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ABSTRACT

Epilepsy is a neurological disorder that is associated with sudden and recurrent

seizures. Epilepsy affects 65 million people world-wide and is the third most common

neurological disorder, after stroke and Alzheimer disease. During an epileptic seizure,

the brain endures a transient period of abnormally excessive synchronous activity,

leading to a state of havoc for many epileptic patients. Seizures can range from being

mild and unnoticeable to extremely violent and life threating. Many epileptic indi-

viduals are not able to control their seizures with any form of treatment or therapy.

These individuals often experience serious risk of injury, limited independence and

mobility, and social isolation.

In an attempt to increase the quality of life of epileptic individuals, much research

has been dedicated to developing seizure onset detection systems that are capable of

accurately and rapidly detecting signs of seizures. This thesis presents a novel seizure

onset detection system that is based on the fusion of independent electroencephalo-

gram (EEG) and electrocardiogram (ECG) based decisions. The EEG-based detector

relies on a on a common spatial pattern (CSP)-based feature enhancement stage that

enables better discrimination between seizure and non-seizure features. The EEG-

based detector also introduces a novel classification system that uses logical operators

to pool support vector machine (SVM) seizure onset detections made independently

across different relevant EEG spectral bands. In the ECG-based detector, heart rate

variability (HRV) is extracted and analyzed using a Matching-Pursuit and Wigner-

Ville Distribution algorithm in order to effectively extract meaningful HRV features

representative of seizure and non-seizure states. Two fusion systems are adopted to

fuse the EEG- and ECG-based decisions. In the first system, EEG- and ECG-based
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decisions are directly fused to obtain a final decision. The second fusion system

adopts an over-ride option that allows for the EEG-based decision to over-ride the

fusion-based decision in an event that the detector observes a string of EEG-based

seizure decisions. The proposed detectors exhibit an improved performance, with

respect to sensitivity and detection latency, compared with the state-of-the-art de-

tectors. Experimental results demonstrate that the second detector achieves a sen-

sitivity of 100%, detection latency of 2.6 seconds, and a specificity of 99.91% for the

MAJORITY fusion case.

In addition, a novel method to calculate the amount of neural synchrony that

exists between the channels of an EEG matrix is carried out. This method is based

on extracting the condition number from multi-channel EEG at a particular time

instant to indicate the level of neural synchrony at that particular time instant. The

proposed method of neural synchrony calculation is implemented in two detection

systems. The first system uses only neural synchrony as the feature for seizure

classification whereas the second system fuses energy and synchrony based decision

to make a final classification decision. Both systems show promising results when

tested on a set of clinical patients.

iii



DEDICATION

To Her Highness Sheikha Moza bint Nasser Al-Missned

and

to my Beloved Parents.

iv



ACKNOWLEDGEMENTS

First and foremost, praise is due to Allah, the most gracious and most merciful.

Without His guidance and blessing, my work would never have been possible.

I would like to acknowledge several people who provided advice, support, and

encouragement to me throughout the completion of this thesis. I would like to

express my deepest respect and gratitude to my advisor, Dr. Erchin Serpedin, for

his wonderful guidance and support over the years. His deep insight, vast knowledge,

and patience have been crucial for the completion of my thesis. I would also like

to express my appreciation to my co-chair, Dr. Hazem Nounou, for his valuable

mentoring and constant support.

I am deeply and forever indebted to my parents for their love, support, and

encouragement throughout my life. I congratulate them for this thesis; for in reality,

this work is partly theirs as well. I would also like to thank my sisters and brother

for their constant encouragement throughout my journey. I am also very thankful

for my husband for his help, love, and support throughout the toughest times.

In addition, I would like to express my gratitude to Dr. Muhammad Ismail for

his support and guidance. It is greatly appreciated. I am also thankful for Dr.

Qammer Abassi for his support. In addition, I would like to express my appreciation

to my committee members, Dr. Mahmoud El-Halwagi and Dr. Aydin Karsilayan, for

serving on my committee and for their valuable feedback throughout the completion

of my thesis work. Also, many thanks are due to Dr. Zulfi Haneef for teaching me

about epilepsy and for providing me with clinical data from his patients.

Furthermore, I would like to thank Her Highness Sheikha Moza bint Nasser Al-

Missned, Chairperson of Qatar Foundation for Education, Science, and Community

v



Development, for her constant support in promoting education and being a driving

force in the success of Qatar Foundation. I would like to also express my appreciation

to Dr. Ayman Bassil for his encouragement and support from the very beginning. I

am also grateful for my sponsor, Qatar Foundation Science Leadership Program, for

their sponsorship and assistance throughout my journey.

Much appreciation goes to Tammy Carda for her friendship, support, and help

throughout it all. The ECEN Department is privileged to have a person like her

helping its students.

vi
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1. INTRODUCTION

This chapter describes the essential background material about the neurological

disorder of epilepsy, its treatment, and research that has been done in this area to

help alleviate its symptoms. In this chapter, the shortcomings of existing works in

the area of epilepsy detection are outlined and the contributions brought by this

thesis are summarized.

1.1 Epilepsy

Epilepsy is a neurological disorder which affects the nervous system and is as-

sociated with recurrent seizures. Epileptic seizures are caused by disturbances in

the electrical activity of the brain. During a seizure, the brain endures a transient

period of abnormal excessive or synchronous neural activity. This sudden breakdown

of neural activity of the brain can be disastrous to the patient, forcing the patient

to endure involuntary alterations in behavior, movement, sensation, or consciousness

[1], [2].

The underlying genetic and molecular mechanisms that give rise to epilepsy is still

poorly understood; however, epilepsy has distinctive characteristics differentiating

it from non-epileptic seizures. Epilepsy is defined as (1) at least two unprovoked

seizures occurring at least 24 hours apart, (2) one unprovoked seizure with a high

likelihood of recurrent unprovoked seizures, or (3) diagnosis of an epilepsy syndrome

[3]. Non-epileptic seizures are a response to disturbances external to the central

nervous system, such as alcohol, drug abuse, sleep deprivation, or an acute illness.

Epilepsy is conceptually divided by etiology into the following categories [3]:

1. Genetic: most likely due to genetic predisposition.
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2. Structural/Metabolic: due to a lesion in the brain.

3. Unknown: no identifiable focus or syndrome.

Identifying the underlying cause of epilepsy is important because it helps in deter-

mining the type of anti-seizure medication that should be tried. Unfortunately, at

present, six out of ten patients are diagnosed with epilepsy with the cause of it

remaining unknown.

1.1.1 Types of Seizures and their Symptoms

Epileptic seizures can be divided into two major categories: partial seizures and

generalized seizures. Partial seizures are characterized by an epileptic activity that

begins and remains localized in one part of the brain. Partial seizures can be further

divided into two classes: namely, simple partial seizures and complex partial seizures.

Simple partial seizures do not alter consciousness, but do temporary impair an in-

dividual’s sensory system if the epileptic activity originates from the somatosensory

area of the brain, and the motor systems if the epileptic activity originates from the

motor cortex. During a simple partial sensory seizure, an individual may experience

somatosensory, autonomic, or psychic symptoms. Some of the somatosensory symp-

toms include hallucinations, altered vision, speech, and smell. Autonomic symptoms

include sweating and papillary dilation, and psychic symptoms can include a sudden

sensation of fear, anger, dreamy states, auras, and deja vu. Symptoms of simple

partial sensory seizures are typically very subtle and can be difficult to distinguish

from psychological phenomenas. However, simple partial motor seizures are charac-

terized by much clearer clinical manifestations, such as rapid muscular contractions

on one side of the body and postural movements. Simple partial seizures usually

last for a minute or less and the individual is able to remember what happened after

the seizure passes. During a complex partial seizure, an individual’s consciousness
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is compromised. These seizures usually start in a small area of the temporal lobe

or frontal lobe of the brain and quickly involve other areas of the brain that affect

alertness and awareness. These seizures are often preceded by auras and automatism

(snapping fingers, picking at things, walking aimlessly, lip smacking, or mumbling).

Complex partial seizures typically last between one to three minutes and individuals

might experiences a sense of confusion after the seizures pass.

The second category of epileptic seizures is referred to as generalized seizures.

These types of seizures involve the entire brain from the onset. Generalized seizures

that include convulsions are called generalized convulsive seizures and those that do

not assume convulsions are classified as generalized non-convulsive seizures. Gener-

alized convulsive seizures can be further subdivided into the following classes:

• Myoclonic seizures: result in rapid convulsions but do not typically alter an

individual’s state of consciousness.

• Clonic seizures: result in convulsions and loss of consciousness.

• Tonic seizures: result in sudden contraction of truncal and facial muscles

accompanied by sudden stiffening movements of the arms or legs. These types

of seizures usually lead to serious injuries due to sudden and dangerous falls.

• Tonic-clonic seizures: combine the clinical manifestation of tonic and clonic

seizures and begin without warning. These seizures usually last between one to

two minutes but individuals may not regain consciousness until ten to fifteen

minutes after the seizures. They may also experience fatigue for hours or days.

Generalized non-convulsive seizures can be divided into two sub-classes, those

that lead to loss of consciousness and those that do not. Generalized non-convulsive
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seizures that lead to loss of consciousness are called absence seizures and are associ-

ated with involuntary eye blinking, staring, and other minor facial movements. These

seizures typically last between a few seconds and a minute, and can occur many times

throughout the day. Atonic seizures are generalized non-convulsive seizures that do

not lead to a loss of consciousness; however, they do lead to a sudden loss of tone in

postural muscles which leads to serious injuries from dangerous falls [2].

1.1.2 Treatment of Epilepsy

Epilepsy affects individuals with a different degree of severity; thus, the treatment

of epilepsy is patient-specific. The first course of treatment for epileptic individuals is

with the use of anti-epileptic drugs. Approximately 70-80% of epileptic patients are

able to limit their seizures, the severity of the seizures, and their frequency through

anti-epileptic drugs. These drugs essentially limit the capacity of neurons to fire at

excessive rates. Between 20-30% of epileptic patients suffer from a condition called

refractory epilepsy where they do not respond to any form of medication. As a

result, these patients resort to different treatments options, such as surgery, vagus

nerve stimulation, and ketogenic diets.

Surgery is a possible option for some individuals once a team of epileptologists

can accurately identify the region of the brain from which the abnormal neural

firings originate from. This is accomplished by combining clinical, electrographic,

anatomical, functional, and metabolic evidence from different forms of testing and

procedures. Once the epileptogenic focus of the brain has been identified and it has

been confirmed that the removal of that area of the brain will not lead to serious

repercussions, the patient undergoes brain surgery.

Patients that are not surgical candidates may respond to vagus nerve stimulation

(VNS) therapy. This treatment option involves implanting an electronic device which
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is designed to prevent seizures by sending regular, mild pulses of electrical energy

to the brain via the vagus nerve on the left side of the neck. The vagus nerve is

part of the autonomic nervous system which controls functions of the body that are

not under voluntary control, such as heart rate. The vagus nerve passes through the

neck as it travels between the chest and abdomen and the lower part of the brain.

The vagus nerve stimulator is programmed to send a stimulation signal to the brain

at set intervals to neutralize any abnormal neural firings. VNS has been found to

control seizures and relieve some side effects. Holding a special magnet near the

implanted device triggers the device to deliver another burst of stimulation, outside

of the programmed intervals. For people with warnings (auras) before their seizures,

activating the stimulator with the magnet when the warning occurs may help to

prevent the seizure.

The ketogenic diet is a high fat, average protein, low carbohydrate diet that has

shown to be effective in controlling some patients’ seizures. The diet forces the body

to go into a ketosis state, in which it uses ketones (from fats) rather than glucose

(from carbohydrates) for energy. The exact mechanisms which allow this diet to

reduce frequency and severity of seizures is still unknown [4].

1.2 Manifestation of Epilepsy in Biosignals

The manifestation of epilepsy is a fairly complex procedure. In order to gain

more insight on how epilepsy develops, doctors often monitor various biosignals of

a patient for answers. Electrical biosignals are the most common continuous-time

signals studied. Electrical biosignals refer to changes in the electric current produced

by the sum of an electrical potential difference across a specialized tissue, organ, or

cell system. Among the most common are electroencephalogram (EEG), which refers

to the recording of electrical activity of the brain, electrocardiogram (ECG), which
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represents the recording of electrical activity of the heart, electromyogram (EMG),

which captures the electrical activity produced by skeletal muscles, and electroocu-

lography (EOG), which measures the corneo-retinal standing potential that exists

between the front and the back of the human eye. The most informative biosignals

in terms of studying the manifestation of epileptic seizures in the human body are

EEG and ECG.

1.2.1 EEG

The EEG is an electrophysiological monitoring method that records the electrical

activity of the cerebral cortex through the use of electrodes that are placed either

along the scalp or surgically placed on the exposed surface of the brain, methods

that are referred to as electrocorticography (ECoG) and intracranial EEG (iEEG),

respectively. In scalp EEG, electrodes are symmetrically arrayed on the scalp ac-

cording to the International 10-20 system, shown in Figure 1.1. This system is an

internationally recognized method to describe and apply scalp electrodes for EEG

recording and ensures standardized reproducibility so that a subject’s studies can be

compared over time and subjects can be compared to each other.

Figure 1.2 illustrates the placement of the EEG on a patient. An EEG chan-

nel/signal is formed by taking the difference between the potentials measured at two

electrodes. Each EEG channel summarizes activity localized within that region of

the brain. EEG has many advantages including low hardware costs, tolerance to

subject movement, and noislessness. EEG does not involve exposure to radioligands

and is also a powerful tool for tracking brain changes. However, there are some

disadvantages associated with EEG. These disadvantages include low spatial reso-

lution on the scalp, poor measurement of neural activity under the cerebral cortex,

artifacts, and very low signal-to-noise power ration. Therefore, robust data analysis
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techniques are needed to extract meaningful information.

Figure 1.1: International 10-20 system for placement of scalp EEG electrodes [5].

Figure 1.2: Illustration of the EEG on a human subject [6].
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Expert electroencephalographers describe EEG activity in terms of its spatial

distribution on the scalp and its dominant frequency component. The EEG activity

of clinical relevance is limited to the frequency band 0.5 − 50 Hz; however, the

frequency range that captures various seizure onset electrographic manifestations is

0.5 − 25 Hz. The sub-band signals that collectively represent the activity at time-

scales corresponding to the seizure frequencies are the δ, θ, α, and β EEG frequency

bands, where δ < 4 Hz, θ ∈ [4, 7] Hz, α ∈ [8, 15] Hz, and β ∈ [16, 31] Hz [7]. An

illustration of the various EEG frequency band waveforms is given in Figure 1.3.

Figure 1.3: Illustration of the δ, θ, α, and β EEG frequency waveforms [8].

1.2.2 ECG

The ECG refers to the recording of electrical activity of the heart. The ECG

is carried out by using electrodes placed on the body, which detect the electrical

changes on the skin that arise from the heart muscle depolarization during each
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heartbeat. With each heartbeat, an electrical impulse (wave) travels through the

heart. This wave causes the muscle to squeeze and pump blood from the heart to

the rest of the body. The right and left atria (upper chambers) create the first wave

(P wave). When the electrical impulse travels to the bottom chambers, a flat line

appears on the ECG. The right and left bottom chambers create the QRS complex.

The final wave (T wave) represents the heart’s electrical recovery in which it returns

to a resting state. Figure 1.4 shows an illustration of a typical ECG waveform and

Figure 1.5 illustrates the ECG placement on a patient.

Figure 1.4: Illustration of the shape of the ECG [9].

Heart rate variability (HRV) is defined as the change in the heart’s beat-to-beat

interval and is often used in the analysis of cardiovascular regulatory mechanisms.

However, recent advancements in the analysis of HRV in epilepsy reveal that epileptic

seizures are accompanied by changes in various autonomic functions such as heart

rate (HR) and in the same time unravel causes for sudden unexpected death in
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Figure 1.5: Illustration of the recording of the ECG on a human subject [10].

epileptic patients (SUDEP) [11], [12]. Furthermore, the estimation of the HRV be-

fore, during, and after a seizure provides an indication of the sum of sympathetic and

parasympathetic inputs to the heart. Recent investigation points out that epilepsy

is frequently associated with ictal tachycardia (ITC) or bradycardia, which, in some

cases, precedes the onset of seizures [13].

1.3 Motivation of Research

Epilepsy affects 65 million people world-wide and approximately 3 million of those

affected by epilepsy are in the United States. It is expected that 1 in 26 people in

the United States will develop epilepsy at some point in their life. Epileptic patients

whose treatment options have failed are forced to live a tough life. Their quality of

life is severely limited. Many patients suffer serious injuries that include fractures,

head injuries, and burns due to the sudden nature of the seizure attack along with

the confusion, loss of consciousness, and lack of muscle control that accompanies

certain types of seizures. These injuries account for a significant component of the
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risk associated with epilepsy [14]. Furthermore, epileptic patients are unable to lead

normal lives due to the disabling aspects of epilepsy. For example, many people are

not able to drive, take care of babies, or carryout everyday activities that otherwise

they would be able to do. Many patients also start to face emotional and physiological

problems due to their illness.

In an attempt to increase the quality-of-life of epileptic patients, much research

has been dedicated to developing a device that can detect the onset of seizure episodes

before they happen. Such a device is called a seizure onset detector (SOD). SODs

have many benefits. For instance, SODs can be used as warning devices to alert

patients of imminent seizures so that the patient can take precaution measures be-

fore the seizure attack happens, and thus prevent serious injuries to themselves and

those around them. In addition, SODs are gaining more attention as possible seizure

control devices. Such detectors can control seizures by initiating anti-epileptic drugs

or by selectively stimulating certain parts of the brain when an oncoming seizure is

detected [15]. In a hospital setting, such a device would be useful in initiating time-

sensitive clinical procedures necessary for the investigation of various epileptic char-

acteristics, such as localizing a patient’s epileptogenic focus via ictal single-photon

emission computed tomography (SPECT) or functional magnetic resonance imaging

(fMRI) [16]. Seizure onset detection is particularly useful to neurologists who usually

spend hours analyzing patients’ EEG records in an attempt to locate seizure activity.

In particular, they greatly reduce the volume of data that must be analyzed.

In general, there are two types of SODs, namely, patient specific and non-patient

specific. In the latter, the detector is assumed to be able to detect seizures across

a variety of patients, regardless of seizure type. This requires the seizure detection

algorithm to learn the characteristics associated with a diverse range of epileptic

seizures. This is extremely challenging simply because seizures manifest differently
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in different individuals with the same type of epilepsy. For individuals who suffer

from different seizure types, the way the seizure can manifest is countless. Also,

certain seizures manifest differently each time within the same patient. Non-patient

specific detectors are required to be extremely heterogeneous for the SOD to be of any

practical use. Furthermore, the EEG signature of one patient’s seizure may closely

resemble the signature of abnormal, non-seizure EEG gathered from other patients.

However, patient-specific SODs need only to learn the characteristics of the seizures

present for a particular individual. Work in this area has shown that patient specific

detectors outperform non-patient specific detectors because the detector is tailored

to the EEG of that particular individual [16].

1.3.1 Challenges of Seizure Detection

There are many challenges that arise when it comes to seizure detection. One of

the most challenging aspects of seizure detection is that the human brain is highly

complex. The EEG signature of a particular patient’s seizure may closely resemble

normal EEG and vice versa. This causes the detector to miss some seizures and

incorrectly detect seizures when in fact there are no seizures. The detection task is

further complicated by the noisy nature of the EEG signal. Scalp EEG is highly sus-

ceptible to contamination by physiological and non-physiological sources. The sway

of EEG electrode cables, the coupling of AC harmonics from electric machinery, and

alterations in the electrode-skin interface can all produce non-physiological spectral

changes that affect the performance of a seizure detector. Physiological artifacts,

including sweat, chewing, eye-blinks, and scalp muscle contractions, also limit the

performance of seizure detectors. Another property of scalp EEG that makes seizure

detection challenging is the physical property of the EEG signal. Because the EEG

is on the scalp, it is most sensitive to the activity of neurons on the brain surface;
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therefore, the activity of neurons within deep brain structures has little to no influ-

ence on the scalp EEG. Consequently, when the epileptic neural activity evolves from

brain structures deep within the brain, scalp-EEG will not pick up on the activity

until it has affected neurons within the reading range of the EEG. These types of

seizures are difficult to detect with high specificity and low latency.

The goal of this research is to design, implement, and evaluate a robust, real-time

SOD that can efficiently detect the onset of epileptic seizures using simultaneously

recorded, non-invasive EEG and ECG data.

1.4 Literature Review and Limitations

Over the past decade, extensive research has been dedicated to developing a

seizure onset detector that is capable of detecting the onset of a seizure with high

accuracy and low false alarm rate using a patient’s EEG alone. In general, SODs

generally consist of two main stages: feature extraction and classification [17] - [32].

In the feature extraction stage, relevant EEG features are extracted so as to char-

acterize seizure and non-seizure events. In the classification stage, machine learning

algorithms are trained to learn the features of each class of events so as to detect

seizure from non-seizure features in new EEG.

Applying empirically determined thresholds on time-domain features is among

the earliest methods for the detection of epileptic activity in long-term EEG record-

ings [17]. The work in [18] processes a single manually-selected channel of an ECoG

recording using a maximum-likelihood classifier with Gaussian mixture model condi-

tional densities to differentiate between a patient’s normal and abnormal ECoG. The

method of Hilbert marginal spectrum analysis based on Hilbert Huang transforma-

tion is employed for EEG signal processing in [19]. The detector in [20] proposes an

algorithm to help detect seizures in long term iEEG based on low computational costs
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methods using Spectral Power and Wavelet analysis. The detector was tested on 21

invasive iEEG records and a sensitivity of 85.39% was achieved. A wavelet decom-

position technique is used in [16] to extract the energy in the lowest four frequency

bands of the EEG for a patient-specific seizure onset detector using scalp-EEG. This

detector presents a sensitivity of 94%, an average detection latency of 8.0 ± 3.2

seconds, and an average false alarm rate of 0.25 per hour. Instead of using wavelet

decomposition to extract relevant EEG frequency bands, [21] uses an iterated filter

bank in the seizure detection architecture. In [22], diffusion distances are extracted

from ictal EEG as features and a Bayesian linear discriminant analyzer is employed

as a classifier to detect the seizure onset in the long-term EEG of 21 patients. In

[23], the fractal intercept and fluctuation index are extracted as EEG features and an

extreme learning machine is employed to train a neural network classifier to detect

the seizure in the EEG of 21 patients. The continuous wavelet transform is used to

analyze EEG segments of patients with mesial temporal lobe epilepsy in [24], where

a reference state is defined in the immediate pre-ictal data and is used to derive three

features that quantify the discrimination between pre-ictal and inter-ictal states. A

classifier trained on the features achieves a sensitivity of 85%. The work in [25]

uses a recurrent neural network to learn and distinguish between several seizure and

non-seizure features extracted directly from the EEG for a patient-specific seizure

detector. A sensitivity of 56% and a false positive rate of 0.06 per hour is achieved

by this model. A number of statistical features are extracted from transformed EEG

signals and a least squares support vector machine (SVM) is used for classification in

the seizure onset detector [26]. This model achieves an average sensitivity of 70.81%,

specificity of 85.46%, and accuracy of 83.85%. In [27], a system based on spike rate

measurement is proposed and evaluated for long-term iEEG. A sensitivity of 75.9%

with an average false prediction rate of 0.09 per hour is achieved by this system.
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In [28], the authors propose a method based on EEG signal differentiation to

enhance seizure features in an attempt to better detect the onset of a seizure via a

windowed variance method. A seizure is characterized by abnormal synchronization

in neuron firing, and thus sharp spiking activities in quick succession are observed. It

has been found that differentiation accentuates the spiking activity while suppressing

the background, thus aiding in the detection of seizure onset using the windowed

variance detection method. The detector in [28] achieves a sensitivity of 89.83%,

latency of 9.2 seconds, and a false detection rate of 0.125 per hour. In [29], the regions

of the brain involved in epilepsy are estimated by using the method of common

spatial pattern (CSP) [30, 31]. The objective of this method is to extract patterns

that represent the difference between one class of data and another. Thus, two

corresponding periods of recordings in [29] are studied, namely, ictal epileptiform

discharges (IED) and non-IED time intervals. IED time intervals are the periods

including IED signals, while non-IED time intervals are the periods excluding any

IED or abnormal physiological signals.

In many patients, seizures manifest in only certain EEG channels; therefore, only

a limited number of electrodes are needed to capture the electric activity associated

with the seizure. In many detectors, all the channels are used as inputs to the feature

extraction stage. This increases the detectors complexity and introduces uninforma-

tive EEG data into the system. In an attempt to decrease the computational load

of the seizure detection system and provide the detector with EEG data of epileptic

origin, channel selection methods are investigated. In [32], three channel selection

methods are evaluated prior to seizure detection, namely channel selection based on

variance, difference in variance, and entropy. It is found that a detection system

with channel selection based on variance performed similar to the situation when a

neurophysiologist selects the channels containing the most relevant seizure informa-
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tion. In [32], it is recommended to select the top 4 − 6 channels and analyze them

for seizure onset detection.

A review of interictal and ictal cardiac manifestation of epilepsy with focus on HR,

HRV, and ECG changes is given in [13]. A set of time- and frequency-domain features

and nonlinear parameters based on Poincare plots are extracted and analyzed from

the HRV of epileptic patients [33]. The analysis concluded that ictal HRV parameters

differ significantly from baseline HRV. In [12], a detector is implemented based on the

features extracted in [33]. This detector achieves a sensitivity of 88.66%, specificity

of 90%, and an accuracy of 88.33%. Biomedical signals are characterized by non-

linear, time-varying properties making them non-stationary from a statistical point-

of-view. However, the majority of analyses carried out on epileptic HRV exploit time-

domain or frequency-domain methods. The recent work in [34] demonstrates that

the combination of time-variant, frequency-selective, linear and nonlinear analysis

approaches can be beneficially used for the analysis of HRV in epileptic patients. The

work in [11] demonstrated that signal-adaptive approaches based on Matched Gabor

Transform with nonlinear bispectral analysis and Empirical Mode Decomposition

with time-variant nonlinear stability analysis show a noticeable difference between

specific HRV ictal and non-ictal components. The general focus of the works in

[11] and [34] is not to predict or detect a seizure but rather to provide additional

information on the mechanisms leading to changes in the autonomic nervous system

when a seizure occurs.

It is generally accepted that HRV provides additional information for the de-

tection of seizures. Thus, the strategic combination of EEG and HRV analysis can

help to develop robust seizure identification systems. The work in [35] proposes two

seizure onset detectors based on the combination of newborn multi-channel EEG and

HRV information. In the first detector, features extracted from EEG and HRV are
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combined into a single feature vector prior to classification. This detector achieves

95.2% sensitivity and 88.6% specificity. In the second detector, EEG and HRV in-

formation are classified independently and then combined to obtain a final decision.

This detector achieves 95.2% sensitivity and 94.3% specificity. A neonatal seizure

detector based on the combination of simultaneously-recorded EEG and ECG is

proposed in [36], where a sensitivity of 97.52% and a false alarm rate of 13.18% is

obtained.

1.4.1 Limitation of Existing Methods

Several short comings are present in the existing seizure detection methods. These

short comings are outlined in the following points:

• Limited research has been done in the area of EEG feature enhancement as a

technique to improve seizure onset detection. Feature enhancement is a cru-

cial component of seizure detection systems because some EEG features are

more informative after certain enhancement techniques are applied. Enhanc-

ing seizure features while simultaneously attenuating non-seizure features can

decrease the burden on the classification algorithm and improve the detector’s

overall performance in terms of sensitivity, detection onset latency, and false

alarm rate. Furthermore, feature enhancement can improve the discrimination

between seizure EEG and background EEG and noise.

• HRV signals are nonlinear and non-stationary in nature allowing the frequency

content of the signal to vary with time. It is well documented that this variation

may be crucial in the important tasks of detection [37]. However, current

seizure detectors have limited their analysis of HRV to the time or frequency

domains using linear and nonlinear methods. This major limitation restricts

the potential of ECG and HRV signals in seizure detection, as well as decreases
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the quality of features that can be extracted.

• Current state-of-the-art EEG-based, ECG-based, and EEG-ECG based seizure

detectors fail to detect 100% of a patient’s seizures, thus decreasing their reli-

ability as a detection system.

1.5 Research Contributions

In an attempt to address and improve the shortcomings of current state-of-the-art

SODs, we propose a novel architecture for the robust detection of epileptic seizures

through the fusion of simultaneously-recorded scalp-EEG and ECG. We propose a

novel detector architecture that exploits the method of CSP as a feature enhancement

technique for EEG data. In the context of this thesis, feature enhancement refers to

emphasizing the energy in the seizure EEG and suppressing the energy in non-seizure

EEG. The proposed architecture shows that after CSP feature enhancement, seizure

and non-seizure EEG are more distinct. As a result, the extracted energy features of

the non-seizure EEG signal are attenuated while the energy features of the seizure

EEG are amplified. Furthermore, we propose two EEG detector architectures. The

first detector exploits all the features extracted from the CSP-enhanced channel-

selected EEG data and feeds them into a single SVM for seizure onset detection.

We refer to such a detector as a traditional-classification detector (TC-detector). In

the second detector architecture, we propose a novel classification stage where each

feature extracted from one of the four sub-bands is fed into a separate SVM for

classification. The band-specific local classification decisions are then fused to derive

a global detection decision. We refer to such a detector as band-sensitive detector

(BS-detector).

In addition, because time-frequency (TF) representations are able to localize

the signals energy in both time and frequency by mapping a one-dimensional sig-
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nal into a two-dimensional representation, we adopt a signal adaptive, quadratic

time-frequency distribution approach in analyzing HRV based on the combination of

the Matching-Pursuit (MP) and Wigner-Ville Distribution (WVD) algorithm. This

method enables the extraction of more meaningful features from HRV data, and thus,

it improves the classification and detection stages.

The features extracted from the EEG and ECG signals are independently clas-

sified and then their independent decisions are fused to output a single decision.

Our experimental results indicate that such a fused system can lead to an improved

detection performance in terms of accuracy, false alarm rate, and latency compared

with other state-of-the-art detectors. Specifically, the contributions of this work can

be summarized as follows:

• A SOD is developed based on the fusion of EEG and ECG data. The detector

consists of an EEG-based detection system, an ECG-based detection system,

and a fusion system.

• In the EEG-based detection system, a CSP-based feature enhancement stage is

implemented on scalp-EEG to emphasize the seizure features while attenuating

the non-seizure features. The features are extracted from four seizure-relevant

frequency bands, which are then classified independently and then fused ac-

cording to different fusion methods.

• In the ECG-based detection system, a combined MP-WVD algorithm is applied

to HRV data prior to feature extraction so that more meaningful features can

be analyzed compared with features extracted only from the time- or frequency-

domain.

• Two EEG/ECG fusion systems are investigated, namely, the direct fusion sys-
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tem and over-ride fusion system.

• The performance of the proposed fusion detector is evaluated and compared

with the state-of-the-art detectors. The proposed detectors achieve 100% sen-

sitivity and specificity of over 99%.

1.6 Overview of Thesis

The remainder of the thesis is organized as follows. Chapter 2 describes the

components making up the EEG-based SOD. Chapter 3 evaluates the performance

of the EEG-based SOD on a set of clinical patients and compares the results with

state-of-the-art SODs. Chapter 4 discusses and evaluates the ECG-detection unit. In

Chapter 5 the EEG-ECG fusion SOD is presented and its performance is evaluated

and compared to state-of-the-art detectors. A preliminary investigation regarding

the use of neural synchrony as a seizure detection measure is presented in Chapter

6. Finally, concluding remarks are given in Chapter 7.
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2. EEG-BASED SEIZURE ONSET DETECTION

In this chapter, two novel epileptic SODs are proposed. The detectors rely on

a CSP based feature enhancement stage that increases the variance between seizure

and non-seizure scalp EEG. The proposed feature enhancement stage enables better

discrimination between seizure and non-seizure features. The first detector adopts a

conventional classification stage using a SVM that feeds the energy features extracted

from different sub-bands to a SVM for seizure onset detection. The second detector

uses logical operators to pool SVM seizure onset detections carried out independently

across different EEG spectral bands.

2.1 Introduction

The proposed seizure detection algorithm adopts the concept of binary classi-

fication for seizure detection. Binary classification is the process of assigning an

observation to one of two classes. In the problem at hand, an EEG segment must be

classified as either pertaining to the seizure class or non-seizure class of EEG. Deter-

mining the class membership of an observation involves two basic steps. First, salient

features that efficiently discriminate between the two classes are extracted from the

observation (EEG segment). In the case of seizure detection in EEG data, energy

is an excellent feature that effectively distinguishes between seizure and non-seizure

EEG. Secondly, a classifier must be trained to recognize the difference between the

features of each class so that it can accurately determine the class membership of

new, unlabeled data (observation) based on its extracted features.

The success of a binary classification task strongly depends on the features ex-

Part of this chapter is reprinted with permission from “Band-sensitive seizure onset detection
via CSP-enhanced EEG features” by Marwa Qaraqe, Muhammad Ismail, and Erchin Serpedin,
2015, Epilepsy and Behavior, vol. 50, pp. 77-87.
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tracted from the data and the type of classification algorithm employed to determine

class membership. Ideally, the best features are those that have a distribution of

values for one class that are very different than the distribution of values for the

second class. Therefore, a major factor that affects the performance of SODs is the

quality of features extracted from the EEG. In the proposed SOD, a CSP based fea-

ture enhancement stage is implemented in order to maximally differentiate between

seizure and non-seizure features.

Another factor that contributes to the success of detection algorithms is the

amount of pertinent information available versus the amount of invaluable informa-

tion contained in the data. To address this issue, a channel selection unit has been

implemented in the proposed detection algorithm.

2.2 Feature Processing Stage

This section presents the EEG feature processing stage of the proposed detec-

tors. Such a stage is composed of three units, namely, channel selection, feature

enhancement, and feature extraction, as shown in Figure 2.1.

2.2.1 Channel Selection

The aim of the channel selection stage is to automatically choose the EEG chan-

nels that contain the most valuable electrographic seizure information. This in turn

reduces the detector’s computational burden and omits information from invaluable

channels that may deteriorate the detector’s performance.

The channel selection method used in this work is based on the amount of variance

in the seizure EEG signal amplitude. The rationale is that during a seizure episode,

higher signal energy is observed as compared with the non-seizure case, and this

energy can be measured through variance. The variance in the seizure period of
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Figure 2.1: EEG Feature Processing Stage.

channel c, Vs(c), is expressed by,

Vs(c) =
1

I

I∑
i=1

(xc(i)− µc)2 (2.1)

where xc is the seizure EEG data for channel c, µc is the mean of the seizure EEG

data for channel c, and I is the number of samples in the seizure EEG data (equal to

the sampling frequency multiplied by the duration, in seconds, of the seizure EEG).

LetMch and Nch denote the set of available and selected EEG channels, respectively.

The Nch selected channels are chosen as the ones with the highest variance values,

and are given by

Nch = arg maxVs(c), (2.2)

where c ∈Mch and Nch < Mch is defined as the number of selected channels. Thus,

assuming the EEG record of interest contains I sample points, the new EEG matrix

after channel selection will have size Nch × I. In this work, we select the highest 5
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channels (i.e., Nch = 5).

The channel selection is done offline using a single EEG recording of a partic-

ular patient. Once the Nch channels have been identified, these channels are then

automatically chosen in all future online EEG recordings for that particular patient.

2.2.2 CSP-based Feature Enhancement

CSP is a method that uses a linear transform to project multi-channel EEG data

onto a low-dimensional spatial subspace with a projection matrix, Z, of which each

row consists of weights for each of the channels. In order to discriminate between the

two classes of EEG signals, seizure and non-seizure, the spatial filters are designed

so that each can extract temporal sequences of maximum variance from one class

of EEG signals (which corresponds to the minimum variance for a second class of

EEG signals). This is achieved by the simultaneous diagonalization of the covariance

matrices of both classes of EEG signals. In essence, the main idea of CSP filtering is

to maximize the difference in variance between two classes of EEG signals. When this

is done, more discriminatory features between the two EEG classes can be extracted.

The mathematical details are outlined below [30].

Let X be an EEG matrix of size Nch × Ec containing a single seizure episode,

where Nch denotes the number of EEG channels and Ec represents the number of

digital samples taken from each channel. Assume the seizure starts at time t1 and

ends at t2 for a total duration of Ts-seconds. Let Xs be a Nch × Ts matrix that

corresponds to the seizure EEG data extracted from X. Similarly, let Xns be a

Nch × Ts matrix that corresponds to the non-seizure EEG data extracted from X

for a duration of Ts seconds of non-seizure EEG. The normalized spatial covariance
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matrices of Xs and Xns are represented as

Rs =
XsX

′
s

trace (XsX
′
s)

(2.3)

and

Rns =
XnsX

′
ns

trace (XnsX
′
ns)

(2.4)

respectively, where X
′

is the transpose of X and trace(A) computes the sum of the

diagonal elements of matrix A. The composite normalized covariance matrix is given

by

Rc = Rs +Rns. (2.5)

This composite covariance matrix is then factored into products of three matrices

using the method of eigenvalue decomposition as follows

Rc = UΛU
′
, (2.6)

where U is the Nch × Nch matrix of eigenvectors and Λ is the Nch × Nch diagonal

matrix of eigenvalues. A whitening transformation matrix, P , can be formed as

follows:

P =
U
′

√
Λ
. (2.7)

It can be shown that if Rs and Rns are individually transformed such that

Ss = PRsP
′

and Sns = PRnsP
′
, (2.8)

then Ss and Sns share common eigenvectors (basic spatial patterns) and the sum of

the corresponding eigenvalues for the two matrices will always be 1. In particular, if
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Ss is factored such that

Ss = V DsV
′

(2.9)

and Sns is factored such that

Sns = V DnsV
′
, (2.10)

then

Ds +Dns = I, (2.11)

where I represents the identity matrix, Ds denotes the diagonal eigenvalue matrix

corresponding to Ss, Dns stands for the diagonal eigenvalue matrix corresponding to

Sns, and V is the common eigenvector matrix of both Ss and Sns.

This result is extremely valuable for the separation of two classes of EEGs, seizure

and non-seizure EEG, since the eigenvectors will be in the subspace that maximizes

the number of the components belonging to that subspace. More specifically, with

respect to the whitened measurement space spanned by V , if the eigenvalues of Ss and

the corresponding eigenvectors are arranged in descending order, then the variance

accounted for by the first m-eigenvectors will be maximal for Xs, where m ∈ [1, Nch

2
]

and Nch

2
is an integer. In the event that Nch is odd, Nch

2
is rounded to the nearest

integer. Because of the sum constraint in (2.11), the variance accounted for by these

m-eigenvectors must be minimal for Xns. In other terms, the eigenvectors with the

largest eigenvalues for Ss will have the smallest eigenvalues for Sns, and vice versa.

The eigenvalue matrix can be expressed as

V = [v1v2 · · ·vNch
], (2.12)

where vi is a column vector that corresponds to the ith eigenvector of V . The

eigenvalues of Ss and its corresponding eigenvectors are arranged in a descending
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order so that the first column of V corresponds to the vector that accounts for the

maximum variance for Xs and minimum variance for Xns. For maximal seizure

enhancement, only vector v1 is chosen from V so that

z = v
′

1P = [z1 z2 · · · zNch
] (2.13)

is a projection vector of size 1×Nch. The projected vector contains the optimal set

of weights that maximize the variance of seizure events and simultaneously minimize

the variance of non-seizure events. The components of the projection vector, z,

are the spatial filters that yield non-uniform weights to EEG channels so that the

difference between the two classes of EEG signals (i.e., seizure and non-seizure) is

maximized in terms of variance.

For a particular patient, the projection vector, z, is extracted offline from a single

EEG recording of that patient (X). Once z has been a identified, all future EEG

data can be enhanced (online) by

QCSP = zQ (2.14)

where Q is an EEG data matrix independent of X and QCSP is the CSP version of

the original EEG matrix Q.

2.2.3 Feature Extraction

This section discusses the feature extraction methodology adopted in the EEG-

based SOD. The extraction of salient features from the input data is a crucial step in

any application of seizure detection. In this work, salient features are extracted from

the EEG signal after it has gone through the feature enhancement unit. Features are

usually extracted from reasonably small time segments (epochs) due to the highly
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non-stationary characteristics of EEG signals. A sliding window of length L = 2

seconds is moved along the EEG signal by one-second intervals in order to extract

the 2-second epoch. Each epoch is then fed into the feature extraction unit.

2.2.3.1 Wavelet Transform

The onset of a seizure is often associated with rhythmic activity that is composed

of multiple frequency components. In order to detect seizures with high accuracy,

it is important to consider the multiple spectral components that relate to epileptic

activity. Therefore, in an attempt to improve detection accuracy, features should

be extracted from several EEG sub-bands. The EEG activity of clinical relevance

is limited to the frequency band 0.5 − 50 Hz; however, the frequency range that

captures various seizure onset electrographic manifestations is 0.5− 25 Hz. The sub-

band signals that collectively represent the activity at time-scales corresponding to

the seizure frequencies are the δ, θ, α, and β EEG frequency bands, where δ < 4 Hz,

θ ∈ [4, 7] Hz, α ∈ [8, 15] Hz, and β ∈ [16, 31] Hz.

In order to extract relevant sub-band signals from a given EEG epoch, a multi-

resolution wavelet decomposition is used. In a multi-resolution wavelet decomposi-

tion, the signal of interest is passed through an iterated filter bank, similar to that

in Figure 2.2, to extract sub-band signals of interest. The time scale or frequency of

activity resolved by a particular sub-band signal is determined by the iteration level

producing it and the choice of the analysis filters H0(z) and H1(z). The low and high

pass filters, H0(z) and H1(z), are chosen to be associated with the fourth member

of the Daubechies wavelet family as these filters exhibit a maximally flat response in

their passband as well as little spectral leakage in their stop bands [38].

Generally, the sub-band signals produced by higher iteration levels contain lower

frequency components and capture long time-scale activity, while those produced

28



Figure 2.2: Multilevel wavelet decomposition filter bank. The choice of the analysis
filters, H1(z) and H0(z), determines the time scale of activity captured within each
sub-band signal [16].

by lower iteration levels contain higher frequency components and capture shorter

time-scale activity. For the purpose of seizure detection, only sub-band signals

{d4[n], d5[n], d6[n], d7[n]} are computed because collectively they represent the ac-

tivity at time scales corresponding to frequencies from 0.5 to 25 Hz. In particular,

the sub-band signals d4[n], d5[n], d6[n], and d7[n] correspond to the β, α, θ, and δ

bands, respectively. This is evident from the frequency response of the cascaded

filters shown in Figure 2.3. The lowest level sub-band signal is associated with the

widest bandwidth frequency response, while the highest level sub-band signal is asso-

ciated with the narrowest bandwidth frequency response. The impulse responses of

the cascaded filters are shown in Figure 2.4 for levels 4, 5, 6, and 7. The lowest level

sub-band signals are associated with the shortest time-scale impulse response, while

the highest level sub-band signal is associated with the largest time-scale impulse

response.
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Figure 2.3: Frequency response of the wavelet filter bank for levels 4, 5, 6, and
7. Lowest level sub-band signal is associated with the widest bandwidth frequency
response. Highest level sub-band signal is associated with the narrowest bandwidth
frequency response.
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Figure 2.4: Impulse response of the wavelet filter bank for levels 4, 5, 6, and 7.
Lowest level sub-band signals are associated with the shortest time-scale impulse
response. Highest level sub-band signal is associated with the largest time-scale
impulse response.
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The remaining sub-band signals primarily resolve activity of no clinical relevance

with respect to seizure onset detection. For example, the sub-band signal a7[n]

captures slow baseline variations (i.e., caused by sweating). The sub-band signals

{d1[n], d2[n], d3[n]} capture high-frequency components that usually signify artifacts

similar to those resulting from muscular contractions.

2.2.3.2 Energy Feature Extraction

The extracted sub-band signals are not used directly as feature vectors since

direct representation of the EEG waveform is too sensitive to noise. Instead, the

energies contained in the four sub-bands are computed as features. Exploiting the

energy information of a signal that has been enhanced via CSP provides the most

relevant information in discriminating between two classes. In particular, once CSP

is applied to an EEG signal, the amplitudes of the signals change such that they

have an increased difference for seizure and non-seizure signals. Consequently, the

feature that can best quantify the difference between the amplitudes is energy.

The energies in the two-second epoch sub-bands are computed as follows



Eβ

Eα

Eθ

Eδ


=



∑
(G2

β)∑
(G2

α)∑
(G2

θ)∑
(G2

δ)


, (2.15)

where Gβ, Gα, Gθ, and Gδ are the sub-band signals extracted from a particular

epoch, the summation is taken over the sample points in the epoch, and Eβ, Eα, Eθ,

and Eδ are the energies in the β, α, θ, and δ sub-bands of the epoch, respectively.
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2.3 Classification Methodology

In this section, the classification stages of the two proposed detectors are dis-

cussed. The first detector classification stage provides the SVM with all features

extracted from the four sub-bands in a single feature vector. The second detector

classification stage is composed of two units. The first unit finds the detection de-

cisions for each sub-band independently of the other sub-bands. Hence, the energy

feature extracted from each sub-band is fed into an SVM. The second unit fuses the

band-specific decisions to derive the global detector decision. The rationale behind

such a classification methodology will be explained later.

In an attempt to decrease the number of false seizure detections, a timing con-

straint, Tc, is adopted in both detectors. The timing constraint does not allow the

detector to declare a seizure event until SVM has detected Tc consecutive seizure

epochs. Using a large value for Tc will decrease the detectors false alarm rate; how-

ever, it will increase the time between the actual seizure onset and the time when

the detector raises an alarm. Small values for Tc will decrease the time difference

between an actual seizure onset and the detector-based onset, but will increase the

false alarm rate of the detector. In this work, we adopt Tc = 3. Therefore, the detec-

tors must observe at least 6 seconds of seizure activity in the EEG before declaring

a seizure event.

2.3.1 SVM

In the proposed detectors, an SVM-based classifier is used to classify a new feature

vector as either belonging to a seizure brain state or a non-seizure brain state. SVMs

must be trained on feature vectors representing both seizure and non-seizure EEGs.

After training, SVMs are able to determine the class membership of a newly observed

feature vector based on which side of a separating hyperplane the observation lies.
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Hence, for each patient, the SVM is trained offline on an EEG record of that patient.

Following such a training, the SVM is able to detect a seizure event online from a

new EEG record.

The hyperplane separating the two classes is defined to be maximally distant

from the boundary cases of each class. The boundary cases are defined as support

vectors carrying the information relevant to solving the classification problem. In

the case of seizure detection, a linear hyperplane cannot accurately separate seizure

features from non-seizure features; therefore, SVMs generally use more complex, non-

linear kernels to determine the decision boundary (separating hyperplane). The SVM

software used for classification purposes in this work is based on the built-in SVM

algorithm in the MatLab software and the Gaussian radial basis function (RBF) is

chosen as the non-linear kernel.

The ability of an SVM to discriminate between two classes is influenced by several

factors, namely, their separability, the parameters of the chosen kernel, and the class-

specific penalty for determining a decision boundary that misclassifies a percentage

of training samples, C. The RBF’s sole parameter, σ, influences the sophistication of

the decision boundary. Small values of σ will translate into an increasingly sophisti-

cated boundary that correctly classifies a higher percentage of training examples. In

addition, large values for C favors the determination of a decision boundary that cor-

rectly classifies the training examples. Therefore, extreme choices for both of these

variables increase the risk of over-fitting the data, causing SVM to perform poorly

on a new set of data. As a result, in this work, σ is set to 1 and equal class-specific

penalties for seizure and non-seizure classes is chosen (C = 1).
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2.3.2 Traditional Classification

In the traditional classification (TC) detector, each EEG epoch is assigned to a

seizure or non-seizure class using an SVM that is trained on feature vectors repre-

senting both seizure and non-seizure epochs. The feature vector fed into the SVM

is composed of the energy contained in each frequency sub-band of the EEG epoch,

as given in (2.15). Therefore, the SVM uses all the information from all extracted

features simultaneously to classify an EEG epoch. Figure 2.5 shows a block dia-

gram illustrating the detector’s architecture. The feature processing block includes

all components shown in Figure 1.

Figure 2.5: An illustration of TC-detector architecture. The feature processing block
includes all components shown in Figure 2.1.

2.3.3 Band-Sensitive Classification

A novel classification stage is proposed based on the fusion of band-specific local

decisions, as shown in Figure 2.6. The classification stage is based on two major

units. In the first unit, the energy contained in the four frequency sub-bands are

separately classified by different SVMs that have been trained offline by features

from the respective energy band. The decision of each SVM, (Dβ, Dα, Dθ, and Dδ)
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will classify the features from each sub-band as either belonging to the seizure class,

denoted by 1, or the non-seizure class, denoted by 0. The second unit of the classi-

fication stage is a fusion unit that combines the output of all four SVMs to yield a

single global decision.

The motivation behind adopting such a detector is to investigate the electro-

graphic manifestation of epileptic seizures in the β, α, θ and δ frequency bands.

Certain seizures portray unique electrographic alterations in specific frequencies.

Therefore, analyzing each frequency sub-band separately allows for the deep in-

vestigation of such manifestations. Additionally, for some patients, specific bands

exhibit maximum separation between seizure and non-seizure events using the CSP-

based feature enhancement stage. Investigating separate frequency bands enables an

improved detection performance, as will be shown in Chapter 3.

Figure 2.6: An illustration of the BS-architecture. The feature processing block
includes all components shown in Figure 2.1.

Three different fusion techniques are analyzed in the BS-detector, as outlined

below.
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2.3.3.1 AND Fusion

The first fusion technique is based on the AND logical operator, where all four

sub-band signals must be classified as seizure for the global decision to yield a seizure

result. Otherwise, the global result will be non-seizure. This can be expressed by

Dβ ∧Dα ∧Dθ ∧Dδ = 1, (2.16)

if and only if Dβ = Dα = Dθ = Dδ = 1 and

Dβ ∧Dα ∧Dθ ∧Dδ = 0, (2.17)

otherwise, where ∧ denotes the AND logical operator.

2.3.3.2 OR Fusion

The second fusion technique is based on the OR logical operator. Here, the global

decision can declare a seizure event if at least one of the sub-band decisions yields a

seizure event. This is described by

Dβ ∨Dα ∨Dθ ∨Dδ = 0, (2.18)

if and only if Dβ = Dα = Dθ = Dδ = 0 and

Dβ ∨Dα ∨Dθ ∨Dδ = 1, (2.19)

otherwise, where ∨ denotes the OR logical operator.
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2.3.3.3 MAJORITY Fusion

In the third fusion technique, the global decision can only declare a seizure event

if and only if more than 50% of the sub-band decisions are seizure events. This fusion

technique is the majority (MAJ) method. The MAJ operator can be expressed as

MAJ = B1 ∨B2 ∨B3 ∨B4 (2.20)

where B1 = Dβ ∧ Dα ∧ Dθ, B2 = Dβ ∧ Dα ∧ Dδ, B3 = Dα ∧ Dθ ∧ Dδ, and B4 =

Dβ ∧Dθ ∧Dδ. For MAJ = 1, either B1, B2, B3, or B4 should yield 1, and in order

for B1, B2, B3, or B4 to yield 1, all of their sub-components must be 1. Therefore,

the MAJ operator guarantees that for a seizure to be declared as a global decision,

at least three of the four sub-bands must have been classified as seizure events.

37



3. EEG-BASED SOD PERFORMANCE RESULTS

This chapter analyzes the effectiveness of the proposed feature enhancement unit

and BS-classification method of the EEG-based SOD introduced in Chapter 2. The

performance results for the EEG-based SOD on a set of clinical patients are also

evaluated and compared to the state-of-the-art SODs.

3.1 Clinical Data

The data used to evaluate the proposed detectors in this chapter is from a pub-

licly available database consisting of EEG recordings from pediatric subjects with

intractable seizures, collected at the Children’s Hospital Boston (CHB) [39]. The

subjects have been monitored for up to several days following withdrawal of anti-

seizure medication in order to characterize their seizures and assess their candidacy

for surgical intervention. The CHB database includes 23 patients where each pa-

tient has between 9 to 42 continuous EEG recordings and exhibits between 3 to 14

seizures. All signals are sampled at 256 samples per second with 16-bit resolution.

The International 10 − 20 System of EEG electrode positions and nomenclature is

used for these recordings. All recordings have 23 EEG channels.

For each clinical seizure, an expert has indicated the earliest EEG change asso-

ciated with the seizure. The data is segmented into one hour long records. Records

that do not contain a seizure are referred to as non-seizure records and those that

contain one or more seizures are referred to as seizure records. Furthermore, the

recordings are made in a routine clinical environment, so non-seizure activity and

artifacts such as head/body movement, chewing, blinking, early stages of sleep, and

Part of this chapter is reprinted with permission from “Band-sensitive seizure onset detection
via CSP-enhanced EEG features” by Marwa Qaraqe, Muhammad Ismail, and Erchin Serpedin,
2015, Epilepsy and Behavior, vol. 50, pp. 77-87.
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electrode pops/movement are present. No constraints regarding the types of seizure

are imposed; the data set contains focal, lateral, and generalized seizures.

No form of pre-processing for artifact and noise removal has been performed on

the data. Our approach to deal with artifacts is based on training our detector to rec-

ognize artifacts rather than actively removing them using standard signal processing

techniques.

3.2 Effectiveness of the EEG Feature Enhancement Unit

In this section, the effect of applying CSP on EEG signals that contain seizure

events is analyzed. The CSP projection vector consists of spatial weights that are

optimized to maximize the variance between two classes, i.e., seizure and non-seizure

EEG. For comparison purposes, an equal-weight spatial averaging (EWSA) method

has also been adopted. Such a benchmark resembles existing detector architectures

that do not include a feature enhancement stage. In the EWSA, the Nch channels of

an EEG matrix Q are averaged with equal weights so that a single EEG vector, q,

is obtained. More specifically, let b be the equal weight vector

b =

[
1

Nch

1

Nch

· · · 1

Nch

]
. (3.1)

Therefore, each EEG channel has an equal averaging coefficient of 1
Nch

, and the

output vector of EWSA is given by qEWSA = bQ.

3.2.1 CSP Enhanced EEG

Figures 3.1 and 3.2 depict a one-hour long EEG record of patient 1 under EWSA

and CSP, respectively. The blue signals correspond to the non-seizure EEG data

and the red signals represent seizure EEG data. The start and end of the seizure

is from 1015 seconds till 1066 seconds. The seizure part of the EEG record under
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EWSA cannot be easily detected from the background EEG (non-seizure EEG).

Specifically, the EEG waveforms from 2350 to 3500 seconds closely resemble the

seizure EEG under EWSA. This similarity between seizure and non-seizure EEG

makes it difficult to extract features that uniquely differentiate seizure events from

non-seizure events, leading to poor performance of the detector. However, after CSP

filtering, the seizure EEG amplitude is measured between −140 µ-volts to 140 µ-

volts, while that of the non-seizure is measured between −30 and 30 µ-volts, on

average. The advantage of CSP filtering is immediately made clear in Figure 3.2.
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Figure 3.1: EEG record of patient 1 using EWSA. Seizure is shown in red and marked
by the arrow. Blue indicates non-seizure activity.

Figure 3.3 depicts a one-hour long EEG record of patient 3 where all the channels

of the record undergo EWSA. The start and end of the seizure are highlighted in

red, starting from 2162 seconds till 2214 seconds. The non-seizure EEG here is also

depicted in blue. The seizure part of the EEG record cannot be easily recognized as it
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Figure 3.2: EEG record of patient 1 using CSP. Seizure is shown in red and marked
by the arrow. Blue indicates non-seizure activity.

blends in with the non-seizure EEG. Furthermore, EEG waveforms at 700 seconds,

1200 seconds, 1650 seconds, and from 1900 to 2400 seconds closely resemble the

seizure EEG. The similarity between seizure and non-seizure EEG creates a difficulty

in extracting features that uniquely represent seizure events from non-seizure events,

thus causing the detector to perform poorly.

Figure 3.4 illustrates the EEG record of patient 3 after CSP feature enhancement.

Once again, the effect of CSP on separating seizure and non-seizure EEG is evident.

The seizure EEG amplitude, shown in red, is measured between −400 µ-volts to 400

µ-volts, while that of the non-seizure is measured between −70 and 70 µ-volts, on

average. It is clear that CSP filtering significantly increases the difference between

the seizure and non-seizure amplitudes so that seizure instants are more prominent

and do not resemble non-seizure data.
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Figure 3.3: EEG record of patient 3 after EWSA. Seizure is shown in red and marked
by the arrow. Blue indicates non-seizure activity.
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Figure 3.4: EEG record of patient 3 after CSP. Seizure is shown in red and marked
by the arrow. Blue indicates non-seizure activity.
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3.2.2 CSP Enhanced EEG Features

The effectiveness of a detector to discriminate between seizure and non-seizure

epochs depends greatly on the quantitative difference between the extracted seizure

and non-seizure features. The more discriminatory the seizure and non-seizure fea-

tures are from each other, the better the classification stage performs. Figures 3.5-3.8

illustrate the difference in energy between the pre-seizure state and seizure state for

all four frequency sub-bands under the EWSA and CSP scenario for seven epileptic

patients. The pre-seizure duration is measured before the seizure event by approxi-

mately 90 seconds.

The energy difference for CSP feature enhancement is greater than EWSA for

all patients and all sub-bands, except for the β-band of patient 2. The information

contained in the β-frequency band for the second patient might not be relevant to

the manifestation of the seizure and can pertain to other non-seizure related events.

As a result, CSP will not enhance irrelevant, non-seizure information. In general,

some frequency bands will contain more seizure-related information than others,

and CSP puts emphasis only on seizure-related events, causing energy difference in

some bands to be enhanced more than others in terms of seizure features. This

phenomenon motivates building a band-sensitive detector that strategically exploits

the information within the bands that contain significant seizure information, instead

of using all bands regardless of whether they contain useful information. This, as

will be seen in the next section, will increase the detector’s performance. The benefit

of increased energy difference between pre-seizure and seizure epochs is observed in

the detection latency, the time between the expert marked seizure onset and the

detector’s alarm, and the ability of the detector to correctly recognize the onset of

a seizure. If the pre-seizure and seizure energies are similar, the classifier will take
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longer to identify seizure epochs, whereas if there is a distinct difference between the

two periods, the seizure onset can be identified earlier and more accurately.
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Figure 3.5: Average difference in energy between the pre-seizure and seizure EEG in
the β frequency sub-band.

Figure 3.9 shows the energy in the β-frequency band when feature extraction is

done on the EEG waveform in Figure 3.1. The seizure features closely resemble the

non-seizure features; thus, making it almost impossible to discriminate between the

two classes, causing the detector to fail to recognize a seizure event. Furthermore,

the resemblance of the seizure and non-seizure features increases the burden on the

detector to differentiate between the seizure and non-seizure features and often in-

creases the number of false detections or severely decreases the sensitivity of the

detector. Figure 3.12 depicts the extracted features from the β-frequency band of

the EEG record shown in Figure 3.2 (after CSP feature enhancement). The energy

in the non-seizure data is greatly attenuated and the seizure features are clearly
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Figure 3.6: Average difference in energy between the pre-seizure and seizure EEG in
the α frequency sub-band.
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Figure 3.7: Average difference in energy between the pre-seizure and seizure EEG in
the θ frequency sub-band.

45



1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

20

Patients

E
ne

rg
y 

di
ffe

re
nc

e 
be

tw
ee

n 
pr

e−
se

iz
ur

e 
an

d 
se

iz
ur

e 
E

E
G

 (d
B

)

 

 

EW − δ band
CSP − δ band

Figure 3.8: Average difference in energy between the pre-seizure and seizure EEG in
the δ frequency sub-band.

distinguishable from the non-seizure features.

Another example to illustrate the success of the feature enhancement unit is

shown in Figs. 3.11 and 3.12. Figure 3.11 depicts the energy in the θ-frequency band

when feature extraction is done on the EEG waveform in Figure 3.3, and Figure 3.12

depicts the extracted features from the θ-frequency band of the EEG record shown

in Figure 3.4 after CSP feature enhancement. The effect of the feature enhancement

stage is evident by visual comparison.

3.3 Performance Evaluation of the EEG-based SOD

In this section, performance evaluation results of the proposed detectors are pre-

sented and discussed. In these simulations, we compare the performance of the

proposed detectors to other detection systems that: 1) do not employ a channel

selection stage (e.g., [16],[27], [28], [40], [41], [42]), 2) do not employ a feature en-

hancement stage (e.g.,[16],[27], [32], [40], [41], [42]), 3) adopt a feature enhancement
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Figure 3.9: Energy contained in the β frequency band after EWSA of a seizure
record of patient 1. Seizure features are shown in red and are marked by the arrow.
Non-seizure features are shown in blue.
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Figure 3.10: Energy contained in the β frequency band after CSP of a seizure record
of patient 1. Seizure features are shown in red and are marked by the arrow. Non-
seizure features are shown in blue.
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Figure 3.11: Energy contained in the θ frequency band after EWSA of a seizure
record of patient 3. Seizure features are shown in red and are marked by the arrow.
Non-seizure features are shown in blue.
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Figure 3.12: Energy contained in the θ frequency band after CSP of a seizure record
of patient 3. Seizure features are shown in red and are marked by the arrow. Non-
seizure features are shown in blue.
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stage that is not based on CSP and do not employ a channel selection stage (e.g.,

[28]), 4) adopt a channel selection stage without a feature enhancement stage (e.g.,

[32]), 5) adopt a single SVM classification stage (e.g., [16],[27], [32], [28], [40], [41],

[42]]), 6) adopt a pre-processing stage to remove artifacts (e.g., [27], [41]), 7) use the

same clinical data set for testing (e.g., [16]), and 8) commercially available, i.e., a

standard detector (e.g., [43]).

3.3.1 Testing Methodology and Performance Measures

To test the proposed detectors, a leave-one-out cross-validation testing scheme is

adopted for each subject. In the leave-one-out cross-validation testing scheme, the

SVM is given a training set that includes the seizure and non-seizure epochs from all

but one of the subject’s recordings. The detector then attempts to detect the seizure

epochs from the excluded record using the learned knowledge from the training set.

This is repeated until each recording from the subject is excluded once.

Each subject’s EEG recording undergoes channel selection and CSP filtering using

the chosen channels and extracted CSP filters from an independent EEG recording

that is not used in the training or the testing recordings. This record is only used

to select the Nch channels with the most valuable seizure-related information and to

extract the CSP filters for that particular patient.

The performance of the proposed detectors is characterized in terms of the de-

tection latency, number of false alarms per hour, and sensitivity. Detection latency

(DL) refers to the delay between the electrographic seizure onset marked by the

electroencephalographer and a seizure event declared by the detector. The detec-

tion latency accounts for the timing constraint Tc. The number of false alarms per

hour (FA/hr) is the number of times the detector declares the onset of a seizure in

the absence of an actual seizure. Sensitivity (S) refers to the percentage of seizures
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correctly identified by the detector.

3.3.2 Performance of the Proposed TC-SOD

The performance of the TC-detector in terms of sensitivity, detection latency, and

false alarm rate per hour is shown in Table 3.1 for several patients. It is evident that

patient 2 performs the worst in terms of sensitivity and false alarm rate per hour.

The reason behind the poor performance is because certain frequency bands of the

patient EEG present minimum separation between seizure and non-seizure events,

causing the detector to fail to detect some seizure instances as well as increasing

the detection latency. However, the performance of the detector with the remaining

patients achieves 100% sensitivity and low detection latency and false alarm rates.

Table 3.1: TC-Detector Performance
Patient S (%) DL (sec) FA / hr

1 100 0.66 0.5
2 66.67 19.33 1
3 100 8.25 0
4 100 4.8 0.5
5 100 3 0.11
6 100 7.25 1.87
7 100 1.75 0.15

3.3.3 Performance of the Proposed BS-SOD

Table 3.2 shows the performance of the BS-detector for several patients and for

different fusion methods. The proposed detector achieves 100% sensitivity for all

patients in all three fusion methods. More specifically, the detector successfully

detects all seizures from all patients using all the fusion techniques. Analyzing each

patient separately, it is evident that the OR fusion method yields the highest false

alarm rate compared to the AND and MAJ methods. Such a performance is intuitive
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since for the OR fusion technique, a global seizure event is declared if SVM declares

only one seizure event in any of the frequency bands. Therefore, normal, seizure-like

activity observed in particular frequency bands will trigger the system to initiate a

seizure alarm, when in fact no seizure is present. On the other hand, the OR method

is able to detect the onset of a seizure in the shortest amount of time since this

method is sensitive to any seizure alarm in any frequency band.

Table 3.2: BS-Detector Performance
Patient S (%) DL (sec) FA / hr

AND OR MAJ AND OR MAJ AND OR MAJ

1 100 100 100 2.16 0 0.66 0.25 12.06 2.5
2 100 100 100 27.33 10.33 12 0 4.81 0.5
3 100 100 100 9 0.75 5 0.06 4.06 0.43
4 100 100 100 27 2.6 17.8 0.22 4.33 0.44
5 100 100 100 4 1 3.5 0.51 6.08 1.08
6 100 100 100 10 0.25 9 1.06 4.81 2.25
7 100 100 100 8 1.25 3 0.07 4.81 0.33

For Tables 3.1 and 3.2, the false detections of patient 6 are caused by non-

physiological artifacts. All other false detections in the performance tables are caused

by periodic discharges that closely resemble the seizure onset of the subject and ex-

ceed 6 seconds in duration, such as IEDs. These false alarms may, in fact, have

been mini-seizures. These false detections can be avoided by forcing the detector to

declare a seizure event only in the presence of seizure activity for 8 or 10 seconds

(Tc = 4 or Tc = 5). The cost of such a modification would be an increase in the

average detection latency.
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3.4 Comparison with State-of-the-Art SODs

Table 3.3 shows the mean performance of the TC-detector and BS-detector over

all patients. The BS-detector is able to detect all of the patients seizure with a latency

ranging from 2.31 seconds for the OR fusion method to 12.5 seconds for the AND

fusion method. The MAJ fusion technique achieves a good compromise between delay

and false alarm rate as compared with the AND and OR fusion techniques. Compared

with TC-detector, the BS-detector achieves higher sensitivity with comparable results

for the delay and false alarm rate in case of the MAJ fusion technique.

Table 3.3 also compares the performances of the proposed detectors with several

state-of-the-art seizure onset detectors. The detectors in [27] and [41] both adopt

different pre-processing steps before detection in order to rid the EEG from noise

and artifacts. The proposed detector in [16] uses the same patient database as the

one described in Section 3.1. Furthermore, the extraction of the features is done in

a similar manner to Section 2.2.3. As a result, the detector [16] is analogous to the

TC-detector while omitting the channel selection and feature enhancement stages.

The detector in [28] uses the method of signal differentiation as a feature enhance-

ment method but does not assume any form of channel selection. The detection

algorithm in [40] extracts temporal and spectral features from iEEG channels. The

spectral features of the iEEG are extracted by sliding one-second intervals of the

iEEG waveform through a filter bank and then measuring the energy falling within

the passband of each filter. The detector in [32] uses the same channel selection

method adopted in this work. The selected channels then undergo the same feature

extraction process as in Section 2.2.3. The detector in [43] is developed by NeuroPace

Inc. and is commercially available. The detector in [44] is an FDA approved seizure

onset detector developed by Optima Neuroscience. The proposed detectors in this
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work achieve the best sensitivity results when compared with the existing detectors

shown in Table 3.3. Furthermore, the proposed detectors, on average, perform better

in terms of detection latency than the detectors proposed in literature.

3.4.1 Proposed SODs and their Clinical Relevances

Seizure onset detection is particularly useful to neurologists who usually spend

hours analyzing patients’ EEG records in an attempt to locate a seizure. Automatic

seizure detection systems, such as the proposed EEG-based SOD, greatly reduce

the volume of data that must be analyzed by doctors. However, these systems are

required to be highly sensitive, even if the false alarm rate is high. The reason is that

neurologists are in general capable to easily cast out false alarms from the detectors

results by reviewing the suspicious alarms. The BS-detector is ideal for neurologists

to identify a seizure since it achieves 100% sensitivity. In this regard, the AND fusion

technique is the best fusion method since it achieves high sensitivity with the lowest

false alarm rate and has an acceptable delay performance (delay here is not an issue

since neurologists are usually working off-line).

In addition, SODs are gaining more attention as possible seizure control devices.

Such detectors can control seizures by initiating anti-epileptic drugs or by selectively

stimulating certain parts of the brain when an oncoming seizure is detected. In a

hospital setting, such a device would be useful in initiating time-sensitive clinical

procedures necessary for the investigation of various epileptic characteristics, such as

localizing a patient’s epileptogenic focus via ictal-SPECT or fMRI. Seizure prevention

applications require high sensitivity and low false alarm with minimum delay. In this

regard, both the TC-detector and the MAJ fused BS-detector perform optimally with

respect to sensitivity compared to the state-of-the-art detectors and offer a good

compromise between sensitivity, false alarm, and detection latency.
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Table 3.3: Average Detector Performances
Detector Architecture S (%) DL (sec) FA / hr Length of data (hrs)

TC-detector 95.2 6.43 0.59 90

AND 100 12.5 0.35 90
BS-detector OR 100 2.31 6.03 90

MAJ 100 7.28 1.2 90
[42] 90.15 n/a 0.03 95

[41] 73.9 n/a 0.15 1475
[27] 75.8 10 0.09 95
[32] 96 n/a 0.14 1419
[28] 89.8 9.2 0.125 428
[40] 97 5 0.6 875
[16] 94.2 8 ± 3.2 0.25 60
[43] 97 5.01 0.013 200
[44] 80 n/a 0.086 1208
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4. ECG-BASED SEIZURE ONSET DETECTION

In this chapter, the components making up the ECG-detection unit, shown in

Figure 4.1, are presented in detail. In particular, the steps taken to extract the HRV

information from ECG are discussed, the quadratic TF algorithm is analyzed, and

the feature extraction and classification steps are presented. Also, the performance

of the ECG-based detector on a set of clinical patients is presented.

Figure 4.1: An illustration of the ECG-based SOD architecture.

4.1 HRV Extraction

This section presents the different steps required to obtain the HRV from raw

ECG. The steps are illustrated in Figure 4.2.

The first step addresses the problem of baseline wander in the ECG data. ECG

baseline correction in this work is done via a robust and computationally efficient, it-

erative algorithm termed Baseline Estimation and Denoising with Sparsity (BEADS)
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Figure 4.2: HRV extraction process.

[45]. The second step is implementing a QRS detection algorithm that detects QRS

complexes and localizes R-waves. The algorithm works by searching for local max-

ima that are above a certain predefined threshold value. The threshold value ensures

that the R-peaks are detected instead of the P- and T-wave maxima. Once an R-

peak is detected, the algorithm waits for a period of ∆R seconds before searching

for a consecutive R-peak. The wait period is adopted to avoid misclassification due

to noise. The R-peaks are taken as the location of the R-points. Next, the time

duration between consecutive R-peaks is used to represent the heart’s beat-to-beat

interval. This series is known as the RR interval time series, RRi, or tachogram.

The next step in the HRV extraction stage is the removal of outliers from the RRi

data. Outliers may exist in the RRi due to QRS missed detections, false detections,

ectopic beats, or other random-like physiological disturbances. In general, outliers

are defined as values which are not within a specified limited interval. In the context
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of HRV extraction, outliers are defined as [46]:

Outlier(n) =



RRi(n) if RRi(n) < 1st quartile(RRi)−

interquartile range(RRi)× η

RRi(n) if RRi(n) > 3rd quartile(RRi)+

interquartile range(RRi)× η

(4.1)

where 0 < n ≤ length(RRi) and η is a constant. For our data, η is chosen to be

7. Once the outliers are identified, they are removed and the missing data is spline

interpolated.

An instantaneous heart rate (IHR) signal is obtained by taking the inverse of the

RRi signal. The IHR signal is not uniformly sampled. In the case of time-domain

analysis, it is not an issue; however, time-frequency analysis assumes the signal to

be uniformly sampled. Therefore, the IHR signal is then uniformly sampled through

the method of linear interpolation to obtain a new uniform sampling rate of 20 Hz.

The resulting signal, y, constitutes the HRV signal.

4.2 MP-WVD Algorithm

This section outlines the methods used to generate a high-quality TF distribution

of the HRV signal.

The main idea of the quadratic TF distribution is to distribute the energy of

a signal along the time and frequency domains. In this work, the WVD quadratic

transform is investigated. The WVD satisfies several desirable mathematical prop-

erties; namely, it is real valued, it preserves time and frequency shift information

contained in the signal of interest, it satisfies the marginal properties, the frequency

integral of the WVD corresponds to the signal’s instantaneous power, and the in-

stantaneous frequency can be estimated from the first moment of the WVD [47].
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Although the WVD has good theoretical properties, its major drawback is that it

can suffer from interference terms (or cross terms) between the components of a

multi-component signal. These interference terms oscillate in the TF plane and in-

dicate activity which does not exist, leading to erroneous visual interpretation of a

signal’s TF structure. To partially reduce the interference terms, the analytic signal

can be used in the WVD algorithm. Windowed versions of the WVD have been pro-

posed to reduce the interference terms; namely, the pseudo-WVD (PWVD) and the

smoothed-pseudo-WVD (SPWVD) [48]. However, these methods present a trade-off

between TF resolution and cross-term reduction and they only reduce the interfer-

ence terms; they do not eliminate them. Because interference terms in the WVD

appear only in multi-component signals, we implement an algorithm that decom-

poses the HRV signal into a sum of mono-component signals. This decomposition

can be carried over by employing the MP algorithm.

The MP algorithm decomposes a signal into a sum of atoms from a given dic-

tionary. In this work, the Gabor atom dictionary is used because Gabor atoms are

mono-component signals per definition. Therefore, the application of the WVD on

a signal that has been decomposed via MP with Gabor atoms does not yield any in-

terference terms and presents excellent time-frequency resolution. The Gabor atom

can be expressed in terms of the modulated Gaussian function g(t) = e−πt
2
. The

Gabor atom assumes the expression [49]:

g(t) = Ae−π(
t−h
s )

2

cos (fm(t− h) + ϕ)) (4.2)

where s represents a scaling factor, fm denotes the frequency modulation, h stands

for the translation factor, ϕ models the phase, and A is a normalization factor

such that ‖g(t)‖ = 1. Let D represent the Gabor atom dictionary such that
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D = [g1(t), g2(t), · · · gM(t)], where M denotes the number of atoms in the dictio-

nary. The MP decomposition of the HRV signal y(t) is expressed as:

y(t) ≈
N∑
n=1

angn(t) +RN , (4.3)

where M � N , an is a weighting coefficient, and RN denotes the residual. The MP

decomposes y(t) by finding the best orthogonal projections amongst a set of basis

functions from the dictionary D that matches the structure of y(t). The result is

a finite number of basis functions organized in a decreasing order of energy. The

standard MP algorithm is an iterative algorithm and is outlined in the following

steps.

Step 1: Initialize n = 1 and R0 = y(t).

Step 2: Compute |〈Rn−1, gi(t)〉| for all gi(t) ε D.

Step 3: Find g∗n = argmax
gi(t)

|〈Rn−1, gi(t)〉|.

Step 4: Compute the weighting coefficient: an = 〈Rn−1, g
∗
n〉.

Step 5: Compute the new residual: Rn = Rn−1 − an · g∗n.

Step 6: Remove g∗n from D.

Step 7: If n = m or ε ≤ threshold, stop, where m is a given iteration number and

ε is the energy of the residual Rn; otherwise set n = n+ 1 and go to Step 2.

Let the MP-decomposed HRV signal be denoted by yMP (t), then the WVD of yMP (t)

is given by

W (t, f) =

∫ +∞

−∞
yMP

(
t+

τ

2

)
y∗MP

(
t− τ

2

)
e−j2πfτdτ, (4.4)
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where the values of W (t, f) are stored into an Lt×Lf matrix and the asterix symbol

used as a superscript indicates the operation of complex conjugation. With these

combined algorithms, the MP-WVD approach provides excellent TF resolution of

the HRV signal without any interference terms.

4.3 Feature Extraction and Classification

There are many features that can be extracted from the TF distribution of the

HRV signal to characterize the seizure and non-seizure phenomena, such as central

frequency, mean, skewness, kurtosis, and Shannon entropy [50], [47] . In this work,

the skewness of MP-WVD HRV signal is chosen because, based on our experimental

analysis, skewness best characterizes changes in epileptic HRV. Skewness is a time-

domain feature that can be translated to the TF domain as follows [50]

Fskew =
1

(LtLf − 1)σ3
TF

Lt∑
i=1

Lf∑
j=1

(W [i, j]− µTF )3 , (4.5)

where µTF and σTF are the mean and standard deviation of W (t, f) and are given

by

µTF =
1

LtLf

Lt∑
i=1

Lf∑
j=1

W [i, j] (4.6)

and

σ2
TF =

1

LtLf

Lt∑
i=1

Lf∑
j=1

(µTF −W [i, j])2 , (4.7)

respectively. Once Fskew is extracted, it is classified as a seizure or non-seizure feature

by a SVM that has been trained on features of the same nature. In an attempt to

decrease the number of false seizure detections, a timing constraint, Tc, is adopted.

The timing constraint prevents the ECG-based detector from declaring a seizure

event until the SVM has detected Tc consecutive seizure epochs. The same timing
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constraint as in the EEG-based SOD is adopted, Tc = 3.

4.4 Performance Evaluation of the EEG-based SOD

In this section, the performance of the proposed ECG-based SOD is presented

and discussed.

4.4.1 Clinical Data

The data used to evaluate the ECG-based SOD detector is obtained from the

EPILEPSIAE project [51]. The data was recorded during pre-surgical epilepsy mon-

itoring at the Epilepsy Center of the University Hospital of Freiburg in Germany.

The dataset includes 10 patients where each patient has between 98 to 280 continu-

ous EEG and ECG recordings and exhibits between 5 to 22 seizures. All signals are

sampled at 256 samples per second with 16-bit resolution. The International 10− 20

System of EEG electrode positions and nomenclature is used for these recordings.

All recordings have 19 EEG channels and one-lead ECG recording.

Each seizure’s electrographic onset is marked by an experienced electroencephalo-

grapher and corresponds to the onset of a rhythmic activity that is associated with

a clinical seizure. Each seizure’s clinical onset time is also recorded. The data is

segmented into one-hour-long records. Records that do not contain a seizure are

referred to as non-seizure records and those that contain one or more seizures are

referred to as seizure records. Furthermore, the recordings are made in a routine clin-

ical environment, so non-seizure activity and artifacts such as head/body movement,

chewing, blinking, early stages of sleep, and electrode pops/movement are present.

No constraints regarding the types of seizure are imposed; the data set contains

complex partial (CP), simple partial (SP), and secondary generalized seizures (GS).

Table 4.1 summarizes the clinical data used in our performance evaluation.

No form of pre-processing for artifact and noise removal has been performed on
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the data. Our approach to deal with artifacts is based on training our detector

to recognize artifacts, rather than actively removing them using standard signal

processing techniques.

Table 4.1: Summary of Clinical Data used in Performance Evaluations
Patient No. Age Gender Type of Seizure No. of Recordings No. of Seizures

1 36 Male CP 172 11
2 52 Female SP 281 8
3 36 Male SP 121 5
4 43 Female SP & CP 130 8
5 65 Male SP, CP, & GS 138 8
6 26 Male SP 117 22
7 47 Male CP & GS 98 6

4.4.2 MP-WVD TF-Analysis

The HRV of patient 1 one-hour ECG data is depicted in Figure 4.3. The blue

signal corresponds to the non-seizure HRV data and the red signal is the seizure HRV

data. The seizure starts at 2638 seconds and lasts until 2693 seconds. This particular

patient observes a sharp decrease of HRV after the onset of the seizure, reaching 0.95

beats per second (bps). Figure 4.4 illustrates the MP-WVD of a segment of the HRV

taken 20 seconds prior to the seizure onset and 20 seconds after the seizure offset.

The HRV time-domain signal is also shown in Figure 4.4 for discussion purposes.

In this segment, the seizure onset and offset are marked by arrows. Approximately

ten seconds after the onset of the seizure, activity in the low-frequency band (0.04-

0.15 Hz) is noticed, followed by a sharp decrease of spectral activity in the very

low frequency band (0.0033-0.04 Hz). This activity coincides with the decrease in

HRV that occurs 33 seconds after the onset of the seizure. The skewness, calculated

from the MP-WVD of the HRV shown in Figure 4.3, is depicted in Figure 4.5. The
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skewness of the HRV decreases after the onset of the seizure and resumes normal

activity after the seizure episode has passed. Visually looking at the graph of the

skewness feature, we are able to detect the unusual activity from the background

features.
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Figure 4.3: HRV of patient 1.

4.4.3 Performance Assessment with State-of-Art SODs

The performance of the ECG-based detector is given in Table 4.2. The detector 

achieves an average sensitivity of 96.4% and has an average FA/hr of 5.4 seconds. The 

DL seems a bit higher than what would be desired. This is explained by investigating 

how different types of seizures affect HRV. A study carried out by [52] shows that 

ictal tachycardia (ITC) is an ictal phenomenon rather than a pre-ictal phenomenon 

and the onset of ITC varied between 21.6 and 23.7 seconds from the seizure onset in 

ECoG. Therefore, the resulting DL of the ECG-based SOD reflects the findings in

63

[52].



 

 

1

1.2

1.4

1.6

1.8

H
R

V
 (

bp
s)

Time (sec)

F
re

qu
en

cy
 (

H
z)

 
2628 2638 2648 2658 2668 2678 2688 2698 2708

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

seizure onset seizure ends

Figure 4.4: Segment of MP-WVD of the HRV of patient 1. Color bar in (bps)2.
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Table 4.2: ECG-Based Detector Performance
Patient No. FA/hr DL (sec) Sensitivity (%)

1 9.5 20.5 100
2 1.5 8.25 100
3 3 15 100
4 9 8 75
5 6 12 100
6 5 8 100
7 3.5 10 100

Avg 5.4 13.1 96.4

Table 4.3 compares the performances of the proposed ECG-based detector with

several ECG-based state-of-the-art seizure onset detectors. An extra performance

criterion, specificity, is added for comparison to state-of-the-art detectors that pro-

vide only specificity measures instead of a FA rate. The specificity is defined as

Specificity =
TN

TN + FP
, (4.8)

where TN is the amount of true negatives and FP is the amount of false positives.

The detector in [53] analyzes HRV using four different HRV methods with short

term moving window analysis. In [12], ten time-domain and frequency-domain fea-

tures are extracted from HRV and classified using an Artificial Neural Network

(ANN). The detector in [36] is based on the fusion of HRV-based decision and EEG-

based decision. The detector extracts time-domain features from HRV and spectral

features from EEG to detect neonatal seizures. The proposed ECG-based SOD ob-

tains the highest sensitivity and specificity level. No information has been released

regarding the FA/hr for [12] and [53] and regarding the DL for [12].
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Table 4.3: Comparison of Average Detector Performances
Detector Architecture FA/hr DL (sec) Sensitivity (%) Specificity (%)

ECG-based Detector 5.4 13.1 96.4 99.85
[53] n/a 14 76.64 n/a
[12] n/a n/a 88.66 90
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5. EEG-ECG FUSED SEIZURE ONSET DETECTION

This chapter outlines the procedure of fusing the ECG-based and EEG-based

decisions to yield a single detection decision. Two different fusing techniques are

analyzed and the proposed detector is tested on a set of clinical patients. Results are

discussed and compared to existing state-of-the-art SODs. Fig. 5.1 illustrates the

EEG-ECG fused SOD, where the EEG-based detector and the ECG-based detector

are outlined in Chapters 2 and 4, respectively.

Figure 5.1: An illustration of the ECG-EEG fusion SOD architecture.

5.1 Benefits of Using a Second Biosignal

As discussed in Chapter 1, seizures are characterized by the hyperactivity and

hypersynchrony of neurons in the brain. Scalp EEG is able to record the neural

activity on the cerebral cortex. However, when the underlying neural hypersynchrony
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involves neural networks deep within the brain, scalp EEG may not be able to pick

up on these signals, but instead display physical consequences of the seizure, i.e.,

rapid eye-blinks, muscle contractions, and altered senses. Only when the epileptic

neural discharge is large enough, rhythmic activity that reflects the epileptic neural

hypersynchrony manifests within the EEG.

These types of seizures pose serious challenges in terms of seizure detection using

only EEG. Additional information derived via a secondary biosignal whose dynamics

are influenced by epileptic seizures can aid in seizure detection. The fusion of EEG

and a secondary biosignal will complement each other in terms of seizure detection.

We have chosen to fuse the ECG signal since HRV has shown to be a good measure

for seizure detection, as shown in Chapter 4. Patient-specificity remains essential to

the success of this approach since the manner with which the scalp EEG and ECG

change during seizure and non-seizures states varies across patients.

5.2 Fusion System 1: Always Fuse

In the always fusion (AF) system, the decisions from the EEG-based, DEEG, and

ECG-based, DECG, detectors are fused directly to obtain the detector’s final decision,

DGlobal. In this system, DGlobal can only be a seizure output if and only if DECG and

DEEG are both seizure outputs, otherwise the detector’s global decision will be a

non-seizure output decision. Mathematically, this can be represented by

DGlobal =

1 iff DEEG = DECG = 1

0 otherwise
, (5.1)

where 1 denotes a seizure decision and 0 denotes a non-seizure decision.

This system is particularly useful in situations in which the EEG signal suffers

from artifacts similar to seizure manifestations which, in return, increases the number
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of false alarms. As will be shown in Section 5.4, the AF system decreases the total

number of false alarms compared to the EEG-based detection system.

5.3 Fusion System 2: Over-ride Fuse

The second fusion system is termed the over-ride fusion (OF) system. It im-

plements the AF system with an additional over-ride option. The over-ride option

over-rides the AF system and allows the global deceleration of a seizure when the de-

tector observes Tovr consecutive seizure global EEG decisions. In this work, Tovr = 5.

The over-ride option is useful in situations where ECG seizure manifestations are ob-

served 15-20 seconds into a seizure. This study, as well as the study in [52], show

that ITC is an ictal rather than a pre-ictal phenomenon, specifically in patients with

temporal lobe epilepsy (TLE). Therefore, in addition to decreasing the number of

false alarms relative to an EEG-based detector, the OF detection system also allows

for the early detection of seizure onset in situations of late-ictal ECG onset.

5.4 Performance Results of the Fused EEG-EEG SOD

In this section, the performances of the proposed fusion detectors are presented

and discussed. We compare the performance of the proposed detector to other detec-

tion systems that: 1) employ an EEG-based detector only, with no channel selection

stage (e.g., [28], [40]), 2) employ and EEG-based detector with no feature enhance-

ment stage [40]), 3) employ an EEG-based detector using a single SVM classification

stage (e.g., [28], [12], [35], [36], [40], [53]), 4) employ an ECG-based detector using

time- or frequency-domain features (e.g., [12], [53]), 5) employ EEG and ECG fu-

sion detection using time- or frequency domain features (e.g., [35], [36]), and 6) with

commercially available detectors (e.g., [43], [44]).
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5.4.1 Performance of Proposed Fusion Detectors Compared with Stand-Alone

Detectors

The testing methodology and clinical dataset in this chapter are identical to that

in Chapter 4.

The performances of stand-alone EEG-based and ECG-based detectors on the

same dataset as in Section 4.4.1 are given in Tables 5.1 and 5.2, respectively. These

performances are computed so that we are able to quantify the enhanced performance

of the fused detectors compared with EEG-based or ECG-based detectors. The

performance of the proposed AF detector is given in Table 5.3. The AF detector

achieves 100% sensitivity and has a lower FA rate than both the EEG- and the

ECG-based detectors. Specifically, the AF system observes an improvement of 79%

for the AND EEG sub-band fusion compared with the EEG stand alone system and

83% improvement compared with the ECG stand alone system. The AND EEG

sub-band fusion technique yields the lowest FA rate because of its stringent criteria

for all four sub-band decisions to yield a seizure detection before the proclamation of

a seizure; however, this comes at the expense of a slightly higher DL. The OR EEG

sub-band fusion technique achieves the smallest DL at the expense of a higher FA

rate. The MAJ EEG sub-band fusion technique is a compromise between the AND

and OR fusion techniques. The detection latency of the AF detector is higher than

the EEG-based detector due to the ECG fusion. A study carried out by [52] shows

that ITC is an ictal phenomenon rather than a pre-ictal phenomenon and the onset

of ITC varied between 21.6 and 23.7 seconds from the seizure onset in ECoG.

The AF detector is particularly useful to neurologists who analyze patients’ EEG

records in an attempt to locate seizure instances. Once again, in these situations,

automatic seizure detection systems must favor high sensitivity over low DL and FA
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rates because neurologists are, in general, capable of easily casting out false alarms

from the detectors results by reviewing the suspicious alarms, and are able to easily

locate ictal onset in short segments of physiological data. Therefore, in this instance

the AND-fusion technique is the best since it achieves high sensitivity with the lowest

false alarm rate (again, here delay is not an issue since neurologists normally work

off-line).

The performance of the OF detector is shown in Table 5.4. The over-ride option

allows for excellent DLs with the trade-off of slightly higher FAs. The MAJ fusion

technique, in the case of this detector, offers the best trade-off between the DL and

FA rate while still achieving 100% sensitivity. In comparison with the stand alone

systems, an improvement of 27.9% for the AND EEG sub-band fusion is observed

compared with the EEG stand alone system and 44% improvement compared with

the ECG stand alone system. This detector is suitable for online detection of seizure

onset because of the small DL time and high sensitivity.

In terms of seizure warning and prevention applications, these systems require

high sensitivity and low false alarm with minimum delay. In this regard, the proposed

OF detector performs optimally and offers a good compromise between sensitivity,

false alarm, and detection latency.

5.4.2 Comparison of Proposed Detector with State-of-the-Art

Table 5.5 compares the performances of the proposed detectors with several state-

of-the-art seizure onset detectors. The detector in [28] uses the method of signal

differentiation as a feature enhancement method but does not assume any form of

channel selection. The detection algorithm in [40] extracts temporal and spectral

features from iEEG channels. The spectral features of the iEEG are extracted by

sliding one second intervals of the iEEG waveform through a filter bank and then it
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Table 5.1: EEG-Based Detector Performance
Patient No. EEG Sub-band Fusion Method FA/hr DL (sec) Sensitivity (%)

AND 2 8.5 100
1 OR 9.5 2 100

MAJ 4 4.5 100
AND 5.5 3.5 100

2 OR 6.75 2 100
MAJ 5.75 3.25 100
AND 6.5 3.5 100

3 OR 7 2 100
MAJ 7 2 100
AND 3.75 1.56 100

4 OR 8.75 0.22 100
MAJ 4.75 0.5 100
AND 4 4 100

5 OR 8 2 100
MAJ 4 2 100
AND 5.5 2 100

6 OR 5 0 100
MAJ 2 1 100
AND 2.5 1.5 100

7 OR 3.5 0 100
MAJ 3.5 0.5 100
AND 4.3 3.5 100

Avg OR 3.5 1.2 100
MAJ 4.4 2 100

measures the energy falling within the passband of each filter. The detector in [53]

analyzes HRV using four different HRV methods with short term moving window

analysis. In [12], ten time-domain and frequency-domain features are extracted from

HRV and classified using an Artificial Neural Network (ANN). The detector in [36]

is based on the fusion of HRV-based decision and EEG-based decision. The detector

extracts time-domain features from HRV and spectral features from EEG to detect

neonatal seizures. In [35], the fusion detector is based on two systems. In the first

system, the features from HRV and EEG are combined and then classified, whereas

in the second system, the independent decisions of the HRV and EEG data are

combined to yield a decision. The second system outperformed the first system
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Table 5.2: ECG-Based Detector Performance
Patient No. FA/hr DL (sec) Sensitivity (%)

1 9.5 20.5 100
2 1.5 8.25 100
3 3 15 100
4 9 8 75
5 6 12 100
6 5 8 100
7 3.5 10 100

Avg 5.4 13.1 96.4

and its performance is depicted in Table 5.5. The detector in [43] is developed by

NeuroPace Inc. and is commercially available. The detector in [44] is an FDA

approved seizure onset detector developed by Optima Neuroscience. The proposed

detectors in this chapter perform optimally in terms of sensitivity, specificity, and

DL when compared with the existing detectors.
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Table 5.3: EEG-ECG Direct Fusion Detector Performance
Patient No. Fusion Type FA/hr DL (sec) Sensitivity (%)

AND 0.5 26 100
1 OR 3.5 17.5 100

MAJ 3.5 17.5 100
AND 1.5 18.5 100

2 OR 2.25 18.25 100
MAJ 1.75 18.25 100
AND 0 19.5 100

3 OR 2.5 15 100
MAJ 1 15 100
AND 2.5 17.37 100

4 OR 2.75 8.25 100
MAJ 2.5 8.4 100
AND 1 20 100

5 OR 3 12 100
MAJ 2 12 100
AND 0 6 100

6 OR 2 3 100
MAJ 1 5 100
AND 0.5 12 100

7 OR 1.5 10 100
MAJ 1 10 100
AND 0.9 17.1 100

Avg OR 2.5 12 100
MAJ 1.6 12.3 100
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Table 5.4: Performance of the OF EEG-ECG Fusion Detector
Patient No. Fusion Type FA/hr DL (sec) Sensitivity (%)

AND 1 8.5 100
1 OR 5 2 100

MAJ 1.5 8 100
AND 5.5 4.5 100

2 OR 6.75 2 100
MAJ 5.75 3.25 100
AND 5.5 3 100

3 OR 7 2.5 100
MAJ 6.5 2.5 100
AND 3.5 2.1 100

4 OR 5.5 0.3 100
MAJ 3.5 0.4 100
AND 4 5 100

5 OR 6 2 100
MAJ 4 3 100
AND 1 2 100

6 OR 4 0 100
MAJ 1.5 1 100
AND 1 4.5 100

7 OR 2.5 0 100
MAJ 1.5 3 100
AND 3.1 4.2 100

Avg OR 5.3 1.3 100
MAJ 3 2.6 100

Table 5.5: Comparison of Average Detector Performances
Detector Architecture FA/hr DL (sec) Sensitivity (%) Specificity (%)

AND 0.9 17.1 100 99.97
Direct Fusion Detector OR 2.5 12 100 99.92

MAJ 1.6 10.8 100 99.95
AND 3.1 4.2 100 99.91

Over-ride Fusion Detector OR 5.3 1.3 100 99.84
MAJ 3 2.6 100 99.91

[28] 0.125 9.2 89.8 n/a
[40] 0.6 5 97 n/a
[53] n/a 14 76.64 n/a
[12] n/a n/a 88.66 90
[36] 3.96 n/a 97.52 n/a
[35] n/a n/a 95.2 94.3
[43] 0.013 5.01 97 n/a
[44] 0.086 n/a 80 n/a
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6. FURTHER INVESTIGATIONS

In this chapter, additional work regarding seizure detection is presented. Specifi-

cally, a new measure for detecting seizures in EEG is investigated. Previously, energy

was the main feature that was chosen to study the manifestation of epilepsy in EEG.

In this chapter, we investigate neural synchrony as a means to detect the early onset

of seizures in EEG. Experimental studies have shown that wide-spread synchroniza-

tion plays a prominent role in normal brain activity, particularly in the dynamics of

sleep and wakefulness [54]. However, uncontrollable spreading of synchronized rhyth-

micity over large regions of the brain has been directly related with the pathogenesis

of some disorders of the central nervous system, particularly in epilepsy [55],[54].

6.1 Neural Synchronization Measurement

The neural synchronization feature studied in this chapter is based on calculating

the condition number (CN) of the recorded EEG matrix at a particular time-instant.

Neural synchronization calculation via the CN is a fast and simple method and has

not been investigated previously for the purpose of determining the amount of neural

synchronization in EEG signals.

The level of synchronization between the EEG channels is measured by calculating

the CN of the EEG matrix. Let X denote an EEG matrix of size Mch×J , where Mch

denotes the number of EEG channels and J stands for the number of time samples

of the EEG matrix. To calculate the CN of a patient’s EEG record, a window of size

Mch × J is shifted along the EEG record by an interval of 1-second to extract the

EEG epoch matrix XT . The CN of XT is the ratio of the maximum to the minimum
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singular values of matrix XT . In detail, the CN of XT is given by

κ(XT ) =
σSVmax

σSVmin

, (6.1)

where κ denotes the CN, σSVmax is the maximum singular value of XT , and σSVmin

is the minimum singular value of XT . The singular values are computed using the

singular value decomposition (SVD) such that

XT = ΓΣΨ′ (6.2)

where Γ and Ψ are Mch ×Mch and J × J orthonormal matrices, respectively, and Σ

represents the Mch×J diagonal matrix of singular values. Large values of κ indicate

that the matrix at that time instant is ill-conditioned and the channels of the EEG

are highly correlated, indicating epileptic activity. In other words, the CN is an

indicator of whether or not the channels of the EEG matrix are highly synchronized.

Large values of κ indicates hyper-synchronization between the channels of the EEG

matrix at that time instant.

6.2 Seizure Detection via Neural Synchronization

We implement a seizure onset detection system based on the neural synchroniza-

tion calculation method explained in Section 6.1. Figure 6.1 illustrates the com-

ponents making up the neural synchronization based SOD. The classification unit

(SVM and timing constraint unit) are similar to that described in Chapter2.

6.2.1 Performance of the CN-based SOD

In this section, the effectiveness of the proposed CN-based SOD is analyzed. The

CN-based SOD is tested on the same clinical database mentioned in Section 3.1 and
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Figure 6.1: An illustration of the CN-based SOD.

the performance is discussed.

Figure 6.2 depicts the CN waveform for an hour long EEG recording of patient 1.

Figure 6.3 shows the computed CN for a 2-hour EEG recording for patient 3. In both

figures, the seizure instances, as specified by an expert, are highlighted in red while

non-seizure instances are shown in blue. The figures also show a dramatic increase in

the neural synchronization (large CN values) at the onset of the seizure. The amount

of neural synchronization decreases towards the end of the seizure event. The results

demonstrate the ability of the CN to accurately estimate the level of synchronization

among the EEG channels and hence its applicability in epileptic seizure detection.

Table 6.1 shows the performance of the CN-based SOD for five patients. Neural

synchrony via CN is a powerful tool in the detection of early seizure onset, as can

be seen by the very low detection latency of 0.69 seconds. Also, the CN-based

SOD achieves 100% sensitivity, showing a promising future for neural synchrony as

a measure for seizure detection in EEG. The high false alarm rate observed can be a

result of pre-seizure synchronization or IED before or after seizures. Still, the level

of false alarms is high for applicability in seizure detection systems.
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Figure 6.2: Condition number waveform for 1-hour of EEG recording for patient 1.
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Figure 6.3: Condition number waveform for 2-hour of EEG recording for patient 3.
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Table 6.1: CN-based Detector Performance
Patient Sensitivity (%) Detection Latency (sec) FA / hr

1 100 0 11.6
2 100 0.16 14
3 100 2.8 7.1
4 100 0.2 12.4
5 100 0.3 8

Avg 100 0.69 10.6

6.3 Decision Fused Energy and Synchrony Based SOD

In an attempt to further improve the performance of SODs, we have conducted

preliminary investigations in fusing synchrony and energy based seizure decisions to

obtain a final detection decision. Figure 6.4 illustrates the detector architecture of

the fused energy and neural synchrony based seizure onset detection system. The

detector consists of the following stages: EEG energy detection unit (as given by the

upper part of Figure 6.4), the neural synchronization detection unit (as given by the

lower part of Figure 6.4), and the fusion unit. Specifically, the energy detection unit

is composed of the EWSA, feature extraction, and classification stages. The neural

synchronization detection unit is composed of condition number calculation and clas-

sification stages. The decisions obtained from the energy and neural synchronization

detection units are then applied to the fusion unit to derive the detector’s global

decision.

The EWSA unit of the energy-based SOD is done in a similar manner to that

explain in Section 3.2. Once the EWSA signal is obtained, the energy contained in

the β, α, θ, and δ frequency bands is computed in the same manner as in Section

2.2.3. The classification unit is identical to that explained in Section 2.3.

In the fusion unit, the CN decision (dCN) and the energy-based decision (dE)

are fused using two different techniques to obtain a single global decision. The first
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Figure 6.4: An illustration of the fused energy-based and neural synchrony-based
SOD architecture.

fusion technique is based on the AND logical operator, where the dCN and dE must

be classified as seizure for the global decision to yield a seizure result. Otherwise,

the global result will be non-seizure. The second fusion technique is based on the

OR logical operator. Here, the global decision declares a seizure event if at least one

of the decisions (dCN or dE) yields a seizure event.

6.3.1 Performance Evaluation of Fused Energy and Synchrony Based SOD

Tables 6.2 and 6.3 show the performance results of the proposed detector under

the AND and OR fusion technique, respectively. The detector has been tested on five

different pediatric patients and was trained on 30 hours of continuous EEG records

containing a total of 24 seizure instances and was tested on 6 hours of continuous

EEG records that contain a total of six seizure instances. Analyzing each patient

separately, it is evident that the OR fusion method yields the highest false alarm

rate compared to the AND fusion technique. Such a performance is intuitive since
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for the OR fusion technique, a global seizure event is declared if either dCN or dE is

a seizure decision, whereas the AND method requires both features to be classified

as a seizure before the detector can declare a seizure event. On the other hand, the

OR method is able to detect the onset of a seizure in the shortest amount of time

since this method is sensitive to any seizure alarm. Overall, both fusion techniques

result in perfect sensitivity results.

Periods of high neural synchrony due to events not pertaining to seizure instances

give rise to the high false alarm rates. Also, the high false alarm rates observed in

the OR fusion technique is due to the energy-based SOD. This detector does not

implement a feature enhancement unit, as we have proposed in Chapter 2. Therefore,

non-seizure energy features are often misclassified as seizure features. The false

detections of patient 4 are caused by non-physiological artifacts. All other false

detections in the performance table are caused by periodic discharges that closely

resemble the seizure onset of the subject. The false alarm rate can be improved

by pre-processing the EEG waveform prior to feature extraction to rid the signal of

artifacts and noise or by implementing a CSP-based feature enhancement unit in the

energy-based SOD, as was done in Chapter 2.

Table 6.2: Detector Performance for AND Fusion
Patient Sensitivity (%) Detection Latency (sec) FA / hr

1 100 1.67 6
2 100 1 3.5
3 100 5.8 1
4 100 0 2.7
5 100 6.7 0.62

Avg 100 3.03 2.76
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Table 6.3: Detector Performance for OR Fusion
Patient Sensitivity (%) Detection Latency (sec) FA / hr

A 100 0 16.5
B 100 0.25 17.75
C 100 0.6 8.8
D 100 0 8.25
E 100 0 9.12

Avg 100 0.17 12.08
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7. CONCLUSION AND FUTURE WORK

In this chapter, we conclude the thesis with a summary of its goals and contri-

butions followed by proposed improvements and directions for future work.

7.1 Goals and Contributions

The goal of this thesis was to design, evaluate, and clinically test the performance

of a seizure onset detection system. Seizure detection systems are extremely bene-

ficial and present a wide range of applications. For example, they could be used as

warning devices to warn patients of oncoming seizures so that they take precaution

and decrease or eliminate any unforeseen injury. SODs may also be used as thera-

peutic systems that are capable of detecting and reacting to the onset of a seizure

and administering either anti-epileptic drugs or delivering an electrical stimulus to

help decrease the effect of the seizure or eliminate it. Furthermore, knowledge that a

reliable warning system is available may restore some individuals with the confidence

and peace of mind that their condition has stolen from them.

In this thesis, we proposed three seizure detection systems, EEG-based SOD,

ECG-based SOD, and a EEG-ECG fusion SOD. The SODs we developed contribute

technically to the field of seizure detection in the following ways:

• EEG Feature Enhancement Algorithm: Chapter 2 presented a patient-

specific seizure onset detector with two novel stages. The first proposed stage

is an EEG feature enhancement stage which exploits the method of CSP to

maximally differentiate between seizure and non-seizure EEG data. The differ-

entiation between seizure and non-seizure EEG can be appreciated in Chapter 3

which shows that after CSP feature enhancement, extracted non-seizure energy

features are attenuated while seizure energy features are significantly amplified.
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The benefits of the proposed CSP feature enhancement method is clearly seen

in the examples presented in Chapter 3 and in the performance of the detector.

• Band-Sensitive Classification: A novel band-sensitive classification system

is also presented in Chapter 2. In this system, features are extracted from four

seizure-relevant frequency sub-bands. These features are then classified inde-

pendently by separate SVMs. The band-specific classification decisions are

then fused to derive a global detection decision. The motivation behind the

BS-classification system is that certain seizures portray unique electrographic

alterations in specific frequencies, and analyzing each frequency sub-band sep-

arately allows for a deeper investigation of such manifestations. Additionally,

for some patients, specific bands exhibit maximum separation between seizure

and non-seizure events using the CSP-based feature enhancement stage. Inves-

tigating separate frequency bands enables an improved detection performance.

This novel classification system can be appreciated by viewing the enhanced

performance results, given in Chapter 3, versus the traditional classification

system.

• Time-Frequency Extracted HRV Features: In Chapter 4, we introduced a

ECG-based SOD that adopts a signal adaptive, quadratic time-frequency distri-

bution approach in analyzing HRV based on the combination of the Matching-

Pursuit and Wigner-Ville Distribution algorithm. Traditionally, HRV features

have been analyzed using only time- and/or frequency-domain features which

limits the information that is extracted from HRV. Because HRV is a non-linear

and non-stationary signal, analyzing it via the MP-WVD enables better and

more valuable feature extraction.

• Use Multiple Biosignals: Chapter 5 illustrated how the detectors presented
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in Chapters 2 and 4 can be fused into a single detector. The EEG-ECG fused

SOD provides benefits that a stand-alone EEG or ECG based detector may

lack. The proposed fusion detector is equipped with two fusion techniques to

combat noise that may hinder its performance. Clinical performance shows

improved results versus stand-alone systems and state-of-the-art detectors.

• Enhanced Detection Performance: The detectors presented in this the-

sis have outperformed state-of-the-art detectors. The BS-EEG detector with

CSP-enhanced features achieves a sensitivity of 100%, detection latency of 7.28

seconds, and 1.2 false alarm rate per hour for the MAJORITY fusion method

and when combined with the ECG-detector presented in Chapter 4, a sensi-

tivity of 100%, detection latency of 2.6 seconds, and a specificity of 99.91% for

the MAJ fusion case is observed.

• Neural Synchronization as a Detection Measure: This thesis also in-

vestigated neural synchrony as a possible measure for the early detection of

seizure via EEG. Chapter 6 presented a novel method to measure the amount

of neural synchrony that exists between the EEG-channels at a particular time

instant. The method is adopted into a seizure detection system and fused with

an energy-based seizure detector. The results show a promising future for the

use of neural synchrony based on the calculation of the CN of multi-channel

EEG data as an effective measure for seizure detection. Specifically, the fused

synchrony and energy-based detector achieves 100% sensitivity, a detection

latency of 3.03 seconds, and a FA rate of 2.76 per hour.

7.2 Future Work

This section outlines possible future research directions to extend further the

results of this thesis.
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7.2.1 Automatic Noise Removal

The work done in this thesis does not implement any noise and artifact removal

algorithm. Instead, our approach to deal with artifacts is based on training our detec-

tor to recognize artifacts, rather than actively removing them using standard signal

processing techniques. In an attempt to further enhance our detectors’ performances,

several forms of EEG and ECG pre-processing techniques will be investigated.

7.2.2 Combined Energy and Neural Synchrony Features

All the fusion detectors implemented this thesis are based on the fusion of de-

cisions made from independent detectors. A future direction is to combine neural

synchrony based features and energy based features in a single feature vector and

then apply a classification algorithm for a decision. EEG-ECG feature-based fusion

will be investigated and compared with the decision based fusion. The goal of this

research will be to investigate whether feature-based fusion improves the latency,

sensitivity, or specificity of the detectors presented in this thesis.

7.2.3 Detecting Seizure Cessation

The goal of the detectors presented thus far was to indicate the onset of a seizure,

but do not signal the end of a seizure. Detection of the cessation of a seizure allows for

the automatic computation of the seizure duration and the duration from the end of

one seizure to the beginning of the next. These quantities have clinical significance

for neurologists. For instance, seizures that persist for more than ten minutes or

seizures that are clustered close to each other may indicate a possible transition

to a condition of status epilepticus. Status epilepticus refers to a life-threatening

condition in which the brain enters a state of persistent seizure activity. Therefore,

future work will investigate whether the transition from a seizure state back to a
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non-seizure state can be learned using similar methods studied in this work.

7.2.4 Using Pre-Seizure Abnormalities to Enhance Seizure Detection

The EEG of some epileptic individuals exhibits patient-specific abnormalities

prior to the electrographic onset of the seizure. These pre-seizure abnormalities

may or may not resemble the electrographic signature of the onset. A detector that

can recognize this patient-specific pre-seizure activity as well as estimate the time

duration (from training data) between the pre-seizure activity and the onset of the

seizure can be of great use as an effective warning device. Several challenges are faced

when trying to detect abnormal pre-seizure electrographic changes since the time

between the beginning of pre-seizure activity and the actual onset is variable. Also,

the abnormal EEG activity can be very heterogeneous itself. However, successful

identification of pre-seizure activity will enable powerful seizure prediction systems.
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