0.9965 1.0000

0.95 0.3555 0.6045 0.8090 0.9975 1.0000
ρ = 0.10 0.50 0.3845 0.6255 0.8595 0.9990 1.0000

0.95 0.3655 0.6485 0.8390 0.9980 1.0000
ρ = 0 0.50 0.3690 0.6280 0.8395 1.0000 1.0000

0.95 0.3950 0.6570 0.8490 0.9995 1.0000
T = 500

ρ = 1 0.50 0.6175 0.8830 0.9690 0.9980 0.9965
0.95 0.6060 0.8495 0.9515 0.9900 0.9915

ρ = 0.99 0.50 0.6025 0.8700 0.9425 0.9825 0.9895
0.95 0.5240 0.7850 0.8875 0.9645 0.9785

ρ = 0.95 0.50 0.5030 0.6790 0.8070 0.9545 0.9950
0.95 0.4690 0.6455 0.7600 0.9425 0.9900

ρ = 0.90 0.50 0.4115 0.6520 0.8035 0.9820 0.9985
0.95 0.3935 0.6270 0.7840 0.9865 1.0000

ρ = 0.80 0.50 0.4310 0.7165 0.9105 0.9995 1.0000
0.95 0.4555 0.7505 0.9250 0.9990 1.0000

ρ = 0.50 0.50 0.6335 0.9200 0.9850 1.0000 1.0000
0.95 0.6020 0.9025 0.9820 1.0000 1.0000

ρ = 0.10 0.50 0.7110 0.9465 0.9970 1.0000 1.0000
0.95 0.7215 0.9500 0.9960 1.0000 1.0000

ρ = 0 0.50 0.6715 0.9430 0.9945 1.0000 1.0000
0.95 0.6730 0.9330 0.9950 1.0000 1.0000
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Table 3.12: Maynard and Shimotsu (2009) t-statistic: Power (against equation 3.12)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.2440 0.3590 0.5535 0.9205 0.9925
0.95 0.1985 0.3525 0.4830 0.8380 0.9680

ρ = 0.99 0.50 0.2080 0.3640 0.5490 0.9000 0.9930
0.95 0.2015 0.3265 0.4750 0.8235 0.9705

ρ = 0.95 0.50 0.2825 0.4310 0.5935 0.9380 0.9950
0.95 0.2555 0.3775 0.5165 0.8765 0.9850

ρ = 0.90 0.50 0.2335 0.3730 0.5290 0.9040 0.9925
0.95 0.2215 0.4015 0.5260 0.8655 0.9845

ρ = 0.80 0.50 0.2110 0.3470 0.5145 0.8750 0.9945
0.95 0.2280 0.3685 0.5210 0.8795 0.9855

ρ = 0.50 0.50 0.2200 0.3535 0.5235 0.8875 0.9910
0.95 0.2135 0.3695 0.5000 0.8905 0.9935

ρ = 0.10 0.50 0.1855 0.3145 0.4765 0.8850 0.9965
0.95 0.1930 0.3285 0.5255 0.9140 0.9990

ρ = 0 0.50 0.2220 0.3830 0.5495 0.9165 0.9970
0.95 0.1990 0.3400 0.5125 0.9195 0.9970

T = 200
ρ = 1 0.50 0.3330 0.5675 0.7780 0.9915 0.9995

0.95 0.3470 0.5330 0.7440 0.9780 1.0000
ρ = 0.99 0.50 0.3640 0.6195 0.8090 0.9955 1.0000

0.95 0.3265 0.5485 0.7450 0.9690 0.9985
ρ = 0.95 0.50 0.3650 0.5995 0.8160 0.9900 1.0000

0.95 0.2925 0.5120 0.6960 0.9695 0.9990
ρ = 0.90 0.50 0.3620 0.5950 0.7970 0.9915 1.0000

0.95 0.3305 0.5175 0.7065 0.9740 0.9995
ρ = 0.80 0.50 0.3520 0.6110 0.7685 0.9895 1.0000

0.95 0.3345 0.5685 0.7480 0.9875 1.0000
ρ = 0.50 0.50 0.3730 0.5855 0.7800 0.9950 1.0000

0.95 0.3180 0.5525 0.7560 0.9925 1.0000
ρ = 0.10 0.50 0.3440 0.5865 0.8220 0.9980 1.0000

0.95 0.3360 0.6050 0.8090 0.9985 1.0000
ρ = 0 0.50 0.3260 0.5955 0.8155 0.9990 1.0000

0.95 0.3425 0.5905 0.8040 1.0000 1.0000
T = 500

ρ = 1 0.50 0.6445 0.9030 0.9845 1.0000 1.0000
0.95 0.6060 0.8610 0.9640 1.0000 1.0000

ρ = 0.99 0.50 0.6500 0.9205 0.9785 1.0000 1.0000
0.95 0.5660 0.8460 0.9405 1.0000 1.0000

ρ = 0.95 0.50 0.6750 0.9080 0.9875 1.0000 1.0000
0.95 0.6125 0.8610 0.9720 1.0000 1.0000

ρ = 0.90 0.50 0.6130 0.8870 0.9760 1.0000 1.0000
0.95 0.6035 0.8485 0.9575 1.0000 1.0000

ρ = 0.80 0.50 0.5540 0.8420 0.9705 1.0000 1.0000
0.95 0.5630 0.8385 0.9640 1.0000 1.0000

ρ = 0.50 0.50 0.5865 0.8975 0.9810 1.0000 1.0000
0.95 0.5720 0.8730 0.9745 1.0000 1.0000

ρ = 0.10 0.50 0.6780 0.9320 0.9940 1.0000 1.0000
0.95 0.6910 0.9425 0.9940 1.0000 1.0000

ρ = 0 0.50 0.6480 0.9340 0.9945 1.0000 1.0000
0.95 0.6455 0.9205 0.9945 1.0000 1.0000
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Figure 3.4: Finite sample power against equation (3.12), T = 100

69



Figure 3.5: Finite sample power against equation (3.12), T = 200
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Figure 3.6: Finite sample power against equation (3.12), T = 500
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Table 3.13: Regression t-statistic: Power (against equation 3.12)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.0655 0.0790 0.0955 0.1255 0.1815
0.95 0.0645 0.0920 0.0970 0.1455 0.2045

ρ = 0.99 0.50 0.0710 0.0895 0.1030 0.1670 0.2190
0.95 0.0840 0.0850 0.1160 0.1905 0.2810

ρ = 0.95 0.50 0.0915 0.1110 0.1585 0.2815 0.4090
0.95 0.1015 0.1265 0.1475 0.2960 0.4735

ρ = 0.90 0.50 0.0935 0.1325 0.1790 0.3885 0.6225
0.95 0.1165 0.1590 0.2275 0.4465 0.7240

ρ = 0.80 0.50 0.1475 0.2340 0.3035 0.6695 0.8920
0.95 0.1540 0.2620 0.3490 0.7215 0.9430

ρ = 0.50 0.50 0.2310 0.3625 0.5530 0.9135 0.9930
0.95 0.1960 0.3640 0.5075 0.9210 0.9980

ρ = 0.10 0.50 0.2490 0.4090 0.5940 0.9480 1.0000
0.95 0.2420 0.4210 0.6145 0.9645 0.9995

ρ = 0 0.50 0.2415 0.4190 0.6135 0.9515 0.9985
0.95 0.2205 0.3935 0.5895 0.9460 1.0000

T = 200
ρ = 1 0.50 0.0670 0.0680 0.0905 0.1295 0.1600

0.95 0.0720 0.0725 0.0830 0.1270 0.1900
ρ = 0.99 0.50 0.0870 0.0830 0.1150 0.1630 0.2720

0.95 0.0765 0.0810 0.0890 0.1625 0.2795
ρ = 0.95 0.50 0.1185 0.1590 0.2080 0.4230 0.6695

0.95 0.0920 0.1450 0.1885 0.4055 0.6645
ρ = 0.90 0.50 0.1500 0.2210 0.3240 0.6470 0.8995

0.95 0.1670 0.2190 0.3315 0.6875 0.9325
ρ = 0.80 0.50 0.1825 0.3330 0.4735 0.8805 0.9930

0.95 0.2035 0.3590 0.5270 0.9350 0.9985
ρ = 0.50 0.50 0.3550 0.6010 0.8065 0.9950 1.0000

0.95 0.3305 0.5750 0.7935 0.9960 1.0000
ρ = 0.10 0.50 0.4085 0.6650 0.8825 0.9995 1.0000

0.95 0.3745 0.6780 0.8640 0.9995 1.0000
ρ = 0 0.50 0.3985 0.6760 0.8770 1.0000 1.0000

0.95 0.4265 0.7020 0.8845 1.0000 1.0000
T = 500

ρ = 1 0.50 0.0530 0.0745 0.0860 0.0995 0.1245
0.95 0.0755 0.1015 0.1125 0.1580 0.2075

ρ = 0.99 0.50 0.0760 0.1130 0.1235 0.2235 0.3935
0.95 0.0925 0.1425 0.1570 0.3055 0.4980

ρ = 0.95 0.50 0.1765 0.2565 0.3765 0.7595 0.9460
0.95 0.1725 0.2660 0.3730 0.7890 0.9640

ρ = 0.90 0.50 0.2505 0.4180 0.6110 0.9505 0.9975
0.95 0.2550 0.4285 0.6015 0.9605 0.9995

ρ = 0.80 0.50 0.3575 0.6225 0.8380 0.9995 1.0000
0.95 0.3860 0.6805 0.8815 0.9990 1.0000

ρ = 0.50 0.50 0.6100 0.9050 0.9815 1.0000 1.0000
0.95 0.6185 0.9135 0.9820 1.0000 1.0000

ρ = 0.10 0.50 0.7370 0.9555 0.9985 1.0000 1.0000
0.95 0.7595 0.9640 0.9975 1.0000 1.0000

ρ = 0 0.50 0.6930 0.9500 0.9970 1.0000 1.0000
0.95 0.7035 0.9490 0.9975 1.0000 1.0000
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Table 3.14: DFGLS pre-test: Power (against equation 3.12)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.2370 0.3435 0.5275 0.8740 0.9340
0.95 0.1945 0.3445 0.4720 0.8000 0.9175

ρ = 0.99 0.50 0.1905 0.3445 0.5160 0.8400 0.9155
0.95 0.1980 0.3175 0.4620 0.7635 0.8910

ρ = 0.95 0.50 0.2255 0.3455 0.4565 0.7120 0.7760
0.95 0.2375 0.3150 0.4060 0.6445 0.6975

ρ = 0.90 0.50 0.1700 0.2715 0.3505 0.6435 0.8070
0.95 0.1575 0.2205 0.3070 0.5580 0.7775

ρ = 0.80 0.50 0.1595 0.2680 0.3585 0.7300 0.9290
0.95 0.1785 0.3130 0.4110 0.8025 0.9685

ρ = 0.50 0.50 0.2215 0.3415 0.5185 0.8910 0.9920
0.95 0.1845 0.3395 0.4605 0.8820 0.9935

ρ = 0.10 0.50 0.2110 0.3365 0.4990 0.8995 0.9955
0.95 0.2095 0.3540 0.5335 0.9240 0.9970

ρ = 0 0.50 0.2310 0.3945 0.5570 0.9165 0.9965
0.95 0.1805 0.3180 0.4850 0.8860 0.9940

T = 200
ρ = 1 0.50 0.3290 0.5505 0.7470 0.9445 0.9520

0.95 0.3390 0.5150 0.7170 0.9340 0.9515
ρ = 0.99 0.50 0.3480 0.5770 0.7390 0.8710 0.8960

0.95 0.2990 0.4950 0.6730 0.8560 0.8860
ρ = 0.95 0.50 0.2305 0.3455 0.4300 0.6170 0.7765

0.95 0.2160 0.3015 0.3780 0.5715 0.7760
ρ = 0.90 0.50 0.1730 0.2725 0.3890 0.7075 0.9175

0.95 0.1810 0.2515 0.3785 0.7265 0.9405
ρ = 0.80 0.50 0.2025 0.3665 0.5280 0.9015 0.9955

0.95 0.2235 0.3975 0.5740 0.9450 0.9985
ρ = 0.50 0.50 0.3365 0.5740 0.7745 0.9935 1.0000

0.95 0.3410 0.5760 0.7820 0.9940 1.0000
ρ = 0.10 0.50 0.3735 0.6100 0.8365 0.9985 1.0000

0.95 0.3420 0.6070 0.8130 0.9965 1.0000
ρ = 0 0.50 0.3410 0.5855 0.8060 0.9985 1.0000

0.95 0.3685 0.6120 0.8095 0.9990 1.0000
T = 500

ρ = 1 0.50 0.6285 0.8675 0.9370 0.9500 0.9545
0.95 0.5870 0.8250 0.9285 0.9520 0.9415

ρ = 0.99 0.50 0.4885 0.6525 0.6985 0.7135 0.7625
0.95 0.4375 0.6130 0.6620 0.6800 0.6880

ρ = 0.95 0.50 0.1850 0.2705 0.3895 0.7650 0.9475
0.95 0.1835 0.2805 0.3890 0.7960 0.9685

ρ = 0.90 0.50 0.2555 0.4315 0.6155 0.9525 0.9975
0.95 0.2575 0.4375 0.6075 0.9625 0.9995

ρ = 0.80 0.50 0.3665 0.6250 0.8450 0.9995 1.0000
0.95 0.3950 0.6845 0.8870 0.9990 1.0000

ρ = 0.50 0.50 0.6190 0.9105 0.9795 1.0000 1.0000
0.95 0.5925 0.8990 0.9745 1.0000 1.0000

ρ = 0.10 0.50 0.7000 0.9380 0.9950 1.0000 1.0000
0.95 0.6870 0.9340 0.9925 1.0000 1.0000

ρ = 0 0.50 0.6375 0.9220 0.9925 1.0000 1.0000
0.95 0.6340 0.9115 0.9920 1.0000 1.0000
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Table 3.15: KPSS pre-test: Power (against equation 3.12)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.2035 0.2830 0.4060 0.5780 0.6095
0.95 0.1615 0.2780 0.3620 0.5295 0.5985

ρ = 0.99 0.50 0.1640 0.2565 0.3390 0.4840 0.5080
0.95 0.1720 0.2425 0.3150 0.4405 0.4650

ρ = 0.95 0.50 0.1520 0.2015 0.2645 0.4270 0.5385
0.95 0.1645 0.2395 0.2750 0.4075 0.5305

ρ = 0.90 0.50 0.1280 0.1910 0.2660 0.5150 0.7225
0.95 0.1370 0.1945 0.2790 0.5030 0.7475

ρ = 0.80 0.50 0.1510 0.2415 0.3200 0.6805 0.8975
0.95 0.1730 0.2815 0.3810 0.7505 0.9505

ρ = 0.50 0.50 0.2280 0.3540 0.5475 0.9060 0.9920
0.95 0.1875 0.3575 0.4955 0.9185 0.9980

ρ = 0.10 0.50 0.2495 0.4045 0.5900 0.9455 0.9995
0.95 0.2395 0.4200 0.6080 0.9620 0.9990

ρ = 0 0.50 0.2415 0.4175 0.6130 0.9495 0.9980
0.95 0.2150 0.3870 0.5780 0.9410 1.0000

T = 200
ρ = 1 0.50 0.2750 0.4590 0.6060 0.7235 0.7620

0.95 0.3115 0.4480 0.5855 0.7215 0.7255
ρ = 0.99 0.50 0.2770 0.4040 0.5060 0.5955 0.6320

0.95 0.2840 0.3940 0.5040 0.5720 0.6045
ρ = 0.95 0.50 0.1925 0.3100 0.3925 0.5765 0.7400

0.95 0.2100 0.2855 0.3790 0.5215 0.7120
ρ = 0.90 0.50 0.1865 0.2800 0.4035 0.6940 0.9120

0.95 0.1900 0.2670 0.3830 0.7230 0.9380
ρ = 0.80 0.50 0.1985 0.3645 0.4980 0.8950 0.9940

0.95 0.2245 0.3865 0.5570 0.9405 0.9990
ρ = 0.50 0.50 0.3565 0.6020 0.8020 0.9950 1.0000

0.95 0.3425 0.5840 0.7995 0.9955 1.0000
ρ = 0.10 0.50 0.4035 0.6570 0.8720 0.9995 1.0000

0.95 0.3760 0.6695 0.8550 0.9990 1.0000
ρ = 0 0.50 0.4005 0.6645 0.8760 0.9995 1.0000

0.95 0.4240 0.6975 0.8785 0.9985 1.0000
T = 500

ρ = 1 0.50 0.5950 0.8025 0.8800 0.8975 0.9000
0.95 0.5805 0.7925 0.8660 0.8995 0.8965

ρ = 0.99 0.50 0.5045 0.6920 0.7200 0.7510 0.7970
0.95 0.4665 0.6205 0.6925 0.7235 0.7185

ρ = 0.95 0.50 0.3330 0.4630 0.5400 0.8270 0.9595
0.95 0.3250 0.4480 0.5380 0.8435 0.9760

ρ = 0.90 0.50 0.3005 0.4905 0.6725 0.9570 0.9980
0.95 0.3135 0.4975 0.6645 0.9670 1.0000

ρ = 0.80 0.50 0.3735 0.6330 0.8470 0.9995 1.0000
0.95 0.3985 0.6895 0.8950 0.9990 1.0000

ρ = 0.50 0.50 0.6200 0.9095 0.9825 1.0000 1.0000
0.95 0.6155 0.9095 0.9830 1.0000 1.0000

ρ = 0.10 0.50 0.7340 0.9530 0.9980 1.0000 1.0000
0.95 0.7505 0.9595 0.9970 1.0000 1.0000

ρ = 0 0.50 0.6985 0.9500 0.9970 1.0000 1.0000
0.95 0.7015 0.9480 0.9980 1.0000 1.0000
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Finally, we also compare our new test with the IVX test which bases on the the

predictive regression and is expected to have good power against regression alterna-

tives when xt is mildly integrated, local-to-unity or I(1) and yt and xt−1 share the

same order of integration. Using the same DGP as Tables 3.1, 3.6 and 3.11, Tables

3.16–3.18 present size and finite sample power for the IVX test. For the values of

Cz and δ, we follow Magdalinos and Phillips (2009b) and Kostakis, Magdalinos and

Stamatogiannis (2010)’s recommendations and choose cz = −1, δ = 5/6. Table 3.16

shows the rejection rates for the IVX tests are quite reliable when ρ are not that far

from one. However, the size distortion problem still exists as ρ approaches to zero,

which may confirm that the IVX method is invalid in stationary cases.

For the power part, although the IVX test exhibits very good power against

balanced alternative (3.11) that both yt and xt are set to be (near) integrated, as we

showed in Theorem 1, it has little power against the unbalanced alternative (3.12)

which is more reasonable in practice. Table 3.18 confirms this point. Moreover,

when ρ is close or equal to one, the power does not seem to improve as we move

further into the alternative, nor as the sample size becomes larger. For example,

even for a sample size of 500 and γ = 0.5, the power is only about 5.6% for ρ = 1

and σ12 = 0.50.
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Table 3.16: The IVX method: Size

ρ σ12 = 0 0.25 0.50 0.75 0.95

T = 100

1.000 0.0595 0.0520 0.0585 0.0570 0.0510

0.990 0.0685 0.0555 0.0610 0.0590 0.0655

0.950 0.0610 0.0685 0.0465 0.0695 0.0535

0.900 0.0590 0.0745 0.0655 0.0565 0.0665

0.800 0.0700 0.0700 0.0620 0.0515 0.0470

0.500 0.0760 0.0685 0.0655 0.0715 0.0595

0.100 0.1185 0.1270 0.1225 0.1090 0.1130

0.000 0.1455 0.1290 0.1250 0.1090 0.1220

T = 200

1.000 0.0575 0.0440 0.0590 0.0520 0.0570

0.990 0.0475 0.0575 0.0640 0.0565 0.0565

0.950 0.0695 0.0615 0.0650 0.0625 0.0545

0.900 0.0710 0.0555 0.0580 0.0690 0.0580

0.800 0.0610 0.0610 0.0450 0.0555 0.0575

0.500 0.0760 0.0735 0.0810 0.0640 0.0750

0.100 0.1470 0.1415 0.1485 0.1275 0.1395

0.000 0.1580 0.1520 0.1665 0.1405 0.1520

T = 500

1.000 0.0485 0.0540 0.0495 0.0495 0.0610

0.990 0.0485 0.0590 0.0510 0.0435 0.0530

0.950 0.0660 0.0660 0.0520 0.0650 0.0490

0.900 0.0740 0.0565 0.0635 0.0520 0.0540

0.800 0.0495 0.0510 0.0535 0.0565 0.0485

0.500 0.1080 0.1160 0.1035 0.0985 0.1105

0.100 0.1985 0.1915 0.2010 0.2055 0.1955

0.000 0.2145 0.2220 0.2235 0.2120 0.1945
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Table 3.17: The IVX method: Power (against equation 3.11)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.9000 0.9775 0.9960 0.9995 1.0000
0.95 0.8820 0.9615 0.9930 1.0000 1.0000

ρ = 0.99 0.50 0.8850 0.9735 0.9940 1.0000 1.0000
0.95 0.8510 0.9505 0.9850 0.9995 1.0000

ρ = 0.95 0.50 0.7370 0.9265 0.9755 0.9990 1.0000
0.95 0.7425 0.9085 0.9640 0.9995 1.0000

ρ = 0.90 0.50 0.6390 0.8570 0.9565 0.9990 1.0000
0.95 0.5910 0.8030 0.9360 0.9990 1.0000

ρ = 0.80 0.50 0.4730 0.7025 0.8810 0.9965 1.0000
0.95 0.4560 0.7105 0.8705 0.9920 1.0000

ρ = 0.50 0.50 0.3010 0.4910 0.6840 0.9715 0.9990
0.95 0.3140 0.5055 0.6950 0.9590 0.9990

ρ = 0.10 0.50 0.2215 0.3740 0.5055 0.8850 0.9880
0.95 0.2130 0.3620 0.5075 0.8475 0.9825

ρ = 0 0.50 0.1875 0.3175 0.4705 0.8340 0.9795
0.95 0.2075 0.3155 0.4905 0.8325 0.9785

T = 200
ρ = 1 0.50 0.9935 0.9995 1.0000 1.0000 1.0000

0.95 0.9875 0.9990 1.0000 1.0000 1.0000
ρ = 0.99 0.50 0.9910 0.9990 1.0000 1.0000 1.0000

0.95 0.9805 0.9970 1.0000 1.0000 1.0000
ρ = 0.95 0.50 0.9440 0.9955 1.0000 1.0000 1.0000

0.95 0.9220 0.9920 1.0000 1.0000 1.0000
ρ = 0.90 0.50 0.8380 0.9725 0.9990 1.0000 1.0000

0.95 0.8505 0.9675 0.9955 1.0000 1.0000
ρ = 0.80 0.50 0.6880 0.9210 0.9890 1.0000 1.0000

0.95 0.7110 0.9245 0.9825 1.0000 1.0000
ρ = 0.50 0.50 0.4625 0.7325 0.9000 0.9990 1.0000

0.95 0.4595 0.7095 0.8775 0.9980 1.0000
ρ = 0.10 0.50 0.2980 0.4840 0.6665 0.9765 0.9995

0.95 0.2820 0.4760 0.6525 0.9660 0.9995
ρ = 0 0.50 0.2540 0.4350 0.6405 0.9625 0.9990

0.95 0.2720 0.4475 0.6350 0.9680 0.9970
T = 500

ρ = 1 0.50 1.0000 1.0000 1.0000 1.0000 1.0000
0.95 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.99 0.50 1.0000 1.0000 1.0000 1.0000 1.0000
0.95 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.95 0.50 1.0000 1.0000 1.0000 1.0000 1.0000
0.95 0.9980 1.0000 1.0000 1.0000 1.0000

ρ = 0.90 0.50 0.9930 1.0000 1.0000 1.0000 1.0000
0.95 0.9890 1.0000 1.0000 1.0000 1.0000

ρ = 0.80 0.50 0.9535 1.0000 1.0000 1.0000 1.0000
0.95 0.9400 0.9985 1.0000 1.0000 1.0000

ρ = 0.50 0.50 0.7140 0.9335 0.9910 1.0000 1.0000
0.95 0.7030 0.9205 0.9895 1.0000 1.0000

ρ = 0.10 0.50 0.3800 0.6635 0.8715 0.9995 1.0000
0.95 0.4400 0.7150 0.8895 0.9985 1.0000

ρ = 0 0.50 0.4255 0.6665 0.8745 0.9995 1.0000
0.95 0.4270 0.6895 0.8645 0.9970 1.0000
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Table 3.18: The IVX method: Power (against equation 3.12)

ρ σ12 0.10 0.15 0.20 0.35 0.50
T = 100

ρ = 1 0.50 0.0580 0.0630 0.0620 0.0550 0.0720
0.95 0.0680 0.0620 0.0650 0.0805 0.0815

ρ = 0.99 0.50 0.0520 0.0570 0.0585 0.0595 0.0790
0.95 0.0725 0.0635 0.0690 0.0650 0.0830

ρ = 0.95 0.50 0.0705 0.0925 0.1025 0.1350 0.1625
0.95 0.0560 0.0865 0.0885 0.1035 0.1380

ρ = 0.90 0.50 0.0870 0.1030 0.1325 0.2025 0.3125
0.95 0.0595 0.0920 0.1020 0.1635 0.2340

ρ = 0.80 0.50 0.1200 0.1725 0.2430 0.5040 0.7745
0.95 0.1280 0.1745 0.2430 0.5035 0.8575

ρ = 0.50 0.50 0.2455 0.4125 0.6140 0.9505 0.9995
0.95 0.2495 0.4290 0.6520 0.9720 1.0000

ρ = 0.10 0.50 0.1870 0.3155 0.5275 0.8760 0.9890
0.95 0.2265 0.3595 0.5325 0.8925 0.9935

ρ = 0 0.50 0.2100 0.3280 0.4650 0.8540 0.9815
0.95 0.1925 0.3230 0.4500 0.8105 0.9825

T = 200
ρ = 1 0.50 0.0525 0.0710 0.0605 0.0605 0.0750

0.95 0.0485 0.0490 0.0550 0.0465 0.0595
ρ = 0.99 0.50 0.0515 0.0575 0.0570 0.0625 0.0610

0.95 0.0545 0.0615 0.0645 0.0635 0.0660
ρ = 0.95 0.50 0.0845 0.1050 0.1075 0.1645 0.2190

0.95 0.0665 0.0765 0.0885 0.1115 0.1565
ρ = 0.90 0.50 0.1065 0.1365 0.1935 0.3490 0.5420

0.95 0.0955 0.1235 0.1565 0.2900 0.4785
ρ = 0.80 0.50 0.1890 0.3230 0.4605 0.8365 0.9845

0.95 0.1460 0.2410 0.3725 0.8495 0.9995
ρ = 0.50 0.50 0.3825 0.6735 0.8345 0.9995 1.0000

0.95 0.4040 0.6790 0.8960 0.9995 1.0000
ρ = 0.10 0.50 0.3240 0.5285 0.7410 0.9825 0.9995

0.95 0.3050 0.5105 0.7370 0.9835 0.9995
ρ = 0 0.50 0.2360 0.4225 0.6095 0.9565 0.9975

0.95 0.2445 0.4170 0.6220 0.9540 0.9985
T = 500

ρ = 1 0.50 0.0600 0.0575 0.0505 0.0535 0.0555
0.95 0.0570 0.0580 0.0595 0.0630 0.0640

ρ = 0.99 0.50 0.0505 0.0695 0.0705 0.0840 0.0845
0.95 0.0565 0.0590 0.0545 0.0840 0.0840

ρ = 0.95 0.50 0.0880 0.1300 0.1550 0.2490 0.3560
0.95 0.0885 0.1220 0.1455 0.2110 0.3100

ρ = 0.90 0.50 0.1590 0.2270 0.3615 0.7090 0.9275
0.95 0.1375 0.2160 0.2925 0.6725 0.9565

ρ = 0.80 0.50 0.3745 0.6445 0.8710 0.9995 1.0000
0.95 0.3615 0.6375 0.8770 1.0000 1.0000

ρ = 0.50 0.50 0.6550 0.9260 0.9950 1.0000 1.0000
0.95 0.6685 0.9270 0.9945 1.0000 1.0000

ρ = 0.10 0.50 0.4560 0.7530 0.9215 0.9995 1.0000
0.95 0.4420 0.7365 0.9050 1.0000 1.0000

ρ = 0 0.50 0.4375 0.6885 0.8970 0.9995 1.0000
0.95 0.3920 0.6545 0.8620 0.9975 1.0000
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3.5.4 Sensitivity to Parameter Choice

In the preceding simulations, we set the parameter c in the weight function λ(U, S)

to be 0.006. As shown by the large sample distribution theory in Section 3, the

variations in the finite sample behaviour of our tests because of the precise choice

of c should diminish as the sample size is increased. When we increase the sample

size to 1000 (this is very close to the sample size used in the empirical application.),

Table 3.19 confirms that the choice of the parameter c has little effect on the size

of the test. All results using our test t are quite reliable in either the nonstationary

case or the stationary case, and much better than t0 or t1.

3.6 Application

To test the market efficiency/constant risk premium hypothesis, we apply our

test to monthly excess stock returns, employing a variety of commonly used pre-

dictors including dividend price ratios, earnings price ratios, book-to-market ratios,

T-bill rates and other nine variables. Both single and multiple predictors cases are

presented. We also compare our test with other tests– the standard regression-based

test (t0 or W0), the covariance-based test (t1 or W1), two pretest-based tests and

the IVX test (tIV X or WIV X). Different methods have different conclusions on re-

gressors’ predictive power. More specifically, for the dividend-price ratio, previous

literature such as Viceira (1997), Torous, Valkanov, and Yan (2004) and Maynard

and Shimotsu (2009) show only modest evidence of predictability. However, some

other previous studies including Campbell and Yogo (2006) and Camponovo, Scaillet

and Trojani (2013) find dividend-price ratio is a strong predictive variable for stock

returns.
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3.6.1 Data

Excess Return: The excess return on the market is calculated as Rm − Rf ,

where Rm is the market return and Rf is the risk-free rate. In particular, Rm is

proxied by the CRSP value-weighted return on all NYSE, AMEX, and NASDAQ

stocks, and Rf is 1-month Treasury bill rate. This source is from Kenneth French’s

online data library. The sample preiod is from January 1927 to December 2012. We

also report test results for two subsamples: 1927–1951 and 1952–20125.

The excess return is always our dependent variable. Our set of 13 independent

variables comes from Amit Goyal’s website6, which is an updated version of the

dataset used in Goyal and Welch (2008). Following Cenesizoglu and Timmermann

(2008), we classify these predictors into four categories.

(1). Valuation ratios

Dividend Price Ratio (D/P): The dividend price ratio is the different between

the log of dividends and the log of stock prices. It is calculated as ln((dt + · · · +

dt−11)/pt) where dt are dividends paid on the S&P 500 index and pt are prices.

Earnings Price Ratio (E/P): The earnings price ratio is the different between

the log of earnings and the log of stock prices. It is calculated as ln((et+···+et−11)/pt)

where et are earnings on the S&P 500 index and pt are prices.

Book-to-market Ratio (B/M): The book-to-market ratio is calculated by

dividing the book value of the previous year by the current level of the DJIA and

taking logarithm.

(2). Bond yield measures

Treasury Bill Rate (TBL): The three-month Treasury bill rate.

5We follow the previous literature in breaking the sample at 1951 (see Campbell, Lo, and
MacKinlay, 1997).

6The data are available at http://www.hec.unil.ch/agoyal/.
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Long-term Yield (LTY): The long-term government bond yield.

Term Spread (TMS): The difference between the long-term government bond

yield and the three-month Treasury-bill rate.

Default Yield Spread (DFY): The DFY is the difference between BAA and

AAA- rated corporate bond yields and taking logarithm.

Default Return Spread (DFR): The DFR is the difference between long-term

corporate bond returns and long-term government bond returns.

(3). Estimates of equity risk

Long-term Return (LTR): The return on long-term government bonds.

Stock Variance (SVAR): The SVAR is the sum of squared daily returns on

S&P 500 index.

Cross-sectional equity premium (CSP): The CSP measures the relative val-

uations of high- and low-beta stocks. The available data for this variable is from

May 1937 to December 2002.

(4). Corporate fiance variables

Net Equity Expansion (NTIS): The ratio of one year moving sums of net

issues by NYSE listed stocks to the total end-of-year market capitalization of NYSE

stocks.

Dividend Payout Ratio (D/E): The difference between the log of dividends

and the log of earnings.

3.6.2 Single-Predictor Model

Table 3.20 presents the test results using the lagged value of each of the 13

variables as the predictor, these results are calculated in the same way as in the

simulations 7.

7For better comparison with the predictive model literature such as the IVX method, the de-
meaned version of the estimator was considered.
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We first focus on the results using the whole sample period (the first panel of

Table 3.20). Test statistics based on our method are presented in the first row. Our

approach would point to the conclusion that the null hypothesis of no predictability

can be rejected (at a level lower than 5%) when the lagged series of the book-to-

market ratio, the long-term yield and the cross-sectional premium are alternatively

used as predictors. In particular, the strongest evidence for predictability is docu-

mented for the cross-sectional premium (at a level much lower than 1%). There is

some weak evidence in favour of the predictive ability of the T-bill rate (at a level

around 10%), while there is no such evidence for other variables including the div-

idend price ratio and the earning price ratio to be employed as predictors of next

month excess market returns. These results demonstrate that the overall evidence

on short-term predictability is very weak. The seventh and ninth rows present the

time series properties of the data applying two different tests: the DF-GLS test

and the KPSS test. Based on the two tests, strong evidence of stationarity appear

for the series of the default return spread. D/P, LTY, CSP and NTIS show strong

nonstationary properties. For the rest of the data series, the conclusions are ambigu-

ous. This confirms previous studies concerning the uncertainty about the time series

properties of these predictors and shows the importance of the use of local to unity

frameworks. Row six and row eight show results using two pretest-based methods.

Because of the ambiguous conclusions about the time series properties of the data,

tDFGLS based on the DF-GLS tests and tkpss based on the KPSS often choose differ-

ent values. Moreover, the results show the selections of the pretests depend much on

the choice of the significance level. For example, if 1% siginificance level was taken,

the DF-GLS test should not reject the unit root hypothesis and select t1 for B/M,

changing the test result from positive 1.704 to negative 2.172, and the KPSS test

will accept the stationarity hypothesis and select t0 for TMS, increasing tkpss from
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0.246 to 1.547. All of these demonstrate the restrictions of pretest-based methods.

When using the whole sample period, the covariance-based test t1 has the same

conclusions with our test due to the large weights of t1 when calculate t for most of

these predictors. In the third row, eight of the thirteen predictors have λ(U, S) that

are more than 0.95, in accordance with the fact that most of these predictors are

highly persistent. The default return spread is an exception. Because of its stationary

property, the λ(U, S) for DFR is almost zero and t is approximately equal to t0. This

is very important in practice considering the restrictions of the covariance-based tests

in stationary cases, although in this particular case, the difference between t1 and t0

is not big.

Comparing our results with the ones applying the IVX test (the last column of

the panel), the IVX test shows overall stronger evidence against the null hypothesis

of no predictability than ours when the whole sample period is used. For example,

the IVX test is able to reject the null hypothesis using D/P, B/M, LTR and NTIS

respectively at the 5% level or lower. The ability of E/P, TMS or DFR to predict fu-

ture stock returns is on the borderline of statistical significance. Since DFR appears

strong stationary properties based on the DFGLS and the KPSS tests, its ability

of prediction shown by the IVX methodology is suspectable because of the size dis-

tortion problem in stationary cases. On the other hand, the previous evidence on

the signifiance of CSP and LTY (and TBL) as a predictors is overturned when the

IVX approach is employed. Since strong evidence of nonstationarity are shown for

both of CSP and LTY, this may support the point that the IVX test has little power

against the unbalanced fixed alternatives.

To check if the degree of predictability has changed through time, we split the

whole sample period into two halves. The first sub-period is from January 1927 to
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December 1951 and the second one is from January 1952 to December 20128. The

results are provided in the second and the third panels of Table 3.20.

For the subsample of 1927-1951, there is no significant evidence in favour of

predictability for excess market returns in the case of single predictor, except for CSP.

The numbers of λ(U, S) again confirm most of the vatiables are highly persistent.

However, D/P reports quite small λ(U, S) (0.299) along with the significant DFGLS

statistic and the small KPSS statistic, which means D/P appears stationary in this

sub-period.

We next examine the sub-period of 1952-2012. A large number of predictive

regression literature has reported that the stock return predictability becomes much

weaker for post-1952 data (for example, Campbell and Yogo, 2006). They argue that

the disappearance of predictability is due to structural change in financial markets

or improved market efficiency. While our tests show totally different conclusions and

much stronger evidence in favour of predictability is documented. Six predictors

(book-to-market ratio, T-bill rate, long-term yield, stock variance, cross-sectional

premium and net equity expansion) are found to predict excess market returns at

the 5% level or lower. On the other hand, only three predictors (D/P, TMS and

SVAR) are shown to have predictive power when the IVX approach is employed.

This finding is in line with Kostakis, Magdalinos and Stamatogiannis (2010), who

reported much weaker evidence in favour of predictability in their post-1967 sample

using the IVX method.

Overall, when employing only one variable as the predictor, seven variables (D/P,

E/P, TMS, DFY, DFR, LTR and D/E) are found to have no predictive power in

either the whole sample period or any of the two sub-periods we consider. Therefore,

8When CSP is employed, the first sub-period is from May 1937 to December 1951 and the second
one is from January 1952 to December 2002.
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the inability of these variables to predict next month excess market returns is robust

to the choice of the sample period of analysis and it cannot be solely attributed to

parameter instability. Since the dividend price ratio is one of the most commonly

used variables and our test casts doubt on its predictive power, researchers who use

it for conditional asset pricing tests and conditional performance evaluation should

be aware of this problem. On the other hand, our test finds cross-sectional premium

(CSP) is the most reliable predictor of future excess stock returns, which supports the

arguments of Polk et al. (2006). The predictable pattern persists through time and

reflects time-varying risk premia rather than mispricings (Fama, 1991). Regarding

the rest of the variables, B/M and LTY are also strong predictors and found to

predict next month’s excess returns when using the whole sample period and the

post-1952 sub-period.

3.6.3 Multivariate Model

Since multivariate models are widely employed in practice, for example, the tests

of the semi-strong form of market efficiency, we also present test results using selec-

tive predictor combinations. The excess market return is treated as the dependent

variable and a subset of the previously regressors are used as predictors. It should

be mentioned that we exclude from this exercise the cross-sectional premium due

to the lack of data. We examine various combinations. The selection scheme is as

follows: First, We classify these 12 predictors into four categories—valuation ratios,

bond yield measures, estimates of equity risk, and corporate fiance variables. Second,

we separate significant predictors from those that were not significant (for example,

when the whole sample period is employed, B/M and LTY are separated from other

variables.). Third, within each of these two subsets, we select one predictor from

each categories to produce a bivariate predictor and run tests. For the whole sample
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period, we exclude the default return spread from this exercise since it is the only

one stationary variable and consider 31 combinations. The test results are omited to

present to save space. The combination of the two individually significant variables

B/M and LTY are found to be jointly significant at 1% level, showing very strong

evidence in favour of predictability. On the other hand, there is no such evidence

for all combinations of the individually insignificant predictors (TBL and D/E are

jointly significant at about 10% level). In summary, when using the whole sample

period, no strong evidence supporting the predictive ability of D/P, E/P, TBL, TMS,

DFY, LTR, SVAR, NTIS and D/E is found, neither individually nor jointly.

For the first sub-period, we select combinations following the previous sheme. it

should be mentioned that we combine D/P and DFR due to their strong stationary

properties. There are no significant combinations.

When the second sub-period is employed, all of the two-predictor combinations

within the subset of individually significant variables are found to be jointly signif-

icant at 1% level or even lower. Most strong evidence for the joint significance are

documented when combinations of B/M and LTY, B/M and SVAR, TBL and SVAR,

LTY and SVAR, and LTY and NTIS are employed in the model. On the other hand,

for no combination of the individually insignificant predictors (DFR is excluded from

this exercise) can we reject the null hypothesis of no predictability even at the 10%

level.
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4. CONCLUSION

In the first essay, we use a mixture copula to model the temporal dependence

of a univariate time series (copula-based stationary Markov model). To handle mis-

specification cases, we estimate the mixture copula by a model average approach.

Our theorem shows that the model average approach can generate an asymptotically

optimal estimator in the sense of achieving the infeasible lowest possible squared esti-

mation losses. Simulations show that compared with competing methods, our model

average approach can generate estimation results with the smallest mean square er-

rors, especially when the copula model is misspecified. Extreme conditional quantiles

estimated by the model average estimators are also more accurate than those esti-

mated by other methods. In empirical studies, we apply the model average method

to estimate the temporal dependence of the daily returns of several equity indexes.

Estimation and predicting results support the superiority of our method in capturing

the temporal dependence structures of financial returns.

In the second essay, we propose a new test that is a data-dependent weighted

average of the regression-based test and the covariance-based test. This test can au-

tomatically select the regression-based test statistic when predictors are stationary,

and select the covariance-based test statistic when predictors are (near) nonstation-

ary. Our test yields a test statistic that has a standard χ2 limiting distribution

regardless of whether the regressors are stationary, local-to-unity or I(1), i.e., no

prior knowledge of the orders of integration is required. The new test does not force

the dependent variable and predictors to share the same order of integration under

the alternative hypothesis. This property is useful because in practice, the dependent

variable (such as financial returns) usually appears to be stationary while predictors
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(such as dividend yields or interest rates) may be (near) nonstationary. Simulations

show that this test could successfully control the size while maintaining a strong

power in either balanced or unbalanced cases.
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APPENDIX A

We denote θ̂ =
(
θ̂
>
1 , . . . , θ̂

>
K

)>
, assuming K is fixed. Define the fixed dimension

of θ̂ by κ. We also define θ∗k as the pseudo true value

θ∗k = arg max
θk

E [logck(G0(Yt−1), G0(Yt);θk)] , k = 1, ..., K,

where ck(G0(Yt−1), G0(Yt);θk) is the copula density of Ck(G0(Yt−1), G0(Yt);θk). If

the copula model is correctly specified, then θ∗k equals the true copula parameter θ0.

Otherwise, ck(·, ·;θ∗k) is the closest to the true copula density in terms of KLIC. De-

note θ∗ =
(
θ∗>1 , . . . ,θ∗>K

)>
. Let C∗(w) = Ĉ(w) |θ̂=θ∗ , νt(w) = ∂C(Ũt;θ̂k,w)/∂θ̂|θ̂=θ̄t

,

for t = 1, . . . , T , where θ̄t is between θ̂ and θ∗, Q(w) = {ν1(w), . . . , νT (w)}>,

L∗T (w) = ‖C∗(w)−C0‖2, and ξT = infw∈W L
∗
T (w).

Furthermore, for the kth copula, let Ck {v1, v2;θk} ≡ Ck(v;θk) and ck {v1, v2;θk} ≡

ck(v;θk). Denote lk(v;θk) ≡ logck(v;θk), lθ,k(v;θk) ≡ ∂lk(v;θk)/∂ θk, lθθ,k(v;θk) ≡

∂2lk(v;θk)/∂θk∂θ
>
k , lθj,k(v;θk) ≡ ∂2lk(v;θk)/∂uj∂θ

>
k for j = 1, 2, and

Ut ≡ (F (Yt−1), F (Yt)).

The following regularity conditions are needed to prove the asymptotic optimality

as stated in Theorem 1.

Condition C.1: θ∗ is a finite dimensional vector with constant components. θ∗

takes value in a compact subset of Rκ, and θ̂ − θ∗ = Op(T
−1/2).

Condition C.2: The elements of T × κ matrix Q(w) are uniformly bounded.

Condition C.3 There exists a sequence cT → 0 such that Tξ−2
T ≤ cT almost surely.

Remark: Condition C.1 requires that θ∗ takes values in a compact set. Therefore,
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C.1 rules out some cases such as the true distribution is normal, while one fits a

tν-distribution model and estimate the degree of freedom ν (because the true value

ν∗ = ∞). Condition C.1 also requires that the convergence rate of θ̂ to the pseudo

true value θ∗ is Op(T
−1/2). Proposition 4.3 in Chen and Fan (2006) shows that

Condition C.1 holds true when the copula model is correctly specified. When the

copula model is misspecified, Condition C.1 can be proved in the same way as that

for Proposition 4.3 in Chen and Fan (2006), except to replace their true copula

parameter value by the pseudo-true value θ∗k. The assumptions for showing Condition

C.1 are quite general, including: (i) θ∗k are in the interior of the parameter space for

k = 1, ..., K, (ii) {Yt}T
t=1 is stationary β mixing with the appropriate decay rate, (iii)

lθ,k(u;θk), lθθ,k(u;θk) and lθj,k(u;θk) satisfy some standard smooth conditions for

k = 1, ..., K and j = 1, 2, and (iv) lθ,k(Ut;θk), lθθ,k(Ut;θk) and lθj,k(Ut;θk) satisfy

some appropriate moment conditions for k = 1, ..., K and j = 1, 2.

With Conditions C.1 and C.2, we have that uniformly for w ∈ W ,

T−1/2
∥∥∥Q(w)(θ̂ − θ∗)

∥∥∥2

≤ T−1/2
∥∥∥θ̂ − θ∗∥∥∥2

λmax

{
QT(w)Q(w)

}
= T−1/2Op(T

−1)Op(T )

= Op(T
−1/2), (A.1)

where λmax(·) denotes the maximum eigenvalue of a matrix (since C.2 implies that

λmax(·) = Op(T )), and

T−1/2 {C∗(w)−C0}>Q(w)(θ̂ − θ∗) = T−1/2Op(T
1/2) = Op(1), (A.2)

where we also used the fact that the elements of vector |C∗(w)−C0| are uniformly
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bounded by 2.

In Condition C.3, we imposes a limitation on the situation to apply our asymp-

totic results. Condition C.3 requires that ξT grow at a rate faster than T 1/2 , which

implies all candidate copulas are misspecified. This condition is similar to condition

7 of Ando and Li (2014). Considering the fact that empirical researchers usually

take a small copula candidate set, the misspecification problem should be common.

Also please note that the assumption that all candidate models are misspecified is a

common condition used in proving optimality properties of model average estimators.

We first present a Lemma which will be used in the proof of Theorem 1.

Lemma 1: If CVJ(w) can be written as CVJ(w) = LT (w) + aT (w) + bT , where

LT (w) = ‖Ĉ(w)−C0‖2 is defined in (2.12), L∗T (w) = ‖C∗(w)−C0‖2 with C∗(w) =

Ĉ(w) |θ̂=θ∗ , aT (w) is a function satisfying (A.3) below, and the last term bT is not

related to w. If, as T →∞,

sup
w∈W

|aT (w)|
L∗T (w)

= op(1), (A.3)

sup
w∈W

∣∣∣∣LT (w)

L∗T (w)
− 1

∣∣∣∣ = op(1), (A.4)

and there exists a positive constant c such that

ξT ≥ c almost surely, (A.5)

then Theorem 1 holds true.

Proof: See the proof of Lemma 1 of Long et al. (2015).
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One can easily see that

CV (w) =
∥∥∥Ĉ(w)− C̃

∥∥∥2

=
∥∥∥{Ĉ(w)−C0

}
+
(
C0 − C̃

)∥∥∥2

= LT (w) +
∥∥∥C0 − C̃

∥∥∥2

+ 2
{
Ĉ(w)−C0

}> (
C0 − C̃

)
= LT (w) + 2Ĉ(w)>(C0 − C̃)− (C0 + C̃)>(C0 − C̃)

≡ LT (w) + ΞT (w)− (C0 + C̃)>(C0 − C̃),

where the last term has nothing to do with the weight vector w, and

LT (w) =
∥∥∥Ĉ(w)−C0

∥∥∥2

=
∥∥∥{Ĉ(w)−C∗(w)

}
+ {C∗(w)−C0}

∥∥∥2

=
∥∥∥Ĉ(w)−C∗(w)

∥∥∥2

+ ‖C∗(w)−C0‖2

+ 2 {C∗(w)−C0}>
{
Ĉ(w)−C∗(w)

}
= L∗T (w) +

∥∥∥Ĉ(w)−C∗(w)
∥∥∥2

+ 2 {C∗(w)−C0}>
{
Ĉ(w)−C∗(w)

}
≡ L∗T (w) + ΠT (w).

First we obtain equation (A.5) directly from Condition C.3. Hence from Lemma 1,

Theorem 1 is valid if the following hold:

sup
w∈W

|ΞT (w)|
L∗T (w)

= op(1) (A.6)

and

sup
w∈W

|ΠT (w)|
L∗T (w)

= op(1). (A.7)
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Using Taylor expansion,

Ĉ(w)−C∗(w) = Q(w)(θ̂ − θ∗). (A.8)

where Q(w) = Q(w;θ1, . . . ,θT ) with θt’s being between the line segment of θ̂ and

θ∗ (the detailed definition of Q(w) can be found in the first paragraph of Appendix

A).

From (A.8), (A.1), (A.2), and Condition C.3 we can show

sup
w∈W

|ΠT (w)|
L∗T (w)

≤ ξ−1
T sup

w∈W

∥∥∥Ĉ(w)−C∗(w)
∥∥∥2

+ 2ξ−1
T sup

w∈W

∣∣∣{C∗(w)−C0}>
{
Ĉ(w)−C∗(w)

}∣∣∣
=

T 1/2

ξT
T−1/2 sup

w∈W

∥∥∥Q(w)(θ̂ − θ∗)
∥∥∥2

+ 2
T 1/2

ξT
T−1/2 sup

w∈W

∣∣∣{C∗(w)−C0}>Q(w)(θ̂ − θ∗)
∣∣∣

= op(1),

which is (A.7).

Define F0(·) as the true distribution function of (Yt−1, Yt). It is a standard result

that
√
T sup

y∈R2

| F0(y)− C̃(y) |= Op(1). (A.9)

From cT → 0, (A.9), and the fact that any element of vectors |Ĉk| are bounded
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by 1, we have

c
1/2
T T−1/2

∣∣∣∣∣
T∑
t=1

Ck(Ũt; θ̂k)
{
C0(U0t;θ0)− C̃(Yt, Yt−1)

}∣∣∣∣∣
≤ c

1/2
T T 1/2T−1

T∑
t=1

∣∣∣C0(U0t;θ0)− C̃(Yt, Yt−1)
∣∣∣

= c
1/2
T T 1/2T−1

T∑
t=1

∣∣∣F0(Yt, Yt−1)− C̃(Yt, Yt−1)
∣∣∣

= op(1), (A.10)

which, along with Condition C.3 and the assumption that K is fixed, implies that

ξ−1
T sup

w∈W

∣∣∣Ĉ(w)>(C0 − C̃)
∣∣∣

= ξ−1
T sup

w∈W

∣∣∣∣∣
K∑
k=1

w>k Ĉ
>
k (C0 − C̃)

∣∣∣∣∣
≤

K∑
k=1

T 1/2

ξT
T−1/2

∣∣∣Ĉ>k (C0 − C̃)
∣∣∣

=
K∑
k=1

T 1/2

ξT

∣∣∣∣∣T−1/2

T∑
t=1

Ck(Ũt; θ̂k)
{
C0(U0t;θ0)− C̃(Yt, Yt−1)

}∣∣∣∣∣
≤

K∑
k=1

c
1/2
T

∣∣∣∣∣T−1/2

T∑
t=1

Ck(Ũt; θ̂k)
{
C0(U0t;θ0)− C̃(Yt, Yt−1)

}∣∣∣∣∣
=

K∑
k=1

c
1/2
T T−1/2

∣∣∣∣∣
T∑
t=1

Ck(Ũt; θ̂k)
{
C0(U0t;θ0)− C̃(Yt, Yt−1)

}∣∣∣∣∣
= op(1), (A.11)

where the second ‘≤’ holds almost surely. Therefore, we obtain (A.6) from (A.11).
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APPENDIX B

Proof of Theorem 1: We denote the long run covariance matrices associated

with ut by:

Ω =

Ωyy Ωyυ

Ωυy Ωυυ

 = F (1)ΣF (1)′ =
∞∑

h=−∞

Eutu
′
t−h,

Λ =

Λyy Λyυ

Λυy Λυυ

 =
∞∑
h=1

Eutu
′
t−h.

To apply Theorem 1 of Kostakis et al. (2010), we first need to show

T
1−(α∧δ)

2 (Λ̂ευ − Λyυ)→p 0 (B.1)

Notice that

Λ̂ευ =
1

T

M∑
h=1

(1− h

M + 1
)

T∑
t=h+1

ε̂tυ̂
′
t−h

=
1

T

M∑
h=1

(1− h

M + 1
)

T∑
t=h+1

(yt − β̂OLSxt−1)[υt−h − (R̂OLS −R)xt−h−1]′

Using Lemma 7.2 of Kostakis et al. (2010) and the facts that β̂OLS = Op(T
−α) as

well as by equation (11) of Magdalinos and Phillips (2009a), R̂OLS − R = Op(T
−α),

we have

Λ̂ευ =
1

T

M∑
h=1

(1− h

M + 1
)

T∑
t=h+1

ytυ
′
t−h +Op(

M

Tα
)
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Then we follow the proof of Lemma 1 (i) of Kostakis et al. (2010) and obtain

1

T

M∑
h=1

(1− h

M + 1
)

T∑
t=h+1

ytυ
′
t−h

= Λyυ +Op(
M

T 1/2
) +Op(

1

M
)

Since α > 1/2, we get the following equation

Λ̂ευ − Λyυ = Op(max

{
M

T 1/2
,

1

M

}
).

Finally, applying the conclusion of Lemma 1 (ii) of Kostakis et al. (2010): let

M = L(T )T γ for some slowly varying function L and γ > 0. When δ ∈ (2
3
, 1), a

choice of γ = 1/4 guarantees the validity of (B.1).

Having the condition of (B.1), we now can apply Theorem 1 of Kostakis et al.

(2010)

(i) T
1+δ
2 vec(β̂IV X) → dMN

(
0,Σβ̂IV X

)
if

2

3
< δ < min(α, 1)

(ii) T
1+δ
2 vec(β̂IV X) → dN

(
0,Υβ̂IV X

)
if

1

2
< α ≤ δ,

and Theorem 2 of Kostakis et al. (2010)

WIV X = vec(β̂IV X)′[(X ′PZ̃X)−1 ⊗ Ω̂εε]
−1vec(β̂IV X)

→ dχ
2(p).

Proof of Lemma 1:

(i). limT→∞m
qE(λ̂y,∆x − λy,∆x) = −kq

∞∑
h=1

Γ∆xy(h)hq since Lemma 1 in MS has

shown limT→∞m
qE(λ̂y,∆xi − λy,∆x) = −kq

∞∑
h=1

Γ∆xiy(h)hq for each i.
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(ii). λ̂y,∆x = (λ̂y,∆x1 , λ̂y,∆x2 , · · ·λ̂y,∆xp)′ −→
p

λy,∆x as T → ∞ since Lemma 1 in

MS has shown λ̂y,∆xi −→
p
λy,∆xi for each i.

(iii). MS (2009) gives the proof of limT→∞ Tm
−1var(λ̂y,∆xi)=

4π2fyy(0)f∆xi∆xi(0)
∫∞

0
k2(x)dx for each i. What we need to show is

limT→∞ Tm
−1cov(λ̂y,∆xi , λ̂y,∆xj)=4π2fyy(0)f∆xi∆xj(0)

∫∞
0
k2(x)dx for i 6= j.

Observe that

Tm−1cov(λ̂y,∆xi , λ̂y,∆xj) =
T

m

T−1∑
h′=1

T−1∑
h=1

k(
h′ − 1

m
)k(

h− 1

m
)cov(Γ̂∆xiy(h

′), Γ̂∆xjy(h))

(B.2)

Hannan (1970, p.313) gives

cov(Γ̂∆xiy(h
′), Γ̂∆xjy(h)) = T−1

∞∑
u=−∞

{Γ∆xi∆xj(u)Γyy(u+ h− h′)

+Γ∆xiy(u+ h)Γy∆xj(u− h′) + k∆xiy∆xjy(0, h
′, u, u+ h)}φT (u, h′, h)

where k∆xiy∆xjy(0, h
′, u, u+h) is the fourth cumulant of (yt,∆xit,∆xjt) and φT (u, h′, h)

is given by

φT (u, h′, h) =


= 0, u ≤ −T + h′; = 1− h′−u

T
,−T + h′ ≤ u ≤ 0;

= 1− h′

T
, 0 ≤ u ≤ h′ − h; = 1− h+u

T
, h′ − h ≤ u ≤ T − h;

= 0, u ≤ T − h

Therefore, following MS (Proof of Lemma 1), (B.2) is equal to

1

m

T−1∑
h′=1

T−1∑
h=1

k(
h′ − 1

m
)k(

h− 1

m
) (B.3)

×
∞∑

u=−∞

[Γ∆xi∆xj(u)Γyy(u+ h− h′)φT (u, h′, h)] + o(1) + o(1)
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Let v = h′ − h and we can write (B.3) as

T−2∑
v=−T+2

∞∑
u=−∞

Γ∆xi∆xj(u)Γyy(u− v){ 1

m

∑′

h
φT (u, h′, h)k(

h+ v − 1

m
)k(

h− 1

m
)} (B.4)

where
∑′

h runs only for {h : 1 ≤ h ≤ T − 1 and 1 ≤ h+ v ≤ T − 1}.

Following Hannan (1970, pp.314-315), the expression in braces converges to∫∞
0
k2(x)dx. And

∑T−2
v=−T+2

∑∞
u=−∞ Γ∆xi∆xj(u)Γyy(u − v) → 4π2fyy(0)f∆xi∆xj(0) as

T →∞. Finally we have limT→∞ Tm
−1cov(λ̂y,∆xi , λ̂y,∆xj) = 4π2fyy(0)f∆xi∆xj(0)∫∞

0
k2(x)dx for i 6= j.

Proof of Lemma 2: Following Theorem 2 of MS, we have
√

T
m

(λ̂y,∆xi−λy,∆xi)→d

N(0, Vi) for each i. To use Cramer-Wold device, we need to prove that for any real

p× 1 vector a such that a′a = 1,

a′
√
T

m
(λ̂y,∆x − λy,∆x)→d N(0,a′Va).

Observe

a′
√
T

m
(λ̂y,∆x − λy,∆x) =

√
T

m
(a′λ̂y,∆x − a′λy,∆x)

=

√
T

m
[
T−1∑
h=1

k(
h− 1

m
)

1

T

T∑
t=h+1

yt(a
′∆xt−h)

−
∞∑
h=1

cov(yt, a
′∆xt−h)]

=

√
T

m
(λ̂y,a′∆x − λy,a′∆x)

Then we can simply apply Theorem 2 of MS to z∗t = (yt, a
′∆x)′=
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 1 : 01×p

0 : a′

F (L)ςt = F ∗(L)ςt and obtain

√
T

m
(λ̂y,a′∆x − λy,a′∆x)→d N(0,a′Va).

Proof of Lemma 7: We know that β̂ = Op(T
−1) when xt are I(1) or local to

unity. For simplicity, we calculate
̂
Avar(β̂) as

̂
Avar(β̂)] = (

1

T

T∑
t=1

xt−1x
′
t−1)−1s2

T

where

s2
T =

1

T

T∑
t=1

(yt−x′t−1β̂)2 =
1

T

T∑
t=1

y2
t −2(

1

T

T∑
t=1

ytx
′
t−1)β̂+ β̂′(

1

T

T∑
t=1

xt−1x
′
t−1)β̂ (B.5)

The first term of (B.5) is Op(1), the second term is Op(T
−1) since

T∑
t=1

ytx
′
t−1 =

Op(T ) and β̂ = Op(T
−1), and the third term is Op(T

−1)Op(T )Op(T
−1) = Op(T

−1).

Therefore, s2
T = Op(1), and

̂
Avar(β̂)] = Op(T

−1)Op(1) = Op(T
−1). Finally, we have

W0 = T β̂′[
̂
Avar(β̂)]−1β̂ = Op(1).

Proof of Lemma 8: Lemma 4 in MS has shown that if Assumption 5, 2, and 3

hold, and k(x) is Lipschitz(1), then for each i = 1, · · ·, p,

√
T (λ̂y,∆xi − λy,∆xi) = Oe(1) +BT + op(1)
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where BT satisfying

BT =

 0, if Eytxit−h = 0 for all h ≥ 2

O(T 1/2m−q), otherwise.

Therefore,
√
T (λ̂y,∆x) = Oe(1) under the null, and

√
T (λ̂y,∆x) = Op(T

1/2) under

the alternative.

Define Ṽ as

Ṽ =
1

m

T−1∑
h′=1

T−1∑
h=1

k(
h′ − 1

m
)k(

h− 1

m
)

×
∞∑

u=−∞

k̃(
u

m̃
)Γ̂∆x∆x(u)k̃(

u+ h− h′

m̃
)Γ̂yy(u+ h− h′),

Γ̂∆x∆x(u) = [T−1

T∑
t=u+1

∆xjt∆xi,t−u]p×p.

Next, we show the order of Ṽ. The proof closely follows MS. In views of equations

(B.3) and (B.4) in the proof of Lemma 1, each element in Ṽ reduces to

T−2∑
v=−T+2

∞∑
u=−∞

k̃(
u

m̃
)Γ̂∆xi∆xj(u)k̃(

u− v
m̃

)Γ̂yy(u− v)

{∫ ∞
0

k2(x)dx+ o(1)

}
.

Since m̃/T → 0 and k̃(x) = 0 for all | x |> 1, the above equation can be simplifies

to

m̃∑
v=−m̃

k̃(
u

m̃
)Γ̂∆xi∆xj(u)

m̃∑
u−v=−m̃

k̃(
u− v
m̃

)Γ̂yy(u− v)

{∫ ∞
0

k2(x)dx+ o(1)

}
. (B.6)

The order of magnitudes for the variance and bias of
∑m̃

v=−m̃ k̃( u
m̃

)Γ̂∆xi∆xj(u)

are given in Theorem 9 and 10 respectively of Hannan (1970, pp. 280-283), and
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f∆xi∆xj(0) = 0 under Assumption 5. Therefore, Ṽ = Op(m̃
−q̃+m̃1/2T−1/2). �
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