
THE VALUE OF ASSESSING UNCERTAINTY 

A Dissertation 

by 

MUBARAK NASSER M ALDOSSARY  

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Chair of Committee,  Duane McVay 
Committee Members, John Lee 

Eduardo Gildin 
Bani Mallick 

Head of Department, Dan Hill 

May 2016 

Major Subject: Petroleum Engineering 

Copyright 2016 Mubarak Nasser M Aldossary



ii 

ABSTRACT 

Despite the perception of lucrative earnings in the oil industry, various authors have 

noted that industry performance is routinely below expectations. For example, the 

average reported return for the industry was around 7% in the 1990s, even though a 

typical project hurdle rate was at least 15%. The underperformance is generally 

attributed to poor project evaluation and selection due to chronic bias. While a number 

of authors have investigated cognitive biases in oil and gas project evaluation, there have 

been few quantitative studies of the impact of biases on economic performance. 

Incomplete investigation and possible underestimation of the impact of biases in project 

evaluation and selection are at least partially responsible for persistence of these biases. 

The objectives of this work were to determine quantitatively the value of 

assessing uncertainty or, alternatively, the cost of underestimating uncertainty. This 

work presents a new framework for assessing the monetary impact of overconfidence 

bias and directional bias (i.e., optimism or pessimism) on portfolio performance. For 

moderate amounts of overconfidence and optimism, expected disappointment (having 

realized NPV less than estimated NPV) was 30-35% of estimated NPV for typical 

industry portfolios and optimization cases. Greater degrees of overconfidence and 

optimism resulted in expected disappointments approaching 100% of estimated NPV. 

Comparison of simulation results with expected industry performance in the 1990s, 

indicates that these greater degrees of overconfidence and optimism have been 

experienced in the industry.  



iii 

The value of reliably quantifying uncertainty is in reducing or eliminating 

expected disappointment and expected decision error (selecting the wrong projects), 

which is achieved by focusing primarily on elimination of overconfidence; other biases 

are taken care of in the process. Elimination of expected disappointment will improve 

industry performance overall to the extent that superior projects are available and better 

quantification of uncertainty allows identification of these superior projects. 
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INTRODUCTION*  

A number of authors have documented the chronic underperformance of the oil and gas 

industry relative to expectations. Brashear et al. (2001) reported that the return on net 

assets by the largest U.S.-based E&P companies was only 7%, after selecting projects 

with hurdle rates of generally 15% or more, which were all financed with cost of capital 

generally in the range of 9-12%. According to Rose (2004), in the last 20 years of the 

20th century, E&P companies delivered only about half of predicted reserves. From 1990 

to 2000, the S&P 500 had an average annual return of 16%, almost double E&P 

companies at 9%. The top 25 international E&P companies from 1996-2002 averaged 

only 11% return on exploration investment. 

While performance may have improved in the last decade, this may be due more 

to high oil prices during this period rather than systematic improvement in business 

processes. It is even possible that high oil prices have caused the industry to relax and 

have made decision-making worse. Merrow (2011) reported that since 2003, the rate of 

success for megaprojects (>$1 billion) remained constant at about 50% for non-

petroleum projects, while the success rate for petroleum megaprojects declined from 

50% to 22%.  

* Reproduced with permission of Society of Petroleum Engineers (SPE) to reuse SPE-160189 “The Value 
of Assessing Uncertainty,” doi:10.2118/160189-PA. Copyright 2014, Society of Petroleum Engineers Inc. 
Further reproduction prohibited without permission. 
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Why does the industry underperform? Brashear et al. (2001) attributed it, at least 

in part, to use of evaluation methods that do not account for the “full” uncertainty. Rose 

(2004) indicated that “by far, the dominant cause of E&P underperformance is an 

internal problem…: Chronic bias in estimating key geotechnical parameters that control 

our evaluation of E&P projects.” According to Begg et al. (2003),“Uncertainty is the 

underlying cause of the failure of many decisions to deliver their promised technical and 

economic metrics.” Is the problem the uncertainty itself? This cannot be the case because 

uncertainty will always be present. Indeed, Leach (2006) says that uncertainty is the 

ultimate source of value in business. If not uncertainty itself, is the problem that our 

processes for decision making under uncertainty are suboptimal, or is it that we do a 

poor job of quantifying the uncertainty? 

Capen (1976) summarized well the difficulty of assessing uncertainty. He 

conducted several experiments with petroleum engineers that demonstrated chronic 

overconfidence, or underestimation of uncertainty. For example, he showed that when 

asked to produce 90% confidence intervals, engineers on average produced ranges that 

corresponded to only 32% confidence intervals. He discussed the value of training 

(calibration) and application of probabilistic methods to improve uncertainty estimation. 

A number of authors have identified specific biases that affect estimation and decision 

making (Tversky and Kahneman, 1974; Virine, 2008; Welsh et al., 2007; Welsh et al., 

2005). The authors claim that awareness of these biases and training can mitigate their 

effects and improve estimation.  
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Many authors have written on the benefits of uncertainty quantification and 

probabilistic decision analysis processes. For example, Capen (1976) demonstrated that 

efforts to better define the range, or distribution, can result in a more accurate “best 

estimate” used in decision making. Bratvold and Begg (2010, pp. 86-88) show that 

quantifying variability (uncertainty) in potential outcomes is important because it can 

help you determine if the downside is so large that it could ruin you. Due to these and 

other papers and technology transfer efforts, Bickel and Bratvold (2007) show that there 

has been increased interest and use of probabilistic decision making processes in the oil 

and gas industry. However, a significant fraction of companies still use predominantly 

deterministic methods.  

Despite the many papers and increased awareness and use of probabilistic 

methods, why is there not greater widespread adoption? Why does the industry 

apparently still underestimate uncertainty, routinely and significantly? Why is there little 

apparent application of look-backs and calibration of probabilistic forecasts to improve 

uncertainty quantification? Part of the answer to these questions is that some companies 

that have tried uncertainty quantification and decision analysis have experienced 

“uncertainty-induced confusion” due to incorrect application (Bickel and Bratvold, 

2007). A greater contributor is lack of clear evidence that increased use of uncertainty 

quantification and decision analysis has led to significantly better decision making and 

overall industry performance. Most of the cited benefits of uncertainty quantification and 

probabilistic decision analysis processes have been qualitative in nature, as the couple 

mentioned above. There have been few quantitative studies. In a study outside of 
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petroleum E&P, Clemen and Kwit (2001) estimated that Eastman Kodak Company 

added value of $250 million to $1 billion from 178 decision-analysis projects performed 

for the company from 1990-1999. For the E&P industry, Welsh et al. (2007) performed a 

quantitative analysis of the impact of three biases common to project evaluation—

overconfidence, trust, and availability. They showed that the presence of these biases 

could result in true NPVs substantially less than estimated NPVs. However, the analysis 

was performed on a single-project basis and the overall impact on a portfolio was not 

assessed. Begg and Bratvold (2008) performed a quantitative analysis of the impact of 

prediction error on an expected basis at the portfolio level. However, they examined only 

the impact of the Optimizer’s Curse systematic bias, which they found to have less 

impact than previously thought. With the dearth of quantitative studies, there is little 

evidence demonstrating that uncertainty quantification and probabilistic processes 

actually add value to the bottom line. This lack of evidence is one of the primary reasons 

many companies are reluctant to adopt these processes.  

The objectives of this work were to determine quantitatively the value of 

assessing uncertainty or, alternatively, the cost of underestimating uncertainty. Can it 

really make a difference in the bottom line? Can it have a significant impact on company 

and industry financial performance? In this dissertation, the focus will not be on the 

different types and degrees of decision analysis processes available. Instead, the focus 

will primarily be on quantification of uncertainty, more specifically, reliable 

quantification of uncertainty. Many believe that simply conducting a probabilistic 

analysis is enough, and they do not understand nor appreciate the value of quantifying 
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the true uncertainty. In the remainder of this work, some previous approaches will be 

reviewed, a new framework for modeling the impact of quantifying uncertainty will be 

presented, the results of numerical experiments will be presented and analyzed, and then 

the implications and application of the findings will be discussed. 
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PREVIOUS MODELING OF IMPACT OF BIASES* 

This section will present a brief summary of the Begg and Bratvold (2008) study of the 

Optimizer’s Curse, or Inevitable Disappointment, because this work will build upon their 

modeling part. Begg and Bratvold conducted unconstrained-budget and constrained-

budget selections from typical O&G Global Portfolios. The portfolios each consisted of 

100 projects and were sampled from distributions designed to model the project 

alternatives available to a typical O&G company. For each project in the unconstrained-

budget selection, they first sampled from a global distribution to determine the “true” 

expected NPV, or EV, that would be obtained if the company had unlimited time, 

money, and computational ability (unlimited-resources assessment). The authors did not 

define the “true” uncertainty (e.g., standard deviation or complete distribution) of the 

project, only the true EV. The authors then sampled from a second global distribution to 

get the standard deviation that is used to construct a normal distribution (with mean 

equal to the true EV) that represents the estimated EV distribution that would result from 

typical industry limited-resources probabilistic assessments. They then sampled from 

this project normal distribution to obtain the estimated EV for the particular project 

assessment. Again, because it was not needed in their modeling, the authors did not 

quantify the estimated project uncertainty (e.g., standard deviation or complete 

* Reproduced with permission of Society of Petroleum Engineers (SPE) to reuse SPE-160189 “The Value 
of Assessing Uncertainty,” doi:10.2118/160189-PA. Copyright 2014, Society of Petroleum Engineers Inc. 
Further reproduction prohibited without permission. 
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distribution) in their limited-resources assessments; they quantified only the estimated 

EV.  

This process was repeated to determine true and estimated EVs for each of the 

100 project alternatives in the portfolio. In the unconstrained-budget selection, projects 

were accepted if the EV>0, and rejected otherwise. The selection was done twice, first 

based on true EVs and second based on estimated EVs. From this information, the 

authors then determined the disappointment and decision error for the portfolio. The 

disappointment is determined from the portfolio selected using the estimated EVs, and is 

defined as the estimated expected value of this portfolio (estimated portfolio value) 

minus the true expected value of this same portfolio (realized portfolio value). 

Disappointment can be either positive or negative. The decision error is defined as the 

true expected value of the portfolio selected using the true EVs (best possible portfolio 

value) minus the true expected value of the portfolio selected using the estimated EVs 

(realized portfolio value). Thus, the decision error is always positive and it is defined as 

that portion of disappointment that results from selecting the wrong projects. The 

remaining portion of disappointment, estimated portfolio value minus the best possible 

portfolio value, is the estimation error. This selection process was repeated for many 

100-project portfolios in a Monte Carlo simulation to determine the expected 

disappointment, ED, and the expected decision error, EDE.  

The process was similar for the authors’ constrained-budget selection. However, 

instead of modeling a single random variable, NPV, the authors modeled two random 

variables, capital expenditure (CapEx) and investment efficiency (IE = NPV/CapEx). 
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The projects were ranked by decreasing IE and then successively selected until the 

CapEx budget was reached (taking an appropriate percentage of the last project selected 

to fill the budget). NPV was backed out from IE and CapEx for purposes of determining 

expected disappointment and expected decision error. 

Parameters specified by Begg and Bratvold (2008) were as follows: 

1) Unconstrained-budget selection used only NPV of projects:

a) The true expected NPV (EV) is modeled as a shifted log-normal distribution

(mean 600MM, SD 300MM, truncated from the right at 1,800MM, and then

shifted -300MM). The maximum NPV is 1,500MM based on the order of the

truncation and shift.

b) Variability (standard deviation) of the estimated EV about the true EV is a Pert

distribution (min 50MM, most likely 100MM, max 200MM).

2) Constrained-budget selection used CapEx and IE parameters, from which NPV was

back-calculated.

a) True expected IE is a shifted log-normal distribution (mean 0.5, SD 0.3,

truncated from the right at 2.3, and then shifted -0.3).

b) Variability of estimated IE is a Pert distribution (min 0.05, most likely 0.1, max

0.2).

c) True expected CapEx is a shifted log-normal distribution (mean 600MM, SD

600MM, and shifted +100MM).

d) Distributions of estimated EV about the true EV for CapEx and IE are normal

distributions.



9 

e) IE and CapEx are independent (uncorrelated).

f) Maximum CapEx budget is $5 billion.

In the process of reproducing the experiments of Begg and Bratvold, it was

noticed that the variability of CapEx was not specified in their paper, and therefore a 

Pert distribution (min 50MM, most likely 100MM, max 200MM) was used based upon 

personal communication with the authors. One million iterations in Monte Carlo 

simulations were used, whereas the authors did not specify the number of Monte Carlo 

iterations they used. The expected disappointment was calculated as a percentage of true 

NPV (ED%T) in this work by taking the expectation of the percent disappointments 

from each of the Monte-Carlo iterations, ܦܧ%ܶ ൌ ܧ ቀா௦௧ே௉௏ି்ே௉௏
்ே௉௏

ቁ, as opposed to 

calculating it from the expected total NPVs, ܦܧ%ܶ ൌ ாሺா௦௧ே௉௏ሻିாሺ்ே௉௏ሻ

ாሺ்ே௉௏ሻ
, as the authors 

apparently did in the sample calculation outlined in their paper. Similar calculations 

were made for expected decision error as percent of true NPV (EDE%T). Despite these 

differences, their expected disappointment and expected decision error values were 

matched to within 0.1-0.2% for both the unconstrained-budget and constrained-budget 

cases (Table 1). 
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Table 1—Summary of comparison to previous work 
Case type Parameter This 

work 

SPE 

116525

Using second global 

portfolio distribution 

Unconstrained 

budget 

Expected Disappointment 4.9% 4.7% 9.91% 

Expected Decision Error 2.2% 2.1% 4.07% 

Constrained 

budget 

Expected Disappointment 5.9% 6.1% 

Expected Decision Error 2.8% 2.9% 

Begg and Bratvold (2008) described the global portfolios differently for the two 

cases they ran. They described the first global portfolio in terms of NPV for the 

unconstrained-budget case and the second global portfolio in terms of CapEx and IE for 

the constrained-budget case. These descriptions do not result in identical properties for 

the two global portfolios. To test the sensitivity of expected disappointment and 

expected decision error to properties of the global portfolio, an unconstrained-budget 

selection was carried out using the second portfolio description, i.e., the one in terms of 

CapEx and IE used in the second case. Both ED%T and EDE%T for the unconstrained-

budget case using the second portfolio description were approximately double the 

ED%T and EDE%T obtained using the first portfolio description (Table 1), with ED%T 

approaching 10% and EDE%T over 4%. This difference indicates that ED%T and 

EDE%T are sensitive to properties of the global portfolio, so a way to characterize the 

global portfolio was needed. While not completely descriptive, a relatively simple 

measure is the percentage of projects in the global portfolio that have true expected 
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NPV, or EV, less than zero. Analysis showed that the first portfolio, described in terms 

of NPV, has approximately 11% of the projects with true EV less than zero, while the 

second portfolio, described in terms of CapEx and IE, has 26% of the projects with true 

expected NPV less than zero (Fig. 4). Thus, the second portfolio is more negative, which 

helps explain why it experiences greater ED%T and EDE%T. These results indicate that 

for global portfolios that are even more negative than these, ED%T and EDE%T could 

potentially be more significant than that reported by Begg and Bratvold.   
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NEW FRAMEWORK FOR MODELING IMPACT OF BIASES*  

Chronic Overconfidence and Optimism 

Much has been written about the biases that affect judgment and estimation, and authors 

have identified many different biases. Reviewing these biases reveals that they tend to 

affect:  

1) the uncertainty, or variability, of the estimate (usually in the direction of

overconfidence, or underestimation of uncertainty),

2) the central tendency of the estimate (usually in the direction of optimism), or

3) both the uncertainty and central tendency of the estimate.

It is well established that chronic overconfidence is a problem of nearly 

everyone, including oil and gas industry professionals. This was reported by Tversky 

and Kahneman (1974), Capen (1976), and other authors. Little evidence shows there has 

been significant progress in reducing the overconfidence problem since these papers 

were written in the 1970s. For example, Ben-David et al. (2013) surveyed top U.S. 

financial executives over a 10-year period, yielding 12,500 probability distributions of 

future stock market returns. They found the CFO’s were severely overconfident; realized 

market returns were within predicted 80% confidence intervals only 33% of the time. 

This overconfidence was strongly correlated to overconfidence in their own-firm returns. 

* Reproduced with permission of Society of Petroleum Engineers (SPE) to reuse SPE-160189 “The Value 
of Assessing Uncertainty,” doi:10.2118/160189-PA. Copyright 2014, Society of Petroleum Engineers Inc. 
Further reproduction prohibited without permission. 
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Another serious problem in oil and gas project evaluation is chronic optimism. Optimism 

is the tendency to ignore or not consider possible negative outcomes, or the tendency to 

give greater weight to possible positive outcomes than possible negative outcomes. 

Psychologists have demonstrated a general tendency for unrealistic optimism; people 

underestimate the likelihood that negative events will happen to them and overestimate 

the likelihood that positive events will happen to them (Weinstein, 1980). Some studies 

suggest that people are more optimistically biased under conditions of greater 

uncertainty and when the outcomes of their predictions will be revealed further in the 

future (Armor and Taylor, 2002). Many authors allude to or provide evidence of 

optimism bias in the oil and gas industry (Begg and Bratvold, 2008; Campbell et al., 

2001; Merrow, 2011; Smith and Winkler, 2006).  

Overconfidence and optimism work together. We are overconfident because we 

are optimistic and fail to see all the downsides. We are optimistic because we are 

overconfident and fail to see all the downsides. It may be possible to be overconfident 

without being optimistic if one neglects upsides and downsides equally, although the 

evidence suggests that this is not common. However, it is unlikely that we can be 

optimistic without being overconfident; if we are considering all possible outcomes and 

are thus not overconfident, then we are considering both the upsides and the downsides 

and are thus not optimistic. Thus, it appears that overconfidence is the first cause and the 

more significant of the two biases. Review of the oil and gas literature does not show 

any systematic quantitative studies of overconfidence and optimism in combination.  
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Model Description 

In this section the mathematical model used to assess the value of quantifying 

uncertainty will be described. The model is relatively simple and is based on the premise 

that all the biases that affect oil and gas project evaluation can be boiled down to two 

primary biases—overconfidence and optimism (or more generally, directional bias). The 

model describes the relationship between the true project value distribution(s) (e.g., 

NPV) and the estimated project value distribution(s) in terms of an overconfidence 

parameter and a directional bias parameter.  

True project value distribution 

As with Begg and Bratvold (2008) and others, the “true” project value distribution is 

assumed to be the distribution that would result from an unlimited-resources assessment, 

i.e., that would be obtained if the company had unlimited time, money, and

computational ability. Furthermore, it is clarified that the unlimited-resources assessment 

is based upon existing data; i.e., the unlimited time and money cannot be used to run 

additional tests, drill more wells, or acquire additional data for the project. Questions 

such as whether a “true” project distribution exists, if it is unique, and what it means are 

further discussed by Smith and Winkler (2006). It is assumed here that a “true” project 

distribution exists, but that it is not necessarily the same for every individual or 

company. Since uncertainty is personal (different individuals and companies have 

different knowledge and assessment processes, and thus can have different uncertainty 

for a particular project), different individuals and companies can have different but 

reliable “true” unlimited-resources project value distributions. Reliable means that the 
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true distributions are perfectly calibrated. That is, if many similar evaluations were to be 

conducted, the frequencies of realized outcomes would correspond perfectly with the 

probabilities of those outcomes, for all outcomes over the entire range of probability 

from 0 to 1. 

Estimated project value distribution 

This is the distribution that would result from a typical industry limited-resources 

probabilistic assessment, and would include the biases present in typical oil and gas 

project evaluations.  

Overconfidence 

First, the impact of overconfidence on the estimated project value distribution will be 

considered in the model. Overconfidence is defined as a parameter that ranges from 0 to 

1. This value specifies the fraction of the true distribution (or total probability) that is not

sampled in the limited-resources assessment. Thus, an overconfidence value of 0 means 

the entire true distribution is sampled in the limited-resources assessment. In such a case, 

all possible outcomes are considered, no biases are present, and the limited-resources 

project value distribution is exactly the same as the true distribution. Overconfidence 

values greater than 0 indicate that only a subset of the true distribution is sampled, or 

quantified. This means that some possible outcomes are not considered in the limited-

resources assessment. This results in a narrowing of the distribution, which is 

overconfidence. The assumption here is that the extreme, least-likely possibilities, or 

“black swans” (Taleb, 2007), are not considered, and we thus simply truncate the 

distributions at the tails (Fig. 1). While this is done for simplicity, it is believed to be not 
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far from reality. Assuming for the moment no optimism or pessimism (directional bias), 

the distribution will be truncated by the same amount of probability (or area under the 

curve) from each end. The more overconfident the evaluator is, the larger the value of 

the overconfidence parameter, and the narrower the truncated distribution is (Fig. 1, 

diagrams with directional bias parameter equal to zero). A value of 0.5 means the 

evaluator will consider only the outcomes representing the most-likely 50% of the total 

probability (area under the curve), truncating 25% of the total probability from the low 

end and 25% of the total probability from the high end. A confidence parameter value of 

one indicates no range at all, or a deterministic single estimate at the median of the 

probability distribution.  

Directional Bias 

Next, the impact of optimism or pessimism (directional bias) on the estimation will be 

considered. Directional bias is defined as a parameter that specifies the location of the 

estimated distribution within the true distribution. The directional bias parameter value 

ranges from -1 to 1, with -1 denoting complete pessimism and 1 specifying complete 

optimism. Fig. 1 shows, for normal distributions for a value-based parameter such as 

NPV, the portion of the true distribution that is sampled for various combinations of the 

confidence parameter and the directional bias parameter. A directional bias of 1 indicates 

complete optimism, which means that only the most optimistic outcomes are considered 

in the limited-resources assessment. In this case, there is no truncation of the distribution 

from the high end; all of the truncation is from the low end. A directional bias of -1 

indicates complete pessimism, which means that only the most pessimistic outcomes are 
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considered in the limited-resources assessment. In this case, there is no truncation of the 

distribution from the low end; all of the truncation is from the high end. In this model, 

there can be directional bias only if there is overconfidence, i.e., confidence parameter > 

0. Directional bias has no impact for confidence parameter = 0, since in this case the

estimated distribution is the same as the true distribution. 

Intuitive description 

As mentioned above, a directional bias equal to zero indicates neither optimism nor 

pessimism, in which case truncation of the true distribution occurs equally from both 

ends. Linear interpolation is used to obtain the fractions of area truncated from each end 

for other values of directional bias. For example, for directional bias of 0.5, 75% of the 

total probability, or area, that is truncated (which depends on the value of the confidence 

parameter) is truncated from the left end of the true distribution and 25% is truncated 

from the right end of the distribution. Thus, for a confidence parameter value of 0.5, 

37.5% of the probability (area) would be removed starting from the left and 12.5% of the 

probability would be removed starting from the right end of the distribution (Fig. 1). 

Truncation for a cost-based parameter such as CapEx would be in the opposite direction. 

For example, directional bias of 1 (optimism) would result in all the truncation being 

from the high end, shifting the estimated distribution to lower CapEx values. 



18 

Confidence=0.10 Confidence=0.50 Confidence=0.90 

Directional 
Bias=1.0 

Est EV=0.2 Est EV=0.8 Est EV=1.8 

Directional 
Bias=0.5 

Est EV=0.1 Est EV=0.3 Est EV=0.6 

Directional 
Bias=0.0 

Est EV=0.0 Est EV=0.0 Est EV=0.0 

Directional 
Bias=-0.5 

Est EV=-0.1 Est EV=-0.3 Est EV=-0.6 

Directional 
Bias=-1.0 

Est EV=-0.2 Est EV=-0.8 Est EV=-1.8 

Fig. 1—Relationship between the estimated distribution (shaded) and the true 
distribution (unshaded) as a function of overconfidence and directional bias 
parameters for a value-based parameter such as NPV. The overconfidence 
parameter determines the fraction of explored probability while the bias parameter 
determines the direction. 

These truncated distributions are the limited-resources, “estimated” project 

distributions. Fig. 1 also shows, for each case, the expected value of the estimated 

distribution that results from truncation of a true standard normal distribution with mean 

of zero and standard deviation of 1. The expected values from these truncated 
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distributions are used in Monte Carlo simulations to calculate expected disappointment 

and expected decision error.  

It is of interest to compare values of this confidence parameter to other measures 

of overconfidence (or underestimation of uncertainty) presented in the literature. For 

example, Capen (1976) demonstrated that when many O&G professionals were 

requested to provide 90% confidence intervals for a variety of general-knowledge 

estimations, the professionals gave ranges that encompassed the true value only 32% of 

the time. That is, the requested 90% ranges were in fact only 32% ranges. Translating 

those numbers into the new framework yields a confidence parameter of 0.644, i.e. (1 – 

35.6%), as shown in Fig. 2. To explain the calculation, unshaded areas under the curve 

imply possibilities not considered due to overconfidence. A typical professional with 

such a confidence value (0.644) will only have a perceived possible range of 35.6%, and 

the professionals gave 90% of that 35.6%, which is 32% (0.9 x 35.6%)—what Capen 

measured. A general formula for converting similar quantities is: confidence value = 

1 െ ோ௔௡௚௘ೝ೐೎೐೔ೡ೐೏
ோ௔௡௚௘ೝ೐೜ೠ೐ೞ೟೐೏

.  
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Fig. 2—Professional responded with 32% when asked for 90% ranges, which yields 
a confidence parameter value of 0.644. Figure exaggerated for illustration (not 
drawn to scale). 

In Welsh et al. (2007), the authors requested 80% confidence ranges for O&G-

related estimations, but instead, received on average only 50% ranges. This corresponds 

to a confidence parameter value of 0.375. Smaller confidence value for familiar tasks is 

expected and reproduced by others (Block and Harper, 1991).  

In this study, the investigated values of the confidence parameter will range from 

0 to 1, i.e., all possible values. The investigated values of directional bias will range 

from 1 (complete optimism) to -1 (complete pessimism). The negative directional bias 

(pessimism) will be included even though evidence suggests optimism is much more 

common than pessimism in oil and gas project evaluation. Initially, discrete values of 

confidence and directional bias parameters are used to determine their effects on 

32%
5% 5%Reduction by confidence 0.644 

(32.2% each side)

32.2% 32.2%

Further reduction because 
requested range 90%

90%
35.6%
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expected disappointment and decision error. Later in this work, additional scenarios are 

investigated to simulate human bias behavior which might vary from one project to the 

next, and also from one portfolio estimator to the next. Normal distributions were used 

in Fig. 1 for illustration but the analysis will use lognormal distributions as will be 

explained in the parameters section. 

Quantitative Assessment of Impact of Biases 

It would be of interest to first reproduce Begg and Bratvold (2008) work on the 

Optimizer’s Curse with the new framework that was just introduced. However, it is not 

possible to do this directly because the authors specified only the true EV and did not 

specify the true project uncertainty (e.g., standard deviation), while both the true EV and 

the true project uncertainty are required in this framework. In this quantitative analysis, 

the starting point for the portfolio description will be the one employed by Begg and 

Bratvold for their constrained-budget selection, described in terms of CapEx and IE. A 

model for the true project uncertainty is added and other modifications were made, 

which are described in the next section.  

Simulation parameters 

The most significant change made was in the two random variables used to describe 

project economic performance. Instead of using CapEx and IE, which are inversely 

correlated because CapEx is the denominator of IE, CapEx and the present value of the 

operating cash flow (PVOCF) are chosen to be used. PVOCF includes all cash inflows 

and outflows except for CapEx and is thus equal to NPV plus CapEx. CapEx and 
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PVOCF are modeled as independent random variables. While there may be some 

correlation between these variables in actual projects, since PVOCF in general 

represents the revenue side of the project (dominated by production and prices) while 

CapEx in general represents the development cost side of the project, there will be much 

less correlation between CapEx and PVOCF as there will be between CapEx and IE. 

CapEx and PVOCF distributions for the pool of 100 projects to select from were 

determined by sampling means and standard deviations from global distributions.  

CapEx 

For mean true CapEx, the same global distribution as Begg and Bratvold will be 

sampled, a lognormal distribution with mean=$600MM, SD=$600MM and then shifted 

positively by $100MM. The standard deviation of true CapEx will be defined relative to 

the true expected value. Thus, large projects will have large uncertainty, and small 

projects will have smaller uncertainty. To obtain each project’s CapEx standard 

deviation, the true expected CapEx is multiplied by a fraction sampled from a Pert 

distribution with minimum 0.3, mode 0.8, and maximum 1.3. With a mean and standard 

deviation determined from these global distributions, the true CapEx for each project is 

modeled with a lognormal distribution.  

PVOCF 

Since there was not a previous model of PVOCF to start with, it was back-calculated 

from the previous CapEx and IE model. Since NPV by definition is ܧܫ ൈ  and ,ݔܧ݌ܽܥ

PVOCF by definition is ܸܱܲܨܥ ൌ ܸܰܲ ൅ ܨܥܱܸܲ then ,ݔܧ݌ܽܥ ൌ ܧܫ ൈ ݔܧ݌ܽܥ ൅

 The first term is quite simple because multiplication or division of lognormal .ݔܧ݌ܽܥ
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distributions gives a simple lognormal distribution form: Log‐ࣨ൫ߤ஼௔௣ா௫, ஼௔௣ா௫ߪ
ଶ ൯ ൈ

Log‐ࣨሺߤூா, ூாߪ
ଶ ሻ ൌ 	Log‐ࣨ൫ߤ஼௔௣ா௫ ൅ ,ூாߤ ஼௔௣ா௫ߪ

ଶ ൅ ூாߪ
ଶ ൯. However, the addition and 

subtraction of two lognormal distributions does not have a closed form, and therefore 

must be approximated numerically. Using 10 million Monte-Carlo iterations, PVOCF 

was estimated by a lognormal distribution with mean=$746MM, SD=$731MM and then 

shifted positively by $87MM. The fit between this approximated lognormal distribution 

and the randomly sampled numbers is shown in Fig. 3, where the red curve is the fitted 

lognormal distribution and the black rectangles are a histogram of the output from the 

Monte-Carlo simulation.  

Fig. 3—Lognormal distribution approximation to PVOCF (X-axis is in $) 
0 
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Then, the positive shift was adjusted until the global portfolio approximately 

matched the properties of the global portfolio from the previous CapEx and IE model, 

ending up with a global portfolio having 28% of the projects with true expected NPV 

less than zero. Keeping in mind that Begg and Bratvold’s model had 26% of projects 

with true expected NPV less than zero, the results of the Monte-Carlo simulation are 

presented in Table 2 with highlighted row for the selected case. 

Table 2—Monte-Carlo simulation results for the percentage of true NPV less than 
zero for the approximated lognormal distribution of PVOCF. Highlighted row 
represents the selected case. 

Mean ($MM)  SD($MM)  Shift($MM)  TNPV<0 

 $     750.00    $     750.00    $      100.00   43% 

 $     750.00    $     750.00    $      200.00   35% 

 $     750.00    $     750.00    $      300.00   28% 

 $     750.00    $     750.00    $      400.00   23% 

 $     750.00    $     750.00    $      500.00   18% 

 $     750.00    $     750.00    $      600.00   15% 

The global distribution from which the mean true PVOCF is sampled will be 

simplified to a lognormal distribution with mean=$750MM, SD=$750MM and then 

shifted positively by $300MM, while the global distribution from which the relative 

standard deviation of true PVOCF is sampled will be similar to the one used for relative 

standard deviation of true CapEx, which is a Pert distribution with minimum 0.3, mode 

0.8, and maximum 1.3. Again, the random value sampled from this distribution will be 

multiplied by the true value of PVOCF to get the standard deviation of PVOCF in each 
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project. With a mean and standard deviation determined from these global distributions, 

the true PVOCF for each project is modeled with a lognormal distribution. 

Fig. 4 shows a comparison between the three discussed global portfolio 

distributions. The first one, NPV in blue, was used in the unconstrained budget 

evaluation in Begg and Bratvold (2008) and had an average of 11% on projects with 

NPV<0. The second one, IE * CapEx in green, was used in the Begg and Bratvold 

(2008) constrained budget estimation and had an average of 26% of projects NPV<0. 

The third one, PVOCF-CapEx was just proposed and was selected to have an average of 

28% of projects with NPV<0.  

Fig. 4—Comparison between P(NPV<0) for the three global portfolios. NPV in 
blue, CapEx*IE in green and PVOCF-CapEx in red. (X-axis in MM$) 

−∞ 0.000

27.9%
11.0%
26.0%

72.1%
89.0%
74.0%

-500 0 500 1000
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CapEx * IE
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Evaluation process 

Confidence and directional bias parameters will be applied to the true distributions for 

CapEx and PVOCF to obtain estimated distributions for CapEx and PVOCF. Although 

CapEx and PVOCF could have been chosen to bias differently, in this modeling the 

same amount of bias was applied to both CapEx and PVOCF. For example, in cases with 

overconfidence of 0.5, the overconfidence value of 0.5 will be applied to both models of 

CapEx and PVOCF. Directional bias is also applied equally, although estimated CapEx 

and PVOCF shift in opposite directions for the same value of directional bias. For 

example, in cases with optimism (directional bias > 0), the estimated distribution for 

PVOCF is shifted in the positive direction while the estimated distribution for CapEx is 

shifted in the negative direction.  

The framework for modeling biases was illustrated earlier using normal 

distributions (Fig. 1). Applying overconfidence with no directional bias preserves the 

mean, median and mode for normal distributions. However, lognormal distributions are 

used for true CapEx and true PVOCF for each potential project. Since truncating 

lognormal distributions cannot preserve both the mean and the median, this leads to the 

question of what overconfidence with no directional bias means for lognormal 

distributions. The mean could have been preserved, in which case the estimated EV 

would be the same as the true EV for overconfidence with no directional bias. However, 

it is more appropriate and realistic to truncate the same amount of probability, area under 

the curve, from each end of the distribution, which preserves the median of the 

lognormal distribution but results in a lower mean, or expected value. Since the 



27 

estimated expected value is used in project selection, this means that being overconfident 

but neither optimistic nor pessimistic can result in non-ideal project selection and, thus, 

disappointment. It is difficult to predict exactly what the impact will be, given the 

interplay between CapEx and PVOCF, but this result could have important implications 

in project selection under uncertainty.  

Finally, in the remainder of this work, ED and EDE are calculated as a 

percentage of the estimated portfolio value (ED%E and EDE%E) rather than the realized 

portfolio value as was done earlier. It is more useful to define percent disappointment 

and decision error in terms of a quantity that is known ahead of time (estimated portfolio 

value) rather than a quantity that is unknown for some time in practice (realized portfolio 

value). In addition, for situations with large disappointment (which will arise later in this 

work), ED and EDE as a percentage of realized portfolio value (ED%T and EDE%T) go 

to infinity as realized portfolio value goes to zero (realistic), while ED and EDE as a 

percentage of estimated portfolio value (ED%E and EDE%E) go to infinity as estimated 

portfolio value goes to zero (less interest in this case, because such portfolios will less 

likely be selected). 

The complete parameter set for both unconstrained-budget and constrained-

budget portfolio selection simulations is: 

1) True portfolio description uses CapEx and PVOCF parameters, from which NPV and

IE are back-calculated.

2) True expected CapEx is sampled from a shifted log-normal distribution (avg

600MM, SD 600MM, and then shifted 100MM).
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3) Standard deviation of true CapEx is relative to expected true CapEx, with fraction

sampled from a Pert distribution (min 0.3, mode 0.8, max 1.3).

4) True expected PVOCF is sampled from a shifted log-normal distribution (avg

750MM, SD 750MM, and then shifted 300MM).

5) Standard deviation of true PVOCF is relative to expected true PVOCF, with fraction

sampled from a Pert distribution (min 0.3, mode 0.8, max 1.3).

6) Individual-project true CapEx and PVOCF are lognormal distributions.

7) CapEx and PVOCF are sampled independently (uncorrelated).

8) Maximum CapEx budget is $5 billion.

Calculation Process 

Mathematical formulation 

This section will outline the steps required to formulate the truncated distribution that 

models overconfidence and directional bias of an estimator. The equations will be 

accompanied by an example that represents the biased estimation of the most likely 

PVOCF with 0.5 overconfidence and 0.5 directional bias. The first part of modeling a 

specific directional bias parameter and a confidence parameter is to consider the area 

under the curve that will be explored by the estimator. Let us call the bounds of this 

investigated area: a and b, a being the lower, and b being the upper bound as illustrated 

in Fig. 5.  
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Fig. 5—Illustration for mathematical calculation for directional bias value of 0.5 
and overconfidence value of 0.5. (X-axis in MM$) 

Six steps are required to find the equation of this truncated distribution. First the 

relative location (right or left) of the investigated area will be calculated based on the 

directional bias parameter only; optimism will shift the area to the right and pessimism 

will shift it to the left. Then the exact location of the area will be calculated based on 

relative location and the overconfidence parameter. The third step is the most involved, 

and that is calculating the exact values of a and b. The fourth step is plugging those 

values in the truncated distribution equation. The fifth is calculating the expected value 

of that truncated distribution. The sixth and last step will substitute the mean and 

standard deviation of the lognormal distribution  

The first step is calculating the relative location of the investigated area under the 

curve. Outside the bounds of this investigated area, the ratio of the area before the point 

 $‐  $500  $1,000  $1,500  $2,000  $2,500  $3,000  $3,500  $4,000a b

50%37.5%
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a to the area after the point b will be calculated. Those two fractions will add up to one, 

and will depend only on the directional bias and not the confidence, because we are not 

calculating the exact percentage of the area yet, only the ratios. The directional bias 

parameter will be shorthanded to “DB” in this section. 

Fraction on the left =
ଵାୈ୆

ଶ
. ....................................................................... (1) 

Fraction on the right =
ଵିୈ୆

ଶ
. ..................................................................... (2) 

For example, for a directional bias of 0.5, the fractions to the left and right are 

0.75 and 0.25, respectively, as shown in Fig. 5. 

At this point, we know the ratios and we multiply by the sampled percentage of 

the area under the curve (confidence) to find the areas at which the truncation should 

occur. OC will denote the overconfidence parameter in this section. 

Left Area =
ଵାୈ୆

ଶ
ሺOCሻ. .............................................................................. (3) 

Right Area =
ଵିୈ୆

ଶ
ሺOCሻ. ........................................................................... (4) 

For example, for a directional bias of 0.5 and a confidence value of 0.5, the left 

area is 37.5% and the right area is 12.5%, as shown in Fig. 5. 

The next step, and the most involved, is calculating values of the bounds (a, b), 

but this will require solving the inverse equation of the cumulative distribution function 

of a lognormal distribution. First, I review the probability density function for an 

unbounded lognormal distribution: 
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Log-ࣨሺߤሶ , ሶߪ ଶሻ ൌ ୣ
షሺౢ౤ ೟షഋሶ ሻమ

మሺ഑ሶ ሻమ

௧ఙሶ √ଶగ
, ݐ	݁ݎ݄݁ݓ ൌ ሺെ∞,∞ሻ. ................................... (5) 

The equation uses ߤሶ  and ߪሶ  because these are not the mean (ߤ) and standard 

deviation (ߪ) that we are interested in when using the Lognormal distribution in this 

context.  A lognormal distribution is defined as the logarithm of a normal distribution, 

and the mean ߤሶ  and standard deviation ߪሶ  used in this mathematical notation are those of 

that normal distribution whose logarithm will give the lognormal distribution. 

Lognormal distribution has a mean of ߤ ൌ ݁ఓሶ ା
഑ሶ మ

మ  and a standard deviation of ߪ ൌ

ට݁ଶఓሶ ାఙሶ మ൫݁ఙሶ మ െ 1൯, and for simplicity in the notation, we will keep ߤሶ  and ߪሶ  until the last 

step when we can substitute them for the real mean ߤ and standard deviation ߪ by 

solving the system of those two equations to get equations Eq. 6 and Eq. 7. 

ሶߤ ൌ lnሺߤሻ െ ଵ

ଶ
ln ቀఓ

మାఙమ

ఓమ
ቁ. ......................................................................... (6) 

ሶߪ ൌ ටln ቀఓ
మାఙమ

ఓమ
ቁ. ..................................................................................... (7) 

To find the area under the curve, we need the cumulative distribution function, 

which is the integration of the probability density function (Eq. 5) from െ∞ to ݔ. 

;ݔ௑ሺܨ ሶߤ , ሶߪ ሻ ൌ ඳ ୣ
షሺౢ౤೟షഋሶ ሻమ

మሺ഑ሶ ሻమ

௧ఙሶ √ଶగ

௫

ିஶ

ݐ݀ ൌ ଵ

ଶ
ቂ1+Erf ቀ୪୬௫ିఓ

ሶ

ఙሶ √ଶ
ቁቃ. ............................... (8) 

Eq. 8 can be used to find the cumulative probability that a certain dollar amount 

will be sampled from this distribution, for example, the probability that PVOCF will be 
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less than 500($MM). However, in our case, we do have the cumulative probabilities, a’ 

and b’, and we need to find the dollar values a and b (Fig. 6). 

Fig. 6—CDF of PVOCF for overconfidence and directional bias values of 0.5. (X-
axis in MM$) 

Fig. 6 shows the CDF of a typical PVOCF with a 0.5 overconfidence and 

directional bias, with the X-axis matching that of Fig. 5. The points a’ and b’ that are 

marked on the Y-axis are obtained from the left area (Eq. 3), and 1 – right area (Eq. 4). 

The corresponding points a and b are  the ones required as the bounds of the truncated 

lognormal distribution, and thus an inverse function of the cumulative probability 

function is required, as follows: 

௑ܨ
ିଵሺݍ; ሶߤ , ሶߪ ሻ ൌ eఓሶ ାఙሶ √ଶ୉୰୤

షభሾଶ௤ିଵሿ. ............................................................ (9) 
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The lower bound (a) is the value at which the area under the curve equals the left 

area calculated in Eq. 3 and will be substituted in Eq. 9: 

ܽ ൌ ௑ܨ
ିଵሺLeft	Area	ሻ ൌ ௑ܨ

ିଵ ൬
1 ൅ DB
2

ሺOCሻ൰ ൌ ݁ఓሶ ାఙሶ √ଶ୉୰୤
షభቂଶଵାୈ୆ଶ ሺ୓େሻିଵቃ

The last step in calculating the lower bound a is to substitute the real ߤ and ߪ 

from Eq. 6 and Eq. 7. 

ܽ ൌ ఓమ௘
√ము౨౜షభሾోిశీాሺోిሻషభሿටౢ౤ሾഋమశ഑మሿషమౢ౤ሾഋሿ	

ඥఓమାఙమ	
. .............................................. (10) 

For example, using Eq. 10, and knowing that the lognormal distribution in Fig. 5 

is a typical PVOCF, lognormal(mean =$1050MM, SD=$840), the value of a can be 

calculated to be $655MM for confidence and directional bias values both equal to 0.5. 

The upper bound b is the quantile at which the remainder of the area under the 

curve equals the right area calculated in Eq. 4. So (1-right area) will be substituted in Eq. 

9. 

ܾ ൌ ௑ܨ
ିଵሺ1 െ Right	Area	ሻ ൌ ௑ܨ

ିଵ ቀ1 െ ଵିୈ୆

ଶ
ሺOCሻቁ ൌ ݁ఓሶ ାఙሶ √ଶ୉୰୤

షభቂଶቂଵିభషీా
మ

ሺ୓େሻቃିଵቃ. 

After substituting the real ߤ and ߪ from equations Eq. 6 and Eq. 7, we end up 

with an expression very similar to a in  Eq. 10, except for the expression inside the 

inverse error function. 

ܾ ൌ ఓమ௘
√ము౨౜షభሾభషోిశీాሺోిሻሿටౢ౤ሾഋమశ഑మሿషమౢ౤ሾഋሿ	

ඥఓమାఙమ	
. .............................................. (11) 

For example, substituting in Eq. 11 confidence and directional bias values of 0.5, 

and lognormal(mean =$1050MM, SD=$840) gives a value of $1,841MM for b. 
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After locating the actual bounds a and b, the fourth step is to find an equation for 

the truncated lognormal distribution from a to b. First we start with the general equation 

for truncated lognormal distribution: 

Log- ୲ࣨ୰୳୬ୡୟ୲ୣୢሺܽ, ܾ; ሶߤ , ሶߪ ଶሻ ൌ
Log-ࣨ൫ఓሶ ,ఙሶ మ൯

ி೉ሺ௕;ఓሶ ,ఙሶ మሻିி೉ሺ௔;ఓሶ ,ఙሶ మሻ
 . 

Then, we substitute Eq. 5 in the numerator, and expand Eq. 8 in the denominator 

for both a and b inside the cumulative distribution functions to give:  

Log- ୲ࣨ୰୳୬ୡୟ୲ୣୢ ൌ
౛

షሺౢ౤ ೟షഋሶ ሻమ

మሺ഑ሶ ሻమ

೟഑ሶ √మഏ
భ
మ
ቂ1+Erfቀౢ౤್షഋ

ሶ
഑ሶ √మ

ቁቃିభ
మ
ቂ1+Erfቀౢ౤ೌషഋ

ሶ
഑ሶ √మ

ቁቃ
 . .................................... (12) 

After finding the equation, the fifth step is to find the expected value of the 

distribution. Shift from the expected value of the original distribution constitutes bias 

that will be translated to disappointment in the estimation process. The estimated value 

for a given directional bias and overconfidence is the mean of the truncated lognormal 

distribution in Eq. 12.  

݉݁ܽ݊ ൌ න ݔሻ݀ݔሺ݂ݔ
௕

௔
ൌ න ݔ ൈ Log‐ ୲ࣨ୰୳୬ୡୟ୲ୣୢሺܽ, ܾ; ሶߤ , ሶߪ ଶሻ݀ݔ

௕

௔

ൌ

⌡
ۚ
ۚ
ۚ
ۚ
⌠

ݔ

e
ିሺ୪୬௫ିఓሶ ሻమ

ଶሺఙሶ ሻమ

ߨሶ√2ߪݔ
1
2 ൤1൅Erf ൬

ln ܾ െ ሶߤ
ሶ√2ߪ

൰൨ െ
1
2 ൤1൅Erf ൬

ln ܽ െ ሶߤ
ሶ√2ߪ

൰൨
dx

௕

௔

 

ܸܧ ൌ
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The sixth step involves substituting the values of the real ߤ and ߪ from equations 

Eq. 6 and Eq. 7.  

ܸܧ ൌ ߤ

ۏ
ێ
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ۍ
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ቇ
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ۊ
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ۑ
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. ............................................ (14) 

The equations of a and b can also be substituted from Eq. 10 and Eq. 11 into Eq. 

14 to give Eq. 15 for completeness, but that can be easily avoided numerically by pre-

evaluating a and b in a sequential fashion.  
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. .................... (15) 

Implementation 

The first step in the Monte-Carlo simulation of the new framework is the implementation 

of the equations that links the true EV’s with the estimated EV’s. Table 3 outlines the 
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steps involved in generating the true EV’s of a project, and the implementation of 

relevant equations to generate the estimated EV’s, given certain values for confidence 

and directional bias. Those steps will be repeated one hundred times to generate 100 

projects that constitute the global portfolio that is available to one company or estimator. 

The table shows each intermediate parameter in a specific row, the description of that 

parameter, and then a sample value of that parameter based on the underlying 

distribution and calculations.  

Table 3—Implementation of calculations  
Type  Name  Description  Sample value

1 

TR
U
E 
EV

 $
M
M
  PVOCF  Present Value of Operating Cash   $    1,050

2  CapEx  Capital Expenditure  $       700

3  NPV  Net Present   $       350

4  IE  Investment Efficiency  0.5

5  Rank  True IE rank of the project  1

6 

SD
 o
f 

EV
  PVOCF  Standard deviation of the PVOCF (Random * row1)  $       840

7  CapEx  Standard deviation of the CapEx (Random * row2)  $560

8 

D
B
  PVOCF  Directional bias for the PVOCF   0.50

9  CapEx  Directional bias for the CapEx   ‐0.50

10 

O
C
  PVOCF  Overconfidence parameter for the PVOCF  0.50

11  CapEx  Overconfidence parameter of the CapEx   0.50

12 

Es
ti
m
at
ed

 E
V
 $
M
M
  PVOCF 

a: Minimum of the investigated range of PVOCF   $       654

13  b: Maximum of the investigated range of PVOCF   $1,836

14  The expected value of the estimated PVOCF   $    1,088

15 

CapEx 

a: Minimum of the estimated range of CapEx   $       244

16  b: Maximum of the estimated range of CapEx   $685

17  The expected value of the estimated CapEx  $       446

18  NPV  Estimated NPV of the project   $       642

19  IE  Estimated Investment Efficiency   1.437392

20  Rank  Estimated IE rank of this project   1
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The implementation will require 20 parts divided into five segments, as outlined 

in Table 3. The segments calculate the true EV, standard deviation of true EV, 

directional bias, overconfidence, and estimated EV.  

In the first segment, the true EV is calculated. First, PVOCF value for the project 

is randomly sampled from the lognormal distribution mean=$750MM, SD=$750MM, 

shift=$300MM. Second, the CapEx value is independently sampled from Begg and 

Bratvold lognormal distribution mean=$600MM, SD=$600MM, shift=$100MM. Then, 

the NPV, IE, and rank are calculated. NPV = PVOCF – CapEx, IE= NPV/CapEx, and 

the rank of this project within the set of 100 randomly generated projects can be 

calculated by sorting the projects based on the IE that was just calculated. 

The second segment calculates the standard deviations of the true EVs. Standard 

deviation of the PVOCF is randomly sampled from a Pert distribution min=0.3, 

mode=0.8, max=1.3, and then that random factor is multiplied by the PVOCF EV 

calculated earlier in row number 1. The second standard deviation is that of the CapEx 

and is randomly sampled from a Pert distribution min=0.3, mode=0.8, max=1.3, and 

then multiplied by the CapEx EV calculated earlier in row number 2.  

The third segment will specify the directional bias. This value will be varied 

manually to probe the effect of directional bias on the estimation process. Two modes of 

calculating the directional bias are used. The first is deterministic mode, where the fixed 

value of directional bias is used as specified. The second is stochastic mode, where the 

specified value will seed a small normal distribution, with a standard deviation of 0.2, to 

find a final directional bias that varies from project to project. The first item in this 
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segment is the directional bias for the PVOCF, and it will be set to the desired 

directional bias value assigned to PVOCF in the deterministic biases case. The stochastic 

case will use a small normal distribution with a mean equal to the assigned value and a 

standard deviation of 0.2. The second item in this segment is the directional bias for the 

CapEx and it will be calculated in a similar way but in the opposite direction (assigned 

value will be negated) because CapEx is a cost parameter.   

The forth segment will calculate the overconfidence parameter. This value too 

will be varied manually to study the effect of overconfidence on the estimation process.  

Similarly, deterministic and stochastic modes are calculated in the same way the 

directional bias is calculated.  

The fifth and last segment will calculate the estimated value based on all the 

previous parameters. As outlined from the mathematical formulation, pre-calculating the 

endpoints in the range of the estimated distribution is simpler in the implementation than 

doing all the calculation in one step. Starting with the PVOCF, the a parameter, which is 

the minimum of the investigated range of PVOCF, will be calculated based on Eq. 10 

using the mean (row 1), standard deviation (row 6), directional bias (row 8), and 

overconfidence (row 10). The b parameter, which is the maximum of the investigated 

range of PVOCF, will be calculated using Eq. 11 and using the same parameters as for 

the row above. The next step is calculating the expected value of the estimated PVOCF, 

which is calculated using a and b from rows 12, and 13 above, and using Eq. 14. The 

same technique will be used with CapEx. The range of the estimated distribution will be 

calculated first, and then the expected value of the estimated distribution.  The minimum 
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of the estimated range of CapEx, a, will be calculated based on Eq. 10, but using the 

mean of the CapEx (row 2), standard deviation of the CapEx (row 7), directional bias of 

the CapEx (row 9), and overconfidence of CapEx (row 11). The maximum of the 

estimated range of CapEx, b, will be calculated using Eq. 11 and using the same 

parameters as the row above. The expected value of the estimated CapEx will be 

calculated using a and b from rows 15, and 16 above, and using Eq. 14. The estimated 

NPV is easy to calculate now by subtraction:  PVOCF (row 14) – CapEx (row 17). The 

investment efficiency (IE) is then calculated from the NPV and the CapEx: NPV (row 

18) / CapEx (row 17). Now, the rank of this project within the 100 available projects is

calculated by sorting them by the estimated IE.  

Unconstrained Budget Calculations 

This evaluation method assumes budget is available to fund all projects and chooses to 

execute all available projects that have a positive NPV. The first level of analysis is 

reviewing the 100 projects by examining their true NPV and estimated NPV, rows 3 and 

18 of Table 3, respectively, to determine if each project is correctly accepted, correctly 

rejected, wrongfully accepted, or wrongfully rejected. Accepted projects are those that 

have positive NPV, and rejected projects are those that have negative NPV. Correctly 

accepted projects are those that have positive true NPV and positive estimated NPV. 

Correctly rejected projects have negative true NPV and negative estimated NPV. 

Wrongfully accepted projects are those that are accepted because they have positive 

estimated NPV but they should not have been selected because they have a negative true 
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NPV. Wrongfully rejected projects are those that are rejected because of negative 

estimated NPV but should have been selected because they have positive true NPV.  

The next step is to accumulate those results (Table 4). The numbers in Table 4 

change with each random iteration; the numbers recorded in Table 4 correspond to the 

average results for an overconfidence value of 0.5 and a directional bias of 0.5. The table 

starts with listing the number of projects that were selected or rejected based on the 

estimated NPV, vertically, and then by the true NPV, horizontally. For example, the 

table shows that 88 projects were selected based on positive estimated NPV and 73 of 

them had a positive true NPV (correctly selected), but 15 did not (wrongfully selected). 

Likewise, 12 projects were rejected based on their negative estimated NPV and they all 

were correctly rejected (0 wrongfully rejected). Then, the estimated NPV’s for those 

selected projects in each category are summed in the next part of the table, and the last 

part shows the sums of the true NPV’s for the same set of projects. The format of this 

table is similar to the Begg and Bratvold (2008) analysis. 
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Table 4—Analysis of unconstrained budget estimation results 
Number of 
projects 

Estimates 

Rejected  Accepted  Total 

TRUE 
Rejected 12 15  27 

Accepted  0 73  73 

 Total  12 88  100 

Estimated NPV 
Estimates 

Rejected  Accepted  Total 

TRUE 
Rejected   $   (5,905.52)   $     3,414.70    $   (2,490.81) 

Accepted   $    ‐   $   61,770.56    $   61,770.56  

 Total   $   (5,905.52)   $   65,185.27    $   59,279.75  

True NPV 
Estimates 

Rejected  Accepted  Total 

TRUE 
Rejected   $ (12,968.42)   $   (3,303.31)   $ (16,271.74) 

Accepted   $    ‐   $   48,596.63    $   48,596.63  

 Total   $ (12,968.42)   $   45,293.32    $   32,324.90  

The last step of this analysis is to calculate the output parameters. First, the 

Expected Disappointment as a percent of estimated NPV (ED%E) is the difference 

between the estimated and realized NPV of the portfolio normalized by the estimated 

NPV (Eq. 16). The Estimated NPV (EstNPV) of the portfolio is the total of estimated 

NPV’s of accepted projects based on their estimated NPV (88 projects), and that value is 

$65,185.27 in the second part of the table as the total under the accepted based on 

estimates. The realized NPV (RNPV) of the portfolio is the total of the true NPV’s of the 

projects that were selected based on their positive estimated NPV’s (the same 88 

projects), and that value is $45,293.32 in the third part of the table as the total under the 

accepted based on estimates. “Realized” refers to the resultant value of the portfolio after 
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execution of the projects. For the numbers shown in Table 4, the instantaneous value of 

disappointment as a percentage of estimated NPV would be: 
65,185.27	ି45,293.32	

65,185.27	
ൌ 30.5%. 

This instantaneous result will be accumulated over all Monte-Carlo iterations and the 

average of all the numbers is the expected value of disappointment as a percentage of 

estimated NPV (ED%E).  

ܧ%ܦܧ ൌ ܧ ቀா௦௧ே௉௏ିோே௉௏
ா௦௧ே௉௏

ቁ .................................................................... (16) 

The second output parameter is the Expected Decision Error as a percentage of 

the estimated NPV (EDE%E), which is the difference between the realized NPV 

(RNPV) and the Best Possible NPV (BPNPV) normalized by the estimated NPV (Eq. 

17). The BPNPV portfolio is the highest value portfolio that could be selected from this 

set of projects, and can be found by choosing all the projects with positive true NPV 

from the set (73 in this case). The BPNPV is $48,596.63, the total of the true accepted 

projects (across) in the third part of the table. For the example in Table 4, the decision 

error as a percentage of estimated NPV would be:	48,596.63	ି45,293.32	
65,185.27	

ൌ 5.07%. 

ܧ%ܧܦܧ  ൌ ܧ ቀ஻௉ே௉௏ିோே௉௏
ா௦௧ே௉௏

ቁ ................................................................. (17) 

To find the expected value of the decision error, the values from multiple Monte-

Carlo iterations are accumulated and the average number reported. 

Constrained Budget Calculations 

The main difference between constrained and unconstrained budget calculations is that 

the constrained budget calculations takes into account the available budget in the 
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decision making. Most of the calculation logic follows Begg and Bratvold (2008) and 

assumptions were made when they have not clearly specified the calculation method. 

The calculations go through three different analysis phases—for the best possible 

scenario, the estimated scenario, and the realized scenario—and then one last step to 

collect the output of those three phases. 

The first analysis phase is to account for the best possible scenario. The 100 

projects are sorted based on their true IE (row 4 from Table 3). Then, the number of 

projects with a positive true NPV (row 3 from Table 3) will be noted so that the rest of 

the projects will be excluded from the calculations. Then, starting with the highest true 

IE projects, the number of projects whose combined true CapEx will fit within the 

assigned budget is determined and their true NPV’s are summed to determine the Best 

Possible NPV (BPNPV). After that, a partial percentage of the true CapEx of the next 

project from the top of the list is added to make the budget fully utilized, and the same 

percentage of its true NPV is added to the total BPNPV.  

The second analysis phase is to account for the estimated scenario. The list of 

100 projects is sorted again, but this time according to their estimated IE (row 19 from 

Table 3). Again, the projects with negative estimated NPV’s (row 18 in Table 3) are 

excluded from the calculations. The combined estimated CapEx (row 17 from Table 3) 

of the top projects are compared against the budget and the estimated NPV’s of those 

projects that fit within the budget will be summed to get the Estimated NPV (EstNPV). 

The last step is to add a percentage of the estimated CapEx of the next project on the list 
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to fill in the remaining budget, and the same percentage of its estimated NPV is added to 

the EstNPV. 

The last analysis phase accounts for the realized (or actual) scenario, where 

projects are selected based on their estimated values but once the company commits to 

those projects, the true values will be realized. The list of projects are sorted according to 

their estimated IE’s, as in the estimation phase. The negative projects are excluded from 

the calculations based on the estimated NPV. However, this time the number of projects 

executed is based on the true CapEx. The assumption here is that as the projects are 

executed, the true CapEx will be revealed, and the company will either decrease the 

number of projects chosen in the estimation phase not to overcommit itself in the 

optimistic cases, or will add more projects to fill up the remaining budget in the 

pessimistic cases. However, projects with negative estimated NPV will never be added 

to fill up the budget because they were excluded from the previous step. This will affect 

the pessimistic scenario the most, where the estimation will amplify the CapEx values 

and chose fewer projects than potentially possible. When the projects start and true 

CapEx is revealed, they will find they have extra money to spare, but will not attempt to 

invest in projects they deemed losing projects (EstNPV<0) from the beginning. This 

could create scenarios where not all the budget is invested, and in those scenarios, the 

rest of the budget is added to NPV, as cash. Once the number of projects that will fit the 

budget is settled, the true NPV’s of those projects will be summed for the realized NPV 

(RNPV). A percentage of true CapEx of the next project on the list is added to the 
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budget, provided that such a project had a positive estimated NPV, and then the same 

percentage of the true NPV of that project is added to the RNPV. 

The last step is to calculate the ED%E and EDE%E, using the same equations 

used in the unconstrained budget case, Eq. 16 and Eq. 17. 
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RESULTS* 

Impact with Deterministic Biases 

In this section the impact of biases using fixed values of the confidence and directional 

bias parameters will be assessed. In particular, expected disappointment and expected 

decision error for fixed confidence parameter values ranging from 0.0 (zero 

overconfidence) to 1.0 (deterministic) and fixed directional bias parameter values 

ranging from -1.0 (complete pessimism) to 1.0 (complete optimism) will be calculated.  

Unconstrained-budget case 

We first consider expected disappointment (Fig. 7) for the unconstrained-budget case 

and see that, with zero overconfidence, ED%E is zero regardless of the degree of 

directional bias along the x-axis. With greater overconfidence values and zero 

directional bias along the y-axis, ED%E is not zero as might be expected. ED%E is 

actually negative, indicating pleasant post-decision surprise. This is a side-effect from 

the use of lognormal distributions for CapEx and PVOCF. Truncating the same amount 

of probability from each end of the distribution (overconfidence with zero directional 

bias) does not preserve the mean of a lognormal distribution. Thus, estimated expected 

values are different from true expected values, which results in suboptimal project 

selections and disappointment or pleasant surprise. While the result for overconfidence 

* Reproduced with permission of Society of Petroleum Engineers (SPE) to reuse SPE-160189 “The Value 
of Assessing Uncertainty,” doi:10.2118/160189-PA. Copyright 2014, Society of Petroleum Engineers Inc. 
Further reproduction prohibited without permission. 
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with zero directional bias is small negative disappointment for the particular set of global 

portfolio parameters that is used, the possibility that overconfidence with zero 

directional bias could result in small positive ED%E for a different set of global 

portfolio parameters cannot be ruled out.  

Fig. 7—Expected disappointment, unconstrained budget with deterministic bias. 

With nonzero values of directional bias, ED%E increases monotonically as the 

value of directional bias increases (increasing optimism). In general, as the absolute 

value of the directional bias increases, the error in estimated EV increases, and this is 

consistent with the simple illustration in Fig. 1, resulting in increasing magnitude of 

ED%E. With negative directional bias (pessimism), the disappointment is negative 

(pleasant post-decision surprise).  
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An increase in the magnitude of the confidence parameter (increasing 

overconfidence) results in greater ED%E right of a crossover point at about 0.15-0.2 

directional bias and results in greater pleasant surprise left of this crossover point. 

Increasing overconfidence magnifies the error in estimated EV, again consistent with 

Fig. 1, which increases the magnitude of ED%E.  

The magnitude of ED%E with the addition of directional bias can be large. With 

confidence equal to 0.9 (high overconfidence), ED%E ranges from around -200% with 

moderate pessimism to about 90% with complete optimism. ED%E of 100% 

corresponds to a realized NPV of zero. With moderate values of overconfidence 

(confidence = 0.5) and optimism (directional bias = 0.5), expected disappointment is 

about 31%. This is significantly higher than the ED values of 5-6% reported by Begg 

and Bratvold (2008) attributed to the Optimizer’s Curse.  

The expected decision error as a percentage of the estimated NPV (EDE%E) is 

significantly smaller than percentage expected disappointment (ED%E) for the 

unconstrained-budget case for most values of confidence and directional bias (Fig. 8). 

With zero directional bias, EDE%E is near zero. With optimism, EDE%E does not 

exceed 10%, even though ED%E approaches 100% as directional bias goes to 1. This 

indicates that most of the disappointment results from estimation error rather than 

decision error.  



 

50 

 
Fig. 8—Expected decision error, unconstrained budget with deterministic bias. 
 

 

EDE%E increases significantly with increasing pessimism below a directional 

bias of zero. This happens in part because the estimated NPV decreases with increasing 

pessimism, but more so because the EDE increases significantly. While some evaluators 

might find some pessimism to be attractive because it results in pleasant surprise rather 

than disappointment (Fig. 7), Fig. 8 indicates that the cost of this pleasant surprise is 

increased decision error; i.e., suboptimal projects are being selected. 

Constrained-budget case 

ED%E for the constrained-budget case (Fig. 9) is similar in character to ED%E for the 

unconstrained case (Fig. 7); ED%E values are typically 75-80% of the ED%E values of 
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Fig. 9—Expected disappointment, constrained budget with deterministic bias. 

Fig. 10— Expected decision error, constrained budget with deterministic bias. 
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The constrained-budget ED%E results are more realistic because it is more likely 

that budgets will be constrained in practice. With moderate overconfidence (confidence 

= 0.5) and optimism (directional bias = 0.5), expected disappointment is about 31%. 

EDE%E for the constrained-budget case is less than 2% for directional bias greater than 

or equal to zero (Fig. 10). Below directional bias of zero, EDE%E increases rapidly with 

increasing pessimism, although not as rapidly as the unconstrained-budget case.   

Impact with Stochastic Biases       

In this section, random variables instead of fixed values for the confidence and 

directional bias parameters will be used. This is to account for the fact that assessments 

will not be entirely consistent from project to project within the same company, because 

different personnel will be conducting the evaluations. Even if the same person did all of 

the evaluations using similar methodology, there would still be variability in the degree 

of bias introduced from project to project. Introducing randomness in the confidence and 

directional bias parameters introduces randomness in the limited-resources estimated 

distributions (Fig. 1) and, thus, the estimated EVs that are used in project selection. 

The same ranges of confidence and directional bias used in the deterministic bias 

cases will be run again. However, instead of using fixed values for bias, normal 

distributions for the bias parameters are used. The normal distributions will have a 

standard deviation of 0.2 and will be truncated at the appropriate limits for the bias 

parameters: 0 and 1 for the confidence parameter and -1 and 1 for the directional bias 

parameter. For example, for a stochastic bias case with overconfidence of 0.5 and 
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directional bias of 0.75, the random variable used for confidence is normal(mean=0.5, 

SD=0.2, truncated at 0 and 1) instead of a fixed value of 0.5, and the random variable 

used for directional bias is normal(mean=0.75, SD=0.2, truncated at -1 and 1) instead of 

a fixed value of 0.75. The values of confidence and directional bias indicated in results 

plots (Figs. 11-14) corresponds to the means of the distributions used for these 

parameters. 

Overall, ED%E and EDE%E for the stochastic bias cases (Figs. 11-14) are 

similar in character and magnitude to ED%E and EDE%E for the fixed bias cases (Figs. 

7-10) for both unconstrained and constrained budget. ED%E increases from negative to

positive as directional bias moves from pessimism to optimism. EDE%E is always 

positive and significantly smaller than ED%E. The stochastic bias cases for 

overconfidence equal to zero do not yield zero ED%E and EDE%E, but this is only 

because the truncated confidence distribution (normal with mean zero, SD of 0.2, and 

truncated at 0 and 1) does not have a mean of zero.  

Of particular significance is the large expected disappointment that occurs with 

moderate overconfidence and optimism, which is likely in practice (Begg et al., 2003; 

Rose, 2004). With mean confidence = 0.5 and mean directional bias = 0.5, ED%E is 

33% and 36% for the unconstrained-budget and constrained-budget cases, respectively. 

These ED%E values are large enough that they could have significant impact on 

company financial performance. For example, with these values, portfolios with 

estimated NPV of $1 billion would have actual NPVs of about $650 million, on average. 
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Greater amounts of either overconfidence and/or optimism would result in lower actual 

NPVs and greater disappointment. 

Fig. 11—Expected disappointment, unconstrained budget with stochastic bias. 
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Fig. 12— Expected decision error, unconstrained budget with stochastic bias. 

Fig. 13— Expected disappointment, constrained budget with stochastic bias. 
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Fig. 14—Expected decision error, constrained budget with stochastic bias. 
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illustrated in Fig. 15, which focuses on the behavior of the EstNPV for high values of 

confidence and directional bias (>0.5) in the unconstrained budget case. To break this 

down even further, the estimated NPV is ܸܰܲ ൌ ܨܥܱܸܲ െ  and PVOCF keeps ,ݔܧ݌ܽܥ

increasing as the values of overconfidence and directional bias approach 1, representing 

an increasing deterministic estimation on the long tail of a lognormal distribution for the 

PVOCF parameter. The CapEx parameter, at the same time, decreases significantly with 

high values of overconfidence and directional bias because it is a cost parameter. This 

allows the estimation process to squeeze in more projects, because they are estimated to 

have low CapEx, each with additional unrealistically high EstNPV. 

Fig. 15—Estimated NPV for high OC and DB. 
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Fig. 16 shows the realized NPV for the same unconstrained case with high values 

of confidence and directional bias (>0.5). The decreasing trend of the curves results from 

the effect of bias and overconfidence on the realized NPV of the portfolio. The flattening 

towards the very high end of the scale is due to the increasing occurrences of instances 

when the estimator will select all 100 projects of the simulated portfolio. Therefore, no 

additional penalty will occur in further increases in optimism or overconfidence.  

Fig. 16—Realized NPV for high OC and DB 
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uncertainty may reduce the disappointment, but there will still be disappointment. For 

example, reducing overconfidence from 1 (deterministic) to 0.5 with optimistic 

directional bias of 0.5 for an unconstrained-budget selection will reduce ED%E from 

56% to 31% (Fig. 7), but 31% of estimated NPV is still significant disappointment. What 

is needed to eliminate disappointment and decision error is reliable, or complete, 

assessment of uncertainty. When uncertainty is quantified reliably and consistently, the 

P90 will be realized 90% of the time, the P50 will be realized 50% of the time, and the 

P10 will be realized 10% of the time. 

The model relating estimated distributions to true distributions is approximate 

and the modeling requires the input of a number of parameters—global distribution 

forms and parameters, true project distribution forms, numbers of projects, and budget 

limits. While I attempted to model portfolios typical of a large oil and gas company 

based on previous study, the parameters are largely assumed. The numerical results will 

vary if different inputs are assumed. Despite these limitations, the model is quite useful 

in quantifying the magnitude of potential impacts of biases on portfolio performance and 

the overall conclusion that this impact can be large is quite reasonable. 

Oil and Gas Estimation Process 

In this section, a typical oil and gas estimation process will be presented to link this 

framework back to oil and gas industry project evaluation. The applicability of the 

concepts presented can be extended to any field, but this section gives a practical 

example of how reservoir engineers might evaluate oil and gas fields probabilistically. 
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After analyzing the reservoir input data and quantifying uncertainties, the reservoir 

engineers would produce CapEx and PVOCF curves similar to the ones studied in the 

previous chapter: “New Framework for Modeling Impact of Biases.”  

Company A has secured funding to invest in one or more prospects. One such 

prospect is a Coal Bed Methane field in its final pilot stage with six existing exploration 

wells producing from six months to one year (Fig. 17). Depths, pay thicknesses, gas 

contents, and permeability data, as well as analogous field data, are available to start 

scoping the project. The contract for this field requires a minimum investment of 50 

drilled wells and the economics will be run for an expected life of 40 years. 

Fig. 17—Production profile of six pilot wells in Coal Bed Methane prospect 
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Data analysis 

Decline curve analysis was carried out on the six exploration wells to fit a general 

hyperbolic decline equation ݍ ൌ ௜ሺ1ݍ ൅ ܾ ൈ ௜ܦ ൈ ሻݐ
షభ
್  (Table 5).

Table 5—Decline Curve Analysis of pilot wells 
Parameter Mean P90 P50 P10 

qi 183.83 70.70 158.05 327.27 

Di 40.37 82.38 33.17 7.38 

b 17.85 2.54 9.27 39.56 

Analogous fields show increased recovery efficiency with decreased well-

spacing, i.e., 19%, 28%, 42%, 53%, and 75% of original gas in place for well-spacings 

of 640, 320, 160, 80, and 40 acres/well, respectively. Plotting the field recovery factor 

(RF) per well (i.e., field recovery factor divided by well count) versus the number of 

wells needed to develop the 25,000 acres in this scenario shows that percentage of final 

field recovery contributed by each well is related to the square root of the number of 

wells (Fig. 18). In other words: 
ோி

௪௘௟௟஼௢௨௡௧
ൎ ଷ.ଷ%

√ௐ௘௟௟஼௢௨௡௧
, and this will allow calculating 

the recovery factor of the field for any given number of wells by simply multiplying a 

constant by the square root of that number of wells: ܴܨ ൌ  For .ݐ݊ݑ݋ܥ݈݈ܹ݁√3.3%

example, 320 acre/well spacing requires 78 wells and gives 28% recovery factor. Fig. 18 

shows a corresponding data point at 78 wells versus 0.36% field recovery factor per 
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well, which came from 28% field recovery factor divided by 78 wells. The equation 

approximates the recovery factor by multiplying 3.3% by √78 and directly gives 29.1%.  

 

Fig. 18—Field recovery factor per well decreases with smaller acre/well-spacing, 
i.e., increased number of wells
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each well but will change the overall quantity of production; i.e., it will shift the 

production curves on the y-axis but will not change their shapes. The final curves that 

will be generated using the DCA parameters are similar to the curves in Fig. 17 in shape, 

but the translation on the y-axis are designed to generate a total field production, EUR, 

over a 40-year field life that matches the EUR from reservoir data. The EUR from 

reservoir data is calculated by this equation: ܴܷܧ ൌ ܨܴ ∗  where RF is calculated ,ܲܫܩ

from Fig. 18 (ܴܨ ൌ  :and GIP is calculated using this equation (ݐ݊ݑ݋ܥ݈݈ܹ݁√3.3%

ܲܫܩ ൌ ܽ݁ݎܣ ∗ ݕݐ݅ݏ݊݁ܦ ∗ ݕܽܲ ∗ ݐ݊݁ݐ݊݋ܥݏܽܩ ∗ ሺ1 െ ߶ሻ. This equation utilizes reservoir 

data from other existing wells in the same field, namely the gas content (Fig. 19) and net 

pay (Fig. 20). Porosity is assumed to be a very low constant value of 0.03 and coal 

density is assumed to be 1.65 gm/cc.  

Fig. 19—Gas content versus depth from wells in the same field 
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Fig. 20—Net pay versus depth for the five layers in the reservoir 

To summarize the procedure so far, the production profile is estimated from the 

production history of existing wells, and an EUR is calculated at 40 years; let us call it 

EURproduction. Analogous fields give an estimate of the RF, and we multiply it by GIP as 

calculated from reservoir data from the field to get another estimate of the EUR; let us 

call it EURreservoir. The production profiles are scaled to match EURreservoir by changing 

the initial production rate from ݍ௜ to ݍ௜
∗. The final result is a production profile, defined 

by ݍ௜
∗, Di, and b, of all the wells in the field as a function of the number of wells.  
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Surveyed cost for pipeline in this area shows decreasing cost per well for each 

well-spacing, i.e., $150M, $120M, $80M, $60M, and $40M for each well at spacings of 

640, 320, 160, 80, and 40 acres/well, respectively. Plotting the pipeline cost per well 

shows a relationship between the square root of the number of wells and the cost (Fig. 

21). The fitting equation is: 
௖௢௦௧

௪௘௟௟
ൌ $ଵெெ

√௪௘௟௟
 or ܿݐݏ݋ ൌ -For example, 160 .݈݈݁ݓ√ܯܯ$1

acre/well spacing requires 156 wells for this field, and costs $80M*156=$12.5MM as 

estimated from the same area. Surface pipeline costs are assumed to be independent of 

underground parameters and depend on the general cost in the vicinity of the 

development.  

 

 

 

Fig. 21—Cost of pipeline tie-in from surveyed wells in the same area 
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Known unknowns 

Nine independent parameters were identified as the main sources of uncertainty in the 

estimation process (Table 6). Truncation was used for normal distributions to avoid 

negative results. 

Table 6—List of sources of uncertainty in example estimation process 
Sources of Uncertainty  Distribution fit 

1 Pseudo initial daily gas rate (ݍ௜
∗) Mscf/Day  Lognormal(Mean 1500, SD 500) 

2 Yearly decline rate (Di), %/year  Lognormal(Mean 150, SD 150) 

3 Exponential base (b), dimensionless  Lognormal(Mean 20, SD 5) 

4 Drilling cost per well, $  Normal(Mean $200M, SD $20M)>0 

5 Facilities cost in $ per 5000 Mscf/Day 

increments  

Normal(Mean $5MM, SD $1MM)>0 

6 Adjusted gas price after royalties in $/Mscf  Normal(Mean 5, SD 1)>0 

7 Fixed OpEx in $ per well per year  Normal(Mean $10M, SD $1M)>0 

8 Variable OpEx in $ per Mscf  Normal(Mean $0.15, SD $0.05)>0 

9 Abandonment cost in $ per well  Normal(Mean $50M, SD $10M)>0 

To keep this model simple, other sources of uncertainty were defined in terms of 

one or more of the nine factors in Table 6. For example, volumetrics and ultimate 

recovery were accounted for by the initial well rate (ݍ௜
∗) in the pseudo well rate. The 

equations for finding the RF and the cost of pipelines are only valid for more than 50 
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wells (Fig. 18 and Fig. 21), and 50 wells is the minimum number of wells required to 

develop this field without losing the license.  

Estimation process 

The project life was estimated to be 40 years, after which the wells will be abandoned. 

All capital expenditures are assumed to happen in year 0, including drilling of all the 

wells, pipelines and facilities. No production is assumed for year 0, and the initial well 

rate posted in the calculations phase for year 0 represents the initial well rates at the end 

of the year and is only used to calculate the production during the next year, year 1. 

During the lifetime of the project, the well rates are calculated and accumulated per year, 

and from that, the costs and income are calculated on a year-by-year basis. Operating 

cash flows are discounted at 15%. Monte-Carlo simulation was carried out on the 

parameters in Table 6 to estimate the costs and income. Sample numbers from one 

Monte Carlo iteration for capital expenditure are shown in Table 7, for field production 

in Table 8, and for operating cash flows calculations in Table 9. Table 7 lists the cost of 

drilling the wells, the cost of the pipelines and the tie-ins, and the cost of the facilities as 

predicted by this one Monte-Carlo iteration. The total of those three costs is the CapEx 

and they are not discounted because they are all incurred in year 0. Table 8 lists the 

pseudo well rate at the end of that year, the yearly production of a single pseudo well, 

and the total field production. The daily production rate of the total field is not listed, but 

can be obtained by multiplying the single pseudo well rate by the square root of the 

wells. The cumulative production of a pseudo well is listed from the beginning of year 1 

until the end of the specific year number. The field cumulative production is also not 
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listed but can be obtained by multiplying pseudo well production by the square root of 

the number of wells. This cumulative field production will keep increasing until it 

reaches EUR at end of year 39. The following column is the actual production volume 

for that specific year, and it is calculated by taking the difference between the two 

cumulative pseudo productions of the current and past year and then multiplying the 

difference by the square root of the number of wells. The revenue in Table 9 is simply 

the gas price times the yearly field production. OpEx are calculated separately for fixed 

and variable expenditures. The Operating Cash Flow (OCF) is the revenue minus the 

two OpEx’s. 

 

 

Table 7—Capital expenditures (samples from one Monte Carlo iteration) 
Wells  Pipelines  Facilities  CapEx 

 $  26,144,199    $ 12,529,964    $ 10,872,247    $ 49,546,410  

 

 

Table 8—Field production calculations (samples from one Monte Carlo iteration) 
Year Number  Vol/day/√well (Mscfd)  Cum/√well (Mscf) Vol/year (Mscf) 

0  1265.3  0.0  0.0 

1  710.0  280664.9  3516721.2 

2  673.5  532502.5  3155515.4 

3  652.9  774462.8  3031754.9 

…  …  …  … 

38  537.9  8082542.8  2464179.7 

39  536.8  8278811.0  2459233.5 

40  0.0  0.0  0.0 
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Table 9—Operating cash flow calculations (sample from one Monte Carlo 
iteration) 
Year Number  Revenue  Fixed  Variable  OCF 

0   $    ‐   $    ‐     $     ‐    $    ‐ 

1   $ 19,858,064    $ 1,678,816   $  350,847    $ 17,828,401  

2   $ 17,818,424    $ 1,678,816   $  314,811    $ 15,824,797  

3   $ 17,119,578    $ 1,678,816   $  302,464    $ 15,138,298  

…  …  …  …  … 

38   $ 13,914,620    $ 1,678,816   $  245,840    $ 11,989,964  

39   $ 13,886,690    $ 1,678,816   $  245,346    $ 11,962,528  

40   $    ‐   $    ‐     $        ‐      $ (6,444,486) 

Simulation results for valid well spacings are shown in Fig. 22. Both PVOCF and 

CapEx are skewed to the right. The portfolio modeling experiments presented earlier 

assume that Company A would conduct similar evaluations for 100 different investment 

prospects available in the market. For each of those 100 estimated projects, Company A 

will have distributions of CapEx and PVOCF similar to those in Fig. 22, and then they 

can choose the optimal portfolio within their capital budget.  
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Fig. 22—Probability Density Function result of four typical project evaluations 
based on well spacing (acres/well) 

Sources of overconfidence and directional bias 

Overconfidence and directional bias can affect the estimation process from two sources. 

Parameters that have not been captured, unknown unknowns, are the uncertain 

parameters that were not taken into consideration in the estimation process. The second 

source of overconfidence and directional bias are the parameters that have been 
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Examples of parameters that were considered but may not have captured the true 

underlying uncertainty correctly are: the probability that the drainage area is 

larger/smaller than originally assumed, the possibilities of super productive wells, and 

huge fluctuations in the oil or gas price (for example, fluctuations that occurred in 1998 

and 2008). Estimators with high (or low) directional bias will possibly not capture the 

mean or the central tendency of those parameters correctly, estimators with high 

overconfidence will possibly not capture the dispersion of such parameters correctly, and 

estimators with a combination of overconfidence and directional bias will possibly not 

capture both correctly.  
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DISCUSSION*  

Is Inevitable Disappointment Inevitable? 

Various authors have reported the phenomenon termed the Optimizer’s Curse, Inevitable 

Disappointment or Post-Decision Surprise (Begg and Bratvold, 2008; Smith and 

Winkler, 2006). This is claimed to be a systematic bias resulting from the decision 

process itself. Because the decision process involves the selection of more highly valued 

alternatives from a set, random errors in the estimation of project values result in 

projects estimated on the high side to be selected with greater frequency than projects 

estimated on the low side. This results in a positive bias in estimated value, which results 

in disappointment when the actual lower value is realized. Authors claim the positive 

bias is present even when the project estimates are unbiased.  

Results presented earlier have shown that Inevitable Disappointment is not really 

inevitable. First of all, disappointment can be negative, on average, which means the 

operator will experience pleasant surprise rather than disappointment when the actual 

values are realized. This can occur when there is pessimism combined with 

overconfidence, as shown in the simulation results above. While this situation may not 

be common in practice, it is possible. Negative expected disappointment was also 

observed by Begg and Bratvold (2008). 

* Reproduced with permission of Society of Petroleum Engineers (SPE) to reuse SPE-160189 “The Value 
of Assessing Uncertainty,” doi:10.2118/160189-PA. Copyright 2014, Society of Petroleum Engineers Inc. 
Further reproduction prohibited without permission. 
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Results also refute two claims in the literature, one that Inevitable 

Disappointment is inherent in the process itself, and another that it happens even when 

there is no bias. Inevitable Disappointment results from random estimation errors, but 

the source of this randomness is estimator biases, particularly overconfidence, which are 

very often present in limited-resources assessments. This model shows that with no 

estimator biases (zero overconfidence and zero directional bias), expected 

disappointment is zero (Fig. 7 and Fig. 9) because estimated EVs equal true EVs. 

Estimator biases are required to achieve non-zero expected disappointment. For 

example, adding overconfidence but no directional bias results in non-zero ED%E 

(because equal truncation from both ends of lognormal distributions does not preserve 

the means), but in the studied cases it is not disappointment (positive ED%E) but rather 

pleasant surprise (negative ED%E). It takes optimism in combination with 

overconfidence to produce even small amounts of positive expected disappointment. It 

should be pointed out that this result may be tied to the particular portfolio parameters 

used in this work and may not be true in general. That is, it may be possible to produce 

positive expected disappointment with overconfidence and zero direction bias with 

different portfolio parameters.  

If Inevitable Disappointment results from estimator biases, this means that it can 

be driven to zero with the elimination of the estimator biases. This is shown in the results 

(Fig. 7 and Fig. 9); ED%E goes to zero as overconfidence is eliminated (confidence goes 

to 0) regardless of the directional bias. While it is unlikely that random estimation errors 

can be completely eliminated in practice, these results do suggest that expected 
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disappointment, as well as expected decision error, can be driven to negligible levels 

with good uncertainty quantification practices, i.e., practices that result in estimated 

project value distributions that are close to the true distributions.    

Relationship of Biases Impact to Industry Performance 

It is of interest to examine the relationship between expected portfolio disappointment 

and financial performance. This can be done using simple cash-flow analysis for the 

constrained-budget case with an investment of $5B. For simplicity, let us assume 

estimated equal annual cash flows from the portfolio of $996MM over a 10-year period. 

This yields an internal rate of return of 15.0% and an NPV of $1120MM discounted at 

10%, reasonable goals for the portfolio on average. With moderate amounts of 

overconfidence and optimism (0.5 and 0.5), ED%E is 31% of estimated NPV for the 

constrained-budget case (Fig. 9). This corresponds to reducing the true NPV to 

$773MM, which can be achieved by reducing the actual annual cash flows from 

$996MM to $940MM, yielding an IRR of 13.5%.  

As stated earlier, Brashear et al. (2001) reported that in the 1990s the return on 

net assets by the largest U.S.-based E&P companies was only 7%, after selecting 

projects with hurdle rates of generally 15% or more, which were all financed with cost 

of capital generally in the range of 9-12%. Using our simple cash-flow analysis, we can 

achieve a 7% IRR by reducing the actual annual cash flows to $713MM, which results in 

a true NPV of -$619MM and an ED%E of 155%. This implies extremely high values of 

overconfidence and optimism. However, ED%E values this high were not reached in the 

modeling; the highest ED%E experienced in any of the cases was around 100% (Fig. 7 
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and Fig. 9). Earlier in this work, it was shown that expected disappointment depends on 

the properties of the true global portfolio, and that a more negative global portfolio 

(greater fraction of projects with true mean NPV less than zero) yielded greater 

disappointment (Table 1). Both Begg and Bratvold (2008) and this study chose global 

portfolio properties that were quite positive; i.e., only a relatively small fraction of the 

projects, 26-28%, had true distributions with significant probability of loss. With these 

global portfolio properties and 100 projects to choose from, it is virtually impossible to 

experience an overall portfolio loss. ED%E values of 150% or more can be achieved by 

making the true global portfolio significantly more negative (majority of projects with 

true NPV<0) and using high values of overconfidence and optimism. Since the industry 

apparently experienced an overall loss in the 1990’s, it appears that both Begg and 

Bratvold and I were guilty of both overconfidence and optimism in our choices of global 

portfolio properties in modeling the impact of biases.  

Little recent commentary was found in the literature about poor industry financial 

performance. While one might conclude that this is the result of significantly better 

uncertainty quantification practices, the evidence suggests otherwise, e.g., Merrow 

(2011). Continued overconfidence and optimism were likely masked by high oil prices 

in the last decade. While the industry may have performed better than the previous 

decade, one can suspect that it did not perform as well as predicted.  

If significant overconfidence and optimism resulted in a 7% return in the 1990s 

when predicted returns were 15% or greater, does this imply that elimination of these 

biases would have increased industry performance from 7% to 15%+? Elimination of 
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overconfidence and optimism would eliminate decision error and disappointment, but it 

would not necessarily increase industry performance, although it is possible. It is also 

possible that eliminating overconfidence and optimism may simply lower the potential 

returns of all project choices. Thus, we would still experience lower returns, but we 

would not be surprised by it. Of course, eliminating overconfidence and optimism, and 

thus disappointment, would help us avoid the situation described in Brashear et al. 

(2001); we would not consistently invest in projects that return less than the cost of 

capital. Overall industry financial performance will increase only if there are some 

projects that have significantly greater true potential performance and better 

quantification of uncertainty allows us to identify and select these superior projects.   

What to Do?    

The case has been made that overconfidence and optimism are chronic, that they go hand 

in hand, and that combined they have a significant negative impact on the performance 

of individual company portfolios and the industry overall. The next question is what 

should be done about it.  

As stated earlier, overconfidence is the most significant of the biases and is the 

first cause of poor estimation and project evaluation. It is only with overconfidence, the 

failure to consider all the possible outcomes of a project, that other biases are able to 

flourish and impact estimation. For example, anchoring to a high initial NPV estimate 

can lead to an optimistic estimated EV only if overconfidence prevents consideration of 

possible negative outcomes that counter the initial high estimate. If overconfidence is the 
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first cause, then overconfidence should be the primary focus of mitigation efforts. 

Elimination of overconfidence involves considering all the possible outcomes of a 

project. Considering all the possible outcomes of a project automatically corrects for 

other biases that alter the central tendency of the estimate (directional bias). This is 

demonstrated in the results shown earlier; reducing overconfidence (reducing the 

confidence parameter) with a fixed value of the directional bias parameter reduces 

ED%E and EDE%E (e.g., Fig. 7 and 8). This is consistent with Capen (1976) assessment 

that a better range leads to a better mean.   

It is relatively easy to consider the outcomes one can think of. It is difficult to 

consider the outcomes that do not even come to mind, the unknown unknowns. The key 

to eliminating overconfidence is accounting for these unknown unknowns. The best way 

to do this is through calibration, a process of tracking probabilistic predictions and 

comparing how actual performance turns out relative to the predictions (look-backs). 

This is not difficult. However, it requires discipline, corporate memory, and an 

appreciation for the value of uncertainty quantification, which is why it is not commonly 

practiced.  

Results have demonstrated that the cost of underestimating uncertainty 

(disappointment) can be quite large, which implies that the value of quantifying 

uncertainty reliably can also be quite large. However, the cost of estimating uncertainty 

reliably has not been addressed, which must be less than the value to be worthwhile. It is 

not necessary to adopt expensive, probabilistic decision-analysis practices throughout an 

organization. What is required is a commitment to reliable uncertainty quantification, a 
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systematic look-back process, and appropriate levels of probabilistic decision-analysis 

being adopted where it is needed – simple methods for some assets, more complex 

systems for larger, higher-cost assets. 

Measuring Confidence and Directional Bias 

Measuring the confidence parameter of any estimator can be achieved by following the 

calibration methodology of Capen (1976). His results were used to directly measure the 

confidence parameter in the community of typical petroleum engineers when this 

parameter was first introduced earlier in this work (Section “Intuitive description,” page 

18). Enhancement to the survey questions or methodology has been suggested to tailor 

the measurements to the oil and gas industry or a specific company (Hawkins et al., 

2002; Welsh et al., 2005). 

Measurement of the directional bias is not as straightforward. Optimism has been 

studied in the psychology field a lot more than in the oil industry. For example, while 

OnePetro lists only 500 publication with the term “optimism,” psycINFO database of the 

American Psychological Association lists more than 7000. Two good reviews of 

hundreds of those papers can be found in two classic books: Matlin and Stang (1978) 

and Taylor (1989). While studying such references, terminology can be a major 

challenge because overconfidence is sometimes used interchangeably with optimism, 

while over-precision, defined as a type of optimism, is used to mean overconfidence 

(Moore and Healy, 2008). In addition, categorization can also be a challenge because 

many authors subcategorize optimism independently and differently. For example the 

following list was encountered (in alphabetical order): big and little optimism (Peterson, 
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2000), comparative optimism (Radcliffe and Klein, 2002), dispositional optimism 

(Scheier and Carver, 1987), optimism bias (Flyvbjerg, 2006), optimism vs. neuroticism 

(Scheier et al., 1994), realistic optimism (Schneider, 2001), strategic optimism (Spencer 

and Norem, 1996), and unrealistic optimism (Weinstein, 1980). In this section, I focus 

on the measurement of optimism, and only three technical definitions of optimism were 

found that had published approaches to measurement in the psychology field, and they 

will be reviewed next. 

The first technical definition of optimism is the simple desire of favorable 

outcomes and, at the same time, disinclination of unfavorable ones. Based on this 

definition, Life Orientation Test (LOT) was devised by Scheier and Carver (1985). The 

test has a set of positive questions, such as “In uncertain times, I usually expect the 

best,” some negative questions, such as “If something can go wrong for me, it will,” and 

some filler questions, such as “I enjoy my friends a lot.” Each question is evaluated from 

strongly agree, 1, to strongly disagree, 5, and then the score of the positive and negative 

questions are used for a measure of optimism. This test has been enhanced in several 

subsequent publications, for example Life Orientation Test – Revised (LOT-R) (Scheier 

et al., 1994), and Extended Life Orientation Test (ELOT) (Chang et al., 1997). 

The second technical definition of optimism is feeling in control of future events 

based on past experience, and pessimism as the feeling of helplessness based on past 

experience. Attributional Style Questionnaire (ASQ) defines an optimist as someone 

who has the ability to rationalize the causes of desirable outcomes to be internal, stable, 

and global, while the causes of undesirable outcomes to be external, unstable, and 
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specific (Peterson et al., 1982). To measure this kind of optimism, fictional events 

(divided between good or bad) are described to participants, for example “you get a 

raise,” and then they are asked about the expected cause (attribution)  of each event, 

which in turn will be evaluated on the three dimensions: internality, stability, or globality 

(Peterson, 1991). This test was extended in CAVE (Content Analysis of Verbatim 

Explanations) to evaluate existing content media (text or audio) by extracting key 

information and presenting the extracts to judges who in turn evaluate the contents on 

the same three dimensions (Peterson and Seligman, 1984; Smith, 1992).  

The third technical definition of optimism is a two-part definition of hope. One 

part is the ability to initiate actions and pursue goals (Agency), and the second part is the 

perception that there exists a way to achieve any goal (Pathways) (Snyder et al., 1996). I 

interpret this definition as a reflection of the proverb: “where there is a will, there is a 

way,” where agency is having the will and pathways is finding the way. The test asks 

questions to participants in each of the two parts, for example, “I energetically pursue 

my goals,” (Agency), and “There are lots of ways around any problem” (Pathways). The 

response to each question is then rated from 1 to 8 and summed independently for the 

two categories to create sub-scores and together to create the combined hope score 

(Peterson, 2000).  

Unfortunately, most of the measurement studies focused more on establishing the 

metrics and correlating the optimism scores with health and well-being rather than 

getting a general optimism score for different types of professionals such as engineers, 

managers, or experts. The best prospect for getting a simple number for optimism (like 
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0.644 for overconfidence) is Atalaya (2012), who casually published detailed LOT 

results, along with the internal consistency data and ANOVA calculations like others. 

The mean LOT score for 80 members of the Faculty of Economics and Administrative 

Sciences of Dumlupinar University was 3.84. The LOT scores are measured on a scale 

from 1 to 5, where 1 is complete pessimism and 5 is complete optimism. Therefore, 3.84 

translates to a directional bias score of 0.42 on a scale from -1 to 1 using linear 

interpolation: 
௬ି௬బ
௫ି௫బ

ൌ ௬భି௬బ
௫భି௫బ

⟹ ଷ.଼ସିଵ

௫ିሺିଵሻ
ൌ ହିଵ

ଵିሺିଵሻ
⟹ ݔ ൅ 1 ൌ 2.84 ∗ ଶ

ସ
⟹ ݔ ൌ 0.42. This 

is a generally optimistic faculty and if we assume a general confidence level of 0.644 

then should expect 35%-40% disappointment by linear interpolation of Fig. 13, and 3%-

4% decision error by linear interpolation of Fig. 14. Before utilizing this result, two 

factors should be studied to assess its validity: first, the difference between the three 

reviewed definitions of optimism and the directional bias, and second, the implication of 

positive versus negative optimism score. The remainder of this section will address those 

two questions, and further discussion will be addressed in the Future Work section.  

Regarding the differences between the three definitions of optimism and the 

definition of directional bias, the closest optimism definition to the directional bias 

parameter as used in this work is the one proposed by Flyvbjerg (2006), which is: “a 

cognitive predisposition found with most people to judge future events in a more 

positive light than is warranted by actual experience.” This definition is closer to the 

LOT than ASQ or hope because it depends less on past experience. Both ASQ and the 

pathways part of hope depend more on past experience while Flyvbjerg’s definition has 

more to do with current and future outlook, just like LOT’s definition.  What this means 
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is that even though the LOT test does not measure directional bias directly, it is a better 

candidate to represent a measure of directional bias than the other two. 

The second important factor to consider is the implication of reporting a highly 

optimistic score, or positive directional bias. Results of this work suggest that highly 

optimistic directional bias score leads to higher disappointment and decision error. On 

the contrast, the three reviewed optimism tests correlate high optimism scores positively 

with success in life, as demonstrated by original authors of those tests and others 

(Peterson, 2000). For example, high (LOT) optimism scores correlate positively with 

health, happiness and active coping (Scheier et al., 1986). High (ASQ) optimism scores 

correlate positively with athletic and academic success, and good health (Peterson and 

Park, 1998). Lastly, high hope-optimism scores correlate positively with high self-

esteem, achievements, coping and positive emotions (Curry et al., 1997). Nonetheless, 

other authors have focused on the negative correlation between well-being and 

optimism, although still defined differently than directional bias. The classical example 

in this field is Henryism, which is based on a man with humble means who worked hard 

to provide for his children at the expense of his own health. His story transcended into a 

story about a skilled man who wanted to prove he can work faster than the steam 

machines that can replace him. The story ends with him winning over the machine 

because of his strong will, high skills, and optimism but immediately dying afterwards. 

This school recognizes that high levels of unfounded optimism and ambition lead to 

shorter life expectancy (James et al., 1987). Another example is when Oettingen (1996) 
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described a type of unrealistic optimism that correlates negatively with quality of life in 

different aspects, such as health and love.  
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FUTURE WORK 

Underconfidence can be defined as the opposite of overconfidence. Extreme 

overconfidence leads to considering smaller and smaller parts of the information 

available, down to deterministic estimation. Underconfidence, on the other hand, will 

consider distributions wider than the true distribution, and extreme underconfidence will 

lead to a uniform distribution of all possible outcomes. A different view of the 

underconfidence parameter is increasing the deviation or dispersion of a random 

parameter to beyond its possible values that were based on previous information. This 

work considered only overconfidence. Underconfidence, although not as common, 

should also be investigated. 

Industry performance in the 1990’s was not matched using global portfolio 

distributions information available in the literature. A different global portfolio with 

better references should be used with the same methodology to match the 1990’s 

performance. One good example is “U.S. Oil & Gas Company Performance Report, 

Third Edition, Pennwell, Tulsa, Oklahoma, 1999,” as referenced in Brashear et al. 

(2000). 

A preliminary study of different definitions of optimism, along with 

questionnaires that measure those specific types of optimism, was presented in the 

section “Measuring Confidence and Directional Bias,” page 76. To expand on this field, 

a survey should be created that measures directional bias directly. The test should have 

two parts, one for measuring indicative values of directional bias in the industry, and a 
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second part that asks about future events that can be verified or inferred. For the first 

part, questions from one or more of the three tests presented can be used, and then the 

scores should be converted to the directional bias scale as demonstrated in that same 

section. For the second part about future events that can be verified, Puri and Robinson 

(2007) can be used as a reference because they created a test that asks about life 

expectancy, which can be inferred from actuarial tables. 
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SUMMARY* 

Evidence suggests that overconfidence and optimism in petroleum project evaluation are 

chronic and that they are usually present together. An approximate mathematical model 

to assess the impact of these biases on portfolio performance has been introduced, and 

some assumptions regarding the model input data for representative industry portfolios 

were made. Despite these limitations, the model is quite useful in assessing the impact of 

underestimation of uncertainty on portfolio and industry performance. 

Modeling the impact of overconfidence and optimism demonstrates that, in 

combination, they can have significant impact on the performance of individual 

company portfolios. Typical overconfidence (50%) and moderate amounts of optimism 

(50%) resulted in expected disappointment of 30-35% of estimated NPV for the industry 

portfolios and optimization cases analyzed. Expected decision errors were small, 1-5% 

of estimated NPV, for the same portfolios and cases. Greater degrees of overconfidence 

and optimism resulted in expected disappointment approaching 100% of estimated NPV. 

Comparison of modeling results with industry performance in the 1990s suggests that 

these greater degrees of overconfidence and optimism were indeed experienced in the 

industry.     

* Reproduced with permission of Society of Petroleum Engineers (SPE) to reuse SPE-160189 “The Value 
of Assessing Uncertainty,” doi:10.2118/160189-PA. Copyright 2014, Society of Petroleum Engineers Inc. 
Further reproduction prohibited without permission. 
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Reducing overconfidence reduces expected disappointment even if directional 

bias (optimism) remains fixed. Thus, expected disappointment can be reduced by 

focusing primarily on elimination of overconfidence; other biases are mitigated 

automatically in the process. The value of reliably quantifying uncertainty is the 

elimination of expected disappointment, which can be a substantial percentage of 

estimated NPV, and expected decision error. Elimination of expected disappointment 

will improve industry performance overall to the extent that superior projects are 

available and better quantification of uncertainty allows identification of these superior 

projects. 



88 

NOMENCLATURE 

a Lower bound of truncated distributions 

a' The lower cumulative probability of the truncated distribution 

ANOVA ANalysis Of Variance 

ASQ Attributional Style Questionaire 

b Exponential base in DCA; or upper bound of truncated 

distributions 

b' The upper cumulative probability of the truncated distribution 

BPNPV Best Possible NPV is the summation of the true NPV’s of best 

projects that could be selected from a global portfolio, usually by 

selecting them based on the true IE’s. 

CapEx Capital Expenditure, dollars spent or committed at the beginning 

of the project or portfolio. 

CAVE Content Analysis of Verbatim Eplanations 

CDF Cumulative distribution function 

Constrained Budget 

Estimation 

Portfolio selection process that will take a limited CapEx into 

account to limit the number of projects in a portfolio. The term 

“constrained” will always be used with this kind of estimation, 

not to be confused with Limited Resources Assessment. 

DB Directional Bias 
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DCA Decline Curve Analysis 

Decision Error The difference between the realized value of the selected portfolio 

and the best portfolio that can be selected. 

Di Yearly decline rate 

Disappointment The difference between the estimated value of the selected 

portfolio and realized one. Usually a positive value to show 

reduction. Sometimes a negative number to imply pleasant 

surprise. 

E&P Exploration and Petroleum Engineering 

ED Expected Disappointment, the average over many Monte-Carlo 

iterations. 

ED%E Expected Disappointment as a percentage of the Estimated 

expected value (EV). 

ED%T Expected Disappointment as a percentage of the True expected 

value (EV). 

EDE Expected Decision Error, the average over many Monte-Carlo 

iterations. 

EDE%E Expected Decision Error as a percentage of the Estimated 

expected value (EV). 

EDE%T Expected Decision Error as a percentage of the True expected 

value (EV). 

ELOT Extended Life Orientation Test 



 

90 

Erf  Gaussian error function 

Erfିଵ  Inverse of the Gaussian error function 

ERV Expected Realized Value 

Estimated Project 

Distribution 

The distribution of the possible outcomes of a project based on 

Limited Resource Assessment. 

EstNPV Estimated NPV of a project or the total of the estimated NPV’s of 

several projects. 

EUR Expected Ultimate Recovery 

EV Expected Value 

 ௑  Cumulative distribution functionܨ

௑ܨ
ିଵ  Inverse of cumulative distribution function 

GIP Gas In Place 

Global Portfolio Collection of oil and gas investment opportunities available to a 

company or an individual. 

IE Investment Efficiency =NPV/CapEx. 

IRR Internal Rate of Return. 

Limited Resources 

Assessment 

Assessment that is constrained by time, money, or resources, 

representing a typical industry study. 

ln Natural logarithm 

Log-ࣨ  Lognormal distribution 
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LOT Life Orientation Test 

LOT-R Life Orientation Test-Revised 

NPV Net Present Value 

O&G Oil and Gas 

OC Overconfidence 

OCF Operating Cash Flow is the revenue minus the operating 

expenditure without time-value calculations. 

OpEx Expenditure relating to operation costs 

Portfolio Collection of oil and gas projects committed to be invested in. 

PVOCF Present Value of Operating Cash Flows. The discounted cash flow 

of all transactions related to the operating expenditure and 

revenue, except for CapEx.  

qi Initial daily gas rate (Mscf/Day) 

௜ݍ
∗  Pseudo initial daily gas rate, after correction for EUR (Mscf/Day) 

RF Recovery factor 

RNPV Realized NPV is the true NPV of a project or total true NPV’s of 

projects that were selected. 

SD Standard deviation 

TNPV True NPV 

True Project The distribution of the possible outcomes of a project after doing 
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Distribution an unlimited-resource assessment of the project. 

Unconstrained 

Budget Estimation 

Portfolio selection process that is not constrained by CapEx when 

selecting number of projects in a portfolio. 

Unlimited 

Resources 

Assessment 

Assessment that is not constrained by time, money, or resources. 

However, the Unlimited Resources Assessment may not be used 

to run additional tests, acquire more data, or drill new wells. 

߶ 	 Porosity  

	 ߤ Mean of the specified distribution 

ሶߤ   	 Mean of the normal distribution whose logarithm will give 

desired lognormal distribution 

	 ߪ Standard deviation of the specified distribution 

ሶߪ  	 Standard deviation of the normal distribution whose logarithm 

will give desired lognormal distribution 
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