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ABSTRACT

With the digitization of information, discoveries of events that previously took

much human effort can now be found automatically. As example, we investigate

several scandals in the art and antiques area that occurred between 1985 and 2005.

In these events, the auction house Sotheby’s was suspected to accept or even help

the trading of smuggled paintings or antiques and the famous Getty Museum was

exposed as purchasing antiques linked to treasure hunters. Discovering these secrets

required the hard work of journalists, detectives, TV producers, and so on. The

investigators were involved in illegal trades and various dangerous situations during

their process of investigation. In comparison, today, with the access to digital version

of large datasets, we are able to discover similar events using computationally-based

techniques without the high risk and the cost of human labour needed before.

This thesis introduces our tool for extracting keywords, terms and peoples’ names

from news articles, books, and marking them on an interactive map. We use the New

York Times as the main resource, extract location terms in each news articles using

Gazetteer, extract keywords and people’s names in each articles and reduce ambiguity

using WordNet. Combining them, we are able to form location-keyword-time pairs

for each articles, and together they form a database. Then we build an interactive

map based on the database. The map is able to show the relationships between

location and keywords. The linkages between two or more people or locations is

able to show on the map. The demonstration was able to perform similar detection

process as those journalists did in the late 90s.

The paper also introduces additional findings during the examination of the orig-

inal datasets. As a news media outlet based in New York, we see evidence that the
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New York Times turns out to focus much more on New York City and the United

States compared with other countries. With the extraction of locations inside the

articles, we were able to see the distribution of articles mentioning different countries

differs a lot when comparing the different continents. Our visualization also shows

how locations names were changed throughout time, and how the terms people use

describing a certain object changes.
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1. INTRODUCTION: THE IMPORTANCE OF RESEARCH

In the early stages of archaeology around mid 19th century, the archaeologists

were either wealthy people themselves, such as Heinrich Schliemann [9], or mostly

supported by upper class, mainly motivated on adding antiques and treasures to their

collections. However, in recent times, treasure hunting, especially in burial sites, is

now condemned by most countries. In other countries, the usage of metal detection

is still regulated by the government. In these cases, treasure hunters are considered

as looters, together with grave robbers and art plunders. On one hand, looting

events are usually consequences of war, natural disasters or regional in-stabling.

During war, lots of arts and antiques have been shipped from their origins by the

conquerers; for example the Nazis during the WWII, the British Empire in the

beginning of 20th centuries, Napoleon Bonaparte and so many others. On the other

hand, looting never stops during peace time in nearly every country. There are art

thieves smuggling arts out of Italy, pottery shipping out from Greece, and statues

smuggled from India every now and then. In lots of these cases, there are dealers

involved and customers encouraging the thieves to keep doing their work. Among

the customers, there are famous auction houses, national museums and a full chain

of people involved, including museum curators, police officers, and governors. In the

past, there have been people exposing such trading, such as Watson in Sotheby’s: the

Inside Story [34], Chasing Aphrodite [8], and the many authors who have reported on

the famous Getty Museum case in 2005. However, these cases take lots of people’s

efforts and have drawbacks like unreliable resources and risky or even dangerous

methods. Considering these, we developed a system that could perform like the

old methods or even better, showing the relationships between people and entities
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and tracking movements of them, to help journalists, archaeologists or researchers in

different areas to better conduct their investigators.

1.1 Previous Work

Peter Watson’s book Sotheby’s: the Inside Story, described his research finding

out how Sotheby’s was largely involved in illegal smuggling objects out of Italy,

Greece and India. The book described true stories that exposed how Sotheby’s was

involved in these events. In one case, the authors created a bait that could catch the

eyes of traders and Sotheby’s dealers to smuggle artifacts out of Italy. Though the

authors were breaking the laws by doing so, they still followed their plan in order to

get to know the whole chain of trading. During these events, they included several

innocent people and relatives in the event, raising unwanted risks and making the

mission highly possible to be exposed. Another case described in his book involved

the participation of a former Sotheby’s administrator who had a vast amount of

evidence that was retrieved directly from Sotheby’s; these evidence required lots of

time and special knowledge to examine. The book did have a very great influence on

the art market and lots of people involved in these cases were put on trial. However,

the case didn’t have too much impact on those dealers’ careers. Some of them seem

to have retired after the scandal, but returned back to the art market after people

gradually forgot about the story. During the process, Sotheby’s business was never

affected, and it always claimed that the smuggling actions were driven by their own

profits, which had nothing to do with the company. The reason partly lies on that the

documents are stolen from Sotheby’s, and partly because the former administrator

himself had some possibility of having forged the evidence papers.

A decade later after Peter Watson’s original book, the famous Getty Museum was

brought to the world’s attention by its curator Marion True’s case. True was indicted
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by the Italian’s government for illegally trafficking artifacts from Italy in 2005. The

trail forced her to resign from her position at the Getty Museum, and forced the

Museum to return antiques to Italy in 2006. Though with the evidence established,

and people she dealt with, like Giacomo Medici, already sentenced to prison, she

still escaped from further sanctions for the crime. One year later, Italy and Greece

dropped their charges against her, after the museum returned several objects to Italy

and Greece, claiming that the statute of limitations had expired. During the trial, she

described herself as having to ”carry the burden” for the Getty’s Board of Directors.

Ten years later, in 2015, Marion True spoke out to the public, still claiming that she

didn’t know where those artifacts come from, and once she found out the source, her

group would have returned them.

In the book Chasing Aphrodite, the authors described the relation between the

Getty Museum, especially Marion True, and looted artifacts from Greece and Italy.

After the publication book, the authors launched a website, chasingaphrodite.com.

The website included some stories that were not able to be published in the books,

and updates frequently about things that happen recently. In some of their most

recent stories, their resources came from anonymous sources, federal court records,

various newspapers, websites and videos online. The stories told are still breathtak-

ing, while the methods used to discover them and the evidence are much different.

The digitization of information makes it possible for researchers like Peter Watson

nowadays to do their research mostly online. The Internet provides a more up-to-date

and larger dataset that a person could ever reach decades ago. On their recent posts

regarding to how the Islamic State is getting their money from looted antiques in

Syria, the author gets the resources from online news posts, discussions on Twitter,

satellite screenshots, and online videos about hearings on Capitol Hill.

The changing of how journalists discover their stories shows us how the develop-
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ment of technology will change the research methods in different areas. The Sotheby’s

and Getty Museum’s cases shows how traditionally antiques could be transferred from

looter to museums and auction houses and how they laundry the artifacts to make

them look legal. Needless to say these kind of stories are important to reveal the

dark side of art market. Nevertheless, these kind of investigations take lots of time

and effort. The Sotheby’s story was revealed by dangerous undercover actions with

the coincidence of the evidence from the disgruntled former Sotheby’s administra-

tor. The authors of the book Chasing Aphrodite started running a website. They’ve

continue doing what they did when writing the book. The emerging articles on the

Chasing Aphrodite website also show that with proper usage of technologies on the

Internet, people could make similar discoveries as they did before.

Considering such kind of situations, we hope to create a tool that could gradually

help better follow similar steps to those carried out manually while saving lots of

effort and making the process much easier. Thus would therefore help authors like

Peter Watson or archaeologists in better performing these investigation.

1.2 Problem Statement

In the past, the investigation of antiques traveling, people’s actions and money

transfer relied solely on people. When Peter Watson started to investigate the trans-

portation of paintings from Italy to London, his first approach was buying a painting

himself and setting up a trap to see how the network works. After he started the

investigation on Sotheby’s, a former administrator in the Antiques Department at

Sotheby’s in London reached out to him, holding evidence that he retrieved from his

office. The evidence brought by the former administrator contained original docu-

ments from inside Sotheby’s ranging over a decade, involving locations from London

to Jaipur, and in a very large amount. At that time, the author and the admin-
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istrator had to examine them, find the linkage between evidence. Some of those

documents required special knowledge to fully understand them.

The knowledge of part of the story drives the motivation, making the investigation

have suspicion. Then he or she must know where to look for potential links and real

evidence, either by knowing a potential informer, getting supporting files from them,

or probably by devoting themselves in that field. The system must also have a dataset

that can perform like the suitcases held by the administrator in Peter Watson’s

book, containing enough trustworthy evidence that could allow the formation of a

deduction of the relationships among people. For our study the New York Times as

our main resource. Ever since its founding in September 18, 1851, New York Times

has continuously published a newspaper each day. It covers nearly every aspects of

peoples’ lives, including stories coming from all over the world, and describes both

big and small events happened in the world on a daily basis.

News articles never mention unrelated things in one article. Consequently, when

two names are mentioned in one articles, we can assume that these two people are

largely related. If these two people were at the same place at a certain time, it

would be very safe to say that they have met with each other or to say that they

know each other. If a person was mentioned in one article, along with some other

entities such as type of antiques, or museum names, then the person had something

to do with those entities. In situations like Getty Museum’s scandal, before 2005,

the year when the Italy brought Marion True on court, there were already lots of

articles in the New York Times suggesting that the objects in Getty Museum were

stolen property, and that Marion True was involved in it, since she stated that their

artifacts resources were clean; stories like this could even date back to the 1990s. In

1996, the New York Times launched its website, and since then, they gradually have

digitized earlier editions, making access to older articles simpler and thus making the
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building of a tool based on their articles possible. All news articles since 1851 now

are accessible through the website in different ways. For articles after 1978, readers

are able to access full text, and for articles prior to that, they provide API access

to the abstract and top paragraphs. In addition, the New York Times API provides

access to keywords for the articles and location names about the article. The location

names could be where the article was written and sometimes the locations mentioned

in the articles. These help make it easier to collect information from articles.

Given the New York Times dataset, users could be enabled to perform similar

approaches as that Peter Watson follow manually doing his investigation on the

Sotheby’s case. The user should be able to tracking antiques transportation and

moving, and see the person involved or other related entities at different stages. Also,

simple search like where the person had been can also be very useful to do pairwise

comparison. Apart from that, the relationship among people could be easily revealed;

for example how they were connected with each other, and if there was anybody who

also showed up at this place with this person. The tool should also be able to show

the crossover of two peoples’ tracks and those common entities or names that they

both are involved with. To demonstrate such kind of information that is highly

related to location, a map can be very useful for display. Thus, we decided to focus

on an interactive website to track the information and show users the results based

on their queries.

Trading looted antiques requires the transportation of objects. For example,

some paintings are not allowed to be auctioned in Italy, while they still have a very

large market. The undercover story by Peter Watson showed that the auction houses

will help the transportation from Italy to London. Before the transportation, the

painting was located in Naples, Italy; after the transportation, it will be shown in

an auction happening in London. The tool should be able to show such information
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about the painting’s location again a goal supported by a map. With the item

shown at different places at different times, someone related to the item must have

transported the item.

Google Map is now the most widely used map in the world. It provides an API

for the developer to access location information like latitude and longitude, and a

friendly interface as well. Location pins can be easily appended to the map, along

with an information box that allows interactive actions. Apart from that, Google

map also allows developers to embed their own control tools to interact with the

map, which provides more flexibility over the interactive map. Moreover, it is very

easy to display new data with the use of Google Map, which allows user add another

data layer or feed the data directly to the maps and display. Considering these facts,

we devoted to use Google Map as our platform.

All in all, we’re aiming at building an interactive web application that can show

the relationship between entities and people mentioned in New York Times articles

based on their locations. The information demonstrated on the map would first be

generated from New York Times articles, and analyzed to find the closest match

of potential entities or relationships. For queries for two or more entities, the map

should be able to show those articles that both or all of these entities are related to.

1.2.1 Contributions

The contribution for the research is to build a system that better tracks traces

of antiques or famous names using techniques and resources on the Internet. The

system should be able to answer questions like the following:

1. How many museums could Giacomo Medici possible have connections with?

2. Was Marion True in contact with Giacomo Medici between 1980 and 2000?
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3. How did the popularity of Marion True’s topic change with respect to time?

4. Which museum have Apulian vases in the United States?

5. What kinds of African art are in the Getty Museum?

6. What kinds of antiques did Marion True deal with?

To answer these questions, there are several functions that the system should be able

to perform. First of all, the system should be able to demonstrate the information

on articles from New York Times. The articles are written in natural language and

need to be formatted and processed before applying a visualization tool. The system

should be able to let the user track the transportation of an item or the traveling

of people. When looking at a specific location, it is expected to show who has been

here, who has connection with this place, or what kinds of items have connection

with this place. When searching for a specific topic or specific people, the system

should be able to show the locations that the topic or people are related to, and other

entities and names that have links to the people or this topic. The system should

also be able to show how the topic changes with respect to time - when was the

topic brought up to surface and when did it fade. Besides that, the system should be

capable of narrowing the search result by changing the time and zooming in the map.

When looking at two terms, such as a person’s name and an entity, the system should

be able to show the locations and topics that both of these terms have connections

with, and other information such as timescale should also be changed along with the

terms. Moreover, there are many topics and articles related to one single search; the

system should also find an optimized method to sorting the results.

The following parts of the paper is organized as follow: Section 2 describes related

work in detail. Section 3 describes the assumptions and implementation methods,
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including the data analyzing part and the visualization part. Section 4 describes

evaluation of the methods. Section 5 is the conclusion of the paper and Section 6

discusses future work.
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2. LITERATURE REVIEW

This chapter discusses the previous related work of the thesis. In the first section,

we discuss the motivational works for the research about how journalists’ investiga-

tions were run in the past. Next, we discuss previous work on article crawling,

including using APIs and building crawlers, followed by various related work on en-

tity extraction and geolocation extraction. Finally, we discuss some previous work

on map-based demonstrations.

2.1 Loot Tracking in Archaeology

This research is motivated by the investigations done by Peter Watson in the

90’s about illegal transporting and trading related to Sotheby’s. In this section, we

discuss how journalists do their work.

2.1.1 Sotheby’s: the Inside Story

Sotheby’s the Inside Story describes how Peter Watson discovered and revealed

the scandal of Sotheby’s relationship with tomb raiders and antiques or art smugglers,

and the final outcome of his investigation that started in late 1980s. This book

became one of the motivations for our research.

The book first describes the trial of James Hodges, a former administrator in the

antiques department at Sotheby’s, from the very beginning to the end of the trail,

and several operations Watson conducted after the trial. The book, together with a

television show, was describes true stories, about how auction houses and museums

were involved in smuggling, tomb raiding and looting events. In 1985, the author

Peter Watson was informed that Sotheby’s was selling lots of smuggled antiques by

the curator in the Greek and Roman Antiquities department of the British Museum.
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After he heard of this, Watson called Felicity Nicholson, the head of the antiquities

department at Sotheby’s for comments. The call was put through by an administrator

who was at his lunch hour, reading Peter Watson’s previous book, The Caravaggio

Conspiracy. This man, James Hodges, knew that what his boss told Peter was not

the entire truth. Four years later, the administrator realized that he was dragged

deeply in smuggling events. The accounts used for traveling were under his name,

and he felt he would be the scapegoat once the case was exposed. Worried about

the situation, he decided to find evidence to keep himself safe, and hence started

collecting evidence from Sotheby’s. In 1989, Hodges turned over to Peter Watson

three suitcases full of documents acquired from Sotheby’s before Hodges was put

on trial. Watson found over 500 pages useful materials, including evidences that

clearly showed that Sotheby’s had links with notorious tomb raiders and dealers.

However, his presentation to the court as witness wasn’t powerful enough for the

public to realized that. Peter Watson and his colleagues then traveled to Italy, India

and Switzerland to further investigate details. Sotheby’s continued to claim that

the antiques in their auction catalogues were legally imported from Switzerland,

but due to a flaw in Switzerland’s law they didn’t need to prove the origins of

the antiques before arrival at Zurich or Geneva. This allowed cases such as that

notorious antiquities dealer Giacomo Medici, who worked with Italian local grave

diggers to obtain vases or statues on ground, then shuttered them in pieces, and

sent those fragments to Switzerland warehouses. There the fragments were glued

back together and were sent to London or New York for auctions ”legally”. In

Italy, Watson witnessed the actions of tomb raiders and even had interactions with

them. Once after he was on the site, he received a threatening call from Giacomo

Medici himself. In India, he were able to talk to one of the local antique dealers

about the transportation and smuggling arrangements when he had business with
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the Sotheby’s. In Zurich, he found the warehouse of Medici, filled with hundreds of

antiques, in pieces, half restored or fully recovered. After the investigation, to make

their story more trustworthy, he made a bait for the Sotheby’s and experienced the

steps himself. He brought a painting in Italy, and claimed he wanted the painting

sold in London to reach a better price, Sotheby’s contacted him saying that they

needed several contacts information addressed outside of Italy; one in London, and

one in Australia. Several months later, the painting was found in the catalogue of

one auction in Sotheby’s London.

The result of the investigation included two TV programs and one book. The

first TV program was aired in 1995, while the second one was aired in 1997. The

book was published in 1997 in both the United States and England. The followup of

the book included the arrest of Medici, who was out of jail in 1997, and museums and

Sotheby’s stopped dealing with unprovenanced antiques, Sotheby’s at once stopped

their auctions at London, and the publication of the book made many people in the

field comment that Sotheby’s was not the only one dealing with smuggling events,

making the author start to investigating Christie’s at a later time.

This book described in detail about how journalists, archaeologists and other

researchers link evidences together and look for traces about secret smuggling trades.

The existence of evidence brought by James Hodges was one of the most important

steps in Peter Watson’s investigation. Prior to that, he only had slight suspicion

due to the appearance of antiques in Sotheby’s catalogue but had no direct evidence.

With Hodges’ documentation, he was able to find the names, locations, and made

further connections with people doing the smuggling.
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2.1.2 chasingaphrodite.com

The website is created and managed by the author of Chasing Aphrodite, Jason

Felch, aimed at hunting for looted antiquities in the world’s museums, as stated on

the front page. After the book, he started publishing news on similar topics on the

website. He keeps track of the museums’ returning their collections to their origins,

and reports his new discovers in this area using various documents he has access

to, including videos of hears at Capitol hill, news reports around the world, Google

maps, street view, satellite pictures and photos sent from all over the world. Some of

the most recent articles revealed the relationship between ISIS and antiques, about

how they were support in the conflicts by antiques, and customers behind them.

The change of techniques for discovering the links among people and antiquities

have changed slightly with the usage of computer and Internet. The website gave

us an idea about how the modern way to discovering traces should look like, and

provided trustworthy results about antiquities smuggling that could be used in our

research.

2.2 Article Crawling

The New York Times launched their website in 1996, and made all their articles

since 1851 available online, with free access to full-contents for articles later than

1978. For articles earlier than 1978, the abstract and main paragraph are available

through an API. These articles cover news happening in the world every day, but

are mainly focused in the United States, with some local news from the New York

area.
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2.2.1 API

The traditional media industry is very cautious about new things, especially given

the complicated legal licensing of linked data. A case study of the BBC (British

Broadcasting Corporation) [24] shows that despite their willingness to share their

metadata and information with their users, and even allow them to download content,

they are always reluctant to let people modify the content, and do not provide

an useful API. This might be due to the lack of competition and profits for the

industry company. There are already several researches using the New York Times

dataset through its API[23]. There are also some people who have studied into

the dataset itself and discovered interesting findings. Zitnik discovered bias about

different countries, how different countries were mentioned in different areas, and

the dynamics of countries’ names usage [35]. They used the article search API to

query specific country name and analyzing the query result to see how many articles

mentioned a specific country. However, their research didn’t consider the United

States. Diakopoulos [6] and Pierson [25] studied the comments on the NYT articles

using the API, both using the Times Community API. Diakopoulos studied compared

the quality of editor picked comments with comments before the selection using the

average relevance score. Pierson discovered that women’s comments tend to receive

more recommendations and focused on different areas compared with men. Pierson’s

finding was shared with the developer team of the NYT and helped them to make

their forum more equal. There are also several studies using the NYT dataset as

a benchmark for different datasets, for example, Huang proposed a method to help

classify tweets using categories in the New York Times [11].
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2.2.2 Crawler

In order to retrieve the content of articles from different websites, we need to

crawl those websites thoroughly. Though the New York Times provides an article

API for developers to access, the query results only contain keywords, headline,

first paragraph, URL and some other metadata about the article. Further steps

need to be taken after retrieving the URL with the API. For other sites that don’t

provide an API with a sitemap, we are able to visit all the webpages of the website.

The HTML for each page can be easily retrieved, but for our study we only need

the content of main articles and some metadata. News articles websites like the

New York Times last for a very long period, and change their webpage pattern

every now and then. Iraklis Varlamis proposed an automatic crawler that combined

the information gathered through the process of crawling that could change with

changes in the webpages’ patterns [31]. Varlamis’s crawler analyzed the XPath of

web pages and categorized the tags, extracting article contents from them. Other

methods including using RSS feed to extract news article pages links and extract

article content from webpages [26], which is also efficient for crawling and further

processing such as summarization.

2.3 Entity Detection

Entity Detection is one of the main challenges in the research. With the entities

having different forms in the articles, we need to find some methods to efficient

extract them from articles, and reduce ambiguity at the same time.

2.3.1 Entity Extraction

With open access to data resources on websites, entity extraction became a very

popular topic in natural language processing for many years. The intuitive method
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for entity extraction is comparison with an existing database or dictionary. Krieger

used DBpedia as dictionary to get relationships among semantics in articles [14].

However, this would require the access to a complete word dictionary, which is not

available in many situations, especially when people or companies’ names or location

names need extraction. To extract other entities in documents, people started with

the analysis of words and gramma in different languages, and used the features in

gramma to better extract the entities [2], the intuitive method would be discovering

capitalized keywords in articles, combined with conjunction or segmentation. Rau

discussed various kinds of company names and designed an algorithm about them

[27]. Later on, researchers tended to improve the accuracy using machine learning

technologies to better help with the accuracy, some used Hidden Markov Chains to

increase the accuracy of entity extraction [3]. Considering the situation of using ab-

breviation or references of surnames of people, researchers have applied approximate

extraction [15, 33, 4], calculating the distance between each words to perform ap-

proximate search for keywords. This leads to proposing new filter algorithms using

pruning methods for faster calculation and better accuracy [15].

2.3.2 WordNet, BabelNet

With the building of WordNet as proposed by Fellbaum in Princeton [21, 20]

people could be able to reduce ambiguity between words or terms using the WordNet

sense set. In the same period, people came up with different databases for similar use,

such as DBpedia. However, these database are still very limited compared with the

large amount of terms and people’s names referenced every day in the world. Thus,

people came up with the idea of combining databases like WordNet with large online

libraries like WikiPedia. Makris’s group proposed a method to annotate text using

entities from Wikipedia and using WordNet to determine the dominate sense words
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to reduce ambiguity [17]. Cornolti compared among various annotating methods

using Wikipedia [5]. Another successful case for this is BabelNet, which combines

Wikipedia with WordNet and provides wiki links to each of the search results. For

each search query, it will list all possible senses of the query and the Wikipedia link

of its dominate word.

2.4 Geolocation Extraction

Finding accurate geolocation names inside news can be hard, because the relevant

keywords are hard to identify as geolocations with information retrieval systems. For

example, Washington could be a name, a state, a city, a university or a road. In

natural languages, locations are even more vague, such as South France. Some peo-

ple use geolocation positions and minimum bounding boxes to improve the accuracy

of semantic matching [16]. There are also some research that focuses on summa-

rizing geolocation of an article using Geographical Gazeeter to find location tags

[1]. Wikipedia is a very useful tool when it comes to Geotagging [28], it helps in

disambiguating cities having several names in history.

Some combined semantic topic of articles on Wikipedia and related geolocation

to built a location based article recommendation [29]. When evaluated with the New

York Times corpus for fifteen famous locations, the algorithm using Wikipedia out-

performance BOW(Bag of Words), LDA(Latent Dirichlet Allocation), ESA(Explicit

Semantic Analysis) and PESA(Probabilistic Explicit Semantic Analysis).

2.5 Demonstration

There are many research projects that demonstrate their results on maps. Mauder

used isomap to see the relationships among trades and people [18]. Some projects

are implemented using Google Maps [32, 7, 12], which provides accurate location and

automatic mapping given latitude and longitude using the Google Map API. Overlay
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maps or features can be easily applied on the map, and the map itself can be easily

embedded with data or other data [30].

A new visualization tool called D3 is also applied by many people to demonstrate

information [13], and many tools could be added with JavaScript to improve better

performance or provide stylish views [10]. D3 could also be used to build maps, and

combined with Google Map to provide better interaction experiences.

While displaying a large amount of data on a map, the crowding situation happens

every now and then. We collect all articles from the New York Times, so the amount

of data is large, since some places have lots of keywords. In this case, the pins on

map could squeeze together. One possible solution for this is to summarize them,

and show the summarized result, instead of all the pins [22].
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3. IMPLEMENTATION

The overall flowchart for our the system is shown in Figure 3.1. It contains four

main parts: data retrieval; analysis of articles for locations and entities; building the

database; and generating the demonstration. Both will be discussed in turn next.

The data processing parts are illustrated in the system flowchart.

Figure 3.1: Data Process Flowchart

3.1 Data Retrieval

3.1.1 New York Times

The articles in New York Times can date back to 1851. Since the NYT does

not provide free access to full contents for articles before 1978, we use a crawler to

retrieve the article contents and this ensures we could get the information for all arti-
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cles throughout all the time. We built a Python program that uses the GET request

provided by the NYT to retrieve the metadata of articles, including the URL, first

paragraph, abstract, title, author, location where the article is written, and the time

when the article is published. The request URL is in the following format:

http://api.nytimes.com/svc/search/v2/articlesearch.json?&sort=oldest

&document type=article&fl=web url%2Clead paragraph%2Cabstract%2Cheadline

%2Ckeywords%2Cpub date%2Cbyline%2C id&begin date=19000101

&api-key=sample-key. The request retrieves metadata of articles since 01/01/1990.

The result with the earliest publication date was returned first with its url, lead para-

graph, abstract, headline, keywords, publication and id. By adding &page=1, we were

able to retrieve the second page of the results. However, the NYT limits the number

of requests sent each day for each authorized key. For the article search API, which

was used to retrieve article metadata, each API key is only allowed to send 10,000

calls per day. Compared to over 15 millions articles on the website, this number is

too small to retrieve sufficient articles for our next steps. Further, with so many

requests needed to be sent to retrieve metadata, the program runs relatively slowly

when compared with a crawler. Considering this, and that articles before 1978 can’t

be accessed with API, we retrieve the dataset using two different methods, one for

articles before 1978, and another for articles after that. For articles prior to 1978,

we used multiple accounts running simultaneously using the API to retrieve the

metadata, and stored the results in a .json file.

For articles published after 1978, we built a crawler to retrieve the full content of

the articles. For the first step, we need to have the URL address for each articles on

the website. Most websites have a sitemap with its creation that lists the URLs of

all webpages contained in the website; nytimes.com is not an exception. Its sitemap

is modified as a spider bite, with article URLs categorized based on the time of
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publication and stored in different years. For each year, the articles are divided by

time order into several parts for each month. Thus, we build a crawler to access all

links in the spider bite to access all articles on the New York Times. Considering

that some articles have multiple pages, we use the found links of articles to generate

instead a link to their printed version pages, which have less advertisements, or

decorations, and put all pages of the article together. After this, we were able to get

a full list of URLs for articles published by the NYT after 1978.

With the URL lists, we are able to retrieve the full contents of articles on

NYT.com. The retrieval program was initially built using Python, and it was able to

retrieve a full list of all the articles based on the url lists. However, when it come to

retrieving the full context of the articles, the Python program took too much time.

So we took a further step, and transferred the Python program to a C++ application

that ran faster on accessing full context page. We also ran several executions of the

application for different years simultaneously, so that the articles were able to be

fully retrieved within a couple days.

3.1.2 Chasing Aphrodite Website

The website has very useful articles. However, the number of articles is not too

large. Similarly as for the New York Times website, we used the sitemap to retrieve

all the articles.

The program used in the previous section can be directly applied to this website.

Since the dataset is so small compared to nytimes.com, the program didn’t take too

long. Another tricky part about the website is that all the articles are in blog style,

and don’t have a page separator. On the other hand, all the articles only have one

page, which make it even more easier to retrieve the full contents from this website.
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3.1.3 Extract File Content

After the previous steps, the articles on nytimes.com and chasingaphrodite.com

were stored locally in HTML files. Those files contained the full content and metadata

for the articles. For each article, the file content part only takes around 10% of space

of the file, the rest of the html files are supporting codes, metadata, or advertisements.

Considering the file size and benefits of further processing, we choose to analyze the

file to retrieve the metadata information into database, and extract main content of

the articles. We extracted article title, url, publish time to the database, assigned

each file a unique id based on their publish time, and save the main article content

as text file using their id. In that way, the total size of the data shrink from 63GB

to 5GB.

3.1.4 Sotheby’s: Inside Story

The Sotheby’s book is the motivation of our research, and we hoped we could use

our tool to follow the same process so that we could achieve similar result. Thus, we

wanted to include the book into our dataset. Using OCR techniques, we transferred

the book into digital copies, to better prepare for the following process.

3.2 Entity Extraction

3.2.1 Name Extraction

To extract the entities from the dataset, we need to considering what kind of

entities we hope to get from the files. The first kind of entity to be extracted is

the names mentioned in the files. People’s name follow certain rules. The rule is

usually ’FirstName, LastName’, ’LastName, FirstName’, ’FirstName MiddleNames

LastName’, in these cases, they’re a consecutive string of capitalized words. In other

cases, especially in some European names, there could be lower case letters in the
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middle of names, such as Leonardo da Vinci. Considering all various kind of cases,

we find the similarity pattern is that the both contain multiple capitalized words,

with other words in the middle of them. Thus, we use regular expression to represent

the names: re = [A− Z][a− z] + (? = s[A− Z])(? : s[A− Z][a− z]+)∗

We built a program that extracted the index of people’s names in each article,

and stored the name with their location in each articles into name.json file.

3.2.2 Wikipedia

Another kind of entities would be the entities contained in the file, they could

be either area or subject names such as ”Nautical Archaeology”, terms that refer to

a certain time period such as ”Renaissance”, or certain kind of antiquities, such as

”Mummy”. These kind of words sometimes cannot be picked by the previous step

for the following reasons:

• They are not capitalized words, such as ”art theft”.

• They are single words, such as ”Mummy” or ”Renaissance” mentioned before.

• They contain numbers or special characters, for example ”20 Exchange Place”.

Considering these, we decided to use Wikipedia to help us better select the enti-

ties from the articles. We used Wikipedia’s API to retrieve all terms mentioned in

Wikipedia under the art, history or archaeology categories since we were mainly fo-

cused on helping research archaeology areas. This approach can support research in

other areas. The crawler can be easily extended to other areas while providing sim-

ilar results. There were around 14,000 entries from Wikipedia. We built a program

that extracted the index of entities in the Wikipedia dictionary we just created, and

stored the entity name and its position in the article into a .json file.
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3.2.3 BabelNet, WordNet

Another situation we needed to consider are different ways to describe the same

things. Take President George Bush as an example. People could refer him using

President Bush, George W. Bush, or simply George Bush. Considering that his father

George H.W. Bush was also once the president, people sometimes refer him as Bush

the younger. To detect all of the various different descriptions as Bush, we applied

WordNet and BabelNet on the Keywords database to eliminate the ambiguity of the

words. In BableNet, two words describing the same entity will be linked to entity

objects with same ID. For each entry in the Keywords database, we searched for its

ID in the WordNet and BableNet, and then changed the name of the current entry

to the item’s name, which was usually the most popular words describing the entry

with the minimum ambiguity. When there were multiple items about an entry, we

picked the one with the lowest id, since the sense id in WordNet is assigned based

on its popularity, with the most common sense numbered as 1. As in the previous

example, both President George Bush, and President Bush will be treated as George

W. Bush. After this process, we eliminated the duplications in the database.

3.3 Location Extraction

3.3.1 Usage of Gazetteer

To extract the location names in the articles, we first used GeoName gazetteer,

which contained the information about all cities in the world with population larger

than 1,000 people.The information included name, latitude, longitude, population,

state, country, and all other forms of the name.
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3.3.2 Reduce Ambiguity

There are several cities in the world that belong to different countries or different

states, but share the same name. Considering this situation, we first preprocessed the

location gazetteer to generate unique location names, for duplicated location names,

we keep the location with larger population. For example, for London in England

and London in Canada, we kept London in England in the gazetteer and deleted all

other Londons. For faster access, the location names were stored in a two level hash

table in .json format.

3.4 Database Build

We analyzed the positions of locations, names, entities, and some time stamps

in each article, and combined them. For each location and time, we treated any

name or entities appearing right after the location and time as meant? that the

person had been at this location or the entity was mentioned at this location at

that time. Once a new location is found, we treat everything mentioned after this

location’s position as happening at this later position. The same rule applied to

time. In that case, we kept a currentLocation variable and a currentTime variable,

with the increase of index, once a new location or new time is found, we update

currentLocation or currentTime. After the process, we are able to get several [time,

location, entity/name] pairs, and this information is stored in the database.

The database consists of three main tables: Articles, which stores the information

about each article, including ID, URL, written time, title, and its source, in which ID

is the primary key; Locations, which is the location dictionary, containing name as

the primary key, latitude, longitude, and whether it is a city or a country; Keywords,

that stores the entities or names with its location, year, count of appearances and

the ID of article mentioned it. For the same entity or name mentioned in different
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Figure 3.2: ER Diagram Of The Database

articles, location, or time, they will be stored in the database as different entries.

The relationship among the tables are shown in Figure 3.2.

3.5 Demonstration Website

The website is based on a map and provides several interaction methods with it.

We first created the website with underlying Google Map. This allows users to zoom

in and out, drag smoothly, and provide useful API to get the status of map and set

control functions for the map. To show the transportation and relations based on the

locations, we display the entities and names on their locations as markers, and show

the keywords, locations and articles related to it, and its appearances throughout

the time. To demonstrate the most mentioned keywords or terms about a specific

keyword, we use the left sidebar to display top keywords and top articles, as shown

in Section A of Figure 3.3a. The year slider in Section B at the bottom shows

the change of numbers related to the current search. The search box at the top in
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(a) Demonstration After Initialization

(b) System Status After Search For London

Figure 3.3: Demonstrations

Section C can be used to search for specific keywords or entities. Considering there

are millions of articles, this makes the number of entries in the Keywords table very

large. For performance reasons, we took a 1/100 sample from the articles randomly.
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We found that the overall distribution over time and space was relatively the same

while the processing and interaction processes were much faster. Figure 3.3a shows

the interface of the website after initialization.

3.5.1 Markers

The webpage first loads all the keywords from the database, creating a marker

for each of the entries in the Keywords table, the marker containing information such

as location name and how many keywords are mentioned at this location. With the

latitude and longitude of the location, the marker points to a specific location on the

map, while the color shows the source of the location, and the size of marker shows

relatively how popular the location is.

Upon clicking the markers or keywords in the side column, the map sends a

request to the temporary result table, and updates the temporary table based on

the query. Then it refreshes all the markers, keyword column, article column and

year slider using the updated table, as shown in Figure 3.3b. The parsing algorithm

applied to search box also makes it available to show the relationships between two

entities.

3.5.2 Top Keywords, Top Articles

The side column is used to show top keywords and top articles related to the

current search query. In the initial state, it shows the overall most popular keywords

and most popular resource. For each search query, there could be too many key-

words or related articles to display in the available space. So it became necessary

to show users the most useful keywords or articles. Consequently, we use TF-IDF

(Term Frequency - Inverse Document Frequency) to evaluate the importance of cer-

tain keywords or articles. The TF-IDF value is the product of TF value and IDF

value. Term Frequency describe the number of occurrence of term t in document d
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(Equation 3.1), or in the case when the frequency numbers are too large, use the log

value of the frequency (Equation 3.2).

tf(t, d) = ft,d (3.1)

tf(t, d) = 1 + log(ft,d) (3.2)

The Inverse Document Frequency describes the importance of the term in the dataset

Equation 3.3. N is the total number of documents in the dataset. |{d ∈ D : t ∈ d}|

describes the number of documents that contain the term t.

idf(t,D) = log(
N

|{d ∈ D : t ∈ d}|
) (3.3)

To make the initializing process faster, we calculated the TF-IDF values for all

keywords and stored the results in a new table, so that we don’t need to perform the

calculation every time the page is opened. For other search queries, once a search

is performed, the results are stored in a temporary table in the database, and each

follow up search based on the query is performed using this table. The order of

keywords is also determined by the TF-IDF score of each entry.

3.5.3 Time Scaling

The time scale shows how popular the current query is throughout the time. Once

a query is performed, the time scale is updated to show the change of numbers based

on the current change. The time scale bar can also be used to narrow the query

result. If the user drags the time scale around or zooms in and out, the markers on

the map will change with it.
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3.5.4 Search Box

The search box should be able to perform a search query. For a basic search

query, the search box sends a request to the database, checks if the query is a

location, and creates a temporary result table using all entries in the Keyword table

related to current query. For queries that are trying to get a result based on multiple

keywords, the search box first analyze the input, generates a SQL search query based

on the input, and creates a temporary result table.

Figure 3.4: System Status After Search Of Marion True

Figure 3.4 shows the view after search for Marion True. We can see that she is

mostly related to Los Angeles, London, Italy, Australia and some parts of Unites.

This matches with what we know of her path, places and people she deal with.
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3.5.5 Heat Map

The map also has an underlaying heat map that shows the overall result which

will not change based on the search query. This allows us do a comparison with

the current search result. In the most mentioned areas and locations, the heat map

tends to be more red and in those green areas, the number of entities are fewer.
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4. EVALUATION

4.1 Entity Extraction Accuracy

To calculate the accuracy of Entity Extraction, we take several documents as

sampler, manually identify the entities and locations inside the documents, and cal-

culate how many keywords and locations also appeared in the database. Equation

4.1 was used to evaluate how successful the system is in extracting existing terms.

Equation 4.2 was used to calculate the redundancy of the database.

ExtractionAccuracy =
# of pairs appeared in the database

Total # of pairs
(4.1)

Redundacy =
Total # of pairs in database

Total # of pairs
(4.2)

From the result we can clearly see the differences among different resources. First

Table 4.1: Accuracy Of Extraction

Sotheby’s chasingaphrodite.com New York Times
Extraction Accuracy 0.1875 0.5674 0.6132

Redundancy 1.96 1.32 1.24

of all, the content of the book included lots of discussions, conversations, and details

of trading and transportation. This evidence is necessary in the investigation pro-

cess, but they generated a very large redundancy in the processing of digital files.

This is especially seen during conversations when two or more people were having

a discussion, the book mentions their names every time they speak. However, it is
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their words that have more information other than their own names. Similar things

happen in the book many times, mainly because the book was written in a jour-

nal form, including every detail of the investigation process, while makes it not so

formal compared with news articles or even website posts. What’s more, since the

Sotheby’s: the Inside Story’s original dataset was generated using OCR technology,

there was a very large inaccuracy generated during the process.

Since we aimed at automating the research process done by Peter Watson, we

compared our database with his book, to see whether our tools were able to locate

the evidence he discovered and processed. We conducted several searches on our

database, and excluded the book’s part of the database, so that we could see whether

that information could be found in other resources. However, the result was not very

good. For the Sotheby’s company, it can be clearly seen from the map that their

traces can be found all over the world. Also, for famous names or those big names in

the books like Giacomo Medici or Marion True, their names are scattered around the

world, and appear more often in those areas mentioned in the books. For example,

Giacomo Medici is related to Italy, London, and India, and Marion True is highly

related to Los Angeles. We also can see top keywords about Marion True including

Getty Museum, Aphrodite, other museum names and Giacomo Medici. However,

smaller names like Felicity Nicholson, a department head of Sotheby’s London, can

not even be found in New York Times, let alone the alias of Peter Watson or the

colleagues he works with. In fact, their names were barely mentioned in New York

Times website.

4.2 Analysis Over Dataset

Since the tool analyzed all articles in New York Times, it is able to show some

interesting facts about the New York Times dataset itself. In this section, we discuss
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what we found about the dataset.

4.2.1 Area Coverage

Whether in the demonstration of complete dataset or a sampler of the dataset,

it’s clear that the coverage of markers around the world are scattered differently,

as we can see from Figure 3.3a. Zitnik also discussed about this in their research

about the New York Times [35]. It is understandable that the number of markers

in the United States is much larger than the rest of the word, since the New York

Times company itself is located in New York. Also, the heating in Europe shows

that people in the United States tend to focus more on European countries than

Africa or Asia, which is also true considering the deep connections between Europe

and North American. Table 4.2 shows the number of articles mentioned different

areas in the world, and Table 4.3 and Table 4.4 shows show the top ten cities and

countries mentioned in the New York Times dataset respectively.

Table 4.2: Article Location Distribution

Africa Asia Europe North America South America Middle East
19,301 16,453 100,572 1,193,364 5,791 2,520

We can see from the Table 4.2 the lack of coverage about Africa and Asia, this

could be caused by two reasons: first, the error generated during the analyzing

process; second, the lack of coverage existing in the original dataset. To see which

one has more effect we need to see the coverage of the original New York Times

dataset. To check the coverage of the total coverage of NYT articles, we used the
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Table 4.3: Most Mentioned Cities

City Count
New York City 326544

Los Angeles 47771
San Francisco 30924
New Orleans 12949

San Diego 11834
Staten Island 10881

Las Vegas 10795
Kansas City 7029
New Haven 6571
Notre Dame 6064

Table 4.4: Most Mentioned Countries

Country Count
United States 1091012
North Korea 19499
Hong Kong 18619

Mexico 17063
South Korea 15733
South Africa 13325
Saudi Arabia 10294

Colombia 9196
New Zealand 6730

Dominican Republic 4741

Table 4.5: Number Of Articles Distribution In Original NYT Dataset

Region Africa Asia Europe United States
# of Articles 271,750 172,634 691,517 3,302,694

NYT API to look for articles mentioning or talking about different regions. The

results for different regions are shown in Table 4.5. From the table we can clearly

see the distribution of articles in different regions over the world. This matches with

the distribution discovered in the analyzed result and the distribution of the map.

Based on the result, we can see that the bias existed in the original dataset and was

not generated during the processing procedure.

4.2.2 Location Name Change

Several different cities have changed their names during some point in history,

because of political or other reasons. Examples are the cities in Australia that

changed German or German-sounding names during Word War I, Bearbrass was
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changed to Melbourne; Beijing once had names of Peking, Khanbaliq, Yanjing due

to the change of spelling methods or regime change; some cities’ names will change

to its native language after the independence of its country, such as Bombay to

Mumbai; some cities changed their Latin names to modern languages, for example

Lyon was once called Lugdunum. Table 4.6 shows the top 10 cities that have the

largest number of alias. With the change of a city’s name, media will start to refer

Table 4.6: Top 10 Cities That Changed Names

City # of
Names

Former Names

New York City 5 New York, Big Apple, Neuva
York, Nova York

New Orleans 5 Big Easy, The Big Easy, Orleans
Parish, Nueva Orleans

Sao Paulo 4 Sao Paolo, San Paolo, San Paulo
San Francisco 3 San Fransisco, Sao Francisco
St. Louis 3 Saint Louis, San Louis, San Luis
Ciudad Juarez 3 Paso del Norte, El Paso del Norte
Ciudad Guayana 3 Guayana City, San Tome
San Ildefonso 3 La Granja, La Granja de San

Ildefonso
San Lorenzo de
El Escorial

3 El Escorial, San Lorenzo del Es-
corial

Stare Mesto 3 Old Town, Ciudad Vieja
De Haan 3 Le Coq, Den Haan

to that city using its new name. This kind of process can be seen from the change of

the number of articles mentioning different aliases of a city’s name. In Figure 4.1a

and Figure 4.1b, we show the base 10 logarithm of number of entities happened at

Mumbai and Beijing. Mumbai changed from its old name, Bombay, in 1996. From
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(a) Mumbai
(b) Beijing

Figure 4.1: Name Changes

Figure 4.1a we can clearly see the rise of Mumbai right before 2000, and the number

of entities about Bombay drop to zero before 2000; this follows the change of its

name in 1996.

Beijing is another case. In Figure 4.1b, we can see the number of entities talk-

ing about Beijing and Peking, a former spelling method of Beijing. The Chinese

government introduced the Pinyin system in 1958, and in 1979, Chinese government

began to use Beijing in all of its foreign language publication. However, some media

didn’t change until 1990s, and BBC still referred the city as Peking in its 1989 report

[19]. We can clearly see the peak of both Peking and Beijing in 1989, and the rise of

Beijing right before 1960 and 1979.

4.2.3 Other Name Changes

There’re several ways to refer to certain entity, and there’re different methods

to call a person. For example, President George Bush can be referred as George

W. Bush, President Bush, or George Bush Jr. WordNet could identify different
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references to certain word, and link them to its most used name. In Table 4.7, we

showed the changes of words that were mentioned using the largest number of nick

names. Figure 4.2 shows the number of articles that mentioned George Bush. We

Table 4.7: Various Name Use

Sense ID Sense Name # Nick Names or Other References
108158374 Drug Enforcement Ad-

ministration
3 Dea, Drug Enforcement Ad-

ministration, Drug Enforcement
Agency

108190414 European Union 3 European Community, European
Economic Community,European
Union

109147066 John F. Kennedy Inter-
national Airport

3 Kennedy, Kennedy Interna-
tional,Kennedy International
Airport

110895055 George H. W. Bush 3 George Bush, George Herbert
Walker Bush, President Bush

111380017 Vincent van Gogh 3 Van Gogh, Vincent Van Gogh,
Gogh

100521115 Mardi Gras 2 Fat Tuesday, Mardi Gras
100949739 Substance abuse 2 Substance Abuse, Drug Abuse
101314011 World War I 2 Great War, First World War
101314587 World War II 2 World War II, Second World War
102704730 New York Stock Ex-

change
2 American Stock Exchange, Amex

can see that the first peak started from 1988, and slowly goes down from 1992. This

matches with the period when George H. W. Bush served as the president of United

States. A second high peak started from 2000, and reaches its highest in 2004, and

slowly decreases until 2009, when George W. Bush left office as president. The two

highest peaks matche with his two campaign periods, and the third one matches the
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invasion of Iraq led by him in 2003.

Figure 4.2: Mentions Of George Bush Figure 4.3: Mentions Of Clinton

Figure 4.3 also shows the change of Clinton. From the chart we can see the rise of

Clintons in early 90s, when Bill Clinton campaigned and became the president. We

especially see a peak before 2000, because of the scandal in 1998. Also in 1998, the

number of articles mentioning Hillary Clinton outnumbered those about Bill Clinton

because of the scandal. After that, the Clintons silent for a while until Hillary Clinton

became a Senator and turn the Secretary of State in 2009. During this period she

always outnumbered her husband since his retirement from the president.

From the analysis on George Bush and the Clintons, we can see that time scale

can be one parameter to be used on disambiguation. For the same phrase in different

times, it could represent different entity and as a consequence, we could use the time

to filter entity in future work.
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5. CONCLUSION

The paper introduced a tool that help researchers track entities and people in

the world, and see the relationships between them. The tool used New York Times

as its resource to get the location and entities name in each articles, and extract the

relationships from articles, applied WordNet and Wikipedia to reduce ambiguity and

link entities to Wikipedia, used Google Maps and D3 to generate interactive map

demonstrating keywords, their relationships, and articles related to them.

The paper also discussed the distribution of the data resource, the New York

Times, and showed the clear bias among different locations, countries and regions.

We found that the NYT dataset itself has very large bias. It is mainly focused on

the United States and the New York region and focuses more on Europe than Asia

or Africa. We also analyzed different resources and see the differences among them

in terms of word use and reference of names. News articles like New York Times

clearly have less conversations and are more formatted, while books containing more

original data and interesting stories and thus have more duplications in names due

to conversations. We also compare the occurrence of several words in our database

with some of the big events happened that in the world, and found out that they

followed a similar pattern, rising and decreasing at similar moments. This shows

that our system is able to successfully discover the entities in New York Times.
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6. FUTURE WORK

There are several aspects about the tool that can be improved:

• The accuracy can be further increased. The algorithm for analyzing related

keywords and locations is simple to use. However, it only consider the relative

location in the articles between words, without considering the structure of the

sentences or paragraphs. This could be more accurate in some aspects, but also

introduces some errors since the situation are not always correct. Furthermore,

the parsing of time in each article is only looking for numbers that make sense

as a year marker. However, this can’t be always true. There are also several

ways to locate a time in articles, such as looking for a preposition before the

number. These techniques can be applied to further improve the accuracy of the

identification of the article. What’s more, some Machine Learning techniques

can also be applied to do topic recognition to further increase the accuracy of

recognition part.

• There are words that are not capitalized but still form a specific term or entity

that can’t be recognized by the processing program. Considering this situa-

tion, we already introduced Wikipedia to help recognize phrases in the Art,

History and Archaeology areas. Further steps include using more categories in

Wikipedia to further mark entities inside articles without capitalized words.

• Not all capitalized words form an entity, some are capitalized only because

they are the first word of a sentence. Some of the keywords are formed by an

ordinary starting word and followed by a specific term. In Section 3, we already

manually edited some of these words, such as In, On, As, About. However,
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there are still some terms contain words capitalized in the beginning of articles.

• The major source was the New York Times, which is located in United States,

and has to have some bias. Though NYT corporate does have a separate

Chinese website, in which some articles are translated from English articles,

some are originally written in Chinese. Most of the articles have an English

version that can be accessed directly from the NYT English website, however,

some of them only provide Chinese version, which makes it hard to analyze.

A possible way to eliminate the bias of NYT in the Asia area is to include the

Chinese version into consideration, which require a another whole system to

process. Another possible way to reduce the bias of NYT is combining it with

other data sources, such as The Times in London, the BBC in London, and

the Times of India in Delhi.
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