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ABSTRACT

High dimensional factor models have drawn attention in both empirical and theo-

retical studies. Correctly specifying the number of factors (r) is a fundamental issue

for the application of factor models. We develop an econometric method to estimate

the number of factors in factor models of large dimensions where the number of fac-

tors is allowed to increase as the two dimensions, cross-section size (N) and time

period (T ) increase. Using similar information criteria as proposed by Bai and Ng

(2002), we show that the number of factors can be consistently estimated using the

criteria. We propose a new procedure that avoids overestimating the number of fac-

tors while allowing for one to search for possible number of factors over a wide range

of positive integers so that it also avoids underestimation of the number of factors.

We conduct Monte-Carlo simulation to investigate the finite sample properties of the

proposed approach.

The factor loadings are commonly estimated under the presupposition that they

do not depend on time. However, this presumption is easily challenged by struc-

tural changes or regime shifts. We investigates high dimensional factor models with

structural instability in factor loadings. Our inquiry focuses on how to estimate the

unknown common break point and derive its limiting distribution. The least squares

method is used to estimate the break point in factor loadings. Several competing

methods are compared in the simulation. The results show that our proposed ap-

proach outperforms other methods. We further propose a new framework to derive

the limiting distribution for the estimated change point. The limiting distribution of

the estimated break point is more complex than that of the conventional panel data

models, because both factors and factor loadings are unobservable. We show that the
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estimated factors and estimated factor loadings influence the limiting distribution.

Based on the limiting distribution of the estimated break point, one can construct

confidence intervals of the underlying true break point. Bootstrap method is also

studied. We apply the method to the study of structural changes in financial asset

returns and in macroeconomic data.
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1. INTRODUCTION

1.1 Increasing Number of Factors

Factor models have been widely used in economic analyses such as forecasting eco-

nomic variables, estimating variance-covariance matrices with high dimension data,

and estimating average treatment effects. In practice a few common factors may

capture the variations of a large number of economic variables. In the finance lit-

erature, the arbitrage pricing theory (APT) of Ross (1976) assumes that a small

number of factors can be used to explain a large number of asset returns. Stock

and Watson (1998, 1999) consider forecasting inflation with diffusion indices (“fac-

tors”) constructed from a large number of macroeconomic series. Gregory and Head

(1999) and Forni, Hallin, Lippi, and Reichlin (2000) find that cross country varia-

tions have common components. Fan, Liao and Mincheva (2011), and Fan, Liao and

Mincheva (2013) use factor models to estimate high dimensional variance-covariance

matrices. Factor models can also be used to evaluate the impacts of various policies

(e.g., Hsiao, Ching and Wan (2012)). By assuming that the cross-sectional correla-

tions for all the units are attributed to the presence of some (unobserved) common

factors, Hsiao, Ching and Wan (2012), Ching, Hsiao and Wan (2012) and Bai, Li

and Ouyang (2014) use panel data methods to construct the counterfactuals and

to measure average treatment effects of some policy interventions based on factor

models.

A fundamental issue of factor models is the correct specification of the number of

factors, r. When the number of factors is fixed, Bai and Ng (2002), Onatski (2009),

Anh and Horenstein (2013), among others, have developed various approaches to

consistently estimate the number of factors. But many empirical findings suggest
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that the number of factors may increase as the dimensions of the data N increases,

or T increases. For many empirical analyses, the estimated number of factors ranges

from one to more than ten, see Ludvigson and Ng (2009), Giannone, Reichlin and

Sala (2005) and Forni and Gambetti (2010). This suggests that the number of

factors may depend on sample sizes. One reason that the number of factors may

increase with sample size is structural break, new factors may emerge after economic

environments change. Using Bai and Ng’s (2002) information criteria, Ludvigson

and Ng (2007) find that the factor structure of their financial dataset comprising of

172 (N = 172) series quarterly financial indicators spanning the first quarter of 1960

through the fourth quarter of 2002 (T = 172) can be well described by 8 (r = 8)

common factors. Jurado, Ludvigson and Ng (2013) update monthly version of the

147 financial time series used in Ludvigson and Ng (2007) and combine them with

an updated version of 132 monthly macroeconomic series used in Ludvigson and Ng

(2010). They find that 12 (r = 12) common factors can capture the variations of

this new dataset with 279 series (N = 279) spanning the period 1959:01-2011:12

(T = 636). Hence, Ludvigson and Ng’s (2013) finding supports the argument that

the number of factors may increase as sample size increases.

Assuming that the number of factors r is fixed, there are many papers in the

literature analyzing the problem of determining the number of factors. Some of them

not only fix the number of factors, but also impose restrictions on the dimensions

N and T , such as Lewbel (1991), Donald (1997), Cragg and Donald (1997), Connor

and Korajczyk (1993), Forni and Reichlin (1998) and Stock and Watson (1998).

Imposing no restriction on the relation between N and T except that both N and T

are assumed to be large, Bai and Ng (2002) treat the determination of the number

of factors as a model selection problem, they propose some criteria and show that

the number of factors can be consistently estimated by minimizing the proposed
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criteria. Onatski (2009) develops a test of the null of k0 factors against the alternative

that the number of factors r satisfies k0 < r ≤ k1 for some finite positive integer

k1. Onatski also describes the asymptotic distribution of the test statistic with

critical values tabulated. Onatski (2010) suggests to determine the number of factors

from empirical distribution of eigenvalues of sample covariance matrix. Ahn and

Horenstein (2013) exploit the fact that the r largest eigenvalues of the variance matrix

of N response variables grow unboundedly as N increases, while the other eigenvalues

remain bounded to estimate the number of factors. The main difference between

our model and the existing work is that we consider the problem of determining the

number of factors in a factor model where the number of factors is allowed to increase

as N or T increases.

Specifically, Section 2 is designed to provide an approach which enables one to

estimate the number of factors consistently when the number of factors is allowed to

increase as N, T →∞. We extend the method of Bai and Ng (2002) to penalize the

number of factors with a penalty function which is determined by the sample sizes, N

and T , as well as the maximum possible number of factors allowed in the estimation.

As the factors are unobserved, the estimation procedure takes two steps. First,

assuming the number of factors to be an arbitrary number 1 ≤ k ≤ kmax, we estimate

the factors (F̂ k) using the principal components method, where kmax = kmax,N,T is

the maximum number for possible number of factors, which is assumed to be greater

or equal to the true number of factors, whose value is determined by N and T

and it increases as N , T increases. Second, we select the number of factors k̂ by

minimizing a criterion modified from Bai and Ng (2002), which is a function of k

and the estimated factors (F̂ k). This criterion depends on the usual trade-off between

good fit and parsimony. We show that this method produces a consistent estimator of

the number of factors r. However, simulation results show that the selected number
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of factor k̂ can be sensitive to the choice of kmax and it tends to choose a k̂ that is

larger than r when kmax is large. We propose using a new (‘mode’ based) selection

procedure to overcome this problem so that the selected k̂ is not sensitive to different

kmax values used in practice.

1.2 Structural Change in Factor Loadings

High dimensional factor models assume that a few number of common factors

can represent variation among economic variables. This method of dimension de-

duction is a powerful statistical tool that has been found useful in forecasting (Stock

and Watson, 2002), structural factor-augmented VAR analysis (Bernanke, Boivin,

and Eliasz, 2005), reducing the number of instruments (Bai and Ng, 2010), and

constructing dynamic stochastic general equilibrium (DSGE) models (Boivin and

Giannoni, 2006). Despite the wide use of factor models, factor loadings are com-

monly estimated under the presupposition that loadings do not depend on time. In

reality, however, economists often have to face instable parameters through struc-

tural changes or regime shifts, such as technology innovations, policy shift, oil price

shock, financial crisis, and so on.

Although factor models are powerful, practitioners must be cautious about the

potential structural changes in the high dimensional data sets. In theory, if breaks

in the factor loadings are ignored, then the estimated number of factors will be in-

consistent and likely overestimated when using any current methods, such as Bai

and Ng (2002), Onatski (2009, 2010), and Ahn and Horenstein (2013). For example,

in factor models where all factor loadings undergo a break (i.e., pure change case),

the estimated number of factors doubles when the break is ignored. Because the

pre-break and post-break factor loadings can be equivalently represented by stable

factor loadings with extra pseudo factors. The incorrect number of factors causes
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the estimated factors and estimated factor loadings to be inconsistent. In practice,

this concern about a structural break is empirically relevant, because parameter in-

stability is a pervasive phenomenon in time series data (Stock and Watson, 1996).

Banerjee and Marcellino (2008) and Yamamoto (2014) provide simulation and em-

pirical evidence that the forecasts based on estimated factors are less accurate if the

structural break in the factor loading matrix is ignored. Thus, correctly identifying

the break point is an important issue in factor models with structural changes. In

Section 3, we assume there is a common break in factor loadings for an approximate

factor model. The objective of Section 3 is to estimate the change point and derive

its limiting distribution.

When economists investigate the problem of structural changes in factor loadings,

the first fundamental and important question is whether there is a break in factor

loadings. The theory for structural changes in traditional time series and panel data

models has been well developed. However, its application in a factor model is not

straightforward because of unobservable latent factors and high dimensionality of

the parameter space. Stock and Watson (2008) first considered structural changes

in factor loadings. With a given number of factors, they applied the standard Chow

statistics to test if the coefficients have a break in the regression of observed data

on estimated factors for every cross-section unit i. Breitung and Eickmeier (2011)

studied the theoretical properties of this approach and tested all post-break factor

loadings equal to 0, based on Wald, LM and LR test statistics. Recently, Tanaka and

Yamamoto (2015) formally proved Breitung and Eickmeier’s (2011) test is powerful

under specified conditions and proposed a modified version of the BE test. Among

studies of joint testing the break in factor loadings, Chen, Dolado, and Gonzalo

(2014) proposed a regression based test for the no change hypothesis. Han and

Inoue (2015) developed a test by comparing the second moments of pre-break and
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post-break estimated factors. Whereas most papers focused on one-time abrupt

structural break in the factor loadings, Su and Wang (2015) considered the case

where the factor loadings change smoothly over time.

The rejection of the null hypothesis of no structural breaks naturally leads to

the next question of when the break occurred. In comparison to the vast literature

on testing structural changes, the corresponding literature for estimating the change

point is quite small. Cheng, Liao and Schorfheide (2015) treated the detection of

structural changes as a model selection issue. They proposed shrinkage estimation

and showed that the number of factors and factor loadings can be consistently esti-

mated in the presence of structural changes. Based on their estimation procedure,

the true break fraction can be consistently estimated as a byproduct. Chen (2015)

used a least squares estimator of break point and proved the consistency of break

fraction. Baltagi, Kao and Wang (2015) proved that estimating the break point

in factor loadings can be equivalently represented by estimating break point in the

second moment of estimated factors. Massacci (2015) studied least squares estima-

tions of structural changes in factor loadings, according to a threshold principle. The

estimator of threshold value, which can be treated as break fraction, is superconsis-

tent. Yet, none of these papers consider limiting distribution of the estimated change

point.

In Section 3, we propose using the least squares method to estimate the unknown

change point in factor loadings. For any given possible change point k, we calculate

the pre-break sum of square residuals (t = 1, . . . , k) and post-break sum of square

residuals (t = k + 1, . . . , T ). Then we sum these two sums of square residuals. The

number which can minimize the sum of two SSR is our estimated change point k̂.

Massacci (2015) proved that the estimated break fraction τ̂ = k̂
T

is superconsistent.

His conclusion also indicates the consistency of the estimated change point k̂. In
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practice, however, either because the magnitude of breaks is too small or because

of the finiteness of N , we cannot expect k̂ to coincide with k0. A simple simulation

shows that the probability of selecting the correct break point is quite low when

break size is small. To solve this problem, we propose a new framework to derive

the limiting distribution for the estimated change point. The limiting distribution of

the estimated break point is more complex than that of the conventional panel data

models, because both factors and factor loadings are unobservable. We show that the

estimated factors and estimated factor loadings influence the limiting distribution.

The random parts depend on i.i.d. normal variables and chi square variables. Based

on the limiting distribution of the estimated break point, one can construct confidence

intervals of the underlying true break point. In the simulation, we compare our

least squares method to three competing approaches - including Baltagi, Kao and

Wang (2015), Bai (2010), and MLE method. The simulation results show that our

proposed method is the most efficient. Under the same data generating process and

same combination of N and T , the reported result of the root mean square error by

using least squares estimation has the smallest value. Because of the complexity of

the limiting distribution, bootstrap method is studied to confirm our theory. Finally,

we use an empirical application of the model to study structural changes in financial

asset returns and in macroeconomics data.

The rest of this article is organized as follows. Section 2.1 sets up the model

and presents the assumptions associated with the model. Section 2.2 presents the

estimating procedures and the theoretical properties of the proposed estimators.

Section 2.3 reports simulation experiments to examine the finite sample performances

of our proposed method when r increases with N or T . All the proofs of Section 2

are given in the Appendix A.

Section 3.1 introduces the factor model with structural instability in factor load-

7



ings and describes the least squares method. Section 3.2 considers the limiting distri-

bution of the estimated change point. Section 3.3 reports simulation results. Section

3.4 provides the empirical application. All the proofs of Section 3 are given in the

Appendix B.

Section 4 concludes.
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2. DETERMINING THE NUMBER OF FACTORS WHEN THE NUMBER OF

FACTORS CAN INCREASE WITH SAMPLE SIZE

2.1 Factor Models

We consider the problem of determining the number of factors (r) in a static

approximate factor model, allowing r = rN,T →∞, as N →∞, or T →∞, or both

N, T → ∞, but with a slower rate than min{N, T}, i.e., max{r/N, r/T} → 0, as

N, T →∞.

Let Xit denote the response variable for unit i at time t, for i = 1, . . . , N , and

t = 1, . . . , T . Our model is of the following form

Xit =
1√
r
λ0′

i F
0
t + eit, (2.1)

where F 0
t is an r × 1 vector of common factors, λ0

i is the r × 1 vector of factor

loadings, and eit is the idiosyncratic error of the response variable Xit. The factors,

factor loadings and idiosyncratic errors are not observed. Without loss of generality,

we can assume that E(Xit) = 0. If this is not the case, we can de-mean the data

first.

Note that at the right-hand-side of our model (2.1), we divide λ0′
i F

0
t by

√
r. This

is because we allow for r to diverge when N, T → ∞. If we do not divide λ0′
i F

0
t

by
√
r, then the variance of the systematic part, λ0′

i F
0
t , is proportional to r and

the variance of idiosyncratic error eit is finite , the variance of noise part over the

variance of information part will go to zero, or equivalently, the goodness-of-fit R2

will converge to one. By dividing λ0′
i F

0
t by

√
r, we have V ar(r−1/2λ0′

i F
0
t ) = O(1)

and we can obtain a reasonable goodness-of-fit that is not too close to one.
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Let tr(A) denote the trace of a square matrix A. The norm of a matrix A is

defined as ‖A‖ = [tr(A′A)]1/2. We use M1 to denote a generic positive constant

and use N to denote the set of natural number. We make the main assumptions as

follows:

Assumption A (Factors and loadings):

1. For all t, r−2E‖F 0
t ‖4 < M1;

2. There exists a r × r positive definite matrix ΣF such that ‖T−1
∑T

t=1 F
0
t F

0′
t −

ΣF‖
p−→ 0 as T →∞;

3. max1≤i≤N r
−2E‖λ0

i ‖4 ≤M1 <∞;

4. Let Λ0 be the N × r factor loading matrix with its ith row given by λ0
i . Then

there exists a r× r positive definite matrix D such that ‖N−1Λ0′Λ0 −D‖ p−→ 0

as N →∞;

5. Let λ0
il and F 0

tl be the lth components (l = 1, ..., r) of λ0
i and F 0

t , respectively.

Then for all (i, t),

E{[r−1/2
∑r

l=1E(λ0
ilF

0
tl)]

4} ≤M1.

Assumption B (Idiosyncratic Components):

1. For all i and t, E(eit) = 0, E|eit|8 ≤M1;

2. E(N−1e′set) = E(N−1
∑N

i=1 eiseit) = γN(s, t), |γN(s, s)| ≤ M1 for all s, and

that T−1
∑T

s=1

∑T
t=1 |γN(s, t)| ≤M1;

3. E(eitejt) = τij,t with |τij,t| ≤ |τij| for some τij and for all t; furthermore,

N−1
∑N

i=1

∑N
j=1 |τij| ≤M1;

10



4. E(eitejs) = τij,ts and (NT )−1
∑N

i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤M1;

5. for every (t, s), E|N−1/2
∑N

i=1[eiseit − E(eiseit)]|4 ≤M1;

6. We assume that there exist a T ×T matrix L, a N ×N matrix R, and a T ×N

matrix ε such that

e = LεR

where L (T × T ) and R (N × N) are arbitrary non-random positive definite

matrices, and ε = (εti) is a T × N matrix consisting of independent elements

with uniformly bounded 7th moment and E(εit) = 0.

Assumption C

1. Weak Dependence Between Factors and Idiosyncratic Components:

E

 1

N

N∑
i=1

∥∥∥∥∥ 1√
Tr

T∑
t=1

F 0
t eit

∥∥∥∥∥
2
 ≤M1;

2. Weak Dependence Between Factor Loadings and Idiosyncratic Components:

E

 1

T

N∑
t=1

∥∥∥∥∥ 1√
Nr

N∑
i=1

eitλ
0
i

∥∥∥∥∥
2
 ≤M1.

Conditions in Assumption A are modified from Assumptions A-B in Bai and Ng

(2002) by taking care of the fact that r →∞ as N, T →∞. It is easy to see that A1

holds true if E[(F 0
tl)

4] = O(1) for all t = 1, ..., T and for all l = 1, ..., r. A2 imposes

a restriction on the rate of r. For example with ΣF = E(F 0
t F

0′
t ), it can be easily

shown that A2 holds true if r = o(T−1/2) and T−1
∑T

t=1

∑T
s 6=tCov(F 0

tlF
0
tm, F

0
slF

0
sm) =

O(1) for all l, m ∈ {1, ..., r}. Similarly, A3 holds true if E[(λ0
il)

4] = O(1) for all
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i = 1, ..., N and for all l = 1, ..., r. A4 is similar to A2, it holds true if r = o(N1/2)

and N−1
∑N

i=1

∑T
j 6=iCov(λ0

ilλ
0
jm, λ

0
jlλ

0
jm) = O(1) for all l, m ∈ {1, ..., r}. A5 requires

that λ0
ilF

0
tl is a weakly dependent process in l because we allow for r →∞.

Conditions in Assumption B are basically the same as Assumption C in Bai and

Ng (2002) because the idiosyncratic error eit is unrelated to r whether r is finite or

is allowed to diverge to infinity with the sample size. In particular, B5 is similar

to A5 in that it assumes that, for all (t, s), eiteis is a weakly dependent process in

i. Assumption B6 puts a structure on the idiosyncratic components. This structure

allows heteroscedasticity in both the time and cross-section dimensions, and also

limited autocorrelation and cross-sectional correlation in the components.

Finally, assumption C is similar to assumption D in Bai and Ng (2002) except

that we modified it by dividing the quantity by
√
r as r is allowed to diverge as N and

T tend to infinity. They allow for limited time-series and cross-section dependence in

idiosyncratic component and also weak dependence between factors (factor loadings)

and idiosyncratic errors.

2.2 Estimating the Common Factors and the Number of Factors

Following Bai and Ng (2002), we estimate the common factor in a large panel by

the principal components method. For k ∈ {1, . . . , kmax}, where kmax is allowed to

increase at a slower speed than min{N, T} such that kmax = o(min{N1/3, T}). Let

λki and F k
t denote k × 1 vectors of the loadings and factors with the allowance of k

factors in the estimation. The method of principal components minimizes

V (k) = min
Λk,Fk

1

NT

N∑
i=1

T∑
t=1

(Xit −
1√
k
λk
′

i F
k
t )2 (2.2)
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over 1 ≤ k ≤ kmax, subject to the normalization of either Λk′Λk/N = Ik or

F k′F k/T = Ik, where Λk and F k are the N × k and T × k factor loading and

factor matrices, respectively.

Let ev(i)(A) denote the ith largest eigenvalue of matrix A, and EV(i)(A) is the

eigenvector corresponding to the eigenvalue ev(i)(A) of the matrix A. If one concen-

trates out Λk and uses the normalization that F k′F k/T = Ik. The estimated factor

matrix is F̃ k =
√
T (EV(1)(XX)′, . . . ,EV(k)(XX

′)).

Given F̃ k, Λ̃k′ =
√
k(F̃ k′F̃ k)−1F̃ k′X =

√
kF̃ k′X/T is the corresponding matrix

of factor loadings. On the other hand, if one concentrates out F k and uses the

normalization that Λk′Λk/N = Ik, the solution to the above problem is given by

(F̄ k, Λ̄k), where Λ̄k =
√
N(EV(1)(X

′X), . . . ,EV(k)(X
′X)). The normalization that

Λk′Λk/N = Ik implies F̄ k =
√
kXΛ̄k/N .

Define F̂ k = F̄ k(F̄ k′F̄ k/T )1/2, a rescaled estimator of the factors. This rescaled

estimator has the asymptotic properties summarized in the following theorem.

Proposition 2.2.1 Under the assumptions A - C,

for any 1 ≤ k ≤ kmax = o(min{N1/3, T}) there exists a (r × k) matrix Hk with

rank = min{k, r} such that

1

T

T∑
t=1

∥∥∥F̂ k
t −Hk′F 0

t

∥∥∥2

= Op

(
max

{
k3r

N
,
k3

T

})
. (2.3)

Similar to the results of Bai and Ng (2002), Proposition 2.2.1 suggests that the

time average of the squared deviations between the estimated factors F̂ k and those

that lie in the true factor space, Hk′F 0
t , will vanish as N, T → ∞. However, the
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convergence rate depends on not only the panel structure N and T , but also the

factor structure r and k.

Given the results of Proposition 2.2.1, we can now analyze the problem of deter-

mining the number of factors. Let V (k, F k) = minΛ
1
NT

∑N
i=1

∑T
t=1(Xit − 1√

k
λk
′
i F

k
t )2

be the sum of squared residuals (divided by NT ), where the residuals are from re-

gression models of regressing Xi on the k factors for all i = 1, . . . , N , and Xi =

(Xi1, Xi2, . . . , XiT )′ is a T × 1 vector of time-series observations for the ith cross-

section unit. The selecting criterion modified from those suggested by Bai and Ng

(2002) has the form

PC(k) = V (k, F̂ k) + kg(N, T ), (2.4)

where g(N, T ) is the penalty factor satisfying two conditions: (i) kmax · g(N, T ) →

0 as N, T → ∞, (ii) C−1
N,T,kmax

g(N, T ) → ∞ as N, T → ∞, where CN,T,kmax =

Op

(
max

{
k3max√
N
, k

5/2
max√
T

})
. As V (k, F̂ k) is decreasing in k, the criterion above penalizes

k with a penalty factor kg(N, T ) to select the estimator k̂ such that asymptotically

under and overparameterized models will not be chosen. Theorem 2.2.1 formally

establishes this result.

Theorem 2.2.1 Let 1 ≤ r ≤ kmax = o(min{N1/17, T 1/16})

and k̂ = argmin1≤k≤kmaxPC(k). Suppose that Assumptions A-C hold, and that (i)

kmax · g(N, T )→ 0, (ii) C−1
N,T,kmax

· g(N, T )→∞ as N, T →∞. Then

lim
N,T→∞

Prob[k̂ = r] = 1. (2.5)

A formal proof of Theorem 2.2.1 is provided in the Appendix A. Conditions (i)

14



and (ii) together define the type of penalty factor that should vanish at an appropriate

rate. They are sufficient conditions for estimation consistency so that they may not

always be required for consistent estimating the number of factors.

Remark 2.2.1 Since we often need to divide some quantities by r, we rule out the

case that r = 0. Allowing for r = 0 in our framework will complicate the regularity

conditions, notations and proofs. Therefore, we did not consider the case that r = 0

in our paper. The r = 0 case is covered in Bai and Ng’s (2002). Their procedure can

be used to select the number of factors even when the true number of factors is 0. We

also conducted some simulations which show that both Bai and Ng’s (2002) original

method and the modified method proposed in our paper work well when r = 0.

Note that the condition imposed in kmax is asymmetric in (N, T ). This result is in-

duced by Proposition 2.2.1. The details can be found in the proof of Proposition 2.2.1

given in the appendix. As a referee correctly points out, if in the proof of Theorem

2.2.1, instead of using the result of Proposition 2.2.1 that T−1
∑T

t=1

∥∥∥F̂ k
t −Hk′F 0

t

∥∥∥2

=

Op

(
max

{
k3r
N
, k

3

T

})
, one may use N−1

∑N
i=1

∥∥∥λ̂ki − H̃k′λ0
i

∥∥∥2

= Op

(
max

{
k3

N
, k

3r
T

})
,1

where H̃k is a r × k matrix with rank(H̃k) = min{r, k}. Then the condition

that 1 ≤ r ≤ kmax = o(min{N1/17, T 1/16}) in Theorem 2.2.1 will be replaced by

1 ≤ r ≤ kmax = o(min{N1/16, T 1/17}). The result is still asymmetric in N and T ,

but the roles of N and T are exchanged.

In fact, it is possible to obtain a symmetric result (of kmax in N and T ) under

some stronger regularity conditions, i.e., one can obtain a symmetric condition for

kmax as 1 ≤ r ≤ kmax = o(min{N1/16, T 1/16}) in Theorem 2.2.1 under some stronger

assumptions. We state this result in the following proposition.

1This result can be proved similar to the proof of Proposition 2.2.1, its proof is available from
the authors upon request.
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Proposition 2.2.2 Under the same conditions as in Proposition 2.2.1 except that

we strength some conditions as follows: (i) λil is non-random with λil ≤ λ̄ < ∞

for all i = 1, ..., N and l = 1, ..., r; (ii) E(eitejt) = 0 for all t ∈ {1, ..., T} and for

all j 6= i, i, j ∈ {1, ..., N}, E(F 0
tlF

0
tm) = 0 for all t ∈ {1, ..., T} and for all m 6= l,

l, m ∈ {1, ..., r}; (iii) eit and F 0
s are independent with each other for all i, t and s.

Then

1

T

T∑
t=1

∥∥∥F̂ k
t −Hk′F 0

t

∥∥∥2

= Op

(
k3

(
1

N
+

1

T

))
. (2.6)

The proof of Proposition 2.2.2 is given in the appendix. Under Proposition 2.2.2, the

condition 1 ≤ r ≤ kmax = o(min{N1/17, T 1/16}) in Theorem 2.2.1 can be replaced by

1 ≤ r ≤ kmax = o(min{N1/16, T 1/16}). That is, we obtain a condition on kmax that

is symmetric in N and T .

Remark 2.2.2 The zero correlation assumption on Ftl used in Proposition 2.2.2 is

quite strong. However, it can be replaced by some weakly dependence assumptions

such as ρ-mixing or β-mixing processes with mixing coefficients decay to zero at

certain rates. But this will make the presentation (regarding regularity conditions)

as well as the proofs of Proposition 2.2.2 much longer. Therefore, we will not pursue

a proof of Proposition 2.2.2 under weak regularity conditions in this paper.

Similar to Bai and Ng (2002) we have the following Corollary.

Corollary 2.2.1 Under the Assumptions of Theorem 2.2.1, if one replaces PC(k)

in Theorem 2.2.1 by the class of criterion defined by

IC(k) = ln
(
V (k, F̂ k)

)
+ kg(N, T ),
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then the conclusion of Theorem 2.2.1 holds true.

Corollary 2.2.1 states that the class of criterion IC(k) can also be used to consis-

tently estimate the number of factors in factor models where the number of factors

possibly increases with the sample size.

Let σ̂2 be a consistent estimate of (NT )−1
∑N

i=1

∑T
t=1 E(eit)

2. Bai and Ng (2002)

generalize the Cp criterion of Mallows (1973) and suggest three PCp criteria as fol-

lows:

PCp1(k) = V (k, F̂ k) + k · σ̂2

(
N + T

NT

)
ln

(
NT

N + T

)
,

PCp2(k) = V (k, F̂ k) + k · σ̂2

(
N + T

NT

)
ln(min{N, T}),

PCp3(k) = V (k, F̂ k) + k · σ̂2

(
ln(min{N, T})

min{N, T}

)
. (2.7)

It is easy to check that these criteria satisfy the two conditions for the penalty

factor in Theorem 2.2.1 if kmax = o
([

ln
(
NT
N+T

)]1/6)
. The three criteria have different

finite-sample properties while they are asymptotically equivalent. In applications,

Bai and Ng (2002) suggest to replace σ̂2 with V (kmax, F̂
kmax) = (NT )−1

∑N
i=1

∑T
t=1 ê

2
it

, where êit = Xit− 1√
k
λ̂
k′max
i F̂ kmax

t for i = 1, . . . , N and t = 1, . . . , T , the residuals for

the linear regression of X on F̂ kmax . Thus, the number of factors estimated using

these three criteria may be sensitive to the selection of kmax. We will propose a

method that avoids the sensitivity of selected k̂ depending on kmax.

Corollary 2.2.1 suggests the following three ICp criteria can also be used to select
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the number of factors:

ICp1(k) = ln
(
V (k, F̂ k)

)
+ k ·

(
N + T

NT

)
ln

(
NT

N + T

)
,

ICp2(k) = ln
(
V (k, F̂ k)

)
+ k ·

(
N + T

NT

)
ln(min{N, T}),

ICp3(k) = ln
(
V (k, F̂ k)

)
+ k ·

(
ln(min{N, T})

min{N, T}

)
. (2.8)

The main advantage of the three criteria given in (2.8) is that the scaling factor

σ̂2 is automatically removed by the logarithmic transformation. We do not need to

estimate σ2 before selecting the number of factors. Therefore, the number of factors

estimated using ICp criteria is insensitive to the selection of kmax.

As the estimated k̂ using PCp criteria may be sensitive to kmax, the selection of

kmax is an important issue in practice. Bai and Ng (2002) suggest to select kmax by

setting kmax = 8[(min{N, T}/100)1/4] where [A] denotes the integer part of a real

number A. But their theoretical result does not cover this case as this kmax increases

(without bound) with N and T . Using some ad-hoc rules to select kmax may lead to

kmax < r, which will lead to an underestimation of the number of factors because if

kmax < r, then we will have k̂ ≤ kmax < r. On the other hand, if kmax is too large

(kmax >> r), simulations show that the selected k̂ tends to overestimate r (k̂ > r).

We propose a new procedure to resolve this problem. We propose to let kmax take a

wide range of values. For each value of kmax, we select a k̂kmax that minimizes the PCp

criteria. We then select the value of k̂ that appears most times among the different

k̂kmax values, i.e., we select the mode of k̂kmax (over a wide range of kmax). We use a

specific example to illustrate this selection procedure. We generate a simulated data

of N = 200, T = 60 with the true number of factors r = 7. We let kmax take values

from {1, 2, ..., 40}. For each different 1 ≤ kmax ≤ 40, we select a k̂kmax by minimizing
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PCp1 criterion. The result is presented in Figure A.1. From Figure A.1 we observe

that when kmax < r = 7, we select k̂ = kmax < 7 as expected; when 7 ≤ kmax ≤ 16,

we select k̂ = 7; when kmax > 16, the selected k̂ > 7. Moreover, k̂ increases with

kmax. We also notice that k̂ = 7 is selected ten times (when kmax = 7, 8, ..., 16),

while all the other values are chosen no more than three times. For example, when

17 ≤ kmax ≤ 19, the selected k̂kmax = 8, i.e., k̂kmax = 8 is selected three times.

According to our selection rule, k̂ = 7 is selected because k̂ = 7 appears most times

(10 times).

Figure A.2 plot k̂-kmax curves for different N , T and r values. We see that al-

though k̂ increases with kmax for most cases, our proposed procedure can select the

correct number of factors because k̂kmax takes value r more often than taking any

other values for all cases reported in Figure A.2. Hence, our proposed procedure of

selecting k̂ is not sensitive to kmax provided that one let kmax take a wide range of val-

ues. Therefore, we suggest letting kmax to take values in {1, 2, ..., [6 log(max(N, T ))]}

where [A] denotes the integer part of a real number A. [6 log(max(N, T ))] is around

41, 45 and 55 when max(N, T ) = 1000, 2000 and 10000. This setting is also consis-

tent with our simulation since we let r = [1.5log(max(N, T ))] in our simulations in

section 1.4.

2.3 Simulations

In this section we conduct Monte Carlo simulations to investigate how our mod-

ified criteria of Bai and Ng (2002) perform when the number of factors is allowed to

increase with N or T . For simplicity of the comparison with the simulation results in

Bai and Ng (2002), we first fix T and allowN and r to increase. When T is fixed as 60,

we let N = 100, 200, 500, 1000, 2000 and r = [1.5 log(N)], where [A] denotes the inte-

ger part of a real number A; for T = 100, we let N = 40, 60, 100, 200, 500, 1000, 2000
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and r = [1.5 log(N)]. The simulation results for this case are reported in the upper

part of each table for each data generating process (DGP). Next, we check the per-

formance of the criteria when N is fixed and T keeps increasing. When N = 100,

we let T = 40, 60,100, 200, 500, 1000, 2000 and r = [1.5 log(T )]; when N = 60,

we let T = 100, 200, 500, 1000, 2000 and r = [1.5 log(T )]. The simulation results for

this case are reported in the lower part of each table for each DGP. We replicate the

suggested estimating procedure 1000 times and the reported results are the averages

of k̂ over 1000 replications.

The data generating processes (DGP) have the following form:

Xit =
1√
r

r∑
j=1

λijFtj + eit,

where λij ∼ i.i.d. N(0, 1), Ftj ∼ i.i.d. N(0, 2).

We consider three DGPs here. In the base case, we set the DGP as eit ∼

i.i.d.N(0, 1). This base DGP is denoted as DGP1. The simulation results for this

case are reported in Table 2.1. We see that all information criterion give precise

estimates of the number of factors.

For the heterogeneity case of DGP2, we set the idiosyncratic shocks to be het-

erogeneous. We let eit = uit + δtεit where uit ∼ i.i.d.N(0, 1), εit ∼ i.i.d.N(0, 1), and

δt = 0 for even t, δt = 1 for odd t. Thus the variance of the idiosyncratic shocks is 1

when t is odd and 2 when t is even. We denote this DGP as DGP2. The estimated

values of k̂ are reported in Table 2.2 where the boldfaced numbers indicate incorrect

selection of the number of factors. Similar to the homogeneous cases, PCp1, PCp2,

and PCp3 perform well under all kinds of combinations of N and T . The other three

criteria ICP1 and ICp2, and ICp3 also perform well in general, although occasionally

they may select k̂ that is slightly smaller than the true number of factors r when
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sample size is small.

For the last case, denoted as DGP3, we allow the idiosyncratic to be autocorre-

lated. We set eit = ρeit−1 +vit, where ρ = 0.5 and vit ∼ i.i.d.N(0, 1). The estimation

results are reported in Table 2.3. The results for this case are almost the same as

those of the base case except for (N, T ) = (60, 200) with r = 7, ICp1 and ICp2 select

r = 6. All other four information criteria perform quite well in accurately estimating

the number of factors for all (N, T ) combinations for DGP3.

Summarizing the results for all the DGPs we observe that PCp1, PCp2, and PCp3

have the best overall performance. ICp1, ICp2, and ICp3 perform well when the

sample size is large (min{N, T}>100).
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Table 2.1: Estimated Number of Factors: DGP1

N T r PCp1 PCp2 PCp3 ICp1 ICp2 ICp3

100 60 6 6 6 6 6 6 6
200 60 7 7 7 7 7 7 7
500 60 9 9 9 9 9 9 9
1000 60 10 10 10 10 10 10 10
2000 60 11 11 11 11 11 11 11
40 100 5 5 5 5 5 5 5
60 100 6 6 6 6 6 6 6
100 100 6 6 6 6 6 6 6
200 100 7 7 7 7 7 7 7
500 100 9 9 9 9 9 9 9
1000 100 10 10 10 10 10 10 10
2000 100 11 11 11 11 11 11 11

100 40 5 5 5 5 5 5 5
100 60 6 6 6 6 6 6 6
100 100 6 6 6 6 6 6 6
100 200 7 7 7 7 7 7 7
100 500 9 9 9 9 9 9 9
100 1000 10 10 10 10 10 10 10
100 2000 11 11 11 11 11 11 11
60 100 6 6 6 6 6 6 6
60 200 7 7 7 7 7 7 7
60 500 9 9 9 9 9 9 9
60 1000 10 10 10 10 10 10 10
60 2000 11 11 11 11 11 11 11

DGP1: Xit = 1√
r

∑r
j=1 λijFtj + eit; r = [c ∗ ln (N)] for the upper part of the table,

and r = [c ∗ ln (T )] for the lower part, where c=1.5, and [A] denotes the integer part
of a real number A.
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Table 2.2: Estimated Number of Factors: Heterogeneity

N T r PCp1 PCp2 PCp3 ICp1 ICp2 ICp3

100 60 6 6 6 6 5 5 6
200 60 7 7 7 7 7 7 7
500 60 9 9 9 9 8 8 8
1000 60 10 10 10 10 10 10 10
2000 60 11 11 11 11 11 11 11
40 100 5 5 5 5 5 5 5
60 100 6 6 6 6 6 6 6
100 100 6 6 6 6 6 6 6
200 100 7 7 7 7 7 7 7
500 100 9 9 9 9 9 9 9
1000 100 10 10 10 10 10 10 10
2000 100 11 11 11 11 11 11 11

100 40 5 5 5 5 5 5 5
100 60 6 6 6 6 5 5 6
100 100 6 6 6 6 6 6 6
100 200 7 7 7 7 7 7 7
100 500 9 9 9 9 9 9 9
100 1000 10 10 10 10 10 10 10
100 2000 11 11 11 11 11 11 11
60 100 6 6 6 6 6 6 6
60 200 7 7 7 7 7 7 7
60 500 9 9 9 9 9 9 9
60 1000 10 10 10 10 10 10 10
60 2000 11 11 11 11 11 11 11

DGP2: Xit = 1√
r

∑r
j=1 λijFtj + eit; eit = uit + δtεit, where δt = 0 for t even, and

δt = 1 for t odd; r = [c ln (N)] for the upper part of the table, and r = [c ln (T )] for
the lower part, where [A] denotes taking the integer part of a real number.
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Table 2.3: Estimated Number of Factors: Autocorrelation

N T r PCp1 PCp2 PCp3 ICp1 ICp2 ICp3

100 60 6 6 6 6 6 6 6
200 60 7 7 7 7 7 7 7
500 60 9 9 9 9 9 9 9
1000 60 10 10 10 10 10 10 10
2000 60 11 11 11 11 11 11 11
40 100 5 5 5 5 5 5 5
60 100 6 6 6 6 6 6 6
100 100 6 6 6 6 6 6 6
200 100 7 7 7 7 7 7 7
500 100 9 9 9 9 9 9 9
1000 100 10 10 10 10 10 10 10
2000 100 11 11 11 11 11 11 11

100 40 5 5 5 5 5 5 5
100 60 6 6 6 6 6 6 6
100 100 6 6 6 6 6 6 6
100 200 7 7 7 7 7 7 7
100 500 9 9 9 9 9 9 9
100 1000 10 10 10 10 10 10 10
100 2000 11 11 11 11 11 11 11
60 100 6 6 6 6 6 6 6
60 200 7 7 7 7 6 6 7
60 500 9 9 9 9 9 9 9
60 1000 10 10 10 10 10 10 10
60 2000 11 11 11 11 11 11 11

DGP3: Xit = 1√
r

∑r
j=1 λijFtj + eit; eit = ρeit−1 + vit; ρ = 0.5; r = [c ln (N)] for the

upper part of the table, and r = [c ln (T )] for the lower part, where [A] denotes
taking the integer part of a real number.
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3. STRUCTURAL CHANGE IN HIGH DIMENSIONAL FACTOR MODELS

3.1 The Model and Estimation

We consider the model

xit =


λ
′

i1ft + eit for t = 1, 2, . . . , k0

λ
′

i2ft + eit for t = k0 + 1, k0 + 2, . . . , T

(3.1)

i = 1, 2, . . . , N.

where xit is the observed data, ft is an r × 1 vector of unobserved common factors,

and eit is the idiosyncratic error for variable i at time t. In this model, each series

of factor loadings is subject to structural changes at the true break point k0, where

k0 is unknown. λi1 is the pre-break factor loading, and λi2 is the post-break factor

loading. Both of them are r× 1 vectors. λ
′
i1 = [λi1,1, . . . , λi1,r], λ

′
i2 = [λi2,1, . . . , λi2,r].

In matrix form, Λ1 = [λi1, . . . , λN1]′,Λ2 = [λi2, . . . , λN2], and F = [f1, . . . , fT ]′. The

difference between λi1 and λi2 represents the magnitude of break (break size). We

allow for changes in the number of factors, which can be disappearing or emerging

factors. For example, some factor loadings are allowed to equal to zero. They can

change from zero to nonzero after the break point. These new nonzero factor loadings

form the emerging factors.

The study of structural changes in factor loadings is motivated by both theoretical

and empirical research. In a standard factor model, xit = λift + eit, the factors are

commonly estimated by principal component methods (Bai and Ng, 2002). If the

number of factors r is given, then the estimated factors F̂ equal to
√
T times the

eigenvectors associated with the r largest eigenvalues of matrix XX ′, where X is
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T ×N data matrix. Given F̂ , the factor loadings can be estimated by OLS: Λ̂ = X′F̂
T

.

The pre-break and post-break factors and factor loadings in equation (3.1) are also

estimated by principal component methods. Unlike conventional time series models

or panel data models with observed regressors, the factors and factor loadings are

estimated rather than observed. When the factor loadings are subject to structural

changes, the estimation of factors is also affected, depending upon the specifications

of the change.

Ludvigson and Lettau (2001) employed an empirical test of CAPM in which

the discount factor is approximated as a linear function of the model’s fundamental

factors. Instead of assuming constant parameters over time, they used a linear factor

model with time-varying coefficients. The equation can be written as λit = ai + bizt.

We have λitft = aift + biztft, and ztft forms the new factors. The number of factors

changes because of the unstable factor loadings. Economic events can also destabilize

factor loadings. Cheng, Liao and Schorfheide (2015) used Stock and Watson’s (2012)

data set and showed strong evidence that the factor loadings in the normalized factor

model changed because of the 2007-2009 recession, generally implying a stronger

co-movement of the series after 2007. More examples may also be given: an oil

price shock can influence the coefficients of different countries corresponding to their

output, a policy shift of China’s exchange rate can affect the investors’ strategy, a

financial crisis can impact companies’ asset returns, and so on. The fundamental

issue is to correctly find the break point.

We use the following method to estimate the change point:

SSR(k) =
k∑
t=1

N∑
i=1

(
xit − λ̂(k)′

i1 f̂
(k)
t

)2

+
T∑

t=k+1

N∑
i=1

(
xit − λ̂(k)′

i2 f̂
(T−k)
t

)2

. (3.2)
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The least squares estimator for k0 in the model is defined as

k̂ = arg min
r≤k≤T−r

SSR(k), (3.3)

where λ̂
(k)
i1 and f̂

(k)
t are estimated factor loadings and estimated factors based on

the pre-break sample X(k), X(k) = [X1, X2, . . . , Xk]
′ is of dimension k ×N . k is the

possible change point. We restrict k to be in [r, T −r] to avoid the singular matrix in

subsequent estimation of pre-break and post-break factors and factor loadings. This

does not significantly influence the distribution of the estimated break point. λ̂
(k)
i2 and

f̂
(T−k)
t are estimated factor loadings and estimated factors based on the post-break

sample X(T−k), X(T−k) = [Xk+1, Xk+2, . . . , XT ]′ is of dimension (T − k)×N .

When the number of factors is unknown, Chen (2015) proved that the break

point can be consistently estimated by using r̃ − 1 number of factors, where r̃ is

the estimated number of factors ignoring structural breaks. Baltagi et al. (2015)

and Massacci (2015) also modified Bai and Ng (2002)’s model selecting method to

estimate the number of factors. Our objective is to estimate the break point and

derive the limiting distribution of it, so we simply use Chen (2015)’s approach to

specify the number of factors.

3.2 Limiting Distribution

Chen (2015) proved the break fraction consistency that τ̂−τ0 = Op(max{ 1√
N
, 1√

T
}),

where τ̂ = k
T
, τ0 = k0

T
. Baltagi et al. (2015) showed that the change point of factor

loadings is the same as the change point of the second moments of estimated factors.

Although the estimated change point is inconsistent (Op(1)), their result remains

stronger than Chen (2015). Massacci (2015) proved the consistency of the estimated

change point that k̂−k0 = Op(
1

N2α0−1
), where 0.5 < α0 ≤ 1. He required that at least

a fraction of O(Nα0
) series undergo a break. Massacci’s (2015) Op(

1

N2α0−1
) result is
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a very strong convergence speed. We followed this conclusion that k̂ − k0 = op(1) in

our paper. In section 3.3, of the simulation part, we show that the estimated change

point equals the true change point in a large sample size. In practice, however, ei-

ther because of too small magnitudes of breaks or because of the finiteness of N , we

cannot expect k̂ to coincide with k0. Although Massacci (2015) gave the restriction

on the number of series that were subject to structural changes, he still followed a

potential presupposition that

lim
N→∞

N∑
i=1

‖ λi1 − λi2 ‖2=∞.

When the break size is small, the estimated break point may not be reliable in finite

samples. A simple simulation can confirm our conjecture. Let factors and errors be

i.i.d. standard normal variables. The true break point k0 is T/2. The true number

of factors is assumed as 1 and 2. The break size is λi1 − λi2 = 0.3 ∗ N(0, 1). The

number of replications is 1,000.

The reported results in Table 3.1 are root mean square errors. The number in

parentheses is the percentage of obtaining the correct change point. As shown, the

RMSE is large and the probability of finding true break point is very small when

the break size is small. When N = 200 and r = 1, the estimated change point has a

60% probability to be identical to the true break point. It is therefore of interest to

study the distribution of k̂. Limiting distribution can be used to construct confidence

intervals for the true break point. One can select the proper change point based on the

confidence intervals. Figures 3.1-3.6 show the simulated distributions of estimated

change points. The data generating process is the same as in Table 3.1. All graphs

are calculated by 10,000 times. As shown, many estimated change points are away

from the true point when the break size is small. However, the estimated change
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Table 3.1: Small Break in Factor Loadings: k0 = T/2

N/T r=1 r=2

10,50 12.1618 (8.00%) 9.4965 (15.50%)

20,50 9.4793 (16.50%) 7.0361 (28.20%)

30,50 7.2205 (24.30%) 4.4679 (36.90%)

40,50 6.2258 (26.50%) 3.1198 (43.60%)

50,50 5.2850 (32.50%) 2.1029 (50.20%)

100,50 2.5931 (45.70%) 1.1014 (68.20%)

200,50 1.2402 (61.50%) 0.6107 (80.80%)

point follows a certain of distribution. As N increases, the estimated change point

is more close to the true break point.

We make the main assumptions as follows:

Assumption A (Factors): E‖ft‖4 < M . Also, there exists an r × r posi-

tive definite matrix ΣF such that F ′F/T
p−→ ΣF as T → ∞, 1

k0

∑k0
t=1 ftf

′
t

p−→ ΣF ,

1
T−k0

∑T
t=k0+1 ftf

′
t

p−→ ΣF .

Assumption B (Factors Loadings): For l = 1, 2, max1≤i≤N E‖λil‖4 ≤ C < ∞,

and there exists an r× r positive definite matrix ΣΛ such that ‖Λ′lΛl/N −ΣΛl‖
p−→ 0

as N →∞.

Assumption C (Idiosyncratic Components): As N, T →∞,

1. E(eit) = 0, E|eit|8 ≤M ;

2. E( e
′
set
N

) = γN(s, t), |γN(s, s)| ≤M for all s = 1, . . . , T , and
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Figure 3.1: Distribution: N = 50, T =
50, r = 1

Figure 3.2: Distribution: N = 100,
T = 50, r = 1

Figure 3.3: Distribution: N = 200,
T = 50, r = 1

Figure 3.4: Distribution: N = 50, T =
50, r = 2

T−1
∑T

s=1

∑T
t=1 |γN(s, t)| ≤M ;

3. E(eitejt) = τij,t with |τij,t| ≤ |τij| for some τij and for all t; furthermore,

N−1
∑N

i=1

∑N
j=1 |τij| ≤M ;

4. E(eitejs) = τij,ts and (NT )−1
∑N

i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤M ;

5. for every (t, s), E|N−1/2
∑N

i=1[eiseit − E(eiseit)]|4 ≤M.
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Figure 3.5: Distribution: N = 100,
T = 50, r = 2

Figure 3.6: Distribution: N = 200,
T = 50, r = 2

Assumption D Weak Dependence Between Factors and Idiosyncratic Compo-

nents:

E

 1

N

N∑
i=1

∥∥∥∥∥ 1√
k0

k0∑
t=1

fteit

∥∥∥∥∥
2
 ≤M, and

E

 1

N

N∑
i=1

∥∥∥∥∥ 1√
T − k0

T∑
t=k0+1

fteit

∥∥∥∥∥
2
 ≤M.

Assumption E Small magnitude of break:

λi1 − λi2 = N−1/2∆i, and

lim
N→∞

N∑
i=1

‖λi1 − λi2‖2 = lim
N→∞

1

N

N∑
i=1

‖∆i‖2 = Σ∆

Assumptions A-D are either from or natural extensions of Assumptions A-D in

Bai and Ng (2002). Assumptions A restricts the factors so that the second moments

exist. Remarkably, the multiplicative structure of FΛ′ causes an identification issue.

To see the identification issue in the presence of structural changes, suppose that the
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dynamics of ft change at k0, such that the second moment of ft is doubled afterward.

We can establish an observationally equivalent model, where the second moments of

factors are constant over time, but the factor loading matrix is scaled by
√
T after

k0. One way to resolve this indeterminacy. Chen et al. (2014), Cheng et al (2015),

Han and Inoue (2014), Baltagi et al. (2015), and Massacci (2015) all assume the uni-

form convergence conditions that 1
k0

∑k0
t=1 ftf

′
t

p−→ ΣF and 1
T−k0

∑T
t=k0+1 ftf

′
t

p−→ ΣF .

Assumption B ensures that each factor has a nontrivial contribution to the variance

of observed data. Both pre- and post-break factor loadings are non stochastic. As-

sumptions C-D are also similar to Assumptions C-D in Bai and Ng (2002), which

allow for limited time-series and cross-section dependence in idiosyncratic compo-

nents, and also weak dependence between factors (factor loadings) and idiosyncratic

errors. Assumption E is that the sum of magnitude of break is small, instead of infin-

ity, as N →∞. Under Assumptions A-E, we can show that k̂− k0 = Op(1). Baltagi

et. al (2015) also showed that the estimated change point is statistically bounded

(Op(1)) based on their method. Thus, because of the small magnitude of breaks,

k̂ does not collapse to k0, leading to a non-degenerate distribution. Nevertheless,

this condition specifies that the break fraction can be estimated, because τ̂ = k̂/T

remains T consistent for τ0.

Following these assumptions and equations (3.2) and (3.3), we can state the

limiting distribution of the estimated change point in the following form.

Theorem 3.2.1 Assume eit are uncorrelated over t and i. Under Assumptions A-E,
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as N, T →∞,

k̂ − k0
d−→ arg min

l

[
|l|C1 + C2W (l) + C3U(l)

]
(3.4)

where W (0) = 0 and

W (l) =
0∑

s=−l+1

Zs, l = −1,−2, . . .

W (l) =
l∑

s=1

Zs, l = 1, 2, . . .

U(l) =
0∑

s=−l+1

χ2
1(s), l = −1,−2, . . .

U(l) =
l∑

s=1

χ2
1(s), l = 1, 2, . . .

and Zs, s = . . . ,−2,−1, 0, 1, 2, . . . are i.i.d. standard normal random variables, χ2
1(s)

is chi-squared random variables with degree of freedom 1.

Corollary 3.2.1: Assume eit are uncorrelated over t, under the same assumptions

in Theorem 3.2.1,

k̂ − k0
d−→ arg min

l

[
|l|C∗1 + C∗2W (l) + C∗3U(l)

]
(3.5)

A formal proof of Theorem 3.2.1 is provided in the Appendix B. The key dis-

tinction between our limiting distribution and the limiting distribution in the con-

ventional panel data models with structural changes is that the random parts in

Theorem 3.2.1 depend on i.i.d. standard normal random variables and chi square

variables. The limiting distribution of the estimated break point is more complex

than that of the conventional panel data models, because both factors and factor
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loadings are unobservable. It is affected by the estimated factors and estimated fac-

tor loadings. The normality of Zs results from the central limit theorem applied to

product of factors and errors. The chi-squared part results from the central limit

theorem applied to the square of factor loadings multiplied errors. Unlike the limit-

ing distribution of estimated change point in panel data models, we cannot obtain

the distribution through a simple variable transformation. This limiting distribution

is data dependent. For given data, we can compute C1, C2, and C3, and we can

simulate the distribution on the right side of Theorem 3.2.1. From the simulated

distribution, confidence intervals on k0 can also be constructed. Based on the confi-

dence intervals, we can select the proper change point in empirical applications. Also

note that, C1, C2, and C3 can be estimated consistently.

3.3 Simulations

3.3.1 Comparison

In this section, we conduct Monte Carlo simulation to evaluate the performance

of the least squares method in finite sample. Baltagi et al. (2015) proposed that

estimating the change point of factor loadings can be converted to estimating change

point of the second moments of estimated factors. However, this methodology does

not take full advantage of the panel data. To see the advantage of using least squares

method, we compare our approach with quasi-maximum likelihood method (QML)

from Bai (2010), second moments method from Baltagi et al. (2015), and MLE

method. The same data generating processes (DGPs) are applied for each method.

We fix T at 50 and 100 and let N = 20, 30, 40, 50, 100, 500 and 1000. For the

true number of factors, we fix r = 1, 2 and [1.25log(max(N, T ))] (let r increase with

sample size, denoted as “increasing r” in the table), where [A] denotes the integer

part of a real number A. The break point k0 is assumed as [T/2], [T/3] and [T/4].
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The data generating processes (DGP) have the form as follows:

xit =


λ
′

i1ft + eit for t = 1, 2, . . . , k0

λ
′

i2ft + eit for t = k0 + 1, k0 + 2, . . . , T

ft ∼i.i.d.N(0, 1),

eit ∼i.i.d.N(0, 1).

Before the break point, we let λi ∼ i.i.d.N(0, 1). After the break point, we

consider four cases. In Case 1, we redraw λi from N(0, 1) after the break point

k0. The distribution of post-break factor loadings does not change. This case is

denoted as DGP1. In Case 2, the distribution of post-break factor loadings changes

from N(0, 1) to N(0, 0.5). We denote this case as DGP2. For the third case,

the distribution of post-break factor loadings changes from N(0, 1) to N(0.5, 1). We

denote this case as DGP3. For the last case, denoted as DGP4, we let post-break λi

keep the same with pre-break λi for i = 1, 2, . . . , N/2. For i = N/2+1, N/2+2, . . . , N ,

we redraw the factor loadings from N(0, 1) after break point k0. All simulations are

based on 1000 replications. The reported results are the root mean square error of

estimated change point, which

RMSE =

√√√√ 1

1000

1000∑
s=1

(
k̂0 − k0

)2

.

The number in parentheses is the percentage of obtaining correct change point.

35



3.3.1.1 Least Squares Method

We denote least squares method as Method 1. Tables 3.2-3.5 show the results of

RMSE and percentages of finding correct change point for each case. All four cases

have similar properties. As N increases, the RMSE decreases. When T jumps from

50 to 100, RMSE slightly decreases. When the true number of factors increases, the

estimated results significantly improve. We also try r=[1.5log(max(N, T ))] (results

not showed here), the estimated change points start to diverge when N is very large

and T is relatively small. And the percentage of finding correct break point decreases.

3.3.1.2 Unknown Number of Factors

Chen (2015) proposed a consistent estimator for the break fraction by using r̃−1

number of factors to estimate the change point. Because the number of factors tend

to be doubled when factor loadings all change, we estimate the pre-break and post-

break factor loadings and factors with 2r− 1 number of factors when the number of

factors are unknown (denoted as r∗ in the table). Then we substitute these estimated

factor loadings (N by r∗) and factors (T by r∗) into our objective function to estimate

the change point. This method is denoted as Method 2.

Tables 3.6-3.9 show the results for Method 2. The situation is the same when

r = 1 = r̃, thus we consider only r = 2 and increasing r cases. When r = 2, the

results have the same trend as in Method 1. However, Method 1’s results are more

accurate than Method 2 in many cases, because we use the true number of factors.

In the “increasing r” case, the estimated change point diverges when N is very large

(500 or 1000) and T is relatively small (50). The break point moves further from the

middle point, and the ratio of corresponding N and T in which the results diverge

decreases. For the following three approaches, we all assume the number of factors

is unknown. We use r∗ = 2r− 1 instead of r to estimate factors and factor loadings.
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3.3.1.3 QML Method

QML Method is denoted as Method 3. Define

¯̂
Fj1 =

1

k

k∑
t=1

F̂t,
¯̂
Fj2 =

1

T − k

T∑
t=k+1

F̂t.

Let

σ̂2
j1(k) =

1

k

k∑
t=1

(
F̂jt − ¯̂

Fj1

)2

, σ̂2
j2(k) =

1

T − k

T∑
t=k+1

(
F̂jt − ¯̂

Fj2

)2

,

the objective function becomes

QML(k) = k
r∑
j=1

log σ̂2
j1(k) + (T − k)

r∑
j=1

log σ̂2
j2(k),

the estimated break point is defined as k̂ = arg min1≤k≤T QML(k).

The QML method is used to estimate change point when there are mean or vari-

ance changes in panel data models. Tables 3.10-3.13 show the RMSE and percentage

of finding correct break points for four different cases using Method 3. Method 1

outperform Method 3 in all cases. The results are smaller in method 1, with same

combination of N and T in the same DPGs. For the results with the same N and

different T , we find that RMSE increases when T is 100. Although the percentage

of selecting correct break point increases when T = 100 and N are the same, it only

works when N is small. As N increases, for many cases, the percentage decreases

compared to T = 50. In DGP4, the estimated results do not seem to converge to

the true change point.
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3.3.1.4 Baltagi, Kao and Wang (2015) Method

Baltagi, Kao and Wang (2015)’s approach is denoted as Method 4. Let

Σ̂1 =
1

k

k∑
t=1

F̂tF̂
′
t , Σ̂2 =

1

T − k

T∑
t=k+1

F̂tF̂
′
t .

Then define the sum of squared residuals as

S(k) =
k∑
t=1

[vec(F̂tF̂
′
t − Σ̂1)]′[vec(F̂tF̂

′
t − Σ̂1)] +

T∑
t=k+1

[vec(F̂tF̂
′
t − Σ̂2)]′[vec(F̂tF̂

′
t − Σ̂2)],

and the least squares of the change point as

k̂ = arg min
1≤k≤T

S(k)

Baltagi, Kao and Wang (2015) proved that estimating the break point in factor

loadings can be equivalently represented by estimating break point in the second

moment of estimated factors. However, this method doesn’t take the full advantage

of panel data. It doesn’t use the information of cross-section units.

Tables 3.14-3.17 show the results for Method 4. In the “increasing r” case, Method

4 performs good, but Method 1 remains more accurate. For r = 1 and r = 2 cases,

it doesn’t perform very well. In some cases, the accuracy starts to decrease when N

is greater than T .
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3.3.1.5 MLE Method

We denote MLE Method as Method 5. Define

Ω̂ = E
(

(F̂ − E(F̂ ))′(F̂ − E(F̂ ))
)
,

so Ω̂ is the covariance matrix of estimated factors F̂t. Let Ω̂∗ be the pre-break

covariance matrix of F̂t for 1 ≤ t ≤ k. Ω̂∗∗ be the post-break covariance matrix of F̂t

for k + 1 ≤ t ≤ T . The objective function becomes

MLE(k) = k
k∑
t=1

log
∣∣∣Ω̂∗∣∣∣+ (T − k)

T∑
t=k+1

log
∣∣∣Ω̂∗∗t ∣∣∣

where |A| denote the determinant of matrix A. The estimated break point is defined

as

k̂ = arg min
1≤k≤T

MLE(k).

Table 3.18 shows the results for Method 5 under DGP1. For r = 1 case, the

results are good but still weaker than Method 1. When r increases, the accuracy of

estimation declines quickly. The results are not good in MLE method, so we only

compute the DGP1 case.
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3.3.2 Bootstrap Method

Because of the complexity of our limiting distribution, in this section we use the

bootstrap method to verify the performance of our limiting distribution. T is fixed

as 50. We let N = 10, 20, 30, 40, and 50. The true number of factors is fixed as 2.

And the break should happen at T/2. The DGP is similar as in previous simulations.

We let ft ∼ i.i.d. N(0, 1) and eit ∼ i.i.d. N(0, 1). Before the break point, we let

λi1 ∼ i.i.d.N(0, 1). For the after break situation, we consider two cases. In Case

1, we let λi2 = λi1 + 0.3 ∗ N(0, 1). This case assumes the break size is small. It is

denoted as DGP B1. In Case 2, denoted as DGP B2, we let post-break factor

loadings λi2 = λi1 + 2√
N
∗N(0, 1). When N increases, the break size decreases. This

setup is consistent with our small break assumptions.

The following steps explains how we implement the bootstrap method. First,

for given simulated data, we estimate the change point k̂ by using the least squares

method. This estimated change point allows us to obtain estimated errors, estimated

factors, estimated pre-break factor loadings, and estimated post-break factor load-

ings. Second, we treat the estimated factors and estimated factor loadings as real

data and construct the bootstrap sample based on the estimated errors. To maintain

the serial dependence of the error term, we randomly draw the whole column (T by

1) from estimated errors by N times. The new T by N matrix is our bootstrap

sample. Using the estimated factors, estimated factor loadings and the bootstrap

sample errors, we obtain a new estimated change point k̂b1. Third, by replicating

step 2 by 1,000 times, we obtain 1,000 estimated change points. Sorting these 1,000

values from the smallest to the largest, the 25th value and 975th value represent the

lower bound and upper bound of the 95% confidence interval. If the true break point

k0 is inside this confidence interval, then it is recorded as 1, otherwise it is 0. Finally,
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replicating steps 1-3 1,000 times, we obtain 1,000 values equal to 1 or 0. Then we

sum these values and divide them by 1,000. This average value is our simulated

coverage rate. We compare the actual coverage rates with the nominal rates (90%,

95%, 99%).

Table 3.19 presents the simulated coverage rates. When N = 10, the coverage rate

is lower than the nominal rate. As N increases, the results significantly improved.

The simulated coverage rate is very close to the nominal rate.

Table 3.19: Coverage Rate

DGP B1 DGP B2

N/T 90% 95% 99% 90% 95% 99%

10,50 0.7570 0.8690 0.9580 0.8350 0.9020 0.9760

20,50 0.8850 0.9470 0.9890 0.8970 0.9490 0.9900

30,50 0.9030 0.9430 0.9850 0.9190 0.9600 0.9910

40,50 0.9090 0.9570 0.9910 0.9360 0.9680 0.9950

50,50 0.9280 0.9560 0.9920 0.9260 0.9680 0.9910

3.4 Empirical Application

3.4.1 Financial Asset Returns

Data sets of asset returns are typically large, because thousands of companies’

stocks are traded daily in the NYSE, AMEX, and NASDAQ. Factor models are

statistical tools that can reduce the dimension of and identify representative factors
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in large data sets. Researchers can then use these representative factors to forecast

companies’ future returns or estimate the casual effect between dependable variables

and factors. Studies of factor models for analyzing asset returns, generally can be

categorized into two cases: regression analyses on observable factors, and statistical

analyses of unobservable factors. Regression analyses, focus on finding proper factors

to explain the dependent variables. For example, in finance literature, people like to

use the S&P 500 or other financial indexes to forecast asset returns. This model can

be treated as a factor model with observed factors. The financial indexes are observed

factors, and the corresponding coefficients often depend on a cross section unit i. A

famous study of observed factors is Fama and French’s (1993) three factor model,

in which the three fundamentals are the overall market return, the performance of

small stocks relative to large stocks, and the performance of value stocks relative to

growth stocks. Statistical analyses of unobserved factors, focuses on how to estimate

the unknown factors and specify the number of factors. As shown in section 3.1, the

method of principal component is commonly used to estimate the unknown factors.

Bai and Ng (2002) provided six information criterion for selecting the number of

factors. They used asset returns of 8,436 stocks between 1994.1 and 1998.12. After

deleting all missing data and applying their information criterion, they found two

factors.

In this section, we study factor models with structural changes in factor loadings

by using financial asset returns data. Factor loadings are unstable and thus tend to

overestimate the number of factors. Inconsistency in the estimated number of factors

then leads to inconsistency in the estimated factors and estimated factor loadings.

We first analyze how the number of factors changes with different sample sizes. We

use monthly data for returns traded on the NYSE, AMEX, and NASDAQ between

1980.1 and 2012.12. The data include all live stocks from the first trading day of
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1980 to the last trading day of 2012 and are obtained from the CRSP data base.

In this 80-12 monthly data, T = 396 and N = 617. Bai and Ng (2002) suggested

using PCp1, PCp2, ICp1, and ICp2 information criteria to select the number of factors.

They also showed that PCp1 and PCp2 tend to overestimate the number of factors

when N or T is small. Here, we use ICp1 information criteria for the entire sample

and find 5 number of factors.

Figure 3.7: Moving Window: T = 60, N = 617, 80-12

Next, we analyze how the estimated number of factors changes using different

sample size. We use samples over moving window. T is fixed as 60. We calculate the

number of factors for 80.1−85.1, 80.2−85.2, 80.3−85.3, . . . , 07.12−12.12. Graph 3.7

report the estimated number of factors by using ICp1 information criteria. As shown,

the entire sample’s estimated number of factors (5) is the largest estimated number

of factors among the sub-samples. This result is consistent with the overestimation

ignoring structural changes. The shifts of estimated number of factors may due to

potential structural changes. The number of factors is less or equal 2 before 2007.

This result is same with Bai and Ng’s (2002) finding of two factors. When we use

sample size including 07-09 economic recession, the estimated number of factors

60



increases significantly. Now we focus on how the estimated number of factors change

in 95-12 data.

Figure 3.8: Moving Window: T = 36, N = 1885, 95-12

We consider only live stocks from 1995.1-2012.12. The 95-12 data set has T = 216

and N = 1885. By using the ICp1 information criteria, we have 4 number of factors.

The entire sample’s estimated number of factors still equals the largest estimated

number of factors among the sub-samples. Figure 3.8 reports the estimated number

of factors when using moving window sample where T = 36. The volatility of the

estimated number of factors is significant after 2004. Finally, we focus on the data

between 2005.1 and 2012.12. After deleting all missing data, the sample size is

T = 96 and N = 3716. The estimated number of factors without structural changes

is 2. We apply our least squares method and use r̃− 1 number of factors to estimate

the unknown break point. Table 3.20 report the result. The estimated change point

is 2009:04. This result is reasonable. In finance literature, many studies show that

there is a late effect from the 2007 financial crisis. The efficient corresponding to

the independent variables does not change immediately. The estimated result is

consistent, because N = 3716 is very large. Our confidence interval is just the
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Table 3.20: Estimated Change Point: Asset Returns, 05-12

Length of Confidence Interval

r̃ k̂ 90% 95% 99%

2 2009.04 [2009.04,2009.04] [2009.04,2009.04] [2009.04,2009.04]

estimated point.

3.4.2 Macroeconomic Data

Factor models have been widely used in macroeconomics. Stock and Watson

(1998, 1999) considered forecasting inflation with diffusion indices (“factors”) con-

structed from a large number of macroeconomic series. Gregory and Head (1999) and

Forni, Hallin, Lippi, and Reichlin (2000) found common components in cross country

variations. Bernanke, Boivin, and Eliasz (2005) studied the factor-augmented VAR

(FAVAR) model. Ludvigson and Ng (2009) used the factor augmented regression

framework to analyze the relation between excess returns and the macro economy.

In this part, we study the structural changes in factor loadings using macroeconomic

data. We used Ludvigson and Ng’s (2013) data. It consists of a panel of 132 U.S.

macroeconomic variables from 1960:1 to 2011:121. Unlike the data of financial as-

set returns, we cannot use Bai and Ng’s (2002) information criterion to specify the

number of factors, because the cross section correlation is too strong among these

macroeconomic variables. Ludvigson and Ng (2013) suggested using eight factors.

Here, we follow their conclusion and focus on the structural changes between 2005

and 2011 (T = 84, N = 132). Table 3.21 shows the estimated change point and

the length of confidence intervals. The estimated change point is 2008:01. The 99%

1The detail of this data can be found at http : //www.econ.nyu.edu/user/ludvigsons/.
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Table 3.21: Estimated Change Point: Macroeconomic Data, 05-12

Length of Confidence Interval

r̃ k̂ 90% 95% 99%

8 2008.01 [2008.01,2008.01] [2007.11,2008.02] [2007.05,2008,08]

confidence interval of true break point is [k̂− 8, k̂+ 8]. Because the number of series

is not too large, our estimated change point may not coincide with the true break

point. However, our estimated change point is consistent with Cheng, Liao, and

Schorfheide’s (2015). In their application, they used an updated version of Stock

and Watson’s (2012) data, which included a set of 200 macroeconomic and finan-

cial indicators. Their model selection procedure provides strong evidence that the

loadings in the normalized factor model changes, generally implying a stronger co-

movement of the series after 2007. Thus, the estimated change point is reasonable

by using this data set.
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4. SUMMARY

Section 2 considers the problem of determining the number of factors in large

factor models where the number of factors is allowed to increase, but with a slower

rate, as N or T increases. We extend the analysis of Bai and Ng (2002) to the case

that number of factors can increase with the sample size and prove the consistency of

a modified Bai and Ng’s (2002) procedure in determining the number of factors. We

also propose a (‘mode’ based) new procedure so that our selected number of factors

is not sensitive to the choice of kmax. Monte Carlo simulation results suggest that the

criteria PCp1, PCp2 and PCp3 all have the overall best performance. Other criteria

such as ICp1, ICp2 and PCp3 can also be used to accurately estimate the number of

factors when the data dimensions are relatively large, say min{N, T} ≥ 100. One

possible future research topic is to find alternative criteria that can improve the finite-

sample performance of Bai and Ng’s (2002) procedure and our modified procedure

such that the new criteria can accurately determine the number of factors even in

small or medium size samples.

Section 3 considers the structural change in factor loadings in high dimensional

factor models. We estimate the unknown break point by using the least squares

method. Several competing methods are compared in the simulation. The results

show that the least squares method outperforms other approaches. We further pro-

pose a new framework to derive the limiting distribution for the estimated change

point. The limiting distribution of the estimated break point is more complex than

that of the conventional panel data models, because both factors and factor loadings

are unobservable. We show that the estimated factors and estimated factor load-

ings influence the limiting distribution. The random parts depend on i.i.d. standard
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normal variables and chi square variables. Based on the limiting distribution of the

estimated break point, one can construct confidence intervals of the underlying true

break point. Bootstrap method is also studied. We apply the method to the study

of structural changes in financial asset returns and in macroeconomic data.
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APPENDIX A

SECTION 2 APPENDIX

A.1 Proofs

A.1.1 Proof of Proposition 2.2.1

We will first prove a lemma (Lemma 1) below which will be used in proving

Proposition 2.2.1.

Lemma 1 Under Assumptions A-C, we have for some positive constant 0 < M2 <∞,

and for all N and T ,

(i) 1
T

∑T
s=1

∑T
t=1 γN(s, t)2 ≤M2;

(ii) E

(
1
T 2

∑T
s=1

∑T
t=1

(
1
N

∑N
i=1XitXis

)2
)
≤M2;

Proof :

(i) See the proof of Lemma 1 (i) in Bai and Ng (2002).

(ii) If suffices to prove that for all (i, t) that E(X4
it) ≤M .

Now E(X4
it) ≤ 8r−2E[(λ0′

i F
0
t )4] + 8E(e4

it) ≤ 16M1 by assumption A5 and B1.

Proof of Proposition 2.2.1:

Recall that F̂ k =
√
k
N
XΛ̃k and Λ̃k =

√
k
T
X ′F̃ k. From the normalization F̃ k′F̃ k/T =

Ik, we also have (Tk)−1
∑T

t=1‖F̃ k
t ‖2 = 1. Following Bai and Ng (2002), using Hk′ =

(F̃ k′F 0/T )(Λ0′Λ0/N), we have

F̂ k
t −Hk′F 0

t =
k

T

T∑
s=1

F̃ k
s γN(s, t) +

k

T

T∑
s=1

F̃ k
s ζst +

k

T

T∑
s=1

F̃ k
s ηst +

k

T

T∑
s=1

F̃ k
s ξst,

where ζst = e′set/N − γN(s, t), ηst = F 0′
s Λ0′et/(N

√
r), and ξst = F 0′

t Λ0′es/(N
√
r) =
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ηts.

Because (x + y + z + u)2 ≤ 4(x2 + y2 + z2 + u2), ‖F̂ k
t − Hk′F 0

t ‖2 ≤ 4(at +

bt + ct + dt), where at = k2

T 2

∥∥∥∑T
s=1 F̃

k
s γN(s, t)

∥∥∥2

, bt = k2

T 2

∥∥∥∑T
s=1 F̃

k
s ζst

∥∥∥2

, ct =

k2

T 2

∥∥∥∑T
s=1 F̃

k
s ηst

∥∥∥2

and dt = k2

T 2

∥∥∥∑T
s=1 F̃

k
s ξst

∥∥∥2

. It follows that (1/T )
∑T

t=1‖F̂ k
t −

Hk′F 0
t ‖2 ≤ (4/T )

∑T
t=1(at + bt + ct + dt).

By Cauchy’s inequality,

we have ‖
∑T

s=1 F̃
k
s γN(s, t)‖2 ≤

(∑T
s=1‖F̃ k

s ‖2
)
·
(∑T

s=1 γN(s, t)2
)

. Thus,

1

T

T∑
t=1

at ≤
kk2

T

(
1

Tk

T∑
s=1

‖F̃ k
s ‖2

)
· 1

T

(
T∑
t=1

T∑
s=1

γN(s, t)2

)

= Op

(
k3

T

)

by Lemma 1(i) and the fact that (Tk)−1
∑T

t=1‖F̃ k
t ‖2 = 1

(this follows from F̃ k′F̃ k/T = Ik).

72



For bt, we have that

1
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where the last equality follows from

[
1
T 4
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)2
]1/2

= Op(N
−1)

as shown in the proof of Theorem 1 of Bai and Ng (2002).
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For ct, we have

ct =
k2

T 2

∥∥∥∥∥
T∑
s=1

F̃ k
s ηst

∥∥∥∥∥
2

=
k2

T 2

∥∥∥∥∥
T∑
s=1

F̃ k
s F

0′

s Λ0′et/N
√
r

∥∥∥∥∥
2

≤ k2

N2
‖e′tΛ0/

√
r‖2

(
k

Tk

T∑
s=1

‖F̃ k
s ‖2

)(
r

Tr

T∑
s=1

‖F 0
s ‖2

)

=
k2

N2
‖e′tΛ0/

√
r‖2Op(kr)

because 1
Tk

∑T
s=1‖F̃ k

s ‖2 = 1 and 1
Tr

∑T
s=1‖F 0

s ‖2 = Op(1).

It follows that

1

T

T∑
t=1

ct = Op(kr)
k2

N

1

T

T∑
t=1

∥∥∥∥ e′tΛ0

√
Nr

∥∥∥∥2

= Op

(
k3r

N

)

because 1
T

∑T
t=1

∥∥∥ e′tΛ0
√
Nr

∥∥∥2

= Op(1) by assumption C2.

The term (1/T )
∑T

t=1 dt = Op

(
k3r
N

)
can be proved similarly. Combining the

above results, we have shown that

(1/T )
T∑
t=1

‖F̂ k
t −Hk′F 0

t ‖2 ≤ (4/T )
T∑
t=1

(at + bt + ct + dt)

= Op

(
k3r

N

)
+Op

(
k3

T

)
.

Alternatively, Proposition 2.2.1 can be proved by concentrating out Ft. Following
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the similar steps, we can show that

(1/N)
N∑
i=1

‖λ̂ki −Hk′λ0
i ‖2 ≤ (4/N)

N∑
i=1

(ai + bi + ci + di)

= Op

(
k3

N

)
+Op

(
k3r

T

)
.

A.1.2 Proof of Proposition 2.2.2

Proof From the proof of Proposition 2.2.1 we know that

1

T

T∑
t=1

‖F̂ k
t −Hk′F 0

t ‖2 ≤ (4/T )
T∑
t=1

(at + bt + ct + dt)

and that T−1
∑T

t=1 at = Op(k
3/T ) and T−1

∑T
t=1 dt = Op(k

3/N). Therefore, we only

need to show that T−1
∑T

t=1 ct = Op(k
3/N) and T−1

∑T
t=1 dt = Op(k

3/N). Since the

proofs are similar. We will only prove for the term related to ct.

For ct, we have

ct =
k2

T 2

∥∥∥∥∥
T∑
s=1

F̃ k
s F

0′

s Λ0′et/N
√
r

∥∥∥∥∥
2

≤ k2

N

1

r

(
1

T

T∑
s=1

‖F̃ k
s ‖2

)(
1

TN

T∑
s=1

‖F 0′

s Λ0′et‖2

)

= Op(k
3/N)

1

r

(
1

TN

T∑
s=1

‖F 0′

s Λ0′et‖2

)

because T−1
∑T

s=1‖F̃ k
s ‖2 = Op(k).

Next, we show that A
def
= (TN)−1

∑T
s=1‖F 0′

s Λ0′et‖2 = Op(r).
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E(|A|) =
1

NT

T∑
s=1

E‖F 0′

s Λ0′et‖2

=
1

NT

T∑
s=1

r∑
l=1

r∑
m=1

N∑
i=1

N∑
j=1

E(eitejt)E(F 0
slF

0
sm)Λ0

ilλ
0
jm

=
1

NT

T∑
s=1

r∑
l=1

N∑
i=1

E(e2
it)E((F 0

sl)
2)(Λ0

il)
2

= O(r),

because of the zero correlation assumptions that E(eitejt) = 0 for j 6= i and

E(F 0
slF

0
sm) = 0 for m 6= l. This implies that A = Op(r). Hence, ct = Op(k

3/N). This

completes the proof of Proposition 2.2.2.

From the above proof we can see that the conclusion of Proposition 2.2.2 still

holds true if the zero correlation assumptions are replaced by some weakly depen-

dent assumptions such as N−1
∑N

i=1

∑N
j 6=iE(eitejtc1,ijlm) = O(1)

and r−1
∑r

l=1

∑r
m 6=lE(F 0

slF
0
smc2,lmlm) = O(1),

where c1,ijlm and c2,ijlm are some bounded sequences of non-random numbers de-

pending on i, j, l,m.

A.1.3 Proof of Theorem 2.2.1

Lemma 2 Let Dk = F̂ k′F̂ k/T and D0 = Hk′F 0′F 0Hk/T . When k ≤ r, we have (i)

‖D−1
k ‖ = Op(k); (ii) ‖D−1

k −D
−1
0 ‖ = Op

(
max

{
k4maxr

1.5
√
N

, k
4
maxr√
T

})
.
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Proof : Following Bai and Ng (2002), we have

Dk −D0 =
F̂ k′F̂ k

T
− Hk′F 0′F 0Hk

T

=
1

T

T∑
t=1

[F̂ k
t F̂

k′

t −Hk′F 0
t F

0′

t H
k]

=
1

T

T∑
t=1

(F̂ k
t −Hk′F 0

t )(F̂ k
t −Hk′F 0

t )′ +
1

T

T∑
t=1

(F̂ k
t −Hk′F 0

t )F 0′

t H
k

+
1

T

T∑
t=1

Hk′F 0
t (F̂ k

t −Hk′F 0
t )′.

Hence, we have

‖Dk −D0‖ ≤
1

T

T∑
t=1

‖F̂ k
t −Hk′F 0

t ‖2 + 2

(
1

T

T∑
t=1

‖F̂ k
t −Hk′F 0

t ‖2

)1/2

·

(
1

T

T∑
t=1

‖Hk′F 0
t ‖2

)1/2

= Op

(
max

{
k3r

N
,
k3

T

})
+Op

(
max

{√
k3r√
N
,

√
k3

√
T

})
·Op

(√
kr2
)

= Op

(
max

{
k2r1.5

√
N

,
k2r√
T

})

by Proposition 2.2.1 and the fact that 1
T

∑T
t=1‖Hk′F 0

t ‖2 = Op(kr
2), which is shown

below.

From weakly dependent process of F 0
t , it is easy to show that

1

T

T∑
t=1

‖Hk′F 0
t ‖2 − E

[
1

T

T∑
t=1

‖Hk′F 0
t ‖2

]
= Op

(
1√
T

)
.

Also, one can easily show that ||D−1
k || = Op(k). Then from D−1

k − D−1
0 =
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D−1
k (D0 −Dk)D

−1
0 , we have

‖D−1
k −D

−1
0 ‖ = ‖D−1

k (Do −Dk)D
−1
0 ‖

≤ ‖D−1
k ‖ · ‖D0 −Dk‖ · ‖D−1

0 ‖

= k2‖D−1
k ‖
k
· ‖D0 −Dk‖ ·

‖D−1
0 ‖
k

= k2 ·Op(1) ·Op

(
max

{
k2r1.5

√
N

,
k2r√
T

})
= Op

(
max

{
k4
maxr

1.5

√
N

,
k4
maxr√
T

})
.

Lemma 3 For 1 ≤ k ≤ r, and the Hk defined in Proposition 2.2.1, we have

V (k, F̂ k)− V (k, F 0Hk) = Op

(
max

{
k5
maxr

3.5

√
N

,
k5
maxr

3

√
T

})
.

Proof : For the true factor matrix with r factors and Hk defined in Proposition

2.2.1, let M0
FH = I − P 0

FH denote the idempotent matrix spanned by null space

of F 0Hk, with PFH0 = F 0Hk
(
Hk′F 0′F 0Hk

)−1
Hk′F 0′ . Correspondingly, let Mk

F̂
=

IT − F̂ k(F̂ k′F̂ k)−1F̂ k′ = IT − P k
F̂

. Then

V (k, F̂ k) =
1

NT

N∑
i=1

X ′iM
k
F̂
X i,

V (k, F 0Hk) =
1

NT

N∑
i=1

X ′iM
0
FHX i,

V (k, F̂ k)− V (k, F 0Hk) =
1

NT

N∑
i=1

X ′i(P
0
FH − P k

F̂
)X i.
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Following Bai and Ng (2002), let Dk = F̂ k′F̂ k/T and D0 = Hk′F 0′F 0Hk/T . Then

P k
F̂
− P 0

FH =
1

T
F̂ k

(
F̂ k′F̂ k

T

)−1

F̂ k′ − 1

T
F 0Hk

(
Hk′F 0′F 0Hk

T

)−1

Hk′F 0′

=
1

T
[F̂ k′D−1

k F̂ k − F 0HkD−1
0 Hk′F 0′ ]

=
1

T

[
(F̂ k − F 0Hk + F 0Hk)D−1

k (F̂ k − F 0Hk + F 0Hk)′

−F 0HkD−1
0 Hk′F 0′

]
=

1

T
[(F̂ k − F 0Hk)D−1

k (F̂ k − F 0Hk)′ + (F̂ k − F 0Hk)D−1
k Hk′F 0′

+F 0HkD−1
k (F̂ k − F 0Hk)′ − F 0HkD−1

0 Hk′F 0′ ].

Thus, N−1T−1
∑N

i=1 X
′
i(P

k
F̂
− P 0

FH)X i = I + II + III + IV . We consider each

term in turn.

I =
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

(F̂ k
t −Hk′F 0

t )′D−1
k (F̂ k

s −Hk′F 0
s )XitXis

≤

(
1

T 2

T∑
t=1

T∑
s=1

(F̂ k
t −Hk′F 0

t )′D−1
k (F̂ k

s −Hk′F 0
s )

)1/2

·

 1

T 2

∑
t=1

∑
s=1

(
1

N

N∑
i=1

XitXis

)2
1/2

≤

(
1

T

T∑
t=1

‖F̂ k
t −Hk′F 0

t ‖2

)
· ‖D−1

k ‖ ·OP (1)

= Op

(
max

{
k3r

N
,
k3

T

})
· k ·Op(1)

= Op

(
max

{
k4r

N
,
k4

T

})

by Proposition 2.2.1, Lemma 1(iii) and Lemma 2(i).
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II =
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

(F̂ k
t −Hk′F 0

t )′D−1
k Hk′F 0

sXitXis

≤

(
1

T 2

T∑
t=1

T∑
s=1

‖F̂ k
t −Hk′F 0

t ‖2 · ‖Hk′F 0
s ‖2 · ‖D−1

k ‖
2

)1/2

·

 1

T 2

∑
t=1

∑
s=1

(
1

N

N∑
i=1

XitXis

)2
1/2

≤

(
1

T

T∑
t=1

‖F̂ k
t −Hk′F 0

t ‖2

)1/2

· ‖D−1
k ‖ ·

(
kr2

Tkr2

T∑
s=1

‖Hk′F 0
s ‖2

)1/2

·Op(1)

= Op

(
max

{(
k3r

N

)1/2

,

(
k3

T

)1/2
})
· k · k1/2r ·Op(1)

= Op

(
max

{
k3r1.5

√
N

,
k3r√
T

})
.

Similarly, one can verify that III is also Op

(
max

{
k3r1.5√

N
, k

3r√
T

})
.

IV =
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

F 0′

t H
k(D−1

k −D
−1
0 )Hk′F 0

sXitXis

≤ ‖D−1
k −D

−1
0 ‖

1

N

N∑
i=1

(
1

T

T∑
t=1

‖Hk′F 0
t ‖ · |Xit|

)2

≤ ‖D−1
k −D

−1
0 ‖

kr2

N

N∑
i=1

(
1

T
√
kr

T∑
t=1

‖Hk′F 0
t ‖

)2

= ‖D−1
k −D

−1
0 ‖ · kr2 ·Op(1)

= Op

(
max

{
k4r4.5

√
N

,
k4r4

√
T

})
,

where we used ‖D−1
k −D

−1
0 ‖ = Op

(
max

{
k3r2.5√

N
, k

3r2√
T

})
by Lemma 2 (ii).
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Thus, we have

V (k, F̂ k)− V (k, F 0Hk) = Op

(
max

{
k5
maxr

3.5

√
N

,
k5
maxr

3

√
T

})
.

Lemma 4 For the matrix Hk defined in Proposition 2.2.1, and for each k with

k < r = rN,T →∞, there exists a positive constant C such that

plim inf
N,T→∞

inf
k

[V (k, F 0Hk)− V (r, F 0)] ≥ C > 0.

Proof :

V (k, F 0Hk)− V (r, F 0) =
1

NT

N∑
i=1

X ′iM
0
FHX i −

1

NT

N∑
i=1

X ′iM
0
FX i

=
1

NT

N∑
i=1

(
1√
r
F 0λ0

i + ei)
′M0

FH(
1√
r
F 0λ0

i + ei)

− 1

NT

N∑
i=1

e′iM
0
F ei

=
1

NTr

N∑
i=1

λ0′

i F
0′M0

FHF
0λ0

i +
2

NT
√
r

N∑
i=1

e′iM
0
FHF

0λ0
i

+
1

NT

N∑
i=1

e′i(P
0
F − P 0

FH)ei

= A+B +D.
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Notice that P 0
F − P 0

FH ≥ 0, thus III ≥ 0. For the first term,

A =
1

NTr

N∑
i=1

λ0′

i F
0′M0

FHF
0λ0

i

=
1

NTr

N∑
i=1

(
M0

FHF
0λ0

i

)′
M0

FHF
0λ0

i

≥ C > 0

because k < r and M0
FHF

0λ0
i 6= 0.

Next,

B =
2

NT
√
r

N∑
i=1

e′iF
0λ0

i −
2

NT
√
r

N∑
i=1

e′iP
0
FHF

0λ0
i .

Consider the first term

∣∣∣∣∣ 1

NT
√
r

N∑
i=1

e′iF
0λ0

i

∣∣∣∣∣ =

∣∣∣∣∣ 1

NT
√
r

N∑
i=1

T∑
t=1

eitF
0′

t λ
0
i

∣∣∣∣∣
≤

(
1

Tr

T∑
t=1

‖F 0
t ‖2

)1/2

·
√
r

· 1√
N

 1

T

T∑
t=1

∥∥∥∥∥ 1√
Nr

N∑
i=1

eitλ
0
i

∥∥∥∥∥
2
1/2

= Op

( √
r√
N

)
,

where the last equality follows from assumption C2. The second term is also op(1),

and hence B = op(1).

Lemma 5 For any k with r ≤ k ≤ kmax,

V (k, F̂ k)− V (r, F̂ r) = Op

(
max

{
k2
maxr

N
,
k2
maxr

0.5

T

})
.
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Proof :

|V (k, F̂ k)− V (r, F̂ r)| ≤ |V (k, F̂ k)− V (r, F 0)|+ |V (r, F 0)− V (r, F̂ r)|

≤ 2 max
r≤k
|V (k, F̂ k)− V (r, F 0)|.

Thus, it is sufficient to prove for each k with r ≤ k ≤ kmax,

V (k, F̂ k)− V (r, F 0) = Op

(
max

{
kmaxr

2

√
N

,
kmaxr

1.5

√
T

})
.

Let Hk be as defined in Proposition 2.2.1, with full row rank. Let the k×r matrix

Hk+ be the generalized inverse of Hk such that HkHk+ = Ir. From X i = 1√
r
F 0λ0

i +ei,

we have X i = 1√
r
F 0HkHk+λ0

i + ei. This implies that

X i =
1√
r
F̂ kHk+λ0

i + ei −
1√
r

(F̂ k − F 0Hk)Hk+λ0
i

=
1√
r
F̂ kHk+λ0

i + ui,

where ui = ei − 1√
r
(F̂ k − F 0Hk)Hk+λ0

i .
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Note that

V (k, F̂ k) =
1

NT

N∑
i=1

u′iM
k
F̂
ui,

V (r, F 0) =
1

NT

N∑
i=1

e′iM
0
F ei,

V (k, F̂ k) =
1

NT

N∑
i=1

(
ei −

1√
r

(F̂ k − F 0Hk)Hk+λ0
i

)′
Mk

F̂(
ei −

1√
r

(F̂ k − F 0Hk)Hk+λ0
i

)
,

=
1

NT

N∑
i=1

e′iM
k
F̂
ei −

2

NT
√
r

N∑
i=1

λ0′

i H
k+′(F̂ k − F 0Hk)′Mk

F̂
ei

+
1

NTr

N∑
i=1

λ0′

i H
k+′(F̂ k − F 0Hk)′Mk

F̂
(F̂ k − F 0Hk)Hk+λ0

i

= a+ b+ c.

Because I −Mk
F̂

is positive semi-definite, x′Mk
F̂
x ≤ x′x. Thus

c ≤ 1

NTr

N∑
i=1

λ0′

i H
k+′(F̂ k − F 0Hk)′(F̂ k − F 0Hk)Hk+λ0

i

≤ 1

T

T∑
t=1

‖F̂ k
t −Hk′F 0

t ‖2 ·

(
1

Nr

N∑
i=1

‖λ0
i ‖2‖Hk+‖2

)

= Op

(
max

{
k3r

N
,
k3

T

})
·Op(kr)

= Op

(
max

{
k4r2

N
,
k4r

T

})

by Proposition 2.2.1.
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For term b, we use the fact that |tr(A)| ≤ r‖A‖ for any r × r matrix A. Thus

b =
2

T
√
r

tr

(
Hk+(F̂ k − F 0Hk)′Mk

F̂

(
1

N

N∑
i=1

eiλ
0
i

))

≤ 2 · ‖Hk+‖ ·

∥∥∥∥∥ F̂ k − F 0Hk

√
T

∥∥∥∥∥ ·
∥∥∥∥∥ 1√

TrN

N∑
i=1

eiλ
0
i

∥∥∥∥∥
≤ 2 · ‖Hk+‖ ·

(
1

T

T∑
t=1

‖F̂ k − F 0Hk‖2

)1/2

· 1√
N

 1

T

T∑
t=1

∥∥∥∥∥ 1√
Nr

∑
i=1

eiλ
0
i

∥∥∥∥∥
2
1/2

= 2 · (kr)1/2 ·Op

(
max

{√
k3r√
N
,

√
k3

√
T

})
·Op(1)

= Op

(
max

{
k2r√
N
,
k2r0.5

√
T

})

by Proposition 2.2.1 and assumption C2. Therefore,

V (k, F̂ k) =
1

NT

N∑
i=1

e′iM
k
F̂
ei +Op

(
max

{
k2r√
N
,
k2r0.5

√
T

})
.

Thus we have

V (k, F̂ k)− V (r, F 0) =
1

NT

N∑
i=1

e′iP
0
F ei −

1

NT

N∑
i=1

e′iP
k
F̂
ei

+Op

(
max

{
k2r√
N
,
k2r0.5

√
T

})
.
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Note that

1

NT

N∑
i=1

e′iP
0
F ei ≤

∥∥∥∥∥
(
F 0′F 0

T

)−1
∥∥∥∥∥ · 1

NT 2

N∑
i=1

e′iF
0F 0′ei

=

∥∥∥∥∥
(
F 0′F 0

T

)−1
∥∥∥∥∥ · 1

NT

N∑
i=1

∥∥∥∥∥ 1√
Tr

T∑
t=1

F 0
t eit

∥∥∥∥∥
2

· r

= r ·Op(1) · 1

T
· r ·Op(1)

= Op

(
r2

T

)
≤ Op

(
max

{
k2r√
N
,
k2r0.5

√
T

})
.

1
NT

∑N
i=1 e

′
iP

0
F ei is bounded by the sum of the first k largest eigenvalues of the

matrix ANT = 1
NT
e′e, where e = (eti), T ×N . Let ρ(A) denote the largest eigenvalue

of a matrix A. Under Assumption B6, as Bai and Ng (2005) shows, ρ(ANT ) =

Op(C
−2
NT ), where C2

NT = min(N, T ). Thus,

1

NT

N∑
i=1

e′iP
0
F ei = Op

(
max

{
k

N
,
k

T

})
≤ Op

(
max

{
k2r√
N
,
k2r0.5

√
T

})
.

In summary, we have shown that

V (k, F̂ k)− V (r, F 0) = Op

(
max

{
k2
maxr√
N

,
k2
maxr

0.5

√
T

})
.

Proof of Theorem 2.2.1

Proof : We shall prove that limN,T→∞ P (PC(k) < PC(r)) = 0 for all k 6= r. Since

PC(k)− PC(r) = V (k, F̂ k)− V (r, F̂ r)− (r − k)g(N, T ),
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it is sufficient to prove that P [V (k, F̂ k) − V (r, F̂ r) < (r − k)g(N, T )] → 0 as

N, T, k, r →∞.

Consider k < r. We have the identity:

V (k, F̂ k)− V (r, F̂ r) = [V (k, F̂ k)− V (k, F 0Hk)] + [V (k, F 0Hk)− V (r, F 0Hr)]

+ [V (r, F 0Hr)− V (r, F̂ r)].

Lemma 3 implies that the first and the third terms are both Op

(
max

{
k8.5max√
N
, k

8
max√
T

})
.

Next, we consider the second item. Because F 0Hr and F 0 span the same col-

umn space, V (r, F 0Hr) = V (r, F 0). Thus the second item can be rewritten as

V (k, F 0Hk)− V (r, F 0), which has a positive limit by Lemma 4. Hence P [PC(k) <

PC(r)]→ 0 if (r − k)g(N, T )→ 0 as N, T, k, r →∞.

Next, for k ≥ r,

P [PC(k)− PC(r) < 0] = P [V (r, F̂ r)− V (k, F̂ k) > (k − r)g(N, T )].

By Lemma 5, V (r, F̂ r) − V (k, F̂ k) = Op

(
max

{
k3max√
N
, k

2.5
max√
T

})
. According to our

setting, (k−r)g(N, T ) converges to zero at a slower rate than Op

(
max

{
k3max√
N
, k

2.5
max√
T

})
.

Thus, for k > r, P [PC(k) < PC(r)]→ 0 as N, T, k, r →∞.
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A.2 Figures

Figure A.1: Sensitivity of PCp1 Criterion to kmax: 200/60 Case
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200/60 (7)

Note:The values of k̂ estimated by PCp1 for N = 200, T = 60 and r = 7 with
kmax ∈ [1, 40].
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Figure A.2: Sensitivity of PCp1 Criterion to kmax: Multiple Cases
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Note: Each line represents k̂ estimated by PCp1 for each case of different sample
size.

The notation in the graph shows the sample size and the true number of factors for
each case.

For example, 100/60(6) means that N = 100, T = 60 and r = 6.
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APPENDIX B

SECTION 3 APPENDIX

B.1 Proofs

B.1.1 Proof of Theorem 3.2.1

Proof

For k ≤ k0,

SSR(k) =
N∑
i=1

k∑
t=1

(
xit − λ̂(k)′

i1 f̂
(k)
t

)2

+
N∑
i=1

T∑
t=k+1

(
xit − λ̂(k)′

i2 f̂
(T−k)
t

)2

=
N∑
i=1

k∑
t=1

(
xit − λ̂(k)′

i1 f̂
(k)
t

)2

+
N∑
i=1

k0∑
t=k+1

(
xit − λ̂(k)′

i2 f̂
(T−k)
t

)2

+
N∑
i=1

T∑
t=k0+1

(
xit − λ̂(k)′

i2 f̂
(T−k)
t

)2

,

and

SSR(k0) =
N∑
i=1

k0∑
t=1

(
xit − λ̂(k0)′

i1 f̂
(k0)
t

)2

+
N∑
i=1

T∑
t=k0+1

(
xit − λ̂(k0)′

i2 f̂
(T−k0)
t

)2

=
N∑
i=1

k∑
t=1

(
xit − λ̂(k0)′

i1 f̂
(k0)
t

)2

+
N∑
i=1

k0∑
t=k+1

(
xit − λ̂(k0)′

i1 f̂
(k0)
t

)2

+
N∑
i=1

T∑
t=k0+1

(
xit − λ̂(k0)′

i2 f̂
(T−k0)
t

)2

.
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So

SSR(k)− SSR(k0) =
N∑
i=1

k0∑
t=k+1

(
xit − λ̂(k)′

i2 f̂
(T−k)
t

)2

−
N∑
i=1

k0∑
t=k+1

(
xit − λ̂(k0)′

i1 f̂
(k0)
t

)2

+
N∑
i=1

k∑
t=1

(
xit − λ̂(k)′

i1 f̂
(k)
t

)2

−
N∑
i=1

k∑
t=1

(
xit − λ̂(k0)′

i1 f̂
(k0)
t

)2

+
N∑
i=1

T∑
t=k0+1

(
xit − λ̂(k)′

i2 f̂
(T−k)
t

)2

−
N∑
i=1

T∑
t=k0+1

(
xit − λ̂(k0)′

i2 f̂
(T−k0)
t

)2

.

We first analyze the property of the following term

N∑
i=1

k0∑
t=k+1

(
xit − λ̂(k)′

i2 f̂
(T−k)
t

)2

.

We have

N∑
i=1

k0∑
t=k+1

(
xit − λ̂(k)′

i2 f̂
(T−k)
t

)2

=
N∑
i=1

k0∑
t=k+1

(
λ
′

1ift + eit − λ̂(k)′

i2 f̂
(T−k)
t

)2

=
N∑
i=1

k0∑
t=k+1

[
(λi1 − λi2)′ ft +

(
λi2 − λ̂(k)

i2

)′
ft

+ λ̂
(k)′

i2

(
ft − f̂ (T−k)

t

)
+ eit

]2

=
N∑
i=1

k0∑
t=k+1

{[
(λi1 − λi2)′ft

]2

+
[
(λi2 − λ̂(k)

i2 )′ft

]2

+
[
λ̂

(k)′

i2 (ft − f̂ (T−k)
t )

]2

+ e2
it + 2(λi1 − λi2)′fteit

+ 2(λi2 − λ̂ki2)′fteit + 2λ̂
(k)′

i2 (ft − f̂ (T−k)
t )eit

+ other cross-products are negligible

}
,
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e2
it is canceled out with the corresponding term from SSR(k0). The drift term is

determined by

N∑
i=1

k0∑
t=k+1

{[
(λi1 − λi2)′ft

]2

+
[
(λi2 − λ̂(k)

i2 )′ft

]2

+
[
λ̂

(k)′

i2 (ft − f̂ (T−k)
t )

]2
}

and the random walk part is contributed by

N∑
i=1

k0∑
t=k+1

[
2(λi1 − λi2)′fteit + 2(λi2 − λ̂(k)

i2 )′fteit + 2λ̂
(k)′

i2 (ft − f̂ (T−k)
t )eit

]

Note that k is close to k0, using the results of Bai (2003) or Bai and Ng (2013) (ignore

high order term), we have

λi2 − λ̂(k)
i2 = −

(
F
′

2F2

)−1

F
′

2ei

= −
(
F
′

2F2

)−1
T∑

s=k0+1

fseis,

and

ft − f̂ (T−k)
t = −

(
Λ
′

2Λ2

)−1

Λ
′

2et

= −
(

Λ
′

2Λ2

)−1
N∑
j=1

λj2ejt

Plug in the above two expressions into the random walk parts, then each of the three

random walk terms are not negligible (assuming N and T are same order magnitude).
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We first check the drift parts, let

D1 =
N∑
i=1

k0∑
t=k+1

[
(λi1 − λi2)′ft

]2

,

D2 =
N∑
i=1

k0∑
t=k+1

[
(λi2 − λ̂(k)

i2 )′ft

]2

,

D3 =
N∑
i=1

k0∑
t=k+1

[
λ̂

(k)′

i2 (ft − f̂ (T−k)
t )

]2

.

Suppose eit is homoscedasticity, i.e. E(e2
it) = σ2, and k0−k is large, we can show

that

D1 =
N∑
i=1

k0∑
t=k+1

[
(λi1 − λi2)′ft

]2

= (k0 − k)
N∑
i=1

(λi1 − λi2)′

1

k0 − k

k0∑
t=k+1

ftf
′

t (λi1 − λi2)

= (k0 − k)
1

N

N∑
i=1

∆
′

i

1

k0 − k

k0∑
t=k+1

ftf
′

t∆i

as N→∞−−−−−→ (k0 − k) lim
N→∞

1

N

N∑
i=1

∆
′

iΣf∆i

= (k0 − k)ψ1,
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D2 =
N∑
i=1

k0∑
t=k+1

[
T∑

s=k0+1

eisf
′

s

(
F
′

2F2

)−1

ft

]2

= (k0 − k)
N∑
i=1

T∑
s=k0+1

eisf
′

s

(
F
′

2F2

)−1
(

1

k0 − k

k0∑
t=k+1

ftf
′

t

)(
F
′

2F2

)−1
T∑

s=k0+1

fseis

= (k0 − k)
N

T − k0

1

N

N∑
i=1

(
1√

T − k0

T∑
s=k0+1

eisf
′

s

)(
F
′
2F2

T − k0

)−1

(
1

k0 − k

k0∑
t=k+1

ftf
′

t

)(
F
′
2F2

T − k0

)−1
(

1√
T − k0

T∑
s=k0+1

fseis

)

= (k0 − k)
N

T − k0

1

N

N∑
i=1

ξ
′

i

(
F
′
2F2

T − k0

)−1
(

1

k0 − k

k0∑
t=k+1

ftf
′

t

)(
F
′
2F2

T − k0

)−1

ξi

by LLN−−−−→ (k0 − k)
N

T − k0

1

N

N∑
i=1

E
(
ξ
′

iΣ
−1
f ΣfΣ

−1
f ξi

)
= (k0 − k)

N

T − k0

1

N

N∑
i=1

E
(
tr(ξ

′

iΣ
−1
f ξi)

)
= (k0 − k)

N

T − k0

1

N

N∑
i=1

tr
(
E(ξiξ

′

iΣ
−1
f )
)

= (k0 − k)
N

T − k0

σ2

= (k0 − k)ψ2,
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D3 =
N∑
i=1

k0∑
t=k+1

[
λ̂

(k)′

i2

(
Λ
′

2Λ2

)−1
N∑
j=1

λj2ejt

]2

=
N∑
i=1

k0∑
t=k+1

λ̂
(k)′

i2

(
Λ
′

2Λ2

)−1
N∑
j=1

λj2ejt

N∑
j=1

ejtλ
′

j2

(
Λ
′

2Λ2

)−1

λ̂
(k)
i2

=
1

N

N∑
i=1

k0∑
t=k+1

λ̂
(k)′

i2

(
Λ
′
2Λ2

N

)−1
(

1√
N

N∑
j=1

λj2ejt

)(
1√
N

N∑
j=1

ejtλ
′

j2

)
(

Λ
′
2Λ2

N

)−1

λ̂
(k)
i2

= σ2 1

N

N∑
i=1

k0∑
t=k+1

λ̂
(k)′

i2

(
Λ
′
2Λ2

N

)−1
(

1√
N

N∑
j=1

λj2ejt

)
σ−2

(
1√
N

N∑
j=1

ejtλ
′

j2

)
(

Λ
′
2Λ2

N

)−1

λ̂
(k)
i2

by CLT−−−−→ σ2

k0∑
t=k+1

χ2
1(t),

so D3 should be considered with random parts together.

Now let us look at the random walk parts, define

R1 = 2
N∑
i=1

k0∑
t=k+1

(λi1 − λi2)′fteit,

R2 = 2
N∑
i=1

k0∑
t=k+1

(λi2 − λ̂ki2)′fteit,

R3 = 2
N∑
i=1

k0∑
t=k+1

λ̂
(k)′

i2 (ft − f̂ (T−k)
t )eit
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R1 = 2
N∑
i=1

k0∑
t=k+1

(λi1 − λi2)′fteit

= 2

k0∑
t=k+1

1√
N

N∑
i=1

∆
′

ifteit

by CLT−−−−→ 2

k0∑
t=k+1

N
(

0, E(∆
′

ifte
2
itf
′

t∆i)
)

= 2

k0∑
t=k+1

N
(

0, σ2tr
(
E(∆i∆

′

i)E(ftf
′

t )
))

= 2

k0∑
t=k+1

N
(
0, σ2tr (Σ∆Σf )

)
= 2

(
σ2tr (Σ∆Σf )

)− 1
2

k0∑
t=k+1

Zt

= φ1

k0∑
t=k+1

Zt

where Zt are i.i.d. standard normal random variables.
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R2 = 2
N∑
i=1

k0∑
t=k+1

(λi2 − λ̂ki2)′fteit = −2
N∑
i=1

k0∑
t=k+1

T∑
s=k0+1

eisf
′

s

(
F
′

2F2

)−1

fteit

= −2
1√

T − k0

k0∑
t=k+1

N∑
i=1

(
1√

T − k0

T∑
s=k0+1

eisf
′

s

)(
F
′
2F2

T − k0

)−1

fteit

= −2
1√

T − k0

k0∑
t=k+1

N∑
i=1

ξ
′

i

(
F
′
2F2

T − k0

)−1

fteit

= −2

√
N√

T − k0

k0∑
t=k+1

1√
N

N∑
i=1

ξ
′

i

(
F
′
2F2

T − k0

)−1

fteit

by CLT−−−−→ −2

√
N√

T − k0

k0∑
t=k+1

N
(

0, E(ξ
′

iΣ
−1
f fte

2
itf
′

tΣ
−1
f ξi)

)
= −2

√
N√

T − k0

k0∑
t=k+1

N
(

0, σ2tr
(
E(ξiξ

′

iΣ
−1
f ftf

′

tΣ
−1
f )
))

= −2

√
N√

T − k0

k0∑
t=k+1

N
(
0, σ4

)
= −2

√
N√

T − k0

σ−2

k0∑
t=k+1

Zt

= φ2

k0∑
t=k+1

Zt
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R3 = 2
N∑
i=1

k0∑
t=k+1

λ̂
(k)′

i2 (ft − f̂ (T−k)
t )eit = −2

N∑
i=1

k0∑
t=k+1

λ̂
(k)′

i2

(
Λ
′

2Λ2

)−1
N∑
j=1

λj2ejteit,

= −2

k0∑
t=k+1

(
1√
N

N∑
i=1

λ̂
(k)′

i2 eit

)(
Λ
′
2Λ2

N

)−1
(

1√
N

N∑
j=1

λj2ejt

)

= −2

k0∑
t=k+1

tr

((
1√
N

N∑
i=1

λ̂
(k)′

i2 eit

)
Σ−1

Λ ΣΛΣ−1
Λ

(
1√
N

N∑
j=1

λj2ejt

))

= −2

k0∑
t=k+1

tr

(
Σ−1

Λ

(
1√
N

N∑
j=1

λj2ejt

)(
1√
N

N∑
i=1

λ̂
(k)′

i2 eit

)
Σ−1

Λ ΣΛ

)

= −2

k0∑
t=k+1

tr

(
Σ−1

Λ

(
1√
N

N∑
j=1

λj2ejt

)(
1√
N

N∑
i=1

λ̂
(k)′

i2 eit

)
Σ−1

Λ (
N∑
jj=1

λjj2λ
′

jj2)

)

= −2σ2

k0∑
t=k+1

N∑
jj=1

tr

(
λ
′

jj2Σ−1
Λ

(
1√
N

N∑
j=1

λj2ejt

)
σ−2

(
1√
N

N∑
i=1

λ̂
(k)′

i2 eit

)
Σ−1

Λ λjj2

)
by CLT−−−−→ −2σ2

k0∑
t=k+1

χ2
1(t),

thus D3 can merge into R3,

D3 +R3
d−→ −σ2

k0∑
t=k+1

χ2
1(t)

= C3

k0∑
t=k+1

χ2
1(t)
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In summary, for k ≤ k0

SSR(k)− SSR(k0)
d−→ (k0 − k)ψ1 + (k0 − k)ψ2 + φ1

k0∑
t=k+1

Zt + φ2

k0∑
t=k+1

Zt

+ C3

k0∑
t=k+1

χ2
1(t)

= (k0 − k)C1 + C2

k0∑
t=k+1

Zt + C3

k0∑
t=k+1

χ2
1(t)

Similarly for k > k0, we can show that

SSR(k)− SSR(k0)
d−→ (k − k0)C1 + C2

k∑
t=k0+1

Zt + C3

k∑
t=k0+1

χ2
1(t)

B.1.2 Proof of Corollary 3.2.1

Proof

If eit is heteroscedasticity, i.e. E(e2
it) = σ2

i , based on our previous results, we can
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show that

D1,hetero =
N∑
i=1

k0∑
t=k+1

[
(λi1 − λi2)′ft

]2

= (k0 − k)
N∑
i=1

(λi1 − λi2)′
1

k0 − k

k0∑
t=k+1

ftf
′

t (λi1 − λi2)

N→∞−−−→ (k0 − k)ψ1,

D2,hetero =
N∑
i=1

k0∑
t=k+1

[
T∑

s=k0+1

eisf
′

s

(
F
′

2F2

)−1

ft

]2

by LLN−−−−→ (k0 − k)
N

T − k0

1

N

N∑
i=1

tr
(
E(ξiξ

′

iΣ
−1
f )
)

= (k0 − k)
N

T − k0

1

N

N∑
i=1

σ2
i = (k0 − k)ψ∗2,

D3,hetero =
N∑
i=1

k0∑
t=k+1

λ̂
(k)′

i2

(
Λ
′

2Λ2

)−1
N∑
j=1

λj2ejt

N∑
j=1

ejtλ
′

j2

(
Λ
′

2Λ2

)−1

λ̂
(k)
i2

=

k0∑
t=k+1

(
1

N

N∑
i=1

σ2
i λ

(k)′

i2 λ
(k)
i2

)(
1

N

N∑
i=1

σ2
i λ

(k)′

i2 λ
(k)
i2

)−1

1

N

N∑
i=1

λ̂
(k)′

i2

(
Λ
′
2Λ2

N

)−1

(
1√
N

N∑
j=1

λj2ejt

)(
1√
N

N∑
j=1

ejtλ
′

j2

)(
Λ
′
2Λ2

N

)−1

λ̂
(k)
i2

by CLT−−−−→

(
1

N

N∑
i=1

σ2
i λ

(k)′

i2 λ
(k)
i2

)
k0∑

t=k+1

χ2
1(t)
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and

R1,hetero = 2
N∑
i=1

k0∑
t=k+1

(λi1 − λi2)′fteit

by CLT−−−−→ 2

k0∑
t=k+1

N
(

0, E(∆
′

ifte
2
itf
′

t∆i)
)

= 2
1

N

N∑
i=1

σ2
i ∆

′

iΣf∆i

k0∑
t=k+1

Zt

= φ∗1

k0∑
t=k+1

Zt

R2,hetero = −2

√
N√

T − k0

k0∑
t=k+1

1√
N

N∑
i=1

ξ
′

i

(
F
′
2F2

T − k0

)−1

fteit

by CLT−−−−→ −2

√
N√

T − k0

k0∑
t=k+1

N
(

0, E(ξ
′

iΣ
−1
f fte

2
itf
′

tΣ
−1
f ξi)

)

= −2

√
N√

T − k0

(
1

N

N∑
i=1

σ4
i

)− 1
2 k0∑
t=k+1

Zt

= φ∗2

k0∑
t=k+1

Zt

R3,hetero = 2
N∑
i=1

k0∑
t=k+1

λ̂
(k)′

i2 (ft − f̂ (T−k)
t )eit

by CLT−−−−→ −2

(
1

N

N∑
i=1

σ2
i λ

(k)′

i2 λ
(k)
i2

)
k0∑

t=k+1

χ2
1(t)

D3,hetero +R3,hetero = −

(
1

N

N∑
i=1

σ2
i λ

(k)′

i2 λ
(k)
i2

)
k0∑

t=k+1

χ2
1(t)

= C∗3

k0∑
t=k+1

χ2
1(t)
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In summary, for k ≤ k0

SSR(k)− SSR(k0)
d−→ (k0 − k)ψ1 + (k0 − k)ψ∗2 + φ∗1

k0∑
t=k+1

Zt + φ∗2

k0∑
t=k+1

Zt

+ C∗3

k0∑
t=k+1

χ2
1(t)

= (k0 − k)C∗1 + C∗2

k0∑
t=k+1

Zt + C∗3

k0∑
t=k+1

χ2
1(t)

Similarly for k > k0, we can show that

SSR(k)− SSR(k0)
d−→ (k − k0)C∗1 + C∗2

k∑
t=k0+1

Zt + C∗3

k∑
t=k0+1

χ2
1(t)
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