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ABSTRACT

Fluids confined in porous media play a significant role in many engineering appli-

cations. Modeling fluids in oil reservoirs, adsorption based separations, and hetero-

geneous catalysis requires the accurate prediction of thermodynamic properties at a

wide range of conditions. For confined fluids, this task involves accounting for the

fluid-solid interactions induced by proximity to a solid wall. Most engineering models

are only able to predict average properties of the system and fail to give information

related to the heterogeneity of the confined fluid. Such information could be obtained

through more rigorous but computationally expensive methods. In this work, an ap-

proach of intermediate complexity is developed to determine equilibrium properties

of confined fluids, and to obtain local distribution of properties in the system. In this

model, the variation of properties throughout the system takes place across regions

that are defined depending on the effects present. Regions where confinement effects

are important are further discretized into layers to capture local distribution within

the confinement. For all elements, the volume is specified together with the temper-

ature, and the total amount of each component. Thus, minimizing the Helmholtz

energy determines the number of moles in each element; subsequently other proper-

ties are obtained. The Helmholtz energy accounts for internal interactions through

an equation of state (EoS), in this work the Peng Robinson EoS is used. Addition-

ally, the Helmholtz energy function includes an external contribution represented by

an adsorption potential to account for fluid-solid interactions The Steele 10-4-3 po-

tential was used for the confinement of light hydrocarbons in activated carbon. The

prediction of local behavior was found to be comparable to the classical Density Func-

tional Theory (DFT) calculations. Moreover, the Dubinin-Radushkevich-Astakhov
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(DRA) potential was utilized to predict confinement of binary and ternary mixtures

of methane, nitrogen, carbon dioxide on activated carbon, and the results were found

to agree reasonably well with experimental data. Finally, the ability of the frame-

work to model systems where confinement as well as other effects are present is

demonstrated through predicting the molar distribution in a porous reservoir where

gravitational effects are accounted for.
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NOMENCLATURE

Roman Letters

a – Molar Helmholtz energy (T, V, x)

A – Helmholtz energy (T, V,N)

Ajm – Helmholtz energy of a single grid

A∗,in
ijm – Internal Helmholtz energy of component i in a grid

A∗,f
ijm – External Helmholtz energy of component i in a grid

c – Volume translation parameter

ĉ – Number of chemical components

∆Ej
F,i – Summation of external field potentials of component i in layer j

fℓm – Number of external fields acting on layer j of each replica in region m

g – Molar Gibbs energy

ĝ – Gravitational constant

hjm – Depth of layer j in region m

H – Total pore width

Hin – Internal pore width (excluding the adsorbent radius, σs)

lm – Number of layers in a given region

Mi – Molar mass of component i

Nads – Absolute adsorbed amount

n∗
ijm – Number of moles of component i in all replicas of layer j in region m

ni – Total number of moles of component i

nf(l,m) – Number of external fields acting on layer j in region m

P0 – Reference pressure
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P in – Pressure calculated from a equation of state

p̂ – Number of experimental data points

r̂ – Number of regions

r̂conf – Number of confined regions

rm – Number of replicas in region m

R – Universal gas constant

T – System temperature

Vm – Total volume of region m

vjm – Molar volume of layer j in region m

v0 – Maximum porous volume

xijm – Mole fraction of the ith component layer j in region m

zjm – Distance from the center of the pore to the confining wall

Greek Letters

β – Solid heterogeneity parameter

Γ – Surface excess

δ – Kronecker delta function

∆ – Interlayer spacing of the adsorbent

εs,i – Solid-fluid energy interaction parameter

ε0 – Characteristic energy

θ∗ijm – Distribution factor

µi – Chemical potential of component i

ρs – Density of the solid (adsorbent)

σs,i – Solid-fluid diameter
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Subscripts

i – Component

j – Layer

k – Component (Gradient)

l – Component (Hessian)

m – Region

MAX – Dependent variable

Superscripts

∗ – Total amounts of all replicas

f – External field contribution

in – Internal field contribution
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1. INTRODUCTION

The study of fluids confined in small pores is significant for many scientific and

industrial applications, including various sectors of the oil and gas industry. Up-

stream operations such as well characterization, well testing, and production require

modeling of oil and gas in porous reservoirs. Currently, recovering natural gas from

unconventional reservoirs, such as coalbed and shale reservoirs, requires information

on the adsorption behavior of the confined gas [1]. Similarly, downstream treatment

of oil and gas to obtain petroleum products is achieved through the use of porous

materials for separation, purification, and catalysis. Examples of generic commercial

adsorbents include activated carbon, activated alumina, zeolites, and silica gel [2].

These materials are comprised of pores with sizes in the range of nanometers. As a

result it is crucial to account for the confinement effect when studying fluids in these

systems. Furthermore, the need for more environment friendly technologies has mo-

tivated the development of new and more advanced materials. One class of porous

materials that has high selectivity is molecular organic frameworks (MOFs). Cur-

rently, different types of MOFs are designed and investigated for many applications,

including replacing energy intensive technologies for challenging separations [3].

In order to successfully design, operate, and improve any process, the accurate

prediction of thermodynamic properties is required. For applications with confined

fluids, knowledge of the adsorptive capacity of microporous materials is needed. In

particular, adsorption isotherms, which provide the equilibrium amount of a partic-

ular component or mixture adsorbed at a specific temperature and pressure range,

is of extreme importance [4–6]. In these applications, fluids are trapped in materials

with meso-pores (2-50 nm) and micro-pores (less than 2 nm), where the proximity
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to the solid wall must be accounted for. Specifically, theoretical studies of such sys-

tems have to consider the solid-fluid interactions, and the size of the pores [7, 8].

Moreover, the confined fluids models should be able to account for the non-ideality

of the fluid, and eventually predict multicomponent adsorption at a wide range of

temperatures and pressures. Nonetheless, even if these interactions are accounted

for, most available models compute the average or global properties of the confined

systems.

Assuming uniform behavior in the porous space ignores the heterogeneity of the

fluid, or the local distribution of the fluids properties. For confined fluids, non-

uniform behavior exists due to many effects, including the variation of the fluid

properties with distance from the wall, and the presence of different sizes or geome-

tries within the same porous space. Accounting for multiple effects is particularly

useful for separating the geometry effects in solids composed of spherical cavities

connected by cylindrical channels, as in the case of MOFs. Other than these mi-

croscopic effects, confined fluids could be subject to effects at a larger scale. For

instance, gravity creates a molar distribution of the components in deep oil reser-

voirs along the depth of the formation. As a result, including the gravitational and

confinement effects simultaneously will give a better representation of the properties

of the components in these systems.

The objective of this work is to establish a general framework for determining

equilibrium properties of fluids in confined media. The thermodynamic model uti-

lizes an EoS to describe both the bulk and confined phases. On the other hand, the

confinement effect could be represented for any solid, regardless of its shape or size,

provided that an appropriate model to describe the solid-fluid interactions is avail-

able. Another goal is to find equilibrium conditions when several effects are acting

on the system, whether they arise from the nature of the confined media or from
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other sources.

Based on these objectives, the thesis outline is as follows: in section 2, a literature

review of the various theoretical approaches of studying confined fluids is presented.

By comparing this work to the currently available methods, the review highlights

the advantages and limitations of the proposed method. Sections 3 and 4 describe

the methodology followed in this work. In section 3, the formulation of the model

is provided, including details related to the EoS and potentials selected to represent

the systems considered in this work. Then, using the required model functions and

equations, a solution can be obtained. The solution method and tools employed in

this work is described in section 4, along with a discussion of the main difficulties

faced when solving the model. The results of implementing the solution and testing

the established framework are presented in section 5. This involves comparisons with

experimental data, and similar works. Finally, the main findings are examined in the

conclusions section, followed by section 7 that explores future possibilities associated

with the model established here.
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2. LITERATURE REVIEW OF CONFINED FLUIDS MODELS

2.1 Empirical and Ideal Models

Over the years, many adsorption models have been developed with different ca-

pabilities, assumptions, and levels of complexity. Initially, equilibrium isotherms for

pure components were obtained through ideal models that are largely applied due to

their simplicity. Ideal models could assume an ideal solid phase, or a homogeneous

solid. In literature, homogeneous solids refer to the assumption that the energy of

adsorption sites is the same everywhere. On the other hand, in heterogeneous or real

solids, adsorption sites have an energy distribution among them. Another assump-

tion that is utilized by most ideal models is the assumption of ideal adsorbed phase.

In other words, the molecule-molecule interactions of the confined fluid are not ac-

counted for [4]. One of the earliest empirical equations is the Langmuir isotherm

model, which was developed in the early twentieth century. This famous model con-

siders the localized adsorption of molecules at certain sites on the solid surface [9].

Following Langmuir’s approach, other localized isotherms were later developed

including Toth equation, Sips equation, Jovanovich equation and many other models

[10–12]. While they account for the solid heterogeneity through constants correlated

to experimental data, still they share many deficiencies with Langmuir’s isotherm.

Mainly, they all assume an ideal adsorbed phase, and that the adsorbed amount on

the surface of a single component is not affected by the presence of other components.

As a result, these models are not suitable for describing mixtures. Later on, fluid

adsorption on solid surfaces was visualized through more advanced mechanisms, as

in the case of multilayer adsorption models. The most common multilayer equation

is the Brunauer-Emmett-Teller (BET) isotherm which is widely used for surface
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area determination [13]. Even more sophisticated is the description of adsorption

through a pore filling mechanism that formed the basis for correlations like the

Kelvin equation and Dubinin equations, including the DRA equation [14–16].

2.2 Adsorbed Solution Theory Models

In general, localized isotherms and the equations formulated by Dubinin were

used to obtain pure component isotherms by assuming an ideal fluid. Some of these

equations were extended to describe confined fluid mixtures since most engineering

applications involve mixtures. However, these models showed serious deficiencies

when applied to mixtures [2,4,5]. In 1965, Myers and Prausnitz published the Ideal

Adsorption Solution Theory (IAST) [17] following a thermodynamic approach to the

adsorption problem. IAST represents a milestone in the development of adsorption

models, due to its sound theoretical basis and its ability to predict multicompo-

nent adsorption equilibria based on experimental data of pure components. Addi-

tionally, the theory presented a simple framework that allows the incorporation of

other adsorption models to account for the heterogeneity, or non-ideality, of the solid

phase [18–21]. Subsequently, during the 1980s, many attempts to enhance IAST

prediction by accounting for fluid molecular interactions emerged, such as the works

of Myers [22], Costa et al. [23], and Sochard et al. [24] These models are referred

to as Real Adsorbed Solution Theory (RAST), where the activity coefficients are

correlated using multicomponent experimental data, which results in the loss of the

predictive feature of the adsorbed solution theory [25].

2.3 Molecular Approaches

The same decade witnessed the emergence of another class of models for con-

fined fluids, namely models based on the classical DFT [26–29]. Rooted in statis-

tical mechanics, DFT models are constructed by expressing the free energy of an
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inhomogeneous fluid as a functional of the density. Then, the density profile, and

subsequently any other thermodynamic property, is obtained by minimizing the free

energy functional. Hence, the theory provides a rigorous framework to modeling

fluids in the bulk and confined phases and predicting phase related phenomena, such

as capillary condensation [30]. In addition to DFT, many statistical based methods

have the ability to describe local density distribution and phase transitions, including

grand canonical Monte Carlo simulation (GCMC) [31–35]. The use of such methods

is still hindered by their high computational cost, which makes them unfeasible for

conventional engineering calculations. Nonetheless, understanding confined fluids

through molecular approaches could be utilized by more practical models. As an ex-

ample, DFT models and simulation works utilize intermolecular potential functions

to describe fluid-solid interactions and some of these functions are adopted by some

engineering models [36].

2.4 Engineering Models

By the end of the twentieth century, less computationally demanding methods

were developed to study fluids in porous media. In 1998, Shapiro and Stenby [37]

adopted the Potential theory [38] for multicomponent adsorption, which assumes

that the adsorbed fluid is experiencing a potential field emitted by the solid surface.

The variation of the adsorption potential in the porous space results in a density

distribution. In the multicomponent potential theory of adsorption (MPTA), the

chemical potential is modified to include an adsorption potential with an EoS used

to model components in the adsorbed and bulk phase.

The adsorption potential used depends on the solid type and geometry. Shapiro

and Stenby [37] extended the DRA equation to multicomponent systems. The DRA

equation can be used for any geometry or solid, given that pure component experi-
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mental data are available. The MPTA-DRA model was used to model the adsorption

of pure components and mixtures on activated carbon [39–41], molecular sieves [40],

and MOFs [42]. Additionally, other than adsorption correlations, intermolecular po-

tentials could be utilized as in the case of the Steele potential which was used to

model fluids adsorbed in slit shaped activated carbon pores [39, 41]. Regardless of

the potential applied, MPTA is considered a predictive model, in the sense that only

pure component data are fitted and are then used to describe mixtures [25, 39].

Another practical approach to adsorption calculations involves the extension of

an EoS. This approach was developed by Travalloni et al. [7,43,44], Islam et al. [45],

and Piri [46] These various publications show the ability of modified EoS to predict

the thermodynamic properties of confined fluids, including pore condensation and

critical point shift. However, such equations often follow a mean field approach to

describe fluids, and thus are not suitable for studying local behavior.
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3. MODEL FORMULATION

In order to model fluids in confined media, the fluid is considered to experience

a field emitted by the solid wall as postulated by the potential theory put forward

by Polanyi [38]. The intensity of this potential changes with distance, thus creating

a heterogeneous or non-uniform distribution of the properties of the adsorbed fluids.

For instance, the density of the confined fluid changes as a function of distance, as

illustrated in Figure 3.1. To account for the various effects or fields imposed, and

capture the heterogeneous behavior the system studied is discretized.

Figure 3.1: Example of an inhomogeneous fluid resulting from an adsorption poten-

tial.
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3.1 System Discretization

In the case of adsorption, the confined fluid coexists with a bulk phase where

no external effects are present. As a result, in this model the system is divided

into regions depending on the external effects present. For example, in adsorption

problems, the bulk region does not experience any effects so it is separated from

the confined region. Furthermore, when a field is present, the region is divided into

layers in the direction perpendicular to the field to be able to obtain the distribution

of properties in that direction as in Figure 3.2. For some problems, fields acting with

different directions might act on a region, thus requiring the region to be divided

into grids.

In this work, fields with different directions could be considered. Other than the

directions considered, the shape and volume of layers or grids also depend on the

geometry of the region. As a result, when a field is acting on a region, the geometry

should be specified as slit, cylindrical, or spherical. Then, the region is further

discretized to layers corresponding to the geometry specified. Several possibilities

exist for discretization but, in this work the layers have equal volume. Moreover, for

systems with multiple identical pores, replicas of a single confined region (single pore)

are created. The number of replicas is determined from the total porous volume. In

this model, the volume of each region and volumes of the layers are specified and

fixed. Other specifications include the temperature and the total amounts, or number

of moles of each component in the system.
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Figure 3.2: Example of discretization for a system under the effect of one field.

3.2 Helmholtz Energy

Selecting the independent variables to be the temperature (T ), volume (V ), and

total amounts (N) for a closed system dictates that the minimum Helmholtz en-

ergy of the system corresponds to the equilibrium state of the system, as a result

of the second law of thermodynamics [47]. Finding the Helmholtz energy at equi-

librium will determine how each component is distributed within layers and regions

of the system, consequently yielding the density distribution. Also, determining the

Helmholtz energy allows the computation of other thermodynamic properties, using

fundamental thermodynamic relations.

The total Helmholtz energy of the system, A, is found by summing the Helmholtz

energy of each layer in each region, as in the following equation,

A =
r̂∑

m=1

ℓm∑
j=1

rmAjm (3.1)
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where r̂ is the number of regions, rm is the number of replicas of region m, ℓm is

the number of layers in each replica of region m, and Ajm is the Helmholtz energy

of layer j in each replica in region m. Defining A∗
jm as the joint contribution of all

replicas of layer j in region m, i.e.:

A∗
jm = rmAjm (3.2)

equation 3.1 then takes the form:

A =
r̂∑

m=1

ℓm∑
j=1

A∗
jm (3.3)

The Helmholtz energy can be split in an internal contribution, associated with

the equation of state, and a contribution due to the effect of external fields, i.e.:

A∗
jm = A∗,in

jm + A∗,f
jm (3.4)

where the superscripts in and f denote the internal and field contributions, respec-

tively. The total field contribution may result from the simultaneous effect of multiple

individual fields, which give rise to layers in different directions within a given region.

Thus, equation 3.4 can be rewritten as:

A =
r̂∑

m=1

ℓm∑
j=1

A∗,in
jm +

fℓm∑
f=1

A∗,f
fjm

 (3.5)

where fℓm represents the number of external fields acting on layer j of each replica

in region m.

As discussed later on, the procedure for minimization of the Helmholtz energy

requires first and second derivatives A∗
jm with respect to mole numbers. The first

derivative is given by:
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µ∗
ijm =

(
∂A∗

jm

∂n∗
ijm

)
T,V ∗

jm,n∗
̸=i,jm

=

(
∂Ajm

∂nijm

)
T,Vjm,n̸

=i,jm

= µijm (3.6)

where µ∗
ijm is the chemical potential of component i, in grid j of region m, and n∗

ijm

is the number of moles in that grid, considering all replicas and the effect of all fields.

The notation ̸= i indicates components other than i. To derive the two rightmost

terms of Eq. 3.6, we note that the relationship between n∗
ijm and nijm, which is the

corresponding amount in a single replica, follows:

n∗
ijm = rmnijm (3.7)

Using equation 3.7, the second derivative of A∗
jm with respect to mole numbers is

given by:

 ∂

∂n∗
kjm

(
∂A∗

jm

∂n∗
ijm

)
T,V ∗

jm,n∗
̸=i,jm


T,V ∗

jm,n∗
̸=k,jm

=

(
∂µ∗

ijm

∂n∗
kjm

)
T,V ∗

jm,n∗
̸=k,jm

=
1

rm

(
∂µijm

∂nkjm

)
T,Vjm,n̸

=k,jm

(3.8)

Finally, the first and second derivatives of A∗
jm are the result of adding the deriva-

tives of the internal and external contributions in that element. The following sub-

sections discuss the evaluation of the internal and external field contributions.

3.2.1 Internal Contribution to the Helmholtz Energy

For this model, the internal contribution to the Helmholtz energy accounts for

fluid-fluid interactions. This work considers two possibilities when deriving the inter-

nal contribution depending on the EoS expression used. The first possibility is to use

the expression of the molar residual Helmholtz energy. The molar residual Helmholtz

energy is defined here as the difference between the molar Helmholtz energies of the

12



fluid and of the ideal gas at the same temperature, molar volume, and component

mole fractions, i.e.:

ares (T, v, x) = a (T, v, x)− aig (T, v, x) (3.9)

For EoS models where the explicit expression for ares (T, v, x) is known, the in-

ternal contribution to the Helmholtz energy is derived following the four-state path

in Figure 3.3.

Figure 3.3: Schematic representation of the thermodynamic path describing the

change in Helmholtz energy when using the molar residual Helmholtz energy.

The effect on the molar Helmholtz energy of forming an ideal gas mixture isother-

mally (State 2) from the pure components (State 1) can be computed as follows:

13



∆a12 = ∆gig12 −∆
(
Pvig

)
12

= RT
ĉ∑

i=1

xi lnxi −R∆T = RT
ĉ∑

i=1

xi lnxi (3.10)

where ĉ denotes the number of components and g is the molar Gibbs energy. The

change between states 2 and 3 is given by:

∆a23 =

v∫
v2

(
∂a

∂v

)ig

T,

dv = −RT

v∫
v2

1

v
dv = −RT ln

P0v

RT
(3.11)

The molar Helmholtz energy change between states 3 and 4 is the residual molar

Helmholtz energy, ares (T, v, x), whose expression depends on the model adopted for

a given calculation. Reintroducing the indexes for region and layer, the expression

for the Helmholtz energy is:

A∗,in
jm = RT

 ĉ∑
i=1

n∗
ijm lnxijm −

(
ĉ∑

i=1

n∗
ijm

)ln P0vjm
RT

−
ares

(
T, vjm, xjm

)
RT

 (3.12)

where xjm denotes the vector of mole fractions of all components in layer j of region

m.

The relationship between n∗
ijm and nijm, which is the corresponding amount in a

single replica, is given in equation 3.7. For the mole fractions and molar volumes, it

holds that:

x∗
ijm = xijm (3.13)

v∗jm = vjm (3.14)
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For this reason, the superscript ∗ does not appear in these variables in equation 3.12.

When an expression for P in from an EoS is used, the internal contribution to the

Helmholtz energy is also obtained following the four-state path depicted in Figure

3.4. The molar Helmholtz energy change between states 1 and 2 is given by Eq. 3.10.

To compute the effect of expanding the ideal gas to infinite volume, one can use:

∆a23 =
∞∫
v2

(
∂a
∂v

)ig
T,x

dv = −RT

[
v∫
v2

1
v
dv +

∞∫
v

1
v
dv

]
=

−RT ln v
v2

−RT
∞∫
v

1
v
dv = −RT ln P0v

RT
−RT

∞∫
v

1
v
dv

(3.15)

In the final step, the fluid is taken from infinite molar volume to its molar volume,

i.e.:

∆a34 =

v∫
∞

(
∂a

∂v

)
T,x

dv = −
v∫

∞

P indv (3.16)

where P in represents the pressure as computed by the underlying EoS used to model

the internal contribution to the bulk fluid behavior.

Adding these various terms and reintroducing the indexes that denote the region

and layer, the expression for the Helmholtz energy is:

A∗,in
jm = RT

 ĉ∑
i=1

n∗
ijm lnxijm −

(
ĉ∑

i=1

n∗
ijm

)1 + ln
P0vjm
RT

+

vjm∫
∞

(
P in
jm

RT
− 1

vjm

)
dvjm


(3.17)

where n∗
ijm represents the total amount of component i in all replicas of layer j in

region m.

The final expression for A∗,in
jm is dependent on the chosen EoS. In this work, the

Peng-Robinson EoS with volume translation is used. Also, the first and second

derivatives of the internal Helmholtz energy are required and obtained through,
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µ∗
ijm = RT

lnxijm − ln
P0vjm
RT

− ∂

∂n∗
ijm

 ĉ∑
p=1

n∗
pjm

∫ v

∞

(
P in
jm

RT
− 1

vjm

)
∂vjm


(3.18)

∂µ∗
ijm

∂n∗
kjm

= RT

 1(
ĉ∑

p=1
n∗
pjm

) δik
xijm

− ∂2

∂n∗
ijm∂n

∗
kjm

 ĉ∑
p=1

n∗
pjm

 v∫
∞

(
P in
jm

RT
− 1

vjm

)
∂vjm




(3.19)

Figure 3.4: Schematic representation of the thermodynamic path describing the

change in Helmholtz energy when using an EoS.
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3.2.1.1 Peng-Robinson EoS

Volume translated Peng-Robinson EOS [48, 49] is used in this work. Volume

translation [50] is used to improve density predictions of the EOS, which has the

following expression,

P =
RT

v + cm − bm
− am

(v + cm) (v + cm + bm) + bm (v + cm − bm)
(3.20)

Parameters am, bm and cm are determined using:

am =
ĉ∑

i=1

ĉ∑
j=1

xixiaij (3.21)

aij =
√
aiaj (1− kij) (3.22)

bm =
ĉ∑

i=1

xibi (3.23)

cm =
ĉ∑

i=1

xici (3.24)

where kij is a binary interaction parameter. The expressions for ai, bi and ci are:

ai = 0.45724
αiR

2Tci

Pci
2 (3.25)

αi(T ) = [1 + (1− T 0.5
ri )(0.37464 + 1.5422ωi − 0.26992ω2

i )]
2 (3.26)
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bi = 0.07780
RTci

Pci

(3.27)

where Tci, Pci, and ωi are the critical temperature, critical pressure, and acentric fac-

tor of component i. The symbol Tri stands for the reduced temperature of component

i, which is equal to:

Tri =
T

Tci

(3.28)

Finally, ci, which is related to volume translation is found using,

ci = sibi (3.29)

where the shift parameter si is determined using liquid densities experimental data

and its value is generally negative.

3.2.2 External Contribution to the Helmholtz Energy

The external contribution to the Helmholtz energy accounts for the fluid-solid

interactions, or the effect of the solid adsorbent on the fluid. This effect changes

with distance, and is described through an adsorption potential.

3.2.2.1 The Steele Potential

In this work, the Steele 10-4-3 potential [51] is applied to model fluids in activated

carbon with microscopic, slit-like pores. Figure 3.5 shows the energy function that

describes the interactions between the solid wall and adsorbed molecules. In slit

pores, two solid walls contribute to the potential. Consequently, at each layer in a

region subjected to a confining wall, the field contribution of the Helmholtz energy

is computed by,
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Af
jm = Af

jm(z) + Af
jm(H − z) (3.30)

where, H is the wall to wall distance. For each wall, the Steele contribution at

distance z is,

Af,∗
jm(z) = 2πρs∆

ĉ∑
i=1

n∗
ijm

εs,iσ2
s,i

2
5

(
σs,i

zjm

)10

−
(
σs,i

zjm

)4

−
σ4
s,i

3∆(0.61∆ + zjm)
3


(3.31)

where ρs and ∆ are the solid density and solid interlayer spacing respectively. The

combined size of the solid and fluid molecules, σs,i, and the combined energy, εs,i,

are calculated using the Lorentz-Berthelot combining rules,

σsf,i =
σs + σf,i

2
(3.32)

εsf,i = (εsεf,i)
1/2 (3.33)

while the fluid molecular diameter, σf,i, is found from the b parameter of the EoS [52],

σf =

(
3b

2πNA

)1/3

(3.34)

and the energy parameter εsf,i is used to characterize adsorption of the ith component

in a given solid and is found by fitting experimental data of that system.
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Figure 3.5: Solid-fluid interaction potential vs. dimensionless distance.

3.2.2.2 The Dubinin-Radushkevich-Astakhov Potential

Another potential used to describe the effect of a confining wall is the Dubinin-

Radushkevich-Astakhov (DRA) potential [15,16]. The potential was originally used

to correlate the adsorbed volume of pure vapor, v, and the adsorption energy, ε,

v = vo exp

[(
ε

εo

)β
]

(3.35)

where, vo is the maximum porous volume and εo is the characteristic energy of

adsorption. The parameter β is related to the solid heterogeneity, and for activated

carbon, β takes on the value of 2. Equation 3.35 was proposed by Dubinin without

taking into account the change of properties with distance in the porous space.
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Shapiro and Stenby [37] implemented a modification to account for the heterogeneity

of the adsorbed component. The DRA equation is also extended for multicomponent

adsorption. The potential experienced by each component, εi, is given by,

εi =

[
−εoi

(
ln
[
vo
v

])1/β
]

(3.36)

where the calculations are performed over the porous volume from v = 0 to v = vo. In

general, the DRA potential does not require the geometry of the pore to be specified,

unlike the Steele potential. However, the methodology of this work requires the

shape of the confined region to be explicitly specified as input. Therefore, for slit

pores a pore width, H, is defined and vo is used to define the volume of the region.

Additionally, the calculations assume the adsorption due to a single wall and are

performed from z = 0 to z = H, as in Figure 3.6. According to the potential,

when z approaches H, the adsorption energy approaches zero or in other words,

the fluid approaches bulk fluid behavior. As a result of the assumptions followed in

this framework, the adsorption contribution to the Helmholtz energy in each layer is

calculated at each distance,zjm, as,

A∗,f
jm = −

ĉ∑
i=1

n∗
ijm

ε0i
(
ln

[
H

zjm

])1/β
 (3.37)
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Figure 3.6: Energy vs. distance of the DRA potential.

3.2.2.3 Gravitational Field

The effect of the gravitational field is relevant to compositional grading, in which

the pressure and composition of a mixture change with the vertical position coor-

dinate, like depth in an oil reservoir. In calculations where it is desired to model

confined fluids while accounting for the effect of gravity the potential contribution is

added to the Helmholtz energy,

A∗,f
jm = ĝhjm

ĉ∑
i=1

n∗
ijmMi (3.38)

where Mi is the molar mass of component i and hjm is the height of layer j in region

m.
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4. MODEL SOLUTION

4.1 Numerical Methods

The objective of the model derived in the previous section is to find the distri-

bution of the amount of each component by minimizing the Helmholtz energy of the

considered system. The solution is obtained numerically, given that the functional

form of the objective function, A/RT , is complicated and that the optimization is

performed with respect to a large number of variables. The numerical optimization

method used in this work is a second order Newtons method, modified based on

Cholesky factorization. The full algorithm of this method is found in Murray [53].

For this problem, the variables to be optimized should be the number of moles in

each element. However, instead of changing the number of moles with every iteration,

it is convenient to vary dimensionless and normalized quantities. Consequently, the

distribution factor, θijm, is introduced to the equilibrium problem and is defined as,

θ∗ijm =
n∗
ijm

ni

(4.1)

In equation 4.1, nijm is the number of moles of the ith component in layer j of region

m, and ni is the total number of moles of the ith component in the system.

Due to conservation of mass, note that for each component i:

r̂∑
m=1

ℓm∑
j=1

θ∗ijm = 1 (4.2)

Thus, it is possible to adopt one of the θ values of component i as a dependent

variable. In this work, the largest θ value is considered to be dependent, denoted by

θ∗i,MAX and computed as,
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θ∗i,MAX = 1−

 r̂∑
m=1

ℓm∑
j=1

θ∗ijm


̸=MAX

(4.3)

The subscript ̸= MAX on the right hand side of Eq. 4.3 indicates that all θ values

of component i are added, except the dependent or the largest one. In practice, at

the beginning of each iteration, the largest θ value of each component i is flagged

as a dependent variable and the numerical procedure generates new values for all

the independent θ values. Then, the dependent, or largest, value is computed again

using Eq. 4.3, allowing the evaluation of the objective function and its derivatives

during the subsequent iteration. Ultimately, assigning a dependent variable for each

component will result in the number of variables to be computed as,

nvar = ĉ

((
r̂∑

m=1

mlm

)
− 1

)
(4.4)

The optimization requires the computation of the gradient vector and the Hes-

sian matrix, which are found by computing the first and second derivatives of the

Helmholtz function with respect to the distribution factors, respectively. Expres-

sions for derivatives of A/RT with respect to the number of moles were presented

in section 3. In the following equations, the g vector and H matrix elements are

expressed in terms of number of moles derivatives,

∂A

∂θ∗ijm
= ni

(
µ∗
ijm − µ∗

iJM

)
(4.5)

where the lowercase subscripts refer to the the independent layers of component i,

while the capital subscripts represent the dependent layers of component i.
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∂2A
∂θ∗i,ji,mi∂θ

∗
l,jl,ml

= ninl

[
(δmi,mlδji,jl − δmi,MLδji,JL)

(
∂µ∗

i,ji,mi

∂n∗
l,ji,mi

)]
−ninl

[
(δMI,mlδJI,jl − δMI,MLδJI,JL)

(
∂µ∗

i,JI,MI

∂n∗
l,JI,MI

)] (4.6)

where δ represents the Kronecker delta.

For each iteration, the gradient and the Hessian are used to calculate a new

solution vector. This iterative procedure is stopped when the elements of the gradient

reach close to zero, within a specified tolerance, corresponding to the minimum of

the Helmholtz energy. Specifically, in order to stop the energy minimization, the

difference between the maximum absolute value in the gradient and zero should be

less than 1x10−12.

4.2 Initial Estimates

Like many numerical solutions, the optimization procedure described above re-

quires a good initial estimate to start the calculations. Assuming ideal gas behavior

will simplify the problem, and allow for the number of moles in each layer of the

system to be found analytically. Here, the derivation of the ideal gas solution is il-

lustrated through a simple system that is composed of one region (hence, the region

subscript was dropped for this example) and two layers, denoted by subscripts A

and B. Also, it is assumed that the system contains two components, denoted by

subscripts 1 and 2. For each component, the modified chemical potential (which

includes the external potentials) of all the layers in the system should be the same,

at equilibrium. For component 1,

µ1A

RT
=

µ1B

RT
(4.7)

For ideal gas, the modified chemical potential is expressed as,
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lnx1A + lnPA +
1

RT

∂A∗,f
1A

∂n∗
1A

= ln x1B + lnPB +
1

RT

∂A∗,f
1B

∂n∗
1B

(4.8)

where
∂A∗,f

1A

∂n∗
1A

is the sum of external field potentials applied in layer A, for component

1. Then, taking the natural logarithm and rearranging equation 4.8 yields,

x1APA

x1BPB

= exp

(
1

RT

(
∂A∗,f

1B

∂n∗
1B

− ∂A∗,f
1A

∂n∗
1A

))
(4.9)

Similarly, for the second component,

x2APA

x2BPB

= exp

(
1

RT

(
∂A∗,f

2B

∂n∗
2B

− ∂A∗,f
2A

∂n∗
2A

))
(4.10)

In the equations above, the pressure in each layer is expressed through the ideal gas

law as,

PA =
(n∗

1A + n∗
2A)RT

VA

(4.11)

PB =
(n∗

1B + n∗
2B)RT

VB

(4.12)

Combining the ideal gas law and chemical potential relations, the following equations

are obtained,

n∗
1A

VA

=
n∗
1B

VB

exp

(
1

RT

(
∂A∗,f

1B

∂n∗
1B

− ∂A∗,f
1A

∂n∗
1A

))
(4.13)

n∗
2A

VA

=
n∗
2B

VB

exp

(
1

RT

(
∂A∗,f

2B

∂n∗
2B

− ∂A∗,f
2A

∂n∗
2A

))
(4.14)

where the volume of the layers, the temperature, and the field contribution are
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known, and the unknowns are n∗
1A, n

∗
1B, n

∗
2A, and n∗

2B. Other than equations 4.13

and 4.14, the following two mass balance equations are also used to solve for the four

unknowns,

n1 = n∗
1A + n∗

1B (4.15)

n2 = n∗
2A + n∗

2B (4.16)

The initial estimate solution provided by equations 4.13, 4.14, 4.15, and 4.16 is

generalized for any number of components or elements in the system. As a result,

for the ith component, the solution is,

n∗
ijm

Vjm

=
n∗
i,ref

Vref

exp(
1

RT
(
∂A∗,f

ref

∂n∗
i,ref

−
∂A∗,f

jm

∂n∗
ijm

)) (4.17)

ni =
r̂∑

m=1

ℓm∑
j=1

n∗
ijm (4.18)

Equation 4.17 is obtained for each layer in the system while considering the layer with

the lowest field potential contribution, denoted with the subscript f , as a reference.

As a result, for a system with ℓm layers, there are ℓm − 1 equations equivalent to

equation 4.17. Combined with equation 4.18, the variables, number of moles, are

easily found due to the resulting system of equations being linear. This procedure

is repeated for each component independently, since the ideal gas law assumes no

interactions between the different components in the system. Finally, the amounts

of each component are converted to distribution factors in order to serve as a good

starting point for the optimization.
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4.3 Numerical Considerations

During the optimization process, the resultant distribution factor values at a

given iteration, or even at the initial guess stage, might not adhere to some physical

constraints dictated by the problem. As a result, while solving the model, the solution

vector needs to be checked for any violations. Below is a discussion of the constraints

included in the solution method and how these violations are dealt with.

The first technique adopted is to inactivate problematic θ variables. Specifically,

in some problems the external potential forces the number of moles in some elements

to be very small. Hence, θ variables are checked after generating initial estimates,

and after computing a new solution during the optimization. If any variable is found

to be below a placed limit (θlim = 1x10−20), it is tagged as inactive and is set to zero.

Also, tagged variables are not included in the solution vector in the next iteration.

On the other hand, the number of moles in a given element could be very large

to the point where they violate the density limit dictated by the EoS used. For any

element, the molar volume must be bigger than the b parameter (refer to 3.2.1.1)

calculated for that element. To tackle this issue, two molar volume checks are im-

plemented during the calculations. The first check is performed on the ideal gas

or initial solution, where for all elements, molar volumes are calculated and com-

pared against b. If violations exist in one variable or more, the amount is set to 1.05

times the value of b and the excess number of moles of each component is calculated.

Then, to satisfy mass conservation, the excess moles are distributed among other

elements in the system. Rather than adding the number of moles equally to the

remaining variables, the excess amount is distributed according to the distribution

factor in each element. This is done to avoid disturbance of the molar profile that

was initially found.
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The second molar volume check is performed during the optimization. Again,

after calculating a new set of θ variables, any density violations are looked for. If

any variable is found to violate the b parameter limit, the new solution is rejected and

the current step size is reduced until high density violations disappear. A similar

approach of reducing the step size in the minimization is followed with negative

distribution factors, which are meaningless when solving for number of moles.

4.4 Code Development

4.4.1 Use of Thermath Package

To apply the model and the solution method outlined in subsection 4.1, a Fortran

program was developed. The program solves for the equilibrium molar distribution

given a certain number of regions, layers, or external fields. Besides Fortran, the

Thermath package in Mathematica was employed to automatically generate Fortran

subroutines that contain properties related to the EoS [54]. In particular, the EoS

part of the internal Helmholtz energy expression and its derivatives are derived,

starting from the EoS expression. Then, the derived expressions are analyzed and a

Fortran subroutine is obtained.
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Read problem specifi-

cations: T , V , ntotal

Divide regions with exter-

nal potential into layers

Generate an initial mo-

lar distribution, θ∗ijm(k)

Calculate A,

∂A/∂θ∗ijm, ∂2A/∂θ∗2ijm

Find the next molar dis-

tribution, θ∗ijm(k + 1)

Check if

θ∗ijm(k + 1)

violates any

constraints

Check if

convergence

criterion is

satisfied

Equilibrium molar dis-

tribution is found

yes

no

yes

no

Figure 4.1: Fortran algorithm followed to implement the model solution.
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4.4.2 Fortran Algorithm

For the Fortran code, a simplified algorithm for the calculations is presented in

Figure 4.1. First, the problem specifications are inputted, which include:

1. T , ĉ, and ni.

2. r, volume, and geometry (bulk, slit, cylindrical, or spherical) of each region.

3. For all regions (except bulk regions): direction of external field applied (x, y, z,

or r direction), dimensions of the region, and number of layers in the specified

direction.

4. The type of potential associated with each direction (Steele potential,...), and

its parameters.

5. EoS parameters related to the components of the system, namely, Tc, Pc, ω,

kij, and c.

Based on ĉ, r, and the maximum number of layers across the regions, the dimensions

of many arrays are allocated dynamically, rather than having large arrays with fixed

sizes. Dynamic allocation of arrays is advantageous with regard to memory usage.

The next step is to set up the grid in each region with external potentials. This is

done based on the spatial dimensions of any region and the number of layers selected.

The grid set-up includes calculating the volume of each element in the region, and

calculating the coordinates with respect to the directions considered. Also, when

applicable, the number of replicas of each region are calculated in this step.

After that, to begin the numerical optimization, an initial molar distribution

is computed as discussed previously in subsection 4.2. The linear system of the

ideal gas estimate is solved using a L-U decomposition code. The initial molar
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distribution is checked for any violations related to the nature of the problem (refer

to subsection 4.3). Additionally, before the start of the optimization, some parts of

the Helmholtz energy and its derivatives are computed. While developing the code,

the model equations were broken down to four parts: a part containing constants

only, temperature dependent, molar dependent, and molar volume dependent part.

For these groups, logical variables were created to control the order in which the

parts are computed. Since the temperature is constant throughout the solution, it

is possible to compute and save the parts of the model containing temperature and

constants before starting the iterative solution procedure.

Next, to start the minimization process, the Helmholtz energy, the gradient vec-

tor, and the Hessian matrix are computed using the initial estimate values of the

distribution factors. The derivatives are first found with respect to the number of

moles in a given layer, and are then converted with respect to the distribution factor

as in equations 4.5 and 4.6. After that, the Helmholtz energy and its corresponding

derivatives are sent to an optimization routine that computes a new set of variables.

The newly calculated variables are then checked for whether they comply with the

problem constraints. If they are found to agree, the energy and its derivatives, the

gradient and the Hessian, are calculated again to find a new solution vector. The

minimization converges to a final equilibrium density distribution when the gradient

value is zero.
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5. RESULTS AND DISCUSSION

5.1 Adsorption Calculations Details

This subsection includes the numerical values of the parameters required to obtain

the results in this section. First, for any component, parameters related to the EoS

used are needed. In this work, all EoS parameters have the same value across the

system, and no modification or extra parameters are required for confined fluids. For

all components studied, Table 5.1 lists PR-EoS parameters, Tc, Pc, and ω [55]. The

shift parameter s is obtained from Li et al. [56] where equilibrium liquid density data

are fitted.

Table 5.1: PR-EoS parameters for different components [55, 56].

Component Tc (K) Pc (MPa) ω s

CH4 190.56 4.599 0.011 -0.1533

C2H6 305.32 4.872 0.099 -0.1094

C3H8 369.83 4.248 0.153 -0.0869

N2 126.21 3.796 0.039 -0.16562

CO2 304.14 3.37 0.239 -0.06225

Next, the for the confined regions in the system, parameters related to the adsorp-

tion potential are provided. In the case of using the Steele potential the parameters

are taken from Li et al. [56] and included in Table 5.2. For calculations that utilize the

DRA potential, the parameters characterizing the system considered are: vo = 4.093

x 10−4 m3/kg, and the characteristic energies are 8143 J/mol, 7980 J/mol, and 6.328

J/mol for CH4, CO2, and N2 respectively. The parameters were fitted to pure com-
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ponents adsorption by Monsalvo and Shapiro using the DRA-SRK version of their

MPTA model [40].

Table 5.2: Steele potential parameters: energy parameter for each component and
solid related parameters [56].

Fluid parameters Solid parameters

components εi/kB (K) εs/kB (K) 20

CH4 1178 σs (m) 3.345x10−10

CO2 1760 δ (m) 3.35x10−10

C3H8 1866 ρs (m
−3) 1.14x1029

Other than the parameters related to the components and solid investigated,

the framework requires no other information for regions subject to confinement. In

this work, the confinement in activated carbon pores was studied. For this porous

medium, slit shape is assumed and the geometry of the confined region is selected to

be rectangular. For this geometry, the pore width, H is provided as well as details on

the discretization of the confined region. Namely, the number of layers perpendicular

to the solid wall is specified. This is determined by increasing the number of layers

until grid convergence is achieved, or increasing the number the number of layers is

no longer affecting the solution obtained. For the adsorption calculations performed

in this work, 100 layers were found sufficient.

Finally, the methodology proposed in this work requires specification of the tem-

perature, bulk and pore volumes, and total amount of each component (TV N). Once

the Helmholtz energy is minimized at these specifications, the density and composi-

tion in each region is obtained along with the bulk pressure. However, sometimes it

is desired to obtain the density at a specific bulk phase pressure, temperature and

34



bulk composition, for example, to compare with adsorption data reported at these

conditions. In such cases, the number of moles is varied until the desired conditions

are obtained.

5.2 Steele Potential Results

5.2.1 Adsorption in a Single Slit Pore

The local density profiles of CH4 inside an activated carbon pore with a pore

width of 2.0 nm at various pressures and T = 298 K is depicted in Fig. 5.1. The

plot highlights a few features of adsorption in slit pores at the given pressure range.

Since both walls are characterized using the same energy, the density distribution

is symmetric, with most of the adsorbed fluid accumulated near the pore walls due

to the maximum potential effect experienced there. Moving away from the wall

and towards the center of the pore, the solid-fluid interactions become weaker as

fluid-fluid interactions begin to dominate. Less amounts are adsorbed, until a near-

constant density is reached in the middle of the pore. Another important observation

is related to the effect of the bulk pressure on the density profile. As the pressure

increases, the amounts inside the pore are expected to increase, with higher pressures

corresponding to higher density maxima. Once the density of each layer in the pore

is calculated, the density of each component in the confined region m is obtained,

which is defined as,

ρim =
1

Hin

∫ H

0
ρim(zm)dzm (5.1)

whereHin is the internal pore width (excluding the radius of the adsorbent molecule).

Using numerical discretization, the adsorbed amount is calculated by adding the

number of moles at each distance and dividing by the pore volume in region m (Vm),

according to,
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ρim =
H

Hin

lm∑
j=1

n∗
ijm

Vm

(5.2)

where the factorH/Hin is used to obtain the density within the effective pore volume.

As soon as the calculations converge, the pressure in the bulk region is computed.

Fig. 5.2 shows the adsorption of CH4 reported for wall-to-wall distances of 2, 3 and

6 nm respectively, for a pressure range of 0−30 MPa. The results are plotted along

with the DFT results obtained by Li et al. In general, the model perform well when

compared with the DFT calculations, especially in the high pressure range (above 5

MPa). Additionally, the plots demonstrate the effect of pore size on the amounts

adsorbed. As the pore width decreases, the density at a given pressure increases.

Figure 5.1: Local density profiles for CH4 at T= 298 K and H= 2nm using the

parameters in Table 5.2.
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Figure 5.2: CH4 adsorption isotherm at T =303.15 K for various pore widths. Solid

lines represent predictions of this work, while the points are predictions by a DFT

model [56].
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The model is also capable of predicting the compositional profiles inside the

pore for binary mixtures. In Fig. 5.3, an equimolar mixture of CH4 and C3H8

is studied in a pore width of 10 nm at 323.15 K and 0.5 MPa, with the Steele

potential parameters taken from Table 5.2. The mole fraction of both components

is plotted against distance. The compositional profile is symmetric, and only the

wall-to-center distance is shown. Based on the energy parameters listed in Table 5.2,

it can be deduced that propane will be more favorably attracted to the solid wall

than CH4. However, the plot depicts that the first molecular layer formed next to

the wall is made up of pure CH4 and after that, pure C3H8 is adsorbed. The packing

order observed inside the pore is due to CH4 having a smaller molecular diameter

than C3H8. Setting the energy parameters for both components to be equal, while

keeping the size difference, will result in a similar local compositional profiles. In the

middle of the pore, the adsorption effect is not as pronounced, and equal amounts

of each component are present, similar to bulk conditions. Also, the compositional

profile for the same mixture, predicted by the DFT model is shown. The two models,

although following two different methods, agree qualitatively.
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Figure 5.3: Compositional profiles for mixture of C1/C3 at T= 323.15 K, P=5 bar,

equimolar bulk, and H= 10 nm. DFT predictions are from Li et al. [56].

5.2.2 Adsorption in Multiples Slit Pores

The work by Li et al. [56] use their DFT model to characterize the pore size

distribution (PSD) of a certain activated carbon sample through using experimental

data provided by Qiao et al. [57]. For adsorbents comprised of pores with different

sizes, the PSD provides the volume for each pore size. In this work, the PSD results

of Li et al. [56] are used calculate the adsorption of CH4 in the heterogeneous solid

with multiple pore widths.

To simplify the calculations, pores with negligible volumes are discarded. Table

5.3 presents the PSD values for the pores considered. This PSD is used to obtain the

39



pore volume, Vm(Hm), of region m with specific pore width Hm using the following

relation,

Vm(Hm) =
1

2

PSD(Hm) + PSD(Hm+1)

Hm+1 −Hm

(5.3)

Table 5.3: Pore size distribution and pore volumes.

Hm PSD(Hm) Vm

nm m3/kg/nm m3/kg

0.8 3.030E-06 3.818E-06

0.9 7.333E-05 2.381E-05

1 4.029E-04 6.341E-05

1.1 8.653E-04 9.289E-05

1.2 9.925E-04 8.649E-05

1.3 7.373E-04 5.697E-05

1.4 4.020E-04 2.886E-05

1.5 1.751E-04 1.199E-05

1.6 6.462E-05 4.286E-06

1.7 2.109E-05 1.369E-06

1.8 6.280E-06 4.010E-07

Having obtained this information, the amount adsorbed in each pore is found at a

specific bulk pressure. Then to find the total adsorbed amount of a pure component,

the following relation is used,

Nads =
r̂conf∑
m=1

ρmVm(Hm) (5.4)

where r̂conf is the number of confined regions. Finally, the adsorption isotherm of

CH4 within a pressure range of 0.01 − 0.11 MPa at 363 K was computed. These
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are then compared to the experimental data and the DFT results. When using the

reported DFT Steele energy parameters to perform calculations, there is significant

deviation observed between the experimental data, and model predictions of CH4 in

Fig. 5.4. To reduce the deviations, the energy parameter in the Steele potential was

modified. As depicted in Fig. 5.4, it was found that by using a value of 865 K for

ε/kB the predictions of the model is enhanced and deviations between experimental

data and calculations are minimized.

Figure 5.4: CH4 adsorption isotherm at T = 363.15 K at ε = 865 K and 1178 K.

Lines represent predictions of this work, points are experimental data [57] and the

dashed line represent DFT calculations [56].
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5.3 DRA Potential Results

In this subsection, calculations are performed for CH4, CO2, and N2, and their

mixtures adsorbed on activated carbon using the DRA potential. The predictions

are compared with experimental data from Dreisbach et al. [58], and the same data

are used by Monsalvo and Shapiro [40] to fit the pure component parameters for

this system. From their DRA-SRK model, the following parameters were found:

vo = 4.093 x 10−4m3/kg, and the characteristic energies are 8143 J/mol, 7980 J/mol,

and 6.328 J/mol for CH4, CO2, and N2 respectively. These parameters were used

in this work to model the studied system with no additional parameters needed for

mixtures. As in the previous example, volume translation was applied to the PR

EoS to obtain better results.

For adsorption data, the surface excess is usually measured and reported at a

given temperature and pressure. The surface excess in region m, Γim, of each com-

ponent is computed by subtracting the bulk amount from the adsorbed amount,

Γim =
Vm

H

∫ H

0
(ρ(z)xi(z)− ρBxBi)dz (5.5)

In this work, equation 5.5 is simplified to,

Γim = (
lm∑
j=1

n∗
ijm)− VmρBxBi (5.6)

The individual excess amounts are added to find the total surface excess, Γm. Sub-

sequently, the mole fraction of the ith component in the adsorbate is:

xex,im =
Γim

Γm

=
Γim

ĉ∑
j=1

Γjm

(5.7)
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Figure 5.5: Surface excess values for the adsorption of pure N2 and CH4 on acti-
vated carbon at T = 298 K. Solid lines are predictions by this work and points are
experimental data [58].

Figure 5.6: Adsorption of CH4 and N2 mixture at T = 298 K and xB,CH4 = 0.4.
Empty symbols are predictions by this work and filled symbols are experimental
data [58]. Dashed lines are linear interpolations between calculations.
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The deviation between experimental data and calculations for each data point is

computed, and the average deviation in Γ, Nads, and xex,im for each mixture (for p̂

data points) is computed according to the following relations,

ADDΓ(%) =
100

p̂

p̂∑
i=1

∣∣∣(Γexp,i − Γcalc,im)/Γexp,i
∣∣∣ (5.8)

ADDNads
(%) =

100

p̂

p̂∑
i=1

∣∣∣(N exp,i
ads −N calc,i

ads )/N exp,i
ads

∣∣∣ (5.9)

ADDx(%) =
100

p̂

p̂∑
i=1

∣∣∣xexp
ex,i − xcalc

ex,im

∣∣∣ (5.10)

In Fig. 5.5, the surface excess predictions for pure CH4 and N2 are reported for

a temperature of 298 K and pressures up to 6 MPa. Overall, the model captures

reasonably well the type of adsorption isotherm of each component. Further, accurate

predictions for these two components are obtained at low pressures. Then, as the

bulk pressure increases, the deviations from experimental data increase for both

components.

Next, the total and individual surface excess values were computed at the same

temperature and pressure range for binary and ternary mixtures. The experimental

data for these mixtures were reported at different bulk compositions and the calcula-

tions were done at the exact reported compositions to obtain an accurate comparison.

Fig. 5.6, 5.7, and 5.8 show the results for the binary mixtures of CH4-N2, CH4-CO2,

and CO2-N2 respectively. Also, Fig. 5.9 shows the results for the ternary mixture

of CH4 − CO2 −N2. In all figures, the closed symbols represent experimental data,

open symbols represent model calculations, and dashed lines are interpolations be-

tween the calculated values. In general, more satisfactory results are obtained at low
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pressures, as in the case of pure components. The adsorption of CH4 is more accu-

rately predicted over the entire pressure range, while relatively larger deviations are

experienced in the cases of N2 and CO2. For instance, the highest average deviation

value is reported for CO2 −N2 mixture. Table 5.4 lists the deviations between this

work and experimental data for all the computed points of various compositions.The

results for all conditions for and mixtures are provided in Appendix A.

Furthermore, the ADDxex,i
, and ADDNads

values obtained by Monsalvo and

Shapiro [40] are included for comparison. The error values reported in the table

are relatively small, considering the few parameters required. Good performance

is especially observed with respect to the adsorbed compositions values (maximum

ADDxex,i
is 8.7%). Monsalvo and Shapiro [40] suggest that the results could be

enhanced by determining the adsorptive capacities of each component, rather than

finding one common capacity for all components. Likewise, the effect of other pa-

rameters on the model performance could be further investigated. That includes the

heterogeneity parameter in the DRA potential, and the binary interaction parameter

in the EoS.
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Figure 5.7: Adsorption of CH4 and CO2 mixture at T = 298 K and xB,CH4 = 0.9.

Figure 5.8: Adsorption of CO2 and N2 mixture at T = 298 K and xB,CO2 = 0.2.
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Figure 5.9: Adsorption of CH4, CO2 and N2 mixture at T = 298 K, xB,CH4 = 0.7
and xB,CO2 = 0.1.
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5.4 Results for Multiple Fields

The equilibrium molar distribution of a mixture of 80% mol CH4 and 20% mol

CO2 is obtained for a reservoir depth of 4000 m at T = 305 K. Steele potential was

used to describe confinement in an activated carbon pore with H = 6 nm. Using

this potential enables the prediction of the amount adsorbed or the density inside

the pore, as well as distribution of components in porous media. The gravitational

field effect, which is assumed to act on a system consisting of a bulk phase and a slit

pore is included in the equilibrium calculations.

The variations in the amount adsorbed with respect to depth can be correlated

to the variation of bulk pressure with depth. The pressure profile is presented in

Figure 5.10, while Figure 5.11 show the variations of density in the porous space

with depth. Overall, CH4 is more adsorbed and has higher molar concentrations

throughout the reservoir column. Also, the amount adsorbed increases with depth

for both components, but differently. For CO2, the change in the adsorbed amount

is greater due to the fact that CO2 has a larger molecular weight and thus is more

affected by gravitational effects.

Figure 5.12 shows the compositional profile of CO2 at h = −200m and h = −3800

m. For all heights, CO2 has high mole fraction near the solid wall, although the bulk

composition and total amount adsorbed for CH4 is higher. This could be explained

by the higher energy parameters for CO2 used (refer to 5.1), which results in its

molecules being much more present near the wall, where adsorption potential is the

strongest. Moving away from the wall, the mole fraction of CO2 starts decreasing

until reaching a near-constant value at the center of the pore (H = 3 nm). Moreover,

gravitational effects have an impact on local density profiles inside the slit pores

studied. Namely, various depths correspond to different amounts adsorbed near the
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Figure 5.10: Bulk pressure profile with depth at T = 330 K.

wall. Figure 5.12 shows with increasing the depth, the maximum amount adsorbed

near the wall increases as well as the mole fraction in the center of the pore.

Finally, some remarks could be made regarding the computational performance

of the framework. In this case, to accurately model both effects, the confined region

was divided to 500 grids. This number of elements corresponds to 1000 variables (500

per component). Calculations for this number of variables take about 4 minutes of

CPU time in a Lenovo laptop model Yoga2015 (equipped with an Intel processor

model i7− 4500U and a 8 GB memory). This the highest amount of time reported

in this work. Other calculations involving only confinement converge within around

60 seconds. As a result, measures to reduce the computational requirements of this

model should be considered.
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Figure 5.11: Density distribution with depth for CH4 and CO2, inside a slit pore.
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Figure 5.12: Local compositional profiles for CO2 at h = −200m and h = −3800m.
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6. CONCLUSIONS

In this work, a thermodynamic model was developed to study confinement. By

specifying the temperature, total amount and total volume, the distribution of the

components in the confined and bulk regions is computed. The equilibrium den-

sity distribution is found by minimizing the Helmholtz energy, which accounts for

the effect of adsorption through an appropriate potential. Additionally, to account

for internal interactions, the volume translated PR-EoS was used to model all the

components studied. The theoretical model was then solved numerically using a gen-

eral computer code that was developed to be applied for many types of adsorption

calculations.

The performance of the framework was tested by applying the Steele and DRA

potentials for adsorption in activated carbon. The Steele potential proved adequate

in describing local density and compositional profiles of the studied systems. The

model performance was validated by comparing the results with the predictions of

a model based on DFT, proposed by Li et al. The local density profiles predicted

in this work were found comparable to those computed using DFT. Additionally,

the Steele potential was used to obtain adsorption isotherms. Good agreement be-

tween experimental data and calculations was obtained after using a modified energy

parameter.

Reasonable agreement between the model calculations and experimental data for

the adsorption of CH4, CO2, and N2 was obtained when applying the DRA poten-

tial. The average deviations for the binary and ternary mixtures are comparable

to those obtained using an MPTA model. Once again, investigating the effect of

various parameters could lead to more accurate predictions for modeling the effect of
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confinement. However, such modifications might include an increase in the number

of fitted parameters, thus complicating the overall approach. Finally, the proposed

methodology was applied for the case of having other fields, besides adsorption po-

tential. In the case of fluids exposed to multiple external effects (confinement and

gravity), it was determined that the local density within the pore is influenced by

the presence of both effects.
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7. FUTURE WORK

In this thesis, a framework for determining equilibrium conditions in systems

including confined fluids was established. Furthermore, the methodology was ex-

tended to account for effects other than confinement. Based on the general approach

developed and findings of this work there are many possible directions for future

work.

First, for the current adsorption systems studied, better results could be obtained

through fitting parameters in the adsorption models to experimental data. Moreover,

including routines to minimize the error between experimental data and the calcula-

tions of this work will allow for studying any system, without requiring parameters

from other models found in literature. Second, a phase stability test could be imple-

mented in the framework to study systems with multiple phases. As a result, phase

behavior of fluids under confinement could be investigated. This is relevant to many

applications, including locating oil-water contact zones in reservoirs. Other than

phase equilibria calculations, the framework could be extended to involve chemical

equilibrium calculations. That would require including the formation properties of

various components to the energy of the system. Such computations are useful for

processes involving heterogeneous catalysis. While the addition of extra features will

lead to the computation time increase, there are some possibilities for optimizing

the computer codes used in solving the model. Namely, when predicting symmetric

density profiles, only half of the profile could be computed, thus reducing the num-

ber of variables significantly. Additionally, for the same type of problem, it is more

important to solve for amount adsorbed close to the solid wall, where the adsorption

potential is stronger. Currently, all layers have the same volume everywhere in the

55



pore. However, it is possible to use multiple grid sizes within a pore.

So far, this work has studied confinement in slit pores only, which is useful to many

applications related to the oil and gas industry. Nonetheless, there is a wide range

of porous solids utilized in industry that could be modeled as spherical or cylindrical

pores. To perform equilibrium calculations with such geometries, implementing the

appropriate adsorption potentials is required. Moreover, the methodology is estab-

lished to deal with problems where more than one geometry, or one size, could be

present in one adsorbent. Another advantage of this framework, is the ability to

combine these microscopic effects with external fields at larger scale. While the abil-

ity of the framework to predict adsorption when a gravitational field is acting was

demonstrated, other effects could be modeled including centrifugal field and electri-

cal field. Finally, another direction that would increase the number of applications

considered is to use other EoS models. For instance a Statistical Associating Fluid

Theory EoS could be implemented to represent polar or associating systems.
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APPENDIX A

DRA CALCULATIONS RESULTS

This appendix includes tabulated values for all the results of the DRA potential

calculations for the adsorption of binary and ternary mixture for CH4, N2 and CO2.

The bulk phase conditions were selected based on the experimental data of Dreis-

bach et al. [58] to eventually compute the deviations between this work and their

measurements as illustrated in subsection 5.3.

Table A.1: Results of adsorption calculations for a mixture of CH4 and CO2 at
T = 298 K and various pressures and bulk compositions.

Bulk conditions Excess quantities Absolute quantities

P (MPa) xB,CH4 Γ (mol/kg) xex,CH4 Nads (mol/kg) xCH4

0.102 0.574 1.759 0.319 1.776 0.321

0.100 0.954 1.172 0.913 1.188 0.914

0.500 0.957 3.263 0.900 3.347 0.901

1.025 0.948 4.616 0.868 4.789 0.871

2.149 0.941 6.019 0.839 6.391 0.845

3.097 0.948 6.540 0.854 7.087 0.861

3.887 0.939 6.878 0.826 7.577 0.836

5.108 0.941 7.102 0.828 8.044 0.841

5.916 0.947 7.132 0.845 8.238 0.859
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Table A.2: Results of adsorption calculations for a mixture of CH4 andN2 at T = 298
K and various pressures and bulk compositions.

Bulk conditions Excess quantities Absolute quantities

P (MPa) xB,CH4 Γ (mol/kg) xex,CH4 Nads (mol/kg) xCH4

0.151 0.089 0.600 0.290 0.625 0.282

0.522 0.059 1.488 0.205 1.575 0.197

0.974 0.095 2.359 0.298 2.520 0.285

1.925 0.095 3.396 0.295 3.717 0.278

2.969 0.095 4.092 0.293 4.587 0.271

3.930 0.088 4.493 0.274 5.150 0.250

5.056 0.091 4.853 0.281 5.698 0.253

6.035 0.090 5.063 0.278 6.072 0.247

0.111 0.377 0.735 0.724 0.753 0.716

0.533 0.384 2.255 0.725 2.343 0.712

1.039 0.439 3.387 0.767 3.561 0.751

2.285 0.428 4.692 0.758 5.077 0.733

2.764 0.427 4.997 0.757 5.464 0.729

3.977 0.403 5.470 0.740 6.147 0.703

5.980 0.425 5.966 0.762 6.996 0.712

0.518 0.668 2.708 0.896 2.794 0.889

1.091 0.735 4.057 0.922 4.240 0.914

3.972 0.726 6.118 0.922 6.810 0.902

4.986 0.727 6.355 0.925 7.234 0.901

0.108 0.730 0.999 0.922 1.017 0.919

2.023 0.733 5.134 0.922 5.478 0.910

2.978 0.731 5.744 0.922 6.257 0.907

5.975 0.733 6.497 0.929 7.562 0.901

4.987 0.449 5.846 0.778 6.703 0.736
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Table A.3: Results of adsorption calculations for a mixture of CO2 andN2 at T = 298
K and various pressures and bulk compositions.

Bulk conditions Excess quantities Absolute quantities

P (MPa) xB,CO2 Γ (mol/kg) xex,CO2 Nads (mol/kg) xCO2

0.1082 0.1889 0.8703 0.7357 0.8882 0.7247

0.5351 0.2022 3.0601 0.8030 3.1489 0.7860

1.0584 0.2160 4.6151 0.8368 4.7919 0.8139

1.8750 0.2161 5.9040 0.8532 6.2197 0.8208

3.0781 0.2171 6.9252 0.8709 7.4491 0.8249

4.1020 0.2111 7.3370 0.8764 8.0403 0.8183

5.0660 0.1800 7.4354 0.8337 8.1486 0.7765

6.0771 0.2030 7.6970 0.8868 8.7503 0.8045
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Table A.4: Results of adsorption calculations for a mixture of CH4, CO2 and N2 at
T = 298 K, various pressures and CH4 bulk compositions greater than 0.5.

Bulk conditions Excess quantities Absolute quantities

P (MPa) xB,CH4 xB,CO2 Γ xex,CH4 xex,CO2 Nads xCH4 xCO2

0.103 0.500 0.157 1.120 0.538 0.383 1.137 0.537 0.379

0.485 0.510 0.182 3.400 0.453 0.488 3.481 0.454 0.481

1.073 0.509 0.201 5.175 0.400 0.553 5.357 0.404 0.541

1.999 0.512 0.211 6.564 0.371 0.590 6.908 0.378 0.572

3.008 0.512 0.218 7.348 0.352 0.616 7.877 0.362 0.590

4.016 0.511 0.223 7.771 0.339 0.634 8.492 0.353 0.599

4.957 0.510 0.227 7.985 0.331 0.647 8.891 0.349 0.604

5.991 0.508 0.230 8.090 0.324 0.657 9.207 0.347 0.606

0.107 0.564 0.289 1.508 0.415 0.562 1.526 0.417 0.558

0.433 0.535 0.341 4.018 0.306 0.679 4.090 0.310 0.673

1.054 0.538 0.347 6.107 0.274 0.715 6.286 0.281 0.704

1.996 0.535 0.359 7.566 0.246 0.746 7.916 0.259 0.729

3.023 0.524 0.373 8.334 0.222 0.772 8.881 0.241 0.748

4.025 0.522 0.377 8.668 0.212 0.784 9.420 0.237 0.752

5.034 0.518 0.382 8.810 0.203 0.795 9.783 0.234 0.754

5.861 0.522 0.377 8.798 0.204 0.796 9.960 0.241 0.747

0.093 0.707 0.113 1.077 0.718 0.242 1.093 0.718 0.240

0.478 0.707 0.113 3.230 0.671 0.291 3.310 0.672 0.287

1.030 0.741 0.096 4.632 0.699 0.267 4.806 0.701 0.261

2.003 0.723 0.126 6.133 0.613 0.361 6.478 0.619 0.349

3.022 0.712 0.132 6.861 0.586 0.389 7.392 0.596 0.370

3.834 0.733 0.131 7.192 0.592 0.388 7.878 0.604 0.366

4.937 0.726 0.130 7.415 0.588 0.392 8.316 0.603 0.364

5.837 0.718 0.134 7.529 0.576 0.407 8.612 0.594 0.372
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Table A.5: Results of adsorption calculations for a mixture of CH4, CO2 and N2 at
T = 298 K, various pressures and CH4 bulk compositions less than 0.5.

Bulk conditions Excess quantities Absolute quantities

P (MPa) xB,CH4 xB,CO2 Γ xex,CH4 xex,CO2 Nads xCH4 xCO2

0.102 0.308 0.211 1.108 0.331 0.558 1.125 0.331 0.553

0.467 0.350 0.241 3.486 0.286 0.644 3.564 0.287 0.635

1.017 0.329 0.283 5.447 0.219 0.730 5.618 0.222 0.716

2.009 0.340 0.304 7.116 0.196 0.768 7.462 0.203 0.746

3.011 0.343 0.281 7.698 0.205 0.760 8.226 0.213 0.729

4.001 0.342 0.286 8.116 0.196 0.775 8.832 0.208 0.735

5.017 0.332 0.296 8.377 0.182 0.797 9.293 0.196 0.748

6.013 0.342 0.307 8.509 0.178 0.809 9.633 0.197 0.751

0.113 0.445 0.051 0.911 0.680 0.148 0.930 0.676 0.146

0.525 0.474 0.070 2.817 0.631 0.233 2.904 0.626 0.228

1.111 0.486 0.073 4.200 0.616 0.259 4.387 0.610 0.251

1.986 0.484 0.078 5.345 0.592 0.291 5.681 0.586 0.278

3.012 0.485 0.082 6.108 0.577 0.314 6.626 0.570 0.296

4.011 0.486 0.084 6.544 0.570 0.327 7.241 0.562 0.304

4.964 0.485 0.085 6.788 0.567 0.334 7.660 0.558 0.306

5.798 0.487 0.087 6.937 0.564 0.343 7.964 0.554 0.310
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