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ABSTRACT 

 

The accurate computation of forces and corresponding deformation of cages 

subjected to waves and current loading is critical to the design of mooring systems for 

fish farms. In the present work, a complete methodology describing the numerical 

modeling of net structures and its corresponding interaction with mooring lines and 

floating platforms has been developed. The effect of every element on the cage over the 

global response and the effective numerical representation of these components of a cage 

system are studied. 

The numerical model of cages is built and calculated using the commercial 

software OrcaFlex v9.6a. In this software, an equivalent net model is created using an 

array of cylinders connected by buoys. This model has the same wet mass, axial stiffness 

and projected area as the prototype net, allowing for the accurate calculation of forces 

and deformations over the cage due to wave and current loading. A variable drag 

coefficient formulation is implemented in the software, based on the relative normal 

velocity between line elements and fluid. This drag coefficient is fed into the modified 

version of the Morison equation, which accounts for relative motion, to obtain the drag 

force on the netting using the cross flow principle. In addition, shielding effect is 

included in the calculations by using riser interaction models. Furthermore, blockage due 

to large deformations of flexible cages is also accounted for by the derivation of a semi 

empirical formulation for drag coefficient on Raschel nets. 
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Careful validation of the present methodology is conducted by comparing 

numerical results with experimental published data. Validation is presented for a single 

cage, which includes a surface flexible collar, netting, ballast and mooring lines. Applied 

loads include current, regular waves and a combination of regular waves and current to 

evaluate interaction effects. The influence of wave kinematics stretching models on 

mooring line tension results is also analyzed. Additionally, calculations considering 

irregular waves and following current are performed for the completeness of the study. 

Further analyses consider the coupled response of a mooring/platform/cage 

system. The system intends to describe the interaction of a single cage and a feeder 

vessel installed in deep water. Effects of the location of the cage in the water column and 

the net selection on the dynamics of the platform are studied. The results are 

qualitatively compared against field measurements in a similar installation 6 miles 

offshore of Kona Hawaii. 

This study can directly be applied to the calculation of the coupled response of 

multiple technologies such as floating offshore wind turbines, wave energy conversion 

and offshore fish farming. 
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1. INTRODUCTION 

 

1.1 Background and literature review 

Aquaculture production has shown a constant rise in the last decades due to the 

high demand for fish in the world, particularly in Asia, in addition to a plateau on the 

wild fish capture. These trends can be seen in Figure 1.1 extracted from FAO (2014). 

 

 

Figure 1.1 World capture fisheries and aquaculture production (FAO, 2014) 

 

The National Oceanic and Atmospheric Administration NOAA defines 

aquaculture as the process of “breeding, rearing, and harvesting of plants and animals in 

all types of water environments including ponds, rivers, lakes, and the ocean”. In this 

study, we focus our attention on cage marine aquaculture which can be described as the 

production of fish in cages installed in open waters. 

Traditional cage aquaculture has been widely developed in countries such as 

Norway and Chile, where near shore areas are populated with fish farms mainly for 
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salmon production and few other species. A typical installation of a fish farm including 

an array of cages, mooring system and feeder vessel is presented in Figure 1.2. 

 

 

Figure 1.2 Traditional cage fish farm in the south of Chile (Courtesy of 

http://www.sermar.cl/) 

 

The basic component on these fish farms is the cage which contains the fish until 

it reaches the caliber to be processed and sold in different markets. The most common 

cages currently installed are square cages made up of steel frames and HDPE circular 

cages. Both types of cages are presented in Figure 1.3. 

 

 

Figure 1.3 Circular and square cages (Courtesy of http://www.akvagroup.com/) 
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New alternatives to traditional cages, such as Closed Fish Production System 

(CFPS) are being considered due to the ability to better control the growing conditions 

of the fish. Its dynamic response under steady current differs from net based structures 

and further analyses are necessary before this concept can be used in exposed locations 

(Lader et al., 2014). 

Regardless of its shape and building materials, the basic components of a cage 

system are: a floating surface collar which serves as buoyancy reserve and working 

platform, lower collar which holds the ballast necessary to extend the net and maintain 

maximum volume when exposed mainly to current loading, and the net which encloses 

the fish. For traditional netting, e.g. nylon, besides the main net which is in direct contact 

with the fish, an external net is used to keep predators away from the fish. New netting 

materials such as Predator-X, UR-30, Bekaert and Kikko-net are able to sustain shark 

attacks which allow the use of a single net, increasing the internal flow, promoting 

constant water exchange inside the cage. These materials are particularly useful for 

offshore operations. In addition, these netting materials have anti fouling properties 

which reduces the need for constant maintenance of cages. 

The rises of diseases affecting the quality of the fish and environmental concerns 

about the impact of production centers on local ecosystems have raised questions about 

the future of the industry. In the early years of aquaculture, production centers were 

located in coastal areas close to each other and usually near to populated areas to reduce 

the costs of transport of supplies, workers and the final product (Cifuentes et al., 2014). 

Generally, closed bays were selected to avoid wave loading over the structures. 
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However, in these locations, there is not enough water exchange which depletes oxygen 

and basic nutrients creating challenges to keep the fish alive. A partial solution to these 

issues is the forced injection of oxygen inside the cages; thus increasing production 

costs. In addition, calm water promotes the growth of biofouling in the nets increasing 

the structural mass and drag forces in addition to significantly reduce the flow inside the 

cage. 

To supply the demand, fish cages have increased in volume and biomass density 

(Jensen et al., 2010). As the industry expanded, remote locations, close to shore, were 

utilized for aquaculture adding costs and operational challenges. As space has become 

scarcer, the industry is now looking for new horizons in terms of a more environmentally 

friendly and profitably manner of production. This leads to the logic development of 

offshore aquaculture facilities. 

In offshore locations, space is unlimited and the presence of strong current 

reduces risks of diseases or low nutrients concentration (Sims and Key, 2011). In 

addition, strong current speeds favor the development of the fish since it is swimming 

most of the time as if it was on wild conditions. In exposed locations, a whole new 

technological challenge has arisen. In order to endure the environmental conditions 

offshore, including higher waves, currents and winds, new cages and feeder systems 

need to be designed. This expansion requires numerical tools to aid in the design, 

installation and operation of offshore fish farms. These tools need to be able to predict 

forces and deformations of cage components in addition to describe the interaction 

between cage, feeder platform and mooring system. Thus, the development of a method 
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to accurately predict the dynamic response of the different components in a fish farm, 

and their interaction in high energy seas is the main focus of the present work. 

The analysis of forces over nets is a relatively new discipline which only started 

in the 90’s when cage aquaculture began to play an important role in Norway. 

Meanwhile in the U.S., University of New Hampshire, funded by NOAA/Sea Grant 

established an experimental site to start the development of the offshore aquaculture 

industry in waters off the cost of New England. 

Given the complexity of the hydroelastic problem of forces over flexible 

structures, studies have focused on a combination of experimental and numerical work 

considering current and wave loading. These studies range from the analysis of flow 

around the basic cruciform structure form by threads and a single knot up to the full 

description of complex flow patterns on an array of cages including fouling and its 

biological effects over the fish (Klebert et al., 2013). 

The first attempt to calculate forces over net panels can be found in the early 

work of Aarnes and Loland (1990). In their study, empirical formulations for drag force 

based on experimental work were presented. In this work, the load over a net panel was 

calculated based on net geometry and angle of attack of the flow with respect to a net 

panel. In 1993, the first work to calculate forces over a series of cages was done by 

Løland (1993) including an empirical formulation for the speed loss of the flow when 

crossing the netting, effect better known as shielding effect. This study showed the 

influence of shielding effect on the deformation, oxygen concentration and drag force 

over cages installed in array configuration. 
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Later, numerical models were developed specifically for nets. The pioneer work 

in this matter was done in University of New Hampshire by Tsukrov et al. (2000). In this 

analysis, an equivalent truss element is used to describe the net. In their study, it was 

addressed that a simple truss element is not able to model the inertia and net buoyancy of 

the prototype net at once without adding extra mass to the system. To solve this problem 

Tsukrov et al. (2002) derived a consistent finite-element model, which represents inertial 

and structural characteristics of the netting material. This code uses Morison equation to 

calculate forces over the net and has been tested against experimental results and field 

measurements showing good agreement under different load scenarios (DeCew et al., 

2010; Fredriksson et al., 2007, 2003b; M. Shainee et al., 2013). When using Morison 

equation (Morison et al., 1950) to predict forces and deformation over nets, a crucial 

point is the selection of Cd values to determine the viscous drag portion of the force . 

Nowadays, the formulation by DeCew et al. (2010) which describes Cd as a function of 

Re is widely used. However, this model tends to over predict the loads at high current 

speeds where deformation of the net is significant. Experimental results have 

emphasized the urge to include shielding effect into numerical models (Kristiansen and 

Faltinsen, 2015). The reduction of fluid velocity due to the presence of the net can reach 

up to a 20 % of the incoming velocity depending on the Sn of the net, according to 

laboratory data using plane net panels (Bi et al., 2013). This reduction is even larger 

when multiple cages are installed in array form. Once installed, biofouling on nets leads 

to an increase on Sn and a larger blockage of the flow. 
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Laboratory and field measurements confirm this phenomenon and its relation 

with a drastic increase in drag force (Lader et al., 2015; Swift et al., 2006) and volume 

reduction on the cage (DeCew et al., 2013). Numerical application of shielding effect 

has been limited due to its complexity. Efforts range from a simple reduction of velocity 

over the downstream panel (Lader and Enerhaug, 2005) to the latest inclusion of wake 

models suitable for riser arrays (Endresen et al., 2013) and variations of those models 

(Cifuentes and Kim, 2015a, 2014). These models still show some deviations from 

experimental data under high currents and large deformations. Under these conditions, a 

flexible net pen shows a substantial volume reduction. In this condition, a significant 

blockage of the fluid flow leads to a reduction of the drag force when compared to the 

same cage at undeformed conditions (Kristiansen et al., 2015). This is mainly due to the 

deflection of the flow below and around the cage (Gansel et al., 2012). This blockage is 

even more significant for nets with high solidity ratios which experience changes on the 

direction of the flow even at mild current speeds (Moe-Føre et al., 2014). Most of the 

previously described research has been focused on current loading since viscous drag 

load significantly adds to the total force over net structures (Kristiansen and Faltinsen, 

2015). In reality, for an offshore location there will always be a combination of waves 

and current. Hence, the analysis of wave loading plays a relevant role on the 

hydrodynamic analysis of cages. Even more relevant is the interaction between current 

and wave loading since the order of magnitude can be similar depending on current 

speed and wave steepness. It is important to mention that wind loads are not considered 

in the analysis of fish farms since the surface collar does not have a significant portion of 
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its structure exposed to the elements, thus wind loading does not influence the response 

of the system. 

For the prediction of the hydrodynamic response of cages under multiple load 

scenarios, numerical models present significant advantages when compared to 

experiments. Numerical simulations can be run for multiple environmental scenarios in a 

relatively short period of time. Numerical models are able to determine load levels and 

predict failure due to overload of components or fatigue. Existing numerical tools are 

based on a Morison element model (Bi et al., 2014a; Cifuentes and Kim, 2015a; Moe-

Føre et al., 2014), consistent finite element (Tsukrov et al., 2002) and screen model 

(Kristiansen and Faltinsen, 2012; Lader and Fredheim, 2006). These methods have been 

validated against experiments, considering current and wave loading. As for wave 

loading, most studies consider a highly stiff surface collar using constant values for 

inertia and drag coefficients. This does not correspond to the highly flexible nature of 

HDPE pipes, consequently, careful analysis of the modeling of the surface collar must be 

taken into account in the numerical approach, given that the load over the floater has a 

great influence on the total load and motions of the cage under wave conditions 

(Kristiansen and Faltinsen, 2015).  

At the same time, few studies consider wave current interaction for irregular 

seas. Therefore, it is of relevance to find a rational method to select drag and inertia 

coefficients for netting and collar under irregular sea states. Under irregular wave 

loading, a cage using a rigid collar will follow the wave elevation at low wave 

frequencies. Further, a linear relation can be seen between wave elevation, mooring line 
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tension, surge and heave motion for frequencies up to 1.0 Hz (Dong et al., 2010). For 

high wave frequencies, negligible motion is observed and high damping is present in the 

system (Xu et al., 2011). Under wave loading, studies regarding the dynamic response of 

the floating collar have shown the relevant effect of the flexural modes over the global 

response of the cage (Endresen, 2011; Faltinsen et al., 2011). For the whole cage system, 

mooring line forces are strongly dependent on wave elevation, while volume reduction is 

driven by current loading. As for the surface collar, large deformations are expected due 

to the low bending stiffness of the HDPE material typically used (Li et al., 2013a). 

Another component of the response of the floating collar is the variable buoyancy force 

due to the constant piercing of the floater on the water surface (Li et al., 2013b). 

Modeling of bending and axial stiffness of floater and netting, in addition to the 

approximation of wave kinematics up to the instantaneous free surface are critical, given 

the significant effect of these parameters on the tension force on mooring lines 

(Kristiansen and Faltinsen, 2015). Under experimental conditions, most of the analyses 

have been conducted considering open cages. Top and bottom of the cage are open in 

order to simplify the model and do not induce further uncertainties into the results. This 

is particularly important when laboratory data is used as calibration for numerical codes. 

Recently new studies including more complex cage configuration, including a closed 

bottom, have shown the complexity of the deformation of the net and how contact 

between the netting and mooring elements could potentially cause failure in high current 

and wave conditions (Kristiansen et al., 2015). 
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Another aspect of the analysis of nets and cages is the flow pattern inside and 

around the system. Most of the analyses are focused on the determination of forces, 

which can be done using structural principles; however, when considering multiple 

cages it is interesting to know the behavior of the flow, as it goes through the net, in 

order to define the optimal separation between cages. Numerically this can be done 

using Computational Fluid Dynamics (CFD) techniques describing the net as a porous 

media. This approach relies on experimental data to find the resistance coefficients. This 

procedure has revealed that for net panels without including deformation, parameters 

such as flow angle of attack, net geometry and distance between panels highly influence 

the total drag load (Patursson et al., 2010; Zhao et al., 2013). CFD results reveal the 

acceleration of the flow below the net panel due to conservation of mass on the flow 

field. An even more complex model using fluid structure interaction was developed by 

Bi et al. (2014b) showing that current speed is reduced up to 8% inside a cage and this 

reduction can reach up to 47% on the fourth cage on an inline configuration. Turner and 

Reid (2015) experimentally studied the wake behind an array of cages and found that for 

close proximity between cages, the array behaves as a single body being the upstream 

cages the one taking most of the current loading. In addition, their study shows that an 

even greater reduction of velocity can be found inside a cage when the production 

netting is surrounded by the predator net which significantly increases blockage effect. 

In traditional fish farms installed in protected areas, the mooring system of the 

cage array and the feeder platform are independent. This allows increasing the safety 

factor of the system since the load from the platform is not transferred to the cage 
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mooring lines. On the other hand, in harvesting operations in coastal areas and in daily 

operations of offshore fish farms, a vessel or platform will share the mooring system and 

the entire system mooring/platform/cage will be coupled in terms of hydrodynamic 

response. Under such a case, the coupled response of the system must be calculated to 

determine loads on mooring and umbilical lines as well as to predict the motions of the 

platform and cage. A first approach to this coupled problem was numerically performed 

by Jia et al. (2012) using the interaction of a well boat and a cage during harvesting 

operations. The reduction of wave elevation due to the presence of the well boat was 

analyzed and its effect over the Froude Krylov forces and hydrodynamic coefficients for 

the surface collar were obtained showing small changes compared to an isolated cage. 

The model used in this analysis applied a static force to represent the effect of the net 

and a rigid surface collar, thus its results are only valid for small wave amplitudes and 

weak currents. More complete analyses have been performed as a part of the work 

performed during the completion of this PhD program by the author considering a single 

cage installed in 6000 ft. water depth and anchored to the seabed by a single line. 

Irregular waves and following current are applied over a cylindrical cage with a flexible 

upper collar. The effect of location of the cage over the water column reveals the 

advantages of placing the cage under water, even under normal operational conditions in 

terms of mooring tension levels (Cifuentes et al., 2014). A similar research shows the 

significant effect of net selection on the tension loads on the different components of the 

mooring system; in addition to the response of the cage itself under strong shear currents 

(Cifuentes and Kim, 2015b). A similar system as the one described in the two last 
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references, was installed and successfully operated from November 2013 to September 

2014 6 miles offshore Kona, Hawaii, the system is presented in Figure 1.4. This fish 

farm showed similar motions of the cage/platform as the ones predicted in the numerical 

calculations. In this exposed location, survival rate of fish was close to 98% .These facts 

are the primary sources of motivation for further investigation of the full interaction 

between cages and platforms, since offshore aquaculture proves to be a feasible 

alternative to increase fish production to supply the constant demand. 

 

 

Figure 1.4 Offshore fish farm (Courtesy of http://www.kampachifarm.com/) 

 

1.2 Objective and scope 

The final goal of this research is to develop a computationally efficient and 

robust methodology to describe the forces and deformations of flexible cages and to 

investigate the coupled response of a fish farm including mooring/platform/cage 

interaction under irregular waves and following current. 
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In order to achieve the previous objectives, several steps need to be taken since 

the final system considers the response of a vessel and a flexible structure. As for the 

cage, a Morison force model will be used to describe forces on the netting and 

surface/bottom collar of the cage. The analyses of the cage will be carried out using the 

commercial software OrcaFlex v9.6 as the main solver. 

Several studies using a similar force model show a lack of accuracy when 

compared to experimental data for high current speed and high Sn values (Moe-Føre et 

al., 2015). Under these conditions, reduction of fluid velocity inside the cage plays a 

significant role and needs to be accounted for in a numerical tool. A complete analysis of 

the effect of flow velocity reduction inside the net is carried out using wake models 

developed for riser interaction. By the use of these models it is expected to increase the 

level of accuracy of calculations involving drag force and deformation of highly flexible 

cages. This part of the analysis is tested against the experimental and numerical results 

presented by Lader and Enerhaug (2005). 

In addition, when net elements are subjected to different current velocities, the 

determination of drag coefficient must be time dependent. A variable formulation for Cd 

will be included into the calculations in order to be able to obtain precise values 

according to each flow condition. 

At high deformations of a net, flow is blocked by the presence of the net and 

instead of flowing throughout the net; it is deflected to go around and below the cage. 

Under these conditions, the cage acts similar to a solid body and the drag force versus 

velocity curve changes its slope at a low rate for experimental measurements while for 
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numerical models the slope stay almost constant. To account for blockage effects at high 

current speed and solidity ratios of the net, the determination of Cd values must consider 

not only flow regime, but net geometry as well based on Sn values. A new formulation 

for drag coefficient values is derived in this work, implemented in OrcaFlex and later 

validated against published experimental data. 

After the validation of the numerical methodology using steady current is 

complete, a validation using waves and current is carried out. Previously, most research 

has considered a stiff surface collar e.g. (Xu et al., 2013); nevertheless, a surface collar 

withstand most of wave loading and its deformation significantly changes mooring line 

tension records. Thus, an accurate numerical description of the floater bending stiffness, 

drag an inertia forces is carried out and the results compared to recently publish 

experimental data. Since linear wave theory is used when modelling different sea states, 

wave kinematics above mean water level need to be accounted for using an 

approximation method. For large mass offshore platforms, the differences between 

extrapolation models do not induce large differences on the loads. On the other hand, 

there is no evidence whether the selection of a particular method will increase the 

accuracy of the calculations when motions and forces over a cage are analyzed. This is 

another important topic in the present work where three models for extension of wave 

kinematics above mean water level are studied leading to the conclusion that Wheeler 

stretching technique proves to be the adequate model when calculating mooring line 

tension on flexible cages. Additionally, a rational method for the selection of drag and 
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inertia coefficients under irregular waves and following currents is proposed considering 

a realistic bending stiffness, including shielding and blockage effect. 

Once the numerical model for the cage is completely validated, the coupled 

response of the vessel and cage is studied. In the present study, an offshore fish farm is 

modeled in OrcaFlex including mooring lines, feeder vessel and a single cage. This 

model is based on a real installation allowing a qualitative comparison of the 

performance of the numerical model. Net selection and position of the cage over the 

water column will be analyzed. Several complex load scenarios including storm and 

survival conditions are studied. This is the first analysis of this kind corresponding to the 

first fish farm installed in deep water (6000 ft.). 

The full interaction, translated into forces and motions of platform, cage and 

connecting elements is expected to be analyzed, finding useful information for the future 

developments of the offshore aquaculture industry. 

In addition, an analysis of a new concept, a Submerged Floating Tunnel (SFT) is 

included to show further applications of the analysis of slender members under wave 

loading. This analysis helps to evaluate the relevance of the application of variable drag 

coefficient values on slender members. Further, the analysis of a SFT compares the 

results of OrcaFlex and CHARM3D helping to validate the mooring line solver in both 

codes. Tension on mooring lines and motion of a submerged body are obtained and 

successfully compared to experimental data. This is one of the few numerical analyses in 

a concept that could potentially benefit areas with fjords and straits to improve 

connectivity. 
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2. LOADS ON FLOATING PLATFORMS AND NET STRUCTURES 

 

2.1 Introduction 

Since two different numerical tools are used in the present work, its fundamentals 

will be separately presented. First an overview of first order wave theory is included 

since this is the base of the calculations of forces on platforms when exposed to irregular 

waves. Later the theory of wave loads over floating platforms is summarized including 

diffraction and radiation problems. Then, the description of the numerical definition of 

the elements used in OrcaFlex to model a cage is included with emphasis on the 

structural and hydrodynamic force model. In addition, a description of the numerical 

scheme used to solve the equation of motion is presented. In order to include viscous 

effects on the platform, the description of Morison’s formula applications is included. 

 

2.2 Wave theory formulation 

In order to calculate forces and motion of floating platforms, diffraction and 

radiation theory needs to be revised. The first step is to review wave theory to follow 

with the determination of forces and moments on floating platforms. 

As described by Faltinsen (1993), the flow is assumed to be incompressible, 

inviscid and irrotational. A convenient manner to mathematically represent the fluid 

velocity vector V(x,y,z,t) = (u,v,w) at time t at a particular point x = (x,y,z) is by the 

concept of velocity potential Φ. Velocity and potential are correlated by the gradient of 

Φ. 
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Φ Φ ΦΦ i j k
x y z

V ∂ ∂ ∂
≡ + +

∂ ∂
=

∂
∇  (2.1) 

In this expression i, j and k are unit vectors along x, y and z axis. A fluid is 

irrotational when the vorticity vector Vω =∇× is zero on the fluid domain. The 

incompressibility condition means that 0V∇ • = . From the previous conditions it follows 

that the velocity potential must satisfy Laplace equation. 

2 2 2

2 2 2 0Φ Φ Φ
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (2.2) 

To complete this problem, proper boundary conditions need to be defined at the 

sea surface and seabed. Once these conditions are defined, the Boundary Value Problem 

(BVP) can be solved. 

Boundary conditions include kinematic and dynamic boundary conditions 

applied at the sea surface while impermeability condition is applied at the seabed. 

Bottom boundary condition expresses that there is no flow going through the seabed and 

it is defined as the partial derivate of the potential along the normal direction to the 

seabed pointing towards the fluid domain. 

0Φ
n

∂
=

∂
 (2.3) 

Kinematic free surface boundary condition implies that a fluid particle on the 

free surface is assumed to stay on the free surface. This is express as: 

0Φ Φ Φ                                  on     z= (x,y,t)
t x x y y z
η η η

η
∂ ∂ ∂ ∂ ∂ ∂

+ + − =
∂ ∂ ∂ ∂ ∂ ∂

 (2.4) 
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In this expression, (x,y,t)η  represents the instantaneous free surface elevation at 

the position (x,y) at time t. Dynamic free surface boundary condition states that the water 

pressure is equal to the atmospheric pressure along the free surface. 

22 21 0
2

Φ Φ Φ Φg             on       z= (x,y,t)
t x y z

η η
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟− + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 (2.5) 

Solving Laplace equation using the given nonlinear boundary conditions is 

difficult since we do not have information about the location of the free surface before 

the problem is solved. In order to obtain a solution, perturbation method is applied, 

assuming that wave amplitude is small when compared to a characteristic wavelength 

and body dimension. This can give us an approximate solution that is presented up to 

second order accuracy in this work. Using Taylor expansion, free surface conditions can 

be transferred form the instantaneous free surface to the mean water level at which z=0. 

Only linear terms are kept. 

(1) (1)

0Φ                               on     z=
t z
η∂ ∂

=
∂ ∂

 (2.6) 

(1)
(1) 0 0Φg                           on       z=

t
η

∂
− =

∂
 (2.7) 

The solution is now in the form of the first and second order velocity potential 

and free surface elevation. 

(1) ( cos sin )cosh ( )
cosh

i kx ky tigA k z dΦ =Re e                          
kd

θ θ ω

ω
+ −+⎡ ⎤−⎢ ⎥⎣ ⎦

 (2.8) 

(1) cos sin )=Acos(kx ky t             η θ θ ω+ −  (2.9) 

By combining the linear free surface boundary conditions we have. 
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2 (1) (1)

2 0Φ Φg =0                              on     z=
t z

∂ ∂
+

∂ ∂
 (2.10) 

If we substitute (1)Φ  on the combined free surface boundary condition, we obtain 

the linear dispersion relationship which relates wave period with wave length and water 

depth. 

2 tanh=gk (kd)                              ω  (2.11) 

The water particle velocities are obtain by taking the spatial derivative of (1)Φ  

(1)
( )

(1)
( )

(1)
( )

cosh ( )( , , ) Re cos
cosh

cosh ( )( , , ) Re sin
cosh
sinh ( )( , , ) Re
cosh

i kx t

i kx t

i kx t

Φ gkA k z du t x z = e    
x kd
Φ gkA k z dv t x z = e        

y kd
Φ igkA k z dw t x z = e             

z kd

ω ε

ω ε

ω ε

θ
ω

θ
ω

ω

− +

− +

− +

∂ +⎡ ⎤= ⎢ ⎥∂ ⎣ ⎦

∂ +⎡ ⎤= ⎢ ⎥∂ ⎣ ⎦

∂ − +⎡ ⎤= ⎢ ⎥∂ ⎣ ⎦
    

 (2.12) 

As for accelerations, these are obtained by taking derivatives of velocity with 

respect to time neglecting high order convective terms 

!u(t,x, z) ≈ ∂u
∂t

=Re −igkA cosh k(z + d )
cosh kd

ei (kx−ωt+ε ) cosθ
$

%
&

'

(
)   

!v(t,x, z) ≈ ∂v
∂t

=Re −igkA cosh k(z + d )
cosh kd

ei (kx−ωt+ε ) sinθ
$

%
&

'

(
)       

!w(t,x, z) ≈ ∂w
∂t

=Re gkA sinh k(z + d )
cosh kd

ei (kx−ωt+ε )$

%
&

'

(
)                

 (2.13) 

The above wave kinematics are especially useful when calculating forces in 

slender structures exposed to waves such as the surface collar. Wave kinematics are used 

to determine Cd and CM coefficients in Morison equation. 

The second order velocity potential and free surface elevation is given by. 
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(2) 2 (2 cos 2 sin 2 )
4

3 cosh 2 ( )
8 sinh

i kx ky tk z dΦ =Re A e                          
kd

θ θ ωω + −+⎡ ⎤−⎢ ⎥⎣ ⎦
 (2.14) 

(2) 2
3

cosh cos 2 sin 2 )
sinh

kd=A cos(2kx ky t             
kd

η θ θ ω+ −  (2.15) 

In the previous expressions A represents wave amplitude, 2 Tω π=  wave 

frequency in radians per second, T wave period, 2k π λ= wave number with λ being 

wave length, d is water depth, g acceleration of gravity and θ incident wave heading 

angle. 

To represent an irregular wave field, linear theory can be used by representing 

the sea surface elevation as the sum of a large number of individual wave components N 

with different amplitudes and random phase angles εi distributed between 0 and 2π. 

1
( , ) cos( )

N

i i i i
i

x t A k x t                          η ω ε
=

= + +∑  (2.16) 

Wave amplitudes can also be represented by a wave spectrum S(ω) from which 

the most commons are JONSWAP (Joint North Sea Wave Observation Project) and 

Pierson-Moskowitz. A wave spectrum is related to wave amplitudes as follows 

considering intervals of frequency ωΔ . 

21
2 i iA =S( )                        ω ωΔ  (2.17) 

When using a finite number of wave components, repetition of wave elevation 

time series is likely. To avoid this phenomenon, minor modifications to the sea surface 

elevation can be made as shown below. 
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'( )

1
( , ) Re i i i

N
i k x

i
i

x t Ae                         ω εη − +

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑  (2.18) 

where '
i i iω ω δω= +  and iδω  is a random perturbation number uniformly distributed 

between 2ω−Δ  and 2ωΔ . 

The following figure is included to better understand the relation between time 

and frequency domain representation S(ω) of water waves. 

 

 

Figure 2.1 Time and frequency domain representation of waves (Faltinsen, 1993) 

 

2.3 Wave loads on floating structures 

Once the numerical description of waves in the ocean environment is complete, 

the determination of forces and motion of a floating platform under such conditions is 

presented. When a large volume structure is included in the fluid domain, the wave field 

is disturbed by the platform. In addition to the incident wave field, waves diffracted by 

the presence of the platform are generated as well as radiated waves due to the wave 

induced motion of the platform. In case of slender bodies, where the characteristic length 
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is small compared to wave length, forces can be computed using Morison equation 

(Haritos and He, 1992). The same method is applied to account for viscous loads over 

the platform when current loading is applied. Diffraction/radiation theory is described in 

the following section. 

 

2.3.1 Diffraction/Radiation theory 

Diffraction forces are defined as forces over the platform when its motion is 

restrained in the presence of an incident wave field. On the other hand, radiation forces 

are those generated when the platform is externally excited and there is not incident 

waves in the fluid domain. Radiation forces include added mass, restoring force and 

radiation damping. To solve these forces, potentials for each component are defined. The 

total velocity potential ΦT  is now composed of incident potential ΦI, diffraction 

potential ΦD, and radiation potential ΦR. Total potential can be expressed as a 

perturbation series depending on wave slope parameter ε. 

( ) ( ) ( ) ( ) ( ) ( )

1 1
[ ]n n n n n n

T I D R
n n

Φ = Φ = Φ + Φ +Φ                        ε ε
∞ ∞

= =
∑ ∑  (2.19) 

where Φ(n) represents the nth order solution for Φ. In the present study, solutions up to 

first order are considered. 

As before, to solve the BVP, boundary conditions need to be applied. In the 

present case a body surface boundary condition is defined which states that the fluid has 

the same velocity as the floating body on the normal direction to the body surface. 
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T
n

Φ =V                   
n

∂

∂
 (2.20) 

where n is defined as the normal vector to the body surface and Vn is the normal velocity 

vector of the platform at its surface. 

Both diffraction ΦD, and radiation potential ΦR must satisfy the Sommerfeld 

radiation condition which implies that both potential vanish at a large radial distance r 

from the body. 

,
,lim D R

D Rr

Φ
r ikΦ =0                  

r→∞

∂⎛ ⎞
±⎜ ⎟∂⎝ ⎠

 (2.21) 

Once boundary conditions are defined, the solutions for first order are presented. 

 

2.3.2 First order boundary value problem 

The solution to the previous problem up to first order for the interaction between 

a freely floating platform and monochromatic waves is presented in this section. First, 

the first order total potential ΦT is written separating its temporal and spatial 

dependency. 

{ }

(1) (1) (1) (1)

(1) (1) (1) (1)

[ ]

Re [ ( , , )]
T I D R

i t
T I D R

Φ = Φ + Φ +Φ  

Φ = (x,y,z)+ (x,y,z)+ x y z e           ω

ε

φ φ φ −
 (2.22) 

Rewriting the first order incident potential (1)
Iφ as 

(1) cosh ( )
cosh

i
I

igA k z d=Re e                          
kd

φ
ω

•+⎡ ⎤−⎢ ⎥⎣ ⎦
k x  (2.23) 
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where k is the wave number vector defined as ( cos , sin ,0)k kθ θ and x is the position 

vector on the fluid, while θ represents the angle between the incident wave field and the 

positive x axis on the fluid domain. 

For the first order diffraction and radiation potential boundary value problem, the 

following boundary conditions apply. 

2 (1)
,D R=0                 φ∇  in the fluid (z<0) (2.24) 

2 (1)
,D Rg =0                 

z
ω φ

∂⎛ ⎞− +⎜ ⎟∂⎝ ⎠
 on the free surface (z=0) (2.25) 

(1)
,D R =0                 

z
φ∂

∂
 on the bottom (z=d) (2.26) 

(1)
(1)( )R =-i •                  

n
φ

ω
∂

+ ×
∂

n rξ α  on the body surface (2.27) 

(1)
,lim D Rr

r ik =0                  
r

φ
→∞

∂⎛ ⎞±⎜ ⎟∂⎝ ⎠
 at far field (2.28) 

In the previous boundary conditions r represents the position vector on the 

surface of the body, r is the radial distance from the origin ( 2 2 2r x y= + ) while n is the 

outward unit normal vector on the body surface of the platform. Translational (1)( )Ξ  and 

rotational (1)( )Θ motions of the platform up to first order are defined as follows. 

{ } { }(1) (1) (1) (1) (1) (1)
1 2 3Re                  , ,i te ω ξ ξ ξ−Ξ = =ξ ξ  (2.29) 

{ } { }(1) (1) (1) (1) (1) (1)
1 2 3Re                 , ,  i te ω α α α−Θ = =α α  (2.30) 
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Subscripts 1, 2 and 3 denote surge, sway and heave translational motion, while 

for rotational motion subscripts represent roll, pitch and yaw. Translational and 

rotational motion are referred to x, y and z axis respectably. Further simplification of 

notation for the first order six degree of freedom motions is carried out. 

(1)                                     for 1,2,3i i iζ ξ= =  (2.31) 

(1)
3                                    for 4,5,6i i iζ α −= =  (2.32) 

Using the previous concepts for motion, the radiation potential (1)
Rφ  can be 

define as follows. 

6
(1) (1)

1
R i i

i
φ ζ φ

=

=∑  (2.33) 

where (1)
iφ  represents the first order velocity potential of the rigid body motion with unit 

amplitude in the ith mode ,under no presence of incident waves. A solution is found 

when the free surface, bottom, far field and body boundary conditions are satisfied. 

Body boundary conditions on the body surface SB are defined in the next expressions. 

(1)

                                 1,2,3i
in i

n
φ∂

= =
∂

 (2.34) 

(1)

3( )                        1,2,3i
i i

n
φ

−

∂
= × =

∂
r n  (2.35) 

Similarly, for the first order diffraction potential (1)
Dφ , a new body surface 

boundary condition is defined in order to find the velocity potential. 
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(1) (1)

                         1,2,3D I i
n n
φ φ∂ ∂

= − =
∂ ∂

 (2.36) 

Once all the components of the first order problem are defined, the calculation of 

forces can be computed. 

  

2.3.3 First order potential forces 

Once diffraction (1)
Dφ  and radiation (1)

Rφ potentials have been solved, forces over 

the floating platform can be obtained as well as the free surface elevation. By following 

the perturbation method, we can express hydrodynamic pressure P(t) and free surface 

elevation η(t) up to first order as follows. 

(1)
(1)                              Φ   TP

t
ρ
∂

= −
∂

 (2.37) 

)
(1)

(11                        at 0      Φ  T z
g t

η
∂

= − =
∂

 (2.38) 

Once pressure is solved, the forces and moments over the platform can be 

directly obtained by integrating the pressure over the instantaneous wetted surface of the 

body S(t). 

1,2,3

( )
( )  4,5,6
B

B

i
S

i

i
S

Pn dS i

F t
P dS i

⎧ =
⎪⎪

= ⎨
× =⎪

⎪⎩

∫∫

∫∫ r n
 (2.39) 

The total first order force can be defined as the sum of its different components. 

(1) (1) (1) (1)
HS R EX= + +F F F F  (2.40) 
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In this expression, subscripts HS stands for hydrostatic force and moment, R represents 

force and moment contributions from the radiation potential while EX represents wave 

exciting forces from incident and diffraction wave potentials. 

Each component is now fully described. First, hydrostatic restoring forces and 

moment (1)
HSF are generated due to pressure changes induced by motions of the body and 

can be defined as follows. 

[ ]{ }(1) (1)
HS = −F K ζ  (2.41) 

where (1)ζ is the first order motion of the body and K represents the hydrostatic 

restoring stiffness matrix which components are defined as: 

33

34

35

44 22

45 12

46

55 11

56

( )

( )

 0

w

w f

w f

b g

b g

b g

b g

ij

K gA
K gA y
K gA x
K g S z mgz
K gS
K g x mgx
K g S z mgz
K g y mgy
Otherwise K

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

=

=

= −

= +∀ −

= −

= − ∀ +

= +∀ −

= − ∀ +

=

 (2.42) 

where Aw represented water plane area, (xf, yf) is the coordinate of the center of flotation 

of the body in the horizontal plane, (xb, yb, zb) represents the location of the center of 

buoyancy and (xg, yg, zg) represents the position of the center of gravity of the platform 

and 
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2
11

2
22

12

B

B

B

S

S

S

S x dS

S y dS

S xydS

=

=

=

∫∫

∫∫

∫∫

 (2.43) 

The second component on the total first order force comes from the radiation 

force (1)
RF . This includes added mass and radiation damping which are generated due to 

the outgoing waves formed by the forced first order motion of the floating body. (1)
RF can 

be defined as follows. 

[ ]{ }( )(1) (1)ReR =F f ζ  (2.44) 

where 

          , 1,2,...,6
B

i
ij j

S

f dS i j
n
φ

ρ φ
∂

= = − =
∂∫∫f  (2.45) 

The coefficients fij are complex being the real and imaginary parts dependent on 

the exciting frequency ω. Thus, coefficients take the form. 

2 a
ij ij ijf M i Cω ω= − −  (2.46) 

Finally, force and moment from radiation potential can be expressed in terms of 

added mass and radiation damping as follows. 

FR
(1) = Re M a!

"
#
$
!!ζ (1){ }+ C!" #$

!ζ (1){ }( )  (2.47) 

where Ma and C are the added mass and radiation damping matrices. 
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The last component in the calculation of the total first order forces are external 

forces and moments (1)
EXF which represent first order wave exciting components due to 

the incident and diffraction wave potentials. 

(1) Re ( )         1, 2,...,6
B

ji t
EX I D

S

Ae dS j
n

ω φ
ρ φ φ−

⎧ ⎫∂⎪ ⎪
= − + =⎨ ⎬

∂⎪ ⎪⎩ ⎭
∫∫F  (2.48) 

First order wave exciting forces are linearly dependent on wave amplitude A 

which is frequency dependent. A convenient method to define first order wave 

components is the Linear Transfer Function (LTF) which relates the exciting force to a 

unit amplitude incident wave ( (1) /EXLTF A= F ). 

 

2.3.4 Wave loads in time domain 

In previous sections, wave forces were obtained based on potential theory. Linear 

wave forces are calculated at a specific frequency while second order sum and difference 

frequency forces are determined based on the interaction of bichromatic waves. In this 

section an extension of this theory is presented to extend the solution of forces and 

moments to random waves. First and second order hydrodynamic forces and moment on 

a body due to a stationary Gaussian random sea can in general be expressed as a two-

term Volterra series in time domain. 

(1) (2)
1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )t t h t d h t t d dτ η τ τ τ τ η τ η τ τ τ

∞ ∞ ∞

−∞ −∞ −∞

+ = − + + − −∫ ∫ ∫F F  (2.49) 
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where η(t) is the ambient free surface condition at the reference point, 1( )h τ is the linear 

impulse response function, and 2 1 2( , )h τ τ  is the quadratic impulse response function. For 

unidirectional seas using N wave components, the wave exciting forces from incident 

and diffraction potential can be defined as: 

(1)

1
( ) Re ( ) j

N
i t

j j
j

t A e ωω
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑F L  (2.50) 

( ) ( )(2) *

1 1 1 1
( ) Re ( , ) ( , )j k j k

N N N N
i t i t

j k j k j k j k
j k j k

t A A e A A eω ω ω ωω ω ω ω− +

= = = =

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
∑∑ ∑∑F D S  (2.51) 

where (*) represents complex conjugate. L(ωj) is the linear force transfer function (LFT), 

D(ωj, -ωk) and S(ωj, ωk) are the difference and sum frequency quadratic transfer 

functions (QTF) respectively. 

In time domain, radiation forces and moment adopt the following form 

considering contributions from first and second order motions. 

FR(t) = −M
a (∞) !!ζ (t)− R

−∞

t

∫ (t −τ ) !ζ (τ )dτ  (2.52) 

where Ma(ω) represents the added mass at infinite frequency, and R(t) is called 

retardation function and it is related to the frequency domain solution of the radiation 

problem as presented. 

0

2 sin( ) ( ) tt C dω
ω ω

π ω

∞

= ∫R  (2.53) 
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where C(ω) is the wave radiation damping coefficient previously defined at frequency 

ω. As for added mass at infinite frequency this is obtained using the following 

expression considering Ma(ω) as added mass at frequency ω. 

0

( ) ( ) ( ) cosa aM t tdtω ω
∞

∞ = − ∫M R  (2.54) 

With all components defined, the total force in time domain can now be defined. 

(1) (2)( ) ( ) ( ) ( )Total Rt t t t= + +F F F F  (2.55) 

where the first two components represent the total wave exciting force while the third 

component is the previously defined radiation term. 

 

2.4 Floating body motions in regular waves 

Once all forces are calculated, the next step is to obtain the response of the 

floating body to those forces. External forces such as wave, current and gravitational 

forces need to be taken into account for a freely floating body. According to Newton’s 

second law, once the sum of all external forces is known, the motion of the body can be 

calculated. Motions are solved using the conservation of momentum principle which can 

be represented by the following two expressions. 

2

2
gd

m
dt

=
x

f  (2.56) 

2 ( )d
dt

+ × =I I mψ
ψ ψ  (2.57) 

where m represents the mass of the body, xg is the vector of coordinates of the center of 

gravity of the body, I moment of inertia matrix, ψ angular velocity and m, f are the 
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external moments and forces. In the previous expression, nonlinear terms arise

( ( ))× Iψ ψ ; however small rotations of the body are here considered thus the linearized 

version of these equations can be applied. This is consistent with the assumptions made 

to determine diffraction forces. Under the small rotation assumption, a single linear 

equation of motion for the floating body can be defined. 

M !!ς = F (t)  (2.58) 

where !!ς  is the second time derivative of the six degrees of freedom body motion vector 

1 6( ,..., )ς ς=ς . 1 2 3, ,ς ς ς  represent linear motions of the platform at origin in x, y, z 

direction (surge, sway, heave) while 4 5 6, ,ς ς ς  are the rotational motions along x, y, z 

directions (roll, pitch, yaw). F(t) is the vector of external forces including hydrostatic 

and hydrodynamic forces in addition to contributions from mooring lines. M is defined 

as the 6x6 mass matrix defined as follows. 

11 12 13

21 22 23

31 32 33

0 0 0
0 0 0
0 0 0
0

0
0

g g

g g

g g

g g

g g

g g

m mz my
m mz mx

m my mx
mz my I I I

mz mx I I I
my mx I I I

−⎧ ⎫
⎪ ⎪−⎪ ⎪
⎪ ⎪−⎪ ⎪

= ⎨ ⎬−⎪ ⎪
⎪ ⎪−
⎪ ⎪
−⎪ ⎪⎩ ⎭

M  (2.59) 

In this expression, (xg, yg, zg) are the coordinates of the center of gravity of the body. 

Then moments of inertia are calculated as follows. 

B

ij B ij i j
V

I x x dVρ δ⎡ ⎤= ⋅ −⎣ ⎦∫∫∫ x x  (2.60) 
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where VB denotes integration over the body volume, ρB is the density of the body and δij 

is the Kronecker delta function. 

When nonlinearities in the system are significant, a time domain analysis 

becomes the best option since no linearization needs to be done as in the case of 

frequency domain. The equation of motion can be expressed as the summation of 

contributions as follows. 

M +M a (∞)"
#

$
% !!ς + Kς = FI (t)+FC (t, !ς )+Fn (t, !ς )  (2.61) 

where radiation force is defined next, in addition to FI(t) first and second order wave 

forces previously defined and Fn(t,ς) defined as nonlinear drag from Morison equation 

which later will be defined. 

FC (t, !ς ) = − R(t −τ ) !ς dτ
−∞

t

∫  (2.62) 

In order to numerically solve this equation of motion in time domain, the Adams-

Moulton method is applied. First, the equation of motion is reduced to a set of two first 

order differential equations. 

Μ !ξ = FI (t)+FC (t, !ς )+Fn (t, !ς )− Kς  (2.63) 

!ς = ξ  (2.64) 

where ( )a+ ∞Μ = Μ Μ  

After integrating the previous equation from time step ( )nt to ( 1)nt + we have: 

( 1) ( 1)

( ) ( )

( 1) ( ) ) -
n n

n n

t t
n n

I C n
t t

dt dt
+ +

+ = + + +∫ ∫Μξ Μξ ς(F F + F K  (2.65) 
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( 1)

( )

( 1) ( )

n

n

t
n n

t

dt
+

+ = + ∫ς ς ξ  (2.66) 

Applying the Adams-Moulton scheme and rearranging the equations we have 

( 1)

( )

( ) ( 1)

2

n

n

t
n n

t

txdt x x
+

+Δ
⎡ ⎤= +⎣ ⎦∫  (2.67) 

( )

( )

( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( )

( 1) ( )

2

               
2

n n n n n n n n
I I C C n n

n n

t

t

+ + + +

+

Δ
= + + + + + +

Δ
− +

Μξ Μξ

ς ς

F F F F F F

K
 (2.68) 

( )( 1) ( 1) ( ) ( )2n n n n

t
+ += − −

Δ
ξ ς ς ξ  (2.69) 

These last linear algebraic equations with unknowns ( 1)n+ξ and ( 1)n+ς can be 

solved using an iterative process due to the dependency of the convolution and drag load 

on unknown velocity at time (n+1). To solve for ( 1)n
C

+F and ( 1)n
n

+F an initial guess for 

( 1)n+ξ is required. This iteration can be avoided by using the Adam-Bashforth scheme on 

the following nonlinear terms. 

( )
( 1)

( )

( ) ( 1) (0)3              and  for 0
2

n

n

t
n n

C C C C
t

tdt t n
+

−Δ
= − = Δ =∫ F F F F  (2.70) 

( )
( 1)

( )

( ) ( 1) (0)3              and  for 0
2

n

n

t
n n

n n n n
t

tdt t n
+

−Δ
= − = Δ =∫ F F F F  (2.71) 

Combining the previous expressions we arrive at the final equation of motion of 

the platform. 
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( ) ( )

( )

( ) ( 1) ( ) ( ) ( 1)
2

( ) ( 1) ( )

4 4 3

                               + 2 2

n n n n n
I I C C

n n n
n n o

t t
+ −

−

⎡ ⎤+ Δ = + + + −⎢ ⎥Δ Δ⎣ ⎦

− − +

K F F F F

3F F K F

Μ ς Μξ

ς

 (2.72) 

( 1) ( )n n+Δ = −ς ς ς  (2.73) 

oF  represents a constant force such a net buoyancy to balance mooring payloads. 

Numerical instability when applying the Adam-Bashford scheme could arise leading to 

large numerical errors. To avoid errors and assure accuracy on the results, a small time 

step must be selected. Considering that the platform is connected to mooring lines where 

strong nonlinearities require even smaller time steps when compared to the platform 

motions, mooring line analysis drives the selection of ∆t. 

 

2.5 Line and buoy theory in OrcaFlex 

In OrcaFlex, net, mooring lines and surface/bottom collars are modeled by using 

line elements joint together by either six or three degree of freedom buoys. Three degree 

of freedom buoys are used to connect the elements representing the net where bending 

stiffness is negligible. For the floating and bottom collars lines are connected using six 

degree of freedom buoys since bending stiffness plays an important role in the 

determination of mooring line forces when exposed to wave loading. 

 

2.5.1 OrcaFlex line theory 

In OrcaFlex lines are discretize in terms of massless segments connected by 

nodes located at each end. Segments represent axial and torsional properties of the line 
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while other properties such as mass, buoyancy and hydrodynamic force are lumped to 

the end nodes in equal parts. Then, each node considers contributions from two adjacent 

line segments except for the segment at the anchoring position which has contribution 

from only one segment. A schematic view of the discretization of a line is presented in 

Figure 2.2. 

 

 

Figure 2.2 Basic discretization of line elements (Orcina, 2014) 

 

For elements located at the sea surface, buoyancy, added mass and weight are 

determined based on the submerged portion of the segment up to the instantaneous 

surface elevation at each time step (Orcina, 2014). 

In a segment, axial and torsional stiffness are represented by a combination of 

massless linear and torsional spring damper system at the center of each line segment, 

providing the effective tension component of the load as well as torque moment to the 

adjacent nodes. When bending stiffness is included in the model, rotational springs and 
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dampers at the nodes are included in the model. Torsional and bending stiffness are 

optional in order to model highly flexible components such as net threads. The complete 

structural model is described in Figure 2.3. 

 

 

Figure 2.3 Structural line model (Orcina, 2014) 

 

Once the structural model is complete, the calculation of forces and moments are 

determined in a sequence to calculate all components of the total load over lines. These 

components include tension force, bending moment, shear force and torsion moment. 

Their combined effect plus external loads from weight, buoyancy and hydrodynamic 

loads result on the total load over a segment. For the present analysis, the only effects 

included on the lines are tension forces and bending moment, thus the description of its 

calculation is presented. 



 

38 

 

To determine tension on a segment, the distance and the rate of increase of length 

between nodes is used plus the axial unit vector. In this case linear stiffness is applied on 

the model and the axial tension Te is expressed as follows. 

( )

:
: ( ) ( / ) /

e w o o i i

e

w o o i i o

T T P A P A
where
T effective tension
T wall  tension = EA -2 P A P A EAe dL dt Lε ν

= + −

− +

 

(2.74) 

In the determination of Tw, axial stiffness, internal and external pressure (for the 

case of riser modeling) and axial damping effects are included. A description of each 

component on the equation is given. 

EA: axial stiffness (E: Young’s modulus, A: cross sectional area) 

ε : total mean axial strain = (L-λLo)/( λLo) 

L: instantaneous length of the element 

λ: expansion factor of segment 

Lo: unstretched length of the segment 

ν: Poisson ratio 

Pi, Po: internal and external pressure 

Ai, Ao: internal and external cross sectional area 

e: damping coefficient of the line  

dL/dt: rate of increase of length  

The effective tension resultant is applied at the nodes. Numerical damping e is 

defined later. Target axial damping is one of the user inputs, in our case this parameter is 
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set to zero since we are not interested on the structural response of the net but on it 

motions and hydrodynamic forces. 

1
2

( )

(2* / )

critical

critical o

e e Target axial damping/100
where

e Segment mass L EA

=

=

 
(2.75) 

After tension is obtained, the bending moment is calculated based on the relative 

angle between the axial direction of the node and the axial direction of the segment. The 

cartesian axis on the node rotates with it. The angle α between these vectors defines the 

effective curvature vector C which is orthogonal to the normal axial axis of node and 

segment. The magnitude of angle α is defined as / (1/ 2 )oLα . Actual formulation for 

bending moment is as follows. 

( / )M EI C D d C dt= +  (2.76) 

EI: bending stiffness (E: Young’s modulus, I: moment of inertia cross sectional 

area) 

D = (λb/100)Dc 

Dc: bending critical damping = Lo(Segment mass*EI*Lo)1/2 

λb: numerical target bending damping 

Loads are then applied to the nodes, thus each node accounts for the 

contributions of the two adjacent nodes. With this forces, translational and rotational 

accelerations of each node are determined, then by integration velocity and position for 

the next time step are obtained (Orcina, 2014). 
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The hydrodynamic loads over the line segments are calculated using the modified 

version of Morison equation which accounts for the relative normal velocity and 

acceleration between segment and fluid flow (Haritos and He, 1992). Forces are 

calculated based on the cross flow principle in which the relative velocity between line 

and flow is separated into a normal component and a component parallel to the segment 

axis. Then, based on the normal component, x and y drag forces are computed. For 

normal directions x and y, normal projected area is used based on the product of the 

segment diameter and its length. Axial drag can also be calculated based on the 

component of velocity parallel to the segment axis. For drag coefficients Cd, the same 

values are applied in x and y direction while for the parallel direction a different value 

can be applied. The general expression for Morison equation used in this analysis, 

including drag and inertia components is described. 

Fw (t) =
1
2
ρCddl[v(t)−u(t)] v(t)−u(t) + ρCM

π
4
d 2l !v(t)− ρ(CM −1)

π
4
d 2l !u(t)  (2.77) 

In the previous expression, Fw(t) is the fluid force, ρ is water density, d is 

segment effective diameter, l is length diameter, CM and Cd are inertia and drag 

coefficient, ( )u t  and ( )v t  are element and fluid velocity while !u(t)  and !v(t)  are 

element and fluid acceleration. In this formulation, ( )v t  and !v(t)  consider wave current 

interaction effects. In particular for the netting, given the small diameter of the threads 

components of the net, inertia forces are negligible. In this sense a detailed description of 

viscous load is given. Classical standard formulation is used in OrcaFlex based on 
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normal relative velocity and its components in x and y directions. This formulation is 

appropriate for general flow conditions (Casarella and Parsons, 1970). 

1 ( )[ ] ( )
2
1 ( )[ ] ( )
2

x dx n rx rn

y dy n ry rn

F P C d l v v t

F P C d l v v t

ρ

ρ

=

=

 (2.78) 

On this expression dnl is the normal projected area of the segment; vr is the 

relative velocity between element and fluid flow while P represents the proportion of the 

segment underwater to account for piercing effect of lines close to the sea surface. It is 

estimated by the intersection between a diagonal from the dry to the wet end of a 

segment and the free surface. Based on this proportion, the software evaluates buoyancy 

force and the node of application of the force on the line (Orcina, 2014). 

The relative velocity form of Morison equation reveals that viscous drag 

contributes to the exciting force as well as to the damping force on the structure. Viscous 

effects of slender members of hull such as a cylindrical hull, TLP columns or truss 

elements are computed using the previous expression and combined to the potential 

forces to obtain the global force on a floating platform. 

Force components are based on normal projected area which implicitly includes 

the relative angle of attack of fluid flow respect to the segment. The same formulation 

can be expressed to show how drag load changes with angle of attack between fluid and 

segment. 
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Considering an axially symmetric line with same Cd values for x and y axis and 

let φ be the angle between flow vector V and segment axis, then sin( )nV V ϕ=  and 

normal force is expressed as: 

2

2

1 ( )2
sin ( )

dn

n

R P dl C V

F R

ρ

ϕ

=

=
 (2.79) 

When using the previous formulation, Cd values become a major component of 

the formulation. It can be defined as variable during the simulation time based on 

Reynolds Number Re which is also dependent on φ. 

;              
cos( )
r

flow

v d
Re

υ ϕ
=  (2.80) 

In the previous expression, υ represents kinematic viscosity. As for the values of 

inertia coefficient CM, these are constant for the netting portion of the cage and equal to 

2 based on previous experimental and numerical examples (Lader et al., 2007; Li et al., 

2013a). As for the surface collar, CM depends on KC and Re numbers and the treatment 

of this effect will be discussed in detail in further sections. 

 

2.5.2 OrcaFlex buoy theory 

The surface collar of the cage is modeled using short line elements to capture the 

circular shape of it. These elements are connected using six degree of freedom buoys. 

These buoys do not add neither drag nor inertia load to the system. This is achieved by 

applying negligible mass and volume in addition to forcing Cd, CM and drag area equal 

to zero. Six degree of freedom buoys transfer translational and rotational motions, thus 
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bending stiffness of the material used to build the collar can be represented by this 

combination of lines and buoys. 

As for the netting portion of the cage, lines representing the net are connected 

using three degree of freedom buoys which do not add drag nor inertia load to the 

system following a similar procedure as for six degree of freedom buoys. Three degree 

of freedom buoys only transfer linear motion, thus bending stiffness is not modeled. This 

assumption holds true for very flexible nets such as Nylon and Polyester nets. For 

metallic nets the assumption of zero bending stiffness is common practice; however 

further studies beyond the scope of the present work are required to confirm this 

assumption. 

 

2.5.3 Coupled solution of motion for net and collar 

Once line elements and buoys are modeled and located at its initial position on 

the numerical model, the motion on the time domain simulation under waves and current 

load must be determined. In OrcaFlex in order to calculate the global response of the 

system, a local equation of motion must be solved first for each element. The form of 

this equation of motion is given as: 

( , ) ( , , ) ( , ) ( )M p a F p v t C p v K p= − −  (2.81) 

In the previous formula, M(p,a) is the local inertia load, F(p,v,t) is the external 

load over the element, C(p,v) is the element damping load and K(p) is the element 

stiffness load. p,v,a and t are the position, velocity, acceleration and simulation time step 

respectively. The forcing component F(p,v,t) includes Fw(t) in addition to buoyancy and 
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gravity forces. The global equation of motion for the system has the same form as the 

local one, except that it uses global loads and vectors (Orcina, 2014). In order to solve 

this equation, two integration schemes, explicit and implicit methods, are available in 

OrcaFlex. Its selection is based on computational efficiency. Both methods account for 

geometric nonlinearities since system geometry is obtained at each time step. 

Explicit integration solves for acceleration at the start of the time step and 

integrates a using forward Euler scheme, thus a constant time step dt is used as follows 

1

1 1

*
*

t t t

t t t

v v dt a
p p dt v
+

+ +

= +

= +
 (2.82) 

When using the explicit option, time step is small to achieve numerical stability, 

thus computational time is large and mainly dependent on the number of lines included 

in the model. 

When using the implicit method, the Generalized α integration scheme is used 

(Chung and Hulbert, 1993). In this case the system of equations is solved at the end of 

each time step using an iterative solution. In this case longer time steps can be applied 

which reduces the computational time. 
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3. MOORING LINE DYNAMICS 

 

3.1 Introduction 

Previously, the calculation of loads over floating platforms and nets has been 

described. In this section, the mathematical description of the dynamic analysis of 

mooring systems in CHARM3D will be presented. 

Mooring systems are common to all floating platforms being these used for oil 

and gas exploration and production or feeder platforms for fish farms. These systems are 

essential for station keeping and its detailed design needs to be carried out to withstand 

high energy seas assuring the safety of the platform. Several mooring systems can be 

identified such as spread mooring system, taut and semi tout system as well as tethers. In 

terms of materials, its selection is dependent of water depth and platform type. A 

combination of steel wire and chain is typically used in Spar platforms, while steel pipes 

or tethers are used for TLP platforms. As water depth increases, the use of synthetic 

materials such as polyester is considered. For the specific case of fish farms in deep 

water, a combination of chain and polyester lines have proven to be an adequate 

combination given the loads encounter in the experimental site used by Kampachi Farms 

offshore Kona, Hawaii (Cifuentes and Kim, 2015b). In that particular case, a single 

mooring line connected the feeder platform to the sea bed and an umbilical line join the 

cage to the vessel, thus the design of the mooring system was critical in the success of 

the daily operations. 
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Several methods to calculate the dynamics of mooring lines can be found being 

the simplest of all the quasi static catenary equations. This gives reasonable results when 

the platform is installed in shallow water and the payload from mooring lines is not 

significant. However, in deep water as the dynamic response of the mooring lines is 

significant due to its drag and inertia loading, as well as its mass when compared to the 

total mass of the platform, more complex analysis tools such as finite element method 

able to include nonlinear effects need to be considered. 

For the study of mooring system, the rod theory presented by Garrett (1982) is 

adopted. This is a three dimensional model including line stretching which equation of 

motion can be expressed in a single global coordinate system, allowing an efficient 

representation of geometric nonlinearities. 

 

3.2 Rod theory 

The dynamic response of mooring lines modeled as slender rods is based on the 

position of the centerline of the rod in a 3D Cartesian coordinate system. As presented in 

Figure 3.1, the position vector r(s,t) is a function of arc length s measured along the rod 

and time t. At first, the rod is assumed to be inextensible which means s does not change 

between the deformed and original state of the rod. Under this assumption we can define 

the unit tangent vector to the space curve ʹ′r , the principal normal vector directed along 

ʹ′ʹ′r and the bi normal is directed along ʹ′ ʹ′ʹ′×r r where the prime symbols represent 

derivatives with respect to arc length s. 
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Figure 3.1 Rod coordinate system definition (Bae, 2013) 

 

The equilibrium of forces and moments in a segment of the rod can be expressed 

in the equation of motion for a unit arc length segment of the rod. 

!F +q = ρ!!r  (3.1) 

0ʹ′ ʹ′ ʹ′+ × + =M r F m  (3.2) 

where q represents the applied force per unit length, ρ is the mas per unit length of the 

rod, m is the applied moment per unit length. F and M are the resultant force and 

moment along the centerline of the rod. Time differentiation is represented by the upper 

dot. 

Bending moment is proportional to curvature and directed along the bi normal 

direction. It can be defined as follows, where EI is defined as bending stiffness and H is 

torque. 

EI Hʹ′ ʹ′ʹ′ ʹ′= ×M r r + r  (3.3) 

Substituting Equation (3.3) into Equation (3.2)  

( ) 0EI H H⎡ ⎤ʹ′ʹ′ ʹ′ʹ′ ʹ′ ʹ′ ʹ′ʹ′× + + + + =⎢ ⎥⎣ ⎦
r r F r r m  (3.4) 
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and the scalar product of the above equation with ʹ′r yields. 

0H ʹ′ ʹ′+ ⋅ =m r  (3.5) 

Assuming that there is no distributed torsional moment on the rod ( 0ʹ′⋅ =m r ) and 

considering that mooring lines have circular cross sections, there is no distributed 

torsional motion from hydrodynamic forces H, and m can be neglected. Equation 3.4 is 

re-written as: 

( ) 0EI⎡ ⎤ʹ′ʹ′ ʹ′ʹ′× + =⎢ ⎥⎣ ⎦
r r F  (3.6) 

Considering a scalar function ( , )s tλ , this is called Lagrangian multiplier, the 

resultant force F can be defined as follows: 

( )EI λʹ′ʹ′ʹ′ ʹ′= − +F r r  (3.7) 

The scalar product of the previous expression and ʹ′r gives as a result 

( )EIλ ʹ′ʹ′ ʹ′ʹ′ ʹ′= −F r r r⋅ ⋅  (3.8) 

or 

2T EIλ κ= −  (3.9) 

where T is tension and κ is the curvature of the rod. 

The equation of motion of the rod is obtained by combining Equations (3.7) and 

(3.1). 

− EI !!r( )!! + λ !r( )! +q = ρ!!r  (3.10) 

In addition r must satisfy the inextensibility condition  
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1ʹ′ ʹ′ =r r⋅  (3.11) 

If small stretch of the rod is allowed and this extension is linear, the boundary 

condition can be approximated as follows. 

( )1 -1
2

T
AE AE

λ
ʹ′ ʹ′ = ≈r r⋅  (3.12) 

Combining the equation of motion of the rod in addition to either the 

inextensibility or extensible conditions, initial and boundary conditions plus applied load 

vector q  there is enough information to determine the position vector ( , )s tr  and the 

Lagrangian multiplier ( , )s tλ . The applied force vector can be expressed as the sum of 

hydrodynamic ( dF ), hydrostatic ( sF ) and gravity forces in terms of mass per unit 

length (w ) over the rod. 

s d= + +q w F F  (3.13) 

Further, the hydrostatic force can be expressed as  

( )s P ʹ′ ʹ′= −F B r  (3.14) 

where B represents buoyancy force of the rod per unit length and P is the hydrostatic 

pressure at point r on the rod. 

The hydrodynamic force dF  is then calculated by using Morison equation as 

presented. 

F d = −CA!!r
n +CM !V

n +CD V
n − !rn V n − !rn( )

      =−CA!!r
n +F d

 (3.15) 
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where AC  is the added mass coefficient per unit length, MC is the inertial coefficient per 

unit length per unit normal acceleration and DC  is the drag coefficient per unit length per 

unit normal velocity. nV  and !V n  are fluid velocity and acceleration respectively normal 

to the rod center line. They are defined as follows. 

V n = V − !r( )− V − !r( ) ⋅ "r#
$

%
& "r  (3.16) 

!V n = !V − !V ⋅ !r( ) ⋅ "r  (3.17) 

where !V and V represent the total undisturbed fluid particle acceleration and velocity at 

the centerline of the rod. 

In Equation (3.15) !!r n and !rn represent components of the rod acceleration and 

velocity normal to its centerline and can be defined as follows. 

!rn= !r - !r ⋅ "r( ) !r      (3.18) 

!!r n=!!r - !!r ⋅ "r( ) !r      (3.19) 

Combining all previous expressions, the equation of motion of the rod under 

hydrostatic and hydrodynamic loading plus self-weight becomes. 

ρ!!r +CAρw!!r
n + EI !!r( )!! − ( !λ !r !) = !w+ F d

 (3.20) 

where  

!λ =T + P − EIκ 2 = !T − EIκ 2  (3.21) 

!w = w+ B  (3.22) 

where !T  is the effective tension on the rod and !w is the wet weight. 
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The combination of Equation (3.20) with the line stretching condition represents 

the governing equations for the static or dynamic analysis of rods under hydrodynamic 

loading. 
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4. NUMERICAL SIMULATION OF DRAG FORCE AND DEFORMATION OF 

NETS UNDER STEADY CURRENT۞ 

 

4.1 Introduction 

In this section, a complete description of the methodology to model nets using 

lines and buoys in OrcaFlex is presented. Conditions for projected area, wet mass and 

axial stiffness are imposed in the numerical model to simulate the response of a physical 

net. The focus on this section is on the drag force, volume and exposed area reduction of 

a single cylindrical net under steady current. This simple case will help to establish the 

basis for further analysis of cages focusing on the netting. Validation of the method is 

carried out by direct comparison of the numerical results with previously published 

experimental data. The use of a drag coefficient formulation as function of Re is 

included. Lastly, a convergence analysis based on number of elements used to represent 

the net is conducted. 

 

4.2 Numerical model of nets 

A net is basically a thread that has been arranged in a certain pattern such as 

diamond or square. The diameter of the thread is rather small ranging from less than a 

couple millimeters for nylon nets to four millimeters for metallic nets. Net openings are 

                                                

۞ Part of this section is reprinted with permission from “Numerical simulation of wake effect in nets under 
steady current” by Cifuentes and Kim 2015. Proceeding of the ASME 2015 34th International Conference 
on Ocean, Offshore and Arctic Engineering OMAE2015, St. John’s, Newfoundland, Canada. Copyright © 
2015 by ASME. 
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no larger than 50 to 60 millimeters. Some nets are built with nodes at the intersection of 

each basic shape while other are knotless. The selection of nets is based on the type of 

fish to grow, the stage of growth as well as environmental conditions and predators in 

the area of operation. Some of the net patterns used in industry are represented in Figure 

4.1. 

 

 

Figure 4.1 Net patterns (a) Flattened expanded, (b) Chain-link, (c) Welded, (d) 

Woven, (e) Nylon knotless. (Tsukrov et al., 2011) 

 

The main parameter to characterize a net is its solidity ratio Sn which is defined 

as the ratio of the projected area of a net panel divided by the total area covered by the 

panel. 

projected total
n

total total

A L dS
A A

= =  (4.1) 

where totalL represents the total length of the thread in the net panel and d is the strand 

diameter. For each net outline, empirical formulations have been developed to obtain Sn 

values. Nevertheless, a most accurate calculation of this parameter is obtained when 
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using image processing techniques (Tsukrov et al., 2011). Other relevant net parameters 

are mass and buoyancy per unit area, and axial stiffness. 

Considering the dimensions of the net threads and patterns openings, the 

modeling of each thread of the net is impractical since the number of elements on the 

numerical net will be extremely large and the computational time to obtain the response 

of a cage will be unreasonable for design purposes. Instead, an equivalent net is built 

using a finite number of lines and three degree of freedom buoys. This net has the same 

projected area, wet mass and axial stiffness as the physical net in order to replicate its 

response to environmental loading. A single twine on the numerical model represents 

now a group of twines in the physical net. This approach is represented in Figure 4.2. 

 

 

(a)                                              (b) 

Figure 4.2 Net representation (a) Physical net (b) Numerical equivalent net 

 

Based on Sn the new diameter of the equivalent net is obtained. Following this 

procedure the projected area between physical and numerical net is the same. This is 

fundamental when calculating viscous loading from Morison equation. By using this 

approach a challenge is faced given that the equivalent net is now heavier than the 
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physical model. To solve this problem, the buoyancy of the three degree of freedom 

buoys is modified to achieve same wet mass between numerical and physical net. In this 

manner, inertia loading is captured. As for the axial stiffness, we assume that the axial 

stiffness of the numerical twine is equal to the axial stiffness of the group of threads that 

represents as presented by Fredheim (2005). The previous conditions can be summarized 

as follows. 

m

m m p p

n np

L d L d
S S

=

=

∑ ∑
 (4.2) 

  m p

m m p p

Wet mass Wet mass
W B W B

=

− = −
 (4.3) 

( ) ( )

2

2

p
m p

m

p p
m p

m m

n
EA EA

n

n d
E E

n d

=

=

 (4.4) 

where subscript m stands for numerical model and p for physical net. L and d represent 

the total length and diameter of the threads on the respective net. W and B are weight and 

buoyancy respectively. E is the Young Modulus of the net material while A is the cross 

sectional area of the twine of the net. Notice that the Young Modulus of the numerical 

net needs to be modified to achieve the conditions of same axial stiffness. The last 

element of the previous expressions is n which holds for the number of elements that 

represent the same part of the net structure in the numerical and physical net. 

As for the surface collar, this can be represented exactly as in the physical cage 

since it is a single or double pipe arrange in a circular or square shape. The procedure to 
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discretize it is to divide the circumference in small segments connected by six degree of 

freedom buoys. These buoys have negligible properties and are used only to create 

complex geometries using straight line segments. The illustration of this procedure is 

presented in the following figure. 

 

 

(a)                                              (b) 

Figure 4.3 Surface floater representation (a) Physical floater (b) Numerical 

equivalent floater 

 

Once the numerical geometry has been completed, hydrodynamic loads are 

determined using a Morison force model. In this case a variable formulation for drag 

coefficient is used as described in the next section. 

 

4.3 Drag coefficient formulation 

In a net structure, inertia loading is negligible and the main force comes from the 

viscous drag term in Morison equation. This term is based on the relative normal 

velocity between the fluid flow and the lines representing the net. This relative velocity 

is calculated at each time step during the simulation considering current, line velocity, 
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and wave orbital velocity at each location. A critical component in Morison equation is 

the drag coefficient. This must be carefully selected according to the local relative 

velocity. In the present study, the formulation for drag coefficient presented by DeCew 

et al. (2010) has been used. The original expression was derived considering towed 

cables up to a Re of 105 (Choo and Casarella, 1971). In the present formulation, the 

expression for Cd is defined up to Re=107 capturing the drop in drag coefficient due to 

the transition to turbulent flow at high Re. The expression is derived for a smooth 

cylinder under steady current, making it suitable for the determination of drag forces on 

nets under wave and current effects (DeCew et al., 2006; Shainee et al., 2014; M. 

Shainee et al., 2013). The formulation is as follows. 

2

0.9

0.5 5

6

8 (1 0.87 ),                                       0 1
*

1.45 8.55 ,                                         1 30
1.1 4 ,                                    30 2.33 10

3.41 10 (
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Re Re
Re Re xC
x

π −

−

−

−

− < <

+ < ≤

+ < ≤=
−
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5 5 5

/5.99 10 5 7
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0.401(1 ),                     4.92 10 10
                          0.077215655 (8 / )

Re x

Re x x Re x

e x Re
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−

⎧
⎪
⎪
⎪
⎪
⎨
⎪ − < ≤
⎪

− < ≤⎪
⎪ = − +⎩

 (4.5) 

where Cd represents the normal drag coefficient and Re is Reynolds number. This 

formulation is implemented into OrcaFlex as an external variable. At each time step, the 

relative normal velocity and acceleration between line element and fluid flow is 

calculated, then by using this relative velocity, Re is obtained and finally the right Cd is 

calculated and input into Morison equation. Re is calculated considering the angle of 

attack between fluid flow and line elements as previously described. 
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This formulation is particularly important during the first stages of the simulation 

when the current load is gradually applied using a ramping function. By using a variable 

Cd, the transient response is avoided and the simulation does not show large variations in 

drag forces or numerical instability, thus shortening the total simulation time. 

In order to validate this numerical approach, existing experimental data was used 

to compare the results and evaluate the strengths and weaknesses of the current model. 

 

4.4 Validation using the results by Lader and Enerhaug (2005) 

One of the benchmark studies related with the calculation of forces and 

deformations of nets under current was carried out by Lader and Enerhaug (2005). This 

study has been used by several researchers to validate their numerical approach given the 

conditions presented in the experimental analysis. In their experimental work, Lader and 

Enerhaug (2005) studied the forces and deformation of a single net exposed to steady 

current. Only the cylindrical portion is considered since the top and bottom of the net are 

open. The net was subjected to a set of five different current speeds. In addition, three 

different bottom weight configurations were analyzed. Ballast was applied by using steel 

cylinders located at 16 points along the bottom on the net. Testing conditions are 

summarized in Table 4.1. 

In the experiment, a cylindrical net suspended from a steel ring was used. The 

stiff ring was designed to avoid deformations during tests runs, isolating this effect from 

the total system response. 
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Table 4.1 Experimental conditions 

Description Mass Current speed (m/s) 

C1 16 x 400 gr. 
0.13, 0.21, 0.26, 0.33, 0.52 

C2 16 x 600 gr. 

C3 16 x 800 gr. 0.21, 0.26, 0.33, 0.52 

 

To evade surface flow effects, the system was installed under water and kept in 

place by four pairs of lines. Loads cells were installed in these lines to capture the drag 

force over the system. The drag over the net was isolated by subtracting the drag forces 

on the upper ring and bottom weights. This experiment is a reliable source of validation 

since the net is detached from other cage elements, and thus the equivalent-net model 

can directly be tested. The net pen used in the experiment has a diameter of 1.435 m. and 

a draft of 1.44 m. A Raschel type nylon knotless net was used with a bar length of 16 

mm, twine diameter of 1.8 mm. and Sn of 0.225. The density of the net is 1130 kg/m3 

and its Young Modulus is 82 MPa. 

 

 

Figure 4.4 Experiment setup (Lader and Enerhaug, 2005) 



 

60 

 

The net was not scaled, thus the previously mentioned properties correspond to a 

full scale net. Results include drag force, volume and area reduction. Same results were 

extracted in our simulations to directly compare with the test data. 

The numerical model in this case was built using the same dimensions as in the 

experimental work to avoid scale effects. The analyses were carried out using two 

numerical nets as presented in Figure 4.5. The objective is to analyze the influence of a 

higher number of elements and to check for convergence on the numerical results. 

Model A consists of 320 3-DOF buoys and 672 lines (10 rings using 32 segments), while 

Model B is built using 1280 3-DOF buoys and 2624 lines (20 rings using 64 segments). 

The ballast was modeled by incrementing the mass, up to the one specified for each case, 

at 16 buoys on the bottom of the cage in each model. 

 

 
(a) Model A 

 

 
(b) Model B 

 
Figure 4.5 Numerical representation of the net 

 

4.4.1 Results 

The results to be presented consider the drag force over the net, as well as 

volume and area reduction. To be consistent with the experimental data, the same 
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methodology was used to process the results for area and volume reduction. In the 

experiment, markers were located in the net, as described in Figure 4.6, and used to 

define volume (Cvr) and area reduction coefficient (Car). The coordinates of the 

corresponding nodes in the numerical net are then used to determine Cvr and Car. 

 

 

Figure 4.6 Coordinates location for volume and area reduction coefficient 

calculations (Lader and Enerhaug, 2005). 

 

Volume is determined by the volume of two prisms enclosed by coordinates 01-

03-05-21-23-25 and 21-23-25-41-43-45 showed in Figure 4.6. Volume is calculated 

using Equation (4.6). 

01,03,05 21,23,25 21 01 23 03 25 05

21,23,25 41,43,55 41 21 43 23 45 25

1 1( ) (( ) ( ) ( ))
2 3
1 1       ( ) (( ) ( ) ( ))
2 3

pV A A z z z z z z

A A z z z z z z

⎛ ⎞= + − − + − + − +⎜ ⎟
⎝ ⎠

⎛ ⎞+ − − + − + −⎜ ⎟
⎝ ⎠

 (4.6) 

where 1, 3, 5n n nA  is the area of the triangle spanned by the points n1, n3, n5 and zn is the 

vertical coordinate of point n. 
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Volume reduction coefficient Cvr is calculated according to Equation (4.7), where 

Vp0 is the volume of the prims at zero current speed. 

0

p
vr

p

V
C

V
=  (4.7) 

Exposed area is calculated by the projection of the cylindrical net onto a plane 

perpendicular to the current direction. This is calculated by Equation (4.8). 

03 23 23 43
23 03 43 23

( ) ( )2 ( ) ( )
2 2e

y y y yA z z z z+ +⎛ ⎞= − − + − − +⎜ ⎟
⎝ ⎠

 (4.8) 

where yn is the coordinate of point n in the transverse direction. 

Area reduction coefficient Car is calculated according to Equation (4.9), where 

Ae0 is the area of the projection at zero current speed. 

0

e
ar

e

AC
A

=  (4.9) 

Results are presented as direct comparison between numerical and experimental 

data. Since drag force depends on projected area, the corresponding deformation of the 

net under the conditions analyzed is a key point of the study. As current speed increases, 

the internal available volume of the net decreases. In addition, as the ballast weight 

increases, a vertical deformation of the net is expected, thus a higher drag will be 

developed since more area will be exposed. This complex scenario can be observed in 

Figure 4.7 where the deformation of the experimental cage under C1 at 0.33 m/s current 

speed is presented. 
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(a) 

Figure 4.7 Cage deformation (Lader and Enerhaug, 2005) 

 

The results showing the correlation between experiments and numerical 

simulation for drag force are presented in Figure 4.9 for the three ballast conditions 

using model A and B. A total of 14 simulations were carried out for each model. 

 

Figure 4.8 Calculation matrix from experiments (Lader and Enerhaug, 2005) 

 

In addition, the numerical calculations by Endresen et al. (2013) is included to 

evaluate the accuracy of the present scheme compared to a numerical tool developed for 

the calculation of forces in net structures. This numerical tool, called FhSim, was 
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developed by SINTEF and it is based on triangular net elements connected by nodes. It 

uses an equivalent net approach similar to the one presented in our calculations where 

drag force is obtained based on Morison cross flow model, further details of FhSim can 

be found in the work by Enerhaug et al. (2012). 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4.9 Drag force comparison (a) C1, (b) C2, (c) C3 

 

From Figure 4.9 it can be seen that the present numerical model tends to over 

predict the drag load. This is a typical trend for numerical simulations of flexible net 
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structures when using a Morison force model (Endresen et al., 2013). The maximum 

average error of 38 % comes from the model with the heaviest ballast weight. This 

tendency can be observed across the spectra of results. As the mass of the ballast system 

increases, so does the error. This can be explained considering the deformation 

experienced by the net in the vertical direction. In the numerical model, the equivalent 

diameter of the cylinders representing the net is based on Sn to match the total projected 

area. As the real net stretches, the total area covered by the net increases, while the 

projected area keeps its value. This reduces Sn compared to the unloaded case. This 

effect is not accounted for in the numerical results, thus, the total projected area is larger 

in the numerical model when compared to the experimental net, and consequently a 

higher drag force is expected. The difference in projected area between numerical and 

experimental net becomes more significant as ballast mass increases, explaining the 

large values for relative error as heavier ballast is applied. The final dimensions of the 

net pen for the different ballast conditions are not described by Lader and Enerhaug 

(2005); however it is mentioned that the length of the thread attached to the upper ring 

stretches up to 12 % when compared to the unloaded case. 

The next set of results evaluates the deformation of the cage in terms of volume 

and area reduction when exposed to current loading. 
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(a) 

 

(b) 

 

(c) 

Figure 4.10 Volume reduction coefficient Cvr comparison (a) C1, (b) C2, (c) C3 

 

Internal volume of the net is a critical concern for fish farmers since the health of 

the fish depends on the available space, among other factors. A close estimation of this 

effect will greatly help to improve the design of the ballast system to be installed, being 

this system a set of hanging masses as in the present case, or a ballast ring. From the 

plots of volume reduction coefficient the model over predicts the deformation of the net. 

Under all conditions, the available volume at the end of the simulated period is smaller 

to the one capture in experiments. The increase in the number of elements slightly 
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increases the accuracy of the calculations, particularly for high current speeds, though 

improvements are not larger than 4%. 

The third parameter to analyze is the projected area of the net. In early works 

(Aarnes and Loland, 1990), drag forces were determined based on the projected area of 

the central vertical plane of the net. Thus, the determination of this area is useful for 

comparison of numerical and analytical methods when computing drag forces. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4.11 Area reduction coefficient Cvr comparison (a) C1, (b) C2, (c) C3 
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The area reduction coefficient shows that the numerical model over predict the 

deformation of the central plane, which correlates with the volume reduction. The 

projected area at the end of the simulation period is smaller than the measure in 

experiments. As for the convergence of the results when a large number of elements is 

included, the effect over the results is negligible, thus it can be concluded that a small 

number of elements is enough to obtain close estimates of exposed area on a flexible 

cage. 

 

4.5 Discussion 

Based on the presented results, an equivalent net considering the same projected 

area, wet mass and axial stiffness as the physical net can closely capture forces and 

deformations over a wide range of current speed. Drag force is highly dependent on 

deformation of the cage which comes from the current speed as well as the extension in 

the vertical direction due to the ballast installed at the bottom. This extension has a direct 

implication on the solidity ratio of the netting which induces large errors for the results 

under the heaviest ballast set. Drag load increases with ballast since ballast controls the 

overall deformation of the cage and more area is exposed to the flow. Another important 

result comes from the fact that the relation between force and current speed does not 

follow the expected U2 relation. For low current speed (U) drag is proportional to U2; 

however for higher current speed the relation tends to be linear driven mainly by the 

deformation of the cage. In addition, at about 0.3 m/s, there is an inflection point in the 
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drag curves which suggest that changes on the projected area on the cage become 

significant at the region of higher current velocities. 

When drag force calculations are compared to a similar numerical approach 

(FhSim), the current numerical method shows better agreement with respect to 

experimental data. 

As for volume and area reduction coefficient, numerical results over predict 

deformation of the cage. The estimates show a larger reduction of internal volume. This 

can be considered a conservative result from a fish farm operational point of view. 

Results show a similar tendency as the experimental data where a linear tendency is seen 

for high current speeds. Considering that the uncertainty on experiments due to the 

technique used to measure deformation is ±10 %, numerical results can be considered 

valid for this range of current speed. 

Across the spectra of analyses, the influence of the use of a large number of 

elements does not significantly affect the results, increasing confidence on the base 

numerical methodology. In terms of computational efficiency, while for Model A, a 

couple of minutes are needed to obtain the results, this time increases approximately 10 

times when compared to Model B. This is mainly due to the complexity of the model 

when more lines are included. In OrcaFlex, lines are the most time consuming element 

on the model reason why is of relevance to find the equilibrium between element density 

and accuracy of results. 

Several sources of uncertainty must be considered when judging the accuracy of 

the presented results. While on the numerical model, it is assumed that the flow direction 
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will not change due to the presence of the net, it has been shown that flow, especially at 

high speed, will change directions when crossing the upstream portion of the net (Gansel 

et al., 2012). In addition, current velocity is not constant over the depth of the tank in 

experimental conditions (Moe et al., 2010), while on the numerical model, current 

profile is always constant over the water column. 

It is important to recall that shielding effect is not included in the calculations, 

thus an over prediction of loads is expected. Nevertheless, this analysis serves as the 

starting point for further development considering the close agreement with 

experimental data using the rational and computationally effective approach presented in 

this section. 

Further analysis including shielding effect must be carried out in order to 

increase the accuracy of the presented numerical methodology. 
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5. NUMERICAL SIMULATION OF THE COUPLED DYNAMIC RESPONSE OF A 

SUBMERGED FLOATING TUNNEL۞ 

 

5.1 Introduction 

As presented in section 4, a net can be represented as an array of slender 

cylinders which, when acting together, can be used to determine forces and deformations 

of a more complex structure such as a net pen. Other interesting analysis of the 

hydrodynamic response of slender structures using variable drag coefficient include the 

analysis of risers near touchdown and Submerged Floating Tunnels (SFT). In countries 

such as Norway and Italy where there are countless narrow fjords and straits, SFT is 

considered as an alternative for land connections. SFT is a simple structure that is 

installed underwater at a given depth, kept in place by the combination of positive 

buoyancy and tethers anchored to the sea bed (Di Pilato et al., 2008). The SFT concept 

was well understood at the end of the 19th century and the interest for this type of 

structure was revived in the 1960’s with some minor research effort in Norway and Italy 

(Østlid, 2010). 

Subsequently, further studies were completed to better understand the dynamic 

response of a SFT (Hong and Ge, 2010). Since then, although no such a structure has 

ever been built, the interest for the concept has grown in the engineering community. A 

                                                

۞ Part of this section is reprinted with permission from “Numerical simulation of the coupled dynamic 
response of a submerged floating tunnel with mooring lines in regular waves” by C. Cifuentes, SJ Kim, 
MH Kim and WS Park 2015. Ocean Systems Engineering, Vol. 5. No. 2 109-123. 
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complete guide for the design and characteristics of a SFT can be found in the work by 

Jakobsen (2010) summarizing several feasibility studies carried out in Norway. 

In order to design and install a SFT structure, analyses under multiple load 

scenarios are necessary. For real design and construction, a rational global performance 

analysis procedure, including mooring lines, should be developed. By performing a 

global performance analysis, engineers can simulate the static/dynamic behavior of SFT 

under various environmental loading conditions and then observe important features of 

the system, such as motions, internal forces, anchor reactions, and structural stresses of 

the tunnel and tethers. In addition, structural safety, structural stability, fatigue damage 

and operational life can also be estimated. 

Some of the critical loads and hazards include (a) hydrostatic pressure and self-

weight, (b) environmental loads including waves, current, earthquakes and internal 

waves, (c) loads due to internal traffic and ballast, and (d) accidental loads such as 

internal explosions, collisions, and mooring system failure (Lu et al., 2011). In addition, 

fatigue of tethers due to Vortex Induced Vibration (VIV) is also of interest for design 

and operational stages (Hong and Ge, 2010). 

Several researchers have performed analyses and experiments for SFT under 

mainly regular wave loading. Examples include global performance analysis focused on 

tether tension and tunnel displacements carried out by Kunisu et al. (1994) which 

revealed direct proportionality between wave height and mooring line tension. The direct 

relations between surge-heave amplitude and buoyancy to weight ratio (BWR) was 

presented by Hong and Ge (2010) based on a series of experiments. The experimental 
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findings include (i) as pretension increases with larger BWR, the translational 

displacements increase, and (ii) the submergence depth has a significant impact on the 

reduction of dynamic responses due to the reduction of pressure fluctuations over the 

submerged tunnel (Oh et al., 2013). 

Wave directionality and wave-current interactions are also important factors to 

consider in the design of a SFT. Numerical tools, such as computational fluid dynamics 

(CFD), fluid structure interaction (FSI), finite element method (FEM), and stochastic 

dynamic methods need to be further developed for the detailed study of SFT dynamics. 

Analytical solutions have also been developed to estimate forces over submerged 

cylinders exposed to waves (Romolo et al., 2008). Each method can provide invaluable 

information at some steps into the design process. Nonlinearities such as drag loads and 

large displacements can be obtained in time domain using numerical procedures 

(Kunisu, 2010). The combined effects of hydrodynamic and seismic loads was reported 

in Di Pilato et al. (2008). For wave induced dynamic loadings, either Morison model or 

BEM can be used (Kunisu, 2010). 

Other nonlinearities can also be included in time domain analysis. One example 

is the presence of snap loads over the tethers under slack condition. This situation is 

undesired since high tensions are induced for a short period of time prompting high 

stresses over the anchor and connection points to the submerged tunnel. Studies have 

shown that snap loads can be avoided using inclined tethers to anchor a SFT (Lu et al., 

2013, 2011). 



 

74 

 

In the present study, the coupled dynamic response of a Submerged Floating 

Tunnel (SFT) and mooring lines under regular waves is solved by using two independent 

numerical simulation methods, OrcaFlex and CHARM3D, in time domain. Variations of 

Buoyancy to Weight Ratio (BWR), wave steepness/period, and water/submergence 

depth are considered as design and environmental parameters in the study. Two different 

mooring-line configurations, vertical and inclined, are studied to find an optimum design 

in terms of limiting tunnel motions and minimizing mooring-line tension. The numerical 

results are successfully validated by direct comparison against published experimental 

data. The results show that tunnel motions and tether tension grow with wave height and 

period and decrease with submergence depth. The inclined mooring system is more 

effective in restricting tunnel motions compared to the vertical mooring system. Overall, 

the present study demonstrates the feasibility of this type of structure as an alternative to 

traditional bridges or tunnels installed at seabed. 

 

5.2 Numerical simulation of SFT under regular wave loading 

Based on previous findings, the present work looks into the global performance 

and coupled dynamic response of the submerged floating tunnel and mooring system by 

using two different numerical approaches, OrcaFlex (Orcina, 2014) and CHARM3D 

(Bae and Kim, 2014; Eom et al., 2014; Kang and Kim, 2014; Kim et al., 2005; Yang, 

2009). Differences in the numerical models arise in mooring-line treatment i.e. OrcaFlex 

uses a lumped mass model, while CHARM3D uses the FEM approach proposed by 
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Garrett (1982). In both cases, the tunnel is exposed to regular wave loading where crest 

lines are parallel to the axial direction of the tunnel as presented in Figure 5.1. 

 

 

Figure 5.1 SFT under vertical mooring configuration 

 

Conditions analyzed in this study include a wide range of wave steepness, BWR, 

water depth, and two mooring configurations. Numerical results for tether tensions and 

tunnel displacements are systematically compared with experimental results by Oh et al. 

(2013). 

A couple of different approaches were taken when modeling the SFT depending 

on the capabilities of each numerical tool. In CHARM3D the SFT was modeled using a 

dummy underwater platform which considers all hydrodynamic coefficients equal to 

zero. This was done to connect the mooring lines to the platform. Viscous drag load was 

modeled by using a Morison element with constant Cd and CM values equal to 1.2 and 

2.0 respectively. In OrcaFlex the SFT is modeled as a line element connected to mooring 

lines by three degree of freedom buoys which do not add either inertial or viscous load 

to the system. The force is calculated using Morison equation as for the case of net 
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modeling. Inertia coefficient is constant and equal to 2.0, as for the drag coefficient, the 

variable formulation described in Equation (4.5) is applied. To analyze the effect of scale 

between prototype and model the full scale SFT was modeled in CHARM3D while in 

OrcaFlex, the model dimensions were used in the calculations. Later, results for both 

codes in full scale are compared against experimental results. 

 

5.3 Physical experiments 

The numerical analysis is compared with the experimental results presented in 

the work by Oh et al. (2013). In that study, the dynamic response of a single SFT section 

under wave loading is analyzed. The experiments were carried out in a two dimensional 

wave tank, 53 m. long, 1.25 m. high and 1 m. wide. Several parameters are varied in the 

experiment to reveal its effect over the dynamic response of the structure. Main results 

from this study are motions of the SFT and forces on mooring components. The 

configuration for vertical and inclined tethers used in the experiment is given in Figure 

5.2. 

The SFT is installed with its center at 50 cm. over the bottom of the tank. The 

experiment considers 1:100 scale factor. Mooring lines form a 30 degree angle with 

respect to a vertical plane in Figure 5.2b. BWR (buoyancy-weight ratio) variation is 

obtained by adding ballast to the tube. Motion tracking devices follow the displacements 

of two targets on the body to obtain accurate measurements of motions. Waves were 

generated for 60 seconds for each test condition presented in Table 5.1. Both 
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configurations, vertical and inclined mooring systems, were analyzed under the same 

wave conditions. More details of the experimental set up are given in Oh et al. (2013). 

 

 

(a)                                                                   (b) 

 

Figure 5.2 Experimental configuration (a) Vertical mooring (VM), (b) inclined 

mooring (IM) 
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Table 5.1 Prototype conditions 

Parameter Values  

Diameter (m) 23 

Water depth (m) 65 – 80 – 95   

BWR VM 2.2 – 2.6 – 3.0 

BWR IM 2.8 – 3.4 – 4.0 

Wave period (seconds) 6.5 – 8.0 – 10.0 – 13.0 

Wave steepness s 0.013 – 0.027 – 0.040 – 0.053 

 

5.4 Results of coupled analysis 

As presented in the previous section, the displacements of the SFT and forces on 

the tethers are the main focus of attention in this analysis. The variation of dynamic 

responses of the SFT under various wave conditions, water depth, and tether angles is 

investigated. In the case of CHARM3D, Cd is constant and equal to 1.2 while CM is 2 

considering a simple circular cylinder. In OrcaFlex, Cd is variable depending on flow 

conditions while CM is equal to 2. Same values are used for the calculation of 

hydrodynamic loads on tethers. In both codes, incident waves were modeled using 

Airy’s linear wave theory. 

For VM (vertical-mooring) configuration, the relationship between wave 

elevation, tunnel surge, and mooring tension is presented in Figure 5.3. In this figure, the 

prototype condition is as follows: water depth is 80 m, wave period = 13 s, wave 

steepness = 0.04 and BWR = 2.6. 
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Figure 5.3 Wave elevation, surge and tension variation 

 

From the figure, it can be observed that effective tension of mooring lines and 

wave elevation are 180 degrees out of phase meaning that tension reaches its maximum 

value at wave trough. At this instant in time, tethers are at vertical position since surge is 

zero. At the same time, the vertical acceleration of the SFT is at its maximum value 

pointing upwards. This combination generates the maximum tension on the tether. On 

the other hand, minimum tension is reached at the point where surge is maximum and 

vertical acceleration is minimum. At this point the SFT reaches its deepest position due 

to set-down effect, which is caused by an inverted-pendulum-like motion. We can also 

see some nonlinear behaviors on the line tension. 

The variation of heave and surge motions of the vertically moored SFT over the 

wave conditions tested, was calculated considering a particular water depth of 80 m. and 

BWR equal to 2.6 for the vertically moored case. In Figure 5.4, the results from 

experimental and numerical data are presented to validate the numerical-simulation 

schemes. In the following figures, solid lines represent experimental data while solid 
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markers show the results obtained using CHARM3D and open markers represent the 

results obtained by OrcaFlex. 

 

 

(a) 

 

(b) 

Figure 5.4 (a) Surge and (b) Heave SFT motions as function of wave height/period.  

 

In the plots, the origin for surge and heave is located at the center of the tunnel. 

From the results of Figure 5.4, numerical simulations agree well with experimental data. 

The trends in surge and heave motions are well captured validating the approach applied 

in both numerical schemes. Surge motion is directly related to wave height and wave 

period. For small and short waves, the response of the tunnel is small even considering 

the freedom of motion in this mode since the mooring lines do not restrict horizontal 

displacement. 

As waves increase in height and period, the surge becomes significant. The 

particle kinematics of longer waves penetrates deeper inducing significant SFT motions. 

Due to the vertical restriction by vertical mooring system, heave motion is insignificant 

for most of the wave conditions. Heave motion only becomes significant in the negative 
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direction for large periods and high waves, which is caused by large surge through set-

down effect. 

The correlation shows that both codes underestimate the negative maximum 

heave amplitude for the 13 s. wave, which can be attributed to nonlinear effects 

associated with slack mooring, incident-wave deformation due to the presence of SFT, 

radiated waves caused by SFT motions, and typically larger unwanted reflected waves 

for larger-period waves in the wave tank. Secondary viscous effects may not be 

important but may also contribute to the differences. The correlation between 

CHARM3D and OrcaFlex is also reflected in Figure 5.4, where the results from both 

codes are similar. 

A particularly interesting condition to study is the 100 year return period storm 

defined by the Society of Submerged Floating Technology. This condition corresponds 

to a 13 s. wave period and 0.04 wave steepness. The results for surge and heave under 

this particular condition as function of water depth and BWR are presented in Figure 5.5 

for the vertically moored SFT. The 65 m., 80 m., and 95 m. water depths correspond to 

15 m., 30 m., and 45 m. submergence depth. 
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(a) 

 

(b) 

Figure 5.5 (a) Surge and (b) Heave SFT motions as function of water depth. 

 

As BWR increases, so does the dynamic response of the tunnel both in surge and 

heave. This is due to the increase of surge stiffness so that its natural frequency is 

moving closer to the incident wave period. Both codes generate a similar trend, which 

also agrees with experimental data. The dynamic response of the SFT increases as 

submergence depths decrease. In the case of 13 s. wave period with wave steepness = 

0.04, the simulation results tend to underestimate the experimental values due to the 

reasons stated in regard to Figure 5.4. For 80 m. and 95 m. water depths, the wave field 

is minimally modified by the presence and motion of the structure, thus the numerical 

and experimental results tend to converge. 

One important factor to consider when designing any floating offshore structure 

is the calculation of the maximum loading on the station-keeping system. In this regard, 

mooring line tension as function of wave period and steepness is presented in Figure 5.6. 

The case is for 80 m. water depth and BWR=2.6. The plot represents the tension on a 

single mooring line since the signals from the four vertical mooring components are 
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similar for any given wave condition. Horizontal line represents the value of pretension 

on mooring lines. 

 

 

Figure 5.6 Tension force on vertically moored SFT 

 

Tension forces grow with wave period and wave height. Maximum and 

minimum loads are not symmetrical with respect to the initial pretension. This difference 

comes from nonlinear and set-down effects. The numerical simulations recover the 

general trends of experimental data. The small differences between CHARM3D and 

OrcaFlex results can be attributed to different methods in generating incident wave 

kinematics. In OrcaFlex, Wheeler stretching method was used instead of vertical 

stretching used in CHARM3D. As a result, we can observe the asymmetry on the 

vertical acceleration of fluid at the given submergence depth, as shown in Figure 5.7 for 

the 100-yr storm condition. The positive vertical acceleration is larger inducing a higher 

upward load. In the OrcaFlex case, it also needs to be reminded that variable drag 
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coefficients are used for different flow conditions in calculating wave-induced drag 

forces. 

 

 

Figure 5.7 Fluid acceleration by OrcaFlex at SFT depth 

 

The last set of data reveals the dynamic response of the submerged floating 

tunnel using the inclined mooring configuration as shown in Figure 5.2b. This is an 

interesting alternative since the surge and heave responses are significantly reduced 

compared to the vertical-mooring case. In addition, the load is now distributed in 8 

tethers. This configuration is intended to reduce the linear motions of the tunnel. 

Unfortunately, no experimental data for surge and heave motions are available 

from the experimental paper. However, from video recording, it was observed that the 

motions are greatly reduced compared to the vertical mooring case, which can also be 

confirmed by the present numerical simulations, as shown in Figure 5.8 (water depth=80 

m., BWR=2.6). Even for high energy seas, the displacements of the structure are 

suppressed by the restriction of the inclined mooring (IM) system. It can be concluded 
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that the inclined mooring system is very effective in minimizing SFT motions. Given the 

distribution of mooring lines being symmetric with respect to each other, the load is 

equally distributed and, as in the case for vertically moored tunnel, the tension results for 

a single mooring line are also presented for the same case in Figure 5.9. The effective 

tension on each line is reduced but the total mooring tension force increases when 

compared to the VM case since the displacements are highly restricted. 

In the next figure open markers represent OrcaFlex results for the VM 

configuration while solid markers represent the results for the IM configuration. 

 

 

(a) 

 

(b) 

Figure 5.8 (a) Surge and (b) Heave SFT motions for VM and IM as function of 

wave height and period 
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Figure 5.9 Numerical results for Tension for VM and IM as function of wave height 

and period. 

 

Finally, the experimental results for mooring line tension including all wave 

periods for the IM system are available for the case of 80 m. water depth and BWR=3.4 

and they are compared with OrcaFlex and CHARM3D numerical simulation results in 

Figure 5.10. A similar trend as for the case of vertically moored tunnel is observed in 

this case. Mooring tensions increase as wave period and wave steepness increase. The 

rate of increase is almost linear with wave periods and heights. Both numerical 

simulations agree well with experimental data and present similar trends. Their 

differences are generally small. From the above comparisons, it is clear that the inclined-

mooring-line arrangement presents better performance in terms of tunnel displacements 

and accelerations. 

In the next figure solid lines represent experiments, solid markers CHARM3D 

results and open markers OrcaFlex results. Horizontal line represents mooring lines 

pretention. 
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Figure 5.10 Tension force on inclined mooring 

 

5.5 Discussion 

The fully coupled dynamic analysis of a submerged floating tunnel under regular 

wave loading has been carried out. Main results obtained include translational (surge and 

heave) motions of the structure in addition to tension on the mooring system. Rotational 

motions are negligible for the given mooring system. The effect of several 

environmental factors was investigated including variation of water depth and wave 

conditions. The influence over the tunnel’s responses due to structural parameters such 

as buoyancy to weight ratio and mooring line configuration was also included. 

Numerical results from two different software, OrcaFlex and CHARM3D, were 

compared against experimental data published by Oh et al. (2013) to validate the 

adopted approach. Overall, the numerical results show good agreement with measured 

data for a variety of wave conditions and structural parameters. Under high energy seas 

represented by long wave periods and large wave amplitudes, numerical results tend to 
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deviate from experiments due to various nonlinear effects as discussed in previous 

sections. 

Based on the obtained results, the vertical mooring configuration presents a 

relatively large dynamic response especially for long wave periods. In this situation, the 

tunnel acts as an inverted pendulum causing set-down effects. If SFT is installed at 

deeper submergence depth, the dynamic response becomes smaller since wave action is 

reduced. At the same submergence depth, as BWR ratio increases so does the surge and 

heave of the structure. In terms of loading, for mild waves, the relation between wave 

period and force is almost linear while turning quadratic for high energy seas in case of 

vertically moored system. 

In order to reduce the large translational response of the vertically moored 

configuration, an inclined mooring system, which can provide lateral stiffness to the SFT 

structure, was tested. Experimental and numerical results prove that the translational 

motions are significantly reduced for all the wave conditions considered under this 

mooring arrangement. In this case, tension at a single mooring line tends to follow a 

linear variation as wave period and height increase. 

The variable Cd formulation depending on flow conditions can improve the 

simulation results especially for high energy waves, for which the velocity of the 

structure is significant, thus drag force plays an important role. 

Overall, the submerged floating tunnel is a feasible concept and valuable 

information for the future development of this technology has been presented. Further 

analysis including hydro-elastic theory including fatigue, VIV in coexisting current and 
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snap loads in tethers is needed to provide a complete set of data for the successful design 

and construction of a SFT structure. 
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6. SHIELDING EFFECT ON NETS UNDER STEADY CURRENT۞ 

 

6.1 Introduction 

As previously presented, the calculation of force and deformation over highly 

flexible structures is a challenging task. A simple representation using an array of 

cylinders can predict forces with high accuracy for small deformations occurring at low 

current speeds. As current speed increases, the reduction of speed inside the cage starts 

to play an important role in the computations. To be effective, a numerical scheme must 

be able to account for shielding effect, especially at higher current speeds (DeCew et al., 

2013). 

Early work on wake modeling proposed an empirical formulation to estimate 

velocity reduction on net panels, based on momentum considerations and experimental 

data (Aarnes and Loland, 1990). Recent work based on PIV and ADV laboratory tests, 

fully defined the velocity field around net panels, and shows that downstream velocity is 

up to 80 to 90 % of the upstream velocity, depending on solidity ratio (Bi et al., 2013). 

These findings have been confirmed using field data (DeCew et al., 2013). 

In this study, wake models developed for riser interaction are applied to a single 

cage under steady current. The objective is to find an appropriate model to include 

                                                

۞ Part of this section is reprinted with permission from “Numerical simulation of wake effect in nets under 
steady current” by Cifuentes and Kim 2015. Proceeding of the ASME 2015 34th International Conference 
on Ocean, Offshore and Arctic Engineering OMAE2015, St. John’s, Newfoundland, Canada. Copyright © 
2015 by ASME. 
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shielding effect on the present numerical model and improve the actual calculations for 

force and deformations. 

 

6.2 Wake models for riser interaction 

Wake effect is also of interest in riser engineering. In FPSO and TLP platforms, 

interaction between risers can lead to clashing. Models have been developed to account 

for shielding effect and its influence on forces and deflection on risers. Thus, the 

application of these semi empirical formulations seems to fit the calculation of forces on 

nets, considering that the net itself is treated as an array of cylinder in the numerical 

model. In this study, three wake formulations are used. Even though developed for 2D 

application, their applicability in 3D has been validated through experiments (Wu et al., 

2008). These wake models include the effect over drag force (Huse, 1993) as well as 

over the lift force which tends to pull the cylinder towards the center of the wake 

(Blevins, 2005). A previous study showed that Blevins model is well suited to the 

analysis of shielding effect on nets (Endresen et al., 2013). 

The present work intends to evaluate the accuracy of wake formulations available 

for riser interaction, and compare their performance against experimental data obtained 

by Lader and Enerhaug (2005) presented in section 4. 

In the present study two wake models are considered. Both are applied in riser 

arrays design and will be identified as Huse (Huse, 1993) and Blevins (Blevins, 2005) 

models. A third model is implemented by modifying the original parameters in Blevins 

model following the work by Huse. 
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6.2.1 Huse model 

This analytical formulation is based on the theory of turbulent wakes together 

with momentum considerations. It was derived to calculate current forces on array of 

cylinders where the distance between them is significantly large compared to cylinder 

diameter (Huse, 1993). When considering the small diameter of the twines on the net 

compared to the distance between them from the upstream to the downstream portion of 

the net, the base assumption of this model is satisfied. 

Velocity reduction is calculated, thus drag force calculation includes shielding 

effect; though, wake lift force is not included in the calculations (Orcina, 2014). The 

wake velocity at the downstream cylinders is determined by the RMS summation of all 

the cylinders at the upstream positions. This wake model is mathematically defined as 

follows. 

1/2 2
2 3

1/2
1

( , ) ( , ) [ / ] exp[ ( / ) ]
4 /

[ ]

d do uo du u s

s u du

du u s

v x y v x y k v C d x k y b
x x d C
b k C d x

= − −

= +

=

 (6.1) 

Variables are defined: (x,y) represents the position of the downstream cylinder 

with respect to the upstream cylinder, vd disturbed fluid velocity at downstream position 

(x,y), vdo undisturbed fluid velocity at (x,y), vuo undisturbed fluid velocity at the upstream 

cylinder center, Cdu drag coefficient for the upstream cylinder, du upstream cylinder 

diameter. Non-dimensional model parameters k1, k2 and k3 have values of 0.25, 1.0 and 

0.6931 respectively (Huse, 1996). 

                                                

1 Parameter k3 is misprinted in the original paper as 0.639 and was corrected on a later paper. 
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6.2.2 Blevins model 

This semi empirical model determine the drag and lift coefficient of a 

downstream cylinder based on the spacing between cylinders, upstream cylinder drag 

coefficient and diameter (Blevins, 2005). As with Huse model, it was derived under the 

assumption that an upstream cylinder is not affected by a downstream cylinder when the 

distance between them is larger than 3 times the diameter. It was derived for 2D 

applications; nonetheless, it can be applied to 3D cylinder arrays (Wu et al., 2008). The 

details of the model for reduced velocity, disturbed drag and lift coefficients are 

presented. 

1/2 2

0
13( , ) 1 1.2 expDuo u

Duo u

C d yU x y U
x C d x

⎛ ⎞ ⎡ ⎤−⎛ ⎞= −⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠ ⎣ ⎦⎝ ⎠
 (6.2) 

21/2

1( , ) 1 Duo u
Dd Ddo

C dC x y C a m
x

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (6.3) 

1/2 1/2

3 1

2
2

1

exp

Ddo d Duo u Duo u
Ld

Duo u

Duo u

yC d C d C dC a a m m
xC d x x

a ym
C d x

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎡ ⎤
= −⎢ ⎥

⎣ ⎦

 (6.4) 

In the previous equations U0 represents undisturbed velocity, U downstream 

velocity, CDd represents downstream cylinder drag coefficient calculated using 

undisturbed velocity, CDdo downstream cylinder drag coefficient based on reduced 

velocity, CDuo upstream drag coefficient, CLd is the lift coefficient at the downstream 

cylinder, du and dd are upstream and downstream cylinder diameters. Parameters a1, a2 
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and a3 are constant values obtained after the formulation was fitted to experimental data. 

Their numerical values are 1.0, 4.5 and -10.6 respectively. 

The structure of the wake behind a cylinder under current is defined in Figure 

6.1. 

 

 

Figure 6.1 Blevins wake model (Blevins, 2005) 

 

6.2.3 Modified Blevins model 

A modification of Blevins model has also been considered in the calculations. 

Huse (1993) used a similar approach to Equation (6.2); however, he proposed a variation 

of the parameters as follows, a1=1.0, a2=11.8 and a3=-1.0. This alternative has also been 

studied. 

 

6.3 Numerical implementation of wake models 

Numerical models for the reduction of velocity behind a cylinder were developed 

considering only a couple of long cylinders under flow normal to their axes. In real 

applications, a cylinder could be in the wake of more than one cylinder and move inside 

the fluid. 
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In order to apply these 2D models in OrcaFlex, and account for 3D effects, the 

following procedure is followed as described by Wu et al. (2008). First, a wake frame of 

reference is assigned to all the elements located at the wake generating zone. The origin 

is placed at the center of the element with the x axis parallel to the current velocity 

vector and y axis orthogonal to the plane formed by the element axial direction and 

current velocity vector. z is then assigned by considering a right-handed coordinate 

system. This coordinate system is illustrated in Figure 6.2. By using this coordinate 

system, the location (x,y,z) of each downstream element is calculated relative to all 

upstream net elements. The x and y components are then used as inputs for the selected 

wake model. The z coordinate is used to discriminate the extent of wake effects on 

downstream elements. A scale factor of 1 is applied to either CDd or vd when z is small, 

this factor gradually goes to 0 as z becomes larger beyond the length of the upstream 

element. 

 

 

Figure 6.2 Wake frame of reference (Wu et al., 2008) 
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Once the wake effect from all the upstream elements over a particular 

downstream component has been calculated, only the largest scaled wake effect is then 

applied. The procedure is then repeated for each element. Experimental validation of this 

method can be found in the work by Blevins and Wu (2007). 

 

6.3.1 Wake implementation in cages 

In Figure 6.3, a top view of the net shows the sections generating and reacting to 

the wake effect. The net was divided through a vertical plane perpendicular to the 

direction of the current speed. The upstream section’s elements at the left generate the 

wake while the elements on the downstream section react to the generated wake. 

 

 

Figure 6.3 Wake zone and vertical plane definition Uo represents undisturbed 

current velocity. 

 

6.4 Application of semi-empirical wake models to a cage under steady current 

After the theory of wake models for riser analysis is complete, the next step is to 

apply these models on the calculation of drag force and deformation of nets under steady 
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current. To accomplish this task, the same numerical model created in section 4 is used 

this time applying shielding effect. The results for drag force will be compared against 

the experimental data by Lader and Enerhaug (2005), the base calculations without 

including shielding effect and the numerical calculations including shielding effect by 

Endresen et al. (2013) in FhSim. 

Following the same methodology presented in section 4, the equivalent net 

element density effect is analyzed by using Model A and B and results for volume and 

area reduction coefficient are presented. At the end, relative values with respect to 

experimental data are presented to evaluate the accuracy of each wake model helping to 

establish the validity and accuracy of each model. 

 

6.4.1 Results 

Results for drag force, volume and area reduction coefficient are obtained from 

the numerical calculations once steady state is reached. In this case, this means that after 

the ramping period where current load is applied, the cage reaches a constant 

deformation and the drag load time series converges to a stable value. A time series plot 

is included in Figure 6.5 for model A under ballast condition C1 at 0.33 m/s current 

speed using Blevins wake model. The ramping period is considered negative, thus the 

time series goes from -10 s. up to 50 s. where the value for drag force converges to a 

single value as expected from a steady current analysis. 
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Figure 6.4 Time series of drag load under steady current. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.5 Deformation comparison between (a) Experiments (Lader and 

Enerhaug, 2005), (b) Model A and (c) Model B. 
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Under this steady state scenario, a direct comparison of deformation between 

numerical and experimental models is presented in Figure 6.5 for models A and B under 

C1 at 0.33 m/s current speed using Blevins wake model. 

From the figure the effect of correctly modelling the axial stiffness on the global 

deformation of the cage can be seen. The ballast masses at the bottom of the cage exert a 

local tension which stretches the net and generates a discontinuity in the radial 

deformation of the net, particularly in the upstream portion. In the downstream portion, 

the deformation is less pronounced in the radial direction. This particular deformation 

pattern is well captured by the numerical model where localized ballast points vertically 

stretch the netting generating similar radial discontinuities. 

The first set of results to be presented considers the drag force over the cage. The 

three wake models are presented to evaluate accuracy when compared to the base line 

established in the calculations without wake effect conducted in section 4. Plots are 

grouped based on ballast conditions to better understand the effect of shielding effect. 
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(a) 

 

(b) 

 

(c) 

Figure 6.6 Drag force for C1 using (a) Huse, (b) Blevins and (c) Blevins modified 

wake model. 
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(a) 

 

(b) 

 

(c) 

Figure 6.7 Drag force for C2 using (a) Huse, (b) Blevins and (c) Blevins modified 

wake model. 
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(a) 

 

(b) 

 

(c) 

Figure 6.8 Drag force for C3 using (a) Huse, (b) Blevins and (c) Blevins modified 

wake model. 
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does not meaningfully alter the results. The next set of results considers the volume 

reduction coefficient Cvr as defined in Equation 4.7. An accurate prediction of internal 

available volume helps to identify possible stress induced on the fish when space is 

substantially reduced. In addition, a large deformation could lead to a clash of mooring 

elements with the cage leading to failure of components and likely fatigue over time. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.9 Volume reduction coefficient for C1 using (a) Huse, (b) Blevins and (c) 

Blevins modified wake model. 
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(a) 

 

(b) 

 

(c) 

Figure 6.10 Volume reduction coefficient for C2 using (a) Huse, (b) Blevins and (c) 

Blevins modified wake model. 
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(a) 

 

(b) 

 

(c) 

Figure 6.11 Volume reduction coefficient for C3 using (a) Huse, (b) Blevins and (c) 

Blevins modified wake model. 
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(a) 

 

(b) 

 

(c) 

Figure 6.12 Area reduction coefficient for C1 using (a) Huse, (b) Blevins and (c) 

Blevins modified wake model. 
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(a) 

 

(b) 

 

(c) 

Figure 6.13 Area reduction coefficient for C2 using (a) Huse, (b) Blevins and (c) 

Blevins modified wake model. 
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(a) 

 

(b) 

 

(c) 

Figure 6.14 Area reduction coefficient for C3 using (a) Huse, (b) Blevins and (c) 

Blevins modified wake model. 
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drag loads, particularly for mild currents across all ballast conditions. An increase on the 

number of elements leads to higher accuracy on deformation calculations. 

In order to evaluate the performance of each wake model, relative values of the 

numerical calculations with respect to the experimental data will be presented as 

described by Equation 6.5. 

*100Numerical ExperimentalRelative error
Experimental

⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

 (6.5) 

The relative error for drag forces is presented in the next figure. In the following 

figures, black markers represent Model A while gray markers represent Model B results. 

From the relative plots for drag force, it is clear how the addition of shielding 

effect on the numerical model improves the accuracy of the results. Across all ballast 

conditions, the relative error gets reduced. Further, the model that shows the best fit 

when compared to experimental data is Blevins interference model. However, the 

differences between models are small as seen in the following table. 
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(a) 

 

(b) 

 

(c) 

Figure 6.15 Relative error for drag forces (a) C1, (b) C2 and (c) C3. 
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Table 6.1 Average error for drag force 

 No wake Huse Blevins Blevins mod. 

 A B A B A B A B 

C1 3.57 5.77 -6.08 -1.46 -7.80 -1.06 -6.45 -1.62 

C2 14.93 17.79 3.86 9.21 1.83 8.25 4.24 8.29 

C3 27.43 30.40 15.02 20.75 13.03 19.57 14.43 20.52 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.16 Relative error for volume (a) C1, (b) C2 and (c) C3. 
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Axial stiffness of the material also plays a role on drag force. For small strains, 

the stress-strain relation is linear; yet, for large strain, the relation can be fitted to a third 

order polynomial (Moe et al., 2007). This variation of Young modulus induces 

uncertainty in the model, particularly for the heaviest ballast condition. 

In terms of volume reduction, shielding effect does not significantly change the 

results. In fact, the results simply confirm that by using more elements to model the 

cage, closer agreement is reached. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.17 Relative error for area (a) C1, (b) C2 and (c) C3. 
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The area reduction of the central plane results do not change as shielding effect is 

included. This can be explained by the fact that this plane is the division between the 

wake generating and reacting zone, thus this boundary is not directly impacted by 

shielding effect. 

 

6.5 Discussion 

Considering the base results for the drag load and deformation over a cage 

structure, it was evident that the reduction of the velocity inside the cage due to the 

interaction of the flow with the net needs to be included. This effect was accounted for 

using interaction models developed for risers, which have given good results when the 

distance between cylinders is larger than 2 to 3 times the diameter of the cylinders. 

Being this the case for the numerical model of the cage, it is considered appropriate to 

use these models to evaluate its effect over the load and deformations of the cage. 

The influence of shielding effect over viscous drag is significant and can clearly 

be seen in the plots using the relative error based on lab measurements. Improvement of 

up to a 12% is reached compared to the base model without shielding effect. As for 

volume and area reduction, the improvement is smaller and reached up to a 4%. 

Based on the analysis of the different wake models applied on this research, the 

minimum error was achieved by using Blevins formulation. Overall, by using this 

interference model, the results for drag force, volume and area reduction show the 

smaller deviation from experiments among the three studied models. However, the 

differences between wake models are not significant and it is evident that, using this 
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particular lumped mass scheme, either Blevins or Huse wake models can be used when 

calculating forces and deformations over nets. In fact, based on the results, we can 

conclude that the lift effect described by Blevins model is not important in the wake of a 

net structure. This can be explained given that the span of the threads of a net are short 

and connected to buoys at its ends, which restricts its displacement, thus the line 

elements do not have a high deformation towards the center of the opening enclosed by 

four threads. In terms of computational time, Huse model is more efficient and its 

reliability is proven based on the results. Still, the time step required when wake models 

are used is small, especially when the number of elements is increased. 

Considering the previous results, there are still uncertainties in the numerical 

model. One of them is the effect of the nonlinear structural behavior of the netting 

material which is not included. Another effect deals with the variation of flow direction 

around and below the cage. This change of direction cannot be included in a simple 

Morison force model, and its effect is yet to be fully understood based on current 

literature. In order to improve the accuracy of the numerical results, more details about 

the characteristics of the flow inside and outside the cage are needed, particularly for 

high current speed and high deformation of the cage. 
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7. DRAG COEFFICIENT FORMULATION FOR HIGH SOLITY RATIO NETS 

 

7.1 Introduction 

Up to this point, a single netting material under mild current conditions has been 

analyzed. Under the studied conditions, an effective numerical methodology has been 

implemented including a variable drag coefficient formulation and the addition of 

shielding effect on the cage. Across all the studies, it is clear that for high energy flows 

that generate large deformations on the net, numerical results tend to deviate from 

experimental data even when shielding effect is included. This leads to the conclusion 

that another effect must be included in the analysis. This effect is defined as blockage of 

the flow. At high current speed, the deformation of the cage is significant. The cage will 

react to the flow closer to a solid body than to a porous membrane. At this point the 

flow, instead of going through the netting, deviates and flows below and around the cage 

(Gansel et al., 2012). At the same time, a reduction of the drag force when compared to 

the same cage at undeformed condition is observed (Kristiansen et al., 2015). This 

blockage is even more significant for nets with high solidity ratios which experience 

changes on the direction of the flow even at mild current speeds (Moe-Føre et al., 2014). 

Most common netting materials used in industry today have a solidity ratio that 

ranges between 0.20 and 0.30; yet even higher solidities can be found. In addition, 

biofouling naturally increases Sn values, therefore, a numerical model must be able to 

accurately describe forces when blockage is significant (Norway Standard, 2009). 
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Nowadays, numerical models for nets fail to accurately describe forces when blockage 

effect is significant, thus opportunities for further research exist. 

In the present Morison force model using a lumped mass element, the changes on 

the direction of the flow are not included. In order to include this effect, the free 

parameter in the model, drag coefficient, can be tuned to represent blockage effect. 

In this work a new formulation for Cd is presented based on published 

experimental work and numerical simulations carried out using OrcaFlex. The 

formulation is defined for Raschel nets due to its large application on installed fish 

farms. Nevertheless; a similar approach can be applied to other netting materials 

following the procedure introduced in this study. This hybrid model defines Cd as a 

function of Re and solidity ratio (Sn) of the net. Previously, Cd was defined only using 

flow and net threads characteristics, now net geometry is included. In this manner the 

blockage effect due to high solidities and high current speed can be accounted for when 

using a Morison force definition. This new methodology significantly improves the 

numerical results when compared to experimental published data considering a wide 

range of current velocity and Sn values. 

 

7.2 Drag force calculations for high Sn nets using DeCew et al. (2010) formulation 

Once the modeling of a single cage including a variable drag coefficient 

formulation and shielding effect was completed and validated, a more complete set of 

experiments was needed to cover a wider range of net characteristics and flow regimes. 

In addition to the experimental data presented by Lader and Enerhaug (2005), the results 
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presented by Moe-Føre et al. (2014) are used as the basis for the next analysis. In the 

later work, numerical end experimental data for large solidity ratios and current speed 

are presented. The objective of the study was to evaluate the accuracy of different 

numerical models. Overall, three methods were analyzed, triangle, truss and spring 

element models. All of them over predict loads at high current speeds. Constant Cd 

values were used in their study including wake effect. In order to evaluate the 

performance of the present numerical model, the same characteristics of the net, cage 

and flow were replicated. 

 

7.2.1 Experiment conditions and net characteristics 

In both experimental studies, Lader and Enerhaug (2005) and Moe-Føre et al. 

(2014), a Raschel type net was used to build a cylindrical cage open at top and bottom. A 

simple ballast system, including point masses at 16 points along the bottom of the cage 

was used. As previously mentioned, this type of experiments is suitable for validation of 

numerical models. In these experiments, the surface collar is treated as a rigid body. The 

drag over the net was isolated by extracting the drag force of the upper collar and ballast 

cylinders from the total drag force over the cage. 
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Figure 7.1 Raschel netting (Kristiansen and Faltinsen, 2012) 

 

In the case of the experiment by Lader and Enerhaug (2005), the net pen has a 

diameter of 1.435 m. and a draft of 1.44 m. The density of the net is 1130 kg/m3. For 

ballast, 16 point masses of 400 gr. each were hanging from the bottom of the net pen. On 

the experiments by Moe-Føre et al. (2014), the diameter of the cage is 1.75 m. and draft 

1.5 m. The density of the net material is 1100 kg/m3 and ballast is applied at 16 points 

along the circumference of the net bottom with a wet weight of 4.48 N. The description 

of the netting geometry is presented in Table 7.1. For Sn equal to 0.1904 and 0.3020, the 

diameter of the twine has been modified from the original physical value to account for 

the projected area of knots connecting twines. In both cases, the net geometry is the 

same as the intended full scale netting. This helps to avoid small Re values on the model 

and prevents differences between flow regimes at model and prototype scales. 
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Table 7.1 Netting characteristics 

Solidity ratio Sn Bar length (mm) Twine diameter (mm) 

0.1904 25.5 2.60 

0.2250 16.0 1.80 

0.3020 16.2 2.66 

0.4340 5.8 1.35 

 

Three cages tested in this analysis were subjected to a current speed ranging from 

0.03 to 0.93 m/s. For each case the current speed is considered constant over water 

depth. For the case of Sn equal to 0.2250, the maximum current speed for calculations is 

0.52 m/s. 

 

7.2.2 Numerical models 

The model considering a Sn value of 0.2250 corresponds to the same model used 

in the previous sections under ballast conditions C1. In this case, and based on the 

conclusion that the increase on the number of elements used in the numerical model does 

not significantly improves drag force calculations, Model A is used (10 rings, 32 edges). 

For the cases corresponding to the experiment by Moe-Føre et al. (2014), the same 

discretization of the net was used meaning that the model consists of 320 three degree of 

freedom buoys and 672 lines in addition to 32 six degree of freedom buoys used for the 

surface collar. Figure 7.2 shows the numerical net including lines and buoys. 
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Figure 7.2 Numerical representation cage used by Moe-Føre et al. (2014) 

 

In the numerical model, Blevins wake model was applied following the findings 

in the previous sections. As for the drag coefficient, the formulation presented by 

DeCew et al. (2010) is used which is described by Equation 4.5. 

Figure 7.3 shows the high deformation of the net for Sn equal to 0.3020 under 0.5 

m/s current speed. 

 

 

Figure 7.3 Net deformation 
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7.2.3 Drag force results using Cd formulation by DeCew et al. (2010) 

In order to check the accuracy of the present numerical scheme, in addition to the 

experimental data presented in the work by Lader and Enerhaug (2005) and Moe-Føre et 

al. (2014), the numerical calculations performed by Kristiansen and Faltinsen (2012) 

using a screen force model are included for comparison. In the analysis using a screen 

model, the same cages were utilized to validate the model and complete a parametric 

analysis of the factors that could affect the accuracy on the determination of forces on 

the net. A drawback of this method is that the mass of the net is not included in the 

model, meaning that the netting is assumed to be neutrally buoyant which for the present 

case holds true, but for heavier nets this represents an issue which; on the other hand, 

can be taken into account in the OrcaFlex model. 

In the following plots the label OrcaFlex-DeCew et al. (2010) represents the 

numerical results obtained using our current model and the drag coefficient definition 

given by Equation 4.5. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.4 Comparison numerical and experimental results for drag force under 

steady current (a) Sn=0.1904, (a) Sn=0.2205, (a) Sn=0.3020 and (a) Sn=0.4340 

 

By using the methodology previously presented, numerical calculations show a 

good agreement with experiments over a wide range of current speed especially for Sn 

values of 0.1904 and 0.225. For higher solidities, good agreement is reached for current 

speeds up to 0.5 m/s. 
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Based on the results, the screen model by Kristiansen and Faltinsen (2012) tends 

to follow the trend of the experimental data; nonetheless, still over predicts the drag load 

for high current speeds. 

From Figure 7.4 it is clear that for high speed and high values of solidity ratio, 

the difference between the present numerical calculations and experimental data 

becomes significant. The main reason for this effect is the blockage experienced by the 

flow when the net is deformed. For high solidity nets, the flow goes around and below 

the net instead of flowing through it. This phenomenon is translated into the plateau of 

the drag force versus current speed curves. The deformation and exposed area do not 

significantly change for high current velocities, thus the slope on the drag force curve 

changes. This change on the direction of flow cannot be modeled in our numerical 

model. On the other hand, the blockage effect can be considered into the drag coefficient 

values for the constituent elements of the numerical net since this value acts as a free 

parameter in the actual numerical scheme. 

Based on the results in Figure 7.4, the Cd formulation by DeCew et al. (2010) 

cannot directly be used under high current speeds for high values of solidity ratio; a new 

approach needs to be developed in order to improve the accuracy of the drag load 

predictions. 

 

7.3 Cd formulation based on experimental and numerical data 

By an iterative process, optimal Cd values were determined for the measurements 

that show the largest deviations from experimental data. Numerical calculations show 
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that the drag coefficient values for nets of high solidity ratios, under high current speed, 

must be significantly smaller than those used for nets with smaller Sn under similar 

current velocities. This drag coefficient reduction takes into account the reduction of 

flow velocity inside the cage. In the physical net, the current speed affecting the 

downstream portion of the net is greatly reduced by the blockage from the deformation 

of the upstream panel (Gansel et al., 2012). This effect can partially be captured by using 

a local wake model; however, at large deformations, the global wake by the upstream 

panel overtake the local wake due to the presence of line elements. This global wake 

effect can be included in our numerical model by the adequate definition of drag 

coefficient values corresponding to the type of net analyzed and flow conditions. 

Since the determination of drag coefficient in this numerical scheme is based on 

twine diameter, a third source of experimental data can directly be added to the study. In 

the research performed by Tsukrov et al. (2011), several nets were characterized in terms 

of drag coefficient by experimental measurements. Net panels were exposed to current 

speed ranging from 0.1 to 1.0 m/s. In particular, two Raschel type nets were included in 

Tsukrov et al. (2011) considering Sn values of 0.172 and 0.208. 

Reynolds numbers are defined as in Equation (7.1) with Uc equal to current 

speed, dtwine diameter of threads of the netting and ν kinematic viscosity. 

c twineU dRe=
ν

 (7.1) 

Drag coefficient as a function of Re for all the data, including experimental and 

numerical sources, is presented in Figure 7.5. Scatter is induced due to the blockage 
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effect and no clear trend is revealed as how the variation of drag coefficient can be used 

to account for the effect of high solidity ratios at high energy flows. 

 

 

Figure 7.5 Cd as a function of Re based on experimental and numerical data. 

 

Based on Figure 7.5 data from all sources was arranged on a new format. Instead 

of presenting drag coefficient as a function of Re, Cd now varies as a function of Re*Sn
2. 

By using this new definition, drag coefficient now considers the blockage effect at high 

solidity ratios and a trend can be observed from the plot in Figure 7.6. As the factor 

Re*Sn
2 increases, the drag coefficient value is almost constant with a mean value of 1.4 

up to Re*Sn
2 equal to 110. For larger values of the factor Re*Sn

2, Cd decreases. This 

trend is interesting given that the plot is created using four different sources of data, 

covering a wide range of fluid velocity and solidity ratio. This approach is intended to be 

valid for nylon Raschel nets, while for other types of nets, a similar approach can be 

used to characterize the variation of Cd across different net opening geometries and fluid 

regimes. 
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Figure 7.6 Cd as a function of Re and Sn 

 

The data from Figure 7.6 can be described by means of a second order 

polynomial using a least square method technique. In this manner, a new formulation for 

Cd values is found, particular to Raschel nets. Reynolds number is calculated based on 

the twine diameter of the net while Sn values are taken from the experimental published 

data. This is shown in Figure 7.7. 

 

 

Figure 7.7 Cd as a function of factor Re*Sn
2  
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The new expression for Cd based on the factor Re*Sn
2 is presented in Equation 

(7.2). 

5 2 2 23.2892 10 ( * ) 0.00068*( * ) 1.4253d n nC x Re S Re S−= − + +  (7.2) 

The R2 value of the quadratic fit curve is 0.8. This new formulation is 

implemented into OrcaFlex and the drag force calculations in Figure 7.4 are revised. 

 

7.4 Drag force calculations based on semi-empirical model 

In order to evaluate the improvement on the results by applying the formulation 

based on numerical and experimental data, the results previously presented are updated 

using the new Cd values obtained by using Equation (7.2). 

The results using the upgraded formulation (OrcaFlex-Quad. fit) are presented in 

Figure 7.8. In these plots the results from Figure 7.4 are included to directly evaluate the 

level of improvement achieved by characterizing the net using the new expression in 

Equation (7.2) based on the factor Re*Sn
2. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.8 Comparison numerical and experimental results for drag force under 

steady current using new Cd definition (a) Sn=0.1904, (a) Sn=0.2205, (a) Sn=0.3020 

and (a) Sn=0.4340 

 

From the previous figure, the accuracy improvement of the numerical results 

using Equation (7.2) is proven. As a comparison, plots include experimental as well as 

numerical data using the formulation in Equation (4.5) and the proposed new Cd 

expression for Raschel nets presented in Equation (7.2), in addition to the numerical 

results using the screen model. There are small differences for low Sn nets since on these 
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nets the drag load was already calculated with high precision by using Equation (4.5) 

and Blevins wake model. On the other hand, for high Sn nets, the improvement on 

numerical prediction for drag force when compared to experimental data is significant. 

The results show that a modification of Cd values is a viable alternative to represent the 

complex blockage effect over a cage in a simple and efficient manner. The fact that 

experimental data from three different experiments was used in addition to the numerical 

data, justify the validity of the approach. 

When compared to the screen force model, the results using the current method 

show better results across the spectra of nettings and flow regimes. 

This analysis shows that for each particular net, a characterization in terms of 

drag coefficient is necessary when using a Morison force model. A simple definition of 

Cd able to cover the complete spectra of nets geometries and flow regimes is not an 

adequate alternative given the complexity of the hydroelastic response of flexible nets 

and the substantial differences on geometry and mechanical properties of the various 

nets in the market. 

 

7.5 Discussion 

Estimation of drag force and deformation for highly flexible structures such as 

nets is a complex hydroelastic problem. As seen from the calculations presented in this 

work, a Morison model using a traditional definition for drag coefficient is not able to 

accurately predict forces when flow is deflected due to the presence of the netting. 

Recent experimental data have confirmed the acceleration of the flow underneath and 
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around cylindrical cages as well as a significant reduction of flow velocity inside the 

cage for solidity ratios of 0.3 (Turner and Reid, 2015). This change of direction of the 

flow and the significant reduction of the current velocity inside the cage at high solidity 

ratios has not been described in current numerical models. Thus a new formulation to 

account for this phenomenon is developed. 

CFD calculations have revealed the complex flow pattern in the wake of a single 

net panel (Bi et al., 2014a) as well as on a rigid porous cylinders (Gansel et al., 2012). 

Even for these simple net models, the computational time required to obtain the results is 

quite large and not practical for computation of large fish farm facilities compose of 

multiple cages. On the other hand, a simple model as the one presented in this analysis, 

is able to converge in a short time using a small number of elements to discretize the net. 

In addition, for further analysis including waves, the research done in cylinders under 

waves and current flows can be used to feed the model to include inertia effects 

particularly for the floating collar which contribution to the total drag force is significant 

depending on the floater diameter to wave length ratio (Kristiansen and Faltinsen, 2015). 

Based on the results, a simple discretization of a net using an array of cylinders 

connected by buoys, is able to predict drag forces over a large range of current speed and 

solidity ratios using the new formulation for Cd. Results show that the original 

formulation using Cd values from DeCew et al. (2010) is suitable for mild current speed 

and relatively low solidity ratios. Differences are not significant for current speed up to 

0.5 m/s across the four nets used in this analysis. Over such current speed, small 

deviations from experimental results can be observed for the case of Sn equal to 0.1904 
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and 0.2250. However, for the cases of Sn equal to 0.3020 and 0.4340, maximum 

differences between experimental and numerical data reach over a 50% and 100% 

respectively. This can be explained by the fact that in the numerical model the projected 

area of the model remains constant; all the line elements of the net are subjected to the 

same current load effect, while on the physical model, the projected area is reduced due 

to the deformation of the net as seen in Figure 7.3. Under this deformation, the elements 

on the downstream panel are subjected to a reduced current speed which is related to the 

blockage created by the deformed upstream panel, and is more significant than the 

reduction given by the presence of the upstream elements represented by the local wake. 

One method to include this reduction on projected area and current speed on the netting 

is to modify the free parameter in our model which corresponds to the drag coefficient. 

The new formulation in Equation (7.2) shows a significant improvement on accuracy on 

the determination of drag forces over a wide range of Sn values and flow velocities. The 

fact than three different sources of experimental data were used to derived the 

formulation for Raschel nets support the validity of the new method to characterize nets 

in terms of drag coefficient for large deformations. 

The determination of drag forces over nets with high solidity ratios is particularly 

interesting for fish farms exposed to high levels of biofouling. Recent studies have 

shown that levels of biofouling can be parametrized in order to use the existent method 

of calculation of forces over nets (Gansel et al., 2015). By using the new formulation, 

calculations can be done to determine the drag loads over fish farms after being installed, 

and using this information, the cleaning or replacement of nets can be schedule, 
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facilitating the operations. This prediction of forces over biofouled nets can also help to 

avoid failures that are translated into escapes of farmed fish into the wilderness.  

In addition, the current methodology can be used for other types of nets, e.g. 

cupper-nickel and Dyneema fibers; thus, increasing the accuracy on the determination of 

forces and improving the design of station keeping systems. 
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8. FORCES ON CAGES UNDER COMBINED CURRENT AND REGULAR WAVES 

 

8.1 Introduction 

Once the present numerical methodology was validated for a wide range of 

current speed and Sn values, the next step in the analysis is including wave loading. In 

previous cases, the netting was the solely focus of attention. The surface collar has been 

considered up to this point as a rigid body. In addition, its drag load has not been 

included in the calculation. Nevertheless, in waves, the surface collar stands most of the 

wave loading and its deformation is crucial when estimations of mooring tension are 

needed. 

Under wave loading, a cage using a rigid collar will follow the wave elevation at 

low wave frequencies. Further, a linear relation can be seen between wave elevation, 

mooring line tension, surge and heave motion for frequencies up to 1.0 Hz (Dong et al., 

2010). For high wave frequencies, negligible motion is observed and high damping is 

present in the system (Xu et al., 2011). Under wave excitation, studies regarding the 

dynamic response of the floating collar have shown the relevant effect of the flexural 

modes over the global response of the cage (Endresen, 2011; Faltinsen et al., 2011). For 

the whole cage system, mooring line forces are strongly dependent on wave elevation, 

while volume reduction is driven by current loading. As for the surface collar, large 

deformations are expected due to the low bending stiffness of the HDPE material 

typically used (Li et al., 2013a). Another component of the response of the floating 

collar is the variable buoyancy force due to the constant piercing of the floater on the 
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water surface (Li et al., 2013b). Modeling of bending and axial stiffness of floater and 

netting, in addition to the approximation of wave kinematics up to the instantaneous free 

surface are critical, given the significant effect of these parameters on the tension force 

on mooring lines (Kristiansen and Faltinsen, 2015). 

In the present section, a single cage considering a flexible surface collar, netting, 

ballast and mooring system is exposed to a combination of current and regular waves. 

The cage is open at the top and bottom to simplify the dynamic analysis. Particular 

attention is given to the drag and inertia coefficient selection for the upper collar, which 

depends on the wave condition characterized by Keulegan-Carpenter (KC) and Reynolds 

(Re) numbers. The definition of drag coefficient for the net is based on the formulation 

developed in the previous section. An analysis of the different models for wave 

kinematics extrapolation over the sea surface is carried out since no information is 

available about the influence of these approximations on the total loads over the system. 

The results obtained are contrasted with the experimental data presented by 

Kristiansen and Faltinsen (2015). Based on numerical results, mooring line tension can 

be well captured by the present Morison force model for a wide range of wave steepness 

and current speed. Overall, for regular wave loading, the predominant effect over tension 

is viscous drag over wave loading, except for steep waves where wave loading is of the 

same order of magnitude as current force. 
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8.2 Numerical model of cage and steady current calculation 

To validate the present numerical model, experimental results presented by 

Kristiansen and Faltinsen (2015) were used. In their study, wave and current loads over a 

single cage were determined based on experimental and numerical calculations. In 

addition, a study was carried out to evaluate the influence of several parameters over the 

dynamic response of the cage. The cage is composed of a floating collar, netting, 

mooring lines and ballast represented by 16 point masses along the bottom 

circumference of the cage. The present validation was carried out using the experiment 

conditions to avoid scale effects. The particulars of the model are described in Table 8.1. 

The numerical model was built using 2624 lines, 1280 three degree of freedom buoys 

and 64 six degree of freedom buoys. Numerical model including cage and mooring lines 

is presented in Figure 8.1. 

The simplest case considers only current load for velocities between 0.04 to 0.30 

m/s. The current profile is idealized as constant over water depth. The results for this 

current only case are included for completeness of the analysis. In this case, Blevins 

wake model has been included and drag coefficient is defined using the new formulation 

presented in section 7 given that the model uses Raschel type netting. 
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Table 8.1 Cage characteristics 

Parameter Value Unit 

Diameter  1.5 (m) 

Draft  1.3 (m) 

Floater pipe diameter  0.03 (m) 

Floater bending stiffness  0.136 (Nm2) 

Net type Raschel knotless ~ 

Solidity ratio (Sn) 0.265 ~ 

Bar length  6 (mm) 

Twine diameter  0.6 (mm) 

Net density  1100 (kg/m3) 

Ballast  16 x 0.075 (kg) 

Water depth  1.5 (m) 

Scale 1:25 ~ 
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Figure 8.1 Numerical model including cage and mooring lines 

 

From the results presented in Figure 8.2 it can be observed that the present 

numerical model is able to predict the drag force over the cage with a high level of 

accuracy. 

 

 

Figure 8.2 Drag force under current  
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Small differences arise in the region UC  > 0.25 m/s where the model tends to slightly 

under predict the drag force. Nonetheless; overall the agreement between numerical and 

experimental data is satisfactory and follows the same trend as the results presented by 

Kristiansen and Faltinsen (2015) using a screen force model. As shown in Figure 8.3, the 

deformation of the cage also shows close agreement with experiments. The comparison 

is presented for the case of 0.1 m/s current. The local deformation on the upstream and 

bottom sections of the net is well captured in the numerical model. On the downstream 

section, shielding effect translates into a smooth net profile as shown in experimental 

and numerical results. 

 

 

Figure 8.3 Cage deformation comparison for experimental and numerical model  

 

8.3 Mooring line tension over cage under regular wave loading 

The second set of results consider regular wave loading over the system 

presented in Figure 8.1. The cage mooring system was subjected to a series of regular 

waves moving along the x axis. Wave characteristics are presented in Table 8.2. These 

conditions correspond to the same ones applied to the experimental data used as a 
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reference in this work. This allows us to directly compare numerical and experimental 

results. In order to avoid a slack condition on the mooring lines, pretension at the front 

and aft mooring lines was applied in the numerical model following the experimental 

case. The actual value of the pretension load is 14 N. 

 

Table 8.2 Regular wave load conditions 

Current, UC (m/s) 
Wave steepness, H/λ 

1/60 1/30 1/15 

0.0 0.5 – 1.6 s 0.5 – 1.6 s 0.5 – 1.6 s 

  

Considering the small diameter of net twines and the high KC numbers of the 

netting in the simulation, the flow can be treated as quasi steady and the model used for 

steady current can be applied to the present case. Thus, the same procedure described 

previously is applied to create the equivalent net model using the same inertia 

coefficient. 

As for the surface collar, this can be represented exactly as in the physical model 

using the same geometry and mechanical properties. As for the hydrodynamic load, the 

same Morison force model applied to the netting is used. However, drag and inertia 

coefficients need to be defined according to each wave condition. 

The inertia component on Morison equation is particularly important for the 

floating collar. In this case, CM depends on Re and KC numbers. For a floating cylinder 

in oscillatory flow, inertia coefficient follows the same trend as for a fully immersed 
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cylinder, while Cd is about half of the value for a fully submerged cylinder (Fu et al., 

2013a). Based on these findings, a conservative approach is applied in this study. For the 

floater, Cd is selected as 0.6 for all conditions considering that Re ranges between 104 to 

105. In this region Cd is equal to 1.2 for a fully immersed cylinder. CM is obtained for 

each wave condition based on KC and Re numbers considering maximum wave orbital 

velocity. Actual inertia coefficient values were obtained based on the work by Sarpkaya 

(1976). For the case of pure waves over the system, the definition of Re and KC numbers 

for the floating collar used in this analysis is given by Equation (8.1) and (8.2) where UM 

is the maximum orbital wave velocity, d represents floater diameter, ν is kinematic 

viscosity and T is wave period. 

M
Collar

U dRe
ν

=  (8.1) 

M
Collar

U TKC
d

=  (8.2) 

 

Figure 8.4 shows the variation of CM with Re and KC for a fully immersed 

cylinder in oscillatory flow. β is defined as the ratio between Re and KC numbers. In the 

actual cases, values were obtained interpolating the data on Figure 8.3. 
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Figure 8.4 CM values as function of Re and KC numbers from (Sarpkaya, 1976) 

 

8.3.1 Influence of wave kinematics extrapolation models on mooring forces 

Considering that when using linear wave theory, wave kinematics are defined up 

to the mean water level, adjustments need to be made to account for water particle 

velocity and acceleration at the instantaneous free surface. When diffraction effect is not 

significant a hyperbolic stretching can be applied to extend linear wave theory up to the 

free surface (Chakrabarti, 1987). 

The effect of wave kinematic approximation above mean water level is analyzed 

using three different approaches, vertical and linear stretching in addition to Wheeler 

approximation. In the vertical stretching method, wave velocity above mean water level 

is considered constant and equal to the velocity at z = 0. Linear stretching takes the 

tangent to the wave velocity profile at z = 0, and linearly extrapolates this profile up to 

the free surface. Wheeler method takes the wave kinematics at z = 0 and applied them at 

the free surface, modifying the velocity profile over water depth accordingly. 
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Figure 8.5 Wave kinematics extrapolation methods. 

 

The previous figure illustrates the effect of these kinematic stretching methods 

over the wave velocity profile along water depth. 

Wave kinematics is particularly important since forces over the floater depend on 

fluid velocity and acceleration, thus an adequate modelling of these properties needs to 

be considered. 

The first set of results to be presented includes the maximum tension on the front 

mooring line using the three wave kinematics approximation methods described. In this 

analysis experimental conditions for wave only case are studied. The maximum load is 

obtained after the transient period. This information shows the largest tension on the 

upstream mooring line providing vital information for the design of the mooring system. 

Since no information is provided in the reference paper for tension time series from 

experiments, this portion of the analysis includes only numerical data. Results show the 

dynamic portion of the load since pretension has been subtracted. 
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Figure 8.6 Maximum mooring line tension over front mooring line under regular 

wave loading. 

 

The results show that for small waves, there are not significant differences 

between wave kinematic extrapolation models; however, as wave steepness increases, 

the results using Wheeler model deviate from Linear and Vertical methods. This 

preliminary analysis shows that differences of up to 50% on mooring tension are 

observed when using different wave kinematics approximation models, particularly for 

high energy waves. In order to justify the use of a particular model, comparison to 

experimental data is needed, which is presented in the next set of results. 
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Results are now presented for the experimental conditions previously described. 

Plots for mean and total force for the front and aft mooring lines are presented. The total 

force is defined as the sum of mean and amplitude of the tension on the mooring line. 

Amplitude is calculated as 2a FF σ= , where Fσ  is taken as the standard deviation of 

the load signal over the same time window as the mean force. Pretension is subtracted 

from the actual time series obtained in the numerical simulations to isolate the tension 

coming exclusively from wave loading. Hence, absolute forces are presented. The same 

procedure was used to analyze the experimental results. 

In this analysis, mean force is determined as the mean value of the tension load 

signal after the transient period. In the next plots, experimental data for the different 

wave conditions are represented by markers while numerical results from the current 

numerical method and the numerical results by Kristiansen and Faltinsen (2015) are 

represented by lines. Plots show the relation between tension forces on front and aft 

mooring lines on the y axis, and the ratio of wave length and cage diameter (λ/D) on the 

x axis. 

 

 

 

 

 

 



 

145 

 

Mean force front mooring line Total force front mooring line 

  

  

  

Figure 8.7 Mean and total tension on front mooring line under regular wave 

loading 
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Mean force aft mooring line Total force aft mooring line 

  

  

  

Figure 8.8 Mean and total tension on aft mooring line under regular wave loading 
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conditions, for front (FM) and aft (AM) mooring lines. From the plots in Figures 8.7 and 

8.8 it can be seen that mooring line tension is small for s (wave steepness) 1/60 and 1/30 

when compared to the steepest waves (s = 1/15). This shows that forces on the mooring 

lines are strongly influenced by wave height. This must be the main parameter to 

consider when designing station keeping systems for offshore fish farms. The present 

model shows close agreement with experimental data for the mean component of the 

load, for both front and aft mooring lines, for the steepest wave condition over the 

complete range of wave length. The correlation between experimental and the current 

numerical model is satisfactory, particularly for s = 1/60 and 1/15 while for s = 1/30 

divergence exist over λ/D having an over prediction for λ/D < 1.5 and an under 

prediction for λ/D >1.5. 

As for the total tension for front and aft lines, there is a slight under estimation of 

the total load for long and steep waves, while for small amplitude waves, numerical 

results show high accuracy, especially for longer waves (λ/D>1.5). For short waves, the 

divergence between numerical an experimental data comes from the fact that the 

deformation modes of the surface collar play an important role on the mooring line 

tension. This deformation is better described by a complete hydroelastic model, which 

takes into account the modes of vibration of the floater, as the one presented by 

Kristiansen and Faltinsen (2015). This phenomenon is not well capture by the Morison 

force model for the case H/ λ = 1/15 being the zone of λ/D < 1.0 the one with the largest 

under estimation of tension force. This can also be observed on the numerical results by 

Kristiansen and Faltinsen (2015) showing the complexity of the dynamic response of 
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highly flexible structure under pure wave action. For λ/D > 1.0, the surface collar 

follows the wave and its motion is closer to the dynamic response of a rigid body for 

which numerical models, such as Morison and hydroelastic, show acceptable 

performance over the wave conditions analyzed in this study. From a practical 

perspective, when performing mooring and structural analysis, calculations are done for 

extreme conditions given by long and high waves. For those cases, the present numerical 

model is able to predict the loads with high accuracy validating the numerical approach. 

In addition, the fact that only one type of element is used to model both net and surface 

collar speeds up the calculations allowing the study of multiple cage configurations and 

environmental conditions in a short period of time. The rationale behind the selection of 

drag and inertia coefficients, based on the conclusions by Fu et al. (2013) that for a semi 

submerged pipe under wave loading, inertia coefficients are similar as for the case of a 

fully immersed pipe, proves to be accurate. 

Based on the results, when using a Morison force model, selection of inertia 

coefficients must be based on Re and KC parameters considering the maximum orbital 

wave velocity and pipe diameters as main inputs. 

As for the kinematic stretching model, Wheeler stretching seems to have the 

largest impact over the accuracy of the results. Even though this model is not physically 

correct, since this model does not satisfy Laplace’s equation, its application generates 

the closest agreement with experimental data when compared to the performance of 

vertical and linear stretching techniques. Results show that there are no major 

differences between the results obtained when using vertical and linear techniques. On 
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the other hand, using Wheeler stretching significantly improves the accuracy of the 

numerical calculations when compared to the experimental data. In addition, since the 

numerical reference work used in this analysis uses Wheeler stretching, a direct 

comparison using similar assumptions seems appropriate to evaluate the accuracy of the 

present numerical scheme. 

Overall, the results under wave only condition including multiple effects, such as 

local and global blockage of the flow over net and floater using Morison equation, 

proves to be a valuable tool for the evaluation of mooring line forces under a wide range 

of load scenarios. 

 

8.4 Mooring line tension over cage under regular wave current interaction 

After the validation of the numerical scheme for regular waves was complete, the 

next step is to include current on the system and compare present results against 

published experimental and numerical data. Wave current interaction effects are 

particularly important when calculating the hydrodynamic response of offshore 

structures, in which storm and operational scenarios consider a collinear combination of 

waves and current for design purposes. In addition, several studies have shown the 

relevance of current loading when calculating forces on cages/nets. Consequently, wave 

current interaction effects are relevant and it is necessary to further investigate them for 

future offshore fish farm applications. 

The conditions analyzed in this section are described in Table 8.3. In this case, 

wave conditions for H/ λ = 1/30; 1/15 are consider plus current speeds of 0.1 and 0.2 
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m/s. Given the scale of the reference experiments, these velocities correspond to 0.5 and 

1.0 m/s in prototype scale. A 1 m/s current speed is characteristic of an exposed location 

according to Norway Standard (2009), hence, these conditions are of particular interest 

for offshore locations. 

 

Table 8.3 Regular wave current interaction conditions 

Current, UC (m/s) 
Wave steepness, H/λ 

1/30 1/15 

0.1 0.5 – 1.6 s 0.5 – 1.6 s 

0.2 0.5 – 1.6 s 0.5 – 1.6 s 

 

Mean, amplitude and total force are defined in the same manner as in the case of 

pure wave loading. The pretension on the front and aft mooring line is 14 N, and this 

pretension is subtracted from the time series of mooring line tension. In this case, the 

findings form the wave only conditions are applied and Wheeler stretching is applied to 

all wave/current conditions. As for the selection of inertia coefficients for the surface 

collar, the values for a fully immersed cylinder were selected. In the case of wave 

current interaction, the maximum velocity over the floater will increase. Hence, the 

definition of Re and KC numbers must account for this effect as described in Equations 

(8.3) and (8.4) where UC represents current velocity. 

( )M C
Collar

U U dRe
ν
+

=  (8.3) 
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( )M C
Collar

U U TKC
d
+

=  (8.4) 

Results are presented for front and aft mooring lines considering its mean and 

total force components. In the next plots, dots represent experimental data while solid 

lines represent numerical calculations by Kristiansen and Faltinsen (2015) using a screen 

force model. Gray lines account for the results using the present model. The first set of 

results consider UC = 0.1 m/s. 
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Figure 8.9 Comparison wave current interaction for UC = 0.1 m/s, front mooring 

line 
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Mean force aft mooring line Total force aft mooring line 

  

  

Figure 8.10 Comparison wave current interaction for UC = 0.1 m/s, aft mooring line 

 

The following set of results consider the case for UC = 0.2 m/s for front and aft 

mooring line tension. 
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Mean force front mooring line Total force front mooring line 

  

  

Figure 8.11 Comparison wave current interaction for UC = 0.2 m/s front mooring               

line 
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Mean force aft mooring line Total force aft mooring line 

  

  

Figure 8.12 Comparison wave current interaction for UC = 0.2 m/s, aft mooring line 
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between wave conditions H/ λ = 1/30 and H/ λ = 1/15 is a slight change on the slope of 

the curves for tension. The same observation is valid for front and aft mooring lines. 

Numerical results consistently over predict tension loads on front (FM) and aft 

(AM) mooring lines; however, the differences are rather small. The divergence between 

numerical and experimental data grows as wave length increases; yet, screen and 

Morison force model show enough margin of confidence for the determination of 

mooring line tension under wave current loading. For short length waves (λ/D < 1.0), 

Morison model shows close agreement with experimental results across all conditions 

analyzed. In this area, the dominant load factor is the viscous drag load on the netting 

due to current loading. As for larger waves, the current model is still able to predict with 

high accuracy the loading over the mooring lines, especially for the case of weak current 

speeds. For high current velocity, screen model shows a higher accuracy when compared 

to Morison model, still, this is expected since at high current speeds, it has been shown 

that Morison model tends to over predicts drag forces (Moe-Føre et al., 2014). 

Nonetheless, the inclusion on the model of the semi empirical formulation for the net’s 

drag coefficient, in addition to the modeling of shielding effect, proves to significantly 

impact the results making numerical results presented in this analysis equivalent to the 

ones from the screen plus hydroelastic model. 

The largest tension is obtained for the longest and steepest waves under 

maximum current speed as expected. The increase in current speed is not directly 

correlated with the increase in mooring tension. This is predictable at high current speed 

where the stream does not flow across the net, but around and below the cage changing 
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the slope of the current speed/drag force curve which tends to plateau for current 

velocities over 0.5 m/s. 

 

8.5 Discussion 

A complete analysis of the hydrodynamic response of a single cage under 

current, regular waves and regular waves/current loading condition is presented. The 

main focus of the analysis was the mooring line tension response and the effect of the 

superposition of waves and current over the overall dynamic response of the cage. The 

analysis is based on previously published experiments in order to validate the current 

approach and evaluate its accuracy when compared to a screen netting model coupled 

with a hydroelastic collar description. 

The present numerical model shows high accuracy across all conditions 

analyzed, when compared to the available experimental data. The model has been 

previously validated against current only condition; still, under wave current interaction, 

the numerical results are able to follow the trend of experimental data. For current only, 

there is excellent agreement between numerical and experimental data. When only 

regular waves are considered, good agreement is achieved for long waves. For short 

waves, the present model tends to under predict the tension. This is mainly due to the 

local deformation of the surface collar which cannot be completely described by using a 

Morison force model. For steep and long waves, which represent strong sea conditions 

used in design stages, the model proves to be reliable. In addition, the computation time 

is of the order of minutes for a time series of 50 seconds, therefore it is useful when 
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optimization of the mooring system is required. CM values were selected based on 

experimental evidence and Wheeler stretching is applied after comparing against the 

results using vertical and linear extrapolation stretching methods. 

When regular wave/current interaction is considered, the numerical results follow 

the experimental data and shows high precision for short waves for both wave steepness 

cases analyzed. The model tends to slightly over predict the tension load for long waves; 

yet, this error is on the same order of magnitude obtained by other numerical models. 

Overall, the results are satisfactory and show the relevance of both, waves and current 

effects, over the mooring line tension, particularly for long and steep waves. 

When comparing the results of waves only and the collinear combination of 

regular waves and current loading, it is perceived that viscous drag force over the net is a 

relevant component of the total load on the system. Nonetheless, when considering 

current speed of 0.1 m/s and long waves, the significance of wave and current load is 

similar, highlighting the importance of the accurate prediction of both, wave and current 

effects, especially for long and steep waves. 

The load significantly increases when current is present being the maximum load 

in the wave/current case almost 4 times the maximum value obtained for waves only. 

For short waves results do not have a clear trend when only waves are considered; on the 

other hand, this variability is missed in the combination of waves and currents due to the 

strong effect of the viscous drag on the net, even at steep and short waves. In waves 

only, the tension on the mooring lines is greatly influence by wave height. A significant 

increase in load in observed for the experimental measurements and numerical 
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calculations between H/ λ = 1/30 and H/ λ = 1/15 conditions. As for the combined 

wave/current case, the influence of wave height is not as pronounced and the slope of the 

tension curves does not have a steep increase as for the case of waves only. 

Based on the results from both conditions, waves and wave/current, when 

designing mooring systems for fish farms, the effect from strong currents and large 

amplitude/long period waves must be taken into account since its influence can be equal 

over the global force on the cage. In addition, when using a Morison force model, the 

selection of inertia coefficients for surface collar is critical to achieve reliable results. 

The same holds true for the drag coefficient for the netting which needs to account for 

the blockage of the flow at high deformations on a flexible cage, in addition to including 

the local shielding effect due to the loss of momentum of the flow when crossing the 

upstream panel of the cage. The effective combination of numerical tools to describe the 

different effects in the present calculations shows high accuracy, even for combinations 

of wave amplitude and periods that generate nonlinear events such as breaking waves 

and overtopping at the surface collar. 
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9. FORCES AND MOTION ANALYSIS OF CAGE UNDER IRREGULAR 

WAVES/CURRENT INTERACTION 

 

9.1 Introduction 

In real sea conditions, a single cage or fish farm will be exposed to a combination 

of waves and current. As for waves, a classical representation of a sea state consists of a 

superposition of multiple regular waves with different frequencies. After the validation 

of the numerical technique is complete for regular waves, the next natural step is to 

analyze a system under irregular wave loading and collinear current. 

In this case, the numerical model used in the previous section is used and 

exposed to irregular waves represented by a Jonswap spectrum and collinear current 

loading. Conditions are modeled for an exposed offshore site under a storm event. The 

novelty of this analysis relies on the fact that a flexible surface collar is used instead of 

considering this component as a rigid body. Up to this point most numerical, 

experimental and in situ studies have considered rigid cages exposed to irregular waves. 

In addition, shielding effect is included in the present calculation; this effect has not been 

applied in previous analysis by other authors when irregular wave loading is considered. 

Also, a rational selection of coefficients to be used in Morison equation is proposed 

based on wave and current conditions. 

Based on published experiments and site measurements, heave RAO results 

reveal that a cage behaves as a highly damped system where minimum response at high 

frequency excitations is observed (DeCew et al., 2005). At the same time, resonance 



 

160 

 

responses are estimated to be at quite low frequencies, below 0.05 Hz. This feature has 

also been observed in the mooring line tension response for a SPM cage under irregular 

waves and current loading (Huang et al., 2010). 

As for surge motion, the system is highly influence by the mooring line design 

which can completely restrict the horizontal motion of the cage overcoming the Stokes 

drift effect over the surface collar (Fredriksson et al., 2003b). Further analysis have 

shown that a linear relation exist between wave elevation, surge, heave and mooring line 

tension when a rigid surface collar is utilized in numerical simulations (Dong et al., 

2010; Xu et al., 2011).When the bending stiffness of the surface collar is taken into 

account in numerical calculations, rigid body modes are more relevant in horizontal 

motions when exposed to waves, flexural modes occur at higher than wave frequency, 

thus its influence is not relevant on the analysis (Li et al., 2013a). 

The accurate computation of loads and deformation of the net under wave current 

interaction is critical in the determination of the cage response under irregular waves. 

The interaction between netting and surface collar largely influence the horizontal 

motions of the cage (Li et al., 2013b). Snap loads can also occur between netting and 

surface collar inducing higher tension on the threads and connectors on the surface collar 

leading to potential failures and escapes (Bardestani and Faltinsen, 2013). 

An important reason to analyze the response of cages under irregular waves is to 

further study the response of components such as surface collar and mooring line to 

fatigue over time. Low and wave excitation frequencies influence the fatigue life of 
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mooring components in a cage under wave loading. Low frequency can play a role when 

an increase on wave height is considered (Xu et al., 2014). 

In the next sections, results for tension on mooring lines and motion of the cage 

will be presented and analyzed in time and frequency domain to correlate the response of 

the cage and mooring lines with the environmental conditions applied in each calculation 

case. 

 

9.2 Description of numerical model and environmental conditions 

The next set of results to be presented considers the cage subjected to a 

combination of irregular waves and collinear current. Conditions for an exposed location 

according to Norway Standard (2009) were selected and downscaled according to the 

geometric scale of the experimental model. The same model as analyzed in section 8 is 

used. For the prototype site, significant wave height and peak period are 3 m. and 9 s., 

while for the model, Hs is equal to 0.12 m. and Tp is 1.8 s. To represent this sea 

condition, a Jonswap spectrum is applied (Goda, 2010). The actual formulation is 

presented in Equations (9.1), (9.2), (9.3) and (9.4). 

2

2

( 1)
exp

22 4 5 4
1
3

( ) exp[ 1.25( ) ]
pT f

a
J p pS f H T f T fβ γ

⎡ ⎤−
⎢ ⎥
⎢ ⎥− − − ⎣ ⎦= −  (9.1) 

1

0.0624 [1.094 0.01915ln ]
0.230 0.0336 0.185(1.9 )Jβ γ

γ γ −
= −

+ − +
 (9.2) 

0.559
1
3
/ [1 0.132( 0.2) ]pT T γ −≅ − +  (9.3) 
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= ≅ ≅⎨ ≥⎩

 (9.4) 

Peak enhancement factor 𝛾 defines the peakedness of the spectrum, while σ 

describes the energy spreading over the frequency range selected. In Equations (9.1) and 

(9.3) T1/3 and H1/3 are significant wave period and height respectively. The sea states 

parameters, at model scale, used in Jonswap spectrum are presented in Table 9.1. The 

input spectrum and wave elevation time series is shown in Figure 9.1. 

 

Table 9.1 Irregular wave load conditions 

Current, UC (m/s) 
Jonswap spectra parameters 

Hs (m) Tp (s) γ 

0.0 

0.12 1.8 3.3 0.1 

0.2 

 

  

Figure 9.1 Input spectrum and wave time series 
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Same conditions for cage setup as in section 8 are used this time pretension is 

included in the tension results. As it was previously described, inertia coefficient values 

for surface collar must be defined in terms of wave conditions characterized by Re and 

KC numbers. In the case of a sea state composed of multiple wave components, a 

rational selection of CM values must be done, since our current model does not include a 

time dependent CM formulation. Considering that the given sea state is represented by 

the combination of a significant wave height and period, CM values for the surface collar 

are selected based upon those parameters, in addition to the corresponding current speed. 

Therefore, Re and KC numbers are calculated using Equations (8.3) and (8.4) to obtain 

CM based on the plots by Sarpkaya (1976). Wheeler stretching is used in these 

calculations based on the conclusions from the regular wave cases plus the drag 

coefficient formulation derived in section 7. 

Considering the scale of the model, a fully developed sea state is reached after 

2160 s., thus the set of simulations presented in this section considered this time scale. 

 

9.3 Mooring line tension analysis 

In this section, the tension over the front and aft mooring lines of the 

arrangement presented in Figure 8.1 is calculated and analyzed under regular/irregular 

wave loading and collinear current. For completeness of the study, a set of calculations 

using regular waves considering the same period and wave height as the significant wave 

height and peak periods for irregular waves are presented. In addition, cases considering 

current speed 0.1 and 0.2 m/s are superimposed to the waves to evaluate its effect. 
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Results will be correlated with wave height for all cases to understand the 

influence of waves and current speed over the tension loads. Statistics of tension are 

presented for each condition as well.  

 

9.3.1 Regular wave cases 

The first set of results considered regular waves and current. The steady portion 

of the calculations is presented. At the beginning of the simulation period a ramping 

function is used to steadily apply waves and current to the models and avoid transient 

effects reducing possibilities of numerical instability due to sudden peaks in tension or 

cage motion. 

 

 

Figure 9.2 Mooring line tension response under waves only condition 

 

Form the results in Figure 9.3, the effect of steady current can be observed. When only 

waves are included in the analysis, the tension response on the front mooring line is 
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peaks at wave frequency as well as twice the wave frequency showing wave-wave 

interaction effects over the tension load, as presented in Figure 9.2. 

 

Front mooring line Aft mooring line 

  

  

  

Figure 9.3 Mooring line tension under regular wave loading 
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For the cases considering regular waves and current, mooring line tension shows 

a shift on the response when compared to wave elevation. This shift is due to the 

presence of a collinear current. Differences between phases among front and aft mooring 

tension signals reveal the effect of the deformation of the surface collar when waves 

move from left to right. Another interesting feature of the system is the fact that wave 

current interaction does not represent a simple superposition of effects as could be 

expected. This is clearly seen by analyzing the statistics of each case. 

 

Table 9.2 Statistics for front mooring line under regular waves 

Current, UC 

(m/s) 

Wave parameters Tension results front mooring line (N) 

H1/3 (m) Tp (s) Mean SD Max Min 

0.0 

0.12 1.8 

14.15 0.51 14.99 13.44 

0.1 17.84 0.91 19.27 16.51 

0.2 22.05 0.64 23.01 21.14 

  

Table 9.3 Statistics for aft mooring line under regular waves 

Current, UC 

(m/s) 

Wave parameters Tension results aft mooring line (N) 

H1/3 (m) Tp (s) Mean SD Max Min 

0.0 

0.12 1.8 

13.98 0.59 14.98 12.88 

0.1 10.34 1.20 12.28 8.67 

0.2 6.51 1.10 8.19 4.83 
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Based on the steady current analysis previously performed, the drag load over the 

cage for current speeds of 0.1 and 0.2 m/s is 5.58 and 13.18 N respectively. Wave 

current interaction translates in a mean value smaller than the simple combination of 

current and wave effect. This leads to the conclusion that interaction must be taken into 

account when designing mooring lines for fish farms. Based on the results, the 

conclusion that current loading has a large impact on the mooring line tension is further 

confirmed. 

 

9.3.2 Irregular wave cases 

The next set of calculations considers the combined action of steady current and 

irregular waves as described in Table 9.1. As mentioned before, the wave parameters 

included in this analysis resemble the conditions for an exposed location according to 

Norwegian standards. This code is the only available for the design of fish farms and 

therefore, its guidance is considered in this analysis. 

The next set of results shows the front and mooring line tension considering a 

variation of current speed. As before, CM values for the surface collar are selected based 

on wave and current parameters. 
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Front mooring line Aft mooring line 

  

  

  

Figure 9.4 Mooring line tension under irregular wave loading 
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the addition of a steady current shifts the mean value of the load and increases the 

amplitude of the tension load. An increase on current speed neither translate into a linear 

nor a quadratic increase in the mean values for mooring line tension, while standard 

deviation results are similar and unaffected by viscous drag forces. 

 

Table 9.4 Statistics for front mooring line under irregular waves 

Current, UC 

(m/s) 

Wave parameters Tension results front mooring line (N) 

H1/3 (m) Tp (s) Mean SD Max Min 

0.0 

0.12 1.8 

14.21 0.44 16.37 12.77 

0.1 17.72 0.66 20.90 15.71 

0.2 21.96 0.59 25.79 20.38 

  

Table 9.5 Statistics for aft mooring line under irregular waves 

Current, UC 

(m/s) 

Wave parameters Tension results aft mooring line (N) 

H1/3 (m) Tp (s) Mean SD Max Min 

0.0 

0.12 1.8 

13.94 0.47 16.29 11.32 

0.1 10.50 0.79 12.90 7.13 

0.2 6.60 0.77 8.72 2.88 

  

Under irregular load, statistics are similar to the ones for regular waves. An 

increase on the maximum tension is observed, though no larger than a 10% compared to 

the regular wave current cases. This again shows the relevance of current wave loading 
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over the netting which drives the tension over the mooring system components for mild 

wave and current conditions. 

As with the case of regular wave loading, the plots showing the phase correlation 

between wave elevation and mooring line tension are presented. 

From the next figure, under irregular wave loafing there is a strong correlation 

between wave elevation and mooring line tension. Peaks occur at almost the same 

instant on time during the short realization presented, even when current is included. The 

mooring line tension signal shows high frequency response superimposed to the wave 

frequency component. This could be explained by the deformation of the surface collar 

which is highly flexible and able to deform as waves propagate along its diameter. This 

high frequency response can also be due to the interaction between the net and the 

surface collar. As mentioned earlier, this interaction could lead to snap impulse loads at 

certain frequencies. In addition, the axial deformation of the mooring lines could also 

contribute to the high frequency phenomenon. These ideas need further investigation; 

however, the hydroelastic response of the floater seems like a reasonable option 

considering the low bending stiffness of the material. 

 

 

 

 

 

 



 

171 

 

 Front mooring line Aft mooring line 

  

  

  

Figure 9.5 Wave elevation and mooring line tension under irregular wave loading 
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Another interesting manner to look at the mooring line response is to check the 

spectral density plots for each plot in Figure 9.4 in order to observe the wave current 

interaction effects over the overall response. 

After analyzing the results, several aspects of the irregular wave/current 

interaction can be described. The fact that under zero current speed there exist a non-

zero mean tension, shows the effect of the mean wave drift force over the cage. Forces 

on the mooring lines are dominated by wave frequency as can be observed in Figure 9.6. 

This means that the cage is primarily following the waves. The surface collar mainly 

reacts as a rigid body to the environmental loads. As the current speed increases, the 

spectral density plots reveal how current load becomes relevant on the mooring line 

tension. Current increases the peak of the spectral response for tension and induces a 

second peak on the low frequency region due to the viscous drag force over the netting. 

This effect can clearly be seen for the front mooring line, which bears most of the load 

given the direction of the wave/current loads. For a mild current, UC = 0.1 m/s, wave 

effect over mooring line tension is still the dominant effect; nonetheless, the low 

frequency component is significant for front and aft mooring lines. For a strong current, 

UC = 0.2 m/s, the influence of current and wave load is similar for the tension on the 

front mooring line. Differences between front and aft mooring line responses can be 

explained by the deformation of the surface collar as waves propagate. 
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Front mooring line Aft mooring line 

  

  

  

Figure 9.6 Spectral density of mooring tension under current and irregular wave 

loading 
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Given the irregular wave current interaction results, it seems evident that the 

correct numerical description of wave’s effect is critical in the determination of the 

hydrodynamic response of cages. This is particularly important for strong current and 

steep waves where the effect of current and waves over mooring line tension is of similar 

significance. To complete the analysis, the transfer function is presented based on the 

wave spectra obtained from wave elevation time series at each particular current speed 

case. Transfer function is defined as follows. 

TT
Tension

STF Sηη
=  (9.5) 

where STT is defined as mooring tension spectra and Sηη is input wave spectra. 

The transfer function (TF) shows that for low frequencies, where there is no 

wave energy, a large peak in load is seen due to the low frequency loading given by 

current. Even for the case of wave only, there is energy at the low frequency area due to 

wave drift force over the cage. As for the wave frequency range between 0.4 and 1.5 Hz 

the TF flattens and decreases as frequency increases. This indicates that the tension on 

the mooring lines reacts linearly to the wave forcing. This response has been observed in 

numerical, experimental and in situ measurements (DeCew et al., 2005; Fredriksson et 

al., 2003b; Xu et al., 2011) confirming the findings in the present analysis. 
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Figure 9.7 Transfer function of mooring tension under current and irregular wave 

loading 
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9.4 Cage motion analysis under irregular waves 

Another interesting analysis for a floating structure deals with the motion of the 

platform when exposed to irregular waves and currents. This analysis helps to identify 

possible dangerous scenarios of operation as well as correlate motion and loads over the 

cage. For the case of a cage using a flexible surface collar, motion in the surge and heave 

direction are relevant since they are directly connected to tension on mooring lines. Pitch 

is not considered in the analysis since the surface collar deforms as waves propagates, 

thus upstream and downstream portions of the collar could be on different phases of 

motion. As an example pitch could be zero for a wave that deform the cage such as two 

points at the diameter, in the wave propagation direction, are at the same height while 

the collar is in sag condition. 

A complete analysis considering the correlation between motion, mooring line 

tension and wave elevation is carried out to relate these components of the dynamic 

response of the cage. As mentioned earlier, few analysis have considered irregular waves 

and none of them has included a wake model for the net, thus the information provided 

in this section intends to be useful for the design of systems planned to operate in 

exposed locations. Important information can be extracted from the results since during 

operation; measurements of motion can directly be transferred to tension loads serving 

as a monitoring check for the health of mooring system. Calculation for time series of 

motion and frequency analysis are performed as well as statistics of the results are 

presented for the same exposed wave and current conditions used in the previous 

sections. 
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In order to describe the motion of the cage, a point located in the surface collar in 

the intersection of the wave propagation plane and a plane perpendicular to this direction 

is used. In the next figure, a representation of the surface collar and wave propagation 

direction helps to locate point S which will describe the motion of the cage in the 

following set of results. 

 

 

Figure 9.8 Coordinate describing cage motion 

 

The simplest analysis of the effects of current loads and wave can be obtained by 

analyzing the time series of motion presented in Figure 9.9. As previously seen on the 

analysis of tension loads on mooring lines, the effect of steady current over the system is 

a shift of the mean values for surge motion. Surge motion is directly related to mooring 

line tension, thus its response to waves and current is similar. In the case of motion, the 

increase on surge is linear respect to the intensity of current speed. As for heave, current 

does not play a role in the variation of the response of the cage. Heave motion only 

depend on wave conditions which is confirmed by the analysis of the statistics on Table 

9.7. 
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Surge Heave 

  

  

  

Figure 9.9 Cage motion under irregular wave loading 
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Table 9.6 Statistics for surge cage motion under irregular waves 

Current, UC 

(m/s) 

Wave parameters Surge (m) 

H1/3 (m) Tp (s) Mean SD Max Min 

0.0 

0.12 1.8 

0.003 0.01 0.06 -0.04 

0.1 0.098 0.018 0.188 0.044 

0.2 0.208 0.016 0.306 0.165 

  

Table 9.7 Statistics for heave cage motion under irregular waves 

Current, UC 

(m/s) 

Wave parameters Heave (m) 

H1/3 (m) Tp (s) Mean SD Max Min 

0.0 

0.12 1.8 

-0.005 0.025 0.081 -0.11 

0.1 -0.003 0.025 0.087 -0.11 

0.2 0.0 0.027 0.098 -0.11 

 

Based on the statistics and time series for surge and heave motion, the motion 

response of the cage is uncoupled, meaning there is no correlation between heave and 

surge motion. While surge is correlated to current speed, heave motion is only affected 

by wave motion. Its amplitude is unchanged when current speed increases. 

Heave is highly correlated with wave elevation across current speed conditions. 

The cage basically follows the wave motion in the vertical direction. This phenomenon 

is described in the next figure where time series of heave motion and wave elevation are 

compared. 
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Surge Heave 

  

  

  

Figure 9.10 Wave elevation and cage motion under irregular wave loading 
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From the previous comparison, the phase of heave motion and wave elevation 

shows how the cage reacts immediately to wave elevation. As for surge motion, a lag 

becomes more evident as current speed increase. This effect is a combination of initial 

pretension on the mooting line as well as the mean displacement of the cage due to 

current loading. 

To better analyze the response of the cage, the spectral density of the response is 

calculated. For surge and heave motion, the contribution from wave frequencies is 

predominant, except for the case with the strongest current speed, where the contribution 

is almost equal between wave and low frequency. At high frequencies, there is no 

response of the cage which confirms previous findings by other researchers whom 

catalogued a cage as a system with high damping since almost no motion can be 

observed outside wave frequencies. 

The response in heave motion, as seen before, does not change as current speed 

increases. 
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Figure 9.11 Spectral density of cage motion under current and irregular wave                 

loading 
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The next step in the motion analysis considers the calculation of the transfer 

function which is defined as follows for surge and heave motion. 

XX
Surge

STF Sηη
=  (9.6) 

ZZ
Heave

STF Sηη
=  (9.7) 

 

Surge shows a correlation in the wave frequency area where the curve flattens. 

For low frequency, the peak in surge is explained by the current effect which dominates 

the low frequency response of the cage. As for heave, in the wave frequency region a 

typical response is observed based on experimental and in situ analysis (Fredriksson et 

al., 2003b). In heave, a resonant response occurs at low frequencies. This response can 

be attributed to the heave damped natural frequency of the cage which was measured for 

a similar cage to be close to 0.045 Hz (Fredriksson et al., 2003a). 

The heave response at the high frequency range corresponds to the noise on the 

spectra generated by the wave elevation time series for each case and it is considered to 

be a numerical issue since by increasing the length of the simulation the theoretical and 

wave elevation time series spectra will get closer. Another reason for the large response 

at high frequencies could be attributed to the low bending stiffness of the surface collar 

which can react at short oscillation periods. This needs further investigation using a 

structural analysis of the surface collar to be certain about this high frequency response. 
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Figure 9.12 Transfer function of cage motion under current and irregular wave 

loading 
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The effect of the mean current load is presented in the transfer function plots. As 

the tension on the front mooring line increases, the cage is restricted to freely move in 

the vertical direction, reducing the heave response of the system significantly at low 

frequencies. This could be beneficial in the design of mooring systems where an increase 

in the pretension on the line could damp the heave resonant response of the cage. 

 

9.5 Discussion 

The complete analysis of forces and motion of a single cage under irregular 

waves and following current was carried out. The focus of the analysis was to find the 

relation between mooring line tension, motion and wave elevation. Results presented in 

frequency and time domain show the close correlation between surge and mooring line 

tension as well as the dominant effect of current loads over the system. The analysis 

shows that the effect of waves and current is not the result of a linear superposition of 

waves and current, but the effect is more complex and need to be addressed in a coupled 

analysis. As current speed increases, the tension on the mooting lines increases almost 

linearly which is similar to the results when considering only current loads. The 

combination of waves and current translates into a displacement of the mean values of 

tension in addition to an increase in the peak values. Spectral analysis reveals that there 

is response at low and wave frequencies. A double peak can be observed for the higher 

current speed showing same amplitude for low and wave frequency responses for some 

cases. No response is seen above wave frequency response in tension which correlates 

with previous findings of high damping levels at high frequencies. The transfer function 
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analysis shows the same trend on the wave frequency as seen from field data 

experiments, plus the contribution from the low frequency component which shows the 

response of the mooring lines at current speed loading. 

As for motion analysis, an interesting feature is obtained in heave motion. Heave 

is highly correlated to wave elevation and it is not affected by current speed. Surge and 

heave motion are uncoupled. In addition, surge motion is highly correlated with mooring 

line tension. Similar trends can be observed in the spectral analysis of surge and tension 

on the front mooring line component. As current speed increase a low frequency 

response becomes more significant. For heave motion, the spectral response is almost 

the same across current speed regimes. On the other hand, when calculating TF for 

heave, a resonance is observed at low frequency which can possibly correspond to the 

heave natural frequency of the cage as reported by other researchers. This peak 

decreased as the tension on the mooring line increases due to the drag load over the 

netting. This could help in the design of mooring system which reduces the response of 

the cage at resonance frequencies. 

Overall the results prove to follow the response in tension and motion of other 

analysis considering in situ measurements, experiments as well as numerical calculations 

which validates the current procedure. The novelty in the current analysis lies on the 

inclusion of multiple effects such as shielding and blockage effect in addition to a 

realistic bending stiffness of the surface collar. 

Further analysis, considering the full cage using cover at the top and bottom as 

well as a ballast collar at the bottom, need to be addressed to complement the current 
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state of the knowledge of the hydrodynamic response of cages under irregular wave 

loading. However, this analysis shows the main features of the motion and mooring 

tension response, and serves as foundation for further discussions. 
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10. COUPLED ANALYSIS OF MOORING/PLATFORM/CAGE SYSTEM        

UNDER IRREGULAR WAVES AND CURRENT۞ 

 

10.1 Introduction 

The final goal of this research is the determination of the hydrodynamic response 

of a fish farm installed in what is considered exposed locations for cages. For oil and gas 

platforms, water depth over 1000 m. can be considered deep water while for a fish farm 

this definition changes and water depth over 100 m. is considered deep since most of the 

development has been done in coastal shallow waters. The deepest installation of a fish 

farm is described in Cifuentes and Kim (2015b) at a water depth of 6000 ft. Future 

developments are being discussed in Norway for installations up to 300 m depth. 

In offshore conditions, a fish farm will have a particular layout where the feeder 

platform and cages will share the same mooring system and would have to operate under 

minimum human interaction. In exposed areas, a single point mooring line arise as an 

adequate alternative for mooring since the cage will have the ability to move over a wide 

circle generating excellent growing conditions for the fish (DeCew et al., 2010; Shainee 

et al., 2014). In addition, the installation of such a system is simple and can be 

accomplished by the use of heavy ballast as anchor. 

                                                

۞ Part of this section is reprinted with permission from “Dynamic Analysis for the Global Performance of 
An SPM-Feeder-Cage System Under Waves and Currents” by C. Cifuentes and M. H. Kim 2015. China 
Ocean Engineering, vol. 29, no. 3, pp 415-430. Copyright © 2015 Chinese Ocean Engineering Society and 
Springer-Verlag Berlin Heidelberg. 
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In the present study, the dynamic response of a coupled SPM-feeder-cage system 

under irregular waves and shear currents is analyzed. A numerical model is developed 

using the commercial software Orcaflex. Hydrodynamics coefficients of the vessel are 

calculated by using a 3D diffraction/radiation panel program (WAMIT). First- and 

second-order wave forces are included in the calculations. The dynamic response of the 

coupled system was analyzed for various environments and net materials. The results of 

the study show the effects of solidity ratio of the net and vertical position of the cage on 

the overall dynamic response of the system, confirming the viability of this type of 

configuration for future development of offshore aquaculture in deep waters. 

The target system is similar to the one used by Kampachi Farms LLC which 

operated from November 2013 until July 2014 at a site 6-km offshore Kona, Hawaii. 

 

10.2 Description of components 

A fish farm operation includes the mooring system, a feeder barge and cages. 

The dynamic response of this ensemble under strong current and waves is the main 

target of this study. In this section, we have studied the hydrodynamic response of a 

coupled SPM/Feeder vessel/Cage system installed at 1828 m. water depth. 

 

10.2.1 Cage 

In this case, a circular cage (PolarCirkel™) has been considered including a 

double pipe upper collar and a single pipe bottom collar. The upper collar is the main 

buoyancy element while the bottom collar houses the ballast necessary to fully extend 
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the net while exposed to current loading. Also, additional ballast allocated in the bottom 

collar allows the cage to go underwater avoiding wave loads over the structure. The 

main characteristics of the cage are included in Table 10.1. 

 

Table 10.1 Cage characteristics 

Parameter Value Unit 

Cage model PolarCirkel ~ 

Upper and lower collar material HDPE ~ 

Material density (kg/m3) 958 ~ 

Upper collar pipe diameter (m) 0.315 (m) 

Standard circumference (m) 94 (m) 

Standard cage diameter (m) 30 (m) 

Cage draft (m) 10.5 (m) 

Distance between floating pipes (m) 0.66 (m) 

Thickness of floating pipes (m) 0.017 (m) 

Lower collar pipe diameter (m) 0.2 (m) 

 

The selection of this type of cage was based on its flexibility, which dissipates 

energy when exposed to high-energy sea conditions. Plus, HDPE does not corrode while 

installed in seawater. 
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10.2.2 Netting materials 

The net is the main source of viscous drag load in the system. In this case two 

different net materials are used. The first is a copper alloy mesh and the second is a 

combination of Dyneema® fibers and stainless steel wires. Table 10.2 describes the 

main particulars of each material. 

There are significant differences between the two netting materials. A heavier net 

reduces the deformation of the cage under current. On the other hand, the higher solidity 

ratio increases the drag force augmenting the tension load over the mooring components. 

For the case of lighter net, the solidity ratio and mass are more representative of typical 

nets used in industry. 

In this study, the net buoyancy of the cage/net arrangement is the same for the 

two types of mesh materials. This will serve to reveal the effect of Sn over the global 

response of the coupled model. The net buoyancy was adjusted by the use of ballast at 

the bottom collar considering an excessive buoyancy of the cage equal to 1 ton for 

underwater calculations. This ballast is uniformly distributed at the bottom collar to keep 

the cage in horizontal position. In addition, a surface buoy at the top of the cage 

compensates for the extra weight applied, keeping the cage at the target depth during the 

first stage of the computation. 
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Table 10.2 Netting characteristics 

Parameter UR-30 Predator-X 

Material Copper alloy Dyneema® /stainless steel 

Solidity ratio 0.18 0.14 

Twine diameter (cm) 0.4 0.21 

Thread length (cm) 4.45 2.82 

Aperture form Diamond Square knotless 

Density (kg/m3) 8400 2590 

Mass per unit area ( kg/m2) 5.08 0.653 

 

10.2.3 Mooring lines and buoys 

The mooring system consists of the SPM line connecting the surface gear to the 

seafloor, lines connecting the SPM to the vessel and the umbilical line connecting the 

vessel to the cage. The calculation of the maximum tension on these lines is the main 

concern at the design stage. For the main SPM line, a combination of chain and nylon 

rope has been employed. The SPM line segmentation is as follows: 219 m. chain at the 

seabed followed by a 3428 m. nylon section and a 10m. chain segment at the top 

connected to the main surface buoy. The properties of both materials are presented in 

Table 10.3. The chain section is a 2” stud link and the nylon portion is a 1 ½” 8 strand 

multiplait. 
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Table 10.3 Mooring lines material properties 

Material Dry mass (kg/m) Minimum breaking load (kN) 

Stud link chain 55 1370 

Nylon rope 3.87 223 

 

For simplicity of the study, the line from the SPM buoy to vessel and the 

umbilical line between the vessel and cage have been designed using the same properties 

as the nylon section of the SPM line. 

The system includes two buoys at the sea surface. The main buoy is located at 

the top of the SPM line and helps to support its weight. This buoy has 2 m3 net 

buoyancy. The second buoy is used when the cage is located at the underwater position. 

The buoy has 1.5 m3 net buoyancy and helps to keep the cage balanced during 

underwater operation of the cage. Buoys do not generate significant drag or inertia loads 

due to its small size and mass compared to the cage and vessel. Therefore their detailed 

hydrodynamics is not accounted for in the simulations. 

 

10.2.4 Feeder vessel 

In the present study, we use a ship-shape platform as feeder. Its hydrodynamic 

responses have been derived using its hydrodynamic coefficients calculated from a 3D 

diffraction/radiation solver. These data are integrated into the time-domain simulation 

program to carry out a coupled dynamic analysis. Using the methodology described, we 

are able to calculate the effect of the cage over the vessel response as well as over the 
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mooring lines. Table 10.4 presents the geometry and inertia properties of the feeder 

vessel. 

In Figure 10.1, the complete numerical model for the system including the cage 

at the surface position is presented. 

 

Table 10.4 Feeder vessel characteristics 

Parameter Magnitude 

Length between perpendiculars (m) 25 

Breadth (m) 3.87 

Draught (m) 1.61 

Transverse GM (m) 0.44 

Longitudinal GM (m) 27.67 

Center of gravity¹ (m) (0.61,0,-0.47) 

Moment of inertia (t*m2) (209.67,4.93E3, 4.93E3) 

Block coefficient 0.804 

Displacement (t) 125.83 

¹ Respect to amidships and sea surface 
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Figure 10.1 Mooring/vessel/cage system 

 

10.3 Environmental conditions 

Three environmental conditions were considered in this study. An operational 

condition is defined as the day-by-day load case in which cage and vessel must operate. 

Storm and survival conditions are more extreme events. It is important to mention that 

during storm and survival events, the vessel is not included in the simulation and the 

cage is connected to the storm attachment point to lessen overall loads. All conditions 

consider a collinear combination of waves and currents. Jonswap wave spectrum, as 

described in Goda (2010), was used to define the sea state of each condition. 

Given that the target site is 6 km. offshore Kailua, Kona, HI, the environmental 

conditions were selected to represent an exposed site according to Norway Standard 

(2009). Under this condition, the system operates as described in Figure 10.1. 

The environmental conditions used in the Gulf of Mexico (GOM) for storms with 

10 and 100-year return periods were used to model the storm and survival scenarios. 

Under these sea states, the vessel will leave the site and the cage will be connected to the 

mooring line by the storm attachment point described in Figure 10.1. The characteristics 
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of each storm event were extracted from the API code applied to the central region of 

GOM. Table 10.5 presents the input data for Jonswap spectrum in each scenario. 

 

Table 10.5 JONSWAP spectrum input data 

Scenario 𝑯𝟏
𝟑
  

(m) 

𝑻𝒑  

(s) 

𝜸 Max. current speed 

(m/s) 

Operational condition 3 9 1 1 

Storm condition 10 13 2.4 1.65 

Survival condition 15.8 15.4 2.4 2.4 

 

10.4 Results 

Results will be presented for the vessel and cage motions as well as the tension 

over the mooring system. The first set of results considers the coupled analysis of the 

mooring /vessel/ cage system under the operational condition previously defined. The 

change on the response of the coupled arrangement when the position of the cage is 

modified in the water column is also investigated. It is of particular interest to look into 

the wave-current interaction effect on the cage when placed at the sea surface. In this 

case, a higher tension and larger surge is expected due to the wave drift over the upper 

collar. The dynamics of the vessel will also be presented for both net materials and cage 

positions to reveal the influence of the cage on the support platform’s response. 
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10.4.1 Underwater cage results 

Positioning the cage underwater protects the structure form wave loading. In this 

case, the upper collar of the cage is located at 10 meters below the water surface at the 

initial step of the calculation. Simulations were extended up to 3 hours, which is typical 

for offshore platforms. The tension time series of the SPM and umbilical lines are 

presented in Figures 10.2 and 10.3. 

 

 

Figure 10.2 SPM line tension for underwater cage 

 

 

Figure 10.3 Umbilical line tension for underwater cage 
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Based on the results, the effect of Sn on the tension in the mooring lines is 

significant at the end of the simulation period. It can be observed that a mere 4% 

increase in Sn triggers an upsurge of 17% in SPM and umbilical-line tensions. This 

increase is explained by the fact that Sn is directly related to projected area. As we 

increase the projected area, the viscous drag from Morison equation is increased, and 

thus the tension. For the case of the umbilical line, the mean tension given mainly by 

viscous drag from the cage is superimposed by the wave-frequency component. The 

magnitudes of wave-frequency oscillations are small and the main contributors to the 

tension are the slow drift motion of the vessel and the viscous drag load from the cage. 

The effect of Sn over the response of the vessel is also analyzed in Figure 10.4. 

 

 

Figure 10.4 Vessel surge for underwater cage 
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motion and nonlinear viscous load do not contribute. This can be observed in Figures 

10.5 and 10.6 

 

 

Figure 10.5 Vessel heave for underwater cage 

 

 

Figure 10.6 Vessel pitch for underwater cage 
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case of Sn =18%. This phenomenon observed in Figure 10.7, shows that Sn is also related 

to the vertical position of the cage due to the combination of viscous drag on the net, 

tension on the umbilical line, and net buoyancy of the cage structure. 

 

 

Figure 10.7 Cage heave for underwater cage 

 

From the results, it can be concluded that an increase in Sn largely influences the 

surge of the platform. In this case, the increase of surge reaches 13% for a 4% increase 

in Sn. The increase in surge is directly related to the increase in drag force from the net 

pen. These results typically show the relevance of netting-material selection during the 

design stage of offshore fish farms. In 2013, a similar system was actually installed in 

6000-ft water depth of Hawaii, and such a large horizontal excursion of the system with 

very long period has been observed by satellite monitoring, which indirectly shows that 

the present numerical results are reasonable. The actual GPS tracking of the cage in the 

field is presented as well as the plot for the cage’s surge showing that such large 
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excursion driven by strong surface current is one of the features of a SPM mooring 

system. 

 

 
 

Figure 10.8 Cage surge in underwater conditions (a) Numerical result, (b) GPS 

tracking. 

 

10.4.2 Surface cage results 

In terms of fish-farm operations, locating the cage at the water surface presents 

better conditions for inspection, cleaning, and control. However, leaving the cage 

exposed to wave-current maximum loading could potentially lead to high tension 

especially at the umbilical line. The results for tension in the SPM and umbilical line are 

presented in Figures 10.9 and 10.10. 
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Figure 10.9 SPM line tension for surface cage 

 

 

Figure 10.10 Umbilical line tension for surface cage 

 

As in the underwater case, the influence of Sn is significant in the tension of SPM 

and umbilical lines. The differences are mainly due to the viscous drag over the cage. At 

the end of the simulation period, the tension for both underwater and surface cases is 

similar, since the underwater cage is lifted towards the sea surface. As expected, during 

the period between 2000 s. and 8000 s., the load for the underwater cage is about 10% 

reduced with respect to the surface cage, which implies that current is a primary source 
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of drag forces over the structure and wave loading does not significantly increase the 

tension on the mooring components. Therefore, Sn is the main parameter to consider 

during the mooring-design stage. The same conclusions are also drawn by Shainee et al 

(2013) in their experimental work using a single SPM cage under regular waves and 

following currents. Their results confirm that under wave and current loading, the 

principal source of tension on mooring lines comes from viscous drag. The effect of the 

cage over the global response of the vessel is described in Figure 10.11. 

 

 

Figure 10.11 Vessel surge for surface cage 

 

The results are similar to the ones for the cage underwater. The main difference 

can be seen in the surge of the feeder platform. Comparing with the underwater cage, in 

the region between 2000 s. and 8000 s., the vessel surge is 10% larger for the surface 

cage due to the increase in drag with additional wave-induced velocity. Since the 

mooring line is very slack, the natural period and surge of the platform are very large. 
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10.4.3 Coupled mooring cage system 

Under storm conditions, the feeder vessel is disconnected and escaped. Thus, the 

system consists of the SPM buoy/line, umbilical line, and cage. Two cases are studied; a 

10-yr storm event and a more extreme event considering a 100-year return period. Under 

severe weather, the SPM system allows the cage to go underwater. This self submerge 

characteristic is ideal for exposed locations. Previous analyses of this type of systems 

have demonstrated that under a constant current profile and waves, the cage finds its 

equilibrium position in the water column. This location is correlated to the intensity of 

current speed (M. Shainee et al., 2013; Mohamed Shainee et al., 2013; Shainee et al., 

2014) and the Sn of the net material (DeCew et al., 2010). In the present study, strong 

shear currents are applied in combination with irregular waves. The umbilical line is 

attached to the Storm Attachment Point as described in Figure 10.1 and the initial 

position of the cage is 10 meters underwater. 

 

10.4.4 10 Year storm condition 

Under a 10 year storm, it is expected that the structure will not suffer any 

considerable damage and that operations can be resumed after the event. The current 

profile considers that the maximum current will go up to 35 m. underwater; below that, 

the current speed is reduced to 1.24 m/s until water depth reaches 70 m. and becomes 

zero from there to the seabed.  
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Figure 10.12 SPM line tension under 10 year storm event 

 

 

Figure 10.13 Cage surge under 10 year storm event 
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Figure 10.14 Cage heave under 10 year storm event 

 

Results presented for the tension at the SPM line and the surge/heave of the cage 

in Figures 10.12 to 10.14 show that under the imposed environment, the cage enters into 

an oscillatory cycle both in surge and heave. This particular behavior is a consequence of 

the interaction of net buoyancy of the cage, positive buoyancy from surface buoy, 

tension of connection lines, and the depth-varying shear current. The mean of the heave 

motion for both net materials is close to the boundary of 1.24 m/s current and zero-

current zone. During downward motion, the vertical downward component of the tension 

at the connection line overcomes the positive net buoyancy from the surface buoy and 

cage pulling the cage deep down into the water column. After the cage enters in the area 

of zero current, the downward tension is reduced and the positive buoyancy lifts the 

cage, this cycle is repeated over the simulation period. An interesting finding is that the 

tension and surge motion are in phase. This effect can also be seen in the influence of Sn. 

An increase in Sn extends the period of oscillation. Also, the peaks in surge and heave 

differ in about 15% for both net materials. In the wave-current condition analyzed, the 
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system is able to withstand the environmental loads and no failure is expected since the 

maximum calculated tensions are significantly smaller than the minimum breaking loads 

of the materials used for the system. 

 

10.4.5 100 Year storm condition 

The corresponding results are presented in Figures 10.15 to 10.17. In this case, 

the current is significantly stronger compared to the previous case i.e. the surface current 

is 2.4 m/s and is reduced to 1.8 m/s at 50-m water depth. Deeper than 100-m water 

depth, current speed is zero 

 

 

Figure 10.15 SPM line tension under 100 year storm event 
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Figure 10.16 Cage surge under 100 year storm event 

 

 

Figure 10.17 Cage heave under 100 year storm event 

 

Similar to the 10-yr storm condition, the cage goes into a cycle driven by current 

speed, implying that the overall physics are analogous. With the increased current speed, 
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also interesting that the period of oscillation becomes appreciably different when varying 
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and extreme event is similar since the net buoyancy of the cage/buoy system is the same. 

Nevertheless, the maximum tension in the initial transient phase is much more 

pronounced in the survival condition, which needs to be taken into consideration in the 

design. The dynamic tension amplitudes are also appreciably increased for both net 

materials compared to the 10-yr storm case. 

 

10.5 Conclusions 

The complete dynamic analysis of the global response of a SPM/Vessel/Cage 

system in time domain has been achieved. The analysis was performed using the 

nonlinear finite element software Orcaflex which has mostly been used for the coupled 

dynamic analysis of floating production facilities. The numerical modeling of the net 

was based on the equivalent drag concept by using a combination of lines and buoys. 

The hydrodynamic forces on the system are obtained by the use of Morison equation 

accounting for the normal relative velocity and acceleration between structural elements 

and fluid flow. Particular attention was given to the selection of adequate drag 

coefficients to obtain accurate results covering a wide range of Reynolds number. 

The simulation of a coupled SPM/vessel/cage system under two different system 

arrangements, corresponding to three different environments was performed. Two net 

materials with different Sn ratio were used to exemplify the effect of net selection over 

the dynamic response of the structure. 

In operational conditions, the initial position of the cage was varied over the 

water column to understand its effect on the global dynamic response. The solidity ratio 
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of the net considerably impacts the tension on the SPM line as well as the surge of the 

vessel and cage. On the other hand, the positon of the cage over the water column does 

not significantly influence the heave and pitch responses of the platform. 

In 10-yr and 100-yr storm events without feeder vessel, the cage exhibits cyclic 

behaviors with respect to mean positions in line tension and surge/heave responses. The 

driving force over this effect is the combination of vertical tension and net buoyancy of 

the cage. The mean depths reached by the cage, the initial transient effects, and 

amplitudes of oscillations are appreciably increased in the survival (100-yr) condition. 

The maximum tension and displacement of the system show that the structure is able to 

withstand the extreme event. The results show that a SPM system coupled to a floating 

platform could potentially be a viable option for the future offshore fish farms in open 

oceans. 
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11. CONCLUSIONS AND FUTURE WORK 

 

11.1 General conclusions 

The description of the interaction between mooring, vessel and a single cage 

under a wide range of environmental conditions has been presented. The effect of the net 

nonlinear drag over the vessel´s motions and loads on the mooring system is fully 

described, providing valuable information for future design, installation and maintenance 

of fish farms installed in deep water. The study suggests that a SPM mooring line is a 

viable alternative for deep water installations since allows the cage to align with the 

dominant wave and current direction, increasing water exchange inside the cage. Net 

selection is also discussed describing a great impact on loads due to small changes on 

geometry. 

Cage location over the water column mainly impacts vessel´s surge motion. Pitch 

and heave motion do not show differences when the cage is installed either at sea surface 

or underwater. However, to protect the fish from breaking waves and higher wave 

loading, the study suggests that an underwater cage is the best alternative under normal 

operations. Cage can be taken to the sea surface only on harvesting and possible net 

cleaning operations. 

Before the coupled analysis, a complete validation of the methodology adopted 

in this work was presented. Each step of the numerical simulation of flexible structures 

under wave and current load has been carefully analyzed. The simples case being a 

cylindrical net exposed to steady current which helped to weight on the relevance of 
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shielding effect on the simulations. The application of interaction models derived for 

risers proved to be adequate for nets improving the accuracy of the results when 

compared to experimental values. The use of a variable drag coefficient formulation 

based first on simple cylinders and then on net geometry and Reynolds numbers, helped 

to increase the range of current velocities for which the methodology can be applied. The 

model can integrate complex phenomenon such as shielding and blockage effects. This 

method also proved to be valuable for the study hydrodynamics on slender bodies such 

as Submerged Floating Tunnel. 

The model was extended to the floating collar which becomes relevant under 

waves and current. The highly flexible structure interacts with mooring lines thus its 

numerical description must be carefully done considering structural and hydrodynamic 

aspects. The methodology, selecting drag and inertia coefficient based on KC and Re 

numbers showed good agreement with experiments capturing the loads and deformations 

of the cage. In addition, a rational analysis of the effect of wave kinetic extrapolation 

methods reveled that Wheeler approximation is the adequate model for cage dynamics 

calculations. The study revealed the relative importance of wave and current loading. 

For long and high waves, current and wave loading are equally relevant for mooring 

tension. 

Finally, a rational analysis of a single cage under irregular waves and current 

showed the correlation between motion, mooring tension and wave elevation in 

frequency and time domain. The study showed that for most of waves inside the spectra 

utilized, the cage follows the waves. At low frequency, current dominates the motion 
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and loading. At high frequencies, local deformations of the collar are observed. 

Resonance of the system at low frequencies were captured which is in accordance with 

previously published field data. 

Overall, the methodology presented in this work shows great potential for further 

applications in offshore fish farming. It successfully integrates the complex 

hydrodynamic problems for slender flexible structures and vessel motion under waves 

and currents. The findings proved to be in close agreement with experimental and field 

measurements establishing a solid start point for further research. 

 

11.2 Future work 

Based on the findings presented in this work as well as the state of the art on the 

calculation of forces and deformations on cages, both numerical and experimental work 

needs to be done in order to further understand this complex problem. 

The main uncertainty in the numerical determination of forces comes from the 

fact that only the cylindrical portion of the cage has been considered so far for numerical 

validation. The effect of a horizontal net panel at the top and bottom of the cage 

enclosing the internal volume is yet to be included. The flow pattern and forces when the 

net panel is tangent to the flow, as in the upper portion of the cage it is still unknown. As 

for the bottom portion, experimental data is available for a cylindrical main cage body 

with a cone at the bottom, yet no numerical assessment of this configuration has been 

carried out. Experimental studies of different nets under tangential and near tangential 

flow are needed to get closer to actual operational conditions. In addition, numerical and 
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experimental studies need to include the ballast ring and lines connecting this ring to the 

surface collar to account for possible clashing between components and estimation of 

fatigue loads which can lead to escapes. 

In terms of loading, experiments including irregular waves and current need to be 

performed. No information other than numerical results are available and thus, further 

validation of those calculations are needed. Numerically, failure analysis of mooring and 

umbilical components were performed, but not included in this document for copyright 

reasons; however, based on those preliminary results, failure of connections can induce 

large loads over the floater and lead to potential failures, thus experimental and 

numerical validation of those phenomenon is another interesting area of work. 

After full validation of a more detailed cage system is performed, the integration 

of technologies is another interesting point to study. Nowadays the integration of 

floating wind power and aquaculture is being analyzed in Europe. Therefore, the 

numerical coupled analysis of cages and floating wind turbines is a prominent area of 

future research. 

The last and probably most challenging work to be done is full scale 

experimental analysis. Up to now, SINTEF Norway and University of New Hampshire 

have carried out full scale experiments; however, the conditions tested are particular to 

those sites. Applications to other locations are necessary to account for local 

environmental conditions as well as mooring installation procedures and operation 

protocols. 
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