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ABSTRACT 

 

Foodborne pathogens are a major concern for the health and safety of the public.  

There is a need for a rapid, cost effective, and reliable detection method for foodborne 

pathogens to replace current highly technical and time consuming methods.  Escherichia 

coli spp. are some of the most common foodborne bacteria. Concanavalin A was used in 

combination with platinum-graphene-platinum (PGP) and poly(N-isopropylacrylamide 

(PNIPAAm) to design an impedimetric biosensor for the real-time detection of non-

pathogenic and pathogenic E. coli in PBS and in complex vegetable broth.  Sensor 

performance was evaluated for sensitivity, lower detection limit (LOD), detection range, 

and detection time.  Electroactive surface area (ESA) and actuation results testing for 

PNIPAAm were used to determine the most effective surface coating for E. coli 

detection. ESA values for bare, PGP, and PGP-PNIPAAm modified electrodes were 

calculated and generally increased (p < 0.05) with surface modification.  Actuation of 

PNIPAAm, a thermo-responsive polymer, was tested, and results revealed 20 °C and 40 

°C were the ideal temperatures for capturing and sensing bacteria, respectively. PGP 

results for ConA and antibody loaded at the same concentration were similar (p > 0.05).  

PGP-PNIPAAm yielded the best results with sensitivity of 38.005 ± 2.330 

(log(CFU.mL-1))-1 and 3.467 ± 0.297 CFU.mL-1 LOD.  ConA specificity to E. coli was 

tested in PBS with Salmonella Enteritidis and performance parameters were found to be 

similar (p > 0.05) to those with E. coli only.  PGP-PNIPAAm-ConA was tested in 

vegetable broth inoculated with E. coli O157:H7 and performance was compared to 



 

iii 

 

PGP-PNIPAAm-antibody.  The antibody and ConA sensors performed similarly (p > 

0.05) in broth regarding sensitivity, though the antibody was slightly superior with a 

larger detection range (102 –107 CFU.mL-1) and lower (p < 0.05) LOD.  The LOD for 

PGP-PNIPAAm-ConA was 39.06 ± 3.382 CFU.mL-1 and 21.850 ± 3.459 CFU.mL-1 for 

PGP-PNIPAAm-antibody.  Response time for all sensors in this study was 17 minutes.  

Both ConA and antibody performance parameter results using PGP and PGP-PNIPAAm 

platforms were comparable to values reported in the literature.  In PBS, ConA was 

superior to antibody in linear range of detection and the use of PNIPAAm for bacteria 

capture and sensing further improved sensitivity and LOD.  The study showed there is 

great promise using ConA biosensors for pathogen detection in the food industry. 
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1. INTRODUCTION 

 

Foodborne pathogens are a constant concern in the food industry for the purpose 

of food safety (Kärkkäinen et al., 2011; Xu, 2012).  According to the Centers for Disease 

Control and Prevention (CDC), known pathogens can be identified as the cause of an 

estimated 9.4 million foodborne illnesses annually in the United States (CDC, 2013c).  

Of the foodborne pathogens and illnesses the CDC keeps a record of, Escherichia coli 

spp. (E. coli), especially serogroups O157, O121, and O145 are some of the more 

common typically associated with beef  and fresh produce (CDC, 2013c, 2014d).   In 

2009-2010, Shiga toxin-producing Escherichia coli (STEC) caused 58 confirmed 

outbreaks, with 53 being caused by serogroup O157 (CDC, 2013c).  

Currently, the industry relies on conventional methods such as polymerase chain 

reaction (PCR), culture and colony counting, and enzyme-linked immunosorbent assay 

(ELISA) to detect foodborne pathogens (Lazcka, Campo, & Muñoz, 2007).  While 

accurate, these methods can take from several hours to days to provide an answer 

(Lazcka et al., 2007).Therefore desirable to develop a more rapid, yet still accurate 

detection method for pathogens.  An inexpensive, reliable detection method that could 

be used in a processing setting rather than require a laboratory and specially trained 

technicians to perform the test would be very advantageous in the food industry 

(Duncan, 2011).  Biosensors, devices that use a biological material as part of the 

detection method, have been getting more attention in recent years as a possible 

alternative to traditional detection methods (Arora, Sindhu, Dilbaghi, & Chaudhury, 
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2011; Lazcka et al., 2007).  In particular, electrochemical transduction has shown 

promise as well as optical, thermometric, and micromechanical transducing systems 

(Lazcka et al., 2007). 

This project allows the food industry to begin to take advantage of the advances 

in nanotechnology by using the technology indirectly to improve pathogen detection 

techniques (Duncan, 2011).  Along with the benefits of nanotechnology, the components 

to be used in the biosensor are washable, with removed pathogens being inactivated and 

properly disposed, and therefore the sensor will be able to be reused multiple times to 

not only reduce waste, but also cost (Campuzano et al., 2012).  Implementation of such a 

sensor will have a significant, positive impact on food safety and public health. 
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2. RATIONALE AND SIGNIFICANCE 

 

The number of foodborne pathogen disease outbreaks occurring in the United 

States and across the world negatively affecting the health, safety, and general well-

being of consumers demonstrates the clear need to develop real-time detection 

biosensors.  To get an idea of the breadth of the problem, 1 out 6 people in the United 

States become ill from contaminated food each year (CDC, 2013a).  The use of 

biosensors could detect contamination sooner and prevent pathogens from reaching the 

public. 

This project is a positive contribution to the overall knowledge of biosensors and 

their application within the food industry.  It helps to further bridge the gap between the 

advances being made within nanotechnology in general and those technologies which 

are currently being applied in the food industry.  

Studies have shown lectins, as biorecognition agents, to be a promising capture 

method for various types of pathogens, and for this reason were chosen for use in this 

study.  The specificity, ease of attachment to biosensor surfaces, and availability of 

lectins make them excellent candidates for use in a biosensor for foodborne pathogen 

detection. This research is also an advancement in the area of immobilization efficiency 

of biorecognition molecules, lectins in this case, through the use of stimuli-responsive 

polymer nanobrushes.  Actuation of the polymer enhances selective capture, benefitting 

the food industry through more efficient testing and accurate results.  Previous studies 

investigating the characteristics of stimuli-responsive polymers and the use of lectins as 
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selective capture probes suggest that a biosensor combining these components will have 

superior capture and recognition of bacteria compared to current detection methods.  

Additionally, the use of platinum and graphene nanostructures in a platinum-graphene-

platinum sandwich layer configuration on the electrode’s surface has been shown to 

improve electrochemical performance of the sensor (Burrs et al., 2015; Vanegas et al., 

2014). When lectin and stimuli-responsive polymers are combined with nanomaterial-

modified electrodes, this approach is expected to have two distinct advantages over other 

published biosensors; enhanced capture of target bacteria due to less non-specific 

binding, and enhanced limit of detection and sensitivity. 

This initial work exploring the combination of lectin and stimuli-responsive 

polymer nanobrushes over metallic nanostructures serves as a stepping-stone in the area 

of biosensing towards more efficient sensors. Furthermore, its contribution to food safety 

is significant in the work towards making the food supply safer and more reliable for 

consumers.  Improved sensors using this technology can help to prevent future outbreaks 

of common foodborne pathogens, thus reducing the number of foodborne illnesses 

contracted each year.   

The ConA biosensor will provide a significant advantage over current PCR and 

plate count methods in the long run.  The new device is not only a quick detection 

method, but also as reliable and sensitive as conventional methods already in place 

within the industry.  Along with saving time, the biosensor is easy to use and therefore 

reduces the need for extensive personnel training.  Furthermore, this type of 
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nanotechnology has the potential to be produced in large batches adding to the economic 

feasibility of the sensor.  
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3. OBJECTIVES

3.1. Hypothesis 

The combination of stimuli-responsive polymer brush interfaces and hybrid 

metallic nanostructures will enhance capture of target bacteria and increase the strength 

of transduction of electrochemical outputs as the acquisition signal. Furthermore, 

electrochemical detection of Escherichia coli (E. coli) through interactions between 

Concanavalin A (ConA) lectin with sections of the lipopolysaccharide (LPS)  on the E. 

coli outer membrane will provide reduced time of detection, higher sensitivity, lower 

detection limit, broad linear range of detection, and overall efficient results when 

compared to plate count detection method and an antibody functionalized sensor for the 

purpose of food safety and quality applications. 

3.2. Overall Objective 

The overall goal of this research was to design and build a biosensor using ConA 

lectin and carbon-hydrogel nanostructures for real-time detection of Escherichia coli in a 

phosphate buffer solution (PBS) as well as a real-world scenario simulated by vegetable 

broth. 

The specific objectives of this project were as follows: 

3.2.1. Objective 1 

Optimize immobilization and loading of ConA and E. coli-antibody on graphene-

nanometal functionalized platinum electrodes through comparison of electroactive 
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surface area results from immobilization utilizing N-ethyl-N’-(3-dimethylaminopropyl) 

carbodiimide (EDC) and N-hydroxy-succinimide (NHS) chemistry. 

3.2.2. Objective 2 

Optimize immobilization and loading of ConA and E. coli-antibody on electrodes 

functionalized with poly(N-isopropylacrylamide) (PNIPAAm) nanobrushes and 

graphene-nanometal platform. 

3.2.3. Objective 3  

Determine the electrochemical response caused by interactions between ConA 

and E. coli K12 and E. coli O157:H7 using cyclic voltammetry (CV) and 

electrochemical impedance spectroscopy (EIS).  

3.2.4. Objective 4  

Determine the best test conditions for sensing bacteria using CV and EIS 

analysis. 

3.2.5. Objective 5  

Compare ConA biosensor detection limits, sensitivity, linear range, and total 

detection time with those of an antibody functionalized sensor and plate count methods 

in buffer suspension and food samples, i.e., vegetable broth. 

3.2.6. Objective 6 

  Determine overall effectiveness of ConA biosensor compared to conventional 

plate count detection and an antibody functionalized sensor.     

  



 

8 

 

4. LITERATURE REVIEW 

 

4.1. Biosensors 

Biosensors, in general, are defined as analytical devices that use biological 

components as part of the detection method where the response of interaction between 

the component and the target analyte can be detected by a transducer and converted to a 

quantifiable signal (Arora et al., 2011; Lazcka et al., 2007).  Figure 4.1. shows a 

schematic of a basic biosensor for the detection of an analyte.  There are various types of 

transducers used for detection with the main types used for microbial detection being 

electrochemical, piezoelectric, and optical (Ivnitski, Abdel-Hamid, Atanasov, & 

Wilkins, 1999; Pejcic, De Marco, & Parkinson, 2006).   

 

 

 

Figure 4.1. Schematic of a biosensor used to detect an analyte. 

 

 

 

Electrochemical biosensors for pathogen detection are becoming a popular 

possible alternative to traditional methods (culture-based, immunological, and 
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molecular) as many of them can be made into very small, portable devices that are low 

in cost, yet high in selectivity (Vidal et al., 2013).  The ability of electrochemical 

biosensors to detect bacteria in real time, in turn allowing for a higher throughput of 

samples than current detection methods adds to their appeal (Adams & Moss, 2008; 

Daniels & Pourmand, 2007; Varshney & Li, 2009).  Despite the many improvements 

and advantages of biosensors, they have not replaced traditional methods as the standard 

in industry yet, mainly because the reproducibility is not to the level it needs to be for 

sustainable use within the industry (Daniels & Pourmand, 2007; Prodromidis, 2010).  It 

is difficult to reuse the materials and still maintain the same limit of detection after the 

first use, particularly with sensors that involve the use of antibodies for detection 

(Daniels & Pourmand, 2007; Prodromidis, 2010).  

However, biosensors are not a new concept.  One of the first generation 

biosensors was the glucose sensor developed by Clark and Lyons in 1962, which used an 

oxygen sensor to measure the amount of oxygen consumed by an enzymatic reaction in 

order to determine the amount of glucose present in the sample as cited by Wang (2001).  

Through the years, the use for biosensors has expanded beyond glucose to include other 

medical, environmental, and food safety applications (Abu-Rabeah, Ashkenazi, Marks, 

Atias, & Amir, 2009; Daniels & Pourmand, 2007; Pöhlmann et al., 2009). 

4.1.1. Electrochemical 

In particular, electrochemical biosensors are valuable due to low cost, high 

sensitivity, real-time detection, and compact, mobile size (Pejcic et al., 2006; Skládal et 

al., 2013; Varshney & Li, 2009).  Additionally, electrochemical biosensors are relatively 
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easy to miniaturize, require small sample volumes, and can be used in turbid solutions 

(Grieshaber, MacKenzie, Voros, & Reimhult, 2008; Ivnitski et al., 1999).  

Electrochemical biosensors detect an analyte by measuring the changes in electrical 

properties, which are caused by biochemical reactions (Grieshaber et al., 2008).   

A common way to differentiate between types of electrochemical sensors is by 

the parameter they measure.  Some of the most widespread electrochemical sensors are 

amperometric, potentiometric, conductometric, and impedimetric (Arora et al., 2011; 

Grieshaber et al., 2008). 

Amperometric sensors work by measuring the current, which results from 

oxidation and reduction reactions between the biological component and analyte, when 

the sensor is set to a constant potential (Grieshaber et al., 2008; Lazcka et al., 2007).  

Typically, enzyme systems such as horse radish peroxidase (HRP) and alkaline 

phosphatase (AP) are used in amperometric biosensors due to their ability to convert 

non-electrochemically active analytes to electrochemically active in order to elicit a 

response in the sensor (Arora et al., 2011; Pöhlmann et al., 2009).  Results are 

interpreted based on the notion that the relationship between the analyte concentration 

present and the peak current value is linear and directly proportional (Grieshaber et al., 

2008; Lazcka et al., 2007).  The surface of amperometric sensors is often prepared using 

thin-films of gold, platinum, or carbon in order to transmit the signal from the reaction 

through the sensor (Arora et al., 2011). 

One of the least common among biosensors, potentiometric sensors detect 

changes in ion activity in the sample solution (Arora et al., 2011; Lazcka et al., 2007).  
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The change that is detected occurs due to the charge potential that builds up on the 

working electrode in comparison to a reference electrode when no current is passed 

between them (Grieshaber et al., 2008).  A disadvantage contributing to the unpopularity 

of potentiometric biosensors is the lower signal to noise ratio in contrast to amperometric 

and impedimetric sensors (Vidal et al., 2013).  The signal produced shows the 

concentration of the analyte present as a logarithmic relationship, which allows for 

detection of small changes in concentration over a large range (10-6 to 10-1 mol L-1) 

(Arora et al., 2011; Ivnitski et al., 1999; Lazcka et al., 2007).  A commonly used 

potentiometric sensor is the pH meter electrode.  Potentiometric sensors have had limited 

use in the area of new drug studies and environmental toxicity studies (Lazcka et al., 

2007).  The most successful use of the sensors has been when they are combined with 

optical detection and used for food pathogen detection (Arora et al., 2011; Lazcka et al., 

2007). 

Conductometric biosensors, sometimes categorized as a subset of impedimetric 

sensors, are not the most widely used type in the area of biosensors for pathogen 

detection (Grieshaber et al., 2008).  Some studies have shown conductometric sensors 

detecting various foodborne pathogens in less than 10 min over a wide range of 

concentrations; however, these studies failed to prove the method was reliable when 

compared to a standard immunoassay method (Pejcic et al., 2006)  Conductometric 

sensors have also been explored for use in drug detection in urine samples and for 

environmental pollution detection (Grieshaber et al., 2008).  They work by measuring 

the conductance change in the medium containing the analyte or rather the ability of the 
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solution to conduct electrical current is measured between two electrodes or reference 

nodes (Grieshaber et al., 2008; Pejcic et al., 2006).  Similarly to amperometric sensors, 

conductometric biosensors commonly rely on enzymes and the subsequent enzymatic 

reactions that cause changes in the ionic strength (Grieshaber et al., 2008).  The 

widespread use of conductometric sensors is limited by the inevitable variability of the 

ionic strength of samples coupled with the need to detect minute changes in the 

conductivity (Grieshaber et al., 2008).      

Impedimetric biosensors use the change in impedance response of a material, 

which occurs due to a small amplitude sinusoidal excitation signal formed from a 

combination of capacitive, inductive, or resistive properties of the material for analyte 

detection (Arora et al., 2011; Varshney & Li, 2009).  Responses seen in the capacitance, 

resistance, inductance, and the effect they have on the overall impedance show that all of 

these are merely different ways to measure the same reaction and they are all 

interconnected (Ivnitski et al., 1999).  To achieve the impedance measurement, the 

instrument uses an alternating current (AC) steady state with constant direct current 

(DC) bias conditions to collect data over a range of frequencies or at one particular 

frequency (Daniels & Pourmand, 2007; Pejcic et al., 2006).   

An assortment of analytes can be detected using impedance biosensors because 

the probe used can be varied to accommodate differing targets that do not need to be 

electroactive, making impedance sensors attractive versus other types of sensors and 

methods (Daniels & Pourmand, 2007).  Impedance biosensors have been used to detect 

DNA, proteins, bacteria, specific food pathogens, and viruses without the need for labels 
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(Daniels & Pourmand, 2007; Ivnitski et al., 1999; Pejcic et al., 2006).  Another big 

advantage impedimetric sensors have over other methods of detection is that they 

differentiate between viable and non-viable bacterial cells because only live cells can 

elicit a change in the conductivity of the sample (Varshney & Li, 2009).    

The most common measurement used in impedimetric biosensors, impedance, 

encompasses all opposition a circuit gives against the flow of electrons and ions when a 

single-frequency is applied (Barsoukov & Macdonald, 2005; Prodromidis, 2010).  This 

impedance (Z) is represented as the ratio of V(t)/I(t) where V is the voltage and I is the 

current (Barsoukov & Macdonald, 2005; Prodromidis, 2010).  Difficulties on fully 

understanding impedance arise due to impedance being expressed as a complex number 

made up of real and imaginary components, which can make the mathematics difficult 

(Barsoukov & Macdonald, 2005; Lazcka et al., 2007; Prodromidis, 2010).  With regard 

to impedance being a complex number, the real component consists of the ohmic 

resistance and is not dependent on frequency, while the imaginary component refers to 

the capacitive reactance and is dependent on frequency (Barsoukov & Macdonald, 2005; 

Prodromidis, 2010).  Results can be interpreted either by solving the complex system of 

partial differential equations or, more favorably, by using equivalent circuits to 

understand the data collected (Lazcka et al., 2007).     

The solution of differential equations includes capacitive and inductive 

components given by the equations (Barsoukov & Macdonald, 2005): 
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where i represents current in Amperes, v is voltage (Volts) in both equations and both 

capacitive (C) and inductive (L) elements in Farads and Henrys are represented by Eqs. 

4.1 and 4.2, respectively (Barsoukov & Macdonald, 2005).  Impedance (Z), when 

reported as a single, complex vector quantity is represented by Eq. 4.3 where Z is 

impedance in Ohms , Z’ is the real portion in Ohms, Z” is the imaginary portion in 

Ohms, j is the imaginary number representing √−1, and ω is the frequency in Hertz 

(Barsoukov & Macdonald, 2005).  The phase angle (θ) is given by 𝜃 = 𝑡𝑎𝑛−1(𝑍"/𝑍′) 

(Barsoukov & Macdonald, 2005). 

 "')( jZZZ       (4.3) 

Empirical equivalent circuits are often used to analyze the experimental 

impedance data collected (Barsoukov & Macdonald, 2005; Lazcka et al., 2007).  

Equivalent circuits are made up of a combination of ideal resistors and capacitors 

arranged in a plausible order to represent the physical system (Barsoukov & Macdonald, 

2005; Lazcka et al., 2007).  A simple and often used equivalent circuit in 

Electrochemical Impedance Spectroscopy (EIS) experiment analysis is the Randles 

circuit (Prodromidis, 2010).  The Randles circuit, demonstrated in Figure 4.2., is made 

up of the resistance of the electrolyte (Rs), the capacitance of the dielectric layer (Cdl), 

and the charge-transfer resistance (Rct) (Prodromidis, 2010).  The resistance and 

capacitance are connected in series, while the capacitance and the charge-transfer 

resistance are connected in parallel (Prodromidis, 2010).  There is also the Warburg 
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impedance (Zw) connected in series with the charge transfer resistance, which takes into 

account the diffusion of ions from the bulk electrolyte to the electrode surface 

(Prodromidis, 2010). 

 

 

Figure 4.2. Depiction of Randles equivalent circuit.  

 

 

 

While this method is accepted widely, it is important to use caution to ensure the 

equivalent circuit used makes physical sense as the same data may be fitted by more than 

one circuit (Lazcka et al., 2007).  Measuring the impedance at different frequencies can 

be useful if several parameters need to be determined to complete the circuit (Lazcka et 

al., 2007).  Residual properties, given by the real resistance, are of negligible importance 

over large frequency ranges and therefore the system can be approximated by ideal 

resistance in the equivalent circuit (Barsoukov & Macdonald, 2005).  A disadvantage to 

using equivalent circuits is that ideal circuits represent lumped constant properties and 
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therefore the ideal elements used may not be adequate in describing the electrical 

response detected (Barsoukov & Macdonald, 2005).    

Common ways to report impedance data for further analysis are the Nyquist and 

Bode plots (Prodromidis, 2010).  The Nyquist plot displays the imaginary impedance 

portion, Z”, against the real component, Z’, at each frequency, while the Bode plot 

shows the log of the absolute impedance, |𝑍|, and the phase shift, θ, against the log of 

the frequency, ω (Prodromidis, 2010).  Examples of Nyquist and Bode plots can be seen 

in Figures 4.3. and 4.4., respectively. 

 

 

 

Figure 4.3. Representative Nyquist plot of bare electrode adapted from Burrs et al. 

(2015). 
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Figure 4.4. Example Bode plot of simulated data adapted from Varshney and Li (2007). 

 

 

 

Conventional EIS (Electrochemical Impedance Spectroscopy) reports Z, 

described above, as a function of v or ω over a range of frequencies (Barsoukov & 

Macdonald, 2005).  The electrical properties of the entire system are derived from the 

Z(ω) vs. ω responses (Barsoukov & Macdonald, 2005).         

4.1.2. Impedance Biosensors for Detection of E. coli O157:H7 

E. coli O157:H7 has been the target of many impedance sensors due to its large 

impact on human health causing serious illness and, in some cases, death (A. D. 

Chowdhury, De, Chaudhuri, Bandyopadhyay, & Sen, 2012; Radke & Alocilja, 2005; 

Varshney & Li, 2007).  Several studies have shown great promise in sensitivity of 

detection and success in developing sensors micro in size (A. D. Chowdhury et al., 2012; 

Radke & Alocilja, 2005; Varshney & Li, 2007, 2008).  Reproducibility of consistent, 
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reliable, and rapid sensors is one of the hurdles to overcome in the quest for creating a 

widely available sensor for industry use (Daniels & Pourmand, 2007; Prodromidis, 

2010).  The limit of detection is not at the level needed to prevent infection, i.e., 

equivalent or lower than the infectious dose, which for E. coli O157:H7 is estimated to 

be 10-100 viable cells (Feng, Weagant, & Jinneman, 2011).  Therefore, using these 

sensors in the industry would risk missing a potentially hazardous product contamination 

at a dose below the limit of detection.   

Chowdhurry et al. (2012) published a study on using a label free impedimetric 

sensor based on polyaniline specifically for the detection of E. coli O157:H7.  The 

sensor was made up of a polyaniline surface immobilized with an antibody through 

covalent linking (A. D. Chowdhury et al., 2012).  Unfortunately, for best results, their 

method required purification of the samples by centrifugation, which, as with 

conventional methods, was the most time consuming part of detection (A. D. 

Chowdhury et al., 2012).  The group was successful in producing a sensor that utilized a 

simple method capable of detecting E. coli O157:H7 at a range of 102-107 CFU mL-1, 

though they found their sensor to be most accurate over in the range of 102-105 CFU mL-

1 (A. D. Chowdhury et al., 2012). 

Using a high density microelectrode array for the structure of their biosensor, the 

group of Radke and Alocilja (2005) were successful in detecting E. coli O157:H7 at a 

detection level of 104 CFU mL-1.  While the infectious dose is much lower than the 

detection limit (104 CFU mL-1), the work was novel and important in the design of the 

sensor as far as size and dimensions (Radke & Alocilja, 2005).  The width and spacing 
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of each finger were such that the contribution each bacterium had on the impedance was 

increased (Radke & Alocilja, 2005).  Spacing close to the size of the individual 

bacterium increased the contribution of the immobilized bacteria to the measured 

impedance (Radke & Alocilja, 2005).  Finally, their work also contributed to the overall 

improvement of biosensors through the exploration of testing real samples in the form of 

lettuce water without any purification steps (Radke & Alocilja, 2005). 

The group of Varshney and Li (2007) also explored the use of microelectrode 

arrays and their application in detecting E. coli O157:H7 in food samples.  The 

microelectrode array was coupled with magnetic nanoparticle-antibody conjugates 

(MNAC) to isolate a bacterial sample (Varshney & Li, 2007).  The use of a magnetic 

field aided in concentrating the bacteria onto the surface of the electrode allowing the 

sensor to detect bacteria at 7.4 x 104 CFU mL-1 in pure samples and 8.0 x 105 CFU mL-1 

in ground beef samples with a detection time of 35 min (Varshney & Li, 2007). 

4.1.3. Piezoelectric 

Piezoelectric biosensors have been shown to have applications as a direct (label-

free) bacteria detection system within environmental, food industry, clinical diagnostics, 

and biotechnology settings (Ivnitski et al., 1999).  Direct detection methods do not 

require any type of additional label attached to the target such as fluorescent antibodies 

for detection, but rather they use direct measurement of physical phenomena that take 

place during biochemical reactions (Arora et al., 2011; Ivnitski et al., 1999). At their 

core, piezoelectric sensors detect pathogens by monitoring the change in frequency 

observed due to the change in mass on the transducer surface (Arora et al., 2011; Ivnitski 
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et al., 1999; Lazcka et al., 2007; X.-L. Su & Li, 2004).  The relationship between the 

change in resonant frequency and the change in mass observed is given by the Sauerbrey 

equation (Eq. 4.4), where ΔF is the change in frequency in Hertz, F0 is the resonant 

frequency of the crystal in MHz, Δm is the mass in grams deposited on the surface, and 

A is the coated area in cm2 (Lazcka et al., 2007).   

A

mFx
F


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2

0

6103.2
    (4.4) 

The change in mass occurs because of bacteria adsorption onto the antibody 

coated sensor surface, which occurs due to biochemical reactions that take place between 

the bacteria and the antibody (Pejcic et al., 2006; X.-L. Su & Li, 2004).  Antibodies used 

in piezoelectric sensors are chosen with high specificity to the desired pathogen of 

concern and they are therefore a highly desired and useful tool in the food industry 

(Arora et al., 2011).   

An ultra-sensitive surface is required to detect the minute changes in mass that 

take place during the binding of the bacteria (X.-L. Su & Li, 2004).  The most common 

surface used as transducers today is the quartz crystal microbalance (QCM) (Arora et al., 

2011; Lazcka et al., 2007; X.-L. Su & Li, 2004).  In addition to quartz, lithium niobate 

and potassium sodium tartrate have recently become more accepted and used as a raw 

material used for the surface of piezoelectric biosensors (Arora et al., 2011; Nayak, 

Kotian, Marathe, & Chakravortty, 2009). 

Recently, there have been a few studies using piezoelectric sensors to detect 

foodborne pathogens. Protein-A antibody has been used in stop flow analysis (SFA) 

piezoelectric sensors to detect Salmonella Typhimurium at relatively high concentrations 



 

21 

 

in the range of 106-109 CFU mL-1 (Babacan, Pivarnik, Letcher, & Rand, 2002).  The 

group of Su and Li used affinity-purified antibodies for the detection of E. coli O157:H7 

within the range of 103-108 CFU mL-1 (X.-L. Su & Li, 2004).  Some disadvantages 

associated with piezoelectric biosensors are the multiple steps required for washing and 

drying as well as regeneration of the surface crystals in order to reuse the sensors 

(Ivnitski et al., 1999).  Alternative production methods such as dip-and-dry, while more 

sensitive, are not feasible for automation at this time, and therefore, sensitivity remains a 

concern for piezoelectric sensors that may be used in industrial applications (Lazcka et 

al., 2007).  Advantages affiliated with piezoelectric sensors include rapid detection of 

various bacteria as the sensors can be made with specific antibodies to match the target 

bacteria as well as the simplicity of the technique (Arora et al., 2011; X.-L. Su & Li, 

2004). 

4.1.4. Optical  

Optical biosensors utilize the energy gathered from the electromagnetic spectrum 

to provide a visual representation of the minute changes detected in the environment 

immediately surrounding the target (Pejcic et al., 2006).  Cells bind to receptors 

immobilized on the transducer surface causing the changes in refractive index or 

thickness which can be observed by the sensor (Ivnitski et al., 1999). 

Using optical transducers allows for real-time, label-free, in situ bacteria 

detection, which are desirable attributes for use in industry applications (Grieshaber et 

al., 2008; Ivnitski et al., 1999; Nayak et al., 2009).  High selectivity and sensitivity also 

contribute to optical sensors being some of the most popular sensors for detection of 
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bacteria (Arora et al., 2011; Lazcka et al., 2007).  A number of sensors use optical 

detecting techniques including direct fluorescence, bioluminescence, optical waveguide 

lightmode spectroscopy (OWLS), and, most commonly, surface plasmon resonance 

(SPR) (Grieshaber et al., 2008; Ivnitski et al., 1999; Lazcka et al., 2007). 

Surface plasmon resonance (SPR) is a direct optical-sensing method that utilizes 

optical illumination of metal surfaces for pathogen detection (Amano & Quan, 2005; 

Arora et al., 2011).  More specifically, changes in the refractive index occur due to 

biospecific interactions between immobilized antibodies and antigens thus causing a 

shift in the resonance angle, which is proportional to the amount of antigens present on 

the surface (Amano & Quan, 2005; Arora et al., 2011; Subramanian, Irudayaraj, & Ryan, 

2006).  SPR typically uses gold film as the attachment surface where, at particular 

wavelengths, resonance is generated with the electron cloud in the metal (Arora et al., 

2011).  Pathogen detection is measured by the change in the angle of incidence from the 

original angle, which is based solely on the properties of the gold-solution surface before 

any antibody-antigen binding (Lazcka et al., 2007). 

Not only is SPR a label-free sensing technique, it is also non-invasive and 

provides results in real-time through analysis in less processed samples than typically 

required for bacteria detection and is generally more sensitive than electrochemical 

techniques (Lazcka et al., 2007; Pejcic et al., 2006).  SPR has been shown to detect E. 

coli O157:H7 as low as 103 CFU mL-1 by Subramanian et al. (2006) as well as in other 

studies with detection limits in the range of 102-107 CFU mL-1 (Deisingh & Thompson, 

2004; Lazcka et al., 2007).  Unfortunately, SPR is at a disadvantage in that it is very 
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complex, expensive to perform, and the equipment currently available is large in size 

(Lazcka et al., 2007).  

4.2. Platinum and Graphene in Biosensing 

Metal and carbon nanomaterials have been increasingly used in electroanalytical 

applications (Vanegas et al., 2014).  In particular, graphene and platinum are being 

explored due to their potential to enhance biosensing, especially when used together (Shi 

et al., 2012; X. Su, Ren, Meng, Ren, & Tang, 2013; Vanegas et al., 2014). 

In biosensing, graphene has the potential to increase electron transfer during the 

oxidation or reduction of electroactive intermediate species (Shi et al., 2012).  Graphene 

along with reduced graphene sheets have also been shown to increase the surface area of 

the sensing platform, exhibit superior electric conductivity, strong mechanical strength, 

excellent biocompatibility, and ease of functionalization (X. Su et al., 2013; Yixian, 

Zunzhong, & Yibin, 2012).  The electrical conductivity of graphene modified electrodes 

has been shown to be higher than that of carbon nanotubes due to the increased sp2 

bonding content (Shi et al., 2012).  While the addition of graphene has been shown to aid 

the electrical conductivity of the sensor, the carbon concentration present in the graphene 

to be attached has an effect on the overall conductivity (Vanegas et al., 2014).  Too little 

carbon present and there is poor conjugation to the electrode surface; too much carbon 

and the graphene stacks on itself and lowers the overall electrical conductivity (Vanegas 

et al., 2014). 

An advantage of graphene and its derivatives (reduced graphene, graphene oxide) 

is their ability to be dispersed in aqueous solution, which aids in preparation of sheets, 
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composites, and films (Choi et al., 2010).  Graphene oxide is particularly easy to 

disperse in aqueous solution due to its high concentration of hydroxyl and carboxyl 

groups (X. Su et al., 2013).  One major challenge encountered when using graphene is 

the deposition onto the electrode surfaces by van der Waals forces (Shi et al., 2012).  

Sometimes graphene is suspended in polymers then deposited on electrode surfaces, 

though this can cause its own problems as the polymers are non-conductive and can 

form a diffusion barrier decreasing the active surface area of sensors and decreasing the 

sensitivity (Shi et al., 2012).   

 Platinum deposited as nanoparticles has been shown to improve biosensor 

performance as a result of its biocompatibility and electrocatalytic activities (Shi et al., 

2012).  Often, nanoplatinum (platinum black) is applied to electrode surfaces in layers of 

amorphous clusters as electrocatalytic platforms to aid in sensitivity, limit of detection, 

and response time in biosensors (McLamore et al., 2011; Shi et al., 2012; Vanegas et al., 

2014).  Platinum is a desired choice due to its high resistance to chemicals, stability at 

high temperatures, resistance to wear and tarnish, and excellent electrocatalytic activity 

(Carraro, Maboudian, & Magagnin, 2007; Claussen, Franklin, ul Haque, Porterfield, & 

Fisher, 2009).  Addition of immobilized conductive nanoplatinum improves 

electrochemical sensing due to higher current densities and faster mass transport 

compared to larger macro particles as well as providing more favorable Faradic-to-

capacitive current ratios and increased electrocatalytic behavior attributed to quantum 

confinement (Claussen et al., 2012). 
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There are several common ways for nanoplatinum to be deposited onto the 

surface of an electrode including galvanic displacement, pulsed electrodeposition, and 

electrodeposition, which result in differing surface structures and, consequently, 

electrochemical performance (Carraro et al., 2007; Chandrasekar & Pushpavanam, 2008; 

Chen et al., 2007; Coleman & Co, 2014; Penner, 2002; Vanegas et al., 2014).  Galvanic 

displacement is achieved when the metallic ion in solution has a lower oxidation 

potential than the displaced base material and while the base dissolves into the solution 

the metallic ions are reduced on the surface (Carraro et al., 2007).  The particle size can 

be controlled during galvanic displacement through the adjustment of deposition time 

and temperature as well as the starting concentration of platinum used in solution 

(Coleman & Co, 2014).  Pulsed electrodeposition (PED) is accomplished by alternating 

the potential or current between two different values in a series of pulses, separated by 

zero current, with equal amplitude, polarity, and duration (Chandrasekar & 

Pushpavanam, 2008).  The deposited film composition and thickness can be regulated by 

controlling the pulse amplitude and width (Chandrasekar & Pushpavanam, 2008).  

Electrodeposition is carried out similarly to pulsed electrodeposition, though all at one 

time rather than in pulses.  Nanoplatinum deposited via electrodeposition occurs at a 

constant voltage for a specific amount of time (Burrs et al., 2015; Vanegas et al., 2014).  

Electrochemical properties, such as electrocatalytic activity, resulting from deposition of 

nanoplatinum can also be affected by the properties of the supporting materials (i.e. 

various carbon materials) used during deposition (Chen et al., 2007).  
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While platinum and graphene offer many benefits to biosensor performance 

when incorporated onto the electrode surface, they are most effective at efficiently 

enhancing electron transport when used in combination (Shi et al., 2012; Vanegas et al., 

2014).  Testing of several combinations revealed that the best combination of graphene 

and platinum is a sandwich formation starting with a layer of nanoplatinum, then 

graphene, and ending with another layer of nanoplatinum (Burrs et al., 2015; Vanegas et 

al., 2014).  This sandwich structure yielded the highest electrochemical performance 

(ESA and sensitivity toward hydrogen peroxide) with enhanced electrocatalytic activity 

of platinum and graphene used in combination or on their own due to combined effects 

of nanocomposite soldering to the electrode surface and electrical junctions formed 

between nanocarbons (Vanegas et al., 2014).  To assemble the nanomaterials onto the 

surface, both Vanegas et al. (2014) and Burrs et al. (2015) utilized sonoelectrodeposition 

to form nanoplatinum layers and spin coating in two cycles to deposit reduced graphene 

oxide. 

4.3. Poly(N-isopropylacrylamide)  

Much attention has been paid to stimuli-responsive polymers and the role they 

can play in the improvement of biosensors by utilizing the transition between collapsed 

and expanded states (Zhao, Liu, Lu, Zhou, & Li, 2012).  Stimuli-sensitive materials are 

capable of undergoing chemical and conformational changes in response to small 

external variations in the environment (Gil & Hudson, 2004; Zhao et al., 2012).  

Numerous stimuli including pH, ionic strength, temperature, and electromagnetic 
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radiation have been shown to produce changes in stimuli-responsive polymers (Ju, Kim, 

& Lee, 2001).   

Some of the most widely researched of these are temperature responsive 

polymers (Ju et al., 2001).  An important parameter to be aware of when working with 

thermal responsive polymers is the lower critical solution temperature (LCST) (Ju et al., 

2001; Yin, Zhang, Jiang, & Zhu, 2009).  The LCST is the temperature at which the 

polymer changes from shrunken to swollen and vice versa.  In the case of poly(N-

isopropylacrylamide) (PNIPAAm), the polymer is expanded when exposed to 

temperatures below the LCST and collapsed when above the LCST, which is typically 

around 32-35° C (Ju et al., 2001; Yin et al., 2009).  The physical properties exhibited 

above and below the LCST by PNIPAAm are fully reversible in aqueous solution due to 

the changes in the hydrogen-bonding interfaces of the amide group (Yin et al., 2009).   

When the polymer is exposed to temperatures below the LCST hydrogen-bonds 

form between the hydrophilic (acylamino) groups in the PNIPAAm and the water 

causing the hydrogel to swell (Burrs et al., 2015; Hill & Gomes, 2014).  Exposed to 

temperatures above the LCST, the polymer collapses due to a breakdown of the 

hydrogen bonds between the water and the PNIPAAm, which allows for the interactions 

between hydrophobic (isopropyl) groups to dominate (Burrs et al., 2015; Hill & Gomes, 

2014).  Figure 4.5. A depicts the structure of PNIPAAm while the physical change 

observed above and below the LCST is shown schematically in Figure 4.5. B.  Through 

the use of co-polymerization with other molecules, the LCST of PNIPAAm can be 

adjusted allowing for a wider range of uses (Zhang, 2005).   
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Figure 4.5. A) PNIPAAm structure adapted from Gil & Hudson (2004) and Burrs et al. 

(2015). B) PNIPAAm below and above LCST, respectively. 

 

 

 

PNIPAAm is also a beneficial polymer to explore in the use of biosensors 

because it can easily be manipulated to have different endings, such as carboxyl or 

amine, depending on the group needed for any further attachment (Ju et al., 2001; Leal, 

De Borggraeve, Encinas, Matsuhiro, & Müller, 2013; Lee, Ha, Cho, Lee, & Kim, 2004).  

To synthesize PNIPAAm with a carboxyl group ending, radical polymerization can be 

used along with 3-Mercaptopropionic acid (MPA) as the chain-transfer agent and N,N’-

Azobisisobutyronitrile (AIBN) as the initiator (Lee et al., 2004; Liu et al., 2008).  In 

order to have an amine termination, free radical polymerization can be carried out using 

AIBN as the initiator and 2-Aminoethanethiol (AESH) as the chain transfer agent (Leal 

et al., 2013). 

Polymers can be attached to electrode surfaces to form nanobrushes through 

‘grafting-to’ and ‘grafting-from’ techniques (Nasir, Ali, & Ensinger, 2012).  The 

grafting-to technique involves reactive surface functional groups interacting with end-

functionalized polymer molecules (Nasir et al., 2012).  When grafting-from, covalently 
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immobilized initiator groups jump start the polymerization reaction from the substrate 

surface (Nasir et al., 2012).  One grafting-from technique commonly used is the atom 

transfer radical polymerization (ATRP) process, which has been known to provide better 

control of the polymerization process, i.e., brush length (Mendes, 2008; Minko, 2006).  

This technique has been used as the method of grafting polymer brushes onto a gold 

electrode surface, for example (Lokuge, Wang, & Bohn, 2007). 

Electrochemical techniques are commonly used to prepare as well as investigate 

polymer-modified surfaces and other sensitive interfaces (Zhou et al., 2007). 

Electropolymerization technique is also known to improve control over polymer length 

and also to limit aggregation by pulsing electrical potential.  This technique has been 

used extensively in preparation of dispersed nanomaterials (X. Yang, Shi, Liu, Bentley, 

& Payne, 2009; Zhao et al., 2012).  The group of Zhao et al. (2012) used 

electrochemistry to induce the polymerization of PNIPAAm nanobrushes onto a gold 

substrate in order to investigate the interaction with and sensitivity to 1,4-dihydro-β-

nicotinamide adenine dinucleotide (NADH).  The same method of electrochemical-

induced polymerization of N-isopropylacrylamide onto a gold substrate to form polymer 

chains of PNIPAAm was also used by Zhou et al. (2007) to aid in understanding the 

capabilities of PNIPAAm chains and the switching behavior exhibited under temperature 

changes. 

In addition to the many studies conducted to characterize and better understand 

the properties, especially swelling and shrinking capabilities, PNIPAAm nanobrushes 

have been studied as a method for immobilization of materials such as cells, enzymes, 
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proteins among others for biosensing applications (Burrs et al., 2015).  Liu and 

coworkers (2008) used PNIPAAm combined with an antibody to create a renewable 

immunosensor.  The sensor was tested using bovine serum albumin (BSA) to 

demonstrate the concept (Liu et al., 2008).  Immobilized antibodies were able to 

maintain their specificity and activity for more than 30 reproducible assays due to the 

control of PNIPAAm-antibody conjugates achieved through the use of temperature 

changes (Liu et al., 2008).  Another study compared PNIPAAm and several other 

hydrogels as encapsulants in a biosensor to detect hydrogen peroxide (Burrs et al., 

2015).  The sensor fabricated using PNIPAAm proved to be the most sensitive and have 

the highest response time when compared to the same sensor fabricated using silk fibroin 

or cellulose nanocrystals (CNC). Similar results were observed for chitosan hydrogel 

(Burrs et al., 2015).    

4.4. Lectins 

Lectins are non-immune plant or animal proteins, or glycoproteins, involved in 

various life processes (Nilsson, 2007).  While there are many different lectins, the group 

best characterized come from the plant kingdom as these are typically produced in large 

amounts (Nilsson, 2007).  Lectins are known to bind to carbohydrates of polysaccharide 

structures that are major structural components of bacteria cell surfaces (Cambi et al. 

2005).  Specific lectins can bind explicitly to carbohydrates associated with the 

membrane of different bacteria, especially Gram-negative bacteria such as E. coli 

(Campuzano et al., 2012; Haseley, 2002; Lu et al., 2009; Nilsson, 2007).  This 

interaction between lectins and carbohydrates is both selective and reversible, which is a 
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beneficial trait when looking at lectins for the use in biosensing (Gamella, Campuzano, 

Parrado, Reviejo, & Pingarrón, 2009).  Lectins used for target bacteria identification 

through the recognition of surface carbohydrates contain one or more carbohydrate 

recognition domain (CRD) and the physical structure of these domains determine the 

specificity of the lectin (Cambi, Koopman, & Figdor, 2005).   

In sensing applications, soluble proteins are more desirable than transmembrane 

proteins due to their superior stability over the lipophilic transmembrane lectins (Cambi 

et al., 2005).  Lectins can then be further divided into groups depending on mode of 

action and structure including C-type (Ca2+-dependent), MBL (mannose-binding 

lectins), N-linked (N-acetylglucosamine), and FBL (fucose-binding lectins) (Audfray et 

al., 2012; Cambi et al., 2005; Eddie Ip, Takahashi, Alan Ezekowitz, & Stuart, 2009; 

Ghazarian, Idoni, & Oppenheimer, 2011).    

Concanavalin A (Con A), a mannose-binding lectin, was first isolated in nearly 

pure form by Sumner and his team in 1935 (T. K. Chowdhury & Weiss, 1975).  They 

crystallized the lectin from Canabalia ensiformis, more commonly referred to as the jack 

bean (T. K. Chowdhury & Weiss, 1975).  Con A is conventionally isolated and purified 

from jack bean through a multistep process that includes protein precipitation, dialysis, 

size exclusion, and affinity (Ahirwar & Nahar, 2015). 

The use of ConA is relatively new and would be beneficial due to its specificity 

to E. coli, yet broad enough to detect any strain of E. coli bacteria that may be present in 

the sample.  The lectin Con A binds multivalently to carbohydrate components 
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specifically found in the membrane of E. coli (Lu et al., 2009).  The particular 

carbohydrate binding site known for E. coli is GM1 ganglioside (Haseley, 2002).  

Several sensors have been explored using Con A.  One in particular uses 

wireless, remote-query to detect E. coli in distilled and deionized water showing that 

Con A can indeed be used as a detection method with a limit of detection of 60 cells mL-

1 and a response range of 6.0 x 101 to 6.1 x 109 cells mL-1 (Lu et al., 2009).  Also 

detecting E. coli, the group of Gamella et al. (2009) utilized absorption of Con A onto 

screen-printed gold electrodes as the platform for detection.  The screen-printed gold 

electrodes utilizing Con A showed a linear response to E. coli, diluted in deionized 

water, between 5 x 103 and 5 x 107 CFU mL-1 and a limit of detection of 5 x 103 CFU 

mL-1 (Gamella et al., 2009).  Another group explored the use of Con A recognition of 

sulfate-reducing bacteria for the detection and monitoring of microbial populations 

(Wan, Zhang, & Hou, 2009).  The study revealed that the sensor was capable of 

detecting sulfate-reducing bacteria over a range of 1.8 to 1.8 x 107 CFU mL-1 when 

tested in PBS (Wan et al., 2009).  Another study showed a detection limit of 7.5 x 102 

cells mL-1 and a linear range between 7.5 x 102 and 7.5 x 107 cells mL-1 for E. coli when 

using Con A with a quartz crystal microbalance (QCM) in a PBS test solution (Shen et 

al., 2007).  Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 

were both used to show the attachment of the Con A to the carbohydrate showing that 

Con A can be used with CV and EIS to detect E. coli in foods (Gamella et al., 2009; Lu 

et al., 2009; Wan et al., 2009). 

 



 

33 

 

4.5. Antibodies 

 Antibodies are normally occurring protein molecules produced by B lymphocyte 

cells (B cells) in the body (Funk & Wagnalls new world encyclopedia, 2015; Lipman, 

Jackson, Trudel, & Weis-Garcia, 2005).  The primary function of antibodies is to act as a 

defense against foreign substances invading the body and can be found in the blood of 

all vertebrates and play an important role in the immune system (Cunningham, 1998; 

Funk & Wagnalls new world encyclopedia, 2015).  Typically, antibodies have a well-

defined Y-shape structure and float freely in the blood (Funk & Wagnalls new world 

encyclopedia, 2015; Trilling, Beekwilder, & Zuilhof, 2013).  Antibodies are a small 

subset of glycoproteins and possess only one binding site (Trilling et al., 2013).  

Substances recognized by antibodies, such as proteins in bacteria, are called antigens 

(Cunningham, 1998; Funk & Wagnalls new world encyclopedia, 2015).   

One type of antibody commonly used in biosensing applications is 

immunoglobulin G (IgG), seen in Figure 4.6. (Trilling et al., 2013).  IgG type antibodies 

are made up of four chains, two heavy and two light, which are linked by disulfide bonds 

and form the Y-shape (Cunningham, 1998; Trilling et al., 2013).  Each chain consists of 

constant and variable regions and it is the variable region that is responsible for 

antibody-antigen specific interactions (Trilling et al., 2013).  Through engineering, 

conventional antibodies have been miniaturized into more stable and smaller portions 

called fragments (Lipman et al., 2005; Trilling et al., 2013). 
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Figure 4.6. Schematic of IgG antibody structure with antigen binding areas are denoted 

by VL and VH.  Image adapted from Trilling et al. (2013). 

 

 

 

For biosensing purposes, IgG antibodies are normally immobilized on electrode 

surfaces through covalent linking (Skládal et al., 2013).  Covalent immobilization is 

thought to be one of the best methods for longevity of the surface combined with high 

sensitivity because this type of immobilization results in a more specific orientation than 

others (Varshney & Li, 2007).   

Some advantages of using antibodies for biosensing include their high specificity 

and high affinity constants (Cunningham, 1998; Skládal et al., 2013).  Specificity can be 

adjusted through the type of antibody used (polyclonal vs. monoclonal) (Lipman et al., 

2005).  Monoclonal antibodies are produced by a single B lymphocyte clone, while 

polyclonal antibodies come from many and this affects the specificity with monoclonal 
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being more specific responding to only one type of antigen (Lipman et al., 2005).  This 

difference in antibody type can be advantageous when designing sensors.  

There are also several disadvantages to using antibodies such as the need for live 

animals for production and different affinities depending on whether the antibodies are 

monoclonal or polyclonal (Cunningham, 1998).  Antibody performance can be variable 

from batch to batch meaning reoptimization must be performed somewhat regularly and 

the kinetic parameters of antibodies interacting with antigens cannot be changed 

(Jayasena, 1999).  Sensitivity to temperature and irreversible denaturation along with 

their very limited shelf life are major challenges faced working with antibodies, 

especially for biosensing applications (Jayasena, 1999).  Another problem encountered 

performing antibody immobilization is low capture efficiency (Varshney & Li, 2007).  

This results in less than optimal use of the functional surface area of the sensor for 

detection (Varshney & Li, 2007).  To achieve the desired robustness for the sensors, 

many are fabricated by attaching the antibodies onto electrode surfaces that have been 

activated using self-assembled monolayers (SAM) as attaching to bare electrode surfaces 

directly can lead to slow release of the proteins (Skládal et al., 2013). 

Some of the work incorporating antibodies into biosensors includes studies with 

electrochemical impedance, amperometric, and piezoelectric immunosensors.  

Immunosensors are a subset of the larger biosensor category.  Biosensors are made up of 

a biological receptor element to bind specific analytes and a transducing element, which 

detects the receptor/analyte binding (North, 1985).  Essentially, immunosensors are 
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biosensors with the receptor and analyte being specifically defined as antibodies and 

their selective antigens (North, 1985).   

The group of Geng et al. (2008) studied the use of antibodies in an 

electrochemical impedance immunosensor through immobilization of the E. coli 

antibodies onto Au electrodes by self-assembled monolayers (SAM).  It was determined 

that the E. coli cells binding to the antibodies increased electro-transfer resistance and 

this could be detected by EIS and a relationship was determined from the responses 

detected (Geng et al., 2008).  Using antibodies in conjunction with EIS, E. coli could be 

detected as low as 50 CFU mL-1 in river water samples, but this was with pre-

concentration and pre-enrichment steps (Geng et al., 2008).  The study by Li et al. 

(2012) showed the use of E. coli antibodies combined with chitosan-multiwalled carbon 

nanotubes on Au electrodes to create an amperometric sensor capable of detecting E. 

coli at 4.12 x 102 CFU mL-1 under optimal conditions.  Along with these works on 

electrochemical impedance and amperometric sensors, the group of Su and Li (2004) 

developed a piezoelectric immunosensor to detect E. coli O157:H7 in the range of 103-

108 CFU mL-1 using antibodies immobilized onto a SAM on an Au electrode surface 

using NHS covalent binding reaction for antibody immobilization.  

4.6. Escherichia coli 

 Enterohaemorrhagic Escherichia coli spp. (EHEC E. coli) are some of the most 

common pathogens to contribute to foodborne illness and, according to the World Health 

Organization (WHO), was first recognized as a public health problem in 1982 after an 

outbreak in the United States (CDC, 2013c, 2014d; WHO, 2011).  The Centers for 
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Disease Control and Prevention (CDC) estimates 9.4 million foodborne illnesses 

occurring annually in the United States are caused by known pathogens (CDC, 2013c). 

 First isolated in 1885, E. coli is likely one of the best understood free-living 

organisms today (Adams & Moss, 2008).  The majority of E. coli are harmless and 

contribute positively as a part of the total microflora in the intestinal tract and gut of 

healthy humans and other warm-blooded animals (Adams & Moss, 2008; CDC, 2014b; 

WHO, 2011).  Pathogenic E. coli are divided into six groups or pathotypes: 

enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli 

(EIEC), enteroaggregative E. coli (EAEC), diffusely adherent E. coli (DAEC), and 

enterohemorrhagic E. coli (EHEC) (CDC, 2014b; FDA, 2012).  The most prevalent of 

these being EHEC, which accounts for about 63,000 cases of foodborne illness in the 

United States, is sometimes referred to as Shiga toxin-producing E. coli (STEC) or 

Verotoxin-producing E. coli (VTEC) (Adams & Moss, 2008; CDC, 2014b; FDA, 2012).  

Included in the EHEC group is E. coli O157:H7, which is the most common type 

reported and associated with foodborne illness (Adams & Moss, 2008).   

 EHEC is closely monitored due to its transmission through food and water, but 

also because of the wide range of conditions associated with EHEC (Adams & Moss, 

2008; FDA, 2012; WHO, 2011).  The infectious dose of E. coli O157:H7, in particular, 

is thought to be very low, in the range of 10-100 cells (FDA, 2012; Feng et al., 2011).  

Other EHEC serotypes are estimated to have a slightly higher infectious dose (FDA, 

2012).  Onset of EHEC infections is typically 3-4 days, but can occur anywhere from 1-9 

days after ingestion of the organism (CDC, 2014b; FDA, 2012).  Symptoms often 
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include diarrhea and abdominal cramps, which in uncomplicated cases in otherwise 

healthy adults, resolve within 2-9 days (CDC, 2014b; FDA, 2012; WHO, 2011).   

The illnesses can range from relatively mild diarrhea and cramps to hemorrhagic 

colitis and even life threatening conditions thrombotic thrombocytopaenic purpura (TTP) 

and haemolytic uremic syndrome (HUS) (Adams & Moss, 2008; WHO, 2011).  TTP is 

not a common complication and is usually only found in adults.  Symptoms of TTP 

include fever, some kidney damage, and neurological symptoms from blood clots in the 

brain (Adams & Moss, 2008).  HUS is characterized by acute renal failure, reduction of 

red blood cells (haemolytic anemia), and reduction of blood platelets 

(thrombocytopaenia) (Adams & Moss, 2008).  HUS is most common in children under 

10 and has a mortality rate of 3-5% (Adams & Moss, 2008; FDA, 2012).  

The E. coli organism is a Gram-negative, short, fermentative, oxidase-negative, 

catalase-positive, non-sporing rod (Adams & Moss, 2008).  It is a mesophile with an 

optimum growth temperature of 37°C within the range of 7-50°C (Adams & Moss, 

2008; WHO, 2011).  EHEC grows best at a near-neutral pH, but can also grow in acidic 

foods down to a pH of 4.4 with a minimum water activity (Aw) of 0.95 (Adams & Moss, 

2008; WHO, 2011).   

Food and water supplies can become infected with E. coli due to contamination 

from fecal matter introduced by food handlers, cross contamination, improper washing 

of raw vegetables, and undercooked ground beef (Adams & Moss, 2008; WHO, 2011).  

Contamination can be prevented through basic good manufacturing practices in the 

industry and food hygiene at home (WHO, 2011).  Regular hand washing, washing of 
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foods (especially those to be consumed raw), and reaching the proper internal cooking 

temperature of 70°C can protect against infection (CDC, 2014b; WHO, 2011).                 

The government’s recent action signing the FDA Food Safety Modernization Act 

(FSMA) into law in January of 2015 is another major indication of the need for more 

preventative actions within food safety such as real-time pathogen detection (FDA, 

2015).  The goal of the FSMA is to shift the focus of food safety from reactive to 

proactive measures to improve the safety and quality of our food supply (FDA, 2015).  

By concentrating on implementing better manufacturing practices, detection, and other 

science-based preventive controls, future outbreaks can be prevented rather than 

contained.  These new regulations are in addition to and to compliment the practices 

already in place through Hazard Analysis Critical Control Point (HACCP) plans. 

According to the CDC, E. coli (STEC) O157 ranked fifth amongst the pathogens 

monitored in 2011 that contribute to domestically acquired foodborne illnesses resulting 

in hospitalization (CDC, 2014a).  The Foodborne Diseases Active Surveillance Network 

(FoodNet) closely monitors 10 geographical areas in the U.S. and in 2014, E. coli (STEC 

O157 and STEC non-O157) ranked fifth in total number of cases of bacterial and 

parasitic infections reported (CDC, 2015).         

Some of the most notable outbreaks of E. coli in recent years affected raw, leafy 

produce and ground beef (CDC, 2014d).  In 2014, outbreaks of E. coli O157:H7 and 

O121 were reported in ground beef and raw clover sprouts, respectively.  The O157:H7 

outbreak resulted in 12 reported cases across 4 states and a product recall was issued for 

1.8 million pounds of ground beef products that were possibly contaminated (CDC, 
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2014c).  Ready-to-eat salad contaminated with E. coli O157:H7 was recalled in 2013 

after 33 cases were reported across 4 states with 7 individuals being hospitalized and two 

infected persons developing HUS (CDC, 2013b).  One of the worst outbreaks in the last 

several years affected a total of 58 people by contaminated Romaine lettuce and reports 

of cases spread across 9 different states (CDC, 2012).  People infected during this 

outbreak ranged in age from 1 to 94, 33 were hospitalized, and 3 went on to develop 

HUS though no deaths were reported (CDC, 2012). 

4.7. Current Detection Methods  

 The most popular conventional methods used for bacteria detection include 

culture and colony counting, polymerase chain reaction (PCR), and enzyme-linked 

immunosorbent assay (ELISA) (Lazcka et al., 2007; Yixian et al., 2012; Zelada-Guillén, 

Bhosale, Riu, & Rius, 2010).  While these methods are still trusted in the industry today 

due to their proven reliability, detection time, training required, cost, and complicity are 

all disadvantages (Lazcka et al., 2007; Yixian et al., 2012).  

4.7.1. Plate Count 

Culture and colony counting, often referred to as plate counts, is still the standard 

method for detecting bacteria (Lazcka et al., 2007).  Plate counting is reliable, provides 

high selectivity, and, with enrichment, can detect just a single bacteria colony in a 1 mL 

sample, yet can take days to reach a negative result and, in some cases, upwards of 15 

days to confirm a positive result (Adams & Moss, 2008; Lazcka et al., 2007; Xu, 2012).  

Given a controlled, normal laboratory setting, plate counting is one of the most accurate 

ways to identify the presence of viable cells (Adams & Moss, 2008).  Cost also becomes 
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a factor as replications required for proper detection require many Petri dishes, a lot of 

growth media, and many man hours of trained personnel to complete the detection 

process (Adams & Moss, 2008).  Plate counting is achieved by preparing Petri dishes 

with media, pipetting a thoroughly mixed sample onto the plate, and spreading the 

sample evenly onto the plate (Adams & Moss, 2008).  In order to ensure the plate counts 

are within the desired range, between 30 and 300 colonies, the sample must be diluted 

(Adams & Moss, 2008).  Typically a ten-fold dilution series is used, however; unknown 

samples require plating of more dilutions to make sure the plates are within the range to 

be counted properly (Adams & Moss, 2008).          

4.7.2. Polymerase Chain Reaction 

Polymerase chain reaction (PCR) is considered to be a rapid detection method 

when compared to culture and colony counting (Lazcka et al., 2007; Shen et al., 2014; 

Yixian et al., 2012).  The detection time itself is in the range of a few hours, though this 

does not include any enrichment steps necessary prior to the detection (Lazcka et al., 

2007; Yixian et al., 2012).  PCR has another advantage in that it is sensitive enough to 

theoretically detect a single copy of the target DNA/RNA sequence and selective enough 

to recognize the serotype group based on the sequence present in the sample (Adams & 

Moss, 2008; Lazcka et al., 2007).  In addition to requiring pretreatment steps, PCR is a 

technical process and therefore requires highly trained and qualified technicians and 

complex equipment and set-up to carry out the preparation as well as the testing (Shen et 

al., 2014).  Due to the small DNA fragment needed for detection, PCR results may be 
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based on DNA from non-viable cells (Adams & Moss, 2008). Therefore, PCR cannot 

distinguish between viable and non-viable cells.  

 Developed in the 1980’s, PCR works through amplification of specific portions 

of DNA (Adams & Moss, 2008; Lazcka et al., 2007).  Theoretically, only a short chain is 

required in order to detect just a single copy of the intended sequence, which includes 

the bacteria’s genetic material (Adams & Moss, 2008; Lazcka et al., 2007).  A schematic 

of the PCR method can be seen in Figure 4.7.  The basic process is that DNA is 

denatured through the use of heat from 94-98 °C, which allows oligonucleotide primer 

sequences to hybridize onto each strand in the cooled mixture between 37 °C and 65 °C 

(Adams & Moss, 2008).  Following catalysis by DNA polymerase, the primers extend 

and produce double-stranded copies of the two target regions (Adams & Moss, 2008).  

Once the first copies have been made, the process is repeated any number of times, 

though it is important for the DNA polymerase to be heat stable in order to endure the 

heat steps (Adams & Moss, 2008).      

There are several different PCR methods extended from the basic technique that 

are used for the purpose of detecting bacteria including real-time, multiplex, nested, and 

reverse transcriptase (Adams & Moss, 2008; Lazcka et al., 2007; Miller & Andre, 2014).   

Real-time PCR reduces the detection time by eliminating the need for 

amplification steps following the initial process (Lazcka et al., 2007).  This reduction of 

time is achieved through the use of fluorescent signal (Adams & Moss, 2008; Lazcka et 

al., 2007; Miller & Andre, 2014).  As the DNA is synthesized, the fluorescent signal 

intensifies (Adams & Moss, 2008; Miller & Andre, 2014).  The signal not only 
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intensifies with increasing PCR cycles, but the fluorescence is also directly proportional 

to the amount of bacteria initially present, which means real-time PCR is both a 

quantitative and qualitative test (Adams & Moss, 2008; Miller & Andre, 2014).  

Multiplex PCR incorporates multiple sets of primers in one PCR mixture and 

simultaneously produces amplification of several targets of varying sizes (Adams & 

Moss, 2008; Tarabees, Hassanin, El Rahman, & El Bagoury, 2015). 

Nested PCR uses two separate sets of primers, outer and inner, to improve the 

sensitivity (Adams & Moss, 2008).  The outer primers amplify a larger portion of DNA 

beyond the target section, and then inner primers amplify the shorter portion of the 

sequence included in the already amplified portion (Adams & Moss, 2008).  Reverse 

transcriptase PCR uses DNA that has been transcribed from RNA (Adams & Moss, 

2008).  This method is useful for detecting RNA viruses and has a higher sensitivity than 

conventional PCR due to multiple RNA copies present within a cell (Adams & Moss, 

2008).   
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Figure 4.7.  Schematic of one PCR cycle modified from Lazcka et al. (2007). 

 

 

 

4.7.3. Enzyme-Linked Immunosorbent Assay 

Polyclonal and monoclonal antibodies have shown promising specificity when 

used in immunoassays (Adams & Moss, 2008).  Enzyme-linked immunosorbent assay 

(ELISA) is one of the most established immunological methods used to detect 

microorganisms including E. coli, Salmonella, and Listeria monocytogenes (Adams & 

Moss, 2008; Lazcka et al., 2007; Shen et al., 2014; N. Wang, He, & Shi, 2007).  ELISA 

is recognized as a reputable technique due to its relatively high reproducibility and 

specificity in its detection of various antigens from bacteria to viruses and proteins 

(Bomans et al., 2013; Lazcka et al., 2007; Shen et al., 2014).  However, ELISA is not 

reliable in distinguishing between viable and non-viable bacteria cells (N. Wang et al., 

2007).        
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At their simplest, ELISAs detect antigens through binding by antibodies (Adams 

& Moss, 2008; N. Wang et al., 2007).  There are several different configurations of 

ELISA, the most common being the sandwich ELISA (Adams & Moss, 2008; Lazcka et 

al., 2007).  Figure 4.8. shows the direct sandwich structure in which a capture antibody 

is attached to a plate and a sample containing the antigen to be analyzed is introduced 

followed by the introduction of an enzyme labeled antibody.  After washing to remove 

any unattached enzymes and antibodies, the substrate changes color in the presence of 

the enzyme.  The intensity of the color change is directly proportional to the 

concentration of antigen present in the sample (Adams & Moss, 2008).  Alternative 

methods to color change are also used for detection such as agglutination in the presence 

of the antigen when antibodies are attached to latex and fluorescence-labeled antibodies 

that can be seen using a fluorescence microscope (Adams & Moss, 2008).   

While ELISAs are available and used commercially, they are not a perfect 

solution for microorganism detection (Adams & Moss, 2008; Shen et al., 2014).  One of 

the main concerns surrounding the use of ELISA is the number of organisms required to 

be present in the sample in order for reliable detection (Adams & Moss, 2008).  The 

number of target organisms essential for detection, depending on the target organism, 

typically ranges from 105-107 organisms (Adams & Moss, 2008; Shen et al., 2014).  This 

is an inadequate detection limit as, in the case of E. coli O157:H7, the infectious dose is 

a mere 100 cells (Shen et al., 2014).  To combat this challenge, the sample in question 

must be amplified or concentrated before analysis (Adams & Moss, 2008).  The 

additional step to concentrate the organism adds significant time onto the total time 
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necessary for detection essentially resulting in ELISA taking as long or longer than other 

conventional methods used (Adams & Moss, 2008).  Along with the undesirable 

detection limit, ELISA also has some variability among target organisms due to the 

inconsistency of the strength of the antibody to antigen interaction (Daniels & 

Pourmand, 2007).   

 

 

Figure 4.8.  Schematic of direct sandwich ELISA modified from Adams and Moss 

(2008). 
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5. MATERIALS AND METHODS 

 

5.1. Materials 

5.1.1. Reagents 

Lead acetate (30% w/v), chloroplatinic acid (8% w/w), 2-aminoethanethiol 

hydrochloride (AESH), ascorbic acid, potassium phosphate monobasic, Concanavalin A 

(ConA) from Canavalia ensiformis (Jack bean), sodium chloride, sodium phosphate 

dibasic, 11-mercaptoundecanoic acid (11-MUA), Anti-GroEL antibody produced in 

rabbit, and potassium chloride were purchased from Sigma-Aldrich (St. Louis, MO).  

Calcium chloride, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide HCl (EDC), sodium 

persulfate (Na2S2O8), sodium nitrate (NaNO3), and manganese chloride were obtained 

from Thermo Fisher Scientific (Waltham, MA).  Potassium ferrocyanide trihydrate was 

purchased from Ward’s Science (Rochester, NY).  N-Hydroxysuccinimide (NHS), 

potassium nitrate, 2-(morpholino)ethanesulfonic acid) (MES) buffer, glutaraldehyde, and 

platinum wire (99.95% Pt, 1.2 mm dia.) were obtained from Alfa Aesar (Ward Hill, 

MA).  Single-layered graphene oxide (GO) was purchased from ACS Material 

(Medford, MA).  N-Isopropylacrylamide (NIPAAm) was obtained from Tokyo 

Chemical Industry Co. (Portland, OR).  

5.1.2. Bacteria 

Escherichia coli (ATCC 35218) was used for sensitivity and selectivity testing in 

phosphate buffer saline (PBS, pH 7.4).  Salmonella Enteritidis (ATCC 1045) was used 

for selectivity testing in PBS.  Escherichia coli O157:H7 (ATCC 43895) was used for 



 

48 

 

real-world testing in vegetable broth.  All bacteria were grown using BD BactoTM 

Tryptic Soy Broth (TSB) (Franklin Lakes, NJ) and verified through plate count on 3MTM 

PetrifilmTM Aerobic Count Plates (Saint Paul, MN). 

5.1.3. Equipment 

Cyclic voltammetry and electrochemical impedance spectroscopy were 

performed on a CH Instruments Electrochemical analyzer/Workstation (Model 600 E 

Series) and supporting software (CH Instruments Software version 12.04) (Austin, TX).  

Pt wire auxiliary electrode, Ag/AgCl reference electrode, and PTFE platinum/iridium 

(Pt/Ir) working electrodes (2 mm internal diameter) for voltammetry from BASi (West 

Lafayette, IN).  A Revlon 1875 Watt Ionic Styler dryer (New York, NY) was used to 

apply heat for drying electrodes.  BK Precision single output programmable DC power 

supply (Yorba Linda, CA) was used for deposition of platinum and a variable speed spin 

coater was used for deposition of reduced graphene oxide.  A benchtop router table with 

1-3/4 HP router was used in conjunction with a router speed control dial, both from 

Harbor Freight (Calabasas, CA) for the spin coating of reduced graphene oxide.  

Hielscher UP400S Ultrasonic Processor (Ringwood, NJ) was used for the ultrasonication 

of graphene oxide. 

5.2. Electrode Coating/Functionalization 

5.2.1. Platinum-Graphene-Platinum Coating 

Before applying any type of coating to the Pt/Ir electrodes, they were polished 

according to manufacturer instructions and rinsed with distilled water.  Platinum/Iridium 
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(Pt/Ir) electrodes were prepared through the application of a platinum-graphene-platinum 

(PGP) layer following a procedure adapted from Vanegas et al. (2014).   

The first layer of platinum was applied as follows: bare platinum wire and the 

working electrode were connected to the power supply and submerged in a solution of 

chloroplatinic acid, lead acetate, and RO water.  The power supply was set to 10 V and 

90 s for the deposition of platinum to occur.  

Reduced graphene oxide (rGO) was prepared according to Vanegas et al. (2014) 

through ultrasonification of graphene oxide for 30 min at 40% amplitude and the cycle 

set to 0.9.  Subsequently, the ultrasonicated graphene oxide was vortex mixed for 5 min 

with L-ascorbic acid at a concentration of 2 mg/ 250 μL. 

Platinum coated electrodes were allowed to dry before drop coating rGO onto the 

surface.  Following the reduction reaction, 2 μL rGO was drop coated onto the surface of 

the platinum treated electrode and dried at room temperature for 1 min followed by 30 

sec of heat on medium setting at a distance of approximately 25 cm.  The semi-dry 

electrode was then spun in the spin coater for 30 s at 1700 rpm and then increased to 

3500 rpm for 1 min.   

Working electrodes were then coated with a second layer of platinum in the 

manner aforementioned for 30 s.  Completed PGP coated electrodes were stored at room 

temperature prior to further coating attachment or testing.   

5.2.2. PNIPAAm Nanobrush Attachment 

The following procedure used to modify PGP Pt/Ir electrodes with PNIPAAm-

NH2 was adapted from Zhau et al. (2012).  It was dissolved in 20 mL RO water; 1 M 
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NIPAAm, 0.2 M NaNO3, 0.01 M Na2S2O8, and 4.85 mM AESH.  The AESH was added 

to serve as a chain transfer agent in order to have the amine end group needed for 

attachment of ConA (Ju et al., 2001; Leal et al., 2013).   

The PGP coated electrode was then connected to the CHI workstation and 

submerged in the NIPAAm solution.  Polymerization of PNIPAAm-NH2 onto the 

electrode was achieved using CV with the following settings: potential range from -0.35 

V to -1.35 V and a scan rate of 100 mV/s for 60 cycles (Zhao et al., 2012).  Completed 

electrodes were stored in 10 mM PBS, pH 7.4 in the refrigerator until biosensor testing 

or characterization of biorecognition agent was carried out.  Figure 5.1. shows a 

schematic of the electrode set up used for PNIPAAm nanobrush attachment as well as all 

CV and EIS testing. 

 

 

Figure 5.1. Schematic of electrode set up for use with the potentiostat. 
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5.2.3. ConA Deposition on PGP Functionalized Electrode Using Self-Assembly 

Monolayer 

Deposition of ConA onto the PGP functionalized electrode was conducted using 

a procedure adjusted from Thermo Scientific instructions for EDC/NHS crosslinking of 

carboxylates with primary amines and the procedure by Jantra et al. (2011; Scientific).   

In ethanol, 150 mM of 11-MUA was dissolved.  PGP coated electrodes were 

immersed in the 11-MUA solution for 30 min in order for a self-assembled monolayer 

(SAM) to form on the surface (Jantra et al., 2011; Safina, van Lier, & Danielsson, 2008).  

EDC and NHS were added directly to an activation buffer consisting of 0.1 M MES (pH 

6.5) and 0.5 M NaCl.  Electrodes treated with SAM were rinsed with RO water, 

immersed in the EDC/NHS solution, and agitated for 50 min at room temperature to 

allow for the activation of SAM (Jantra et al., 2011).  The solution activated free 

carboxyl groups on the electrodes preparing them for the ConA immobilization process 

(Devi, Yadav, & Pundir, 2011; Jantra et al., 2011).   

After the reaction between EDC/NHS and the 11-MUA SAM treated electrodes 

occurred, electrodes were immersed in solutions of various concentrations (50 nM, 100 

nM, and 200 nM) of ConA in 10 mM PBS, pH 7.4 with 1 mM Ca2+ and 1mM Mn2+ and 

allowed to react for 2 hrs with agitation (Hu, Zuo, & Ye, 2013; Scientific).  Ca2+ and 

Mn2+ ions were added to the PBS solution to promote carbohydrate binding and achieve 

optimum ConA activity (Gamella et al., 2009; Lu et al., 2009; Safina et al., 2008).  The 

ConA was immobilized on the surface of the electrode by means of EDC/NHS coupling 

chemistry (Campuzano et al., 2012; Scientific).   
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5.2.4. PNIPAAm-ConA Attachment 

Following PNIPAAm-NH2 attachment, electrodes were exposed to an aqueous 

solution containing glutaraldehyde in a 2:1 molar ratio to AESH and allowed to react 

with agitation for 2 hrs at room temperature (Hill & Gomes, 2014).  Electrodes were 

then exposed to several concentrations of ConA (50 nM, 100 nM, 200 nM) with 

agitation for 2 hrs at room temperature.   

5.2.5. PNIPAAm-Antibody Attachment 

 Electrodes were treated with PNIPAAm-NH2 nanobrushes to prepare for 

antibody attachment.  Anti-GroEL antibodies were immobilized on the PNIPAAm-NH2 

treated electrodes following the same procedure used for ConA attachment using 

glutaraldehyde as crosslinker to form amine-amine bonds (Hill & Gomes, 2014; Kim, 

2000; Prodromidis, 2010; Shi et al., 2011; X. Su et al., 2013).  Electrodes were reacted 

with antibodies at 50 nM, 100 nM, and 200 nM concentrations.   

5.3. Electrochemical Characterization 

5.3.1. Electroactive Surface Area 

The electroactive surface area (ESA) was used to characterize the different 

surface configurations of the electrodes and ultimately determine the optimal 

concentration of ConA and antibody to use for bacteria detection.  An increase in ESA 

indicates enhanced signal transduction (Shi et al., 2011).  As a strong signal is desirable 

for any sort of detection, ConA and antibody concentrations shown to have the highest 

ESA’s were chosen as the optimum concentration.  ESA’s from bare, PGP-modified, 

ConA-modified, and ConA-PNIPAAm nanobrush modified electrodes were all 
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compared in order to determine the optimal ConA concentration on the biosensor.  

Likewise, bare, PGP-modified, antibody-modified, and antibody-PNIPAAm nanobrush 

modified ESA’s were compared to determine the optimal antibody concentration on the 

biosensor.  The cyclic voltammetry (CV) tests required to calculate the ESA were 

performed using a CHI Electrochemical Analyzer/Workstation. 

Electrodes were immersed in a solution of 4 mM Fe(CN)6/1 M KNO3 in order to 

help eliminate noise and gather a clear reading of the response (Devi et al., 2011; 

McLamore et al., 2011; Shi et al., 2011; X. Su et al., 2013; Vanegas et al., 2014).  Using 

comparable, previous studies as a reference point, CV was carried out using scan rates 

50, 100, 150, and 200 mVs-1 with a varied potential between -0.65 V and 0.65 V (Hu et 

al., 2013; Shi et al., 2011; Vanegas et al., 2014).  The corresponding current peak (ip) at 

each scan rate was used to find the ESA.  For each electrode, the ESA was calculated 

using the Randles-Sevcik equation (Shi et al., 2011; Vanegas et al., 2014).  The Randles-

Sevcik equation can be rearranged to solve for A: 

  CDnx

k
A

2/12/351069.2
                                          (5.1) 

where A is the electroactive surface area (cm2), k is the slope of the Cottrell plot of ip (A) 

vs. v1/2 ((Vs-1)0.5), n is the number of transferred electrons in the redox reaction, D is the 

diffusion coefficient (cm2s-1), and C is the molar concentration of the working solution 

(Vanegas et al., 2014).  The values for n, D, and C are one, 6.70 x 10-6 cm2s-1, and 4 

mM, respectively (Shi et al., 2011).  As these values were known based on the properties 
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of the working solution; A was calculated directly based on k, the slope of the Cottrell 

plot of ip vs. v1/2 (Vanegas et al., 2014). 

5.3.2. PNIPAAm Nanobrush Actuation 

 Stimuli conditions for PNIPAAm were tested to determine the best capture and 

test scenarios for the sensor.  The PNIPAAm-modified electrode was tested using cyclic 

voltammetry (CV) above and below the LCST (40 °C and 25 °C, respectively).  The 

temperature resulting in the lowest ESA was the temperature used for capture of the 

bacteria and the temperature demonstrating the highest ESA was used for EIS and CV 

analysis.  These results were indicative of the shrinking and swelling behavior of the 

PNIPAAm in response to the change in stimuli (Ju et al., 2001; Yin et al., 2009; Zhao et 

al., 2012). 

5.4. Bacteria Growth and Traditional Testing  

 Bacteria used for electrochemical detection testing was kept viable by 

completing weekly 0.1 mL transfers into 9.9 mL of BactoTM Tryptic Soy Broth (TSB).  

Transfers were incubated at 35 °C for 24 hours and then stored at 4 °C.   

Total aerobic plate counts were performed using 3MTM PetrifilmTM Aerobic 

Count Plates.  Dilutions of eight and nine fold were made in nine milliliters of buffered 

peptone water (BPW).  Plates were inoculated with 1 mL of eight and nine fold dilutions 

and then incubated at 35 °C for 24 hours.  After incubation, colonies were counted and 

reported as CFU mL-1 to be used for comparison to biosensor results. 
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5.5. Electrochemical Detection 

Electrochemical impedance spectroscopy (EIS) was used to measure any 

electrochemical response produced by the biosensor when exposed to bacteria at 

concentrations varying from 0-109 CFU mL-1.  EIS tests were run at a frequency range of 

1-100,000 Hz with amplitude of 0.1 V and initial potential 0.25 V (Burrs et al., 2015; 

Joung et al., 2013). 

Sensitivity to the target bacterium was determined by the slope of the linear 

portion of the calibration curve consisting of the change in impedance (Ohm) vs. the 

concentration of cells (CFU mL-1) (Shi et al., 2011; Vanegas et al., 2014).  Sensitivity 

testing was initially performed in PBS (pH 7.4) and then again with the optimized ConA 

and antibody sensors in commercially sterile vegetable broth.   

Selectivity of the sensor to E. coli in the presence of Salmonella Enteritidis was 

calculated with the same approach as sensitivity, but using the resulting calibration curve 

with both bacteria present (Shi et al., 2011).  Tests for selectivity were performed on the 

optimized ConA biosensor configuration in PBS.   

The range of detection was determined as the linear portion of the calibration 

curve to have a favorable R2 value (>0.98) (McLamore et al., 2011).  The lower limit of 

detection (LOD) was calculated for each type of sensor under both testing conditions.  

The 3σ method was used to calculate the LOD (Hu et al., 2013; McNaught & Wilkinson, 

1997; Vanegas et al., 2014).     
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5.6. Microscopic Imaging Analysis 

 The morphology of the electrode coatings was observed through field emission 

scanning electron microscopy (SEM) images using an FEI Quanta 600F (Hillsboro, OR) 

at the Texas A&M University Microscopy Imaging Center (College Station, TX).  Prior 

to imaging, a Cressington sputter coater 208 HR (Waterford, United Kingdom) was used 

to coat electrodes with a 10 nm layer of platinum to improve the conductivity of the 

electrodes’ surface.  Samples were placed on the base plate inside the sputter coater 

chamber and then the top plate was closed.  The coater, equipped with a thickness 

controller, was turned on and argon gas supply opened to zero out the thickness monitor.  

Once ready, the instrument was turned on and the coating process was carried out until 

the desired thickness was reached and the coater stopped automatically.  Prior to 

imaging, electrodes were retrieved from the sputter coater and allowed to ventilate.  

Images were taken at 5,000 and 10,000 times magnification with an operating voltage of 

5 kV. 

5.7. Statistical Analysis 

 All electrochemical tests were performed at least in triplicate with a randomized 

experimental design.  Statistical analysis was performed using SPSS PASW Statistics, 

version 23.  In order to determine if there was statistical significance among results from 

the different sensors, analysis of variance (ANOVA) was used with Tukey’s test to 

separate means.  Statistical significance was expressed at the 95% confidence interval (P 

< 0.05).      
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6. RESULTS AND DISCUSSION 

 

6.1. Electroactive Surface Area 

6.1.1. Electrode Coatings 

 Cyclic voltammetry (CV) performed on bare, PGP-modified, and PGP-

PNIPAAm-modified electrodes demonstrated reversible redox couples with well-defined 

redox peaks.  Figures 6.1. A and B show representative CV curves for PGP and PGP-

PNIPAAm- modified electrodes at the various scan rates tested.  The defined oxidation 

peaks on the curves indicate that the reaction is diffusion controlled at the interface of 

the electrode-solution (Vanegas et al., 2014).   

Using the value of the oxidation peak at each scan rate and the square root of the 

corresponding scan rates, a Cottrell plot, seen in Figure 6.2., was configured in order to 

obtain the slope value needed in the Randles-Sevcik equation (Eq. 5.1) to calculate the 

ESA.  Calculated ESA (cm2) values observed for bare, PGP, and PGP-PNIPAAm coated 

electrodes were found to be 0.018 ± 0.0001, 0.028 ±0.002, and 0.03 ±0.004, 

respectively.  These values were compared to those found in the literature to determine 

the effectiveness of different coatings and the resulting ESA. 

The studies by Burrs et al. (2015) and Vanegas et al. (2014) reported ESA (cm2) 

values for bare electrodes to be 0.015 ± 0.0004 and 0.019 ± 0.003, respectively.  For bare 

electrodes, ESA values were found to be similar to those reported by both Vanegas et al. 

(2014) and Burrs et al. (2015).  For PGP-modified electrodes ESA values were 

calculated and reported as 0.21 ±0.02 cm2 and 0.148 ± 0.064 cm2 by Burrs et al. (2015) 
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and Vanegas et al. (2014), respectively.  The ESA for PGP-PNIPAAm coatings observed 

by Burrs et al. (2015) to be 0.19 ± 0.02 cm2. These results from the literature for both 

PGP and PGP-PNIPAAm were higher than the ESA values observed in this study.  

These differences in ESA could be attributed to differences in fabrication procedures for 

both PGP and PGP-modified electrodes, particularly the use of spin coating of graphene. 

Graphene for this study was ultrasonicated 15 min longer than reported by Vanegas et al. 

(2014) and Burrs et al. (2015) and it is unknown if the ultrasonicator power used in those 

studies was the same as the one used in this study or if the settings were exactly the 

same.  For the spin coating process, speeds of 1700 rpm and 3500 rpm were used in this 

study while Burrs et al. (2015) reported speeds of 2621 rpm and 5738 rpm.  Procedures 

for depositing platinum onto the electrode surface similarly involved using a 

sonoelectrodeposition process, which has been shown to improve nanoplatinum 

deposition in terms of quantity and uniformity onto sensor surfaces (Burrs et al., 2015).  

A platinum wire was immersed in a solution of chloroplatinic acid and lead acetate and 

the wire and electrode were connected to a power supply and ultrasonicator; 

nanoplatinum deposition was carried out via sonoelectrodeposition at 10 V for 90 

seconds (Burrs et al., 2015; Vanegas et al., 2014).  The different procedures most likely 

resulted in different amounts of platinum and graphene deposited on the electrode 

surfaces.   

While lower than literature values, PGP and PGP-PNIPAAm values were both 

significantly higher (p < 0.05) than the ESA found for bare electrodes, consistent with 

the findings of Burrs et al. (2015).  Higher ESA values indicate that coating the 
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electrodes with PGP and PGP-PNIPAAm improves electron transport at the electrode 

surface.   

Analysis of variance (ANOVA) and Tukey HSD were used to verify the 

significant difference between bare electrodes and those coated with PGP (p = 0.011) 

and PGP-PNIPAAm (p = 0.004).  The ESA for PGP-PNIPAAm-modified electrodes did 

not differ from that of the PGP-modified electrodes at the 95% confidence interval (p = 

0.550).  Figure 6.3. gives a visual representation of the ESA’s for each of the electrode 

coatings. All further testing for the development of the biosensor in this study were 

carried out using PGP and PGP-PNIPAAm-modified electrodes based on the results 

from the ESA values calculated, i.e., these coatings showed the best results. 
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Figure 6.1. Representative CV curves for A) PGP coated and B) PGP-PNIPAAm coated 

electrodes at various scan rates.  Curves represent the average of 3 repetitions. 
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Figure 6.2. Cottrell plot comparing the oxidation peak of Bare, PGP, and PGP-

PNIPAAm electrode coatings at various scan rates.  Each line represents the average 

from 3 repetitions.  Equations are listed to the right of their respective coating. 
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Figure 6.3. Comparison of ESA in cm2 for Bare (0.018 ± 0), PGP (0.028 ±0.002), and 

PGP-PNIPAAm (0.03 ±0.004) electrodes.  Each ESA value was calculated from 3 

repetitions.  Bars denoted by different letters are significantly different from each other 

(p<0.05) 
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controlled as the oxidation peaks are defined similarly to the peaks observed in the CV 

curves for the PGP and PGP-PNIPAAm-modified electrodes (Vanegas et al., 2014).   

A Cottrell plot, seen in Figure 6.5., was constructed using the value of the 

oxidation peak at each scan rate and the square root of the corresponding scan rates.  

From the Cottrell plot, the slope values were obtained and used in the Randles-Sevcik 

equation (Eq. 5.1) to calculate each ESA.  Electrodes modified with PGP demonstrated 

higher (p < 0.05) ESA values than those modified with PGP-PNIPAAm when compared 

at the same concentration of ConA.  At 100 nM and 200 nM ConA, the ESA for PGP 

was significantly larger than the ESA found for PGP-PNIPAAm (p < 0.05) at the same 

concentrations, but for 50 nM, the difference between PGP and PGP-PNIPAAm was not 

significant (p > 0.05).  The ESA values at each ConA concentration for both PGP and 

PGP-PNIPAAm-modified electrodes can be seen in Table 6.1.   
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Figure 6.4. Representative CV curves at 100 mVs-1 for A) PGP coated and B) PGP-

PNIPAAm coated electrodes at various ConA concentrations.  Curves represent the 

average of 3 repetitions. 
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Figure 6.5. Cottrell plot comparing the oxidation peak (μA) for PGP and PGP-

PNIPAAm-modified electrodes with various ConA loading concentrations.  Each line 

represents the average from 3 repetitions.  Error bars represent the standard deviation. 

 

 

 

Table 6.1. Comparison of ESA values from PGP and PGP-PNIPAAm coated electrodes 

at various ConA concentrations. 

Electrode Coating ConA Concentration 

[nM] 

ESA 

[cm2] 

PGP 

50 0.0359b ± 0.0000 

100 0.0718c ± 0.0000 

200 0.0347b ± 0.0021 

PGP-PNIPAAm 

50 0.0323a,b ± 0.0036 

100 0.0323a,b ± 0.0036 

200 0.0263a ± 0.0041 
Values given are averages of three replicates ± standard deviations.  Means that are not followed by a 

common superscript letter are significantly different (p < 0.05). 
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ConA deposition onto PGP-modified electrodes was achieved through the use of 

11-MUA SAM’s, while glutaraldehyde and AESH were used to initiate ConA 

attachment to PGP-PNIPAAm-modified electrodes.  This difference in methods for 

ConA attachment likely contributes to the differences in ESA observed for ConA 

loading.  A study examining the effect of different types of SAM’s concluded that MUA 

SAM’s are preferable for electrochemistry analysis compared to longer SAM’s chains, 

this finding supports the higher ESA values observed with ConA attached using 11-

MUA SAM’s in this study (Claussen, Wickner, Fisher, & Porterfield, 2011).  

Furthermore, covalent crosslinking between the biosensor platform of the non-

conductive material of ConA and PNIPAAm was expected to negatively affect the 

resulting ESA (Burrs et al., 2015).  The overall conductivity of the electrode surface with 

PGP-PNIPAAm-ConA would be lower than for just PGP-PNIPAAm and in turn lower 

than the conductivity of the electrode surface coated only with PGP or PGP-ConA, 

which is observed by the reported ESA values. 

Results of ANOVA and Tukey HSD testing show that PGP-modified electrodes 

loaded with 100 nM of ConA were significantly different from PGP electrodes with 50 

nM and 200 nM ConA as well as from all concentration of ConA loaded on PNIPAAm-

modified electrodes.  For this reason, 100 nM of ConA was determined to be the 

optimum loading concentration for electrodes modified with PGP.  According to the 

ANOVA and Tukey HSD results, there was no significant difference between 

PNIPAAm-modified electrodes loaded with 100 nM of ConA and PNIPAAm-modified 

electrodes loaded with 50 nM and 200 nM of ConA.  Though there was no significant 
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difference, 100 nM was determined to be the concentration to use for the remainder of 

PNIPAAm-modified tests including actuation and bacteria testing due to the consistency 

observed when loading at this concentration.  Using 50 nM with the PNIPAAm-

modified electrode yielded the highest ESA (p > 0.05) of the PNIPAAm-ConA load 

testing, though the standard deviation was much higher and results were difficult to 

replicate.  In the study by Hu et al. (2013), several concentrations of ConA were tested 

and a concentration of 100 nM of ConA was determined to be the optimum 

concentration, which is consistent with the findings of this study.  For ConA attachment, 

Hu et al. (2013) used a similar method to this study, which included the use of 11-

mercaptoundecanoic acid (MUA) and self-assembled monolayers (SAM).   

While ESA was not determined in the study by Hu et al. (2013), CV curves were 

observed for each ConA concentration and the peak of the curve became lower and less 

defined as the concentration was increased indicating the charge between the surface of 

the electrode and the solution was being interrupted by the lectin immobilized on the 

surface.  Low concentrations of ConA (1 nM and 10 nM) elicited CV responses similar 

to that of a bare electrode and concentrations above 100 nM (500 nM and 1 µM) resulted 

in curves with nearly non-distinguishable peaks, therefore 100 nM of ConA was chosen 

as the optimum concentration for the study (Hu et al., 2013).  Figures 6.6. A and B give 

a visual representation of the ESA’s for each of the electrode coatings at the different 

ConA concentrations tested.   
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Figure 6.6. A) Comparison of ESA in cm2 for PGP-modified electrodes at various ConA 

concentrations.  B)  Comparison of ESA in cm2 for PGP-PNIPAAm electrodes at 

various ConA concentrations.  All values represent the average of 3 replicates.  Bars 

denoted by different letters are significantly different from each other (p<0.05).  Error 

bars represent the standard deviation. 
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6.1.3. Antibody Loading 

 The optimum E. coli antibody loading concentration was determined from the 

ESA values found at several different antibody concentrations (50 nM, 100 nM, 200 nM) 

for both PGP and PGP-PNIPAAm coated electrodes.  Antibody concentrations chosen 

for comparison were based on the concentrations used for ConA loading optimization.   

As with the electrode coatings, cyclic voltammetry (CV) was performed and 

again demonstrated reversible redox couples with well-defined redox peaks.  Figures 

6.7. A and B show representative CV curves for PGP and PGP-PNIPAAm electrodes at 

the various antibody concentrations tested, respectively.  Similar to all other coatings in 

this study, the reaction was diffusion controlled.  This is due to the oxidation peaks being 

well defined (Vanegas et al., 2014).   

A Cottrell plot, seen in Figure 6.8., was constructed using the value of the 

oxidation peak at each scan rate and the square root of the corresponding scan rates.  

From the Cottrell plot, the slope values were obtained and used in the Randles-Sevcik 

equation (Eq. 5.1) to calculate ESA.  The ESA values at each antibody concentration for 

both PGP and PGP-PNIPAAm-modified electrodes can be seen in Table 6.2.   
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Figure 6.7. Representative CV curves at 100 mVs-1 for A) PGP coated and B) PGP-

PNIPAAm coated electrodes at various antibody concentrations.  Each curve represents 

the average of 3 repetitions. 
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Figure 6.8. Cottrell plot comparing the oxidation peak for PGP and PGP-PNIPAAm-

modified electrodes with various antibody loading concentrations.  Each line represents 

the average of 3 replicates.  Error bars represent the standard deviation. 

 

 

 

Table 6.2. Comparison of ESA values from various electrode coatings. 

Electrode Coating Antibody Concentration 

[nM] 

ESA 

[cm2] 

PGP 

50 0.0993b ± 0.0145 

100 0.0598a ± 0.0207 

200 0.0598a ± 0.0207 

PGP-PNIPAAm 

50 0.0275a ± 0.0021 

100 0.0311a ± 0.0021 

200 0.0251a ± 0.0000 
Values given are averages of three replicates ± standard deviations.  Means that are not followed by a 

common superscript letter are significantly different (p < 0.05). 
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loading concentrations for PGP or PGP-PNIPAAm.  There was no significant difference 

between any of the other antibody loading concentrations tested for either PGP-modified 

or PGP-PNIPAAm-modified electrodes.  Figures 6.9. A and B give a visual 

representation of the ESA’s for each of the electrode coatings at the antibody 

concentrations tested.   

For PGP-modified electrodes, an antibody loading concentration of 50 nM 

resulted in the highest (p < 0.05) ESA and was therefore chosen as the loading 

concentration to be used for bacteria testing with PGP-antibody as the capture set up.  In 

addition to 50 nM producing the highest ESA, the oxidation peak appeared to be much 

higher than those observed for the other concentrations tested. Furthermore, it seems that 

above 50 nM loading the electrodes have reached saturation.   

In the case of PGP-PNIPAAm-modified electrodes, 100 nM loading 

concentration of antibody yielded the highest ESA, similar to ConA loading results.  For 

this reason 100 nM was the chosen concentration for further PGP-PNIPAAm testing 

with antibodies.  As antibody loading data is not readily available within the literature, it 

was decided to test the antibody loading at the same concentration as it was tested for 

ConA loading.  This also allowed for a direct comparison between the two capture 

probes. 
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Figure 6.9. Comparison of ESA in cm2 for A) PGP-modified and B) PGP-PNIPAAm- 

modified electrodes at various antibody concentrations.  Values represent the average of 

3 replicates.  Bars denoted with different letters were found to be significantly different 

from each other (p < 0.05).  Error bars represent the standard deviation. 
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6.2. Testing Conditions 

6.2.1. PNIPAAm Nanobrush Actuation 

 Cyclic voltammetry (CV) performed on electrodes modified with PGP-

PNIPAAm-ConA loading at 100 nM  above and below the PNIPAAm lower critical 

solution temperature or LCST (40 °C and 20 °C, respectively) demonstrated the same 

reversible redox couples with well-defined redox peaks as the other ESA tests in this 

study.  Figure 6.10. shows representative CV curves for PGP-PNIPAAm-ConA modified 

electrodes at 20 °C and 40 °C.  Similarly to the other coatings tested (bare, PGP, PGP-

PNIPAAm, PGP-PNIPAAm-ConA), the defined oxidation peaks on the curves indicate 

that the reaction is diffusion controlled at the interface of the electrode-solution 

(Vanegas et al., 2014).   

As shown in Figure 6.10., the highest peak values were observed when electrodes 

were tested above the LCST at 40 °C when the PNIPAAm nanobrushes are in a 

collapsed state.  The collapsed nanobrushes likely improve conductivity through the 

PGP-PNIPAAm-ConA layer compared to when the nanobrushes are expanded. Each 

coated electrode was tested at 20 °C then 40 °C, brought back down to 20 °C, tested at 

20 °C and again tested at 40 °C; i.e., two cycles.  Varying the temperature multiple times 

was to test the hypothesis that the state of the PNIPAAm nanobrushes is switchable and 

that causing the PNIPAAm to swell does not destroy the nanobrushes or affect the 

loading of the ConA.  The actuation of PNIPAAm was also hypothesized to be 

beneficial to the capture of bacteria with PNIPAAm nanobrushes expanded, ConA 

would be available to capture bacteria and when PNIPAAm collapsed at 40 °C closer 
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contact to the surface of the biosensor would facilitate electron transport for testing.  

This was verified by the peak current values and ESA values being similar at each 

corresponding temperature tested for both cycles as shown in Figure 6.10. 

 

 

Figure 6.10. Representative CV curves at 100 mVs-1 for PGP-PNIPAAm-ConA coated 

electrodes above (40 oC) and below (20 °C) the lower critical solution temperature.  

Curves denoted 20 and 40 represent the first set of tests and curves denoted 20 (2) and 

40 (2) denote the second tests run at the respective temperatures on the same electrodes. 

 

 

 

Studies by Yin et al. (2009) and Zhao et al. (2012) have also investigated the 
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al., 2009; Zhao et al., 2012).  This difference could be attributed to the type of electrodes 

used and additional components on the sensors differing from those used in this study. 

In the study by Yin et al. (2009), PNIPAAm brushes were fabricated similarly to 

PNIPAAm nanobrush fabrication in this study, but polymerization was carried out by 

cycling the potential between 100 and -800 mV at a scanning rate of 100 mV s-1.  Also, 

the PNIPAAm was attached to an indium tin oxide (ITO) film, the model protein 

hemoglobin (Hb) was used and electrodes were tested in a PBS solution.  Zhao et al. 

(2012) tested Au (gold) electrodes grafted with multiwalled carbon nanotubes (MWNT) 

onto a PNIPAAm-modified surface and PNIPAAm-modified electrodes with no 

platinum-graphene-platinum layer.  PNIPAAm brushes were synthesized using similar 

electropolymerization process as was the case with this study, though no chain transfer 

agent was used when attaching MWNT to PNIPAAm brushes (Zhao et al., 2012).  The 

testing solution used by Zhao et al. (2012) was similar to that used in this study.  The CV 

results reported by Zhao et al. (2012) not only differ from this study’s results in peak 

current values, but also in the general shape of the curve further confirming differences 

in the electrodes and coating contribute to differences in results from actuation testing 

even though PNIPAAm was used in both studies.  ESA values were not reported by 

either Yin et al. (2009) or Zhao et al. (2012) and therefore cannot be used for 

comparison.   

Using the value of the oxidation peak at each scan rate and the square root of the 

corresponding scan rates, a Cottrell plot (Figure 6.11.) was configured in order to obtain 

the slope value needed in the Randles-Sevcik equation (Eq. 5.1) to calculate the ESA.  
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ESA values calculated below the LCST were compared to those from above the LCST 

(Table 6.3.) to observe the effect of temperature on the PNIPAAm nanobrushes.  Higher 

ESA values were observed at the higher temperature and indicate that PGP-PNIPAAm-

ConA modified electrodes tested above PNIPAAm’s LCST with the PNIPAAm in a 

collapsed state improves electron transport at the electrode surface. Furthermore, results 

from two cycles of testing support the hypothesis that PNIPAAm actuation is reversible 

and switching the state of the polymer from expanded to collapsed and vice versa does 

not damage the coating of the electrode.  Results also indicate 20 °C should probably be 

used for most efficient capture of bacteria while the PNIPAAm nanobrushes are 

expanded and ConA is easily accessible for the bacteria and 40 °C should probably be 

used as the test temperature when the PNIPAAm nanobrushes are in a shrunken state.  A 

visual representation of the ESA values can be seen in Figure 6.12.  
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Figure 6.11. Cottrell plots for PGP-PNIPAAm-ConA coated electrodes below (20 °C) 

and above (40 °C) the lower critical solution temperature.  Each electrode tested twice 

for comparison.  The number (2) following the temperatures denotes the second set of 

tests and equations displayed are to the right of the respective test. Each line represents 

the average from 3 repetitions.  Error bars represent the standard deviation. 

 

 

 

Table 6.3. Comparison of ESA values for PGP-PNIPAAm-ConA coated electrodes 

above and below the LCST. 

Temperature 

[°C] 

ESA 

[cm2] 

20 0.0323a ± 0.0036 

40 0.0347a ± 0.0021 

20 (2) 0.0311a ± 0.0021 

40 (2) 0.0359a ± 0.0000 
Values given are averages of three replicates ± standard deviations.  Means that are not followed by a 

common superscript letter are significantly different (p < 0.05). The number (2) following the 

temperatures denotes the second set of tests. 
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Figure 6.12. Comparison of ESA in cm2 for PGP-PNIPAAm-ConA coated electrodes 

below and above the lower critical solution temperature.  Tests run in triplicate and each 

electrode tested twice at each temperature for comparison.  The number (2) following 

the temperatures denotes the second set of tests.  Bars denoted by different letters were 

found to be significantly different (p<0.05).  Error bars represent the standard deviation. 
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replicates were performed this time capturing bacteria in solution at 40 °C and testing at 

20 °C.  

The lower critical solution temperature (LCST) is the temperature at which the 

polymer changes from shrunken to swollen and vice versa.  In the case of PNIPAAm, 

the polymer is expanded when exposed to temperatures below the LCST and collapsed 

when above the LCST, which is typically around 32-35° C (Ju et al., 2001; Yin et al., 

2009).  As shown in Figure 6.13., the test performed with capture occurring at 20 °C 

(below the LCST of PNIPAAm) and sensing at 40 °C (above the LCST of PNIPAAm) 

resulted in CV curves with higher current values for both reduction and oxidation cycles 

than the testing scenario with capture at 40 °C and sensing at 20 °C.  This trend held true 

over several scan rates (50 mV s-1, 100 mV s-1, 150 mV s-1, 200 mV s-1) tested.  ESA 

values could not be calculated for capture and sensing scenarios due to the inability to 

definitively define oxidation peak values for the CV curves for the Randles Sevcik 

equation (Eq. 5.1). 

   These results indicate 20 °C should be used for most efficient capture of 

bacteria while the PNIPAAm nanobrushes are expanded and ConA is easily accessible 

for the bacteria and 40 °C should be used as the sensing temperature when the 

PNIPAAm nanobrushes are in a shrunken state.  This is consistent with the findings 

from the actuation testing (section 6.2.1) with ESA values being higher for PGP-

PNIPAAm-ConA coated electrodes tested at 40 °C than at 20 °C.  Based on these 

results, all further testing for the development of the biosensor in this study were carried 

out by capturing bacteria at 20 °C and sensing at 40 °C.    
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Figure 6.13. Representative CV curves at 100 mVs-1 for PGP-PNIPAAm-ConA (100 

nM) coated electrodes tested in PBS at a neutral pH in the presence of 1.32 x 104 CFU 

mL-1 E. coli K12.  The numbers 20 and 40 refer to the solution temperature [°C] for the 

respective portion of the test, i.e.: Capture 40 means the bacteria was captured in a PBS 

solution at 40 °C.  Each curve represents the average of 3 replicates.   

 

 

 

6.3. Circuit Fitting  

Equivalent circuits, particularly the Randles equivalent circuit, have been used to 

explain the physical system made up of the solution, electrode surface, and analyte in 

various biosensor systems (Barsoukov & Macdonald, 2005; Lazcka et al., 2007; 

Prodromidis, 2010).  The Randles circuit, demonstrated in Figure 4.2., is composed of 

the resistance of the solution (Rs), the capacitance of the dielectric layer (Cdl), the 

charge-transfer resistance (Rct), and the Warburg impedance (Zw) (Prodromidis, 2010).   
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the high charge transfer resistance for bare electrodes compared to other electrode 

treatments in their study.  Figures 6.14. A and B show representative Nyquist plots 

showing the real (Z’) and imaginary (-Z”) impedance values over the frequency range 1 

Hz to 100 kHz and 400 Hz to 100 kHz, respectively, for Bare, PGP-ConA, and 

PNIPAAm-ConA modified electrodes.  As the figure indicated, no semicircular region 

was observed for any of the electrode modifications tested.  The absence of the 

semicircular region suggests fast electron transfer with negligible charge transfer 

resistance (Burrs et al., 2015).  Figure 6.15. shows an alternative representation of the 

EIS data in the form of a Bode plot relating the imaginary portion of impedance (-Z”) to 

the testing frequency from 1-100,000 Hz.         

Equivalent circuit values were found using CH Instruments Software version 

12.04 (Austin, TX) based on the best fit between EIS data collected using the CH 

Instruments Electrochemical analyzer/Workstation (Model 600 E Series) and the 

simulated circuit.  Randles equivalent circuit was fitted for data from bare, PGP-ConA, 

and PGP-PNIPAAm-ConA modified electrodes.  Results from the circuit fitting are 

shown on Table 6.4.   
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Figure 6.14. A) Representative Nyquist plot over the frequency range of 1-100,000 Hz 

for Bare, PGP-ConA, and PNIPAAm-ConA modified electrodes.  B) Exploded view of 

Nyquist plot for Bare, PGP-ConA, and PNIPAAm-ConA modified electrodes over the 

frequency range of 400-100,000 Hz. 
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Figure 6.15. Representative Bode plot (imaginary impedance vs. frequency) for Bare, 

PGP-ConA, and PGP-PNIPAAm-ConA modified electrodes over the frequency range of 

1-100,000 Hz.  Results represent the average of 3 replicates.    
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Table 6.4. Parameter estimates from Randles equivalent circuit for Bare, PGP-ConA-modified, and PNIPAAm-ConA-

modified electrodes.  Results are shown for solution resistance (Rs), Warburg impedance (W), capacitance (Cdl), charge 

transfer resistance (Rct), and error between simulated values and experimental values. 

Parameter Bare PGP-ConA PNIPAAm-ConA 

Rs 

[Ω] 
1.950 x 102 ± 1.528 x 10-1 1.707 x 102 ± 2.082 x 10-1 1.091 x 102 ± 1.386 x 100 

W 

[Ω s1/2] 
2.104 x 1011 ± 3.531 x 1011 1.712 x 10-5 ± 2.109 x 10-6 3.006 x 1010 ± 5.207 x 1010 

Cdl 

[µF] 
7.208 x 10-7 ± 4.545 x 10-9 1.527 x 10-5 ± 6.907 x 10-7 5.089 x 10-5 ± 1.131 x 10-5 

Rct 

[Ω] 
8.900 x 1011 ± 9.510 x 1010 2.017 x 103 ± 8.169 x 102 4.427 x 1010 ± 4.094 x 1010 

Error 3.276 x 10-2 ± 2.854 x 10-4 2.238 x 10-2 ± 1.029 x 10-3 2.833 x 10-2 ± 1.599 x 10-3 
Results represent the average of 3 replicates.  Values are shown ± their respective standard deviations.   
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It was expected that the solution resistance and Warburg impedance would 

remain relatively constant for all of the electrode treatments as these are both related to 

the properties of the bulk solution and PBS was the testing solution used for all 

treatments.  Indeed, the solution resistance was relatively constant for all treatments, 

though the Warburg impedance varied greatly, being particularly low for the PGP-ConA 

modified electrodes. Moreover, there was also a large variation within the runs for the 

remaining parameters, including the Warburg impedance, as demonstrated by the 

resulting large standard deviations. On the other hand, the error for each treatment was 

small which indicates that the simulated values used by the fitting software were close to 

the experimental values for each replication, showing a good fit to the equivalent 

circuitry 

The capacitance and charge transfer resistance are related to the dielectric and 

insulating features at the electrode surface in contact with the electrolyte (L. Yang, Li, & 

Erf, 2004).  As such, the modification of the electrode surface would be expected be 

reflected in both the charge transfer and capacitance values. Capacitance values fitted 

were similar between the modified electrodes; both higher than that fitted for the bare 

electrode tested indicating this parameter predicted by the software would not be the 

most appropriate to evaluate the modifications made to the electrode surface.        

Another important circuit parameter to observe for systems with a redox reaction 

is the charge transfer resistance (Prodromidis, 2010).  Charge transfer resistance was 

lower for both PGP-ConA and PGP-PNIPAAm-ConA modified electrodes compared to 

the bare electrode.  This matched the expectation for the charge transfer resistance was 
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to decrease with the addition of conductive electrode coatings (Burrs et al., 2015). It also 

corresponds with the findings of Burrs et al. (2015), which showed that the lower the 

ESA value, the higher the respective Rct value.  The ESA values for Bare, PGP-ConA, 

and PGP-PNIPAAm-ConA modified electrodes were 0.018 ± 0.000 cm2, 0.072 ± 0.000 

cm2, and 0.032 ± 0.004 cm2, respectively (previously reported in section 6.1.); 

supporting the direct opposite relationship between ESA and Rct values. Thus, this 

circuit parameter would be the most suited to evaluate modifications made to the 

electrode surface.  

While this method is accepted widely, it is important to use caution as the same 

data may be fitted by more than one circuit (Lazcka et al., 2007).  A disadvantage to 

using equivalent circuits is that ideal circuits represent lumped constant properties and 

therefore the ideal elements used may not be adequate in describing the electrical 

response detected (Barsoukov & Macdonald, 2005).  For these reasons and the 

inconsistency in the results gathered, i.e., high standard deviation for circuit components, 

equivalent circuit results were not used in this study to validate the use of modified 

electrodes to detect E. coli.   

6.4. Electrochemical Detection  

6.4.1. PGP 

Electrochemical impedance spectroscopy (EIS) was used to measure the 

electrochemical response produced by PGP-ConA and PGP-Anti-GroEL antibody 

biosensors when exposed to E. coli K12 at concentrations varying from 102-108 CFU 

mL-1.  All tests were performed in PBS at a neutral pH with bacteria capture taking place 
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at 20 °C and sensing at 40 °C in accordance with the findings from section 6.2.  The time 

required for bacteria capture was 15 min and EIS measurement required 2 min to run for 

a total capture and testing time of 17 min.  This was true for all electrode modifications 

tested in this study.     

Figures 6.16. A and B show Bode plots over a frequency range of 1-100,000 Hz 

for varying bacteria concentrations for PGP-ConA and PGP-antibody sensors, 

respectively, which relate the testing frequency (Hz) to the imaginary portion of the 

impedance response, -Z” (Ohms).  The insets of the figure are an exploded view of the 

frequency range for each corresponding capture probe that produced the best linear 

range over the bacteria concentrations tested.  For PGP-ConA, the best frequency to 

observe a linear relationship between bacteria concentrations was 63090 Hz, while 1 Hz 

provided the best results for PGP-antibody testing.  EIS data displayed in the form of 

Nyquist plots for PGP-ConA and PGP-antibody is shown in Figures 6.17. A and B, 

respectively.  The Nyquist plots relate the real portion of impedance, Z’ (Ohms), to the 

imaginary portion, -Z” (Ohms) with the frequency increasing from right to left on the 

plot. 
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Figure 6.16. Representative Bode plots for A) PGP-ConA modified electrodes with the 

inset showing exploded view focusing on higher frequencies and B) PGP-Anti-GroEL 

antibody modified electrodes with the inset showing exploded view focusing on lower 

frequencies for various concentrations of E. coli K12 tested (CFU mL-1).  All data 

represents the average of 3 repetitions.   
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Figure 6.17. Representative Nyquist plots for A) PGP-ConA modified electrodes and B) 

PGP-Anti-GroEL antibody modified electrodes for various concentrations of E. coli K12 

tested (CFU mL-1).  All data represents the average of 3 repetitions.   
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Figure 6.18. shows the linear portion of the calibration curves for PGP-ConA and 

PGP-antibody.  Calibration curves were created using data obtained at the optimum 

frequency determined from the Bode plots for each capture probe.  The calibration 

curves show the relationship between the bacteria concentration tested (CFU mL-1) and 

the normalized change in the imaginary portion of impedance, -Z” (Ohms), observed.  

Change in imaginary impedance was calculated as the difference between the –Z” value 

obtained at each bacteria concentration tested and the –Z” signal output when no bacteria 

was present; i.e., the baseline.  This change in impedance was normalized by dividing by 

the baseline and then multiplying by 100 as shown in Eq. 6.1 below in order to compare 

results from various electrode treatments.  The imaginary portion of impedance was 

chosen for use in analysis of the all sensors in this study as it can provide higher 

sensitivity compared to the real portion of the impedance (Jantra et al., 2011). 

   
 

100
"

""
" x

Z

ZZ
Z

baseline

baselinesample

normalized




  (6.1) 
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parameters to use for performance comparison between biosensors.  The LOD was 

calculated using the 3σ method (Hu et al., 2013; McNaught & Wilkinson, 1997; Vanegas 

et al., 2014).  These methods were used to calculate sensitivity, range of detection, and 

LOD for all sensors in this study. 

The sensitivity and range for each sensor was determined from the linear regions 

of the calibration curves.  Sensitivities for ConA and antibody are listed in Table 6.5. 

along with the range and lower limit of detection (LOD).  Sensitivity was defined as the 

slope of the linear portion of the calibration curve (Shi et al., 2011; Vanegas et al., 

2014).  While sensitivity is commonly reported and used as a parameter of performance 

for biosensors, currently, there is not a dependable protocol to compare sensitivities 

reported in the literature as calibration curves are not always constructed using the same 

parameters (Shi et al., 2011).  LOD and range of detection are much more reliable 
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Figure 6.18. Calibration curves for E. coli K12 detection in PBS (normalized impedance 

change (%) vs. log bacteria concentration) for sensors using A) PGP-ConA and B) PGP-

Anti-GroEL Antibodies coatings over their respective linear ranges.  Curves represent 

the average of 3 replicates for each capture probe.  Equations are displayed to the right 

of their corresponding electrode treatment.  Error bars displayed represent the standard 

deviation for each data point.   
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Table 6.5. Performance comparison of ConA and Anti-GroEL Antibody capture probes.  

Treatment Sensitivity 

[(log(CFU mL-1))-1] 

R2 Range 

[CFU mL-1] 

LOD 

[CFU mL-1] 

PGP-ConA 1.590a ± 0.115 0.971 1.32 x 102 – 1.32 x 106 66.877a ± 7.993 

PGP-Antibody 1.335a ± 0.307 0.921 2.66 x 102 – 2.66 x 105 68.000a ± 17.580 
 Values given are averages of three replicates ± standard deviations.  Means that are not followed by a common superscript letter are significantly 

different (p < 0.05).  
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Results of ANOVA and Tukey HSD testing show there was not a significant 

difference in sensitivity nor LOD between PGP-ConA and PGP-antibody sensors for the 

detection of E. coli K12.  While the sensitivities and LOD’s were comparable, the PGP-

ConA sensor displayed a larger linear range of detection (1.32 x 102 – 1.32 x 106 CFU 

mL-1) than the PGP-antibody sensor (2.66 x 102 – 2.66 x 105 CFU mL-1) indicating that 

the PGP-ConA sensor is superior in detection of E. coli K12 compared to the PGP-

antibody sensor.  This could signify attachment of the ConA capture probe onto the 

electrode surface is more efficient than that of the Anti-GroEL antibody even with both 

capture probes loaded onto the surface at the same concentration (100 nM) using the 

same attachment procedure.  Along with producing similar results to the antibodies, 

ConA would be advantageous for use in biosensors due to the possibility of washing and 

reuse, decreased cost of production, and superior shelf-life (Campuzano et al., 2012; 

Cunningham, 1998; Gamella et al., 2009).    

In comparison, the group of Jantra et al.(2011), who also used ConA attached via 

a 11-MUA self- assembled monolayer and EIS to analyze the response, reported a linear 

sensitivity range between 12 CFU mL-1 and 1.2 x 106 CFU mL-1 and an LOD of 12 CFU 

mL-1when detecting E. coli.  The testing solution used was a carrier buffer at pH 4, 

which may have played a role in the detection results; moreover it was not specified 

which E. coli strain was used during testing (Jantra et al., 2011).  Su and Li (2004) used 

16-MUA to attach antibodies for use in a piezoelectric immunosensor and reported a 

detection range of 103-108 CFU mL-1 and an LOD of 103 CFU mL-1.  Cyclic 

voltammetry and quartz crystal microbalance (QCM) were both used for analysis of the 
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sensor (X.-L. Su & Li, 2004).  Superior range and LOD were observed for the PGP-

Anti-GroEL antibody sensor used in this study; possibly due to the use of 11-MUA 

rather than 16-MUA for attachment of the antibodies as well as the use of a PGP base 

layer to aid in attachment and signal response.      

6.4.2. PGP-PNIPAAm-ConA 

Electrochemical responses produced by PGP-PNIPAAm-ConA biosensor when 

exposed to E. coli K12 at concentrations varying from 102-108 CFU mL-1 were measured 

using electrochemical impedance spectroscopy (EIS).  Responses were also reported to 

observe selectivity for PGP-PNIPAAm-ConA modified sensors exposed to equal 

concentrations ranging from 102 CFU mL-1 to 108 CFU mL-1 of E. coli K12 and 

Salmonella enterica serovar Enteritidis.  Salmonella Enteritidis was the bacteria chosen 

for specificity testing due to its similarity to E. coli with both being gram negative and 

both being known foodborne pathogens (Adams & Moss, 2008).  Using a similar gram 

stain bacterium that is a different species from the target E. coli was considered a good 

test for interference, if any, picked up by the biosensor.  All tests were performed in PBS 

at a neutral pH with bacteria capture taking place at 20 °C and sensing at 40 °C in 

accordance with the findings from section 6.2.   

Figures 6.19. A and B show Bode plots over a frequency range of 1-100,000 Hz 

for varying bacteria concentrations for PNIPAAm-ConA modified sensors exposed to E. 

coli alone and E.coli together with Salmonella, respectively.  The Bode plots relate the 

testing frequency (Hz) to the imaginary portion of the impedance response, -Z” (Ohms).  

The insets of the figure are an exploded view of the frequency range for each 
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corresponding testing scenario that produced the best linear range of impedance change 

over the bacteria concentrations tested.  For PNIPAAm-ConA modified sensors exposed 

to E. coli only and E. coli along with Salmonella, the best frequency to observe a linear 

relationship between bacteria concentrations and impedance change was 1 Hz.  EIS data 

displayed in the form of Nyquist plots for sensors tested for sensitivity (E. coli) and 

selectivity (E. coli and Salmonella) are shown in Figures 6.20. A and B, respectively.  

The Nyquist plots relate the real portion of impedance, Z’ (Ohms), to the imaginary 

portion, -Z” (Ohms). 
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Figure 6.19. Representative Bode plots for PNIPAAm-ConA modified electrodes over 

the frequency range of 1-100,000 Hz exposed to A) E. coli K12 (CFU mL-1) and B) E. 

coli K12 and Salmonella Enteritidis (CFU mL-1) in PBS.  Insets show exploded view 

over the frequency range from 1-3.5 Hz.  All data represents the average of 3 repetitions.   
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Figure 6.20. Representative Nyquist plots for A) PNIPAAm-ConA modified electrodes 

exposed to E. coli K12 (CFU mL-1) and B) PNIPAAm-ConA modified electrodes 

exposed to equal concentrations (CFU mL-1) of E. coli K12 and Salmonella Enteritidis in 

PBS over the frequency range from 1 – 100,000 Hz.  All data represents the average of 3 

repetitions.   
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Figures 6.21. A and B show the linear portion of the calibration curves for 

PNIPAAm-ConA electrodes with exposure to E. coli alone and E. coli with Salmonella, 

respectively.  Calibration curves were created using data obtained at the optimum 

frequency (1 Hz) determined from the Bode plots for each testing scenario.  The 

calibration curves show the relationship between the bacteria concentration tested (CFU 

mL-1) and the normalized change in the imaginary portion of impedance, -Z” (Ohms), 

observed.  The normalized change in imaginary impedance was calculated using 

Equation 6.1.  This value was normalized in order to compare results from various 

electrode treatments.    

The sensitivity and range for each testing scenario was determined from the 

linear regions of the calibration curves.  Sensitivities and R2 for PNIPAAm-ConA 

sensors for both testing scenarios are listed in Table 6.6. along with the range and lower 

limit of detection (LOD).  
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Figure 6.21. Calibration curves (normalized impedance change vs. log bacteria 

concentration) for PNIPAAm-ConA sensors exposed to A) E. coli K12 and B) E. coli 

K12 and Salmonella Enteritidis over their respective linear ranges.  Curves represent the 

average of 3 replicates for each capture probe.  Equations are displayed to the right of 

their corresponding testing scenario.  Error bars displayed represent the standard 

deviation for each data point.  
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Table 6.6. Performance comparison of PNIPAAm-ConA modified electrodes exposed to E. coli K12 and E. coli K12 with 

Salmonella Enteritidis. 

Bacteria Exposure Sensitivity 

[(log(CFU mL-1))-1] 

R2 Range 

[CFU mL-1] 

LOD 

[CFU mL-1] 

E. coli K12 38.005a ± 2.330  0.958 3.04 x 102 – 3.04 x 107 3.467a ± 0.297 

E. coli K12 and  

Salmonella Enteritidis 
39.069a ± 2.208 0.957 3.04 x 102 – 3.04 x 107 2.947a ± 0.166 

Values given are averages of three replicates ± standard deviations.  Means that are not followed by a common superscript letter are significantly 

different (p < 0.05).  
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Results of ANOVA and Tukey HSD testing show there was not a significant 

difference in sensitivity nor LOD between PGP-PNIPAAm-ConA sensors exposed to E. 

coli K12 or to E. coli K12 with Salmonella Enteritidis.  The linear range of detection 

(3.04 x 102 – 1.32 x 107 CFU mL-1) was the same under both testing conditions.  The 

PGP-PNIPAAm-ConA sensor performed similarly when exposed to E. coli K12 or to E. 

coli K12 with Salmonella Enteritidis indicating that the sensor is both sensitive and 

specific to E. coli.  The presence of Salmonella Enteritidis in the testing solution did not 

cause significant interference suggesting there was no cross reaction between the 

PNIPAAm-ConA sensor and the Salmonella Enteritidis (Li et al., 2012).  E. coli and 

Salmonella contain lipopolysaccharides (LPS) on their cell membranes and the LPS in E. 

coli is capped by an O-antigen consisting of glucose, to which the ConA binds (Adams 

& Moss, 2008; Lu et al., 2009).  The specific ConA binding site known for E. coli is GM1 

ganglioside (Haseley, 2002).  While E. coli and Salmonella are both gram-negative 

enterobacteria with many similarities, they differ in sugar combining sites (Firon, Ofek, 

& Sharon, 1984).  This difference in combining sites together with the results observed 

in this study suggest ConA is specific to the membrane sugars sequence and composition 

in E. coli and not those in Salmonella. 

6.4.3. ConA and Antibody Analysis in Vegetable Broth 

Electrochemical responses produced by PGP-PNIPAAm-ConA and PGP-

PNIPAAm-Anti-GroEL antibody when exposed to E. coli O157:H7 at concentrations 

varying from 102-108 CFU mL-1 were measured using electrochemical impedance 

spectroscopy (EIS).  The PGP-PNIPAAm modification was chosen over PGP alone 
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based on the results of the PGP-PNIPAAm-ConA testing in PBS, outlined in section 

6.3.2., being superior to PGP-ConA results observed in section 6.3.1.  All tests were 

performed in commercially sterile vegetable broth with bacteria capture taking place at 

20 °C and sensing at 40 °C in accordance with the findings from section 6.2.  The 

vegetable broth (H-E-B brand) was made of water, vegetable flavor concentrate, cooked 

vegetables (carrot, onion, celery), tomato paste, yeast extract, sea salt, sugar, molasses, 

onion powder, potato flour, natural flavor, canola oil, cane sugar, and sea salt (H-E-B, 

2015).  Vegetable broth was chosen as it is a complex system made up of foods with the 

potential for contamination by foodborne pathogens.  It is also representative of a 

solution that might be made using food samples dispersed in aqueous solution that may 

cause interference with the electrochemical response.    

Figures 6.22. A and B show Bode plots over a frequency range of 1-100,000 Hz 

for varying bacteria concentrations for PNIPAAm-ConA and PNIPAAm-Anti-GroEL 

antibody modified sensors, respectively.  The Bode plots relate the testing frequency 

(Hz) to the imaginary portion of the impedance response, -Z” (Ohms).  The insets of the 

figure are an exploded view of the frequency range for each corresponding sensor 

modification that produced the best linear range over the bacteria concentrations tested.  

For both PNIPAAm-ConA and PNIPAAm-Anti-GroEL antibody modified sensors, the 

best frequency to observe a linear relationship between bacteria concentrations was 2510 

Hz.  EIS data displayed in the form of Nyquist plots for both sensor modifications are 

shown in Figures 6.23. A and B, respectively.  The Nyquist plots relate the real portion 
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of impedance, Z’ (Ohms), to the imaginary portion, -Z” (Ohms) with frequency 

increasing from right to left on the plot. 

Figures 6.24. A and B show the calibration curves for PNIPAAm-ConA and 

PNIPAAm-Anti-GroEL antibody electrodes, respectively, with exposure to E. coli 

O157:H7.  Calibration curves were created using data obtained at the optimum 

frequency (2510 Hz) determined from the Bode plots for each testing scenario.  The 

calibration curves show the relationship between the bacteria concentration tested (CFU 

mL-1) and the normalized change in the imaginary portion of impedance, -Z” (Ohms), 

observed.  The normalized change in imaginary impedance was calculated using 

Equation 6.1.  This value was normalized in order to compare results from various 

electrode treatments.   

The sensitivity and range for each testing scenario was determined from the 

linear regions of the calibration curves.  Sensitivities for PNIPAAm-ConA and 

PNIPAAm-antibody sensors are listed in Table 6.7. along with the range and lower limit 

of detection (LOD).   

Results of ANOVA and Tukey HSD testing show there was not a significant 

difference in sensitivity between PGP-PNIPAAm-ConA and PGP-PNIPAAm-Anti-

GroEL antibody sensors exposed to E. coli O157:H7.  The linear range of detection for 

PNIPAAm-ConA (2.64 x 102 – 2.64 x 106 CFU.mL-1) was lower than the range of 

detection for PNIPAAm-antibody (1.47 x 102 – 1.47 x 107 CFU.mL-1).  The LOD for 

PNIPAAm-ConA (39.06 ± 3.382 CFU.mL-1) was significantly different (p < 0.05) from 

the PNIPAAm-antibody (21.850 ± 3.459 CFU.mL-1).  The similarity in sensitivity results 
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between the PNIPAAm-ConA and PNIPAAm-antibody sensors indicated both are 

capable of detecting E. coli O157:H7 in a complex system.  The LOD values were not 

similar (p > 0.05), though they were on the same order of magnitude, which aligns with 

the assessment that both are capable of E. coli O157:H7 detection.  For PNIPAAm-

ConA modified electrodes, the linear range of detection may have been smaller than that 

for PNIPAAm-antibody sensors because of interactions between sugars present in the 

broth from the added sugar, molasses, or other ingredients and the ConA binding site if 

these sugars were similar to those present on the E. coli binding site.  The 

lipopolysaccharide (LPS) on the cell membrane of E. coli, which is capped by an O-

antigen consisting of glucose, is the binding site for ConA (Adams & Moss, 2008; Lu et 

al., 2009).  ConA is also known to bind to other carbohydrate components such as 

mannose (T. K. Chowdhury & Weiss, 1975; Lu et al., 2009).  This may also explain the 

superior, though not significantly different, sensitivity and LOD observed for the 

PNIPAAm-antibody sensor.   

 

 

 

 

 

 

 

 



 

107 

 

 

  

Figure 6.22. Representative Bode plots over the frequency range of 1-100,000 Hz for A) 

PNIPAAm-ConA and B) PNIPAAm-Anti-GroEL antibody modified electrodes exposed 

to various concentrations of E. coli O157:H7 (CFU mL-1).  Insets show the exploded 

view over the frequency range of 1350 – 4650 Hz.  All data represents the average of 3 

repetitions.   
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Figure 6.23. Representative Nyquist plots for A) PNIPAAm-ConA modified electrodes 

and B) PNIPAAm-Anti-GroEL antibody modified electrodes exposed to various 

concentration of E. coli O157:H7 (CFU mL-1).  Curves represent the average of 3 

replicates.   
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Figure 6.24. Calibration curves for A) PNIPAAm-ConA and B) PNIPAAm-Anti-GroEL 

antibody modified electrodes exposed to E. coli O157:H7 over their respective linear 

ranges.  Curves represent the average of 3 replicates for each capture probe.  Equations 

are displayed to the right of their corresponding electrode modification.  Error bars 

displayed represent the standard deviation for each data point.   
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Table 6.7. Performance comparison of PNIPAAm-ConA and PNIPAAm-Anti-GroEL antibody modified electrodes exposed 

E. coli O157:H7. 

Treatment Sensitivity 

[(log(CFU mL-1))-1] 

R2 Range 

[CFU mL-1] 

LOD 

[CFU mL-1] 

PNIPAAm-ConA 3.660a ± 0.264  0.958 2.64 x 102 – 2.64 x 106 39.06b ± 3.382  

PNIPAAm-antibody 6.311a ± 0.370  0.973 1.47 x 102 – 1.47 x 107 21.850a ± 3.459 
 Values given are averages of three replicates ± standard deviations.  Means that are not followed by a common superscript letter are significantly 

different (p < 0.05).  
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6.5. SEM Image Analysis 

The morphology of the electrode surface after coating with PGP and PGP-

PNIPAAm was observed through field emission scanning electron microscopy (SEM) 

images.  Figures 6.25. A and B show the surface characteristics of the “sandwich” 

platinum-graphene-platinum (PGP) coating on the surface of the Pt/Ir electrode at 5,000 

and 10,000 times magnification, respectively.  In addition to the PGP structures, 

scratches on the electrode surface are also visible in Figure 6.25., most likely from 

repeated polishing between surface modifications. 

Comparison to the SEM image of the PGP modification by Vanegas et al. (2014), 

seen in Figure 6.26., shows the difference in PGP structure size as well as distribution on 

the electrode surface.  The nanoplatinum and reduced graphene structures, 

approximately 0.5-1 µm in diameter, from this study were on the micro- rather than 

nano-scale and the overall coating was sporadic compared to the homogeneous surface 

reported by Vanegas et al. (2014).  The morphological differences in these conductive 

coatings support the findings observed in section 6.1.1. where the ESA values for PGP 

coatings in this study were found to be lower than those reported by both Burrs et 

al.(2015) and Vanegas et al. (2014).  Also noted in section 6.1.1., ESA values for PGP 

coatings were lower, though not significantly, than the ESA values for PGP-PNIPAAm 

coatings. 
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Figure 6.25. SEM image for PGP-modified electrode at A) 5,000 times and B) 10,000 

times magnification.  
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Figure 6.26. Representative SEM image of PGP sandwich surface modification at 

100,000 times magnification adapted from Vanegas et al. (2014).  

 

 

Figures 6.27. A and B show the surface morphology observed for PGP-

PNIPAAm modified electrodes at 5,000 and 10,000 times magnification, respectively. 

PGP-PNIPAAm appears to coat the electrode surface in individual brush-like structures 

that cluster together and form a heterogeneous layer across the electrode surface.  The 

PNIPAAm brushes, like those of the PGP clusters shown in Figure 6.25., are on the 

micro-scale (about 1 µm diameter), though the brushes are much more evenly distributed 

and cover more of the electrode surface than PGP clusters alone. Thus, it can be said the 

ESA values (reported in section 6.1.) were directly linked to the surface coverage; i.e., 

increase in surface area from the PGP-PNIPAAm brushes.   
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Figure 6.27. SEM image for PGP-PNIPAAm-modified electrode at A) 5,000 times and 

B) 10,000 times magnification. 
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The correlation between structures observed in the SEM images and the ESA 

values reported both in this study and by Burrs et al. (2015) and Vanegas et al. (2014) 

suggest that nano-scale structures are desirable for achieving higher ESA values 

compared to micro-scale structures.  Differences in coating procedures cited in section 

6.1.1. are most likely the reason for the morphological differences and structure sizes 

observed in the SEM images.  When fabricating nanoparticles, size, size distribution, 

and shape control are all necessary for the optimization of electroactivity of the sensor 

(Kloke, von Stetten, Zengerle, & Kerzenmacher, 2011).  Particles too large or small in 

diameter can negatively affect the catalytic activity of the sensor and uneven distribution 

of particle size across the surface can make it difficult to control sensor parameters and 

achieve reliable results when attaching capture probes and detecting bacteria (Kloke et 

al., 2011).  Furthermore, PNIPAAm has been shown to be desirable as an electrode 

coating due to its stimuli-responsive behavior and ease of manipulation for any further 

attachment necessary (Ju et al., 2001; Leal et al., 2013; Lee et al., 2004).  Its response to 

stimuli gives control over electron transfer through manipulation of the surface 

morphology as shown in the ESA values calculated in section 6.2.1. with regard to 

actuation.          

The group of Burrs et al. (2015) reported PGP-PNIPAAm coatings on a 

nanoscale based on images from scanning white light interferometry (SWLI).  Similarly 

to the PGP structures, the micro-scale observed in this study compared to the nano-scale 

may explain the dissimilarity between ESA values, discussed in section 6.1.1., observed 

in this study and those reported by Burrs et al. (2015).  The higher ESA values reported 
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by Burrs et al. (2015) could be attributed to the uniformity provided by the conductive 

composite structures at the nano-scale where the unevenly distributed and larger 

structures at the micro-scale in this study likely contributed negatively to the  

electrochemical interactions during EIS and CV testing (Kloke et al., 2011). 

In a study by Zhao et al. (2012), nano-composite films made up of PNIPAAm 

and multiwalled carbon nanotubes were reported to exhibit high conductivity and 

electrocatalytic activity even though they were estimated to be around 6 μm thick.  

While configured as a film rather than brushes as with this study, the micro-scale of the 

composite material still exhibiting favorable electroactive properties supports the use of 

micro-scale PGP-PNIPAAm brushes in the detection of bacteria in this study (Zhao et 

al., 2012).   

6.6. Comparison to Literature 

Results from all sensor coating and testing scenarios explored in this study are 

outlined in Table 6.8.  Statistical analysis by ANOVA and Tukey HSD of performance 

parameters (sensitivity and LOD) revealed significant differences among the treatments 

analyzed.  The highest sensitivity and lowest LOD values were observed for PGP-

PNIPAAm-ConA sensors tested in PBS, conversely, PGP coatings for both ConA and 

Anti-GroEL antibodies produced the lowest sensitivity and highest LOD.  Detection 

time for all treatments in this study was 17 min.   
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PGP-PNIPAAm platform.  Manipulation of the PGP-PNIPAAm brush size and 

configuration as discussed in section 6.5. could be used to improve the electrochemical 

response produced in more complex testing media such as broth. 

The sensor platform of PGP-PNIPAAm produced better LOD and sensitivity 

results than PGP alone even when tested in vegetable broth suggesting it is superior for 

detection of E. coli and future studies and improvement should be focused on the use of 
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Table 6.8. Comparison of ConA and Anti-GroEL modified electrodes tested in this study for detection of E. coli spp. 

Treatment Media Bacteria Sensitivity 

[(log(CFU mL-1))-1] 

Range 

[CFU mL-1] 

LOD 

[CFU mL-1] 

PGP-ConA PBS E. coli K12 1.590a ± 0.115 1.32 x 102 – 1.32 x 106 66.877d ± 7.993 

PGP-Antibody PBS E. coli K12 1.335a ± 0.307 2.66 x 102 – 2.66 x 105 68.000d ± 17.580 

PNIPAAm-ConA PBS E. coli K12 38.005c ± 2.330  3.04 x 102 – 3.04 x 107 3.467a ± 0.297 

PNIPAAm-ConA PBS 
E. coli K12 and  

Salmonella Enteritidis 
39.069c ± 2.208 3.04 x 102 – 3.04 x 107 2.947a ± 0.166 

PNIPAAm-ConA Broth E. coli O157:H7 3.660a,b ± 0.264  2.64 x 102 – 2.64 x 106 39.06c ± 3.382  

PNIPAAm-Antibody Broth E. coli O157:H7 6.311b ± 0.370  1.47 x 102 – 1.47 x 107 21.850b ± 3.459 

Values given are averages of three replicates ± standard deviations.  Means that are not followed by a common superscript letter are significantly 

different (p < 0.05). 
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Table 6.9. is a compilation of various existing sensors being used for the 

detection of E. coli in various testing media.  Performance parameter results from 

sensors used in this study were shown to be comparable to those from the literature.  All 

sensors used in the study required 15 minutes to capture bacteria and 2 minutes to 

perform EIS, which is a lower time for detection than all times reported in the literature 

with the exception of the sensor used by Radke and Alocilja (2005) that reported 10 min.  

Similarly, the LOD values for sensing E. coli in broth were on the same order of 

magnitude of the lowest reported (10 CFU mL-1) by Joung et al. (2013).  In addition, 

PGP-PNIPAAm-ConA sensor tested in PBS was superior in terms of LOD (3.467 ± 

0.297 CFU mL-1) to all LOD values reported in Table 6.9.     

Differences between testing media reported in the literature and this study further 

validate the use of PGP-PNIPAAm-ConA for the detection of E. coli both in PBS and 

the more complex solution of vegetable broth.  Several studies used more complex 

mediums such as whole milk, lettuce wash water, and ground beef, but did not achieve 

LODs as low as those reported using PGP-PNIPAAm-ConA (Joung et al., 2013; Radke 

& Alocilja, 2005; Varshney & Li, 2007).  Even though the vegetable broth used in this 

study was processed, the complexity due to the ingredients indicate the ConA and 

antibody sensors would work in complex solutions such as wash water from produce and 

other aqueous suspensions of food samples.  Another advantage of the PGP-PNIPAAm-

ConA sensor used for detection is there was no need for bacteria purification or 

concentration steps before analysis as with the study by Chowdhury et al. (2012).  This 
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is favorable for industry use to reduce the number of steps required and the overall 

detection time. 

While PGP-PNIPAAm proved to be the superior platform used for detection in 

this study, PGP alone with ConA and antibody compared to the best sensors reported in 

the literature.  In terms of LOD and detection time, PGP sensors outperformed the 

majority of sensors used for comparison. Moreover, the linear range of detection was 

competitive with the sensors from the literature (Table 6.9.).     
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Table 6.9. Comparison of various biosensors from the literature for detection of E. coli O157:H7. 

Capture 

Probe 

Detection 

Method 

Media Range 

[CFU mL-1] 

LOD 

[CFU mL-1] 

Detection Time 

[min] 

Reference 

Antibody Impedimetric 
Phosphate Citrate 

Buffer 
102 - 107 102 NR  

Chowdhury et 

al. (2012) 

ConA* Impedimetric Carrier Buffer 12-1.2 x 106 12 < 20 
Jantra et al.  

(2011) 

Antibody Impedimetric PBS 10-105 10 NR 
Joung et al.  

(2013) 

Antibody Impedimetric Whole Milk NR 83 NR 
Joung et al.  

(2013) 

Antibody Amperometric PBS 4.12 x 102-12 x 105 250  < 45 
Li et al.  

(2012) 

ConA 
Remote-query 

magnetoelastic 
Water 60-6.1 x 109 60 180 

Lu et al.  

(2009) 

Antibody Impedimetric Lettuce Wash Water 104-107  104 10 

Radke & 

Alocilja 

(2005) 

Antibody Piezoelectric 

1:1 ratio of  

10 mM Fe(SCN)6
3-/4- 

and PBS  

103-108 103 30-50 
Su & Li 

(2004) 

Antibody Impedimetric Ground Beef 8.0 x 105-8.0 x 107 8.0 x 105 35 
Varshney & 

Li (2007) 

Antibody Impedimetric 

1:1 ratio of 

10 mM [Fe(CN)6]
3-/4- 

and PBS 

105-108 106 NR 
Yang et al. 

(2004) 

NR denotes values not reported 

*E. coli strain not specified in literature
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7. FUTURE RECOMMENDATIONS 

 

Recommendations for future research on real-time detection of E. coli through 

the use of biosensors functionalized with lectin and carbon-hydrogel nanostructures 

include: 

 Refine the procedure used for PGP coating of electrodes through better control over 

spin coating speeds and ultrasonication of graphene oxide to improve PNIPAAm 

attachment to the surface and increase the ESA, thus improving electrochemical 

response and, consequently, the sensitivity of the sensor. 

 Test the effect of the addition of mannose on the adhesion and capture efficiency of 

ConA to E. coli to improve sensor sensitivity and selectivity.  

 Study the specificity of ConA to E. coli in other, more complex testing solutions 

such as different types of food and water samples to validate the use of the sensor 

over a wide range of food systems varying in composition and testing condition (i.e.; 

pH).  

 Study the specificity of ConA to E. coli against other types of bacteria, both similar 

and dissimilar to E. coli in type and structure, as well as other interferences in order 

to test for false positives and false negatives to validate the reliability of the sensor. 

 Explore the use of other lectins as capture probes for E. coli and other bacteria using 

the same PNIPAAm and PGP nanostructures to optimize the sensor sensitivity and 

specificity and range of application. 
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 Test the effects of various PNIPAAm nanobrush size, thickness, and configuration to 

increase ESA and optimize PNIPAAm nanobrush coating for improved bacteria 

capture efficiency. 

 Determine sensor performance with different sample types and collection techniques 

such as swab, broth, and slurry to validate sensor performance in various sample 

mediums and the effect they have on bacteria capture and sensitivity. 

 Test the effect of different capture probe crosslinking attachments on sensor 

performance to improve sensitivity and optimize robustness of the sensor for reuse. 

 Design experiments to evaluate sensor shelf-life and optimize storage conditions for 

best sensor performance and cost efficiency. 

 Test sensor reusability and the effect of different washing techniques for bacteria 

removal post detection on sensor performance and reliability related to the sensor 

platform integrity after washing steps on subsequent bacteria capture and detection. 

 Optimize the total time required for bacteria detection by experimenting with various 

bacteria capture times and EIS testing.   

 Explore the attachment of multiple capture probes on one sensor surface to create a 

multiplex sensor capable of detecting and differentiating among different bacteria 

present. 

 Work to miniaturize the system in order to improve portability and accessibility for 

use in varying environments, especially within the food industry.  
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8. CONCLUSIONS 

 

Current detection methods for foodborne pathogens such as culture and colony 

counting, ELISA, and PCR require training and are time consuming.  As foodborne 

pathogens are a constant concern in the food industry for purposes of food safety, public 

health, and food quality, there is a need for a rapid, reliable, and cost effective detection 

method.  A biosensor using Concanavalin A (ConA) lectin and carbon-hydrogel 

nanostructures was designed and built for the real-time detection of Escherichia coli in a 

buffer solution (PBS) as well as a real-world scenario simulated by a complex vegetable 

broth.  The use of thermo-responsive polymer brush interfaces in combination with 

hybrid PGP nanostructures were shown to enhance the capture of target E. coli bacteria 

and transduction of electrochemical outputs as the acquisition signal.  The interactions 

between ConA lectin and O-antigens on E. coli membrane resulted in sensor 

performance (time of detection, range of detection, lower detection limit (LOD), and 

sensitivity) comparable to that using an antibody for bacteria capture.  All sensors used 

in the study required 15 minutes to capture bacteria and 2 minutes to perform EIS. 

The specific results and conclusions from this study are as follows: 

 Electroactive surface area (ESA) in cm2 was evaluated for bare (0.018 ± 0.000), PGP 

(0.028 ± 0.002), and PGP-PNIPAAm (0.03 ± 0.004) modified electrodes.  Resulting 

ESA values for modified electrodes were significantly higher (p < 0.05) than bare 

electrodes as determined by ANOVA and Tukey HSD.  The addition of 

nanoparticles such as hybrid-hydrogel structures increases the elecrocatalytic activity 

of the sensor surface, which translates to an increase in ESA values.  As a high ESA 
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value is desirable for electrochemical analysis, PGP and PGP-PNIPAAm coated 

electrodes were chosen for further development of the biosensor. 

 The optimum loading concentration of ConA was determined to be 100 nM for both 

PGP and PGP-PNIPAAm modified electrodes based on the ESA results acquired 

from CV testing for several different loading concentrations.  This concentration was 

used throughout the rest of the study for sensors using ConA for detection of E. coli.   

 The optimum loading concentration for Anti-GroEL antibody, determined for each 

type of electrode coating (PGP and PGP-PNIPAAm) for comparison with ConA 

sensor performance, was found to be 50 nM and 100 nM, respectively.  Similarly to 

ConA loading optimization, antibody loading was optimized based on results from 

ESA calculations.   

 Testing conditions for the capture and detection of E. coli were determined for the 

stimuli-responsive polymer, PNIPAAm, based on ESA and bacteria capture results 

from actuation testing above and below the LCST.  Optimum conditions for testing 

were to capture bacteria at 20 °C when PNIPAAm nanobrushes were expanded and 

sense at 40 °C when the brushes were collapsed.  Expanded brushes allowed ConA 

to more easily attach to bacteria, while the shrunken state aided in electrochemical 

response.  

 Sensor performance for the detection of E. coli K12 was evaluated in PBS for both 

PGP-ConA and PGP-Anti-GroEL antibodies.  Performance parameters including 

sensitivity and LOD were found to be similar (p > 0.05) between the two capture 

probes.  Sensitivities were reported as 1.590 ± 0.115 and 1.335 ± 0.307 (log(CFU 
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mL-1))-1), for ConA and antibody, respectively.  The LOD for ConA and antibody 

were 66.877 ± 7.993 and 68.000 ± 17.580 CFU mL-1, respectively.  The use of ConA 

did result in a wider range of detection (1.32 x 102 – 1.32 x 106 CFU mL-1) compared 

to the antibody (2.66 x 102 – 2.66 x 105 CFU mL-1) possibly signifying more 

efficient attachment of ConA to the electrode surface than antibody when loaded at 

the same concentration (100 nM).  These results indicate ConA is comparable to 

using antibodies for E. coli detection and superior based on the range of detection, 

possibility for reuse, superior shelf-life and decreased cost of production. 

 Performance parameters were evaluated for PGP-PNIPAAm-ConA and also 

included a test for specificity with E. coli K12 and Salmonella Enteritidis present in 

the PBS test solution.  All parameters (sensitivity, R2, range of detection, and LOD) 

were found to be similar (p > 0.05) between the sensors testing using only E. coli and 

those with Salmonella also present.  The LOD (CFU mL-1) with only E. coli present 

was 3.467 ± 0.297 and when both bacteria were present the LOD was 2.947 ± 0.166.  

Sensitivities (log(CFU mL-1))-1) with E. coli present and with both E. coli and 

Salmonella were reported as 38.005 ± 2.330 and 39.069 ± 2.208, respectively.  The 

linear range for both testing scenarios was 3.04 x 102 – 3.04 x 107 CFU mL-1.  The 

PNIPAAm-ConA sensor design proved superior to the PGP sensors, particularly 

with regard to the LOD achieved.  Specificity to E. coli with Salmonella present was 

important in evaluating the success of the sensor and comparison to preexisting 

sensors.  Similar results by the sensor exposed to E. coli and E. coli with Salmonella 
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indicated there was no cross reaction between ConA and Salmonella, therefore the 

sensor was both sensitive and specific to E. coli.   

 With proof of concept for PNIPAAm-ConA in PBS, it was then tested in vegetable 

broth spiked with E. coli O157:H7 to simulate a real-world, complex sample in the 

presence of a foodborne pathogen.  PNIPAAm-antibody was also tested in broth with 

E. coli for comparison.  Sensitivities (log(CFU mL-1))-1) for PNIPAAm-ConA and 

PNIPAAm-antibody were 3.660 ± 0.264 and 6.311 ± 0.370, respectively.  The LOD 

(CFU mL-1) for PNIPAAm-ConA was 39.06 ± 3.382 and 21.850 ± 3.459 for 

PNIPAAm-antibody.  Sensitivity results for both sensors were similar (p > 0.05), 

though the antibody showed a wider range of detection (1.47 x 102 – 1.47 x 107 CFU 

mL-1) compared to the ConA (2.64 x 102 – 2.64 x 106 CFU mL-1) and significantly 

lower (p < 0.05) LOD. 

These results indicated both PNIPAAm-ConA and PNIPAAm-antibody sensors 

are capable of detecting E. coli O157:H7 in a complex system.  Due to advantages such 

as cost of production, shelf-life, and possibility for reuse in addition to performance 

results being similar to those by antibody, ConA can be said to be the desirable option 

for detection of E. coli. 

Evaluation of performance of PGP and PGP-PNIPAAm coatings for use in a 

biosensor using ConA or antibody to detect E. coli indicated PGP-PNIPAAm was 

significantly better than PGP alone for capture and detection.  Compared to values 

reported in the literature, PGP-PNIPAAm as a platform for both ConA and antibodies 

produced superior performance results when detecting E. coli in a stable media such as 
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PBS.   PGP alone with ConA and antibody was also comparable to the best sensors 

reported in the literature and in terms of LOD and detection time, PGP sensors 

outperformed the majority of sensors used for comparison.  In the complex media tested, 

PGP-PNIPAAm with either ConA or antibody were comparable to sensors reported in 

literature for E.coli detection in both complex and simple testing solutions.  The 

advantages of ConA over antibodies in terms of production, cost, and shelf-life 

combined with comparable results to other biosensors make PGP-PNIPAAm-ConA a 

potential and attractive alternative solution to current detection methods used in the food 

industry and by government agencies. Further validation studies with other food 

products and interferents would be needed to replace the current methods with this 

biosensor. 
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