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ABSTRACT 

 

During colon cancer development, epigenetic alterations contribute to the 

dysregulation of major cellular functions and signaling pathways.  Recent evidence 

suggests that nutritionally chemoprotective components that influence cellular dynamics 

in the colonic epithelium can also directly affect their epigenetic landscape.  We 

hypothesize that the chemoprotective nutritional bioactives found in fish oil and 

fermentable fiber can act as epigenetic modifiers and mechanistically counteract 

epigenetic distortions associated with colonic tumorigenesis. Fermentable fiber generates 

short-chain fatty acids (SCFA), e.g., butyrate, in the lumen of the colon that can serve as 

a chemoprotective histone deacetylase inhibitor and/or as an acetylation substrate for 

histone acetylases.  In addition, n-3 polyunsaturated fatty acids (n-3 PUFAs) in fish oil 

can affect the chromatin landscape by acting as ligands for tumor suppressive nuclear 

receptors. 

In an effort to gain insight into the extensive dimension of post-translational 

modifications in histones (including H3K4me3 and H3K9ac) and elucidate the 

chemoprotective impact of dietary bioactive compounds on transcriptional control in a 

colon cancer preclinical model, we generated high-resolution genome-wide RNA (RNA-

Seq) and “chromatin-state” (H3K4me3-seq and H3K9ac-seq) maps for intestinal 

(epithelial colonocytes) crypts in rats treated with a colon carcinogen and fed bioactive 

(i) fish oil  (ii) butyrate (in the form of a fermentable fiber a rich source of SCFA), (iii) a 

combination of fish oil plus butyrate or (iv) control diets. 

Poor correlation was observed between differentially transcribed (DE) and 

enriched genes (DERs) at multiple epigenetic levels in fat x fiber dietary combinations 

and in the presence/absence of carcinogen.  The genome-wide carcinogen (AOM) effects 

were most prevalent at the RNA (116 DE genes) and K4me3 (7678 DERs including 

3792 genes) levels.  Pathway analysis of the differentially transcribed genes after AOM 

exposure indicated a strong link to interferon-associated innate immune responses often 

associated with anti-microbial activity, while K4me3 DERs were strongly linked to 
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colon tumorigenesis.  However, these changes in K4me3 enrichment were not reflected 

at the transcriptional level during the early stages of cancer progression.  Therefore, we 

propose that carcinogen-induced changes in genes with K4me3 DERs are harbingers of 

future transcriptional events, which drive malignant transformation of the colon cells. 

We also demonstrated that the combinatorial diet (fish oil + pectin) was 

synergistically chemoprotective, and uniquely affected epigenetic profiles in the 

intestinal epithelium, e.g., upregulating lipid catabolism and beta-oxidation associated 

genes. These genes were linked to activated ligand-dependent nuclear receptors 

associated with n-3 PUFAs and were also correlated with the inhibition of lipogenesis 

and a decreased concentration of cholesterol.  Interestingly, only a subset of these genes 

was affected in animals fed fish oil without pectin, and there was a markedly enhanced 

effect of biological mechanisms associated with n-3 PUFAs in the combinatorial diet. 

In conclusion, we propose that the chemoprotective effects of the bioactive 

mediators of the combination fish oil + pectin diet during colon cancer progression are 

multifaceted and generate specific epigenetic modifications and transcriptional profiles.  

Our data contribute to the understanding of the regulatory action of chemoprotective 

bioactive compounds found in fish oil and readily fermentable fiber (n-3 PUFAs and 

SCFAs) in colonic crypts and provide mechanistic insight into current clinical and 

epidemiological findings. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW* 

 

1.1 Colonic crypt physiology 

 

The epithelial layer, at the luminal surface of the colon, consists of a single sheet 

of columnar epithelial cells which form finger-like invaginations into the underlying 

connective tissue of the lamina propria to form the basic functional unit of the intestine, 

the crypt.  Within the colon are millions of crypts and all the evidence points to the 

location of the stem-cell population at the base of the crypt.  Upon asymmetrical 

divisions, the daughter cells of stem cells in the bottom of the crypt undergo 

differentiation and migrate upward to give rise in turns to transit-amplifying (TA) 

precursors and terminally differentiated cells (1,2).   

A crypt contains approximately 2000 cells, around 30-50 cells high, and is 

supported by the cells of the underlying lamina propria. The rate of cell turnover in the 

colon is high, epithelial cell lineages have complete self-renewal every 2-7 days under 

normal circumstances.  Crypts themselves also reproduce by a process called crypt 

fission beginning with basal bifurcation and followed by longitudinal division (3).  

There are three major terminally differentiated epithelial lineages in the colon, 

the colonocytes, also termed absorptive enterocytes, the mucus-secreting goblet cells, 

and the less abundant enteroendocrine cells.  Paneth cells, which secrete growth factors, 

digestive enzymes and antimicrobial peptides such as cryptidins are also sometimes 

present in the proximal colon and in certain disease states.   

________________________ 

 
* Portions of this chapter reprinted with permission from Karen Triff, Eunjoo Kim and Robert S. 

Chapkin (2015) Chemoprotective epigenetic mechanisms in a colorectal cancer model: 

Modulation by n-3 PUFA in combination with fermentable fiber. Curr Pharmacol Rep 1, 11-20 

Copyright 2015 by Springer International Publishing 



 

2 

 

Colonocytes are simple columnar cells important in absorption and movement of 

mucus in the colon. They contain apical microvilli, increasing the luminal surface area of 

the cell by 14- to 40 fold, and the nucleus is closer to the basal aspect of the cell (1). 

Enteroendocrine cells are specialized endocrine cells of the gastrointestinal tract 

that constitute the diffuse neuroendocrine system of the gut and secrete a variety of 

products.  Although the principal function of enteroendocrine cells is classically to 

synthesize and secrete gut hormones, enteroendocrine cells may also express TLRs 

which are important for innate immunity in response to environmental challenge.  These 

substances act via neurocrine, endocrine, and paracrine mechanisms and maintain 

homeostasis by allowing communication and reciprocal regulation between the nervous, 

endocrine, and immune systems. At least ten different types of enteroendocrine cells 

have been described.  Generally, the colon is known to contain secretin cells, glucagon 

secreting L cells, and gastric inhibitory peptide (GIP) synthesizing K cells.   Major 

hormones in the colon include glucagon, peptide-YY, neurotensin and guanylyl cyclase-

activating protein 1 and 2 (GCAP2) (4). 

Goblet cells are unicellular glands that function to secrete mucin which dissolves 

in water to form mucus.  The majority of the cell's cytoplasm is occupied by mucinogen 

granules, except at the bottom. The nucleus, and other organelles are concentrated in the 

basal portion and the apical plasma membrane projects microvilli to increase surface 

area for secretion of mucus is by exocytosis of secretory granules.  Goblet cells have two 

pathways for secretion, constitutive or basal secretion, low level, unregulated and 

essentially continuous secretion. This pathway is dependent on cytoskeletal movement 

of secretory granules.  The other is stimulated secretion, regulated exocytosis of granules 

in response to extracellular stimuli. This pathway provides an ability to dramatically 

increase mucus secretion (5). 

In experimental models of colonic carcinogenesis, aberrant crypt foci (ACF), 

collections of abnormal appearing colonic crypts (2-3X larger), are the earliest 

detectable abnormality and precede adenomas.  A number of mutations within important 
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tumor related genes have also been identified within these lesions, including K-ras, B-

catenin and APC (2). 

 

1.2 Colorectal cancer 

 

Colon cancer is a major public health concern due to the high prevalence of the 

disease both globally and in the United States (6). Colon cancer is third in cancer 

incidence in both men and women and the second leading overall cause of cancer 

mortality (7), with incidence and death rates of colon cancer being higher in men than in 

women(7).  In the United States alone, approximately 140,000 new cases occur each 

year, with colon cancer causing the death of approximately 50,000 people every year (6).   

Therefore, developing strategies for prevention and treatment of this pernicious disease 

is of the utmost importance. Both genetic and environmental factors have been indicated 

as mediators of colon cancer risk (8). Additionally, many modifiable factors, including 

diet, exercise, and smoking are suggested to play a role in more than 50% of colon 

cancer cases (9,10). 

 

1.2.1 Histological progression of colon cancer 

 

Formation of colon cancer is hypothesized to be a multi-step process that results 

from a systematic accumulation of both genetic and epigenetic perturbations that cause 

normal colonic epithelial cells to transform and progress into cancer. Colonic 

transformation develops through multiple distinct histologically abnormal stages. 

Aberrant crypts foci (ACF), indicated as putative biomarkers of colonic 

carcinogenesis, are very early, microscopic lesions composed of hyperplastic epithelium 

(11).  It currently remains unclear whether ACF are precursors for colon cancer, but 

many studies have shown that ACF incidence increases with increased risk factors for 

colon cancer (12). 
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1.2.2 Molecular basis of colon cancer 

 

The multi-step process of carcinogenesis is hypothesized to include 3 major 

steps: initiation, promotion, and progression.  Each of these stages arises due to specific 

molecular and genetic changes that occur. The molecular basis of colon cancer has been 

extensively researched.  Three major molecular contributors to colon cancer are 

chromosomal instability, inactivation of tumor suppressor genes, and activation of 

oncogenes. 

Genomic instability:  Genomic instability has been found to be a major 

contributor to colon cancer.  Genetic instability in colon cancer is often divided by 

researchers into two classes: microsatellite instability or chromosomal instability (13) 

(14).  Chromosomal instability is most often the source of genomic instability in colon 

cancer (15). These two classes of genomic instability induce distinct perturbations to the 

genome.  Microsatellite instability displays a high rate of alterations in short, tandemly 

repeated nucleotide sequences, whereas chromosomal instability manifests as major 

abnormalities in chromosome structure and number (16).  Numerous genes which 

function to maintain genetic stability become inactivated in colonic epithelium to result 

in instability that leads to cancer (17).  Specifically, many colon cancer patients have 

inactivated mismatch repair genes, including MLH1 and MSH2 (18), and mismatch 

repair deficiency contributes to microsatellite instability (15).  In contrast, chromosomal 

instability is often linked to loss of genes that function as critical mitotic checkpoints 

(16).  Gene mutation and aberrant DNA methylation commonly drive the inactivation of 

mismatch repair genes and mitotic checkpoint genes (19).  In fact, aberrant methylation 

has been clearly demonstrated to be a major mechanism of inactivation of MLH1 (20). 

Additionally, recent work assessing the colon cancer epigenome has shown that virtually 

all colon cancers have hundreds to thousands of abnormally methylated genes (21). 

Hypermethylation of promoter-associated CpG islands of genes leads to 

transcriptional silencing of genes. Widespread CpG island promoter methylation, known 

as the CpG island methylator phenotype (CIMP), is frequently present in colon cancer 
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(22). CIMP is most commonly observed in colon cancers with microsatellite instability 

(22,23). 

Inactivation of tumor suppressor genes:  Genes that restrict the growth of cells 

are referred to as tumor suppressor genes.  Inactivation of tumor suppressor genes 

unfetters cells from the constraints implemented by these genes, allowing for 

uncontrolled cell growth.  Similarly to mismatch repair genes, many tumor suppressor 

genes are inactivated in colon cancer through genetic mutation or aberrant methylation. 

Major tumor suppressor genes known to be inactivated in colon cancer include APC, 

TP53, and TGFBR2.  APC inhibits the nuclear localization of the oncoprotein β-catenin 

and targets it for proteolysis.  A deficiency in APC results in constitutive activation of 

the Wnt signaling cascade, which is an initiating event in colon cancer (18). Germ-line 

APC mutations lead to a predisposition for colon cancer, and somatic mutations and 

deletions of APC have been found to occur in most sporadic colon cancers (24). 

Mutation of TP53 is also key in colon cancer. TP53 encodes p53, which is central in 

controlling the cell cycle (25). TP53 inactivation most often occurs at an intermediate 

stage in cancer development during the transition from adenoma to carcinoma (18). 

1.2.3 Location of colon cancer 

Colon cancer can arise in either the right side (proximal) or left side (distal) of 

the colon.  Interestingly, research findings have implicated differing genetic alterations 

as the cause of colonic transformation in left-sided compared to right-sided colorectal 

cancers (14,26,27). Microsatellite instability has been shown to be primarily located in 

right-sided cancers (Cancer Genome Atlas, 2012), whereas chromosomal instability is 

more common in left-sided colon cancer (28).  CIMP incidence most often occurs in 

right-sided colon cancers (23).  Furthermore, mutations in TP53 and KRAS genes occur 

predominantly in left-sided carcinomas (14,29).  The differences between left- and right-

sided colon cancers provide evidence of different mechanisms contributing to colonic 

transformation. 
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1.3 Epigenetic effects of n-3 polyunsaturated fatty acids (PUFA) and fiber in colon 

 

Over the past 25 years, hundreds of published papers have described the effects 

of polyunsaturated fatty acids (PUFA) on normal and cancer cell types, including 

differences between n-6 and n-3 PUFA with respect to their mechanisms of action (30-

33).  From this body of work, there is now mounting evidence that n-3 PUFA, namely, 

docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) found 

in fish and algal oils, exert anti-inflammatory properties in the colon, enhance the 

efficacy of chemotherapeutic drugs, suppress chronic inflammatory biomarkers 

associated with obesity/diabetes, and reduce colon cancer risk (34-39). The actions of n-

3 PUFA appear to involve multiple mechanisms that link the cell membrane, cytosol, 

and the nucleus (33)*, (40). For example, n-3 PUFA modulate membrane and nuclear 

receptors, and sensors/ion channels, thereby regulating signaling processes that influence 

patterns of gene expression. These effects appear to be mediated, in part, via the 

incorporation of n-3 PUFA into cell membranes (33)*, (41). Moreover, these changes in 

membrane composition can affect membrane order, the formation of lipid rafts, and 

intracellular signaling processes (31).  

With respect to the cell nucleus, nutri-epigenomics is an emerging field of 

research that is focused on the interaction between nutrition and the epigenome. 

Epigenetics refers to a group of heterogeneous processes that regulate transcription 

without changing the DNA coding sequence. These changes include covalent histone 

modifications, principally acetylation and methylation of lysine residues but also 

phosphorylation and ubiquitination, DNA methylation, transcriptional machinery and 

noncoding RNA activities (42-44). Epigenetic marks can exhibit plasticity throughout 

the life course, albeit to varying degrees, and can be modified by environmental factors 

including diet (45). One implication of the interaction between the diet and the 

epigenome is that it may be possible to reprogram epigenetic marks that are associated 

with increased disease risk by nutritional or lifestyle interventions. This review will 

focus on the nutri-epigenomic role of n-3 PUFA, particularly DHA, in relation to colon 
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cancer.  To summarize the effects of fish oil as a chemoprotective bioactive we consider 

published data on fish oil along with it’s chemoprotective components including; long 

chain n-3 PUFAS, and also more specifically DHA/EPA. 

 

1.3.1 Direct n-3 PUFA interaction with nuclear receptors during colon cancer 

 

DHA and EPA and their oxidative metabolites have been shown to interact with 

specific ligand dependent nuclear receptors including CAR, HNF4A, PPARG, PXR and 

RXRA (Figure 1) (46). In this fashion, n-3 PUFA regulate the function of nuclear 

receptors and their impact on transcriptional processes. For example, DHA bound 

PPARG can be transported to the nucleus where it controls energy balance by regulating 

fatty acid homeostasis in part via enhancing the expression of genes associated with 

membrane-bound fatty acid transporting proteins, and β-oxidation of fatty acids in 

peroxisomes and mitochondria (47). Interestingly, impaired expression and function of 

PPARG is associated with inflammatory bowel diseases (IBD) and colon cancer (48,49). 

RXRA, which is implicated in cancer chemoprevention, also preferentially binds to n-3 

PUFA in colonocytes (50). Activation of PPARG as well as heterodimers formed with 

RXR play an important role in the antitumor effects of n-3 PUFAs (48). 

LXRs are transcriptional regulators of cholesterol metabolism that control 

cholesterol uptake into cells, catabolism, and efflux (51). This is noteworthy, because 

cholesterol can control cell proliferation; and disruptions in cholesterol metabolism have 

been associated with the development of colon cancer (52-54). LXRs also function by 

heterodimerizing with RXRA and binding to direct repeats with four nucleotide spacers 

(DR4 elements), termed LXR response elements (LXREs), in the promoter regions of 

target genes (51). Interestingly, n-3 PUFA activated LXRα blocks proliferation of 

human colorectal cancer cells and slows the growth of xenograft tumors in mice (55). 
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Figure 1.  Chemoprotective effects of n-3 PUFAs on the epigenetics of colon cancer 

cells.  Intestinal genes that are up or down regulated by n-3 PUFAs at the mRNA and 

protein level including potential interaction patterns and segregated by cellular location. 

Red font represents gene up-regulation and blue font indicates gene down-regulation.  

Epigenetic levels of regulation in the nucleus are underlined.  Nuclear genes are grouped 

by classification. 

 

 

PXR (NR1I2) has been shown to regulate the expression of genes involved in the 

oxidation, conjugation, and the transport of xenobiotics, and promotes the metabolism, 

elimination and detoxification of chemotherapeutic agents (56). The transcription of 

PXR increases in the presence of n-3 PUFA (57). This is noteworthy, because PXR can 

suppress the proliferation and tumorigenicity of colon cancer cells (58). CAR (NR1I3) is 

likewise transcriptionally increased by n-3 PUFAs in epithelial colorectal 

adenocarcinoma cells and similarly regulates genes involved in xenobiotic detoxification 

and energy homeostasis (57). 
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HNF4A maintains epithelial cell function and normal colon physiology via 

regulation of the balance between proliferation and differentiation, immune function, ion 

transport, epithelial barrier function and oxidative stress (59,60). P1-, but not P2-

HNF4A, expression is lost in colorectal carcinomas in humans and it is predicted that 

treatments that increase nuclear P1-HNF4α protein levels, such as n-3 PUFA, could help 

slow colon cancer progression (61,62). 

 

1.3.2 Indirect DHA regulation of transcription factors  

 

Since the original description of dietary fat as a regulator of gene expression over 

a decade ago, many transcription factors have been identified as prospective indirect 

targets for n-3 PUFA regulation. For example, DHA can increase the activity of 

CREBBP, EP300, and MYC and decrease activity of NF-kB (NFKB1), and STAT3 (46). 

However, DHA does not directly bind to this class of transcription factors. With respect 

to colon cancer, DHA exhibits a protective suppressive effect against hyperactivated 

STAT3 and may reestablish the equilibrium between STAT3 and PPARG (63). The 

ability to decrease STAT3 activity may be associated with the ability of n-3 PUFA 

ligands to trigger PPARG-RXR heterodimers to localize at their cognate PPAR response 

elements (PPREs) and exchange corepressors for coactivators such as cyclic AMP 

response element binding protein (CREB) and p300 (49). 

The cytotoxic effects of DHA are also associated with signaling pathways 

involving lipid metabolism and endoplasmic reticulum (ER) stress. DHA induced 

depletion of free cholesterol in the ER can lead to ER stress, resulting in the growth 

arrest/apoptosis of metastatic tumor cells (64). It has been suggested that these 

alterations in the sterol content of the ER by DHA mediate growth reduction partly by 

down regulating nuclear SREBP, an important manager of lipid homeostasis and cell 

growth regulation (65). Induction of ER stress mediators by DHA also promotes 

expression of the kinase PERK, which in turn promotes translation of transcription 

factors ATF3, 4 and 6 (64). Furthermore, an elevation in PERK activity can increase 
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levels of ER protein GADD34 (PPP1R15A) and the pro-apoptotic transcription factor 

DDIT3 (CHOP) along with its downstream target TRIB3 (66). The experimental details 

associated with differentially expressed target genes are described in Table 1 and Table 

2. 

Colon adenocarcinomas exhibit defective expression of the adenomatous 

polyposis coli (APC) gene, which is a critical regulator of the Wnt signaling pathway. 

This and other developmental pathways play an important role in both genetic (familial) 

and sporadic epithelial cancers (67). From a chemoprevention perspective, in vivo 

studies demonstrate that fish oil-derived n-3 PUFA suppress the formation of intestinal 

tumors in mice and humans with a defective APC allele (68,69). The downstream APC 

signaling oncogene, MYC, is an important regulator of cell proliferation, and the lack of 

MYC expression is associated with a reduced number of intestinal adenomas (70). 

Interestingly, patients with an amplified MYC gene and wild type p53 have a greater 

response to anticancer therapies (71). In colon cancer cells, DHA increases the level of 

MYC, which is believed to induce a chemoprotective, pro-apoptotic phenotype (72).  
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Table 1. The experimental details associated with n-3 PUFA differentially expressed target genes. 

 

 

n-3 PUFA Treated

Up regulated

Gene symbols Reference Assay type Carcinogenesis method
Chemoprotective 

treatment method
Dose Organism Level Cancer stage

FOXO3A,FAF1,BCL10,DFFA,TNFRSF1A,GADD45A,CA

SP7,MOAP1,DAP3,TNFRSF10B,GADD45B,CASP4,CIP1/

P21/CDKN1A,CCNG2,SFN/14–3-

3,PPP1R15A/GADD34,SFN/14–3-3,TRIB3

Slagsvold et al, 

2010
Genome Arrays colon adenocarcinoma cell line, SW620 Solution in vitro DHA 70 mmol/l Human RNA adenocarcinoma

ATF6,GCLC,OSBP,CAPN7,NPC2,VCP,SOD1,VLDLR,N

RF2,XBP1,HSP47,CAPN2,CAMLG,ATF4,PERK,CASP7,P

SMD1/RPN2,IP3R1,LDLR,TXNRD1,CASP4,GCLM,GAD

D34,ATF3,DNAJB1,NPC1,BAG3,HSPA1B,TRIB3,SQSTM

1,SQSTM1,HSPA1A/B,HMOX1,HMOX1

Jakobsen et al., 

2008
Genome Arrays colon adenocarcinoma cell line, SW620 Solution in vitro DHA 70 mmol/l Human RNA adenocarcinoma

ERDJ5,PERK Fasano et al., 2012 Western Blot colon adenocarcinoma cell line, SW480 Solution in vitro DHA 30 mmol/l Human protein adenocarcinoma

BID,BAK,BAX Giros et al., 2010 Western Blot
colon adenocarcinoma cell line, HT-29 

and Caco-2
Solution in vitro DHA 60 mmol/l Human protein adenocarcinoma

miR-18a, miR-27b, miR-93, miR-200c, miR-497 Shah et al., 2011
Low-density 

array

 Azoxymethane (AOM) injection (15 

mg/kg bw)
Diet

11.5% fish oil (ad-

libitum)

Rat distal 

colon
RNA cancer progression

miR-30c, miR-141
Gil-Zamorano et 

al., 2014
q-PCR colon adenocarcinoma cell line, Caco-2 in vitro DHA 200 mmol/l Human RNA adenocarcinoma

Down regulated

Gene symbols Reference Assay type Carcinogenesis method Treatment method Dose Organism Level Cancer stage

CCND1,CCND3,CDK2,CDC42,CDC25C,CDC45L,CDC2

0,CDK4,E2F1,CENPE,AKT1/PKB,BAD,CCNA2,CCNF,C

DC25B,TNFRSF1B,CDK2AP,AURKA,BUB1,CDC7,PCN

A,BIK,BIRC5,BIRC5,UNG,CCNA2,CCNB2,STMN1,CDC

2/CDK1,AURKB,PLK1

Slagsvold et al, 

2010
Genome Arrays colon adenocarcinoma cell line, SW620 Solution in vitro 70 mmol/l Human RNA adenocarcinoma

FDPS,CAT,CAV1,DHCR7,DHCR24,PMVK,TM7SF2,CC

ND1,HMGCR,SREBP2

Jakobsen et al., 

2008
Genome Arrays colon adenocarcinoma cell line, SW621 Solution in vitro DHA 70 mmol/l Human RNA adenocarcinoma

GRP78 Fasano et al., 2012 Western Blot colon adenocarcinoma cell line, SW480 Solution in vitro DHA 30 mmol/l Human protein adenocarcinoma

IL2,IL4,IFNG,TNF,IL6,IL1B Purasiri et al., 1994 ELISA CRC patient serum supplement
50% n-3 PUFA 

supplement
Human protein adenocarcinoma

XIAP,FLIP,BAD,BCL2,COX2 Giros et al., 2009 Western Blot
colon adenocarcinoma cell line, HT-29 

and Caco-2
Solution in vitro DHA 60 mmol/l Human protein adenocarcinoma

BID,BAK,BAX Giros et al., 2010 Western Blot
colon adenocarcinoma cell line, HT-29 

and Caco-3
Solution in vitro DHA 60 mmol/l Human protein adenocarcinoma

VEGF
Calviello et al., 

2009
Western Blot colon adenocarcinoma cell line, SW480 Solution in vitro DHA 30 mmol/l Human protein adenocarcinoma

miR-21 Shah et al., 2011
Low-density 

array

 Azoxymethane (AOM) injection (15 

mg/kg bw)
Dietary

11.5% fish oil (ad-

libitum)

Rat distal 

colon
RNA cancer progression
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Table 2. The experimental details associated with n-3 PUFA plus fermentable fiber differentially expressed target genes 

 

 

 

n-3 PUFA plus fermentable fiber

Up regulated

Gene symbols Reference Assay type Carcinogenesis method Treatment method Dose Organism Level
Cancer_stage/classifi

cation

RBBP6,ID3,BRMS1,MTMR4,MGMT,PMS2 Cho et al., 2011
 CodeLink Rat 

Genome Arrays

 Azoxymethane (AOM) injection 

(15mg/kg nody weight)
Dietary

11.5% fish oil (ad-

libitum)

Rat distal 

colon
RNA tumor

Down regulated

Gene symbols Reference Assay type Carcinogenesis method Treatment method Dose Organism Level
Cancer_stage/classifi

cation

HIPK2,FEM1B,SLC8A1,PTHR2,DUPD1,IL6R,MFN1,SM

OC1,TMEM23,HGF,IL23A,STX1A,ADAM3,PPP1R7,CYP

2S1,NRN1,MMP2,SNIP

Cho et al., 2011
 CodeLink Rat 

Genome Arrays

 Azoxymethane (AOM) injection 

(15mg/kg nody weight)
Dietary

11.5% fish oil (ad-

libitum)

Rat distal 

colon
RNA tumor
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NF-kB activity can be inhibited by DHA (73). This is relevant because NF-kB 

mediates signaling pathways that control the transcriptional activation of genes 

important for the regulation of many cellular processes and is aberrantly activated in 

many types of cancer (74,75). n-3 PUFA treatment inhibits the expression and activity of 

NF-kB in many cell types, however, the exact mechanism is not fully understood (66). 

This has implications in chronic disease management because the DHA - mediated 

decrease in NF-kB activity has been shown to sensitize tumor cells to gamma-irradiation 

and promote the induction of apoptosis (48).  

 

1.3.3 DHA-mediated modulation of apoptosis regulatory pathways 

 

It has been demonstrated that DHA contributes to the down-regulation of BCL2, 

a well-known anti-apoptotic molecule (76), which can block lipid peroxidation and thus 

apoptosis induction. Additionally, DHA induces caspase-dependent apoptosis in colon 

adenocarcinoma cells and adenoma cells (77). There is also evidence of upregulation of 

CASP4 and CASP7 (64) along with increased activation of the intrinsic apoptotic 

pathway as demonstrated by CASP9 and Bid cleavage (77). CASP4 activation may also 

be linked to augmented expression of ER resident factor ERdj5 and downregulation of 

anti-apoptotic GRP78 (78). The major involvement of the intrinsic apoptotic pathway 

following DHA treatment is through increased expression and activation of BAX and 

BAK (66), depolarization of the mitochondrial membrane, and the subsequent release of 

cytochrome c and Smac/Diablo into the cytosol (79). Once these factors are released 

from mitochondria, apoptosis is accelerated (80). These findings have been confirmed 

both in vitro (81) as well as in vivo (82). 

n-3 PUFA can also act as efficient modulators of both the level and activity of 

endogenous caspase inhibitors. For example, DHA and EPA decrease XIAP (an X-

linked inhibitor of apoptosis protein) at both the protein and mRNA levels, which may in 

part explain their antineoplastic effects (79). High XIAP expression correlates with poor 

clinical outcome, resistance to chemotherapy and radiotherapy in different colon cancer 
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cell lines (79). DHA also down-regulates mRNA and protein levels of two other 

inhibitors of apoptosis, survivin (BIRC5) and livin (BIRC7) in cancer cells (66). 

Furthermore, the immediate and dramatic down-regulation of FLIP (CFLAR), a potent 

inhibitor of caspase-8 (CASP8) activation, appears to be linked to the induction of 

apoptosis in colon cancer cells following DHA and EPA supplementation (79). 

DHA can inhibit the expression of antioxidant enzymes or deplete cells of 

antioxidants (83). It has also been suggested that DHA may have anti-inflammatory/pro-

apoptotic effects in colon cancer cell lines by inhibiting the expression and activity of a 

key rate-limiting cyclooxygenase enzyme, COX-2 (84). This is noteworthy, because 

COX-2 is often overexpressed in colon tumors and is able to confer a pro-inflammatory 

niche, which contributes to epithelial cell resistance to apoptosis (85,86). Activation of 

NF-kB and the PPAR-BCL2 feedback loop may control the life-death continuum in 

colon cells and has been associated with the expression of COX-2 (85). Chemoprotective 

suppression of the activation of NF-kB by DHA reduces the production of pro-

proliferative eicosanoids produced by COX-2 (87). Moreover, DHA may suppress tumor 

cell growth directly by inhibition of the COX-2 derived metabolite, PGE2, which 

stimulates cell proliferation and suppresses apoptosis (86). However, it is possible that 

DHA may also act via mechanisms independent of COX-2 inhibition (88), because 

suppression of tumor growth also occurs in cell lines that do not express COX at the 

protein level. Moreover, the growth of these cells in culture and in nude mice is not 

affected by overexpression of COX-1 or COX-2 (89). Additional DHA-dependent pro-

apoptotic mechanisms impacting colon adenocarcinomas include the upregulation of 

several growth arrest DNA-damage-inducible proteins such as GADD445A and 

GADD45B, likely through the stimulation of p38 MAPK phosphorylation (66). 

 

1.3.4 Modulation of cytokines and growth factors 

 

Cytokines, including IL1, IL2, IL4, IFN, and TNF increase in the early stages 

of carcinogenesis. n-3 PUFA suppression of NF-kB activity is at least partly responsible 
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for the reduction in cytokine levels, including IL2, IL4, IFN, TNF, IL6, and IL1 

(90,91). These cytokines (IL1, TGF, TNF and IL6) further regulate transcription 

factor, e.g., HNF4A, function through modulation of proteosomal degradation, DNA 

binding affinity, transcriptional activity and cofactor interaction (92)*. Thus, n-3 PUFA 

cytokine regulatory control can extend to ion transport, epithelial barrier function and 

oxidative stress via effects on this transcription factor. 

The protective role of n-3 PUFA can also be attributed to an increase in the 

expression of TGF through inhibition of the Akt pathway in intestinal epithelial cells 

(93) and fat-1 transgenic mice (94). This is noteworthy, because the reduction of TGF 

expression increases chemical-induced colon carcinogenesis (95). Furthermore, both 

EPA and DHA decrease the growth of colon tumors by reducing VEGF and TNF 

expression through inhibition of ERK1/2 phosphorylation and hypoxia-induced factor 

HIF1 protein expression (96).  

 

1.3.5 Effects of DHA on the cell cycle  

 

There is some evidence that DHA has a selective dose dependent growth 

inhibitory effect on colon cancer but not normal colonic cells (97). Several key genes 

involved in the regulation of both the G1 and G2 phases of the cell cycle are affected by 

DHA treatment in colon cancer. Generally, molecules involved in cell cycle progression, 

such as Cdc25c, Cdc25b, Cdc20, CDK1, CDK2, and cyclin D, A, and B, are down-

regulated (66) by DHA incubation as compared to control. In comparison, genes 

involved in cell cycle arrest such as cyclin-dependent kinase inhibitors (CDKN1A, 

CDKN1B, CDKN1C, CDKN2A) and stratifin are up-regulated by DHA (98). Some 

studies additionally show that activated PXR inhibits the proliferation and 

tumorigenicity of colon cancer cells by targeting the cell cycle at the G(0)/G(1) cell 

phase via modulation of the p21(WAF1/CIP1) and E2F/Rb signaling pathways (58). In 

addition, in some cell contexts, DHA induces cell cycle arrest and down-regulates the 
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nuclear form of sterol regulatory element-binding proteins (SREBP1 and 2) in colon 

cancer cell lines, indicating a possible relationship between disturbances in lipid 

homeostasis and cell cycle arrest (64,65,72). While a large number of mechanisms are 

linked to DHA anti-proliferative effects in cancer, several reports have focused on 

whether p53 protein plays a role in DHA- induced growth inhibition. DHA inhibits the 

growth of p53-wildtype colon cell lines as well as of those with inactivating p53 

mutations; thus its action does not seem to be dependent on p53 status (72).  

 

1.3.6 Optimal chemoprevention: Interaction of DHA with butyrate  

 

It has been proposed by us and others that n-3 PUFA and butyrate (fiber 

fermentation product) interact in the colon to profoundly suppress colon cancer (99-

101). Interaction of dietary fiber-derived compounds in the colonic lumen can have a 

substantial impact on the metabolism and kinetics of the colon epithelial cell population 

and suppress inflammation and neoplasia (102-104). For example, butyrate, a four-

carbon short-chain fatty acid, is produced during anaerobic fermentation of dietary fiber 

by endogenous bacteria present in the colon. This agent has pleiotropic effects in the 

colon (105,106). It acts as a principal energy source and a survival factor for normal 

colon cells, whereas it exerts anti-proliferative, differentiation- and apoptosis-inducing 

effects in cancer cells (107). In addition to the regulation of basic cytokinetic processes, 

butyrate has also been shown to affect cell adhesion, morphology, invasiveness, 

metastasis, oxidative metabolism, angiogenesis, and the activity of different enzymes 

and transcription factors. These effects are linked in part to butyrate’s function as a 

histone deacetylase inhibitor, which mechanistically links it to gene expression (108). 

Studies published by our group describe the protective effects of fish oil 

containing DHA, compared to corn oil and its interaction with fiber using rat and mouse 

model colon carcinogenesis models (31,35). These data demonstrate that the 

combination of n-3 PUFA and butyrate (fermentable fiber) treatment maximally 

enhances cell cycle arrest, by inhibiting expression of cell cycle genes (Table 2), shifting 
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the balance between differentiation and apoptosis depending on the cell transformation 

status of the model (104,109,110). These findings demonstrate that dietary n-3 PUFA 

and fermentable fiber can act synergistically to protect against colon carcinogenesis 

primarily by enhancing the deletion of DNA damaged cells (86,100,101,111,112). 

Temporal gene expression profiles from exfoliated rat colonocytes have revealed 

at the cancer initiation stage that fish oil plus fermentable fiber (FO/F) downregulates the 

expression of genes involved with cell adhesion and enhances apoptosis compared to the 

non-chemoprotective control of corn oil plus cellulose (CO/C) (109). In addition, at the 

cancer progression stage, the expression of genes involved in cell cycle promotion are 

downregulated while DNA mismatch repair genes, MGMT and PMS2, are upregulated. 

FO/F also increases apoptosis and the expression of genes that promote apoptosis at the 

tumor stage (109). The chemoprotective gene profiles at the tumor stage include the up-

regulation of the pro-apoptotic inhibitor of DNA binding ID3 and tumor suppressors 

BRMS1 and RBBP6, and also downregulation of anti-apoptotic genes HGF and 

TMMEM23, and down-regulation of cytokine signaling, IL23A and receptor IL6RA 

(109). Signal transduction related genes such as MAPK, DUPD1 and PPP1R7, and 

calcium signaling receptor SLC8A1 were also downregulated (109). In addition, the 

chemotherapeutic effect of the FO/F dietary extends to translational activation of the 

xenobiotic metabolizing phase I enzyme EPHX2 and tumor suppressor retinoblastoma-

associated protein RB1. These novel findings demonstrate that the effects of the 

chemotherapeutic (FO/F) diet on epithelial cell gene expression can be monitored 

noninvasively throughout the tumorigenic process by analysis of exfoliated colonocytes.  

 

1.4 Summary and purpose of the study 

 

n-3 PUFA from fish oil and fermentable fiber are ideal colon cancer 

chemotherapeutics because (1) they are toxicologically innocuous and free of safety 

problems intrinsic to drugs administered over long periods of time, (2) are relatively 

inexpensive, and (3) provide additional health benefits, such as reduction in mortality 
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(69,113,114). In addition, the simultaneous ingestion of fish oil and fermentable fiber 

can improve their efficacy in colon cancer prevention/therapy (111,112,115-117). 

From an epigenetic perspective, there is still much to be discovered in terms of 

the effects of n-3 PUFA and fermentable fiber in the colon at the transcriptional and 

chromatin state level.  In this study, we employ novel technologies and bioinformatics 

algorithms, such as next-generation sequencing, in order to explore ’nutri-epigenomics’ 

at a genome-wide level by using an in-vivo, pre-clinical model to better comprehend the 

importance of epigenetic mechanisms related to chemoprevention.  Our objective is to 

contribute to the understanding of the regulatory action of chemoprotective bioactive 

compounds found in fish oil and readily fermentable fiber (n-3 PUFAs and SCFAs) in 

terms of malignant transformation of the colonic crypt.   Mechanistic insights gained in 

this study are needed to interpret human clinical and epidemiological findings (118,119). 

 

1.5 Hypotheses and specific aims 

 

Aim 1: Determine chromatin structure associated with differential expression and 

phenotypic responses in the distal versus proximal colon epithelial crypts by correlating 

ChIP-Seq to mRNA transcription data. 

Hypothesis 1.1:  Gene expression at the mRNA level in the distal versus 

proximal colon will differ in a manner correlated with histone tail modifications. 

Hypothesis 1.2:  Genes known to be hypermethylated (ESR1, MYOD1) at the 

DNA level in the proximal colon will also exhibit higher levels of H3K9me3.  Genes 

known to be reciprocally expressed in the proximal vs distal colon, e.g., PPAR-gamma, 

L-FABP, will contain higher levels of H3K4me3 at the promoter region (a histone tail 

modification associated with active transcription) and/or lower levels of H3K9me3 a 

histone tail modification often found in heterochromatin.   

Aim 2: Monitor early pre-tumorigenic epigenetic molecular events driving colon 

cancer by generating high-resolution genome-wide transcriptional and “chromatin-state” 
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maps for intestinal epithelial cell crypts in rats injected with a colon-specific carcinogen 

or saline. 

Hypothesis 2.1: Carcinogen (AOM) will perturb transcription (RNA) and 

chromatin state in a proto-oncogenic manner.  Tumor suppressing genes, including 

clinical biomarkers of colon cancer such as FOXO3, H2AFX, MSH2, NR3C1, and 

PDCD4 will be down regulated. 

Aim 3: Gain epigenetic insight into the mechanisms of nutritional 

chemoprevention by generating high-resolution transcriptional genome-wide 

“chromatin-state” maps for intestinal epithelial cell crypts in rats (i) injected with a 

colon-specific carcinogen or saline, and (ii) fed a diet containing fish oil (n-3 PUFA), 

(iii) pectin (butyrate) or (iv) a combination of both fish oil and pectin. 

Hypothesis 3.1: Fish oil (n-3 PUFA) will modulate intestinal genome-wide 

chromatin state maps, in part, by suppressing pro-inflammatory gene pathways and 

activating tumor suppressing ligand induced nuclear receptors (e.g., PPARs, FXR, 

RXR). 

Hypothesis 3.2: Fermentable fiber (pectin) will suppress colon cancer risk by 

altering acetylated histone modifications (H3K9ac) at the promoter and throughout the 

body of carcinogen-associated genes. Butyrate will act as a Histone Deacetylase 

Inhibitor and/or as an acetylation substrate and induce chromatin hyperacetylation at the 

promoter region of genes associated with apoptosis and tumor suppression (e.g., TP53, 

CEBPA, RB1). 

Hypothesis 3.3: The interaction of DHA + But (from fish oil + pectin) in the diet 

will modulate intestinal genome-wide transcriptional and chromatin state maps to 

synergistically suppress tumorigenesis. This will be accomplished, in part, by altering 

gene expression and chromatin acetylation and methylation of genes associated with 

apoptosis and lipid metabolism (e.g., FABP1, AQP8). 
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CHAPTER II  

GENOME-WIDE ANALYSIS OF THE RAT COLON REVEALS PROXIMAL-

DISTAL DIFFERENCES IN HISTONE MODIFICATIONS AND PROTO-

ONCOGENE EXPRESSION*  

 

2.1 Introduction 

 

The complexity of cellular chromatin structure is in part dictated by the Histone 

Code, consisting of a variety of histone tail post-translational modifications (PTMs) that 

can be found in each nucleosome.  For example, actively expressed genes are associated 

with decreased gene-suppressive histone H3 lysine 9 trimethylation (H3K9me3) 

modifications (120).  Conversely, gene-activating H3K4 trimethylation (H3K4me3) 

promotes mRNA expression.  This pattern is observed in nucleosomes near transcription 

start sites (TSSs) of active and stalled protein-coding and non-coding RNAs that are 

enriched for H3K4me3.  Collectively, these and other modifications are now considered 

indicators of nascent gene and non-coding RNA transcripts (121). 

Many diseases of the colon exhibit an anatomical bias.  For example, in the distal 

colon these maladies include ulcerative colitis, chromosomal instability (CIN) induced 

cancer, Crohn’s disease, and diverticulitis.  Contrastingly, in the proximal colon, 

ischemic colitis, collagenous colitis and microsatellite instability (MIS) induced cancer, 

are highly prevalent (122-124).  Furthermore, proximal and distal colorectal cancers 

have been reported to exhibit distinct gene-specific methylation profiles, transcriptional 

profiles, and molecular and clinical characteristics (125-127).  . 

 

 _______________________ 

* Portions of this chapter reprinted with permission from Karen Triff, Kranti Konganti, Sally 

Gaddis, Beiyan Zhou, Ivan Ivanov, and Robert S. Chapkin (2013) Genome-wide analysis of the 

rat colon reveals proximal-distal differences in histone modifications and proto-oncogene 

expression. Physiological genomics 45, 1229-1243 Copyright 2013 by APS 
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Since there are no cell lines that uniquely represent the proximal or distal colon, 

the need to identify regional epigenetic differences at the chromatin level using an in 

vivo model remains unfulfilled. 

The rodent colon tumor system is a valuable model for studying dietary and 

environmental modifiers of human colon cancer risk (99,128).  For example, the rat 

azoxymethane (AOM) carcinogenesis induced model mimics the neoplastic processes 

observed in humans during both the initiation and promotion/progression stages of 

carcinogenesis, including similarities in (i) light and electron microscopic morphology, 

(ii) histochemical properties, and (iii) biological behavior of colon carcinomas 

(129,130).  However, despite the advantages of animal models, genome-wide assessment 

of chromatin state and transcriptional regulation has been hampered because of the 

challenges associated with chromatin immunoprecipitation of organ tissues for high 

throughput sequencing.   

To date, a genome-wide histone PTM occupancy analysis has not been 

performed using an in-vivo model of intestinal development.  In vitro studies from cell 

lines in which chromatin immunoprecipitation, combined with high throughput 

sequencing (ChIP-Seq), provide access to only the subset of chromatin PTMs that are 

active in a given cell type under culture standardized conditions.  This limits insight into 

their in vivo function.  Therefore, we determined the chromatin structure associated with 

gene expression profiles in the rat proximal and distal colon by globally correlating 

chromatin immunoprecipitation next generation sequencing analysis (ChIP-Seq) with 

mRNA transcription (RNA-Seq) data.  This characterization provides the first available 

in vivo genome-wide map of histone PTMs in the rat colon with respect to the 

relationship between chromatin alterations and gene transcription.  For this purpose, we 

globally identified the transcriptome and sites of H3K4 trimethylation (H3K4me3) in 

colonic crypt epithelial cells.  By assessing the correlation between histone PTMs and 

transcriptional data, we identified canonical pathways influenced by differential 

H3K4me3 occupancy and RNA expression.  We were also able to catalogue the middle 

and long non-coding RNAs transcribed in the colon, including select long non-coding 
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RNAs (lncRNAs) formerly only detected in the rat nervous system.  In addition, in silico 

analysis of transcription factor (TF) activity revealed tumor suppressors and oncogenes 

unique to the distal and proximal colon.  Knowledge of the proximal versus distal colon 

epigenetic landscape will assist in the improved detection, therapy and prognoses of 

colonic disease. 

 

2.2 Methods 

 

2.2.1 Animals 

 

Seven male Sprague–Dawley rats, 14 weeks of age, were individually housed in 

the same room and maintained in a temperature and humidity-controlled animal facility 

with a daily 15 h light/9 h dark photoperiod.  The animal use protocol was approved by 

the University Animal Care Committee of Texas A&M University and conformed to 

NIH guidelines.  Rats were fed a semi-purified diet containing (grams/100 gram diet): 

dextrose, 51.00; casein, 22.40; D,L-methionine, 0.34; AIN-76 salt mix, 3.91; AIN-76 

vitamin mix, 1.12; choline chloride, 0.13, pectin, 6.00, and 15.0 g corn oil/100 g diet. 

 

2.2.2 Isolation of colonic crypts 

 

Rats were terminated by CO2 asphyxiation, followed by cervical dislocation.  

The large intestine was resected from the junction between the cecum and the rectum, 

and was opened longitudinally and washed in 1× PBS.  Subsequently, the visible 

“herring bone” folds were used to identify the proximal colon. The region distal to this 

point was referred to as the distal colon The colonic sections were incubated with HBSS 

(Hank’s Balanced Salt Solution, without Ca++ and Mg++) containing 1 mM glutamine, 

0.1% BSA, 30 mM EDTA, and 5 mM DTT, adjusted to pH 7.5, for 15 min in a 37°C 
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shaking incubator as we have previously described (131).  Following incubation, tissue 

sections were placed in a petri dish on ice, and the colonic crypts isolated by scraping 

with a rubber policeman.  Isolation of crypts was verified by histological examination to 

ensure that epithelial cells were removed and the lamina propria and muscle layers 

remained intact.  Cells were washed with HBSS and centrifuged at 100 × g, for 15 

min.  The pellet was resuspended in HBSS and an aliquot of the crypts was subsequently 

used to create mRNA expression profile libraries.  The remaining crypts were 

immediately crosslinked for ChIP analysis. 

2.2.3 Western blot 

Colonic crypts were rocked in 50 mM HEPES-KOH, pH 7.5, 140 mM NaCl, 1 

mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100 with protease inhibitors for 

10 min at 4°C, followed by centrifugation at 1,350g, 4°C for 7 min.  The crypt-

containing pellet was subsequently resuspended in 10 mM Tris-HCl, pH 8.0, 200 mM 

NaCl, 1 mM EDTA, 0.5 mM EGTA with protease inhibitors and incubated by gently 

rocking at room temperature for 10min.  Nuclei were pelleted by centrifugation at 

1,350g, 4°C for 7min and resuspended in RIPA buffer (50 mM HEPES-KOH, pKa 7.55, 

500 mM LiCl, 1 mM EDTA, 1.0% NP-40, 0.7% Na-deoxycholate with protease 

inhibitors).  Nuclear lysates (2 ug protein) were treated with 1× pyronin sample buffer 

and subjected to SDS polyacrylamide gel electrophoresis (PAGE) in precast 4–20% 

Tris-glycine mini gels (Invitrogen). After electrophoresis, proteins were electroblotted 

onto a polyvinylidene fluoride membrane with the use of a Hoefer Mighty Small 

Transphor unit at 400 mA for 90 min. Following transfer, the membrane was incubated 

in 5% milk and 0.1% Tween 20 in TBS (TBST) at room temperature for 3 h with 

shaking, followed by incubation with shaking overnight at 4°C with primary antibody 

diluted in 5% milk in TBST.  Membranes were washed with TBST and incubated with 

secondary peroxidase conjugated secondary antibody as per manufacturer’s instructions. 

Bands were developed using Pierce SuperSignal West FemtoTM maximum sensitivity 
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substrate. Blots were scanned using a Fluor-S Max MultiImager system (Bio-Rad, 

Hercules, CA). Quantification of bands was performed using Quantity One software 

(Bio-Rad). Primary antibodies were used against histone H3 tri methyl K4 (ab1012) and 

histone H3 (ab1791).  Peroxidase conjugated goat anti-rabbit IgG was purchased from 

Kirkegaard and Perry Laboratories (Gaithersburg, MD). 

2.2.4 Chromatin immunoprecipitation and sequencing  

ChIP-Seq analyses were performed in order to determine global histone mapping 

in crypts isolated from the proximal versus distal colon (Figure 2A).  A modified 

version of the ChIP protocol described by Lee et al (132) was utilized.  Specifically, 

cells were cross-linked by adding freshly prepared formaldehyde at a 1% concentration 

for 25 min at room temperature followed by quenching with glycine.  Cells were then 

lysed and sheared in 3 mL tubes at 4°C using a Covaris S2 sonicator to obtain DNA 

distributions of ~300 bp (range of 200–400 bp): duty cycle −20%, intensity −8, 

cycles/burst −200 and time 40 min.   ChIP antibodies included: ChIP Grade (Abcam, 

ab8898) anti-histone H3 (tri methyl K9) antibody, ChIP Grade (ab1012) anti-histone H3 

(tri methyl K4) antibody, ChIP Grade (ab5408) RNA Polymerase II CTD repeat 

YSTSPS phospho Ser-5 antibody.  The specificities of all antibodies were tested by 

Western blot and ChIP-qPCR.  Antibody–chromatin complexes were captured using 

Dynabeads G Protein coupled (Dynal) and eluted with 1% SDS in 50 mM Tris-HCl 

pH8.0 10, and 10 mM EDTA, after extensive washing.  Cross-linking between DNA and 

chromatin proteins was reversed by incubation at 65°C overnight.  DNA was purified by 

QIAquick PCR Purification Kit (Qiagen 28004) and dissolved into 50 μL EB (10 mM 

Tris pH8.0) buffer per immunoprecipitation.  Equal amounts of ChIPed DNA from each 

of the 7 rats were pooled and used for high throughput sequencing. 



  

25 

 

2.2.5 Bioinformatic analyses  

 

Sequence reads were aligned to the rat genome (rn4) using standard Illumina 

Pipeline Analysis software and only non-identical uniquely mapped reads were retained.  

Sequence read numbers were summed into 200 bp non-overlapping windows with read 

position shifted 75 bp to represent the DNA fragment center.  Output data from the 

pipeline were converted to browser extensible data (BED) files for viewing in the UCSC 

genome browser.  Genomic regions with histone modification marks were identified 

using SICER with an E-value of 100 (133).  ChIP-Seq data are presented from both BED 

files and SICER-processed BED files.  A submodule of the SICER program was 

employed to select regions that exhibited significant differences in the tag counts 

between the two colonic regions (P-value < 0.00001; FC > 2).  The nearest gene to each 

island, i.e., within 2 kb of the island, was identified using closestBed from the BEDTools 

software suite (134) and the refGene table downloaded from the UCSC Genome 

Browser for the Baylor 3.4/rn4 assembly (135). 

 

2.2.6 RNA isolation  

 

For total RNA isolation, colonic crypts were homogenized on ice in lysis buffer 

(RNAqueous Isolation kit, Ambion) and frozen at −80°C until RNA was isolated.  

Subsequently, total RNA was isolated using the RNAqueous kit, followed by DNase 

treatment.  RNA integrity was analyzed on an Agilent Bioanalyzer to assess RNA 

integrity. 

 

2.2.7 RT-qPCR and ChIP-qPCR 

 

In order to assay enrichment of select regions in ChIP DNA and to confirm 

H3K4me3 and RPOLII binding at transcription start site (TSS) regions of interest, 
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quantitative PCR (qPCR) was carried out in triplicate with primers specific for these 

regions using SYBR Green Mastermix (Applied Biosystems).  Data are presented as 

fold-enrichment using the ddCT method comparing the ChIP antibody signal to a 

negative control IgG for the distal and the proximal colon regions.  Fold enrichment = 

2^(CtIgG-CtIP)distal colon/2^(CtIgG-CtIP)proximal colon (136).   

 

 

 

Figure 2. A. ChIP-Seq bioinformatics analysis workflow.  B.  Histone PTM binding at 

the transcription start site of representative active and silent genes. 

 

 

 

Primers used for ChIP-qPCR include; EPHB3 near TSS (+15) FP 5’-

CGAGGACCAGCAGAAGTGAG-3 and, RP 5'-GGGGTAGGAGCCGGTATCA-3', 

EPHB3 downstream (+18605) FP 5'-CCAGAGACTGACTCAGAGAGC-3' and RP 5'-

AGCTTGTACACACTCATGCT-3'.  FABP1 near TSS (+419) FP 5’-
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CATTATTCAAGGCCAACCATATCTC-3’ and RP 5’-

CCCCATCTGTCTCCCTGGTA-3’, FABP1 downstream (+2541) FP 5’-

CATGAATGCTGGAAAACCTGAA-3’ and RP 5’-TGGTGCCGATTCTAAGCTGAA-

3’. HPRT1 near TSS (+579) FP 5’-GCCTGGGCTTTGCCTCTAAT-3’ and RP 5’-

GGAGCAATTGCGCATTCC-3’, HPRT1 downstream (+5284) FP 5’-

GGCGGCTATTCAGGAACTCTCT-3’ and RP 5’-

GATGGTATGGTGGATGGTTTGG-3’. MYOD1 near TSS (+224) FP 5’-

TTGGGTTGAGCGAGAAGCA-3’ and RP 5’-CGGAGTGGCGGCGATA-3’, MYOD1 

downstream (+2031) FP 5’-TGCCCCTGGGTCCTTCAT-3’ and RP 5’-

GGACAATTGGGAGGAGTGTCA-3’. NFIB near TSS (+152) FP 5'-

GAAGTAGTGAGGAGTTGCGG-3' and RP 5'-CTGGGATGGGCGTATAAGGT-3', 

and NFIB downstream (+18239) FP 5'-CTGTGGTGTGCCTTTTCTCT-3' and RP 5'-

TATCGTCTGAACGGCAACTG-3'. 

To assay for gene expression, cDNA was synthesized from 100 ng of total RNA 

using random hexamers and oligo dT primers with Superscript II reverse transcriptase 

(Invitrogen, Carlsbad, CA).  PCR was performed (primer sequences available online) 

using Taqman rat assays and Taqman master mix (Applied Biosystems, Foster City, CA) 

and normalized to HPRT1.  Data are presented as fold enrichment for the gene of 

interest versus HPRT1 using the ddCT method comparing the distal to proximal colon 

(137). 

2.2.8 RNA-Seq 

Equal amounts of RNA from the distal or proximal colon from individual rats 

were pooled and the 2 samples were used for high throughput sequencing.  A total of 

150 million (74 million proximal and 76 million distal colon) 40 bp single-end Illumina 

reads were obtained from a multiplexing run on a single lane.  Reads were filtered for 

adapter sequences and trimmed based on sequence quality (threshold of Q20) using ea-

utils toolkit (https://code.google.com/p/ea-utils/).  Filtered reads less than 20 bp in length 

https://code.google.com/p/ea-utils/
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were discarded.  Spliced alignment was performed against the rat genome (rn4) using 

tophat2 (138) without allowing any mismatches to reduce the number of false positives 

and the resultant alignments were further processed using cufflinks2 (139) to perform 

reference annotation based transcript assembly with bias and multi-read correction.  

Differential expression analyses were performed using cuffdiff2 and cummeRbund 

(140).  The cuffcompare program of cufflinks2 pipeline (reference annotation based 

method) was used to classify the assembled transfrags into different classes.  The 

transfrags annotated with class codes u (unknown intergenic transcript) and i (a transfrag 

falling entirely within a reference intron) were selected to annotate against known 

lncRNA's.  A custom perl script was written to fetch sequences for the coordinate 

information produced by cuffcompare. NONCODE v3, UCSC, and fRNAdb v3.0 

databases were downloaded and only non-coding RNA (ncRNA) sequences belonging to 

the rat genome whose length was greater than 100 bp were used to create a unified 

database (141-143).  The fetched sequences from UCSC were then queried for ncRNA 

sequence similarity with blastn by thresholding at 1e-10 (144,145).  High confidence 

hits, % with high-scoring segment pairs (HSPs) length greater than 100 and whose 

identity was greater than 95% were retained.  Whenever possible, BLAST results were 

further filtered to remove hits that did not correspond to known ncRNA coordinate 

information. Due to the consistent lack of coordinate information for the known ncRNA 

sequences, the results include matches to multiple genomic locations. 

2.2.9 Functional analyses 

Ingenuity Pathway Analyses.  “Functional enrichment” analysis was performed 

using Ingenuity Pathway Analysis (IPA) version 2.0 software (Ingenuity Systems Inc., 

Redwood City, CA).  To perform IPA analysis, all differentially expressed genes 

(adjusted P < 0.005) in the distal or proximal colon were uploaded into three columns 

for the purpose of generating Illumina probe ID, t-value (fold change) and adjusted P-

value (FDR) data.  By convention, genes that were up-regulated in the distal colon are 

http://www.noncode.org/NONCODERv3/
http://www.ncrna.org/frnadb/download
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shown in red and genes that were down-regulated are shown in green.  By default, 

during IPA analysis, only molecules from the data set associated with the Ingenuity 

Knowledge Base repository (Ingenuity Systems Inc.) were considered.  Functional 

Analysis identified the biological functions and/or diseases that were most significant to 

the data set.  The significance of the association between the data set and the specific 

pathways of interest was determined in three ways: (1) ratio of the number of molecules 

from the data set that mapped to the pathway divided by the total number of molecules 

that mapped to the Ingenuity Knowledge Base pathway, (2) Fisher's exact test was used 

to calculate a P value determining the probability that the association between the genes 

in the data set and the pathway of interest could be explained by chance alone, and (3) 

activation state (“Increased” or “Decreased”) was inferred by the activation z-score.  The 

derivations of the z-scores are based on relationships in the molecular network that 

represent experimentally observed causal associations between genes and those 

functions. 

“Canonical pathway” analysis was used to identify networks from the IPA library 

that were most significantly modulated across anatomical sites.  Significance of the 

association between each data set and the canonical pathway was measured in 2 ways: 

(1) A ratio of the number of molecules from the data set that mapped to the pathway 

divided by the total number of molecules that mapped to the canonical pathway, and (2) 

Fisher’s exact test was used to calculate p‐values determining the probability that the 

association between genes in the dataset and each canonical pathway was explained by 

chance alone.   

“Upstream regulator” analysis was based on prior knowledge of expected 

associations between transcriptional regulators and their target genes stored in the 

Ingenuity® Knowledge database, and significance for each TF was measured in 2 ways: 

(1) Fisher’s Exact Test (p-value) was used to identify differentially expressed genes 

from the RNA-Seq data set which overlapped with genes known to be regulated by a TF.  

Since the regulation direction (“activating” or “inhibiting”) of an edge is not taken into 

account for the computation of overlap p‐values, the underlying network also included 
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findings without associated directional attribute, such as protein‐DNA (promoter) 

binding.  In addition, the activation score (z-score) was used to infer the status of 

predicted transcriptional regulators by comparing the observed differential regulation of 

genes (“up” or “down”) in the dataset relative to the literature‐derived regulation 

direction which can be either “activating” or “inhibiting”. 

2.3 Results 

2.3.1 Constructing an atlas of the distal and proximal colon epigenomes 

To characterize genome-wide changes in histone trimethylation and gene 

transcription, we compared crypts isolated from the rat proximal and distal colon, as 

separated by the hepatic flexure.  The overall experimental strategy is shown in Figure 

3. Chromatin immunoprecipitation (ChIP) was performed using antibodies recognizing

trimethylated histone H3 at lysine residues 9 or 4 (H3K9me3 and H3K4me3) and active 

RNA Polymerase II (RPOLII).  The immunopurification of soluble chromatin was 

assessed for enrichment using qPCR at genomic regions consistent with active and 

inactive chromatin states using HPRT1 and MYOD1 as positive and negative markers, 

respectively.  As expected, enrichment of H3K4 trimethylation at the TSS was 

associated with the active expression of the HPRT1 gene (Figure 2B).  Next, we 

analyzed hypertrimethylated sequences of immunopurified chromatin using the Illumina 

HiSeq platform.  Proximal and distal colon libraries generated from H3K9me3, 

H3K4me3, and RPOLII ChIP were sequenced on 3 lanes, generating >450 million 40-bp 

tags.  Following sequencing, the reads were mapped and annotated as outlined in Figure 

2B.   
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Figure 3. General schematic of the experiments and analyses performed 

The trimethylation of H3K4 was regionalized close to the TSS and up to 5 kb 

downstream from actively transcribed genes (ENCODE Project Consortium 2007), 

which typically extends into the gene body and is associated with RPOLII enrichment 

(146,147).  Plotting the density of all generated sequence tags versus the entire set of 

RefSeq TSS positions affirmed that H3K4 trimethylation was predominantly 

regionalized (5 kbp upstream/downstream) in these genes (Figure 4).  
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Figure 4. Genome wide binding of histone modifications and RNA Pol II relative to the 

transcription start site (TSS) of annotated genes 

 As anticipated, H3K9me3 peaks were not prevalent at the TSS of genes and 

instead were primarily associated with heterochromatic (71%) and intragenic (14%) 

regions of the genome.  Greater than 18,000 regions across the genome were enriched 

for H3K4me3 and over 8,000 regions for H3K9me3 (Table 3).  Sequence tags generated 

from proximal and distal colonic crypt ChIP-Seq were analyzed in 150-bp bins.  ChIP-

Seq generated tags were subsequently aligned to the rat genome reference rn4.   
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Table 3. Annotation of histone ChIP-Seq island peaks using SICER software.. 

In total, 10,898 regions in the genome with H3K4 trimethylation peaks were 

compared with the input data set.  Based on anatomical location, 857 regions exhibited 

significant hypertrimethylation, while 98 regions were classified as hypotrimethylated 

(Table 4).  Surprisingly, assessment of H3K4me3 nuclear levels revealed that the distal 
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colon contained significantly higher (p-value 0.045) amounts of trimethylated H3K4me3 

as compared to the proximal colon (Figure 5) 

Figure 5. Levels of trimethylated H3K4 are higher in the distal versus proximal colon. 

A. Representative immunoblots of nuclear protein from proximal (P) and distal (D) 

colon. B.  The blue bars represent the proximal colon and red bars the distal colon.  

Quantification of band volumes using Quantity One software. Values are means ± SE (n 

= 7). At least 2 independent assays were conducted. 

Table 4. Relationship between levels of H3K4 trimethylation, H3K9 trimethylation and mRNA 

expression. 
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In order to assess patterns of gene expression throughout the longitudinal axis, 

pooled RNA was sequenced to obtain proximal (74,013,548) and distal (76,948,093) 

colon reads which are represented by the area under the curve in Figure 6A.  Regional 

gene expression was subsequently calculated using FPKM, which measures the molar 

concentration of a transcript by normalizing read counts to the respective mRNA length 

and the total number of reads in each sample.  We based our gene expression pattern 

analysis on moderately abundant transcripts, defined as FPKM > 1 in at least 1 sample, 

with the cutoff represented as the dotted line in Figure 6A.  This corresponds 

approximately to 1 copy of RNA per intestinal cell (148).  Using these criteria, the 

number of expressed genes totaled 9,867 in the distal colon and 9,591 in the proximal 

colon (Table 4).  A total of 547 differentially expressed genes were detected with a q-

value cutoff < 0.05 (Supplemental Data 1A) as represented by the blue dots in Figure 

6B.  This group included tumor and inflammation markers CD44, PIK3CD, ALDH1A1, 

FOXP1 and MS4A1 (149,150).  Other cancer progression associated genes also enclosed 

in our dataset were MMP9, TFF3, TNFRSF25, CCND2, CDKN1A, TCF3 and MUC1 

(127).  
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Figure 6. Global RNA-Seq analysis.  A. Detection of all annotated rat genes (y axis) and 

the intensity of their expression are presented in the x axis as log10(FPKM) values.  Blue 

line represents proximal colon, orange line represents distal colon and the dotted line 

represents the minimum gene expression cutoff.  B. Volcano plot representing 

differentially (p < 0.05) expressed genes, blue dots characterize significant differentially 

expressed genes; red dots denote genes that with no differential expression between the 

distal and proximal colon. 

Forty microRNAs were also detected, from which 13 were overexpressed in the 

proximal, and 14 in the distal colon (Supplemental Data 1A).  The data in Table 5 

show the top 20 differentially expressed genes in the distal and proximal colon, of which 

a subgroup of 7 were jointly found in both the H3K4me3 and RNA datasets.  Some of 

these genes, including ATP12A, FABP1 have been previously shown to be differentially 

expressed in the mouse colon (151).  Overall, 282 genes were over expressed and 265 

genes under expressed in the distal colon, with all exhibiting H3K4me3 binding near the 

TSS (Table 4).  The computed correlation coefficient between the differentially 

transcribed genes and the differentially regulated H3K4me3 regions was 0.72 (p-

value<0.001).  For validation purposes, a subset of genes involved in gastrointestinal 
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homeostasis were further examined by RT-qPCR (Table 6).  Patterns of high, moderate 

and low expressed genes were consistent across analytical platforms.   

Table 5. Top 20 most up-regulated and down-regulated genes in the distal versus 

proximal colon.  RNA expression and H3K4me3 enrichment are represented as fold 

change DvP, distal divided by proximal colon. 
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Table 6. Intestinal genes display similar patterns across analytical platforms. 

2.3.2 Integration of the transcriptome and H3K4 trimethylation along the colonic 

longitudinal axis 

Genome-wide integration of histone PTM position with RNA-Seq data revealed 

that a similar number of regions in the distal and proximal colon were enriched for 

H3K4me3 and H3K9me3.  Comparison between genome wide RNA expression and 

occupancy of each histone modification by colonic region (total number of matching 

genes detected within each ChIP-Seq and RNA-Seq dataset) is shown in Table 7.  

Overall, the occupancy of H3K4me3 in the distal colon was up regulated >2 fold in 857 

genes and down regulated >2 fold in 98 genes (Table 4 and Supplemental Data 1B).  

H3K9me3 occupancy in the distal colon was up regulated in 119 genes and down 

regulated in 37 genes (Table 4 and Supplemental Data 1C).  Of the genes upregulated 

at the RNA level, 45% also exhibited an elevation in H3K4 trimethylation.  In 

comparison, 11% of the genes downregulated at the RNA level were also down 

modulated with respect to H3K4 trimethylation.  None of the genes transcriptionally 

upregulated exhibited downregulation at the H3K4me3 level and 5 of the genes 

transcriptionally downregulated in the distal colon exhibited upregulation in H3K4me3 

levels.  The correlation between changes in H3K4 trimethylation and H3K9 
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trimethylation was less distinct, with less than 10% of all upregulated and downregulated 

genes at the H3K9me3 level exhibiting any changes at the H3K4me3 level (Table 4-2). 

Location analysis of histone modifications revealed that H3K4me3 was present at the 

transcription start site of all transcribed genes, even when expressed at relatively low 

levels.  With respect to gene regulation, approximately 23% of the genes in which H3K9 

trimethylation was detected also produced RNA transcripts (Table 7). 

 

 

Table 7. Transcribed genes correlate with histone PTMs associated with active gene 

expression. 

 

 

To verify that ChIP-Seq data from pooled samples were consistent with genomic 

features obtained from individual rats, we performed ChIP-qPCR analysis targeting the 

transcription start site of the fatty acid binding protein 1 gene (FABP1), which regulates 

fatty acid trafficking in the colon.  H3K4 trimethylation differences between the 

proximal and distal colon ranged from 1.8-fold to 11.1-fold in individual samples, 

compared to the ChIP-Seq at 2.1 fold (Figure 7A).  A similar analysis was performed on 

FABP1 RNA expression to assess individual sample variation.  Transcriptional 

differences between the proximal and distal colon ranged from 5.8-fold to 8.2-fold in 

individual samples compared to the RNA-Seq at-5.1 fold (Figure 7B).  H3K4 
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trimethylation testing of chromatin state differences between the distal and proximal 

colon of genes that lacked significant differential expression at the RNA level was also 

performed.  At the TSS of NFIB H3K4me3 ranged from 12-fold to 1.2-fold higher in the 

distal colon of individual samples, compared to the ChIP-Seq at 3.3, and in EPHB3 

ranged from 2.8-fold to 1.3-fold in individual samples, compared to the ChIP-Seq at 2.2 

(Figure 7C).  These findings indicate that reliable coverage of the minimal regional 

difference of H3K4 trimethylation using colonic crypt epithelial cells was obtained. 

 

 

Figure 7. Assessment of FABP1 ChIP (H3K4me3) and mRNA (qPCR and RNA-Seq) 

gene expression analyses in individual versus pooled samples.  Patterns of gene 

expression in individual rats by qPCR analysis (using the 2–ΔΔCt method) were consistent 

with sequencing analyses from pooled samples.  ChIP and RNA sequencing was 

performed on a pooled sample containing the same amount of genetic material from 6 

rats (A-F).  A. H3K4me3 enrichment at the FABP1 transcription start site (pooled rats - 

ChIP-Seq) is compared with multiple (individual rats, A-F) ChIP-qPCR.  B. mRNA 

expression of FABP1 (pooled rats - RNA-Seq) is compared with multiple (individual, A-

F) rats using RT-qPCR.  C.  H3K4me3 enrichment at the NFIB and EPHB3 transcription 

start site (pooled rats - ChIP-Seq) 

 

With respect to the association between H3K4 trimethylation patterns and 

targeted mRNA expression, genes involved with cellular movement, including FOX1A 

and FOX2A, hepatocyte nuclear factors 3-alpha and 3-beta, and thioredoxin 1 (TXN1), 
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were characterized by higher levels of H3K4me3 and gene expression in the distal colon 

(Figure 8A and Supplemental Data 1A and 1B).  In comparison, genes with increased 

H3K4 trimethylation in the proximal colon included a cluster of gut development 

regulators, the homeobox B genes (HOXB8, HOXB7, HOXB5, and HOXB4) and zinc 

finger transcription factor OSR2 (Figure 8B, Supplemental Data 1A and 1B) 

 

2.3.3 Cataloging putative middle and long non-coding RNAs (ncRNAs)  

 

For the purpose of assessing candidate middle and lncRNAs, sequences over 100 

nucleotides in length were extracted from proximal and distal colon RNA-Seq data by 

isolating intragenic (located in the intron of genes) and intergenic reads.  Of the 135,670 

regions detected in the distal colon, 65,180 (48%) were enriched with H3K4me3 (Table 

8 and Supplemental Data 2A).  In comparison, in the proximal colon, 60,744 intragenic 

and intergenic regions were detected, of which 31,025 (51%) were enriched with 

H3K4me3 (Supplemental Data 2B).  A higher proportion of candidate ncRNA regions 

in the distal colon, 38,825 (29%) were enriched with H3K9me3 as compared to the 

proximal colon, where 11,195 regions (18%) were enriched with H3K9me3 (Table 8 

and Supplemental Data 2C).  Approximately, 25% of the candidate ncRNAs in the 

distal and 36% of the intergenic region candidate ncRNAs in the proximal colon were 

enriched in co-trimethylated H3K4 and H3K9 (Supplemental Data 2D).   
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Figure 8. Occupancy of histone PTMs in highly differentially H3K4me3 regulated 

genes.  Data from the distal colon are shown as blue peaks and proximal as black peaks.  

A.  Genomic occupancy of differentially (p < 0.05) over-expressed Intestinal Immunity 

related genes, FOX1A, FOX2A, and TXN1, in the distal colon.  B. Genomic occupancy 

of differentially (p < 0.05) under-expressed development regulating HOXB and OSR2 

genes.  The genome is scaled to 10kB.  C. Genomic occupancy of differentially over-

expressed long non-coding RNA genes; GAS5, NEAT1, and H19.  The distal colon 

RNA transcripts are represented with orange bars and the proximal colon transcripts 

with red bars. 
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Table 8. Candidate middle and long non-coding RNAs. Transcripts >100 bp mapped to 

an intronic or intergenic region of the genome, considered candidates for middle and 

long non-coding RNAs, also exhibited signs of epigenetic regulation at the histone level. 

colocalization with histone modifications 

total # 

of 

transcripts genomic location H3K4me3 H3K9me3 

H3K4me3 

and 

H3K9me3 

  Distal colon 135,670 intron 24,777 15,275 6,146 

intergenic region 40,403 23,554 10,079 

Proximal colon 60,704 intron 11,323 3,919 2,393 

intergenic region 19,702 7,276 7,184 

Since a genome wide catalog of long and middle ncRNAs has not been 

previously generated in the colon, we compiled annotated middle and noncoding RNAs 

using rat ncRNA databases, including NONCODE, UCSC, and fRNAdb to compose an 

established ncRNA database.  Initial ”potential ncRNAs” included protein coding gene 

transcripts yet to be annotated that were aligned against the established annotated 

ncRNA database while allowing for zero mismatches (see Methods) in order to identify 

ncRNAs in the epithelia of the large intestine.  A total of 600 and 108 genomic regions 

were identified as unique middle and long ncRNA transcripts in the distal and proximal 

colon, respectively (Table 9 and Supplemental Data 2E).  The majority of middle and 

long non-coding RNAs identified, belonged to the small cytoplasmic (scRNA) class of 

housekeeping ncRNAs.  We also identified small nucleolar RNA (snoRNA), vault 

ribonucleoprotein (vault RNA), and small nuclear RNA (snRNA) transcripts.  As 

expected, housekeeping non-coding RNAs H19, endoribonuclease RNase MRP, and 7SK 

were detected.  Collectively, these findings are the first evidence of the presence of 7H4, 

EVF1, GAS5, NEAT1, NTAB, BSR RNAs, and BC1 RNA, in the colon (Table 9).    
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Table 9. Annotated middle and long non-coding RNAs.  Transcripts identified as non-

coding RNAs by sequence using the NONCODE and fRNA databases are listed. 

Distal colon  Proximal colon 

Name Type of ncRNA  Name Type of ncRNA 

 7SK RNA   7SK RNA    GAS5  lncRNA 

 EVF1 RNA   lncRNA    H19  lncRNA 

 GAS5  lncRNA   MRP RNA   RNase MRP RNA  

 H19  lncRNA   NEAT1  lncRNA 

 NEAT1  lncRNA   NTAB RNA   lncRNA 

 U1   snRNA    U1   snRNA  

 U2   snRNA    U3B   snoRNA  

 U3B   snoRNA    U4 SNRNA   snRNA  

 U4 SNRNA   snRNA    U6 SNRNA   snRNA  

 U5   snRNA    VAULT RNA   vault RNA  

 U6 SNRNA   snRNA    BSR RNA   lncRNA  

 VAULT RNA   vault RNA    BC1  lncRNA  

 Y1   Y RNA    7H4  7H4 RNA  

 Y3   Y RNA    SCRNA   scRNA  

 BSR  lncRNA     

 BC1  lncRNA     

 7H4  7H4 RNA     

 SCRNA   scRNA     

 

 

Most of the lncRNAs detected were accompanied by H3K4me3 occupancy at the 

TSS (Figure 8C).  LncRNAs that were not transcribed in the colon also lacked 

H3K4me3 occupancy at the corresponding genomic region.  This is not consistent with 

protein coding gene regions, which generally exhibited H3K4me3 enrichment in the 

absence of mRNA transcription (Table 7).    
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2.3.4 Anatomically-linked signaling pathways 

Gene networks were assessed using the IPA library of canonical pathways across 

colonic regions at the H3K4 trimethylation and the transcriptional levels.  Specifically, 

for transcriptional data, genes that were differentially expressed by at least 1.9-fold 

between the distal and proximal colon, with a q-value cutoff < 0.05, were associated 

with canonical pathways using the Ingenuity Knowledge Base.  The top 100 genes with 

at least 2-fold enriched occupancy of H3K4me3 and e-value < 0.01 were also analyzed 

(Supplemental Data 3A).  Significance of the association between each data set and 

specific canonical pathways was measured in 2 ways: 1) The ratio of the number of 

genes from the data set was mapped to annotated pathways divided by the total number 

of genes known to comprise that canonical pathway, and 2) Fisher’s exact test was used 

to determine the probability that the association between the genes in the dataset and the 

canonical pathway were explained by chance alone.  Using this approach, the 

phosphatidylinositol-3 kinase (PI3K) signaling cascade was the most significantly 

impacted canonical pathway in terms of differential H3K4me3 occupancy and RNA 

transcription (Figure 9A).  This is noteworthy, because PI3K signaling is involved in all 

aspects of epithelial cell biology, including the development and progression of colon 

carcinogenesis (152,153).  Interestingly, over 97% of the canonical pathways associated 

with differential H3K4 trimethylation were also affected at the transcriptional level.  

Specifically, 169 canonical pathways exhibited differential H3K4 trimethylation and 264 

pathways differential expression between the distal and proximal colon (Figure 9B and 

Supplemental Data 3A). 

In complementary analyses, we applied IPA Upstream Regulator analysis 

software to identify the cascade of transcription factors linked to the differentially 

expressed genes.  This in silico analysis is based on prior knowledge of expected effects 

between transcriptional regulators and their target genes stored in the Ingenuity® 

Knowledge Base. 
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Figure 9. Canonical Pathways.  A.  The PI3K signaling pathway was the most 

significantly affected canonical pathway in terms of H3K4me3 occupancy and RNA 

transcription.  PI3K signaling activates cell survival, cell growth, cell cycle and 

contributes to colon carcinogenesis.  Orange highlights indicate the differential 

expression of genes enriched at the H3K4 trimethylation and mRNA levels.  Red 

highlighted genes represent over expression (distal > proximal) and green represents 

under expression in the distal colon at the RNA level.  PI3K related genes differentially 

regulated solely at the H3K4me3 level are highlighted in pink and yellow, representing 

up and down regulated genes, respectively.  B.  Venn diagram showing the overlap 

between canonical pathways linked to changes in H3K4me3 occupancy and RNA 

transcription. 
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Initially, we quantified known targets of transcriptional regulators present in our 

dataset and compared their direction of change (over or under expression) in order to 

predict likely relevant transcription factors (Supplemental Data 3B).   For individual 

TFs, two statistical measures, an overlap p‐value and an activation z-score, were 

computed.  The overlap p‐values were used to rank upstream regulators based on 

significant overlap between differentially expressed genes and known gene targets 

regulated by each TF.  In addition, the activation z‐score was used to infer likely 

activation states of upstream regulators based on comparison with a model that assigned 

random regulation directions.  Using this approach, over 150 transcription regulators had 

a p-value < 0.05, of these 9 received an activation z score >2.0 (Supplemental Data 

3B).  The transcription factors with predicted inhibitory activity in the distal colon 

included SPI1 (proviral integration oncogene), BCL6 (B-cell CLL/lymphoma 6) and 

RUNX1 (runt-related transcription factor 1).  Transcription factors with projected 

increased activity in the distal colon included TP53 (tumor protein p53), and SMAD4 

(SMAD family member 4) and histone trimethylator EZH2 (enhancer of zeste homolog 

2).  Resultant values and differentially regulated genes are shown in Figure 10. 

We next identified those biological functions most significantly associated with 

the proximal and distal RNA-Seq datasets using the IPA Functional Analysis feature.  

Genes from the transcriptional dataset that were associated with biological functions in 

the Ingenuity Knowledge Base were considered for the analysis, of which 501 unique 

biological functions were detected with p-values <0.001 (Supplemental Data 3C).  

Assessment of predicted activation states were based on prior knowledge of expected 

associations between genes and their biological functions.  Therefore, we compared the 

direction of change (over or under expression) to expected values from the literature.  A 

total of 34 biological functions were assigned a predicted activation state in the distal 

colon by generating an activation z-score >2.0 (Supplemental Data 3C).  The same 

analysis was performed with the H3K4me3 dataset, of which 499 unique biological 

functions were assigned p-values < 0.001, and a total of 44 were assigned a predicted 



48 

activation state.  The top 8 most differentially active biological functions are presented 

in Table 10. 

Figure 10. Upstream analyses of differentially expressed genes are linked to key proto-

oncogenic transcription factors (TFs).  Validated gene targets of each transcriptional 

regulator and their direction of change were compared in the proximal and distal colon.  

The overlap p-values represent the statistical significance.  Fisher’s Exact Test was used 

to determine overlap between the differentially expressed genes and those genes 

regulated by the TF.  Activation z-scores indicate whether an upstream TF has 

significantly more “activated” than “inhibited” or vice versa. 
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Table 10. Pathway analysis was used to identify the top biological functions associated with differentially expressed genes.   

RNA and H3K4me3 up and down regulated genes that exhibited significant differential expression between the colonic tissue 

types were associated with a biological function (p-value) and a statistical score (Activation z-score).  Right-tailed Fisher’s 

exact test was used to calculate p-values determining the probability that each biological function was due to chance alone.  

The activation state (“Increased” or “Decreased”) in the distal over proximal colon was inferred by the activation z-score.  

These z-scores define relationships in the molecular networks that represent experimentally observed causal associations 

between genes and their functions.  
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2.4 Discussion 

 

To our knowledge, this is the first in vivo study to globally assess the chromatin 

state and transcriptome profile of colonic crypt epithelial cells.  Chromatin structure 

affects several processes important to transcription, including transcription factor and 

polymerase recruitment, and transcriptional initiation, elongation, and cessation 

(147,154).  Traditionally, because of the many technical challenges associated with 

ChIP-Seq, e.g., the large number of cells required, most investigators have used tissue 

culture or blood derived primary cells.  However, in order to study epigenetic changes in 

gastrointestinal diseases, it is imperative that physiologically relevant animal models be 

utilized.  Only then can the complexity of the colonic crypt be examined.  Typically, the 

colonic crypt is composed of (85%) enterocyte cells, a few stem cells, (2-5%) 

enteroendocrine cells and (10%) goblet cells.  Therefore, the results from this study are 

primarily, but not solely, a reflection of the biological state of enterocyte cells in the 

colon.   

Many gastrointestinal diseases are region-specific, e.g., cancer and inflammatory 

bowel disease (IBD) (122,149,155).  The distal and proximal colon, offer a unique and 

relevant backdrop to study epigenetic regulation at the trimethylation level of histones.  

Differential levels of H3K4 and H3K9 trimethylation and DNA binding across the 

intestinal longitudinal axis, suggest that many of the pathway and gene activity related 

anomalies previously linked to intestinal disease states may be anatomically imprinted 

along the longitudinal axis of the colon (151,156,157).  Consistent with the findings in 

this study, site-specific differences in global histone modification patterns and proto-

oncogene expression were detected.  Most notably, CD44, an independent and strong 

predictive factor of proximal tumors, was upregulated in the proximal colon (149).  This 

emphasizes the need to assess the molecular profiles of the proximal and distal colon and 

treat them as separate entities.  Along these lines, the chemoprotective non-steroidal 

anti-inflammatory drug (NSAID) sulindac is an effective chemopreventive agent in the 

distal colon of AOM treated mice.  Conversely, in the proximal colon, it triggers a 
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distinct profile of inflammatory factors and induces lesions (30).  Thus, this NSAID has 

both beneficial and harmful effects in vivo, which are associated with the distinct 

microenvironments within the colon of experimental mice (127).  As expected, colonic 

crypts from our non-carcinogenic model exhibited only very low levels of iNOS and 

COX2. We propose that the distinct epigenetic profile of the colonic regional axis prior 

to the onset of disease may influence the ability of chemoprotective agents to favorably 

modulate cell transformation in the ascending (proximal) and descending (distal) colon.   

 

2.4.1 Constructing an atlas of the distal and proximal colon epigenomes  

 

It is known that dense H3K4me3 nucleosomes associated with gene activation 

can indicate the presence of non-coding RNA transcripts, and are disrupted during the 

onset of disease (158).  In our study, the number of upregulated H3K4me3 nuclear 

binding sites across the genome was higher in the distal colon (Table 4).  Assessment of 

H3K4me3 nuclear levels revealed that the distal colon contained 30% higher levels of 

trimethylated H3K4me3 as compared to the proximal colon (Figure 5).  These findings 

suggest the existence of an H3K4me3 gradient along the colonic longitudinal axis.  

Interestingly, the levels of H3K4me3 binding in individual animals pooled for ChIP-Seq 

analysis, fluctuated to a greater extent relative to mRNA expression in the proximal 

colon (Figure 7).  These data suggest that H3K4 trimethylation has to reach a certain 

threshold level of upregulation in the proximal colon to trigger increased transcription.  

After the threshold is reached, any greater increase in H3K4me3 binding may have no 

effect on transcription. 

The accuracy and relevance of the colonic gene expression patterns are in 

agreement with previously reported protein profiles from the distal and proximal colon 

of mice and colorectal cancer (CRC) patients, including an increase in CD44 in patients 

suffering from proximal colon cancer (127,149).  Interestingly, it has been predicted that 

over a thousand genes have yet to be annotated in the murine genome (159).  By 

correlating genome wide H3K4me3 binding with transcription data, we were able to 
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increase detection accuracy of unannotated genes in the colonic mucosa.  As 

summarized in Table 8, many RNA transcripts colocalized with H3K4me3 binding 

regions can be used as a means to identify strong candidate genes for future coding and 

non-coding RNAs annotation (146,160).  Consistent with previous findings in other cell 

types, several long non-coding RNA genes (NEAT1, H19, and GAS5) exhibited 

H3K4me3 binding at their TSS regions (Figure 8C).   With the exception of H19, our 

findings demonstrate for the first time the presence of 7 lncRNAs (Table 9) in the colon.  

In accordance with messenger RNA annotation and classical methodology for RNA-Seq, 

we excluded all transcripts under 100 base pairs.  Therefore, it is not surprising that only 

44 out of 383 annotated microRNAs were detected in our RNA-Seq dataset 

(Supplemental Data 1A). 

 

2.4.2 Proto-oncogene networks influenced by location  

 

A common therapeutic strategy in treatment of disease includes targeting 

biological pathways as opposed to an individual gene.  Pathway analyses, including 

biological function, canonical pathway, and upstream transcriptional regulator analyses, 

can expose the underlying vulnerabilities in the healthy colon to specific diseases.  Our 

biological function analyses of the RNA-Seq data revealed a location bias associated 

with gastrointestinal diseases in the distal and proximal colon.  These included the 

expression of 28 inflammatory bowel disease (IBD) associated genes, among which 

PIK3CD, TLR4, CD44, B3GNT6, CASP1, MMP9, MUC1, STAT4, TFF3, and TLR5 have 

been linked to digestive tract tumorigenesis (Supplemental Data 1A and 3B) (161).  

H3K4me3 occupancy in these IBD associated genes was not differentially regulated.  

Surprisingly, our functional analysis of H3K4me3-Seq data indicated that genes 

associated with diabetes mellitus, and not IBD, were differentially regulated at the 

H3K4me3 occupancy level.  However, few of these genes exhibited changes at the RNA 

level.  Collectively, these data suggest that concurrent analysis of gene expression and 

histone PTM provides higher sensitivity for determining susceptibility to intestinal 
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disease onset. 

The physiological differences between the proximal and distal colon can be 

further illuminated by examining the activity of upstream transcriptional regulators.  

Upstream Regulator IPA analysis provided insight into signaling directionality along the 

colonic axis.  By linking gene expression data with known targets regulated by a TF, we 

were able to predict which of the observed changes may mediate disease progression.  

For example, the HOXB gene cluster associated with gastrointestinal development and 

regulation was prevalently active in the proximal colon, where it seems transcriptional 

upregulation of HOXB3 activity leads to chromatin modification and RNA 

downregulation of HOXB4, 5, 7 and 8 (Figures 8B and 10).  These increases in HOXB 

genes have also been previously documented in hypoplasia and Hirschsprung's, diseases 

prevalent in the proximal colon (162). 

SMAD4, a biomarker for prognosis of colorectal cancer, was identified as a 

highly active transcription factor in the distal colon (Figure 10).  Gene expression 

profiles in our study are consistent with SMAD4 upregulation during the promotion of 

tumorigenesis in the distal colon (163).  These observed patterns include increased 

activity of SMAD4 and TGFB and increased transcription of FOS and BMP2 

(Supplemental Data 1A and 3C).  Based on these findings, we propose that the 

projected increase in EZH2 TF activity in the normal distal colon could predispose this 

region of the intestine to future EZH2 mediated oncogenic activity (164).  We suggest 

the pathway is only partially activated under normal physiological states.  The promotion 

of cancer would require the aberrant expression of a priming signal, e.g., the expression 

of IGFBP2, which is known to appear solely in the distal colon during carcinogenesis 

(165).  This would subsequently alter PI3K-Akt-induced activation of PRC2, thereby 

promoting tumorigenesis (165,166).  As further proof of the relevance of our upstream 

regulator analyses, TP53, EZH2, and RUNX1 mutations are currently used as biomarkers 

of poor prognosis in colon cancer (167-169) (Figure 10 and Supplemental Data 3C). 

Peroxisome Proliferator Activator Receptor gamma (PPARgamma), which is 

more highly expressed in the distal colon, is the target of many antidiabetic and 
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chemotherapeutic drugs (170).  PPAR signaling also plays a key regulatory role in lipid 

metabolism, inflammation, and cellular differentiation (171).  In Figure 11 we suggest 

the function of the PPAR regulatory pathway in our model.  Our data including genes 

ATP12A, FABP1, SOCS3, SLC5A8, APQ3, SLC37A2 and PPARgamma, are 

corroborated by previous findings indicating that PPARgamma activity in the colonic 

epithelium is complex and likely regulated by a number of factors that remain largely 

unknown (151,170).  Many of the identified connections have only been detected 

following deregulation of cellular function, further supporting the concept that innate, 

epigenetic differences play an important role in the colon (172-174).  

In summary, we have documented for the first time the chromatin structure 

associated with gene expression profiles in the rat proximal and distal colon by 

correlating ChIP-Seq with RNA-Seq data.  Globally, approximately 500 genes were 

differentially expressed between the proximal and distal colon.  With regard to 

differentially expressed genes, a high correlation was observed between H3K4me3 

occupancy and RNA-Seq data.  Gene ontology analysis indicated that colonic crypt 

location significantly impacted both chromatin and transcriptional regulation of genes 

involved in cell transformation, lipid metabolism, lymphatic development and immune 

cell trafficking.  We were also able to detect a range of lncRNAs that have not been 

previously reported in the colon.  In addition, gene function analysis indicated that the 

PI3-Kinase signaling pathway was regulated in a site-specific manner.  In conclusion, 

distinct combinatorial patterns of histone modifications exist in the proximal versus 

distal colon.  These site-specific differences may explain the differential effects of 

bioactive chemoprotective agents on cell transformation in the ascending (proximal) and 

descending (distal) colon. 
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Figure 11. PPAR signaling in the proximal and distal colon is linked to disease-

associated genes.  Validated targets of PPAR genes and their direction of change were 

compared in the proximal and distal colon.  Orange highlights indicate the differential 

expression of genes enriched at the H3K4 trimethylation and mRNA levels.  Red 

highlighted genes represent over expression (distal > proximal) and green represents 

under expression in the distal colon at the RNA level. 
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CHAPTER III  

ASSESSMENT OF HISTONE TAIL MODIFICATIONS AND TRANSCRIPTIONAL 

PROFILING DURING COLON CANCER PROGRESSION REVEALS A GLOBAL 

DECREASE IN H3K4ME3 ACTIVITY 

 

3.1 Introduction 

 

Colorectal cancer (CRC) ranks as the third leading cause of cancer death among 

adults. Every year in the United States, more than 150,000 cases of colorectal cancer are 

diagnosed and approximately 57,000 patients die of the disease (18).  During 

carcinogenesis, major cellular functions and pathways, including drug metabolism, cell 

cycle regulation, potential to repair DNA damage or to induce apoptosis, response to 

inflammatory stimuli, cell signaling, and cell growth control and differentiation are 

dysregulated (18).  Epigenetic alterations contribute to these cellular defects. For 

example, the epigenetic modulation of master transcription factors by promoter 

methylation and modification of histones and non-histone proteins lead to genomic 

instability and perturb the expression of gene sets associated with cell adhesion and 

apoptosis (175-178). 

Chromatin signatures are tightly linked to epigenetic regulation. For instance, 

transcriptionally active genes are characterized by active chromatin marks, such as 

trimethylated histone H3 lysine 4 (K4me3) and acetylated histone H3 lysine 9 (K9ac) 

(175,178).  Alterations in these histone modifications can drive oncogenic processes, 

such as proliferation, invasion, angiogenesis, and dedifferentiation, by perturbing normal 

gene expression patterns (178).  This is particularly relevant to CRC, because 

altered K4me3 levels are associated with onset of colorectal cancer (179).  

The azoxymethane (AOM) chemical carcinogenesis model serves as one of the 

most definitive means of assessing mechanisms related to human colon cancer risk 

(180). We have previously demonstrated that at 10 week post AOM injection, the 

colonic mucosa is precancerous, equivalent to the progression stage of colon cancer, e.g., 
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high multiplicity aberrant crypt foci are apparent (181) .  By ∼34 weeks post AOM 

injection, macroscopic tumors become detectable (180).   

Current evidence indicates that genetic mutations, epigenetic changes, and 

aberrant immunologic signaling pathways are major contributors to CRC (182).  

However, until recently, appreciation of epigenetic alterations has lagged behind genetic 

mutations with regard to their contributions to human cancer development.  To date, 

preclinical animal models as well as human studies that elucidate the pre-tumorigenic 

epigenetic molecular events driving CRC are limited.  Colon cancer profiles for 

H3K4me3 and H3K9ac enrichment and other histone modifications have been 

previously generated, however, in most cases cancer cell lines and/or genome-limited 

methodology were used (179,183).  In addition, few studies to date have integrated 

diverse epigenetic inputs in an in-vivo model of CRC.  This type of analysis would 

improve the statistical and interpretative power of the changes in transcription and 

chromatin state during cancer progression.  Since distinct genomic and epigenetic events 

drive the initiation, promotion and progression of colon cancer (18), in this study we 

integrated global chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq 

data in order to explore the progression of colon cancer at a genome-wide epigenetic 

level. 

3.2 Methods 

3.2.1 Animals 

Sixty-seven weanling male Sprague Dawley rats (Harlan, Houston, TX) were 

individually housed and acclimated for 1 week in the same room, maintained in a 

temperature and humidity-controlled animal facility with a daily 15 h light/9 h dark 

photoperiod.  The animal use protocol was approved by the University Animal Care 

Committee of Texas A&M University and conformed to NIH guidelines.  The study 
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examined the effects of two treatments (AOM or saline control).  Animals were stratified 

by body weight after the acclimation period so that mean initial body weights did not 

differ. Body weight and food intake were monitored during the study. 

3.2.2 Diets 

After 1-week acclimation on standard pelleted diet, rats were assigned to one of 

four diet groups which differed in type of fat plus fiber.  The diets contained (g/100 g 

diet): dextrose, 51.06; casein, 22.35; D,L-methionine, 0.34; AIN-76 salt mix, 3.91; AIN-

76 vitamin mix, 1.12; and choline chloride, 0.22.  The total fat content of each diet was 

15% by weight as follows: n-6 fat diet, 15.00 g corn oil/100 g diet; n-3 fat diet, 11.50 g 

fish oil/100 g diet (OmegaPure TE from Omega Protein Inc); and 3.50 g corn oil/100 g 

diet (Dyets Inc.).  The total fiber content of each diet was 6% by weight of pectin 

(fermentable fiber from Gum Technology) or cellulose (non-fermentable fiber from Bio-

Serv).  To prevent formation of oxidized lipids, diets were stored at −20°C and freely 

provided to the animals fresh each day.  To protect against lipid oxidation during 

storage, 0.025% tertiary butylhydroquinone and mixed tocopherols (MTS-50; ADM, 

Decatur, IL) were added to the oils.  

3.2.3 Carcinogen treatment 

After 2 weeks of feeding, 24 rats were injected with saline (control), and 43 rats 

were AOM (Sigma, St. Louis, MO) injected s.c. at 15 mg/kg body weight. Each rat 

subsequently received a second AOM or saline injection 1 week later and animals were 

terminated 10 weeks after the first AOM injection.   
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3.2.4 Aberrant crypt foci scoring 

Immediately after removal, colons (11 per diet group with AOM injection and 2 

per diet with saline injection) were flattened between Whatman 1 filter paper and fixed 

in 70% ethanol for 24 h. Subsequently, the whole mount colon was stained with 0.5% 

methylene blue in PBS for 30 sec, placed on a plastic sheet with a 5-mm grid, and 

examined under the microscope at ×400. The number of aberrant crypts (putative colon 

cancer precursors), as singlets and multiples, was determined. Crypts were classified as 

aberrant using the morphologic characteristics described previously (184).  The number 

of high multiplicity ACF (more than three aberrant crypts per foci) was scored.  

3.2.5 Isolation of colonic crypts 

The large intestine was resected from the junction between the cecum and the 

rectum, and was opened longitudinally and washed in 1× PBS.  Subsequently, the visible 

“herringbone” folds were used to identify the proximal colon.  The region distal to this 

point was referred to as the distal colon.  The distal colon was subsequently incubated 

with HBSS (Hank’s Balanced Salt Solution, without Ca++ and Mg++) containing 1 mM 

glutamine, 0.1% BSA, 30 mM EDTA, and 5 mM DTT, adjusted to pH 7.5, for 15 min in 

a 37°C shaking incubator as we have previously described (131).  Following incubation, 

tissue sections were placed in a petri dish on ice, and the colonic crypts isolated by 

scraping with a rubber policeman.  Isolation of crypts was verified by histological 

examination to ensure that epithelial cells were removed and the lamina propria and 

muscle layers remained intact.  Cells were washed with HBSS and centrifuged at 100 × 

g for 15 min.  The pellet was resuspended in HBSS and an aliquot of the crypts was 

subsequently used to create mRNA expression profile libraries.  The remaining 

crypts were immediately crosslinked for ChIP analysis. 
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3.2.6 Western blot 

Colonic crypts were rocked in 50 mM HEPES-KOH, pH 7.5, 140 mM NaCl, 1 

mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100 with protease inhibitors for 

10 min at 4°C, followed by centrifugation at 1,350 x g, 4°C for 7 min.  The crypt-

containing pellet was subsequently resuspended in 10 mM Tris-HCl, pH 8.0, 200 mM 

NaCl, 1 mM EDTA, 0.5 mM EGTA with protease inhibitors and incubated by gently 

rocking at room temperature for 10 min.  Nuclei were pelleted by centrifugation at 1,350 

x g, 4°C for 7 min and resuspended in RIPA buffer (50 mM HEPES-KOH, pKa 7.6, 500 

mM LiCl, 1 mM EDTA, 1.0% NP-40, 0.7% Na-deoxycholate with protease inhibitors).  

Nuclear lysates (2 ug protein) were treated with 1× pyronin sample buffer and subjected 

to SDS polyacrylamide gel electrophoresis (PAGE) in precast 4–20% Tris-glycine mini 

gels (Invitrogen).  After electrophoresis, proteins were electroblotted onto a 

polyvinylidene fluoride membrane with the use of a Hoefer Mighty Small Transphor 

unit at 400 mA for 90 min. Following transfer, the membrane was incubated in 5% milk 

and 0.1% Tween 20 in TBS (TBST) at room temperature for 3 h with shaking, followed 

by incubation with shaking overnight at 4°C with primary antibody diluted in 5% milk in 

TBST.  Membranes were washed with TBST and incubated with secondary peroxidase 

conjugated secondary antibody as per manufacturer’s instructions. Bands were 

developed using Pierce SuperSignal West FemtoTM maximum sensitivity substrate. 

Blots were scanned using a Fluor-S Max MultiImager system (Bio-Rad, Hercules, CA). 

Quantification of bands was performed using Quantity One software (Bio-Rad). Primary 

antibodies were used to detect histone H3 tri methyl K4 (Active Motif 39160), H3 acetyl 

K9 (ab10812), and histone H3 (ab1791).  Peroxidase conjugated goat anti-rabbit IgG 

was purchased from Kirkegaard and Perry Laboratories (Gaithersburg, MD). 
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3.2.7 Chromatin immunoprecipitation 

 

ChIP-Seq analyses were performed in order to determine global histone mapping 

in crypts isolated from the distal colon.  The ChIP protocol described by Lee et al (132) 

was utilized (185).  Specifically, cells were cross-linked by adding freshly prepared 

formaldehyde at a 1% concentration for 15 min at room temperature followed by 

quenching with glycine.  Cells were then lysed and sheared in 3 mL tubes at 4°C using a 

Covaris S2 sonicator to obtain DNA distributions of ~300 bp (range of 200–400 bp): 

duty cycle −20%, intensity −8, cycles/burst −200 and time 25 min.  ChIP antibodies 

included: ChIP Grade (Active Motif 39160) anti-histone H3 (tri methyl K4) antibody, 

ChIP Grade anti-histone H3 acetyl K9 antibody (ab10812).  The specificities of all 

antibodies were tested by Western blot and ChIP-qPCR.  Antibody–chromatin 

complexes were captured using Dynabeads G Protein coupled (Dynal) and eluted with 

1% SDS in 50 mM Tris-HCl pH 8.0, and 10 mM EDTA, after extensive washing.  

Cross-linking between DNA and chromatin proteins was reversed by incubation at 65°C 

overnight.  DNA was purified by treatment with RNAseA, proteinase K and QIAquick 

PCR Purification Kit (Qiagen 28004) and dissolved into 50 μL EB (10 mM Tris pH8.0) 

buffer per sample for immunoprecipitation purposes.  Equal amounts of (200–500 bp) 

ChIPed DNA from 2-3 AOM rats with the same dietary treatment (biological replicates) 

were pooled into 16 barcoded groups (representing 43 individual rats), and the saline 

biological replicates were similarly pooled into 12 barcoded groups (representing 24 

individual rats) prior to high throughput sequencing. 

 

3.2.8 ChIP sequencing 

 

BioScientific NETflex (ChIPseq kit 5143-01, Barcodes kit 514120) multiplex 

libraries from ChIPed DNA (10 nM) were sequenced using a Illumina Hiseq 2000 DNA 

Sequencer. Sequence reads with poor quality bases or other contaminants were filtered.  



  

62 

 

The remaining reads (>290 million total per sample) were mapped to the reference rat 

genome (rn4) with commonly used Burrows-Wheeler Aligner (BWA) for Illumina 

(version 1.2.3) settings, only non-identical and uniquely mapped reads were retained.  

The peak caller programme MACS (version 1.4.1) (186) was used to identify peaks with 

the following parameter settings: --bw=300 --keep-dup=1.  Islands were defined (using 

merge function of BEDTools (134)) as the genomic areas enriched with the ChIPed 

protein (peaks) in at least one sequenced sample, and reads were quantified using 

coverageBed function of BEDTools (134).  The UCSC Genome Browser was used to 

visualize bigwig data tracks.  The nearest gene to each island, i.e., within 5 kb of the 

island was identified using closestBed from the BEDTools software suite (134) and the 

refGene table downloaded from the UCSC Genome Browser for the Baylor 3.4/rn4 

assembly files (135). 

Regions showing differences in histone modification were identified using 

the edgeR package (187,188) for the R software environment (186,187).  In order to 

increase the statistical power of our analysis (higher number of samples per treatment) 

and detect key AOM effects associated with cancer progression, rats were pooled across 

the various diet groups described under the methods section “Chromatin 

Immunoprecipitation”.  Read counts per gene were normalized using the scaling factor 

method of Anders and Huber (189).  Differential expression testing of genes was 

performed using likelihood ratio tests on the negative binomial GLMs estimated 

by edgeR (187,188).  Regions with FDR < 0.1 and minimal threshold of one count per 

million mapped reads in at least four samples were selected as differentially enriched 

regions (DERs). 

 

3.2.9 RNA isolation  

 

For total RNA isolation, colonic crypts were homogenized on ice in lysis buffer 

(RNAqueous Isolation kit, Ambion) and frozen at −80°C until RNA was isolated.  

Subsequently, total RNA was isolated using the RNAqueous kit, followed by DNase 



  

63 

 

treatment.  RNA integrity was analyzed on an Agilent Bioanalyzer to assess RNA 

integrity. 

 

3.2.10 RNA sequencing 

 

Total RNA (1000 ng) was used to generate multiplex libraries for whole-

transcriptome analysis following Illumina’s TruSeq RNA v2 sample preparation 

protocol. Libraries from 24 individual rats per treatment were sequenced on an Illumina 

HiSeq 2000.  At least 151 million, 50 bp single-end reads per treatment were obtained 

for each sample.  Reads were mapped with the STAR aligner using the default 

parameters and rn5 genome assembly (190). More than 85% of reads aligned uniquely to 

the rat genome.  Genes that did not have at least one read count per million mapped 

reads in at least four samples were removed.  Read counts per gene were normalized 

using the scaling factor method of Anders and Huber  (189).  The read counts were 

modeled directly using negative binomial distribution and GLM accounting for the 

differences in diet Bioconductor package edgeR (187,188). Differential expression was 

then tested using likelihood ratio tests involving the fitted models.   Genes with adjusted 

p-value (FDR) <0.1 were selected as differentially expressed transcripts (DE). 

 

3.2.11 Non-coding RNA protocol 

 

Non-coding RNAs were identified using the lncRNApipe 

(https://github.com/biocoder/Perl-for-Bioinformatics/releases) software. 

Pipeline steps with further technical details: 

A total of approximately 1.25 billion (including all samples and replicates) 50bp 

single-end Illumina reads were obtained from a multiplexing run.  
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A. Reads were trimmed for low quality bases (phred score <Q20) and any adapter 

sequences using Trimmomatic (191). Any reads less than 25bp in length were 

discarded after trimming. 

B. A total of approximately 1.2 billion reads survived trimming which were then 

aligned against rn4 rat assembly (from UCSC) using tophat (192) with multi-

hit filtering for each replicate of a treatment. 

C. A total of approximately 590 million reads uniquely mapped to the 

transcriptome and resulting alignments for each treatment were merged using 

Sambamba (193).  

D. Merged read alignments for each treatment were processed with cufflinks (192) 

to perform reference annotation based transcript assembly with bias and multi-

read correction.  

E. Cuffcompare (194) was run to compare assembled transcripts with reference 

annotation (rn4) and assign various class codes for transcript assembly of each 

treatment. 

F. Any transcripts that belonged to class codes “j”, “i”, “o”, “u” and “x” were 

considered and categorized into 5 categories: long intergenic lncRNAs 

(LincRNAs), intronic contained lncRNAs (Incs), partially overlapping 

lncRNAs (Poncs), completely overlapping lncRNAs (Concs) and exonic 

overlaps (LncRNAs with sense or antisense overlap with reference exon) (195) 

by comparison to known RefSeq (196) gene annotation (rn4). When calculating 

exonic overlaps with reference exon boundaries, only cufflinks assembled 

transcripts whose exon (at least one) overlaps with reference exon by at least 

80% of the exon length was considered. Single exon transcripts were also 

retained. 

G. Since RefSeq gene annotation consists both protein-coding and non protein-

coding genes, the resulting catalog of categorized ncRNAs were compared to 

identify novel ncRNAs in rn4 i.e., any assembled transcripts from cufflinks 
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which were not overlapping with RefSeq genes were marked as potential novel 

ncRNAs. 

H. FASTA sequences were created for the potential novel ncRNAs to run CPC 

(Coding Potential Calculator) (197) with UniRef90 protein database, and any 

transcripts which were flagged as “coding” by CPC were discarded. 

I. Cmscan from INFERNAL1.1 (198) was run with default E-value cutoff of 10 

on the resulting transcripts using Rfam covariance models (CMs). Annotation 

from cmscan result was applied to putative non-coding RNA if at least 10% of 

query sequence was matched with the resulting best hit. 

J. Finally, RNAfold (199) was run to predict minimum free energy structure of 

putative novel ncRNAs. 

After the pipeline was run on each treatment, the individual putative novel 

lncRNA assemblies for each treatment were merged with cuffmerge (192) to create 

unified ncRNA transcript catalog for this experiment. BLAST (200) homology search 

was performed against hg38, mm10 and rn6 RefSeq genes for the merged transcripts 

with e-value cutoff of 1e-5, 95% sequence identity and 90% query sequence coverage 

thresholds to eliminate any similar or newly identified ncRNAs in closely related species 

to rat. A final list of potential novel long non-coding RNAs (transcript length >= 150) 

was created. Cuffdiff (192) was run using the final list of putative novel lncRNAs as 

reference between AOM and saline (control) conditions to identify differentially 

expressed putative novel lncRNAs. A total of 324 transcripts were identified as putative 

novel lncRNAs of which, 266 have been assigned RNA families by INFERNAL with at 

least 10% query sequence coverage and E-value cut off of 10. None of the putative novel 

lncRNAs were significantly differentially expressed. 
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3.2.12 Ingenuity pathway analyses  

 

 “Functional enrichment” analysis was performed using Ingenuity Pathway 

Analysis (IPA) version 2.0 software (Ingenuity Systems Inc., Redwood City, CA) as we 

have previously described (Triff, 2013).  

To perform IPA analysis, all differentially expressed genes (adjusted FDR < 0.1) 

in the distal colon were uploaded into three columns for the purpose of generating 

Illumina probe ID, t-value (fold change) and adjusted p-value (FDR) data.  By 

convention, genes that were up-regulated by AOM are shown in orange and genes that 

were down-regulated are shown in blue.  Analysis was performed as previously 

described in CHAPTER II methods “Ingenuity pathway analyses”  

 

3.3 Results 

 

In an effort to identify carcinogen-induced genes that contribute to CRC 

progression, transcriptomic and histone tail H3K4me3 and H3K9ac alterations in early 

precancerous colonic epithelial cells were examined.  Gene expression profiling by Next 

Generation Sequencing of RNA and ChIPed DNA (Figure 12) was performed.  The 

majority of expressed genes (88%) contained H3K4me3 and H3K9ac enrichment within 

5kb of the TSS (Table 11).  Differentially expressed transcripts (DE) and differentially 

enriched chromatin regions (DERs) were determined by comparing rats 10 weeks post 

AOM injection (cancer progression stage) to saline (control).  
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Figure 12. Bioinformatic workflow of sequencing data. 
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Table 11. Summary total of all detected genes at the H3K4me3 and H3K9ac and mRNA 

level. 

 Category of 

Annotated Genes 
Description 

# of 

genes 

H3K4me3 genes 
# of genes containing H3K4me3 peaks within 

5kb of the TSS 
11299 

H3K9ac genes 
# of genes containing H3K9ac peaks within 

5kb of the TSS 
11961 

transcribed genes # of genes with RNA detected (>1 FPKM) 10418 

H3K4me3 + H3K9ac 
# of genes containing both H3K4me3 + 

H3K9ac modifications 
10872 

H3K4me3 + H3K9ac 

+ RNA 

# of transcribed genes containing both 

H3K4me3 + H3K9ac 
9152 

Category of Annotated Genes: H3K4me3 + H3K9ac indicates the number of 

genes containing both H3K4me3 and H3K9ac enrichment within 5kb of gene 

body.  H3K4me3 + H3K9ac + RNA indicates the number of genes expressed at 

the mRNA level plus both H3K4me3 + H3K9ac enrichment within 5kb of the 

gene body. 

 

 

Consistent with carcinogen exposure, an average of 46 high multiplicity aberrant 

crypt foci (HM-ACF) were detected in the rats treated with AOM, while there were no 

detectable HM-ACF in rats injected with saline (Figure 13.A).  Since HM-ACF 

formation precedes carcinoma and shares many of the histopathological characteristics 

of human CRC (201), it is a useful biomarker to determine the extent of colon cancer 

progression. A comparison of total H3K4me3 and H3K9ac nuclear levels in AOM and 

saline treated rat colonic epithelial cells by Western blotting show similar levels of 

histone tail modifications between the 2 treatments (Figure 13.B).   



  

69 

 

 

Figure 13. AOM induced pathophysiology and epigenetic changes during cancer 

progression. A, High multiplicity aberrant crypt foci (HM ACF) number, a precursor to 

tumorigenesis is shown.  Data represent 43 rats at 10 weeks post AOM injection.  No 

HM-ACF were observed in saline-injected animals.  ***, p-val < 0.001 (one-way 

ANOVA).  B, Levels of trimethylated H3K4 and acetylated H3K9 levels remain the 

same in AOM vs saline exposed colonic epithelial cells.  The results of Western blot 

analysis of nuclear protein extracts from AOM and saline injected rat colon.  Blue bars 

represent AOM treated and red bars saline injected colon.  Quantification of band 

volumes using Quantity One software. Values are means ± SE (n = 7).  At least 2 

independent assays were conducted. n.s., p-val > 0.05.  C, H3K4me3 is highly sensitive 

to AOM exposure. MAplots indicate the differential expression of all transcribed genes 

or histone tail enriched regions (y-axis, log-ratio of difference in intensity of histone tail 

modifications enriched regions) vs their overall intensity of expression (x-axis, log-

average of read counts) following AOM vs saline treatment.  Pink represents 

differentially expressed (DE) transcripts and differentially enriched regions (DERs) with 

a p-value < 0.05, and genes FDR <0.1 in red, all other detected genes are highlighted in 

blue 
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3.3.1 Global effects of AOM on transcription and histone tail modifications. 

  

To identify DE transcripts and DERs with histone tail H3K9ac (K9ac) and 

H3K4me3 (K4me3) modifications, gene lists from treatment samples were filtered 

according to multiple criteria as described in the “Methods”.  Briefly, DE genes and 

DER peaks with an FDR<0.1 and a minimal fold change > |1.29| were compared across 

AOM and saline injected (control) rats.  Figure 13.C shows the distribution of 

expression strength relative to the log-ratio of DE and DERs.  Included above each 

MAplot are the total number of DE genes (including different isoforms) and the total 

number of DERs (annotated and un-annotated).  Ch.III Supplementary Table 2 

contains a list of the transcripts and DERs with an FDR<0.1 in AOM vs saline treated 

animals.  Enriched regions (peaks) further than 5kb from the transcription start site were 

considered “un-annotated” and classified with an ID representing the rn4 genomic 

location of that island.   

The number of DER genes affected by AOM carcinogen treatment was 

significantly greater in K4me3 (3792), with the majority of DERs found at the gene 

transcription start site (TSS), 41 of which were located 1-1k bp and 71 were located 1k-

5k bp from the gene TSS.  Additionally, more genes with K4me3 DERs were 

downregulated (3171) vs upregulated (621) in AOM vs saline.  This contrasted with the 

total number of differentially expressed genes, RNA (116) and K9ac DERs (24) which 

were less than 5% as abundant as K4me3 DERs (Figure 13.C).  These data indicate that 

H3K4me3 exhibited greater sensitivity to AOM exposure as compared to K9ac DERs 

and RNA DEs.  This pattern of enhanced sensitivity was also observed with respect to 

fold changes, e.g., K4me3 log2(fold change) DERs ranged from -7.02 to 5.61 as 

compared to K9ac DERs (-2.96 to 4.22) and RNA DEs (-4.03 to 5.20). 
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3.3.2 Poor correlation between AOM affected genes at the transcription and histone tail 

modification levels. 

 

Based on previous work indicating that histone tail modifications regulate gene 

expression (178), we expected K4me3 and K9ac DER genes would correlate with RNA 

DE genes.  Generation of a global plot of all the K4me3 and K9ac DER fold changes 

against RNA DE genes revealed poor correlation between these histone marks and RNA, 

regardless of p-values (the axes include number of genes with an FDR<0.1 (Figure 

14.A).  Similarly, a poor correlation was observed between annotated K9ac and K4me3 

DER. 

Genes that were altered by AOM at multiple epigenetic stages and/or 

transcription are listed in Table 12.  Only 3 genes exhibited a change in transcription 

and K4me3 and K9ac enrichment following AOM exposure (Figure 14.B, Table 12).  

This included the upregulated novel oncogene OASL2, an interferon-induced antiviral 

enzyme which plays a critical role in cellular antiviral response by degrading dsDNA in 

the cytosol (202).  RTP4 was also upregulated by AOM exposure.  This is noteworthy, 

because RTP4 is a receptor transporter protein chaperone that escorts GPCRs to the 

plasma membrane, and has been identified as a breast cancer biomarker correlated with 

poor patient survival (203).  In addition, TPM2, a cytoskeleton-regulating protein 

necessary for cancer cell survival, was upregulated transcriptionally, but downregulated 

across K4me3 and K9ac DERs.   
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Figure 14. Correlation between transcriptional DE and histone tail DERs.  A, Poor 

correlation is observed between DE transcripts and histone tail modifications with 

DERs.  Scatterplots reveal low correlation between DE transcripts and histone tail 

modifications with DERs by comparing the log2(fold changes) from AOM vs saline 

treatments.  Specific contrasts include RNA vs. K4me3, RNA vs. K9ac, and K4me3 vs. 

K9ac.  B, Venn diagram illustrating the number of genes modulated by AOM in 

common between the various epigenetic stages (H3K4me3, H3K9ac and RNA).  

OASL2, RTP4, and TPM2 were affected across all measured epigenetic states.  C, 

Chromatin signature of H3K9ac and H3K4me3 occupancy following AOM exposure is 

associated with upregulation of OASL2 and RTP4 and downregulation of TMP2.  

Representative UCSC genome browser images of all DNA reads mapped and grouped 

by genomic location in highly differentially enriched H3K4me3-regulated genes.  

H3K4me3 data from AOM treated animals are shown as red peaks, and saline control as 

blue peaks.  H3K9ac data from AOM treated animals are shown as purple peaks, and 

saline control as brown peaks. 
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Table 12. List of AOM induced differentially expressed (DEs) and differentially enriched regions (DERs) detected across 

multiple epigenetic states. 
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3.3.3 Identification of upstream regulators perturbed by AOM. 

To identify the cascade of transcriptional regulators linked to (can affect the 

expression of) AOM induced DE and DER genes, we utilized IPA Upstream Regulator 

(URs) analysis.  This in silico analysis is based on prior knowledge of expected effects 

between transcriptional regulators and their target genes stored in the Ingenuity 

Knowledge Base.  Initially, we quantified known targets of transcriptional regulators 

present in our dataset and compared their direction of change (over- or under-

expression) to predict likely relevant regulators including transcription factors, nuclear 

receptors and enzymes.  Ch.III Supplementary Table 3 provides a summary Ingenuity 

Pathways Analysis of annotated RNA DEs and K4me3 and K9ac DER genes.   

The number of AOM modulated URs in common between K4me3, RNA, and 

K9ac (Figure 15.A) was greater than the number of DER and DE genes in common 

between those same epigenetic levels (Figure 14.B).  The top ranked AOM modulated 

URs affected at all levels (K4me3, RNA and K9ac) included the ion channel-ANXA7, 

insulin receptor-INSR, along with transcriptional regulators-SOX1/3 and TRIM24 

(Figures 15.A-D).  In addition to p-values, activation z-scores were used to infer likely 

activation states of URs based on comparison with a model that assigned random 

regulation directions (Ch.III Supplementary Table 3 and Figure 15.A-D).  Using this 

approach, the inhibition of ANXA7 activity was linked to 17 K4me3 DERs, 2 RNA DE 

genes (upregulated CXCL9 and PHLDA1) and K9ac upregulated NFIA (Figure 15.B 

and Ch.III Supplementary Table 3).  The activation of INSR was associated with 90 

K4me3 DERs, 10 RNA DEs and 2 K9ac DEs (Ch.III Supplementary Table 3).  

Activated SOX1/3 was linked to 19 K4me3 DERs and 3 RNA DEs including OASL2, a 

gene affected at all measured epigenetic stages (RNA, K4me3 and K9ac).   
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Figure 15. Top Upstream Regulators (URs) affected by AOM across multiple epigenetic 

states.  A, Venn diagram illustrating the total number of URs in common across 

epigenetic states (H3K4me3, H3K9ac and RNA).  The 5 URs predicted to be affected by 

AOM are listed.  P-values and activity (z-scores) of URs were determined by Ingenuity 

Pathway Analysis of genes with an FDR<0.1.  B-D, Representative networks of genes 

regulated by top ranked upstream regulators (URs). Yellow fill represents the projected 

increase in UR activity, green fill represents projected decrease in UR activity. Blue fill 

indicates decreased gene activity (DE and/or DERs) and orange fill indicates increased 

gene activity (DE and/or DERs), deeper color hue indicates genes with greater |log2(fold 

change)|.  Solid lines represent direct and dashed lines represent indirect gene 

interaction.  B, K4me3 DERs associated with activation of SOX1/3 development 

associated transcriptional regulators and inhibition of ANXA7, an ion channel with 

tumor suppressor function.  C, Concurrent increase in mRNA DEs and K4me3 DERs 

predicted inhibition status of TRIM24 (Tif1α), a tumor suppressor transcriptional 

inhibitor of proto-oncogenes that activate transcription, immune response and cell 

proliferation.  D, Decrease in K4me3 DERs of key genes (blue) indicating AOM induced 

activation of KDM5B (histone K4me3 demethylase) associated with inhibition of 

KMT2D (histone K4 methylase).  E, Heatmap of top URs in common between multiple 

epigenetic stages (H3K4me3, H3K9ac and RNA).  Data represent –log(Benjamini-

Hochberg-adjusted  p-value) with a score >1.29 indicating a B-H p-value<0.05.  URs are 

grouped according to families, color scale ranges from yellow to brown, with decreasing 

p-value corresponding to deeper shades of brown. 
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Most notably, at the transcriptome level, activity inhibition of the master 

regulator TRIM24 was linked to 23 mRNA DEs (8 of which were also categorized as 

URs, including OASL2), all of which were detected within the 29 upregulated K4me3 

DERs and the 1 K9ac DER (RTP4) (Figure 15.C and Ch.III Supplementary Table 3).  

At the H3K4 trimethylome level, only 2 of the many established K4me3 methylases and 

demethylases (URs) were detected as having predicted activity changes in response to 

AOM induced deregulation of K4me3 DERs.  These histone tail modifiers were 

activated H3K4 demethylase KDM5B (z-score 2.2) and inhibited H3K4 methylase 

KMT2D (z-score -5.6) (Figure 15.D). Their predicted activity and inhibition, 

respectively, were consistent with the increased number of downregulated versus 

upregulated K4me3 DERs.   

Among the URs detected at multiple epigenetic stages, 34 have been previously 

associated with adenocarcinoma (Figure 15.E and Ch.III Supplementary Table 3), the 

majority of which are transcriptional regulators and enzymes, especially kinases.  We 

also cross-correlated top IPA predicted URs against all RNA DE genes to determine 

whether URs affected by AOM were being modulated at the early transcriptional stage 

(versus the translational or protein activity stages).  Of the top URs predicted to affect 

the AOM induced transcription of DE genes, 13 were transcriptionally upregulated 

(APOB, CXCL10, CYBB, IRF7, IRF9, Irgm1, ISG15, SLC29A1, SPRY4, STAT1, 

TRAF3, USP18, ZBP1), and one was downregulated (EIF4B) (Ch.III Supplementary 

Table 3).  Interestingly, these genes seem to play a role in both ‘cause’ and ‘effect’ of 

the transcriptional deregulation. Among K4me3 and K9ac associated URs, only FOXC1 

(a K4me3 UR) was differentially expressed (Ch.III Supplementary Table 3). 

 

3.3.4 Identification of pathways and networks perturbed by AOM. 

 

To understand the biological relevance of the AOM-induced dysregulated genes, 

a functional analysis using the IPA algorithm was performed to identify canonical 



  

78 

 

pathways (CP).  The score computed by IPA for each canonical pathway is derived from 

a p-value and indicates the likelihood of the genes being found together in that network 

by random chance (204).  Output from this analysis revealed a minimal commonality 

between the canonical pathways affected at the K4me3 level (262 CPs) compared to 

RNA (28 CPs) and K9ac (2 CPs) (Figure 16.A).  As expected, based on the number of 

AOM affected genes at each epigenetic stage, we observed fewer RNA DE and K9ac 

DER genes associated with each pathway category compared to K4me3.  In the case of 

K9ac DERs, very few candidate genes/pathways were detected, making the analysis less 

reliable (Ch.III Supplementary Table 3). 

At the transcriptome level (RNA-Seq), Activation of IRF (interferon regulatory 

factor) by Cytosolic Pattern Recognition Receptors and Interferon Signaling were 

identified as the most significantly enriched pathways (Figures 17.A).  Furthermore, 38 

of the 64 molecules that make up the IRF Cytosolic Pattern Recognition Receptors 

pathway were included in the URs associated with RNA-Seq differentially expressed 

genes (DEs) (Figure 16.B). We subsequently compared the top 2 enriched pathways 

with disease networks relevant to these data and noted that altered molecules in both 

pathways, including IRF7, ISG15, OAS1, STAT1 and TRAF3, were also primarily 

correlated with the top DE enriched disease network, Infectious Disease, Antimicrobial 

Response, Inflammatory Response (Figures 17.B and Ch.III Supplementary Table 3).   

For K4me3, the top most activated and inhibited canonical pathways are shown 

in Figures 17.A (p<0.05, z-score>|1.4|) and grouped by Signaling Pathway Categories to 

provide a broader overview of the effect AOM during the pre-adenomatous polyp stage 

of CRC.  The top canonical pathway (Molecular Mechanisms of Cancer) mapped the 

greatest number (144) of genes with K4me3 DERs.  Interestingly, none of these genes 

were differentially transcribed (DE) (Ch.III Supplementary Table 3).  As expected, 

based on previous findings, RAR Activation and Protein Kinase A Signaling were also 

enriched (205,206).   

 



79 

Figure 16. A, Venn diagram depicts the poor correlation observed between canonical pathways affected by AOM across 

epigenetic states (H3K4me3, H3K9ac and RNA).  B, Top canonical pathway significantly enriched for both DE genes and 

URs of DE genes.  Purple outlined molecules indicate DE linked URs, yellow to orange color indicates DE genes. 
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Figure 17. Top canonical pathways and networks affected by AOM.  A, List of the top 3 

enriched pathways, followed by top activated and inhibited pathways grouped by 

category.  The RNA-Seq category includes the only 2 pathways that were 

activated/inactivated based on mRNA DE data analysis. All other canonical pathways 

listed were extrapolated from K4me3 DERs.  Activation z-scores indicate whether an 

upstream transcription factor is significantly more “activated” or “inhibited” based on 

mRNA DE or K4me3 DER data.  P-values are –log(Benjamini-Hochberg-adjusted  p-

value) with any score >1.29 indicating a B-H p-value<0.05.  B-C, Blue fill indicates 

decreased gene activity (DE and/or DERs) and orange fill indicates increased gene 

activity (DE and/or DERs), deeper color hue indicates genes with greater fold change. 

Dashed lines indicate indirect interactions, solid lines indicate direct interactions. The 

arrow style indicates specific molecular relationships and the directionality of the 

interaction.  B, Top network annotation of transcriptionally DE genes. C, Top network 

annotation of K4me3 DER genes. 
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The top 3 pathways in Figures 17.A lack an activation score because they 

include findings without associated directional attributes necessary for activity 

prediction by IPA.  The disease network most associated with K4me3 DERs was 

Cancer, Inflammatory Response, centering around the glucocorticoid receptor (NR3C1) 

and included genes that are also part of the top affected canonical pathway (Figures 

17.C and Ch.III Supplementary Table 3).

Examination of K4me3 DERs revealed that AOM downregulated multiple 

apoptotic pathways (Figures 17.A), however, a similar pattern was not observed at the 

transcriptome level.  Interestingly, AOM also inhibited Cellular Stress associated 

pathways including the p38 MAPK signaling genes, MAPK12-14 and MAP2K4 (207) 

(Figures 17.A and Ch.III Supplementary Table 3).   

Many second messenger signaling pathways were also inhibited by AOM 

induced cancer progression, including RhoA Signaling (Figures 17.A).  Activated 

RhoGDI Signaling (Rho GDP-dissociation inhibitors) was the exception to this second 

messenger inhibitory pattern.  Since RhoGDI negatively regulates Rho-family GTPases, 

the activation of this pathway corroborates the observed inhibition of RhoA signaling 

(Figures 17.A).  Additionally, among the top activated diseases we found 1210 genes 

specifically associated with increased colorectal carcinoma, z-score=2.43 and p-

value<0.0001 (Ch.III Supplementary Table 3).  The majority of these genes were 

enzymes (427 genes), including upregulated G3BP1, and downregulated B3GNT6, 

MSH2, SOD1, MMP9, FGFR2, TGFBR2, and FZR1; transcription regulators (199 

genes) including downregulated H2AFX, NOTCH2, and SMAD3; and transporters (88 

genes) including downregulated ABCB4, ATP2A2, and BAX (Ch.III Supplementary 

Table 3). 
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3.3.5 Cataloging annotated middle and long ncRNAs and un-annotated H3K4me3 and 

H3K9ac enriched regions. 

 

For the purpose of assessing middle and long ncRNAs, we isolated annotated and 

un-annotated ncRNA reads. Based on technical restraints associated with standard RNA-

Seq, in which transcripts <200 bp are eliminated prior to sequencing, the ncRNA genes 

reported in this section are confined to middle and long ncRNAs (Ch.III 

Supplementary Table 2).  A total of 20 annotated middle and long ncRNAs were 

transcribed in the colonic epithelium, none of which were found to be differentially 

expressed.  Out of the 46 annotated ncRNAs with K4me3 enriched regions, 19 contained 

DERs, all of which were lncRNAs except for Terc (Table 13).  Only 1 of the 50 K9ac 

annotated ncRNAs were differentially enriched (Table 13).  It is noteworthy that many 

of the ncRNA DERs detected have been previously reported to play a role in 

carcinogenesis (208).  Additionally, there was no overlap between K4me3 and K9ac 

DERs of annotated ncRNAs induced by AOM, suggesting the same poor correlation 

between K9ac and K4me3 DERs and non-coding RNA DEs as observed with protein 

coding genes. 

In an effort to extract further knowledge from the genome-wide data we also 

examined un-annotated genomic regions for AOM induced epigenetic changes and 

patterns.  An assessment of K4me3 and K9ac enriched regions >5000 bp away from an 

annotated gene (un-annotated enriched region) exposed 2,514 DERs out of 18,477 

K4me3enriched un-annotated regions and 20 K9ac DERs out of 25,426 un-annotated 

enriched regions (Ch.III Supplementary Table 2).  Interestingly, there were similar 

numbers of upregulated (1,392) and downregulated (1,127) un-annotated K4me3 DERs, 

6 of these DERs co-localized between K9ac and K4me3, 5 of which were upregulated by 

AOM.  Thus, the originally described pattern of AOM induced K4me3 downregulation 

(Figure 13) was only observed in DERs corresponding to annotated genes.   We also 

searched for putative middle and long noncoding RNA, de-novo generated transcripts 
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>150bp long that did not align to any annotated rat gene.  These middle and long 

ncRNAs were compared for homology against annotated mouse and human genes and 

identified as “noncoding” by CPC to eliminate any potential un-annotated protein coding 

genes.  A total of 242 genomic regions were identified as putative middle and long 

ncRNA transcripts (Ch.III Supplementary Table 4), however, none were differentially 

expressed by AOM treatment, and many of these transcripts were accompanied by 

K4me3 and K9ac occupancy (Figure 18).  The majority of middle and long ncRNAs 

identified were categorized as small nucleolar RNA (snoRNA) by the RFAM covariance 

model (Ch.III Supplementary Table 4 and Figure 18), implying that the regulation of 

rRNA splicing and translation is linked to un-annotated functional RNAs in the colon. 

3.4 Discussion 

To our knowledge, this is the first in vivo study to globally assess the chromatin 

state and transcriptome profile of colonic crypt epithelial cells at a critical initial stage of 

cancer progression. 

Our analyses were directed towards addressing 3 major biologically relevant 

questions: (1) are carcinogen-induced transcriptional profiles (DE) similar to DERs with 

respect to histone tail modifications associated with gene activity; (2), which molecules 

play major epigenetic regulatory roles in DE and DERs; and (3), what are the cellular 

functions of the DE genes and DERs?  
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Table 13. Description of lncRNA genes modulated by AOM at the H3K4me3, H3K9ac or transcription level. 

DE middle and long ncRNAs annotated in H3K4me3 edgeR (total of 18 genes) 

assesion ID| 

gene symbol 
gene full name 

log2FC 

(AOM/ 

Saline) 

FDR 
transcript 

length(bp) 

cancer 

association 

related 

annotated 

genes with 

DERs 

NR_037147| 

FAM98C 

family with sequence 

similarity 98, member C 
-1.88 3.53E-05 1371 

epithelial 

cancer 
UBC 

NR_027839| 

ATP2A2 

ATPase, Ca++ transporting, 

cardiac muscle, slow twitch 

2 (non-protein coding) 

-1.5 2.43E-04 5711 

colon cancer, 

epithelial 

cancer, etc. 

KCNJ11, 

EGR1, HGS, 

TNF, MDM2, 

ATP2B1, etc. 

NR_027983| 

LOC680254 

hypothetical protein 

LOC680254 
-1.09 3.61E-04 635 na na 

NR_038098| 

Ybx1-ps3 

Y box protein 1 related, 

pseudogene 3 
-2.89 3.25E-03 1541 na 

STAT3, IL6ST, 

INSR, ERK1/2 

NR_073057| 

NSMF 

NMDA receptor 

synaptonuclear signaling 

and neuronal migration 

factor 

-1.14 4.30E-03 2798 apoptosis 

KIF5C, INA, 

RAN, SUPT5H, 

NFE2L2, 

MAPK3, etc. 

NR_001567| 

Terc 
telomerase RNA component -0.81 6.05E-03 388 

lymphoid 

cancer, 

hematologic  

cancer, etc. 

na 

NR_027235| 

RGD1559747 

similar to Zinc finger and 

SCAN domain containing 

protein 2 (Zinc finger 

protein 29) 

-1.77 4.76E-03 3298 na na 
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Table 13 Continued 

assesion ID| 

gene symbol 
gene full name 

log2FC 

(AOM/ 

Saline) 

FDR 
transcript 

length(bp) 

cancer 

association 

related 

annotated 

genes with 

DERs 

NR_077057| 

PRRT2 

proline-rich transmembrane 

protein 2 (non-protein 

coding) 

-1.22 6.98E-03 1420 

epithelial 

cancer, 

adenocarcinom

a 

na 

NR_045202| 

Tmem80 

transmembrane protein 80 

(non-protein coding) 
-0.61 1.27E-02 2288 na na 

NR_073042| 

HRH3 

histamine receptor H3 (non-

protein coding) 
-2.34 1.49E-02 2788 

breast cancer, 

melanoma 

cancer 

CLIC4, GPCR, 

UCP1, CXCL3, 

MTOR, HRH, 

etc. 

NR_073439| 

CREBZF 

CREB/ATF bZIP 

transcription factor (non-

protein coding) 

-0.7 2.37E-02 5282 

adenocarcinom

a, epithelial 

cancer 

ATF6B, 

MOV10, TP53, 

XBP1, ATF4, 

ELAVL1, etc. 

NR_102354| 

PATZ1 

POZ (BTB) and AT hook 

containing zinc finger 1 
-0.8 3.32E-02 1088 

lymphoid 

cancer, 

hematologic 

cancer 

TP53, RNF4, 

BACH2, SOX2, 

AR, BCL6, etc. 

NR_102345| 

SZRD1 

SUZ RNA binding domain 

containing 1 
1.09 3.47E-02 3205 na 

ENO1,PRKCA, 

ETS1, UBC, 

ELAVL1,  
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Table 13 Continued 

assesion ID| 

gene symbol 
gene full name 

log2FC 

(AOM/ 

Saline) 

FDR 
transcript 

length(bp) 

cancer 

association 

related 

annotated 

genes with 

DERs 

NR_051995| 

SMNDC1 

survival motor neuron 

domain containing 1 
-0.63 7.69E-02 2022 

melanoma 

cancer 

PRPF3,SNRPD

2, IFT99, 

DDX5, RPL3, 

PDCD7,  

NR_073160 

|BOD1 

biorientation of 

chromosome in cell div. 1 
-0.71 8.58E-02 1474 

tumorigenesis, 

neoplasia 

MOV10, UBC, 

APP, NXF1 

NR_027324| 

H19 

imprinted maternally 

expressed transcript (non-

protein coding) 

0.55 8.68E-02 2369 

tumorigenesis 

of intestinal 

polyp,  

E2F6, PARP1, 

P53, ZFP57, 

DNMT1,. 

NR_073134| 

AKNAD1 
AKNA domain containing 1 1.21 8.84E-02 1952 na APP 

NR_038113| 

Rpl37a-ps1 

ribosomal protein L37a, 

pseudogene 1 
0.8 9.25E-02 359 na na 

DE lncRNA annotated in H3K9ac edgeR (total of 1) 

assession ID| 

gene symbol 
gene full name 

log2FC 

(AOM/ 

Saline) 

FDR 
transcript 

length(bp) 

cancer 

association 

related 

annotated 

genes with 

DERs 

NR_002597| 

LOC360231 

MHC class I RT1.O type 

149 processed pseudogene 
1.13 1.45E-02 1621 na na 
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Figure 18. H3K4me3 and H3K9ac enriched regions co-localize with ncRNAs.  A, 

Putative ncRNA loci with K4me3 and K9ac enriched regions.  (B-C) UCSC genome 

browser snapshots of ncRNA, as well as their conserved, thermodynamically stable 

secondary structures predicted by RNAfold (below); putative ncRNAs also include 

predicted annotation. The entropy color scale represents the values at the weakest spots 

of the structure where 0 entropy means no deviations, and entropy >0 indicates some 

deviations; the higher the entropy, the more likely for the folding structure to deviate.  B, 

Genomic occupancy and structure of annotated and putative ncRNAs with unregulated 

K4me3 DERs (black box) and putative ncRNA homologous to a mouse annotated 

lncRNA. 
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3.4.1 AOM selectively modulates H3K4me3 genome association. 

Although carcinogen effects were identified at the RNA (116 DE genes), K9ac 

(49 DERs, including 24 genes) and K4me3 (7678 DERs, including 3792 genes) levels, 

the most notable overall changes were detected in the 3171 downregulated K4me3 

genes.  These novel findings indicate that AOM suppresses the enrichment of H3K4me3 

in a very large number of genes at an early stage of colon cancer progression (Figure 

13). We also noted that DE genes were poorly correlated with K4me3 (<28%) and K9ac 

(<24%) DERs (Figure 14.B). 

In order to identify proteins that may affect the expression of genes detected in 

our experimental dataset, we employed IPA Upstream Regulator (UR) Analysis. We 

noted that carcinogen-induced changes in gene transcription and H3K4 trimethylation 

were more correlated at the UR pathway level (76 URs vs 37 DE/DERs in common) 

(Figures 14.B & 15.A). This is consistent with previous findings indicating that 

translational alterations are more extensive relative to transcriptional alterations in 

mediating AOM induced malignant transformation in the colon (115). Collectively, 

these data suggest that the lack of correlation between DEs and DERs may be attributed 

to distinct cofactors already positioned at corresponding transcription start sites. 

We were also interested in identifying which of the many H3K4 methylases and 

demethylases (such as KDM2A, KDM7 and KMT3C-E) that regulate gene expression 

could be contributing to the bias towards downregulation of K4me3 DERs in our data.   

We noted that specific key downregulated DERs were associated with H3K4me3 

demethylase KDM5B and methylase KM2TD (Figure 15.D and Ch.III Supplementary 

Table 3) both of which have been implicated in cancer development and proliferation 

(209,210) .  These findings suggest that increased KDM5B and decreased KM2TD 

activity are responsible for the AOM induced overall downregulation of K4me3 DERs. 
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3.4.2 AOM induced transcriptional changes are strongly correlated with antimicrobial 

responses.   

RNA-Seq results at the DE and pathway analysis levels, revealed a surprisingly 

strong link to interferon associated innate immune responses (Figure 15.C and E and 

Figures 17.A-B and Ch.III Supplementary Table 3).  This included 58 interferon 

associated DE genes, the URs IFNG, IFNAR1, IRF-3,5,7, TRIM24, the top pathways 

Interferon Signaling and Activation of IRF by Cytosolic Receptors, and the Infectious 

Disease, Antimicrobial Response, Inflammatory Response network.  Furthermore, recent 

evidence analyzing the effect of TRIM24 inhibition at various stages (week 5, week 14 

and tumor) of hepatocarcinogenesis, indicated the presence of increased transcription of 

STAT1 along with many immune response associated DE genes (211).  It is noteworthy, 

that many of these genes were also upregulated in our study (BST2, CXCL9, IFIT2, 

IFIT3, IFIT47, IGTP, IRF7, IRF9, IRGM, ISG15, MYH10, OASL2, RTP4 and USP18) 

and were uniquely expressed at the earlier stages of carcinogenesis (week 5) (211).  

Taken together, our results are consistent with recent findings indicating that cancer 

related changes in gut microbial composition may induce interferon associated responses 

that contribute to the early progression of colon cancer (202,212,213).  Additionally, 

many key genes associated with microbial immune response were upregulated at the 

RNA plus K4me3 levels, hence, they may act as key modifiers of cancer progression 

(202,213,214). 

One of the most prevalent URs detected from the analysis of both DE and DER 

genes was TRIM24.  We propose a putative mechanism for future investigation in which 

decreased RXR/RAR activity at specific sites (in a context specific manner) during 

colon cancer (215) leads to a decrease in KDM5B binding (216).  Since TRIM24 cannot 

bind to trimethylated H3K4 (217), while KDM5B can (218), an increase in K4me3 

subsequently leads to a decrease in TRIM24 (211) binding, thus inducing colon cancer 

(214).   
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3.4.3 Carcinogen induced changes in K4me3 DERs may predict for future 

transcriptional events 

Despite the fact that there were extensive links between K4me3 DERs and colon 

tumorigenesis (Ch.III Supplementary Table 3), these changes were not reflected at the 

RNA gene expression level during early cancer progression (10 weeks post AOM 

exposure).  For example, among the K4me3 DERs, 1210 have been linked to colorectal 

carcinoma (Ch.III Supplementary Table 3).  Biomarkers of colon tumors with K4me3 

DERs, corroborated  by previous findings, included: FOXO3, which regulates tumor 

suppressor genes associated with apoptosis (177), the G Protein GNAI2, NR3C1 

(glucocorticoid receptor), PDCD4 (programmed cell death 4), VEGFA (an endothelial 

growth factor, and the DNA repair associated proteins H2AFX and MSH2 (180,219-

221).  Furthermore, we discovered a range of lncRNAs with K4me3 DERs (Table 13), 

many of which have been previously associated with cancer, including colon cancer 

associated ATP2A2, CREBZF, PRRT2, H19 (222).  Based on these findings, we 

propose that K4me3 DERs are harbingers of future transcriptional inducers of 

carcinogenesis.   

Following AOM exposure, the observed decrease in Cellular Stress associated 

pathways and genes, including p38 MAPK Signaling associated genes (Figures 17.A) is 

consistent with previous findings indicating that MAPK activity may be down-regulated 

in colorectal cancer (207).  Further supporting evidence of this finding includes the 

association of K4me3 DERs with the downregulation of multiple apoptotic pathways, a 

common phenotype during tumorigenesis (176,223).  Reports of decreased apoptotic 

pathway activity (and transcriptional decrease of apoptosis associated genes) in tumors 

but not in earlier stages of colon cancer (181,224), are consistent with our data where a 

decrease in apoptosis pathways was not detected transcriptionally at the HM-ACF stage, 

but was detected in the K4me3 DERs, a marker of potential future changes in gene 

activity. 
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In summary, we have documented for the first time the chromatin structure 

associated with gene expression profiles of an in vivo murine colonic tumorigenesis 

model.  Our high-throughput sequencing approach revealed many expected changes at 

various regulatory stages of gene expression, plus unexpected insight into gene 

regulation during colon cancer progression.  Specifically, we were able to show that 

AOM induced transcriptional deregulation was primarily associated with interferon-

associated immune response genes, while K4me3 deregulation was linked to genes 

associated with colon tumorigenesis, perhaps acting as a harbinger of changes in gene 

activity.  These findings emphasize the value of genome-wide analyses and may have 

important clinical relevance for future therapeutic targeting of histone demethylases 

(210) and microbial composition alteration (212). 
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CHAPTER IV  

DIETARY FAT AND FIBER COMPOSITION ALTER GLOBAL HISTONE POST-

TRANSLATIONAL EPIGENETIC PROGRAMMING IN A RAT COLON CANCER 

PROGRESSION MODEL  

 

4.1 Introduction 

 

”Nutri-epigenetics”- the influence of dietary components on mechanisms 

manipulating epigenetic programming, which is encoded by specific histone 

modifications (methylation and acetylation) has been identified as a promising new field 

for cancer prevention strategies (44,225). Recent evidence now indicates that epigenetic 

alterations contribute to cancer-related cellular defects. For example, epigenetic 

silencing of critical genes, e.g., detoxifying enzymes, tumor suppressor genes, cell cycle 

regulators, apoptosis-inducing and DNA repair genes, nuclear receptors such as PPARs, 

FXR, HNF4A, signal transducers and transcription factors, by promoter methylation and 

modification of histones and non-histone proteins including p53 and NF-κB, by 

acetylation or methylation, drives malignant transformation (62,225).  

With respect to dietary chemoprevention, increasing numbers of published 

reports indicate a protective effect of fish oil and its bioactive components, n-3 

polyunsaturated fatty acids (PUFA), against colon cancer (55,69,111,226,227).  Similar 

reports exist focusing on the two main long n-3 PUFA found in fish oil, 

eicosapentaenoic acid (20:5Δ5,8,11,14,17) and docosahexaenoic acid (DHA;22:6Δ 

4,7,10,13,16,19) (79,82). In contrast, dietary lipids rich in n-6 PUFA [found in vegetable 

oils; e.g., linoleic acid (LA;18:2Δ 9,12) and arachidonic acid (20:4Δ 5,8,11,14)] have 

been linked to an increase in colon tumor development (112,228,229).    

DHA and EPA and their oxidative metabolites have been shown to interact with 

specific ligand dependent nuclear receptors including CAR, HNF4A, PPARG, PXR and 

RXRA (Figure 1) (46).  Since the original description of dietary fat as a regulator of 

gene expression over a decade ago, many transcription factors have also been identified 
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as prospective indirect targets for n-3 PUFA regulation. For example, DHA can increase 

the activity of CREBBP, EP300, and MYC and decrease activity of NF-kB (NFKB1), 

and STAT3 (46,225).  In this fashion, n-3 PUFAs epigenetically regulate the function of 

nuclear receptors and transcriptional factors and thereby regulate transcriptional 

processes. 

There are also many studies linking dietary fiber, gut microbiota and colon 

cancer prevention (230). The major metabolites produced by gut microbiota from readily 

fermentable fiber are short-chain fatty acids (SCFAs), such as butyrate, which has 

multiple beneficial effects at the intestinal and extra-intestinal level (231). As more 

dietary fiber is ingested, SCFAs production increases (232).  Even though some 

controversies remain concerning the in vivo responses of colonocytes to butyrate 

exposure (233), butyrate has been shown to impact cell kinetics, lumen pH, and 

epigenetics which regulate development of colon carcinogenesis (103,109,234).  There 

are at least 2 epigenetic mechanisms by which butyrate can increase histone acetylation 

in the. (235). (107)   Bacteria in the gut generate SCFAs including butyrate, which can 

act as a histone deacetylase (HDAC) inhibitor or alternately, in colonocytes, butyrate can 

be metabolized into acetyl-CoA and used for energy, or transported to the nucleus and 

act as substrate by histone acetylases (HATs) (232). 

Animals fed diets containing n-3 PUFA (fish oil) with pectin (which is fermented 

to butyrate) as a fiber source maximally promote apoptosis in the colon compared with 

diets high in other dietary lipids, e.g., n-6 (corn oil) (86,98,109,236). In a follow-up 

study, the administration of butyrate-containing pellets for targeted release in the colon 

was used to demonstrate that butyrate and fish oil work coordinately in the colon to 

trigger apoptosis (104,112,234). Subsequently, DHA and butyrate were shown to work 

synergistically to enhance apoptosis in colonocyte cultures compared with butyrate alone 

(100,101).  A clinical example of the chemoprotective effects of fat x fiber interaction 

was recently reported by Orlich et al., which validated the pescovegetarian diet as the 

most protective regimen in terms of colorectal cancer prevention (118).Outside of 

human experimentation, the AOM chemical carcinogenesis model serves as one of the 



94 

most definitive means of assessing human colon cancer risk (128,237). We have 

previously demonstrated that at 10 weeks post AOM injection, the colonic mucosa is 

precancerous, e.g., high multiplicity aberrant crypt foci are apparent. Macroscopic 

tumors are not detectable until ∼34 weeks post AOM injection (98).  During 

carcinogenesis, major cellular functions and pathways, including drug metabolism, cell 

cycle regulation, DNA damage repair and targeted apoptosis, response to inflammatory 

stimuli, cell signaling, and cell growth control and differentiation become deregulated 

(3,209,238,239).  

In this study, we employ novel technologies and bioinformatics algorithms, such 

as next-generation sequencing, in order to explore ’nutri-epigenomics’ at a genome-wide 

level and determine the importance of epigenetic mechanisms related to 

chemoprevention.  By determining 3 epigenetic levels of regulation (H3K4me3, H3K9ac 

and mRNA expression) in colonocytes from the same animals, we were able to gain a 

greater understanding of the chromatin state associated with the interaction of fish oil 

(rich in DHA/EPA n-3 PUFAs), pectin (a readily fermentable fiber) and AOM (colon 

carcinogen) treatments.  Our data contribute to the understanding of the regulatory action 

of chemoprotective bioactive compounds found in fish oil and readily fermentable fiber 

(n-3 PUFAs and SCFAs) in terms of malignant transformation of the colonic crypt.  

Mechanistic insights provided by this study are needed to provide perspective with 

regard to recent human clinical and epidemiological findings (118,119). 

4.2 Methods 

See 3.2 Methods Section (Chapter 3) for details on methodology. 
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4.3 Results 

 

Since we have previously demonstrated that dietary n-3 PUFA and pectin 

suppress colon tumorigenesis (66,101,112), experiments were designed to contrast the 

chemoprotective diet (fish oil and/or pectin) against the control diet containing non-

chemoprotective oil and fiber (corn oil and cellulose) in the presence and absence of 

carcinogen.  Three main biological comparisons were examined: 1) dietary fat effects 

(fish oil vs corn oil), 2) dietary fiber effects (pectin vs cellulose) and 3) dietary fat × 

fiber interaction in the presence of carcinogen [fish oil + pectin + AOM (FPA) vs corn 

oil + cellulose + AOM (CCA)]. (APPENDIX A) 

 

4.3.1 Enumeration of aberrant crypts 

 

Whereas AOM-treated rats developed aberrant crypts, their saline-treated 

counterparts did not. Therefore, all aberrant crypt results represent AOM-injected groups 

only. Total HM-ACF were higher (p < 0.0001; data not shown) in the distal colon 

compared with the proximal colon, independent of the diet. The corn oil + cellulose 

treatment resulted in a greater number of total HM-ACF compared with other treatment 

groups. In addition, the fish oil + pectin-fed rats displayed the lowest incidence of HM-

ACF compared with all other groups (Figure 19). 
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Figure 19. Fish Oil + Pectin synergistically suppress malignant transformation of the 

colon. High Multiplicity Aberrant Crypt Foci (HM ACF) incidence per rat colon is 

shown.  Bars not sharing the same superscript letters are significantly different. p<0.05. 

4.3.2 Overall effects of fish oil on transcription and histone tail modifications 

In an effort to identify key, genome-wide, bioactive effects associated with fish 

oil and pectin, gene expression profiling by Next Generation Sequencing of RNA, 

H3K4me3 and H3K9ac ChIPed DNA was performed.   Fish oil induced differentially 

expressed transcripts (DE) and differentially enriched chromatin regions (DERs) were 

determined by pooling sequence data from individual rats fed a fish oil diet across the 

various treatment groups in comparison to rats fed a corn oil diet (fcs+fps+fca+fpa 

versus ccs+cps+cca+cpa) (n=34 fish oil fed rats versus n=33 corn oil fed rats).  Similarly 

pectin induced DEs and DERs were determined by pooling rats fed a pectin diet across 

the various treatment groups and comparing them against the rats fed a cellulose diet 

(cps+fps+cpa+fpa versus ccs+fcs+cca+fca) ((n=34 pectin fed rats versus n=33 cellulose 

fed rats).   
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Figure 20 shows the distribution of expression strength relative to the log-ratio 

of DE and DERs.  Included above each MAplot are the total number of DE genes 

(including different isoforms) and the total number of DERs (annotated and un-

annotated).  Table 14 provides a summary of genes with differentially expressed (DE) 

transcripts and differentially enriched peaks (DERs) with an FDR<0.1 and a p-

value<0.01 in fish oil vs corn oil treated animals and readily fermentable (pectin) versus 

poorly fermentable (cellulose) fiber.  ChIV.Supplementary Table 1 details DE and 

DERs with FDR<0.1 and p<0.01. Enriched regions (peaks) further than 5kb from the 

transcription start site were considered “un-annotated” and classified with an ID 

representing the rat (rn4) genomic location of that island.   

Fish oil feeding altered the transcription of 160 genes along with 32 K9ac and 3 

K4me3 genes with DERs (FDR<0.1) affected by fish oil (Figure 20 and Table 14), with 

similar amounts of up- and downregulated genes detected at each level (Ch.IV 

Supplementary Table 1).  Based on previous studies indicating that histone tail 

modifications regulate gene expression at the transcriptional level (178), we expected 

genes with K4me3 and K9ac DER to correlate with RNA differentially expressed (DE) 

genes.  Generation of a global plot of all the K4me3 and K9ac DER fold changes against 

RNA DE genes revealed poor correlation between genes with these histone marks and 

RNA, regardless of p-values (the axes include number of genes with an FDR<0.1 

(Figure 21).  Similarly, a poor correlation was observed between annotated K9ac and 

K4me3 DERs (Figure 21).  There were no genes with an FDR<0.1 that were 

simultaneously modulated at the RNA, K9ac and K4me3 level by fish oil, and a more 

relaxed filtering parameter using genes with a Fisher’s Exact test p-value<0.01 revealed 

only 4 genes were simultaneously affected at all epigenetic levels (Figure 22).  These 

genes were the upregulated tumor suppressors CDH11 (cadherin 11) and SCD2 

(stearoyl-Coenzyme A desaturase 2) and downregulated oncogenes CERS4 (ceramide 

synthase 4) [Dlamini et a 2015] and PDE4B (cAMP-specific phosphodiesterase 4B) 

[Smith PG 2005].   
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Figure 20. Differential expression (DE) of all transcribed genes or histone tail 

differentially enriched regions (DERs).  MAplots indicate the differential expression of 

all transcribed genes or histone tail enriched regions (y-axis, log-ratio of difference in 

intensity of histone tail modifications enriched regions) vs their overall intensity of 

expression (x-axis, log-average of read counts) following AOM vs saline treatment.  

Pink represents differentially expressed (DE) transcripts and differentially enriched 

regions (DERs) with a p-value < 0.05. Genes with an FDR<0.1 are highlighed in red, 

and all other detected genes are highlighted in blue. 
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Figure 21. Poor correlation between DE transcripts and histone tail modifications with 

DERs.  Scatterplots reveal low correlation between DE transcripts and histone tail 

modifications with DERs by comparing the log2(Fold Changes) from AOM vs saline 

treatments.  Specific contrasts include RNA vs. K4me3, RNA vs. K9ac, and K4me3 vs. 

K9ac. 

 

 

Among the fish oil (fcs+fps+fca+fpa versus ccs+cps+cca+cpa) DE genes, 8 have 

been previously associated with docosahexaenoic acid (DHA), a major bioactive 

component of fish oil, including the upregulated transporter FABP1, a fatty acid binding 

protein often downregulated in colon cancer and upregulated by DHA (240,241).  Four 

mitochondrial enzymes previously shown to be modulated by DHA were also 

upregulated, acyl-CoA synthetase ACSBG1(242), carnitine palmitoyltransferases CPT1 

and CPT2 (243), and the kinase MAP2K1 (66).  Stearoyl-CoA desaturase SCD (244) 

was also upregulated and phospholipase A2 PLA2G1B was downregulated (245). 
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Figure 22. Poor correlation between DE transcripts and histone tail modifications with 

DERs modulated by fish oil.  Overlap of differentially expressed (DE) or differentially 

enriched (DER) genes across multiple epigenetic levels (FDR<0.1 and p<0.01) is shown. 

Table 14. Summary of diet effects on differentially expressed (DE) and differentially 

enriched (DERs) genes. 
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Since genes typically function as part of intricate networks, prior biological 

knowledge greatly facilitates the meaningful interpretation of the gene-expression 

changes associated with large datasets.  Therefore, we used pathway analysis to help 

interpret the data in the context of biological processes, pathways and networks.  

Functional analysis of DEs and DERs using the Ingenuity Pathway Analysis (IPA) 

software was performed in an effort to better understand the biological relevance of the 

fish oil dysregulated genes.  Pathway analysis of the 32 genes with K9ac DERs 

(FDR<0.1) revealed 23 genes related to Metabolic Disease, Lipid Metabolism, and Cell 

Death and Survival networks (ChIV.Supplementary Table 2).  Only 3 genes were 

differentially enriched at the K4me3 level (fcs+fps+fca+fpa versus ccs+cps+cca+cpa), 

e.g., downregulated metallopeptidase ADAMTS9A and upregulated peptidase PCSK9 

and transcription regulator PBXIP1.  Network analysis of our dataset using the less 

stringent filtering parameter (p<0.01) revealed similar types of biological processes 

affected by fish oil at the RNA and K4me3 levels.  Therefore, although the RNA and 

K4me3 networks were mostly comprised of different genes, the top affected metabolism 

pathways were correlated with Lipid Metabolism, Small Molecule Biochemistry, and 

Vitamin and Mineral Metabolism (Figure 23 and ChIV.Supplementary Table 2).  

Interestingly the top network affiliated with K9ac DER genes with a p<0.01 were more 

closely related to Cell-to-Cell Signaling and Interaction (Figure 23).   

 



  

102 

 

 

Figure 23. Top networks affected by fish oil.  Network analysis of differentially 

expressed genes (p < 0.01) identified with Ingenuity Pathway Analysis (IPA) software in 

response to fish oil feeding (fcs+fps+fca+fpa versus ccs+cps+cca+cpa).  Blue fill 

indicates decreased gene activity (DE and/or DERs) and orange fill indicates increased 

gene activity (DE and/or DERs).  Deeper color hue indicates genes with greater fold 

change.  Dashed lines indicate indirect interactions and solid lines indicate direct 

interactions.  The arrow style indicates specific molecular relationships and the 

directionality of the interaction.  

 

 

4.3.3 Overall effects of pectin on transcription and histone tail modifications 

 

Very few genes with an FDR<0.1 were modulated by pectin (cps+fps+cpa+fpa 

versus ccs+fcs+cca+fca) at any measured epigenetic levels (Table 14).  When 

considering the genes using a p<0.01 cutoff, the overall effects of the readily 
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fermentable fiber pectin were most noticeable at the K9ac level, with 432 K9ac gene 

DERs compared to 222 genes with K4me3 DERs and 102 RNA DEs (p<0.01) (Figure 

24).  We detected a greater number of upregulated (250) as compared to downregulated 

(150) genes with K9ac DERs, while similar amounts of up- and downregulated genes 

were detected at the K4me3 and RNA level (ChIV.Supplementary Table 1).  No genes 

with an FDR<0.1 were simultaneously affected at the RNA, K9ac and K4me3 level by 

pectin, and only 2 genes with p<0.01 were simultaneously affected between levels 

(Figure 24).  Those genes that were upregulated include EGFLAM (EGF-like, 

fibronectin type III and laminin G domains) and downregulated oncogene ANXA3 

(annexing 3) [Xie Oncol Lett. 2013].   

Pathway analysis (IPA) of (p<0.01) pectin modulated genes revealed the top 

network associated with differentially enriched transcripts (DEs) was related to Cell-to-

Cell Signaling and Interaction, Cancer, Organismal Injury and Abnormalities.  K4me3 

DERs were linked to Lymphoid Tissue Structure and Development, Organ Morphology, 

Organismal Development, while K9ac DERs were related to Post-Translational 

Modification, Protein Folding, Cell Morphology (Figure 25 and ChIV.Supplementary 

Table 2). 

4.3.4 Context specific epigenetic effects of fish oil and pectin 

We compared the differentially transcribed genes (DEs) and K4me3 and K9ac 

differentially enriched (DERs) genes in common between saline and AOM injected rats 

fed the same diet (Table 15) to determine whether the bioactive compounds had the 

same effects on a healthy colon and a colon undergoing cancer progression (fps v ccs 

compared to fpa v cca, fcs v ccs compared to fca v cca, and cps v ccs compared to cpa v 

cca).  Dietary effects differed in healthy (saline) vs carcinogenic (AOM) conditions at all 

epigenetic levels, e.g., few genes (~10%) were commonly dysregulated in rats fed the 

same diet but injected with saline instead of AOM.  Only in fish oil + pectin fed rats, at 

the transcription level, did we observe a slightly higher number of genes in common, 
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with 42 genes differentially expressed in both saline and AOM treated animals (Table 

15).  Among these genes 17 were upregulated and 18 were downregulated in both 

datasets.  In contrast, 7 additional genes were upregulated in AOM injected animals but 

downregulated in saline injected animals fed the same diet (ChIV.Supplementary 

Table 1). 

Figure 24. Poor correlation between DE transcripts and histone tail modifications with 

DERs dysregulated by pectin.  Overlap of differentially expressed (DE) or differentially 

enriched (DER) genes across multiple epigenetic levels (FDR<0.1 and p<0.01). 
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Figure 25. Top networks affected by pectin feeding.  Network analysis of differentially 

expressed genes (p < 0.01) identified with Ingenuity Pathway Analysis (IPA) software in 

response to pectin.  Blue fill indicates decreased gene activity (DE and/or DERs) and 

orange fill indicates increased gene activity (DE and/or DERs).  Deeper color hue 

indicates genes with greater fold change.  Dashed lines indicate indirect interactions, and 

solid lines indicate direct interactions.  The arrow style indicates specific molecular 

relationships and the directionality of the interaction.  

 

 

To assess the consequence of each bioactive compound in a context specific 

manner (fat x fiber interaction), we used the corn oil (rich in n-6 PUFAs) and cellulose 

(rich in poorly fermentable fiber) diets (111) under AOM and saline conditions as 

control (fpa v cca, fca v cca, cpa v cca, and fps v ccs, fcs v ccs, cps v ccs) (Table 14).  

For each of these treatment comparisons we observed poor correlation between the 

epigenetic levels (RNA, K4me3 and K9ac).  Furthermore the epigenetic and functional 

response of the colonocytes to fish oil and pectin individually were often not reflected in 
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the combination fish oil+pectin diet (Figures 25 and 26).  Among these 6 individual 

comparisons, the most noteworthy changes, with an FDR<0.1, were the transcriptional 

effects of fish oil + pectin under carcinogenic conditions (fpa vs cca) with 83 DEs 

(Table 14).  Pathway analysis revealed 29 of those genes were associated with 

biological processes linked to lipid metabolism, especially increased beta-oxidation of 

fatty acids (Figure 8).  Nineteen of these genes were linked to cellular functions 

associated with a decreased accumulation of lipids (such as cholesterol, acylglycerols 

and fatty acids) (p<0.0001, z-score -1.91) and 17 were linked to increased fatty acid 

metabolism (p<0.001, z-score 2.37).  More specifically, these genes included ABCD3 

and CPT2, two genes that are vital to the mitochondrial l-carnitine shuttling process, 

beta-oxidation acyl-CoA enzymes, ACSBG1 (which also plays a role in the activation of 

DHA) and ACADM.  In addition, genes linked to the metabolism of acyl-CoA (DBI and 

ACOT1) and transporters that boost beta-oxidation of very long chain fatty acids 

(ABCD3 and FABP1) were detected (Figure 26).  Examination of the 267 DE genes 

with a p<0.01 (fpa vs cca) revealed an increase in the number (68) of lipid metabolism 

affiliated genes (Figure 26 and ChIV.Supplementary Table 4).  

Since the most chemoprotective diet was fish oil + pectin, we were also 

interested in which biological functions were most affected by this diet during 

carcinogenesis at the histone modification levels (K4me3 and K9ac).  Table 16 includes 

the category with the lowest multiple testing corrected p-value of predicted biological 

functions affected by fish oil + pectin + AOM (fpa) at every epigenetic level.  Analysis 

was performed using DEs and DERs with p<0.01 (summarized in Table 14) from each 

pairwise comparison and highlighted cells representing the percentage of all DEs or 

DERs in each treatment are colored by epigenetic level, with deeper hues indicating a 

greater percentage of dysregulated genes were associated with specified biological 

functions. 
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Table 15. Summary of differentially expressed (DEs) and differentially enriched (DERs) 

genes in common between saline and AOM injected rats fed the same diet. 

 

 

 

4.3.5 Identification of upstream regulators perturbed by dietary fat and fiber interaction  

 

Due to the enhanced chemoprotective activity of the bioactive fat x fiber diet 

during carcinogenesis, we utilized IPA Upstream Regulator (URs) analysis to identify 

the transcriptional regulators linked to fish oil + pectin (fpa vs cca) n=11 rats per 

treatment modulated DE and DER genes.  Causal networks constructed from individual 

relationships curated from the literature were used to create mechanistic hypotheses that 

explained expression changes. We used a statistical approach to determine and score 

those Upstream Regulators whose connections to our dataset genes were unlikely to 

occur in a random model (246).  Initially, we quantified known targets of transcriptional 

regulators present in our dataset and compared their direction of change (over- or under-

expression) to predict likely relevant regulators including transcription factors, nuclear 

receptors and enzymes.  This analysis was performed on the gene sets of all 6 individual 

comparisons mentioned in Table 14 at each epigenetic level (total of 18 gene sets with 

p<0.01) and also on the fpa vs cca DE genes with an FDR<0.1. 



  

108 

 

Table 16. Top categories of biological functions affected by fish oil + pectin under carcinogenic conditions at each 

epigenetic level (parenthesis), for each treatment the listed category was predicted by pathway analysis with a certainty of 

p<0.05. 

Lipid Metabolism (RNA) 
  

Gastrointestinal Disease (K4me3) 
 

Cellular Movement (K9ac) 
 

treatment 
epigenetic 

level 

% of 
total 

DE/DERs B-H adjp 
 

treatment 
epigenetic 

level 

% of 
total 

DE/DERs B-H adjp 
 

treatment 
epigenetic 

level 

% of 
total 

DE/DER B-H adjp 
fpa RNA 24% 7.73*10^-9 

 
fpa RNA 62% 8.13*10^-4 

 
fpa RNA 19% 2.1*10^-2 

fca RNA 22% 1.13*10^-2 
 

fca RNA 16% 4.27*10^-2 
 

fca RNA 11% 4.27*10^-2 
cpa RNA 11% 2.18*10^-2 

 
cpa RNA 28% 3.41*10^-2 

 
cpa RNA 6% 5.67*10^-2 

fps RNA 20% 3.11*10^-2 
 

fps RNA 12% 3.11*10^-2 
 

fps RNA 21% 3.11*10^-2 
fcs RNA 15% 4.51*10^-4 

 
fcs RNA 20% 2.25*10^-4 

 
fcs RNA 19% 2.99*10^-4 

cps RNA 25% 2.59*10^-2 
 

cps RNA 13% 2.35*10^-2 
 

cps RNA 15% 2.59*10^-2 
fpa K9ac 13% 7.41*10^-3 

 
fpa K9ac 60% 2.56*10^-2 

 
fpa K9ac 23% 2.27*10^-4 

fca K9ac 7% 1.46*10^-2 
 

fca K9ac 64% 4.31*10^-4 
 

fca K9ac 22% 3.93*10^-5 
cpa K9ac 9% 1.28*10^-2 

 
cpa K9ac 59% 9.24*10^-4 

 
cpa K9ac 18% 1.67*10^-2 

fps K9ac 18% 4.67*10^-2 
 

fps K9ac 63% 8.35*10^-2 
 

fps K9ac 21% 6.11*10^-2 
fcs K9ac 11% 4.08*10^-2 

 
fcs K9ac 58% 6.62*10^-2 

 
fcs K9ac 9% 1.23*10^-1 

cps K9ac 13% 3.58*10^-4 
 

cps K9ac 56% 3.97*10^-3 
 

cps K9ac 17% 3.09*10^-5 
fpa K4me3 4% 1.03*10^-1 

 
fpa K4me3 60% 6.91*10^-3 

 
fpa K4me3 15% 1.03*10^-1 

fca K4me3 6% 7.52*10^-2 
 

fca K4me3 63% 7.52*10^-2 
 

fca K4me3 17% 7.52*10^-2 
cpa K4me3 13% 4.52*10^-2 

 
cpa K4me3 52% 1.45*10^-2 

 
cpa K4me3 4% 7.22*10^-2 

fps K4me3 13% 1.65*10^-2 
 

fps K4me3 67% 9.93*10^-3 
 

fps K4me3 25% 2.86*10^-2 
fcs K4me3 15% 6.74*10^-2 

 
fcs K4me3 66% 6.74*10^-2 

 
fcs K4me3 20% 6.74*10^-2 

              

cps K4me3 3% 9.83*10^-2 
 

cps K4me3 18% 9.13*10^-2 
 

cps K4me3 5% 6.3*10^-2 
B-H adjp = Benjamini-Hochberg Multiple Testing Correction p-value of biological functions predicted by IPA pathways analysis 
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Figure 26. Fish oil + pectin transcriptionally enhance -oxidation and decrease lipid 

concentration associated genes.   Analysis of differentially expressed genes associated 

with lipid metabolism. Lines indicate the association between a biological process and 

each gene.  Colors of biological functions indicate whether the differential expression of 

genes were associated with activation or inhibition of that biological process (p<0.001).  

Differentially expressed genes with and FDR<0.1 are bolded.  Ovals and star indicate 

genes also dysregulated in diets/treatments different from fpa by any one variable 

including fat, fiber or carcinogen. 

 

 

Ligand dependent nuclear receptors were prevalent among the top modulated 

URs connected to the greatest numbers of differentially transcribed (DE) genes in fpa vs 

cca (Figure 27, 28 and ChIV.Supplementary Table 3).  The nuclear receptors included 

activated PPARs alpha, delta, and gamma along with LXR (NR1H), FXR (NR1H4), 

PXR (NR1I2), GCR (NR3C1) and HNF4A.  Some of these nuclear receptors were also 
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activated, to a lesser extent, in other fish oil containing diets under saline and 

carcinogenic conditions at the transcriptome and K9ac levels (Figure 27 and 28).  

Except for glucocorticoid receptor (NR3C1), HNF4A and FXR (NR1H4), the nuclear 

receptors were predicted to be activated only at the RNA and K9ac epigenetic levels.  

Furthermore, 39 of the 68 fpa vs cca DE genes associated with lipid metabolism were 

also part of the 58 genes directly connected to the nuclear receptors.  The lipid 

metabolism related genes with K9ac differential enrichment (DERs) were different from 

lipid metabolism DE genes (ChIV.Supplementary Table 2). 

 

4.4 Discussion 

 

To our knowledge this is the first in vivo study to globally assess changes in 

histone post translational modifications and the transcriptome in colonocytes during 

colon cancer progression. There were two major novel findings from this study 

involving the chemoprotective effects of fish oil (rich in n-3 PUFAs) and readily 

fermentable fiber (a source of butyrate) during colon cancer progression: (i) a diet 

containing fish oil triggers the transcription of lipid metabolism-associated genes, 

including beta-oxidation, and is predicted to activate n-3 PUFA stimulated ligand 

dependent nuclear receptors; and (ii) administration of a fish oil + pectin diet during 

colon cancer progression synergistically modulates transcription more than diets 

containing fish oil or pectin separately. 

Poor correlation was observed between differentially transcribed (DE) and 

enriched genes (DERs) at multiple epigenetic levels in fat x fiber dietary combinations 

and in the presence/absence of carcinogen (Figures 21-27 and Tables 15-16).  We 

propose the chemoprotective influence of the bioactive compounds fish oil + pectin (rich 

in n-3 PUFAs and butyrate) in colon cancer progression are multifaceted and generate a 

specific epigenetic modification and transcriptional profile in a context specific manner.   
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Figure 27. The chemoprotective effects of Pectin + Fish Oil during cancer progression 

included predicted activation of nuclear receptors.  Heatmap of A. ligand-dependent 

nuclear receptors and B. chromatin modifiers (HDACs) and interferon associated URs, 

indicates the top Upstream Regulators in fish oil + pectin fed rats during cancer 

progression.  Data represent –log(Benjamini-Hochberg-adjusted  p-value) with a score 

>1.29 indicating a B-H p-value<0.05.  URs are grouped according to families, color 

scale ranges from yellow to brown, with decreasing p-value corresponding to deeper 

shades of brown. 
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4.4.1 Pectin preferentially affects H3K9 acetylation of saline over AOM injected rats 

Overall, when considering all pectin (readily fermentable fiber) containing diets 

(cps+fps+cpa+fpa) versus all cellulose (poorly fermentable fiber) containing diets 

(ccs+fcs+cca+fca) with a p<0.01, we detected more upregulated (519) than 

downregulated (322) K9ac DERs.  This result is generally consistent with previously 

published data (109,247).   

Since poor correlation was observed between differentially transcribed (DE) and 

enriched genes (DERs) at multiple epigenetic levels in fat x fiber dietary combinations, 

we analyzed the effects of pectin on genes with K9ac differential enrichment in a 

context specific manner.  A comparison of the number of upregulated versus 

downregulated K9ac DERs with p<0.01 in each individual pectin containing diet versus 

the control corn oil + cellulose (fpa v cca, cpa v cca, fps v ccs, and cps v ccs) revealed 

154 upregulated and 108 downregulated K9ac DERs in fps vs ccs, while the other pectin 

containing diets exhibited similar numbers of upregulated and downregulated K9ac 

DERs (ChIV.Supplementary Table 1).  Previous studies have also described a global 

increase in histone acetylation in response to butyrate administration in saline but not 

AOM injected animals.  Specifically, Crim at al. reported that mucosal levels of nuclear 

H4ac and fecal butyrate levels in fish oil + butyrate fed rats increased in comparison to 

corn oil + butyrate fed rats following saline but not AOM injection (112).  These 

findings suggest that histone hyperacetylation, an epigenetic effect traditionally 

associated with increased levels of butyrate in the colon, is more commonly associated 

with ‘healthy/normal’ colonic epithelial cells compared to colonocytes undergoing 

cancer progression.  

In general, our data are inconsistent with some previous studies in which histone 

hyperacetylation was enhanced following butyrate treatment in human adenocarcinoma 

cells exhibiting a Warburg-like metabolic profile (248,249).  Our genome-wide analyses 

of histone 3 acetylated at lysine 9 (H3K9ac) enrichment did not detect upregulated K9ac 
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DERs at genes associated with the Warburg effect, including Fas, p21 and p27.  There 

was also no general increase of H3K9 acetylation, in pectin fed rats, at the cancer 

progression stage, however it is still possible that a global assessment of histone 3 or 

histone 4 pan-acetylation (H3ac and H4ac) could produce results similar to Donohoe et 

al. (248). Furthermore, it is worth noting that histone hyperacetylation following 

butyrate treatment was assessed by Donohoe et al. at the tumorigenesis stage of colon 

cancer cells or was triggered under conditions of elevated glucose treatment, which was 

not the case in our investigation (248,250).  This is noteworthy because our 

experimental design explored a different stage of colon cancer development and 

therefore provides additional mechanistic insight into a poorly studied time point (prior 

to polyp and tumor formation) in this multistep, multipath disease. 

4.4.2 Fish oil triggers transcription of lipid metabolism associated genes 

Mounting evidence indicates that dietary fish oil protects against colon cancer 

(111,251-253).  Interestingly, we noted that fish oil feeding induced transcriptional 

changes in many genes associated with lipid metabolism (Table 16). Specifically, a 

large cluster of upregulated genes were associated with increased fatty acid catabolism 

and a decreased accumulation of lipid (Figure 26).  The transcriptional changes we 

observed are supported by previous studies by Mori et al. who assessed the effect of fish 

oil on the small intestine of obese mice and identified many of the same lipid 

metabolism related genes modulated in our study, e.g., ACOT1, ACADM, CAT, 

CPT1A, CPT2, MGLL, PDK4, PEX11A (254,255) (Figure 27).   
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In Figure 26, lipid concentration refers to decreased accumulation of lipids such 

as cholesterol, triacylglycerols, acylglycerols and fatty acids (256,257).  The activation 

and inhibition, respectively, of these biological processes can be chemoprotective in 

nature (258-262).  For example, fish oil can promote mitochondrial proton leak (262), 

thus limiting energy production via promotion of fatty acid catabolism (beta-oxidation) 

of n-3 PUFAs (255). Additionally, the predicted inhibition of lipidogenesis by the n-3 

PUFAs in fish oil may be related to the downregulation of de novo fatty acid synthesis 

required for membrane biosynthesis, which may inhibit cell growth and proliferation 

(263,264).   

The physiological effects induced by fish oil can be further examined by 

assessing the activity of predicted upstream transcriptional regulators.  Many of the top 

Figure 28. Fish oil + pectin feeding enhances activation of ligand dependent nuclear 

receptors (NRs) associated with n-3 PUFAs (fpa v cca).  Yellow fill represents the 

projected increase in NR activity.  Blue fill indicates decreased gene activity (DE) and 

orange fill indicates increased gene activity (DE).  Deeper color hue indicates genes with 

greater |log2(FoldChange)|.  Solid lines represent direct and dashed lines represent 

indirect gene interaction. 
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Upstream Regulators detected in fish oil containing diets under carcinogenic conditions 

were ligand dependent nuclear receptors (Figure 27).  Previous reports supporting our 

predictions suggest that fish oil-derived n-3 PUFAs interact with the function of the 

nuclear receptors (NRs) presented in Figure 28 and modulate colon cancer and colitis in 

a chemoprotective manner (62,225,265,266).  Of the nuclear receptors known to be 

induced by n-3 PUFAs (PPARs, LXRs, FXRs, HNF4A and SREBPs), the majority were 

predicted to be induced by fish oil + pectin fed rats under carcinogenic conditions 

(Figure 27 and 28) (267).   

 

4.4.3 Fish oil plus pectin synergistically modulate transcription 

 

Even though the predicted activation of beta-oxidation has been previously 

associated with fish oil and butyrate individually (255,268-270), only ACADM, FABP1, 

and CPT2 were upregulated in fca v cca, and none of the beta-oxidation associated 

genes were upregulated by cpa v cca.  The majority of beta-oxidation associated genes 

were only upregulated in the combinatorial diet (fpa v cca) (Figure 26).  We also noted 

that, during carcinogenesis, the majority of the genes modulated by fish oil + pectin (fpa 

v cca) have been previously attributed to the effects of fish oil in other disease models 

(254,255), suggesting that pectin (in the form of short chain fatty acids, including 

butyrate) enhances the chemoprotective effects of fish oil during colon cancer 

progression (Figure 26 and ChIV. Supplementary Table 1) (64,270,271).  

By considering the intersects from cross correlating the genes linked to the n-3 

PUFA activated nuclear receptors described in Figure 28 against the lipid metabolism 

associated genes in Figure 26 we found all he beta-oxidation associated genes reported 

in Figure 26 and ~50% of the genes associated with activated lipid catabolism 

(ChIV.Supplementary Table 2).  These results imply the transcriptional activation of 

lipid metabolism genes is likely triggered by fish oil activated nuclear receptors. 
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The augmented beta-oxidation associated with fish oil + pectin (fpa) feeding may 

be explained by the ability of n-3 PUFA to activate ligand dependent nuclear receptors 

(Figure 26 and 28).  In the fish oil only diet, we propose that n-3 PUFA activated NRs 

resulting in the transcription of beta-oxidation and lipid catabolism associated genes. 

This would result in the enhancement of beta-oxidation, promoting the catabolism of n-3 

PUFAs in the mitochondria.  In the combination fish oil + pectin diet, we observed an 

even greater increase in beta-oxidation and lipid catabolism associated genes.  Under 

these conditions, we propose that enhanced butyrate entry into the mitochondria (from 

pectin), a preferential source of energy in colonocytes (250), provides additional 

substrate for beta-oxidation, allowing a greater percentage of the n-3 PUFAs (from fish 

oil) in the cell to act as nuclear receptor ligands, thereby inducing the transcription of 

even more beta-oxidation associated genes (Figure 26 and 28) (255,267,272,273).  

These results support our hypothesis that, in colonocytes, fish oil related effects are 

enhanced by the inclusion of pectin to the diet during the onset of carcinogenesis 

(268,274).  

The majority of research examining cancer metabolism has been limited to a 

handful of metabolic pathways, mainly linked to glycolysis, glutaminolysis and fatty 

acid synthesis.  Thus the relevance of beta-oxidation of fatty acids to cancer biology 

remains obscure (275).  Current dogma suggests that fatty acid oxidation may promote 

carcinogenesis by providing extra substrate for the generation of ATP (275). However, 

we did not observe any evidence of increased transcription or activity of AMPK or ATP 

generating enzymes such as IDH1, ME1, G6PDH, 6PGLDH (Figure 26 and ChIV. 

Supplementary Table 1) nor did we observe a change in animal body weights of 

animals in any treatment group (APPENDIX B). 

Studies addressing changes in transcriptional and histone tail modifications in 

colonic epithelial cells upon fish oil or fermentable fiber feeding typically detect a 

limited number of genes as assessed by qRT-PCR, in-vitro models, and/or the use of 

each bioactive fish oil or fiber individually (40,98,105,248,276).  In contrast, in this 

study we applied a global approach that facilitated an examination of the entire genome 
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in an unbiased manner and concurrently compared changes in histone tail modifications 

to the transcriptome.   

With respect to tissue collection, we chose to assess epigenetic changes among 

all the colonocytes in the distal colon for various reasons.  First, in-vivo ChIP-seq of the 

colon requires a relatively high number of cells.  Second, any dietary effects on the 

colon are likely to be present in all/any of the colonocytes and third, in order to detect 

fat and fiber “field effects” (a term which designates carcinogenic molecular 

abnormalities present in tissues that appear histologically normal) (277,278) during 

colon cancer progression. 

In summary, we have documented for the first time the chromatin structure 

associated with a diet rich in fish oil (rich in n-3 PUFAs) and readily fermentable fiber 

(rich in short chain fatty acids) under normal (saline control) and carcinogenic 

conditions.  We propose that the chemoprotective fish oil + pectin diet generates unique 

epigenetic modifications and transcriptional profiles in a context (AOM vs saline) 

specific manner.  Genes associated with enhanced beta-oxidation were transcriptionally 

upregulated uniquely in fish oil + pectin (fpa v cca) fed rats.  Only a small subset (3) of 

beta-oxidation genes previously linked to fish oil were upregulated in fish oil + cellulose 

fed rats (fca v cca).  Upstream regulator analysis revealed the activation of ligand 

dependent nuclear receptors predominantly in the presence of pectin (fpa v cca).  We 

therefore hypothesize that, in colonocytes, fish oil related epigenetic effects are 

enhanced by concurrent pectin feeding during the progression of carcinogenesis.  A 

potential mechanism for this phenomenon may include the concurrent enhancement of 

beta-oxidation and the induction of futile mitochondrial respiration (proton leak) that 

leads to the uncoupling of ATP synthesis, resulting in nutrient wasting. 

In conclusion, our data contribute to the understanding of the regulatory action of 

chemoprotective bioactive compounds found in fish oil and readily fermentable fiber (n-

3 PUFAs and SCFAs) in colonic crypts and provide critical mechanistic insight into 

recently reported epidemiological findings (118). 
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CHAPTER V  

SUMMARY AND FUTURE DIRECTIONS 

 

Long n-3 PUFA from fish oil and fermentable fiber are ideal colon cancer 

chemotherapeutics because (1) they are toxicologically innocuous and free of safety 

problems intrinsic to drugs administered over long periods of time, (2) are relatively 

inexpensive, and (3) provide additional health benefits, such as reduction in mortality 

(Lien 2009, Cockbain, Toogood et al. 2012, Bell, Kantor et al. 2014). In addition, the 

simultaneous ingestion of fish oil and fermentable fiber can improve their efficacy in 

colon cancer prevention/therapy (Chang, Chapkin et al. 1998, Crim, Sanders et al. 2008, 

Davidson, Wang et al. 2009, Jia, Ivanov et al. 2011, Fenton and McCaskey 2013). 

From an epigenetic perspective, there is still much to be discovered in terms of 

the effects of long n-3 PUFA and fermentable fiber in the colon at the transcriptional 

and chromatin state level.  In this study, we employ novel technologies and 

bioinformatics algorithms, such as next-generation sequencing, in order to explore 

’nutri-epigenomics’ at a genome-wide level by using an in-vivo, pre-clinical model to 

better comprehend the importance of epigenetic mechanisms related to 

chemoprevention.  Our ultimate objective is to contribute to the understanding of the 

regulatory action of chemoprotective bioactive compounds found in fish oil and readily 

fermentable fiber (n-3 PUFAs and SCFAs) in terms of malignant transformation of the 

colonic crypt.   Mechanistic insights gained in this study are needed to interpret human 

clinical and epidemiological findings (O'Keefe, Li et al. 2015, Orlich, Singh et al. 2015). 

In order to answer these questions we probed the epigenetics of the colon along 

its longitudinal axis (Aim 1), the effects of AOM, a colon carcinogen, (Aim 2), and the 

effects of fish oil (fat rich in n-3 PUFAs specifically DHA and EPA) and a readily 

fermentable fiber (pectin) on the distal colon (Aim 3). 
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Aim 1: Determine chromatin structure associated with differential expression 

and phenotypic responses in the distal versus proximal colon epithelial crypts by 

correlating ChIP-Seq to mRNA transcription data. 

Aim 2: Monitor early pre-tumorigenic epigenetic molecular events driving colon 

cancer by generating high-resolution genome-wide transcriptional and “chromatin-state” 

maps for intestinal epithelial cell crypts in rats injected with a colon-specific carcinogen 

or saline. 

Aim 3: Gain epigenetic insight into the mechanisms of nutritional 

chemoprevention by generating high-resolution transcriptional genome-wide 

“chromatin-state” maps for intestinal epithelial cell crypts in rats (i) injected with a 

colon-specific carcinogen or saline, and (ii) fed a diet containing fish oil (n-3 PUFA), 

(iii) pectin (butyrate) or (iv) a combination of both fish oil and pectin. 

5.1 Aim 1 (Chapter II) 

Many diseases of the colon exhibit an anatomical bias and proximal and distal 

colorectal cancers have been reported to exhibit distinct gene-specific methylation 

profiles, transcriptional profiles, and molecular and clinical characteristics (Deng, Kakar 

et al. 2008, Hiraoka, Kato et al. 2010, Mladenova, Daniel et al. 2011).  Since there are no 

cell lines that uniquely represent the proximal or distal colon, the need to identify 

regional epigenetic differences at the chromatin level using an in vivo model remains 

unfulfilled because of the challenges associated with chromatin immunoprecipitation of 

organ tissues for high throughput sequencing.   

Therefore, we determined the chromatin structure associated with gene 

expression profiles in the rat proximal and distal colon by globally correlating chromatin 

immunoprecipitation next generation sequencing analysis (ChIP-Seq) with mRNA 

transcription (RNA-Seq) data.  This characterization provides the first available in vivo 

genome-wide map of histone PTMs in the rat colon with respect to the relationship 



120 

between chromatin alterations and gene transcription.  For this purpose, we globally 

identified the transcriptome and sites of H3K4 trimethylation (H3K4me3) in colonic 

crypt epithelial cells.  By assessing the correlation between histone PTMs and 

transcriptional data, we identified canonical pathways influenced by differential 

H3K4me3 occupancy and RNA expression.  We were also able to catalogue the middle 

and long non-coding RNAs transcribed in the colon, including select long non-coding 

RNAs (lncRNAs) formerly only detected in the rat nervous system.  In addition, in silico 

analysis of transcription factor (TF) activity revealed tumor suppressors and oncogenes 

unique to the distal and proximal colon.  Knowledge of the proximal versus distal colon 

epigenetic landscape will assist in the improved detection, therapy and prognoses of 

colonic disease. 

In summary, we documented for the first time the chromatin structure associated 

with gene expression profiles in the rat proximal and distal colon by correlating ChIP-

Seq with RNA-Seq data.  Globally, approximately 500 genes were differentially 

expressed between the proximal and distal colon.  With regard to differentially expressed 

genes, a high correlation was observed between H3K4me3 occupancy and RNA-Seq 

data.  Gene ontology analysis indicated that colonic crypt location significantly impacted 

both chromatin and transcriptional regulation of genes involved in cell transformation, 

lipid metabolism, lymphatic development and immune cell trafficking.  We were also 

able to detect a range of lncRNAs that have not been previously reported in the colon.  In 

addition, gene function analysis indicated that the PI3-Kinase signaling pathway was 

regulated in a site-specific manner.  In conclusion, distinct combinatorial patterns of 

histone modifications exist in the proximal versus distal colon.  These site-specific 

differences may explain the differential effects of bioactive chemoprotective agents on 

cell transformation in the ascending (proximal) and descending (distal) colon. 

Our first aim also allowed us to refine and standardize our novel ChIP-seq and 

bioinformatics protocol and focus on the epigenetic differences of the colon with respect 

to anatomically different (distal vs proximal colon) regions.  This was different from the 
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second and third aim which focused on how treating the cells with various compounds, 

carcinogenic and chemoprotective, would affect the distal colon. 

5.2 Aim 2 (Chapter III) 

During carcinogenesis major cellular functions and pathways, including drug 

metabolism, cell cycle regulation, potential to repair DNA damage or to induce 

apoptosis, response to inflammatory stimuli, cell signaling, and cell growth control and 

differentiation are dysregulated (18).  Epigenetic alterations contribute to these cellular 

defects. (175-178). 

Chromatin signatures are tightly linked to epigenetic regulation. For instance, 

transcriptionally active genes are characterized by active chromatin marks, such as 

trimethylated histone H3 lysine 4 (K4me3) and acetylated histone H3 lysine 9 (K9ac) 

(175,178).  Alterations in these histone modifications can drive oncogenic processes, 

such as proliferation, invasion, angiogenesis, and dedifferentiation, by perturbing normal 

gene expression patterns (178).  This is particularly relevant, because altered K4me3 

levels are associated with the onset of colorectal cancer (179). 

Few studies to date have integrated diverse epigenetic inputs in an in-vivo model 

of CRC.  This type of analysis would improve the statistical and interpretative power of 

the changes in transcription and chromatin state during cancer progression.  Since distinct 

genomic and epigenetic events drive the initiation, promotion and progression of colon 

cancer (18), in this study we integrated global chromatin immunoprecipitation 

sequencing (ChIP-Seq) and RNA-Seq data in order to explore the progression of colon 

cancer at a genome-wide epigenetic level. 

In summary, we documented for the first time the chromatin structure associated 

with gene expression profiles of an in vivo murine colonic tumorigenesis model.  Our 

high-throughput sequencing approach revealed many expected changes at various 

regulatory stages of gene expression, plus unexpected insight into gene regulation during 
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colon cancer progression (Figure 29).  Specifically, we were able to show that AOM 

induced transcriptional deregulation was primarily concomitant with interferon-

associated (IFN) immune response genes, while K4me3 deregulation was linked to genes 

associated with colon tumorigenesis, perhaps acting as a harbinger of changes in gene 

activity.   

These findings emphasize the value of genome-wide analyses and may have 

important clinical relevance for future therapeutic targeting.  For example early use of 

targeted histone demethylases (210) could inhibit colon cancer prior to the tumorigenesis 

stage by reversing K4me3 deregulation before the transcription of oncogenes.  

Additionally the therapeutic alteration of microbial composition (212) may counteract the 

interferon-associated ‘anti-microbial and anti-viral” immune response genes that were 

upregulated by AOM.  We suspect cancer progression alteration of the gut environment 

leads to a dysbiosis of ‘peace keeping’ bacteria and facilitates the colonization in the 

colon of pathogenic bacteria, therapeutic alteration of microbial composition would re-

establish the ‘peace-keeping’ bacteria and help heal the colonic epithelial barrier 

(279,280).  

 

 5.3 Aim 3 (Chapter IV) 

 

Animal fed diets containing n-3 PUFA (fish oil) with pectin (which is fermented 

to butyrate) as a fiber source maximally promote apoptosis in the colon compared with 

diets high in other dietary lipids, e.g., n-6 PUFA (corn oil) (86,98,109,236). In a follow-

up study, the administration of butyrate-containing pellets for targeted release in the 

colon was used to demonstrate that butyrate and fish oil work coordinately in the colon to 

trigger apoptosis (104,112,234). Fish oil and butyrate have been shown to impact cell 

kinetics and epigenetics which regulate development of colon carcinogenesis 

(103,109,234).  Butyrate can increase histone acetylation in the nucleus by at least two 

epigenetic mechanisms, by acting as a histone deacetylase inhibitor and as substrate for 
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histone acetylases (HATs) (232). Fish oil components DHA and EPA and their oxidative 

metabolites have been shown to interact with specific ligand dependent nuclear receptors 

including CAR, HNF4A, PPARG, PXR and RXRA (Figure 1) (46). In this fashion, n-3 

PUFA regulate the function of nuclear receptors and their impact on transcriptional 

processes. 

In this study, we employed novel technologies and bioinformatics algorithms, 

such as next-generation sequencing, in order to explore’nutri-epigenomics’ at a genome-

wide level and determine the importance of epigenetic mechanisms related to 

chemoprevention.  By determining 3 epigenetic levels of regulation (H3K4me3, H3K9ac 

and mRNA expression) in colonocytes from the same animals, we were able to gain a 

greater understanding of the chromatin state associated with the interaction of fish oil 

(rich in DHA/EPA n-3 PUFAs), pectin (a readily fermentable fiber) and AOM (colon 

carcinogen) treatments.   

In summary, we documented for the first time the chromatin structure associated 

with a diet rich in fish oil (rich in n-3 PUFAs) and readily fermentable fiber (rich in short 

chain fatty acids) under normal (saline control) and carcinogenic conditions.  We propose 

that the chemoprotective fish oil + pectin diet generates unique epigenetic modifications 

and transcriptional profiles in a context (AOM vs saline) specific manner.  Genes 

associated with enhanced beta-oxidation were transcriptionally upregulated uniquely in 

fish oil + pectin (fpa v cca) fed rats.  With only a small subset (3) of beta-oxidation genes 

previously linked to fish oil being upregulated in fish oil + cellulose fed rats (fca v cca).  

Upstream regulator analysis revealed the n-3 PUFA activation of ligand dependent 

nuclear receptors predominantly in the presence of pectin (fpa v cca).  We therefore 

hypothesize that, in colonocytes, fish oil related epigenetic effects are enhanced by 

concurrent pectin feeding during the progression of carcinogenesis.  A potential 

mechanism for this phenomenon may include the concurrent enhancement of beta-

oxidation and the induction of futile mitochondrial respiration (proton leak) that leads to 

the uncoupling of ATP synthesis, resulting in nutrient wasting and apoptosis. 
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We were surprised to find no sign of upregulated H3K9ac enrichment in pectin 

fed, aom treated, rats (APPENDIX S).  However, our findings are consistent with 

previous studies that have also described a global increase in histone acetylation in 

response to butyrate administration in saline but not AOM injected animals and therefore 

provides additional mechanistic insight into the chemotherapeutic effects of fish oil plus 

pectin during a poorly studied time point in this multistep, multipath disease. 

In conclusion, our data contribute to the understanding of the regulatory action of 

chemoprotective bioactive compounds found in fish oil and readily fermentable fiber (n-3 

PUFAs and SCFAs) in colonic crypts and provide critical mechanistic insight into 

recently reported epidemiological findings (Figure 29) (118).   

 

 

 

 

Figure 29.  Summary of epigenetic findings from Aim 2 and 3.
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5.4 Future studies 

The research presented herein set the groundwork for a number of futures studies 

that could further delve into the effects of fish oil and pectin on nuclear receptor 

signaling and function, mitochondrial beta-oxidation and mitochondrial proton leak. 

5.4.1 ChIP-seq and sub-cellular localization of upstream regulators 

One question remaining is how fish oil is altering the localization of ligand-

dependent nuclear receptors.  The data presented in Aims 1-3, along with previous 

findings strongly support a correlation between nuclear receptors, colon cancer, fish oil 

and pectin.  Figure 30 provides a list of candidate proteins and methodology for further 

analysis.  A proposed mechanism for TRIM24 as a master regulator and tumor 

suppressor is depicted in Figure 31.  

Figure 30. Future Studies Methodology and Protein of Interest.  Red color indicates 

predicted activation and blue color predicted inhibition of transcription factors and co-

factors, nuclear receptors, and histone modifying enzymes in response to 

chemoprotective treatment. 
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Figure 31. We propose a putative mechanism for future investigation in which 1. 

decreased RXR/RAR activity at specific sites (in a context specific manner) during 

colon cancer (Tang and Gudas 2011) leads to a 2. decrease in KDM5B binding (Zhang, 

Liang et al. 2014) therefore 3. TRIM24 cannot bind to trimethylated H3K4 (Tsai, Wang 

et al. 2010).  Thus an increase in K4me3 subsequently leads to a decrease in TRIM24 

(Tisserand, Khetchoumian et al. 2011) binding, inducing IFN/STAT1 associated colon 

cancer genes (Kikuchi, Okumura et al. 2009).   

 5.4.2 Mitochondrial bioenergetic analysis 

Our data suggests that fish oil enhances mitochondrial proton 

leak.  Mitochondria couple respiration to ATP synthesis through an electrochemical 

proton gradient. Proton leak across the inner membrane allows adjustment of the 

coupling efficiency and may provide an attractive therapeutic target for diseases rooted 

in metabolic imbalance and oxidative stress, including colon cancer (Divakaruni and 

Brand 2011). 

 Previously reports in similar pre-clinical models have also found that fish oil 

derived n-3 PUFA can enhance mitochondrial proton leaks (Fan, Ran et al. 2011)  We 
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moreover speculate, based on the results from Chapter IV, that the effects of fish oil are 

enhanced in the presence of pectin, most likely because it can be a source of butyrate in 

colonocytes and further promote an oxidation-reduction imbalance in the intestine, 

increasing proton leak across the mitochondrial inner membrane, contributing to a 

permissive environment for apoptosis. In order to validate this hypothesis mitochondrial 

bioenergetic profiles can be generated by using a Seahorse XF24 Extracellular Flux 

Analyzer (Seahorse Bioscience, Billerica, MA) as described by Fan et al. (Fan, Ran et 

al. 2011) 
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APPENDIX A 

EXPERIMENTAL APPROACH 

 Traditional diets with similar fish oil nutritional levels: Inuits (Alaska) 9-34 g EPA/DHA, 
;  Greenland, Eskimos 7-10 g(long n-3 PUFAs), Japan 1.3 g 

 

 Butyrate levels in the colon 
 ~5mM in lumen 
~5uM in blood 

 n-3 PUFA levels in the colon 
~10uM free fatty acid  and 
~ 100uM in the form of complex lipid 

 

Composition of experimental diets 
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Ingredient Corn oil diet Fish oil diet 

 
g/kg diet 

Dextrose 510.6 510.6 

Casein 223.5 223.5 

DL-Methionine 3.4 3.4 

Corn oil 150.0 35.0 

Fish oil1 0.0 115.0 

AIN-76 Mineral mix1-2 39.1 39.1 

AIN-76 Vitamin mix1-2 11.2 11.2 

Choline bitartrate 2.2 2.2 

Cellulose1-3 or pectin1-4 60.0 60.0 

 F1-1 Vacuum-deodorized Menhaden fish oil (NIH Fish oil test material 
program, Southeast Fisheries Center, Charleston, SC). Both oils contained: 
α-tocopherol, 1.5 mg/g; γ-tocopherol, 1.0 mg/g; t butylhydroquinone, 
0.025% as antioxidants. 

 ↵F1-2 AIN 1977. 
 ↵F1-3 Cellulose was microcrystalline. 
 ↵F1-4 Citrus pectin 

 

  

http://jn.nutrition.org/content/127/3/449/T1.expansion.html#fn-2
http://jn.nutrition.org/content/127/3/449/T1.expansion.html#fn-2
http://jn.nutrition.org/content/127/3/449/T1.expansion.html#fn-3
http://jn.nutrition.org/content/127/3/449/T1.expansion.html#fn-4
http://jn.nutrition.org/content/127/3/449/T1.expansion.html#xref-fn-2-1
http://jn.nutrition.org/content/127/3/449/T1.expansion.html#xref-fn-3-1
http://jn.nutrition.org/content/127/3/449/T1.expansion.html#xref-fn-4-1
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APPENDIX B 

ANIMAL WEIGHT LOG 

 
 

 

 

 

 

rat weight in grams at kill

week 1 2 3 4 5 6 7 8 9 10 11 12 13

ID 4/19' 25-Apr 2-May 9-May 16-May 23-May 30-May 6/6/2011 6/13/2011 6/22/2011 6/27/2011 7/7/2011 7/14/2011

1101 113.1 161.5 203.3 249.4 288.2 319.7 336.4 353.1 377.2 394.3 405.7 417.1 428.1

1102 115.8 161.8 207.6 247.3 288.1 328 350.7 373.4 392.1 402 411.6 421.2 429.7

1103 108.4 148.4 190.1 235 271.8 315.9 338.5 361.1 380.1 400.1 410.5 420.9 430.7

1104 117.7 164.6 205.2 256.6 300 337.3 356.7 376.1 397.1 413.6 429.6 445.6 458.3

1105 106.9 154 195.9 240.6 272.8 305.7 323.4 341.1 356 361.5 368.85 376.2 385.2

2106 97.5 138.3 194.8 235.8 276.8 299.2 321.6 347.2 363.6 377.5 391.4 403.8 410.7

2107 95.5 130.1 179.1 219.85 260.6 282.25 303.9 319.2 331.9 340.25 348.6 364.2 370.7

2108 89.7 126.2 174.3 215.4 256.5 290 323.5 347.2 365.8 379.2 392.6 412.5 414.3

2109 89.3 126.2 173.3 213.85 254.4 275.25 296.1 314.2 325.8 337.95 350.1 369.4 371.5

2110 95.3 133.8 184.2 224.3 264.4 295.25 326.1 354.1 367.1 382.2 397.3 403.2 423.5

2111 101.4 141 194.8 230.8 266.8 292.8 318.8 333.8 345.7 358.45 371.2 386.1 393.3

cca 102.78 144.17 191.15 233.54 272.76 303.76 326.88 347.32 363.85 377.00 388.86 401.84 410.55

1501 105 153.5 195.2 243.5 280.15 316.8 334.7 352.6 373.5 389.4 400.25 411.1 420.3

1502 110.2 166 195.2 246.6 282.85 319.1 343.65 368.2 372.9 389.8 401.65 413.5 422.7

1503 113.1 154.6 198.3 249 290.5 332 347.4 362.8 389.2 414.3 428.45 442.6 449.3

2504 99 125.4 184.9 228.65 272.4 291.15 309.9 332.2 352.2 364.35 376.5 389.7 394.4

2505 97.1 135 187.8 235.5 283.2 305.65 328.1 350.9 361.5 376.55 391.6 395.5 400.1

2506 105.2 137.7 189.5 228.65 267.8 287.95 308.1 317.1 330.8 338.7 346.6 356.1 360.4

ccs 104.93 145.37 191.82 238.65 279.48 308.78 328.64 347.30 363.35 378.85 390.84 401.42 407.87

1201 110.1 157.6 200.7 245.8 288.8 318.7 336.55 354.4 370.2 383.8 397.2 410.6 417.8

1202 119 167.2 211 257.2 297.6 330 348.85 367.7 387.2 404.8 418.8 432.8 449.3

1203 104.5 153.1 191.4 237.7 274.5 306.8 328.65 350.5 370.7 375.5 389.5 403.5 413.4

1204 110.3 153.2 193.7 231.7 264.5 306.2 327.65 349.1 368.3 386.4 396 405.6 425.1

1205 109.2 160.8 203.9 254.3 298.4 331 354.55 378.1 393.4 415.5 428.35 441.2 453.7

2206 101.9 139.3 190.1 225.05 260 291.15 322.3 326.2 360.4 371.9 383.4 394.1 400.2

2207 99.7 142.1 190.7 230 269.3 291.5 313.7 332.2 344.1 355.1 366.1 378.1 383.7

2208 99.1 135.9 190 232.9 275.8 306.15 336.5 357.8 373.2 389.35 405.5 419.8 433.9

2209 99.6 139.3 182.1 227.9 273.7 302.55 331.4 353.3 364.8 386.45 408.1 422.6 426.5

2210 89.3 127.6 176.7 214.7 252.7 282.1 311.5 333 348 364.75 381.5 395.5 394.5

cpa 104.27 147.61 193.03 235.73 275.53 306.62 331.17 350.23 368.03 383.36 397.45 410.38 419.81

1601 108.6 152.3 188.1 231.7 270.75 309.8 324.75 339.7 358.3 379.9 391.25 402.6 414.1

1602 109.5 156.5 195.1 247.6 289.6 331.6 348.2 364.8 380 406.6 420.7 434.8 448.8

1603 105.2 150.2 186.4 237.1 273.35 309.6 331.45 353.3 372.6 390.4 406.55 422.7 431.1

2604 95.3 124.1 170.2 217 263.8 287.1 310.4 330.4 334.8 352.5 370.2 379.9 388.3

2605 94.4 129.4 161.6 205.8 250 276 302 318.6 331.7 344.4 357.1 378.1 375.8

2606 96.3 133 187.3 229.2 271.1 296.4 321.7 343.4 356.6 368.9 381.2 393.1 398.3

cps 101.55 140.92 181.45 228.07 269.77 301.75 323.08 341.70 355.67 373.78 387.83 401.87 409.40
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1301 106.8 154.8 202.4 254.7 288.4 322.1 344.6 367.1 388.9 404.2 417.85 431.5 446.1

1302 105.7 151.7 194.5 241.5 291.1 318.6 342.55 366.5 380.3 401.9 416.75 431.6 445.2

1303 117 165.2 207.5 251.4 292.8 322 341.75 361.5 376.6 387.6 401.85 416.1 413.3

1304 103.2 148.4 190.6 233.1 276.6 308.5 336 363.5 387.3 397.9 412.85 427.8 439.7

1305 106.9 151.7 190.6 233.9 276.7 302.6 326.35 350.1 364.1 383.1 396.45 409.8 421

2306 100.2 140.2 192.2 242.65 293.1 327.25 361.4 385.7 413.1 423.85 434.6 456.1 463.4

2307 100.6 136.6 194 233.3 272.6 304.4 336.2 360.3 376.4 392.5 408.6 428.2 430.6

2308 105 145 200.9 247 293.1 328.55 364 388.9 404.7 427.55 450.4 461.9 466.5

2309 94.6 125.5 178.7 215.75 252.8 285.95 319.1 330.1 345.5 362.8 380.1 385.5 389.5

2310 103.9 137.3 193.1 236.35 279.6 316.95 354.3 374.9 394 412.95 431.9 444.4 445.4

2311 98.2 133.9 183.6 226.35 269.1 294.95 320.8 343.4 359 376.7 394.4 410.9 423.6

fca 103.83 144.57 193.46 237.82 280.54 311.99 340.64 362.91 380.90 397.37 413.25 427.62 434.94

1701 113.6 160.2 203.6 253.7 290.65 327.6 352 376.4 401.5 419.1 426.8 434.5 444.6

1702 112.8 163.3 206.7 257.8 296.9 336 358.1 380.2 401.4 423.2 437.5 451.8 463.9

1703 116.7 167.1 206.9 259.2 295.4 331.6 354.95 378.3 398.5 413.6 427.7 441.8 457

2704 92.5 128.4 182.7 212.5 242.3 294.3 346.3 364 386.2 404 421.8 433.2 449.6

2705 95.8 130.9 181.1 222.5 263.9 288.2 312.5 326.8 342.2 358.65 375.1 388.2 391.7

2706 95.6 130.3 183.9 224.4 264.9 291.05 317.2 325.1 357.3 377.65 398 413.8 426.7

fcs 104.50 146.70 194.15 238.35 275.68 311.46 340.18 358.47 381.18 399.37 414.48 427.22 438.92

1401 106.9 166.5 194.6 232.5 267.5 282.2 311.05 339.9 347.2 354.5 371.7 389.4 400.3

1402 109.1 166.7 200.3 243 283.8 315.2 345.9 376.6 398.3 417.5 435.6 453.7 463.7

1403 95.7 138.6 179.4 219.7 260.1 288.1 319.4 350.7 373.1 388.6 406.3 424 432

1404 105.8 154.4 192.3 237.3 286.7 311.4 332 352.6 370.2 388.2 400.3 412.4 428.2

1405 109.2 162 198.9 237.9 290.5 325.1 348.55 372 392.5 407.9 426.85 445.8 450

1406 116.7 159.2 206.1 247.1 286.2 293.3 332.7 372.1 390.1 405.7 421.2 436.7 445.1

2407 99.7 132.4 172.4 205.25 238.1 309.8 381.5 288.1 302.7 316.8 330.9 332.7 337.6

2408 98.2 124.5 165.3 198.25 231.2 302.5 373.8 287.4 299 314.25 329.5 339.7 346.9

2409 96.2 135.5 180.8 220.8 260.8 290.25 319.7 342.5 360.2 375.15 390.1 401.7 411.9

2410 90.2 125.8 170.8 213.45 256.1 282.8 309.5 324.1 335.3 352.55 369.8 384.8 390.5

2411 94.4 132.8 182.7 224.2 265.7 292.25 318.8 340.2 362.3 367 371.7 407.8 418.1

fpa 102.01 145.31 185.78 225.40 266.06 299.35 335.72 340.56 357.35 371.65 386.72 402.61 411.30

1801 111.8 160 202.2 251.8 292.35 332.9 354.65 376.4 397.3 414.1 429.25 444.4 452.5

1802 115 166.2 209 253.4 298.3 343.2 363.4 383.6 405.9 425.5 442.25 459 475

1803 117.2 166.8 211 262.8 284.1 305.4 344.95 384.5 399.2 420 430.75 441.5 456.2

2804 106.2 151 208.9 255.45 302 331.95 361.9 386.6 401.8 421.3 440.8 457.9 463.3

2805 93.4 128.1 174.7 219.1 263.5 292.5 321.5 340.2 357.5 379.7 401.9 410.9 420.5

2806 100.5 136.6 191.9 238.7 285.5 316.7 347.9 370.2 389.7 408.95 428.2 441.6 458.6

fps 107.35 151.45 199.62 246.88 287.63 320.44 349.05 373.58 391.90 411.59 428.86 442.55 454.35
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APPENDIX C 

AZOXYMETHANE (AOM) INJECTION OF RATS  

AZOXYMETHANE (AOM) INJECTION OF RATS  

 

 

Azoxymethane 

Preparation for injection 

Dose for Rat: 15 mg AOM/kg Body Wt. 

AOM from Sigma (Cat # A2853) 

 

Preparation of Stock Solution 

100 mg AOM/bottle (in 60 l solution of 15% EtOH/acetic acid).  

Add 940 l sterile saline (Sigma S-8776).   

 

100 mg AOM / 1000ul   =   100 mg/ml 

 

Filter sterilize solution into sterile serum vial using 0.2 micron filter. 

Aliquot to several sterile vials to avoid frequent freeze/thaws. 

Store solution in -20oC freezer up to 1 year.  

 

 

Preparation of Working Solution 

Dilute AOM solution 1:20 in sterile saline to give final concentration of 5 mg/ml.  Use 

sterilized volumetric flask. 

 

Aliquot AOM into sterile serum vials, store at –20oC for up to 6 months. 

Once thawed, do not re-freeze and re-use AOM. 

 

AOM Injection of Rats 

Injection conditions 

 

Time: Perform injections between 1 and 3 pm 

Light Cycle: Alternating 12 h light/dark. 

Concentration: 15 mg/kg body weight. 

Injection volume: 700 – 1000 ul depending on weight of rat. 

Injection site: Subcutaneously on right flank. 

Needle: 27 G 1/2” needle, luer-lock syringe 

AOM: Concentration 5mg/ml, warmed to room temperature. 

 

Calculation:  (rat wt in g)(15 mg/kg)(ml/5 mg)= injection volume. 

250 g rat = 0.75 ml injection volume 
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APPENDIX D 

LARR ANIMAL HANDLING 

 

LARR Animal Handling 

 

- Bring with you: key card, room key, diet if small freezer needs restocking (transport 

diet in container with cold packs and lid) To keep in room: rolling cart, writing 

equipment and paper, weigh sheet, rat ID list etc, scale, weighing container, plastic cup 

for diets. 

- Wear protective equip inside facility. 

- Go get cages from the clean cages area. (Rm 334) 

- Sign up at room door. 

- Door should be kept closed if other people are opening cages in the room. 

- Be quiet/ soothing tones. 

- Remove diet from freezer (only handle 1 diet at a time) 

- Weigh out food into clean containers (40 g) 

- Remove old bowl/ add new bowl, check water bottle. 

- Return cage to original position, check that lid is all the way in 

- Check bottle isn’t leaking 

- Replace diet in freezer (make sure bag is airtight) 

- Wipe old bowls to remove food, place in large containers with lids, (must have lids),  

- Wipe all room surfaces used 

- Recheck corresponding diet to treatment. 

- Recheck cages have the right diet and lids are secured and water bottles not leaking 

- Take dirty bowls (In covered containers) to cage washing area in other side of building 

(don’t ever go to clean cages with dirty bowls) 

- If you need to re enter cubicles with animals and open cages after going to dirty cage 

area change booties. 

- On weekends bowls are not washed, therefore on Friday feeding must be done early 

enough to have bowls washed (enough bowls for 2 days feeding)  

- Remember all dirty bowls must be turned to dirty cage area on Sunday so they can be 

washed by Monday feeding 

 

Handling Tricks 

- Note: one trick is to eat a mint before interacting with animals, it has a soothing effect 

on them and it adds another control to their interaction/exposure with handler. 

- Be relaxed, use decisive movements 

- Allot enough time for non rushed animal handling 

- Petting makes rats lets stressed (reduces variables in physical response to diet, and 

makes it easier to weigh them)  
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APPENDIX E 

LIPID ANALYSIS OF DIETS USING GC 

 

Lipid analysis of diets using GC 

 

Purpose: To examine total lipid of diets to confirm the mixing process. 

 

Reagents: 

Dry Reagents Wet Reagents 

 25 mL screw cap glass tube 

 12 mL leak-proof screw cap glass tube 

 4 mL Teflon-coated screw cap glass vial 

 Glass transfer pipette 

 Rubber bulb (for pipette) 

 Disposable Pasteur pipette (located under 

mail slots) 

 Acetone 

 1X PBS 

 MeOH – gas chromatography grade 

 Folch reagent (CHCl3:MeOH 2:1 v/v) 

 Cold 0.1 M KCl 

 6% HCl-MeOH 

 Hexane 

 Dichloromethane (CH2Cl2) 

 

Procedures: 

 

Preparation of Leak Proof Tubes 

1.Put 1 mL of acetone in 12 mL glass tubes with black caps.  Screw tightly.  Make ~40 

tubes and half may end up being airtight. 

2.Draw a line at the meniscus of the acetone. 

3.Evaporate the tubes for 1 h at 80°C in the oven. 

4.Check to see if acetone has evaporated.  Only keep the tubes that are leak-proof.  Do 

not mix up the caps as this could affect whether the tubes are leak-proof or not. 

5.Discard the acetone in the leak-proof tubes and wash the tubes with methanol by 

squirting in methanol using a squirt bottle and discarding the methanol  Leave the lids 

off in the fume hood to let the methanol/residual acetone evaporate. 

 

Extraction of Total Lipids 

1.Obtain 10 to 100 mg of diet per sample in a 12 mL glass tube.  These glass tubes are 

not leak-proof. 

2.Perform subsequent steps on ice. 

3.Resuspend the diet in 1 mL of cold 0.1 M KCl and 5 mL of Folch reagent.  Vortex for 

1 min. (babysit vortexer) 

4.Centrifuge at 3000 rpm for 5 min at 4°C.  Make sure the glass tubes are inside rubber 

tube holder to prevent tube from breaking.  During this time clean N-vac needles with 

MeOH 
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Transfer the lower phase to the leak-proof 12 mL glass vial.  Apply positive pressure on  

the way down to avoid any upper phase going into tube and exclude 2 drops after take 

pipette out of both layers.  Dry under N2. (give ~10 psi for 30-60 min, check on them 

every 15 min) 

5.Dissolve the dried lipid with 3 mL of 6% HCl-MeOH.  Flush the sample with N2 

before closing the camp tightly. (~15 s just enough to enter liquid)  Wipe needles with 

MeOH to clean when finished. 

6.Vortex 1 min as before and incubate at 76°C in the oven overnight (approximately 15 

hrs). 

7.Prepare 4 mL Teflon-coated screw cap (green cap) glass vials. 

8.Turn on the GC overnight to allow for stabilization. 

 

Extraction of FAME 

1.Extract FAME by adding 1 mL of 0.1 M KCl and 2 mL of hexane to the methylated 

sample.  Vortex for 1 min. 

2.Centrifuge at 3000 rpm for 5 min at 4 °C. 

3.Transfer the upper layer to 4 mL Teflon-coated screw cap (green cap) glass vials. 

4.Dry FAME under N2. (Wipe needles with MeOH prior to drying) 

5.Redissolve the sample in 100 µL of CH2Cl2. 

6.Vortex the Teflon-coated screw cap glass vials to dissolve the FAME. 

7.Transfer 25 µL of sample into GC vial.  Flush the remaining sample in the 4 mL 

Teflon-coated screw cap glass vial under N2 and store at -20°C for future analysis. 

8.Set up the GC vials for GC analysis.  2 vials labeled A1 and WB in the machine need 

to be filled with CH2Cl2 prior to run. 

 

Notes: 

 Be careful of cross-contamination. 

 Organic solvents must be handled in the fume hood. 

 

References: 

 Folch J. et al. (1957) A simple method for the isolation and purification of total lipids 

from animal tissues.  J. Biol. Chem. 226: 497-509. 
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APPENDIX F 

ACF BY RAT ID 

Rat ID 
info 

              

             

HM ACF (>2) 
 experimental diet start date: set 1 - 4/19/2011   set 2 - 

4/26/2011 
 

1 
ACF 

2 
ACF 

3 
ACF 

4 
ACF 

5 
ACF 

6 
ACF total avg 

st 
dev 

       

                  

    ID diet injection set # ID                   

CCA KT 1101 corn oil + cellulose AOM 1 1101 34 35 27 17 9 4 57 60.45 22.17 

CCA KT 1102 corn oil + cellulose AOM 1 1102 15 25 14 13 6 6 39     

CCA KT 1103 corn oil + cellulose AOM 1 1103 15 17 20 11 8 0 39     

CCA KT 1104 corn oil + cellulose AOM 1 1104 23 30 29 21 9 8 67     

CCA KT 1105 corn oil + cellulose AOM 1 1105 38 54 36 29 13 3 81     

CCA KT 1106 corn oil + cellulose AOM 1 1106 14 25 27 17 12 6 62     

CCA KT 2107 corn oil + cellulose AOM 2 2107 16 15 14 11 7 1 33     

CCA KT 2108 corn oil + cellulose AOM 2 2108 14 24 22 13 4 9 48     

CCA KT 2109 corn oil + cellulose AOM 2 2109 42 38 30 8 8 4 50     

CCA KT 2110 corn oil + cellulose AOM 2 2110 30 37 35 37 18 14 104     

CCA KT 2111 corn oil + cellulose AOM 2 2111 58 40 34 27 11 13 85     

CCS KT 1501 corn oil + cellulose Saline 1 1501                   

CCS KT 1502 corn oil + cellulose Saline 1 1502                   

CCS KT 1503 corn oil + cellulose Saline 1 1503                   

CCS KT 2504 corn oil + cellulose Saline 2 2504 2                 

CCS KT 2505 corn oil + cellulose Saline 2 2505                   

CCS KT 2506 corn oil + cellulose Saline 2 2506                   
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ACF by Rat ID  Cont 

 

 

experimental diet start date: set 1 - 4/19/2011   set 2 - 
4/26/2011 

 

1 
ACF 

2 
ACF 

3 
ACF 

4 
ACF 

5 
ACF 

6 
ACF total avg st dev 

CPA KT 1201 corn oil + pectin AOM 1 1201 34 39 37 15 7 3 62 53.5 21.49 

CPA KT 1202 corn oil + pectin AOM 1 1202 23 9 23 6 4 3 36     

CPA KT 1203 corn oil + pectin AOM 1 1203 22 29 29 16 11 6 62     

CPA KT 1204 corn oil + pectin AOM 1 1204 19 21 13 12 2 0 27     

CPA KT 1205 corn oil + pectin AOM 1 1205 15 13 20 10 6 9 45     

CPA KT 2206 corn oil + pectin AOM 2 2206 24 25 17 18 4 1 40     

CPA KT 2207 corn oil + pectin AOM 2 2207 16 31 22 16 5 3 46     

CPA KT 2208 corn oil + pectin AOM 2 2208 48 58 42 20 22 10 94     

CPA KT 2209 corn oil + pectin AOM 2 2209 24 27 23 12 3 2 40     

CPA KT 2210 corn oil + pectin AOM 2 2210 14 31 28 18 23 14 83     

CPA KT 2211 corn oil + pectin AOM 2 2211                   

CPS KT 1601 corn oil + pectin Saline 1 1601                   

CPS KT 1602 corn oil + pectin Saline 1 1602                   

CPS KT 1603 corn oil + pectin Saline 1 1603 2 1               

CPS KT 2604 corn oil + pectin Saline 2 2604                   

CPS KT 2605 corn oil + pectin Saline 2 2605 1 1               

CPS KT 2606 corn oil + pectin Saline 2 2606                   
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ACF by Rat ID  Cont 

 

 

experimental diet start date: set 1 - 4/19/2011   set 2 - 
4/26/2011 

 

1 
ACF 

2 
ACF 

3 
ACF 

4 
ACF 

5 
ACF 

6 
ACF total avg 

st 
dev 

FCA KT 1301 fish oil + cellulose AOM 1 1301 5 11 8 1 4 3 16 51.3 36.71 

FCA KT 1302 fish oil + cellulose AOM 1 1302 33 16 19 10 2 2 33 40.66 15.61 

FCA KT 1303 fish oil + cellulose AOM 1 1303 40 36 25 13 12 5 55     

FCA KT 1304 fish oil + cellulose AOM 1 1304 31 33 9 6 4 2 21     

FCA KT 1305 fish oil + cellulose AOM 1 1305 29 29 19 17 11 14 61     

FCA KT 2306 fish oil + cellulose AOM 2 2306 23 24 25 17 11 2 55     

FCA KT 2307 fish oil + cellulose AOM 2 2307 32 26 17 19 8 2 46     

FCA KT 2308 fish oil + cellulose AOM 2 2308 41 47 39 31 32 45 147     

FCA KT 2309 fish oil + cellulose AOM 2 2309 
bad 

sample                 

FCA KT 2310 fish oil + cellulose AOM 2 2310 27 27 19 19 5 1 44     

FCA KT 2311 fish oil + cellulose AOM 2 2311 38 32 17 16 2 0 35     

FCS KT 1701 fish oil + cellulose Saline 1 1701                   

FCS KT 1702 fish oil + cellulose Saline 1 1702                   

FCS KT 1703 fish oil + cellulose Saline 1 1703                   

FCS KT 2704 fish oil + cellulose Saline 2 2704                   

FCS KT 2705 fish oil + cellulose Saline 2 2705                   

FCS KT 2706 fish oil + cellulose Saline 2 2706 2                 
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ACF by Rat ID  Cont 

 

experimental diet start date: set 1 - 4/19/2011   set 2 - 
4/26/2011 

 

1 
ACF 

2 
ACF 

3 
ACF 

4 
ACF 

5 
ACF 

6 
ACF total avg st dev 

FPA KT 1401 fish oil + pectin AOM 1 1401 15 18 17 3 2 1 23 26.63 11.47 

FPA KT 1402 fish oil + pectin AOM 1 1402 18 21 12 5 2 2 21     

FPA KT 1403 fish oil + pectin AOM 1 1403 13 15 9 5 2 0 16     

FPA KT 1404 fish oil + pectin AOM 1 1404 18 8 12 8 4 4 28     

FPA KT 1405 fish oil + pectin AOM 1 1405 22 16 9 8 3 1 21     

FPA KT 1406 fish oil + pectin AOM 1 1406 18 25 22 6 6 2 36     

FPA KT 2407 fish oil + pectin AOM 2 2407 15 10 5 4 4 0 13     

FPA KT 2408 fish oil + pectin AOM 2 2408 20 16 16 13 10 13 52     

FPA KT 2409 fish oil + pectin AOM 2 2409 26 20 18 5 4 2 29     

FPA KT 2410 fish oil + pectin AOM 2 2410 5 6 11 4 1 1 17     

FPA KT 2411 fish oil + pectin AOM 2 2411 24 21 18 7 6 6 37     

FPS KT 1801 fish oil + pectin Saline 1 1801                   

FPS KT 1802 fish oil + pectin Saline 1 1802 1 2               

FPS KT 1803 fish oil + pectin Saline 1 1803                   

FPS KT 2804 fish oil + pectin Saline 2 2804                   

FPS KT 2805 fish oil + pectin Saline 2 2805                   

FPS KT 2806 fish oil + pectin Saline 2 2806 0                 
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APPENDIX G 

NUCLEI ISOLATION FROM COLON CRYPTS 

Protocol: Nuclei Isolation 

 

Purpose: Isolate nuclei to detect histone modifications and antibody specificity 

(Chromatin Immunoprecipitation (ChIP) Ab Validation with Western Blot  

  

Materials 
Silicon scrapers (BD Falcon, 353089) 

50 mL and 15 mL conical tubes, 1.5 mL epi-tubes 

Ice filled bucket 

Micropipettes 

  
Solutions  

 

Make stock first, just add PI freshly (details below) 

 

TBS (Tris-Biffered Saline)  

Lysis Buffer 1 Add just before use, filter (0.2um) and keep cold. Consists of 50 mM 

HEPES-KOH  with pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 

0.25% Triton X-100, 1  protease inhibitors 

Lysis Buffer 2 Add protease inhibitors just before use, filter and keep cold. Consists of 

10 mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1  protease 

inhibitors 

Lysis Buffer 3 Add protease inhibitors just before use, filter and keep cold. Consists of 

10 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na-

Deoxycholate, 0.5% N-lauroylsarcosine, 1  protease inhibitors 

 

Proteinase inhibitors 
 -100X Protease Inhibitor Cocktail  (Sigma  P8340) 

 -Sodium-Butyrate (Na-But) must be made fresh , 22 mg/0.1ml gives 2 M 

solution in MilliQ water add  10ul/ml LB  (final 20 mM)  

 -AEBSF concentration of 12 mg/ml in MeOH add 3 ul per ml buffer   

Add Protease inhibitors (PI) to all Lysis buffers and last TBS wash solution 

 

Methods 

pre-cool centrifuge to 4°C. 

 Wash cells (175 ml flask) with cold 1X TBS 25 ml twice 

Scrape adherent cells from culture dish to 50 mL conical tube on ice 

 Rinse the adherent cells culture dish with (20 ml) TBS, add the remaining cells to the 50 

mL tube and mix (basically use TBS to pool all cells into tube. 
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 Centrifuge cells at 1500 x g for 5 min at 4°C, discard supernatant 

 Resuspend pellet in 1 ml of TBS per 10^7 cells (which is ~ 2X the number of cells 

(YAMC?) in a confluent 175 ml flask) with gentle inversion (this is an estimation, no 

need to count)   

 Spin at 1500g for 5 min at 4°C and aspirate the supernatant 

 Cells can be used immediately or snap frozen straight in the tube in liquid nitrogen and 

stored in -80°C freezer indefinitely 

 Remove frozen cell pellets from -80 °C and resuspend each pellet of 108 cells in 10 ml 

of Lysis Buffer 1. [10^7 cells in 1 ml] Rotate at 4°C in rotator for 10 min. 

 Spin at 1,350g for 5 min at 4 °C in a table-top centrifuge Discard supernatant. 

 Resuspend each pellet in 10 ml of Lysis Buffer 2 [10^7 cells in 1 ml]. Rotate at room 

temp  in rotator for 10 min 

 Pellet nuclei in table-top centrifuge by spinning at 1,350g for 5 min at 4°C. Discard 

supernatant. 

 Resuspend each pellet in each tube in 1ml Lysis Buffer 3 per 10^7 cells. Yields ~1ng 

nuclei protein per ul. 

 Store at -20°C until ready to use 

 

References: 

Abcam Histone Extraction Protocol www.abcam.com 

Chromatin immunoprecipitation and microarray-based analysis of protein location. 

Tong Ihn Lee, Richard Young Nature Protocols Vol 1 No 2. 2006, PMID: 17406303 

 

Solutions 

  

Lysis Buffer 1 stock 50 ml 

50 mM HEPES-KOH pH 

7.5 

1M HEPES-KOH pH 7.5 2.5 

140 mM NaCl 5M NaCl 1.4 

1 mM EDTA 500 mM EDTA 0.1 

10% glycerol 50% glycerol 5 

0.5% NP-40 10% NP-40 0.25 

0.25% Triton X-100 10% Triton X-100 0.125 

      

Lysis Buffer 2 stock 50 ml 

10 mM Tris-HCl, pH 8.0, 1M Tris-HCl, pH 8.0 0.5 

200 mM NaCl 5M NaCl 2 

 1 mM EDTA 500 mM EDTA 0.1 

0.5 mM EGTA 500 mM EGTA 0.05 
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Lysis Buffer 3 stock 50 ml 

10 mM Tris-HCl, pH 8.0 1M Tris-HCl, pH 8.0 0.5 

100 mM NaCl 5M NaCl 1 

1 mM EDTA 500 mM EDTA 0.1 

0.5 mM EGTA 500 mM EGTA 0.05 

0.1% Na-Deoxycholate 5% Na-Deoxycholate 0.05 

0.5% N-lauroylsarcosine 5% N-lauroylsarcosine 0.25 

      

TBS stock 50 ml 

150 mM NaCl 5 M NaCl 1.5 

10 mM Tris pH8.0 1 M Tris-HCl, pH 8.0 0.5 

 

 

Invitrogen/Gibco; Cat. no.: 15630-080) 1 M HEPES-KOH, pKa 7.55 

(Sigma S-5150) 5 M NaCl  

(Invitrogen/Gibco; Cat. no: 15575-038) 500 mM EDTA   

(Sigma, Cat no: E3889) 500 mM EGTA  

Sigma)  B5887 Sodium butyrate Na-But 

(Sigma; Cat. no.: G5516 50% glycerol 

(Sigma; Cat. no.: I8896) 10% Igepal CA-360   

Sigma; Cat. no.: T8787) 10% Triton X-100 

Invitrogen/Gibco; Cat. no.: 15568-025 1 M Tris-HCl, pH 8.0 

(Sigma; Cat. no.: D6750) 5% Na-Deoxycholate 

Sigma; Cat. no.: L7026) 5 M LiCl 

Invitrogen/Gibco; Cat. no.: L4390 10% SDS 

(Sigma)  P8340 100X Protease Inhibitor Cocktail   

Sigma  A8456 ABSF 

Sigma 61743 N-Lauroylsarcosine 

 

If you need to make your own then Aprotinin inhibits serine proteases; Leupeptin 

inhibits serine and thiol proteases; Pepstatin inhibits aspartic proteases. Make 1 mg/ml 

each in MilliQ water, aliquot and store at -20°C. It is also possible to use commercially  

 

*Protease inhibitors (PI) to all Lysis buffers and last TBS wash solution 

 -Aprotinin, Leupeptin and Pepstatin concentration of 1 μg/ml add 40 ul per ml 

buffer , 

 - AEBSF concentration of 12 mg/ml in MeOH add 3 ul per ml buffer   
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APPENDIX H 

REAL TIME QPCR PROTOCOL FOR CHIP-QPCR  

Before getting started: 

 Check availability of primers and primer concentrations (prepare primer mix if 

necessary), availability of samples and all reagents. Label tubes and draw a qPCR plate 

loading plan. 

 

Preparation:  

 Prepare enough mix for 2 reactions of each DNA sample, a standard curve (at least 3 

dilutions), plus 2 reactions for no template control (NTC).   

 For a whole 96-well optical plate, prepare reaction mix for 100 reactions in total (allow 

4 extra reactions for pipetting errors).  

 The reaction mix contains one set of primers (either Enriched or End); each set of 

primers contains both forward and reverse primers. 

 Design plate layouts. 

 Calculate the amount of reaction mix needed (See table below for calculations): 

 Enriched primers 

Volume (µL) per 

well 

End primers 

Volume (µL) per 

well 

48 for wells each set, 

µL (example) 

2X SYBR master 

mix (ABI 4309155) 

7.5 7.5 375 

4uM (10X) primer 

mix  

1.5 1.5 75 

ddH2O 3 3 150 

Total reaction mix 12 12 600 

DNA template 

(range .2-100ng) 

3 3 Add 3 µL directly to 

each well 

Total well volume 15 15  

 

Procedures: 

 

1.Load plate with reaction mix (adding DNA last): 12 µL reaction mix per well + 3 µL 

template. (Watch out for bubbles and check the volume of each well.) 

2.Place the optical adhesive cover over the plate with caution (Do not to fingerprint the 

cover!)   

3.Smooth with seal applicator; make sure all wells are securely sealed to avoid loss of 

sample during PCR.  

4.Centrifuge briefly (1000k, 20sec, room temp. in centrifuge Jouan CR 412). Make sure 

there are no bubbles in any wells (will distort readings). 
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Note: Leave the centrifuged plate in a dark place before setting up Bio-Rad machine. Be 

careful not to disturb the content when taking out the plate from centrifuge.  

 

Bio-Rad Machine: 

1.Assign in for Bio-Rad usage on calendar and turn on 7900HT Fast Real Time PCR 

Machine. 

2.Open SDS 2.2.4 software on Desktop. (Login: Username=administrator; no Password 

needed; click OK)  

3.Create New Document under File tab. Set Assay: Standard Curve (AQ)/ Container: 96 

well clear plate/ Template: Blank Template. Click OK 

4.On the right side of the screen: In the Instrument tab, under Thermal Cycler Protocol 

choose Standard Mode and adjust Sample Volume to 15ul, set the Thermal Profile as 

described in the chart below. 

Parameters  

Stage 1   1 cycle 

95*C 10min 

Stage 2   35 cycles (set repeats to 35) 

95*C 15sec 

53*C (optimal annealing Temp is primer 

specific) 

30sec 

Stage 3 (dissociation curve)  1 cycle 

95*C 15sec 

53*C (optimal Temp) 15sec 

95*C 15sec 

  

5.In Setup tab select Add Detector to specify primers and assign them to the 

corresponding wells in the plate. 

6.Select the wells on the left side of the screen and add sample names accordingly. 

7.Save the  *.sds. file with your primer abbreviations, your initial and date in an 

appropriate folder.  

8.Click Instrument - Connect and Open the machine’s plate tray. Insert the plate into 

machine, with A1 well positioned at the upper left corner, then Close.   

9.Go through all the setups before hitting the start bottom. Select Start and check back in 

5-10min to make sure the Run has started properly. 

 

Analysis for ChIP-qPCR:  

 

 In your saved sds. file : 

1. Press the Analyze bottom, and then go to Analysis – Analysis Settings. Under 

the Detector tap, choose Manual Ct, click OK. 
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Under Results tap, select the standard wells of each primer and compare the 

amplification plots to determine if the lines are separated according to dilution 

increments. (i.e. a 10 fold dilution is about 2 3.3 fold difference.) 

2. To adjust Standard Ct in the same primer sets: first pick the right detector; check if the 

green line is positioned at the steepest slope of the plot lines. (If not, move the green line 

towards the steepest slope, around the 24-34 Ct range limit and where the lines of 

duplicated samples are closest to one another.) 

3. To equalize Standard Ct values for the sample gene in different primer sets: first pick 

only one detector (not all detectors) to show the green line and adjust its Ct towards the 

other detector’s Ct (usually, pick the less organized one to match the more organized 

one; remember to watch out for Ct range limit.)  

4. Try to match the Ct values of standard with the most similar concentration to 

experimental samples. 

5. Save as *.txt and Export to your USB. Re-open as Excel and work on calculation. Save 

both the original data and final data.  

 On Excel Spreadsheet: 

1. Re-organize columns and delete the less important columns. (See example below) 

2. Calculate the values of Ct primerA1-Ct primerA2 and Ct mean primerA1-Ct mean 

primerA2 

3. Check and make sure the formulas and values are right after calculation. 

  
  

 

Analysis Summary: 

 

dCt (sample) = Ct [IP sample-control primer] – Ct [IP sample] 

 

fold ChIP enrichment = 2^dCt = level of DNA protein bound to gene site in ChIP 

sample compared to control sample 
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ddCt = dCt (sample 1) – dCt (sample 2) 

 

2^ddCt = fold induction of gene in sample 2 compared to sample 1. 

 

Notes for Reagents:  

 Master Mix: SYBR green I qPCR mixture from ABI 4309155 (this mixture includes 

dNTP, Taq DNA polymerase, reaction buffer and the fluorescent dyes) 

 Primers: custom-made gene specific primers from Integrated DNA Technology 

dissolved in ddH2O 

 Plastic: white 96-well qPCR plates (MicroAmp® Optical 96-well Reaction Plate, Life 

Technologies, PN N801-0560) with optical clear seal sheets (MicroAmp® Optical 

Adhesive Film Kit, Life Technologies, PN 4313663) and press applicator 

 DNA template: range .2-100ng as measured by picoGREEN quantification, if measured 

by A260 the concentration given is often higher 

 

 

References: 

 

Applied Biosystems Protocol for SYBR® Green PCR Master Mix and SYBR® Green 

RT-PCR Reagents Kit 

http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocum

ents/cms_041053.pdf 

 

 ChIP-qPCR Fold Enrichment Method 

This normalization method is also called 'signal over background' or 'relative to the no-

antibody control'. With this method, the ChIP signals are divided by the no-antibody 

signals, representing the ChIP signal as the fold increase in signal relative to the 

background signal. The assumption of this method is that the level of background signal 

is reproducible between different primer sets, samples, and replicate experiments. 

Background signal levels do vary between primer sets, samples, and experiments. An 

example is shown below.  

 

To calculate fold enrichment: 

 Example   Step 1 Step 2 

    Nonspecific adjustment Fold enrichment 

  Raw Ct (Ct IP) - (Ct mock) (2-DDCt) 

Mock (IgG) 34.6 0 1.0 

Antibody #1 31.3 -3.3 9.8 

Antibody #2 29.9 -4.7 26.0 

http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_041053.pdf
http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_041053.pdf
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APPENDIX I 

BCA PROTEIN QUANTIFICATION ASSAY 

 

BCA Protein Quantification Assay    Pierce (23225)  

 

A. Preparation of Diluted Albumin (BSA) Standards 

 

    

std 

Volume of 

Diluent 

Volume 

BSA  

Final BSA 

Concentration 

 (µL)  (µL)  Source of BSA (µg/mL) 

A 0  Stock 2000 

     

B 40 120 Stock 1500 

     

C 100 100 Stock 1000 

     

D 100 100 of vial B dilution 750 

     

E 100 100 of vial C dilution 500 

     

F 100 100 of vial E dilution 250 

     

G 100 100 of vial F dilution 125 

     

H 400 100 of vial G dilution 25 

     

X 400  I 400 0 0 = Blank  

 

B. Preparation of the BCA Working Reagent (WR) 

 

For Working Reagent use a 50:1 ratio of Reagent A: Reagent B. Use the following 

formula to determine the total volume of WR required: 

(# standards + # unknowns) × (# replicates) × (volume of WR per sample) + 2 extra= 

total volume WR required 

Example: for the standard test-tube procedure with 3 unknowns and 2 replicates of each 

sample: 

(9 standards + 3 unknowns) × (2 replicates) × (0.2 mL) +2= 5 mL WR required (that’s 

50 ml Reagent A + 1 ml Reagent B) 
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C. Microplate Procedure (Sample to WR ratio = 1:8) 

1.Pipette 25 µL of each standard or unknown sample replicate into a microplate well 

(working range = 20-2000 µg/mL) 

(e.g., Costar 96-Well Plates, Product No. 9017). 

Note: If sample size is limited, 5 µL of each unknown sample and standard can be used 

(sample to WR ratio = 1:40).  

However, the working range of the assay in this case will be limited to 250-3000 µg/mL. 

2.Add 200 µL of the WR to each well and mix plate thoroughly on a plate shaker for 30 

seconds. 

3.Cover plate and incubate at 37°C for 10-30 minutes. 

4.Cool plate to RT. Measure the absorbance at or near 562nm on a plate reader.(See 

protein measurement instructions in Section D) 

5.Subtract the average 562 nm absorbance measurement of the Blank standard replicates 

from the 56 2nm measurements of all other individual standard and unknown sample 

replicates. 

6.Prepare a standard curve by plotting the average Blank-corrected 562 nm measurement 

for each BSA standard vs. its concentration in µg/mL. Use the standard curve to 

determine the protein concentration of each unknown sample. 

 

D. Protein Measurement using SpetraMax 

1.Software set ups:  

 Go to SoftMax Pro5.2 on computer desk top. 

 Click on “?” icon, select reader-SepctraMax 190 and connection-COM4, click OK. 

 Click on   to Open/Close the loading deck to check if COM4 is connected. 

 In the Protocols tap, select Protein Quant-->BCA-->Template; enter sample identities 

to wells. Click OK. 

  Save your set ups in an appropriate place in People’s folder on desktop. 

2.Measurement: 

 Click on   to Open the loading deck and load your plate. 

 Hold the “Shake “icon for 10 seconds.  

 Click Read to start sample reading. 

 Export data after the reading is done. 

 

Notes:  

For more detailed information please consult product manual PierceTM BCA Protein 

Assay Kit. 

 Because plate readers use a shorter light path length than cuvette spectrophotometers, 

the Microplate Procedure requires a greater sample to WR ratio to obtain the same 

sensitivity as the standard Test Tube Procedure. If higher 562nm measurements are 

desired, increase the incubation time to 2 hours. 

 Increasing the incubation time or ratio of sample volume to WR increases the net 
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562nm measurement for each well and lowers both the minimum detection level of the 

reagent and the working range of the assay. As long as all standards and unknowns are 

treated identically, such modifications may be useful. 

Note: If using curve-fitting algorithms associated with a microplate reader, a four-

parameter (quadratic) or best-fit curve will provide more accurate results than a purely 

linear fit. If plotting results by hand, a point-to-point curve is preferable to a linear fit to 

the standard points. 

 

 Wavelengths from 540-590nm have been used successfully with this method. 

 Color change in sample wells (green to purple) results from reduction of Cu ion from 

2+ to 1+. (reaction shown below) 
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APPENDIX J 

QUBIT PROTOCOL FOR MEASURING DNA CONCENTRATION 

 

Qubit® dsDNA HS (High Sensitivity) Assay Kit Protocol 

 

 

Description 

The Qubit® (previously known as Quant-iT™) dsDNA HS (High Sensitivity) Assay Kit 

is designed specifically for use with the Qubit® 2.0 Fluorometer (Q32866), but may be 

used with any fluorometer or fluorescence plate reader. The assay is highly selective for 

double-stranded DNA (dsDNA) over RNA and is designed to be accurate for initial 

sample concentrations from 10 pg⁄µl to 100 ng⁄µl. The kit provides concentrated assay 

reagent, dilution buffer, and pre-diluted DNA standards. Simply dilute the reagent using 

the buffer provided, add your sample (any volume between 1 µl and 20 µl is acceptable), 

and read the concentration using the Qubit® 2.0 Fluorometer. Common contaminants, 

such as salts, free nucleotides, solvents, detergents, or protein are well tolerated in the 

assay. 

 

Notes: 

1. All Qubit® assay kits can also be used with the Qubit® 1.0 Fluorometer. 

2. 500 µL thin-walled PCR tubes (Q32856) are required but not included. (Qubit® 

assay tubes are 500 µl thin-walled polypropylene tubes for use with the Qubit® 2.0 

Fluorometer (Q32866). 500 tubes per package. 

3. Best way to fully understand the protocol is to read the official Qubit Manual 

http://www.lifetechnologies.com/order/catalog/product/Q32854 

5. Accuracy is best when concentration of sample is between 1-10 ng/ul.  This means if 

the concentration of the initial sample is higher, it should be diluted to fall under these 

parameters. (For example if Qubit reading yields 12 ng/ul in sample, a dilution of that 

sample, recommend a 1(sample):5(EB) dilution, should be performed, and concentration 

reassessed. 

Tube Loading Guide 

For any 'input DNA' samples 

sample Sample Volume (ul) Working solution 

(ul) 

Stock standard (10 ng/ul) 1 99 

Input DNA A 1 99 

Input DNA B 1 99 
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For ChIPed samples 

sample Sample Volume (ul) Working solution (ul) 

Stock standard (10 ng/ul) 5 95 

ChIPed DNA A 5 95 

ChIPed DNA B 5 95 

 

If dilutions are necessary 

sample Sample Volume (ul) Dilution Solution=EB (ul) 

Input DNA A 2 8 

Input DNA B 2 8 

  

Full protocol 

The protocol below assumes you will be preparing standards for calibrating the Qubit® 

2.0   

Fluorometer. If you plan to use the last calibration performed on the instrument, you will 

need fewer tubes (step 1.1) and less working solution (step 1.3). More detailed 

instructions on the use of the Qubit® 2.0 Fluorometer (corresponding to steps 1.9–1.15 

and 2.1–2.6) can be found in the user manual accompanying the instrument.  

 1.1 Set up the number of 0.5 mL tubes you will need for standards and samples. The 

Qubit™ dsDNA HS assay requires 2 standards.  

Note: Use only thin-wall, clear 0.5 mL PCR tubes. Acceptable tubes include Qubit™ 

assay tubes (500 tubes, Cat. no. Q32856) or Axygen PCR-05-C tubes (VWR, part no. 

10011-830). 

 1.2 Label the tube lids. 

 1.3 Make the Qubit™ working solution by diluting the Qubit™ dsDNA HS reagent 

1:100 in Qubit™ dsDNA HS buffer. Use a clean plastic tube each time you make 

Qubit™ working solution. Do not mix the working solution in a glass container. Note: 

The final volume in each tube must be 100 µL. Each standard tube will require 95 µL of 

Qubit™ working solution, and each sample tube will require anywhere from 90 µL to 99 

µL. Prepare sufficient Qubit™ working solution to accommodate all standards and 

samples. For example, for 8 samples, prepare enough working solution for the samples 

and 2 standards: ~100 µL per tube in 10 tubes yields 1 mL of working solution (5 µL of 

Qubit™ reagent plus 995 µL of Qubit™ buffer).  1.4 Load 95 µL of Qubit™ working 

solution into each of the tubes used for standards.  

 1.5 Add 5 µL of each Qubit™ standard to the appropriate tube and mix by vortexing 2–

3 seconds, being careful not to create bubbles.  Note: Careful pipetting is critical to 

ensure that exactly 5 µL of each Qubit™ dsDNA HS standard is added to 95 µL of 
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Qubit™ working solution. It is also important to label the lid of each standard tube 

correctly as calibration of the Qubit® 2.0 Fluorometer requires that the standards be 

introduced to the instrument in the right order.  1.6 Load Qubit™ working solution into 

individual assay tubes so that the final volume in each tube after adding sample is 100 

µL.  

Note: See  'Tube Loading Guide' for ChIP specific sample concentration assessment.  A 

more general rule of the protocol allows for sample volume used to be anywhere 

between 1 µL and 10 µL, therefore, load each assay tube with a volume of Qubit™ 

working solution anywhere between 90 µL and 99 µL.  

1.7 Add each of your samples to assay tubes containing the correct volume of Qubit™ 

working solution (prepared in step 1.6) and mix by vortexing 2–3 seconds. The final 

volume in each tube should be 100 µL 

1.8 Allow all tubes to incubate at room temperature for 2 minutes. 

1.9 On the Home Screen of the Qubit® 2.0 Fluorometer, press DNA, and then select 

dsDNA High Sensitivity as the assay type. The Standards Screen is automatically 

displayed. 

Note: If you have already performed a calibration for the selected assay, Qubit® 2.0 

Fluorometer will prompt you to choose between reading new standards and using the 

previous calibration. See Calibrating the Qubit® 2.0 Fluorometer above for calibration 

guidelines.  

1.10 On the Standards Screen, press Yes to run a new calibration or press No to use the 

last calibration.  

1.11 If you pressed No on the Standards Screen, proceed to step 1.12. If you selected 

Yes to a run new calibration, follow instructions below. 

Running a New Calibration 

Insert the tube containing Standard #1 in the Qubit® 2.0 Fluorometer, close the lid, and 

press Read. The reading will take approximately 3 seconds. 

Remove Standard #1. 

Insert the tube containing Standard #2 in the Qubit® 2.0 Fluorometer, close the lid, and 

press  

Read. Remove Standard #2.  

 1.12 If you pressed No on the Standards Screen, the Sample Screen will be 

automatically displayed. Insert a sample tube into the Qubit® 2.0 Fluorometer, close the 

lid, and press Read 

 1.13 Upon the completion of the measurement, the result will be displayed on the 

screen. Note: The value given by the Qubit® 2.0 Fluorometer at this stage corresponds 

to the concentration after your sample was diluted into the assay tube. You can record 

this value and perform the calculation yourself to find out the concentration of your 

original sample (see Calculating the Concentration of Your Sample, below) or the 

Qubit® 2.0 Fluorometer performs this calculation for you (see Dilution Calculator, next 

page).    
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1.14 To read the next sample, remove the sample from the Qubit® 2.0 Fluorometer, 

insert the next sample, and press Read Next Sample.  1.15 Repeat sample readings until 

all samples have been read 

 

Calculating the Concentration  of Your Sample 

The Qubit® 2.0 Fluorometer gives values for the Qubit™ dsDNA HS assay in ng/mL. 

This value corresponds to the concentration after your sample was diluted into the assay 

tube. To calculate the concentration of your sample, use the following equation:  

First determine dilution factor 

Dilution Factor =  QF value/10 

(Rationale: Concentration of ChIP standard (10ng/ul) =  QF value * dilution factor ) 

Second determine concentration of your sample 

 Sample Concentration= QF value /  Dilution Factor 

where:  

 QF value = the value given by the Qubit® 2.0 Fluorometer  

Other calculation notes 

 By using the same number of ul for both the tubes for the ChIP standard and the tubes 

for the samples. 

 x = the number of microliters of sample you  added to the assay tube  
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APPENDIX K 

WESTERN BLOT PROTOCOL 

Protocol:  Western Blot 

 

Purpose: Detect histone modification and antibody specificity (Chromatin 

Immunoprecipitation Ab Validation) 

 

Protein volume and Antibodies for CHIP Western blot 
1.20 ul of the nuclei sample in ChIP lysis Buffer 3 from each of the treatments are run on 

a 4-20% polyacriliamide gel (Invitrogen, EC6028BOX) and blotted onto a PVDF 

membrane (Immobilon, IPVH00010) 

2.All Abs were polyclonal Rabbit and were used at 1:20000 dilution 

1.List 1° Ab and dilution (H3ac  Upstate 06-599, H3 Abcam ab1791, H3K4me3 Active 

Motif 39159) 

2.List secondary antibody and dilution (2ry anti-rabbit Ab used at 1:15,000 dilution)KPL 

047-1509 

 

Preparation 

   -Thaw samples on ice 

  -Label 0.6 ml epi tubes for each sample (2 per sample to run in duplicate) 

  -Prepare the western template sheet  

  -Cut Immobilon membrane (Immobilon, IPVH00010) and filter papers 

(Midsci, 6MW-2020) ready 

 

Materials: 
  -Micropipettes (200ul, 10ul) and tips, ice bucket, .6ml tubes, 

thermocycler or other 98°C heat source, pre-made gel (4-20%)  4°C, molecular weight 

marker (ladders) (MagicMark,XP LC5603)  -20°C, 5X Pyronine room temp, gel 

running unit, gel transfer unit, electrophoresis power supply, stirrer, shaker, PVDF 

membrane, forceps, roller, filter paper Ab incubation containers, 

sponge/filterpaper/membrane soaking container, acetate sheet (C-line Products, 

No.0010), chemiluminescent super signal kit (Pierce, 34095) 4°C,  

  

Sample Preparation 
1.Thaw the samples on ice  

2.Dye used for the sample dilution is 5X Pyronine. Use 1X of the dye based on the total 

volume of sample required (usually 25 ml total for 10 well).  

3.Set the PCR machine (heating source) temperature to 98°C (takes about 1 min). 

4.With the aid of western template sheet make the necessary dilution and add the 

calculated amount of dye and water to the samples and standard. 

5.Give the samples a quick spin on the table top centrifuge. 
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6.Boil the samples for 5-10 min depending on the volume of the samples (25 ml volume 

boil for 10 min). Do not boil the marker. 

7.Repeat the quick spin of the samples on the tabletop. 

 

Gel unit set up  

8.Take the pre-made gel (4-20%) and carefully rip off and discard the white tape and the 

comb.  Mark the lanes on the plate 

9.Attach the gel to the gel rack with the shorter side facing in, align 3rd with the lower 

gasket and clamp the unit. (Note that the red clip should have the broad end facing 

you, broad ends face outside on all 4 clips). 

10. Pour running buffer into middle of chamber to fill the stand and the trough up to 

the top. 

11. Use 10 ml tips and load the complete sample volume. 

12. Close the unit with the lid and check the leads and make sure black-to-black and 

red-to-red. 

13.  In the cold room run the gel at 200V for 30 min  This is protein size dependent, 

bigger protein use 200V, smaller proteins use 150V (Big proteins >100 kDa 

14.  Check after approximately 5 min to ensure the sample is moving. 

15.  After about 20 min check every 5 min to ensure the sample does not run off the 

gel. 

16.  Stop the gel when it has run 4/5ths of the way down the gel. 

 

Gel transfer 

17.  Take the gel transfer unit and a staining trough and pour transfer buffer into both 

the tray and the unit. 

18.  Take a cassette and lay it open with black side down. 

19.  Put the thicker sponge on the black side of the cassette and place a filter paper 

on top of it. 

20.  Pour transfer buffer into trough above the level of the cassette and filter paper to 

keep it wet. 

21. Take the membrane out and let it soak in methanol for 15 seconds.  Soak in a 

tray with transfer buffer. 

22. Take the gel plate out of the running unit and transfer the running buffer into the 

bottle for reuse. 

23.  Crack open the plate and keep the front of the gel down. 

24.  Cut the gel just above the bottom to remove the foot of the gel.  Also cut off the 

wells at the top of the gel 

25. Carefully separate the gel from the plate and cut the gel at lane one to identify 

the side (right end). 

26. Place the gel on the filter paper with the front of the gel facing down. 

27. Cut the right hand top corner of the membrane to identify the side. 

28. Place the membrane on the gel and roll with the roller from bottom to top gently 



  

188 

 

to eliminate any air bubbles. 

 

29. Wet another piece of filter paper and place on the membrane. Roll again with 

the roller. 

30. Place the thinner sponge on top and close the white side of the cassette and clip 

it.  

31. Place the cassette in the transfer unit with the hinges facing the top and black 

side facing back. 

32. Put a stir bar into the transfer unit. 

 
33. Make sure transfer buffer in unit covers the hinges of the cassette. Check the 

terminals black to black correspond. 

34. Place it on the cold room stir plate. 

35. Connect black-to-black and red-to-red and set current to 400 mAmps and let it 

transfer for 100 min. (this wasn’t long enough for 3 gels to transfer proteins over ~100 

kDa, for 3-4 gels run 120-150 min) 

 

Blocking 

36.  At the end of transfer- make 25 ml TBS-T + 1g BSA (Roche, 03116956001) for 

BSA/TBS/Tween Mix gently by inverting. 

37. Pour the milk into a dish and keep ready to transfer the membrane into it. 

38. After the transfer is complete- open the gel unit and transfer the transfer buffer 

into the bottle. 

39. Use a pair of forceps to take the membrane and place the membrane into the milk 

dish (with the side facing gel-protein side now facing up) 

40.  Place it on the shaker for 1-3 hr at room temperature.  

 

Primary antibody 
41. Discard blocking solution. 

42. Now, add the appropriate volume of the primary antibody in new blocking 

solution. (based on the dilution and add it into the dish). H3, H3ac, IgG (abcam) 

H3K4me3 (active motif) all 1:20,000 in 4% BSA  
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43. Close the lid of the dish and shake it gently on the cold room shaker overnight. 

   

 

 

Washing 

44. The next day take the membrane and give a quick wash with TBS –Tween. 

45. Transfer membrane to new dish with fresh TBS- Tween and keep on the shaker 

at room temp for 5 min. Let it shake vigorously. 

46. Repeat the wash 2 more times for 5 min, then 10 min. 

 

Secondary antibody 
47. Make 30 ml milk or BSA/TBS/Tween and pour into the dish after the second 

wash. 

48. Add the required volume of secondary antibody based on the dilution. (If dilution 

is 1:10,000, so use 3 l secondary antibody in 30 ml of milk or BSA 

49. Set on shaker for 1 h at room temperature. 

50. Repeat washing with TBS –Tween 3 times as described above 

51. While the 1 wash of 2° antibody is going on turn on the imager and set focus. 

  

Developing 
52. After the 3rd wash is complete 

53. Cut an acetate sheet into 2 halves and remove the black sheet  

54. Mix 0.3 ml of chemiluminescent super signal reagent A with 0.3 ml of reagent B 

in an eppendorf tube. 

55. Mix gently by inversion. 

56. Now transfer the membrane between the layers of the acetate sheet and squirt the 

developing solution on the top.  

57. Slowly close the top layer so that the solution gets evenly distributed on the 

membrane. 

58. Expose for 5 min and then transfer the membrane on to the clean acetate sheet  

59. Transfer it into the Bio-Rad imager for imaging immediately. 

 

Imaging 
60. Turn on switch and make sure the lever on the hood is at chemiluminescence. 

61. Select Quantity One program on desktop. 

62. Select scanner – click on chemidoc.xrs. 

63. Step 1- option is chemiluminescences.  

64. Step 2 – live focus. Focus with a printed sheet and set the iris as you need for 

brightness. Zoom and focus, as you need for clarification. 

65. Freeze. Put the gel in the imager and zoom and freeze again. Close the door. 

66. Click on live acquire. 

67. Starting exposure time – for Bcl2 imaging - use 30 sec. 

Total exposure time – 180 sec 
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Number of exposures – 6 

 68. Save the images and analyze using the Quantity One software. 

 

 

Recipes  

 

Tris-buffered saline - Tween (TBS-T, 1X) store room temp 

Dissolve the following in 800 ml of distilled H2O 

o 8.8 g of NaCl 

o 0.2 g of KCl 

o 3 g of Tris base 

2.Add 500 ul of Tween-20 

3.Adjust the pH to 7.4 

4.Add distilled H2O to 1L 

For all other western blotting solutions use  “Western Blotting solutions Yang-Yi Fan 

11-21-97” 

 

Lysis Buffer 3 (keep cold). Consists of 10 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM 

EDTA, 0.5 mM EGTA, 0.1% Na-Deoxycholate, 0.5% N-lauroylsarcosine 

 

Notes: 

Recommended controls to include 

 Positive control lysate: protein lysate known to contain protein of interest 

 Negative control : “blank” sample containing lysate without protein 

 Loading control: If comparing different sources of protein, use a “house-keeping 

protein” such as B-actin, or proteins that are expressed at equivalent levels in 

almost all tissues and cells.  
 Colorimetric and HRP ladder: the colorimetric ladder will allow visualization on how 

far multiple protein sizes have traveled on a running gel and whether the whole protein 

was transferred from gel to membrane.  The HRP ladder will be visible during 

membrane developing and confirm the protein band size. 

 If using an antibody for the first time run alongside an antibody already sanctioned as 

high quality in the lab.  This can be a loading control Ab. 

 

References: Abcam Histone Western blotting www.abcam.com protocol section, and HT 

Western Blot protocol 

 

Expected Results: 

Use controls to make sure: positive control contains the appropriate size band (it may 

contain extra bands if it’s a whole cell lysate), negative control contains no band, 

isolated nuclei sample should show only nuclear proteins and clear bands at expected 

size (for histones ~17 kDa) It is possible the sample will contain protein dimmers and 

multiple bands will be noticed (example ~17 kDa plus ~35 kDa) 

http://www.abcam.com/
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If there are many bands present in a lane with no prevalent band of the expected size 

there might have been a problem with procedure or reagents.  (Example: degraded 

antibody, incorrect washing, solutions not made properly) 
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APPENDIX L 

CHIP PROTOCOL 

ChIP Method  

 

Day 0: Steps A (approximately 1–4h, depending on numbers of cells or tissues being 

collected) 

Day 1: Steps B-C (approximately 8 h to multiple days,) 

Day 1,2: Steps D (approximately  2 h and overnight incubation then 1 hr) 

Day 2: Steps E-F (approximately 2 h and overnight incubation) 

Day 3: Steps G-H (approximately 4 h and overnight incubation) 

Day 4: Steps H-I (approximately 6 h) 

Day 5: Steps J-K (approximately 1 h and 2 h) 

 

See Crypt isolation protocol for extracting crypts 

 

A. Crosslink crypts  Timing: Day 0, 2hr 

Pre-cool centrifuge to 4°C 

A.1.  Add 1/10 volume of fresh 11% Formaldehyde Solution to tube. Swirl briefly. (To 

20 ml cell suspension add 2 ml) 

A.2. Incubate cells with Formaldehyde Solution in rotation for 15 min at room 

temperature. 

A.3. Add 1/10 volume of 3.5 M glycine to quench formaldehyde. (To 20 ml cell 

suspension add 2.2 ml) 

A.4. Pool cells in required number of 50 ml conical tubes and spin at 1500g (300 rpm, 

setting 3 of Juoan centrifuge) for 5 min at 4 °C. Discard supernatant. 

A.5. Resuspend cells in 30 ml of 1× TBS w PIs (see reagents for components) with 

gentle inversion or swirling (cells may stick to pipettes at this stage so don’t use 

pipettes). Spin at 1500g for 5 min at 4 °C to pellet cells. Discard supernatant. Repeat 

once more. Discard supernatant. 

A.6. Flash-freeze cells in liquid nitrogen and store pellets at −80°C. 

Pause Point Once cells are crosslinked, they may be stored frozen at −80°C 

indefinitely. 

 

B. Nuclei isolation Timing: Day 1, 2-3hr  

Add PIs to Lysis Buffers right before use (PIs: use 10 ul/ml of 100X Sigma PI, 10 ul/ml 

of 2 M NaBut, 2 ul/ml 500 mM AEBSF) 

B.1 Remove frozen cell pellets from -80°C and resuspend each pellet of distal or 

proximal crypts ( 2x10^7 cells in 5 ml of Lysis Buffer 1. [~10^7 cells in 1 ml] Rotate at 

4 °C in rotator for 10 min. 

B.2 Spin at 1,350g for 5 min at 4 °C in a table-top centrifuge. Discard supernatant. 

Resuspend each pellet in 5 ml of Lysis Buffer 2 [10^7 cells in 1 ml]. Rotate at room 
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temp in rotator for 10 min. 

B.3 Pellet nuclei in table-top centrifuge by spinning at 1,350g for 5 min at 4°C. Discard 

supernatant. 

Resuspend each pellet in each tube in 3 ml Lysis Buffer 3 (or 1 ml per 10^7 cells). 

Yields ~1 ng nuclei protein per ul or 30 ng DNA per ul. 

Store at -80°C until ready to use (sonication) 

 

C. Sonication Covaris (40 min per sample) Timing: Day 2, 6 h per day 

Always keep samples on ice when not sonicating 

Instrument:  

-Covaris S2 

- 3 ml Covaris TC16 tubes (16x100 mm) Part #520011 

Settings: 

-Duty Cycle 20%   -Intensity 8  -Cycles per burst 200 

-Processing time 40 min 

 

C.1.  Thaw samples on ice and transfer to labeled Covaris tubes (3 ml sonication 

volume) Screw on Covaris plastic cap. 

C.2.  Place in holder, and sonicate with settings indicated above. 

C.3.  Remove tube and return to ice. 

 Pause Point: Lysates can be frozen at −80°C and used at a later date. 

C.4.  Add 1/10th volume of 10% Triton (300 ul for 3 ml) 

C.5.  Split sample into 2 x 1.5 ml microcentrifuge labeled tubes 

C.6.  Spin down 4°C 1min at 14000g. 

C.7.  Remove supernatant and place in new tubes 

C.8.  Save 50 μl of cell lysate supernatant from each sample as reference DNA. Store at 

−20°C. At least one DNA aliquot should be kept per batch of sonicated lysate. Note that 

the DNA concentration, the effects of the sonication and the resulting distribution of 

fragment sizes can only be checked after crosslink reversal and purification of DNA. 

Store rest of sample at -80°C until ready to use 

C.9.  Extract reference DNA from 50 ul aliquot by following Steps H to I (reverse 

crosslink and purify DNA) in order to determine how much lysate equals 10 ug 

chromatin. 

 

Pause Point Lysates can be frozen at −80°C and used at a later date. 

 

D. Preparing magnetic beads Timing: Day 1 and 2, 2 h o/n (ChIP A) 

 

Critical step Steps keep all reagents, rack, and tubes on ice whenever possible 

 Day 1  Conjugate beads to antibody (Ab details below) 

D.1.  Aliquot 100 μl of Dynal beads to a 1.5 ml microcentrifuge tube. Set up 1 tube per 

50 ul or 100 ul beads. 50 ul beads per 1 immunoprecipitation so 100 ul of beads is good 

for 2 immunoprecipitations with the same Ab. Add 1 ml ice cold Block Solution. 
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D.2.  Collect beads using Dynal MPC. Place tubes in rack. Allow beads to collect on 

side of tube. This should take approximately 25 s. Invert rack once or twice to help 

collect all beads. Remove supernatant with aspirator or pipettor. 

D.3.  Add 1.5 ml Block Solution (see reagents) and gently resuspend beads. This can be 

done by removing the magnetic strip from the rack and inverting the rack, with the tubes 

still in place — either 10–20 times or until the beads are evenly resuspended. Collect 

beads as above (Step D.2.). Remove supernatant with aspirator or pipettor. 

D.4.  Wash beads in 1.5 ml Block Solution, as in Step D.3., one more time. 

D.5.  Resuspend beads in 250 μl Block Solution and add 10 ul or 10 μg of antibody for 

each Ab (note: volume and concentration may vary per antibody). Incubate at 4°C 

overnight (for a minimum of 6 h) on a rotator. 

Day 2  Wash beads just prior to starting ChIP 

D.6.  Wash beads three times in 1 ml Block Solution, as described in Step 3. 

D.7.  Resuspend each aliquot of beads in original volume (50 ul or 100 μl) Block 

Solution. 

 

E. Chromatin Immunoprecipitation from Lysate  Timing: Day 2, 2 h and overnight 

incubation (ChIP B) 
 

E.1.  Save 50 μl of cell lysate from each sample as input DNA.  (this is done just prior to 

immunoprecipitation, as a confirmatory measure of the DNA concentration previously 

obtained in C.9.) 

E.2.  Set up 1.5 ml microcentrifuge tubes on ice, one tube for each immunoprecipitation 

E.3.  Add 50 μl antibody/magnetic bead mix from Step D.7 to 2.5 ug DNA worth of cell 

lysates (supernatant) from Step C.8. Incubate overnight on rotator at 4°C. 

 

F. Wash Beads    Timing: Day 3, 2hr (ChIP C) 

Critical step: All wash steps are performed at 4°C. Buffers should be kept cold. 

F.1.  Collect beads using Dynal MPC. Place tubes in rack. Allow beads to collect on 

side of tube. This should take approximately 25 s. Invert rack once or twice to help 

collect all beads. Remove supernatant with aspirator or pipettor, changing tips between 

samples. 

F.2.  Add 1 ml Wash Buffer (RIPA) to each tube and gently resuspend beads. This can 

be done by removing the tubes from the rack and inverting the tubes 10–20 times or by 

removing the magnetic strip from the rack and inverting the rack, with tubes still in place 

— 10–20 times or until the beads are evenly resuspended. Collect beads. Remove 

supernatant by aspirator or pipettor. Repeat this wash four more times, changing tips 

between washes.  

F.3.  Wash once with 1 ml TE + 50mM NaCl. 

F.4.  Spin at 960g for 3 min at 4 °C and remove any residual TE buffer. 

 

Proceed directly to Elution  

 



  

195 

 

G. Elution  Timing: Day 3, 1.5 h (ChIP D) 

 

G.1.  Add 110 μl of Elution Buffer and elute material from beads by incubating tubes in 

a 65°C heat block for 15 min with constant shaking (1400 rpm). Vortex briefly 30sec.. 

(Careful to keep tubes secure by holding the cap while vortexing, since the high temp 

mixed with vortexing tends to pop the cap open).  Spin and place tubes in r.t. magnet.  

Transfer supernatant to new tube. 

G.2.  Repeat G.1 

G.3.  Spin down beads at 16,000g for 1 min at room temperature. Place tubes in r.t. 

magnet rack. 

G.4.  Remove 200μl of supernatant and transfer to new tube. 

 SOME ISSUES WITH K4 and ac P3 

Pause Point Material can be frozen at −20°C and stored overnight. 

 

H. Crosslink Reversal  Timing: Day 3 to 4, 1 h then overnight (ChIP D) 

 

H.1.  Reverse crosslink the immunoprecipitated DNA from Step G.3 by incubating at 

65°C for a minimum of 6hr, can be done in waterbath or heat block.  Vortex and spin 

down at least once during incubation to avoid improper crosslinking due to condensation 

H.2.  Thaw 50 μl of input DNA reserved after Covaris sonication (Step E.1), add 150 μl 

(3 volumes) of elution buffer and mix. Reverse crosslink this input DNA by incubating 

at 65°C as in Step H.1. From this point, every tube of immunoprecipitation or input 

DNA is considered to be a separate tube or sample for later processing steps. 

Pause Point.  If the wash was performed early in the day, the crosslink reversal can be 

stopped after a minimum of 6 h and the material can be frozen at −80°C and stored 

overnight. If the wash was performed later in the day, the crosslink reversal can be 

extended up to 15 h and performed overnight with little effect on the reaction. 

Critical note: Longer times of crosslink reversal (18 h or more) usually result in 

increased noise in DNA analysis 

 

I. Purification of DNA Timing: Day 4, 6 h (ChIP E) 

 

I.1.  Add 200 μl of TE to each tube to dilute SDS in Elution Buffer. We have found that 

high levels of SDS can inhibit RNAse activity. 

I.2.  Add 2 μl of 10 mg/ml RNaseA (0.05 mg/ml final concentration), mix by inverting 

the tube several times and incubate at 55°C for 1 h. Pause Point Material can be frozen 

at −20°C and stored overnight. 

I.3.  Add 4 μl of 20 mg/ml Proteinase K (0.2 μg/ml final concentration) and mix by 

inverting the tube several times and incubate at 55°C for 2 h. 

I.4.  Add 400 μl phenol:chloroform:isoamyl alcohol (P:C:IA), vortex 30 sec on high 

speed (careful to hold cap to avoid tube opening and separate phases by centrifuging in 

refrigerated microcentrifuge at 20000g for 15min 4°C. 

 Clean up DNA using the DNA PCR purification columns (Follow Qiagen PCR 
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purification kit instructions for washing and eluting) 

Centrifuge Spins are all at room temp. 17900g 1 min in microcentrifuge. 

I.5.  Add 3x (1200 ul) Qiagen Buffer PB (PCR cleanup kit 28104) to each extracted 

supernatant and vortex 

I.6.  Add ~800 ul of the solution to a Qiagen PCR Cleanup column, centrifuge, and then 

rerun the flowthrough through the same column, then discard flow through. 

I.7.  Repeat with the rest of same sample to bind the total DNA from sample to a Qiagen 

column. (Run 800 ul, then the same 800 ul, then discard the flowthrough.  Repeat step 

with the other 800 ul) 

I.8.  Wash the column with 750 ul Qiagen Buffer PE, centrifuge, empty, and centrifuge 

the column again, which contains the DNA, to dry. 

I.9.  Elute the DNA from the column with 50 ul aliquots of warmed (~55°C) Qiagen 

Buffer EB. 

J. Measure DNA concentration with picogreen 

K. Measure DNA size with Bioanalyzer DNA 7500. 

References: 

Abcam Histone Extraction Protocol www.abcam.com 

Chromatin immunoprecipitation and microarray-based analysis of protein location. 

Tong Ihn Lee, Richard Young Nature Protocols 729-748 Vol 1 No 2. 2006, PMID: 

17406303 

 

Follow with DNA size selection by gel extraction and NuGen library building for DNA 

sequencing 

 

Ab details 

 

Ab Company ul per 100 ul of 

beads 

Amount 

chromatin/IP 

H3 Abcam  10 1 ug 

H3K9me3 Abcam ab8898 10 10 ug Prox, 5 ug 

Dist 

H3K4me3 ActiveMotif 39159 10 2.5 ug 

RNA Pol II Ab5408 10 2.5 ug 

IgG Abcam ab46540 10 1 ug 
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APPENDIX M 

CHIP REAGENTS AND EQUIPMENT 

 

Note: All solutions are dissolved in ddH2O  and filtered with 0.2 µm syringe filter (Like 

Whatman) unless otherwise noted, and stored at room temp unless otherwise stated. 

Reagents 

 1 M HEPES-KOH, pKa 7.55 (Invitrogen/Gibco; Cat. no.: 15630-080) 4°C 

 5 M NaCl (Sigma S-5150) 

 500 mM EDTA (Invitrogen/Gibco; Cat. no: 15575-038) 

 500 mM EGTA (Sigma, Cat no: E3889) 4*C 

 37% formaldehyde (J.T. Baker; Cat. no: 2106-01)  

Caution: Formaldehyde is flammable; highly toxic by inhalation, contact with skin or if 

swallowed; causes burns; and is potentially carcinogenic. Formaldehyde should be used 

with appropriate safety measures, such as protective gloves, glasses and clothing, and 

adequate ventilation. Formaldehyde waste should be disposed of according to 

regulations for hazardous waste. 

 3.5 M glycine (Sigma; Cat. no: G8790) (must pH to 8 in order for glycine to dissolve) 

 10× Dulbecco's phosphate buffered saline (PBS) (Invitrogen/Gibco; Cat. no.: 14200-

075) 

 Dynabeads G Protein coupled (Dynal) (Invitrogen 10004D) 4°C 

 Block Solution: 1× PBS, 0.5% bovine serum albumin (BSA) (Sigma; Cat. no: A7906) 

Critical: Should be made fresh and kept cold. 

 Primary antibody of choice  

 100× solution Complete Protease Inhibitor Cocktail: (can store aliquots at −20 °C) 

(Sigma) 

 Sodium butyrate Na-But (Sigma) B5887 

 50% glycerol (Sigma; Cat. no.: G5516) 

 10% Igepal CA-360 (also known as NP-40) (Sigma; Cat. no.: I8896) 

 10% Triton X-100 (Sigma; Cat. no.: T8787) 

 1 M Tris-HCl, pH 8.0 (Invitrogen/Gibco; Cat. no.: 15568-025) 

 5% Na-Deoxycholate (Sigma; Cat. no.: D5760) 

 5% N-lauroylsarcosine (Fluka; Cat. no.: 61743) 

 5 M LiCl (Sigma; Cat. no.: L7026) 

 10% SDS (Invitrogen/Gibco; Cat. no.: 15553-035) 

 10 mg/ml RNAseA (Sigma; Cat. no.: R6513) -20°C 

 Proteinase K solution (Invitrogen; Cat. no.: 25530-049) -20°C 

 Phenol:chloroform:isoamyl alcohol (Fluka; Cat. no.: 77617)  CRITICAL: If this 

solution is old or is at low pH, there will be degradation of DNA. 4°C 

Caution: Phenol is toxic when in contact with skin or if swallowed; causes burns; and is 

irritating to eyes, the respiratory system and skin. Chloroform is harmful by inhalation or 

if swallowed; is irritating to skin; and is potentially carcinogenic. Isoamyl alcohol is 
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flammable; and is irritating to eyes, the respiratory system and skin. 

 

The phenol:chloroform:isoamyl alcohol should be used with appropriate safety 

measures, such as protective gloves, glasses and clothing, and adequate ventilation. 

The phenol:chloroform:isoamyl alcohol waste should be disposed of according to 

regulations for hazardous waste. 

 Double-distilled water 

 Formaldehyde Solution (see REAGENT SETUP) 

 Lysis Buffer 1 (see REAGENT SETUP) 4*C 

 Lysis Buffer 2 (see REAGENT SETUP) 4*C 

 Lysis Buffer 3 (see REAGENT SETUP) 4*C 

 Wash Buffer (RIPA) (see REAGENT SETUP) 

 Elution Buffer: 50 mM Tris-HCl, pH 8.0, 10 mM EDTA, 1.0% SDS 

 TE: 10 mM Tris-HCl, pH 8.0, 1 mM EDTA 

 TE + NaCl: 10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 50 mM NaCl (keep cold) 

 PCR Purification Kit Qiagen 28004 

 

Equipment 
 Rotator (e.g., Fisher Hematology/Chemistry Mixer) 

 Magnetic particle collector (MPC; Dynal) 

 Sonicator (Covaris S2) 

 NanoDrop ND-1000 spectrophotometer (This is highly useful as it allows you to 

assay DNA concentrations and dye incorporations by using low volumes (1.5 μl) of 

sample) 

 Heat Block (with 1.5 ml tube insert) 

 Swinging bucket centrifuge, variable temperature  

 Liquid nitrogen and appropriate container 

 50 mL and 15 mL conical tubes, 1.5 mL epi-tubes 

 Ice filled bucket 

 Micropipettes 

 

REAGENT SETUP  

 Formaldehyde Solution Formaldehyde should be added right before use. Consists of 

50 mM HEPES-KOH, pH 7.5, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA and 11% 

formaldehyde. 

 Lysis Buffer 1 Add protease inhibitors just before use, and keep cold. Consists of 50 

mM HEPES-KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 

0.25% Triton X-100, 1× protease inhibitors 

 Lysis Buffer 2 Add protease inhibitors just before use, keep cold. Consists of 10 mM 

Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1× protease inhibitors 

 

 Lysis Buffer 3 Add protease inhibitors just before use, keep cold. Consists of 10 mM 

Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na-Deoxycholate, 
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0.5% N-lauroylsarcosine, 1× protease inhibitors 

 Wash Buffer (RIPA) Keep cold. Consists of 50 mM HEPES-KOH, pKa 7.55, 500 

mM LiCl, 1 mM EDTA, 1.0% NP-40 (Igepal), 0.7% Na-Deoxycholate 

 Protease inhibitors (PIs) Keep cold. Add Protease inhibitors (PI) to all Lysis buffers 

and last TBS wash solution 

 100X Protease Inhibitor Cocktail  (Sigma  P8340) 

 Sodium-Butyrate (Na-But) must be made fresh , 22 mg/0.1ml gives 2 M solution in 

MilliQ water add  10 ul/ml LB  (final 20 mM)  

 AEBSF concentration of 12 mg/ml in MeOH add 2 ul per ml buffer   

 

Solutions 

Formaldehyde Solution   50 ml 

50 mM HEPES-KOH pH 7.5 1M HEPES-KOH pH 7.5 2.5 

Or 50 mM HEPES native Or 1M HEPES   

100 mM NaCl 5M NaCl 1 

1 mM EDTA 500 mM EDTA 0.1 

0.5 mM EGTA 500 mM EGTA 0.05 

11% formaldehyde 1.1g formaldehyde/10ml 5.5 

ddH2O   40.85 

   Lysis Buffer 1   50 ml 

50 mM HEPES-KOH pH 7.5 1M HEPES-KOH pH 7.5 2.5 

140 mM NaCl 5M NaCl 1.4 

1 mM EDTA 500 mM EDTA 0.1 

10% glycerol 50% glycerol 5 

0.5% NP-40 10% NP-40 2.5 

.25% Triton X-100 10% Triton X-100 1.25 

1× protease inhibitors 100X PI 0.5 

0.02 M Na-But 2M Na-But 0.5 

ddH2O   37.25 

   

Lysis Buffer 2   50 ml 

10 mM Tris-HCl, pH 8.0, 1M Tris-HCl, pH 8.0 0.5 

200 mM NaCl 5M NaCl 2 

 1 mM EDTA 500 mM EDTA 0.1 

0.5 mM EGTA 500 mM EGTA 0.05 

1× protease inhibitors 100X PI 0.5 

0.02M Na-But 2M Na-But 0.5 

ddH2O   47.35 
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Lysis Buffer 3   50 ml 

10 mM Tris-HCl, pH 8.0 1M Tris-HCl, pH 8.0 0.5 

100 mM NaCl 5M NaCl 1 

1 mM EDTA 500 mM EDTA 0.1 

0.5 mM EGTA 500 mM EGTA 0.05 

0.1% Na-Deoxycholate 5% Na-Deoxycholate 1 

0.5% N-lauroylsarcosine 5% N-lauroylsarcosine 5 

1× protease inhibitors 100X PI 0.5 

0.02M Na-But 2 M Na-But 0.5 

ddH2O   42.35 

   Wash Buffer (RIPA)   50 ml 

50 mM HEPES-KOH, pH 7.5 1M HEPES-KOH pH 7.5 2.5 

500 mM LiCl 5M LiCl 5 

1 mM EDTA 500 mM EDTA 0.1 

1.0% NP-40 10% NP-40 5 

0.7% Na-Deoxycholate 5% Na-Deoxycholate 7 

ddH2O   30.4 

   Elution Buffer   50 ml 

50 mM Tris-HCl, pH 8.0 1M Tris-HCl, pH 8.0 2.5 

10 mM EDTA 500 mM EDTA 1 

1.0% SDS 10% SDS 5 

   

 

 

 

  TE + NaCl:   50 ml 

10 mM Tris-HCl pH 8.0 1M Tris-HCl, pH 8.0 0.5 

1 mM EDTA 500 mM EDTA 0.1 

50 mM NaCl 5M NaCl 0.5 

ddH2O   48.9 

TE   50 ml 

10 mM Tris-HCl, pH 8.0 1M Tris-HCl, pH 8.0 0.5 

1 mM EDTA 500 mM EDTA 0.1 

ddH2O   49.4 

   Proteinase K  Solution w/o proK 5 ml 
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1 mM CaCl2 0.5M CaCl2 0.002 

50 mM Tris-HCl, pH 8.0 1M Tris-HCl, pH 8.0 0.25 

25% glycerol 50% glycerol 1.25 

ddH2O   3.498 

20 mg/ml proteinase K prot K powder 

Add 5 ml to 100 

mg bottle 

   TBS 10X   50 ml 

1.5 M NaCl 5 M NaCl 15 

100 mM Tris pH8.0 1 M Tris-HCl, pH 8.0 5 

ddH2O   30 

   TBS   50 ml 

150 mM NaCl 5M NaCl 1.5 

10 mM Tris pH8.0 1M Tris-HCl, pH 8.0 0.5 

ddH2O   48 

1× protease inhibitors   0.5 

0.02M Na-But 2M Na-But 0.5 

   Elution Buffer ChIP   50 ml 

50 mM Tris-HCl pH8.0 1M Tris-HCl, pH 8.0 2.5 

10 mM EDTA 500 mM EDTA 1 

1.0% SDS 10% SDS 5 

ddH2O   41.5 

   

Dilution Buffer (reChIP)   50 ml 

15.5 mM Tris-HCl, pH 8.0, 1M Tris-HCl, pH 8.0 0.775 

174 mM NaCl 5M NaCl 1.74 

0.58 mM EGTA 500 mM EGTA 0.058 

1.16% Triton X-100 10% Triton X-100 5.8 

ddH2O   41.63 

   Low-Salt wash buffer   50 ml 

20 mM Tris-HCl, pH 8.0, 1M Tris-HCl, pH 8.0 1 

150 mM NaCl 5M NaCl 1.5 

1 mM EDTA 500 mM EDTA 0.1 

0.5 mM EGTA 500 mM EGTA 0.05 

0.1% SDS 10% SDS 0.5 
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1% Triton X-100 10% Triton X-100 5 

   High-Salt wash buffer   50 ml 

20 mM Tris-HCl, pH 8.0, 1M Tris-HCl, pH 8.0 1 

500 mM NaCl 5 M NaCl 5 

1 mM EDTA 500 mM EDTA 0.1 

0.5 mM EGTA 500 mM EGTA 0.05 

0.1% SDS 10% SDS 0.5 

1% Triton X-100 10% Triton X-100 5 

   LiCl wash buffer   50 ml 

10 mM Tris-HCl, pH 8.0, 1M Tris-HCl, pH 8.0 0.5 

0.25M LiCl 5M LiCl 2.5 

1 mM EDTA 500 mM EDTA 0.1 

0.5 mM EGTA 500 mM EGTA 0.05 

1% Na-Deoxycholate 5% Na-Deoxycholate 10 

1.0% NP-40 10% NP-40 5 

ddH2O   31.85 

   

5 M LiCl     

42.39 g/mol 21.19 g LiCl 100 ml ddH2O 

 

 

  2M NaBut     

110 g/mol 2.2 g NaBut 10 ml ddH2O 

aliquot and freeze right away 

  

  2.5M Glycine     

75.07 g/mol 18.76 g Glycine 100 ml ddH2O 

adjust pH to 8.0 in order to 

dissolve glycine     

Reasons for Dilution Buffer 

[composition] 

 

Dilution Buffer Elution Buffer 

Final reChIP 

buffer 

15.5 mM Tris-HCl, pH 8.0, 50 mM Tris-HCl, pH 8.0, 

20 mM Tris-

HCl, pH 8.0, 

174 mM NaCl   150 mM NaCl 

  10 mM EDTA 1.43 mM EDTA 
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0.58 mM EGTA   0.5 mM EGTA 

1.16% Triton X-100   

1% Triton X-

100 

  1% SDS 0.13% SDS 

   Citations 

  Lee and Young Nat Protoc. 2006; 1(2): 729–748. 

Truax and Greer  

 

If you need to make your own 25X PI cocktail then use:  Aprotinin inhibits serine 

proteases; Leupeptin inhibits serine and thiol proteases; Pepstatin inhibits aspartic 

proteases. Make 1 mg/ml each in MilliQ water, aliquot and store at -20°C. It is also 

possible to use commercially available proteinase inhibitor tablets 

 

*Protease inhibitors (PI) to all Lysis buffers and last TBS wash solution 

 -Aprotinin, Leupeptin and Pepstatin concentration of 1 μg/ml add 40 ul per ml 

buffer , 

 - AEBSF concentration of 12 mg/ml in MeOH add 2 ul per ml buffer   
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APPENDIX N 

ISOLATION OF COLONIC CRYPTS 

Isolation of Colonic Crypts 

 

Note:  Temp during isolation steps depends on what the crypts will be used for.  To 

maintain active metabolizing crypts, may want to keep all steps warm.  For termination 

of crypts for enzyme assays, chromatin immunoprecipitation, etc. keep solutions cold 

after crypt removal from mucosa. 

 

___ Turn on shaking water bath (37°C) 

___ Thaw Gln, EDTA and BSA aliquots  

___ Make buffer 1, and 2   

___ Warm buffer 1 to 37°C (Keep buffer 2 on ice) 

___ Euthanize rat and remove colon (clean fatty residues and other tissues off) 

 ___ Open colon and swish in cup of PBS.  Repeat with fresh PBS. 

___ Place tissue into 50m ml flask containing 50 ml buffer 1 

___ Incubate for 15 min with shaking at 100 rpm at 37°C 

___ Place colon in sterile petri dish on ice with 30ml new buffer 1. Remove any large 

chunks of floating fat. 

___ Gently scrape mucosal side with sterile rubber policeman toremove crypts.   

___ Transfer contents into 50 ml conical tube (keep on ice).  Use 20 ml buffer 1 to 

rinse out petri dish and retrieve rest of all crypts (From this point on all steps should be 

performed on ice or 4*C centrifuge) 

___ Centrifuge at 3000 x g, 10 min at 4*C.  

___ Discard sup and resuspend pellet in 35 ml cold buffer 2 to wash cells and remove 

DTT & EDTA 

___ Centrifuge at 3000 x g, 10 min at 4*C. 

___ Discard supernatant.  

___ Resuspend pellet in 24 ml (or desired volume) HBSS or buffer of choice 

Samples are now ready for aliquoting portions for RNA and protein extraction and 

crosslinking. 

Buffer 1: 

 HBSS –CaMg +30 mM EDTA +5 mMDTT + 1 mM Glutamine + 0.1% BSA 

(final concs) 

 Need 100 ml per sample (2 per colon, distal - proximal) 

 1,134 ml  - 94.5 ml HBSS – CaMg (Cellgro 21-021-CV)  

 48 ml  -  4 ml 750 mM EDTA (made in HBSS)   

 6ml  - 0.5 ml 200 mM Glutamine 

 12 ml  -  1 ml 10% BSA (made in HBSS)  

 924mg  - 77 mg DTT 

Adjust to pH 7.4 at 37°C 
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Buffer 2:  HBSS + 1 mM Gluatmine + 0.1% BSA 

12 x Need 40 ml per colon 

567ml  -  49.25 ml HBSS + CaMg – phenol red – bicarb (Gibco 14025-092) 

2.88ml  -  0.25 ml 200 mM Glutamine 

5.76ml   -  .5 ml 10% BSA (made in HBSS) 
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APPENDIX O 

QUALITY CONTROL REQUIREMENTS FOR CHIP-SEQ COMPARED TO ENCODE GUIDELINES 

All the steps outline in this workflow have been troubleshooted for quality control purposes prior to ChIP-Seq in Aims 1-3. 
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APPENDIX P 

SAMPLE PROCESSING; TYPES OF TISSUES COLLECTED 

Methods –Sample Processing, all tissue types with * were used in Aim 1-3, other samples are stored for potential future 

studies 
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APPENDIX Q 
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APPENDIX R 

SAMPLE POOLING OF ANIMALS FOR SEQUENCING 
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APPENDIX S 

NUCLEAR PROTEIN LEVELS OF H3K4ME3 AND H3K9AC ARE NOT ALTERED BY DIET IN AOM INJECTED 

ANIMALS 
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APPENDIX T 

NUCLEAR LEVELS OF PAN-ACETYLATED H3 ARE NOT ALTERED BY A FISH OIL + PECTIN DIET 
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APPENDIX U 

SUMMARY OF DIFFERENTIAL EXPRESSION AND DIFFERENTIAL ENRICHMENT OUTPUT 

 
9ac 9ac 4me3 4me3 RNA RNA 

 
DER(#genes)   DER(#genes)   (#genes)   

 
padj<0.1 P<0.01 padj<0.1 p<0.01 padj<0.1 p<0.01 

n3:pectin:aom 8 862 1 190 0 19 

n3:pectin 8 782 0 141 0 94 

n3:aom 1 733 0 268 0 76 

pectin:aom 12 1421 1 184 0 14 

cca_ccs 17 (11) 1205 868 (530) 2455 31(22) 134 

cpa-cps 25(11) 1339 14 1135 15 107 

fca-fcs 9 800 1 588 1 92 

fpa-fps 0 510 7 378 2 80 

fpa_cca 0 866 21 488 86 278 

cpa-cca 0 1024 15 451 0 18 

fca-cca 1 861 0 488 1 90 

fish oil overall 58 868 5 1156 163 367 

pectin overall 13 849 9 432 2 103 

aom overall 49(27) 1135 7678 (3576) 6192 (4150) 128 288 

fps-ccs 6 579 3 201 14 145 

fcs vs ccs 11 642 0 348 64 302 

cps vs ccs 49 1193 0 80 0 55 

DER: Differentially Enriched Regions (ChIP peaks with differential binding between treatments) -(#genes) details number of 

genes, removing duplicates if multiple splice variants were detected in RNA or if multiple ChIP DERs were present in a gene. 
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APPENDIX V 

ANOVA TEST FOR RAT HM-ACF 

Anova test for rat ACF (used in Aim 3 HM-ACF analysis) 

compare diets with outlier removed (174) 

 
The ANOVA Procedure 

 

Class Level Information 

Class 

Level

s Values 

diet 4 CCA CPA FCA FPA 

 

 

Number of Observations Read 39 

Number of Observations Used 39 

Dependent Variable: count 

Source DF Sum of Squares Mean Square 

F 

Value Pr > F 

Model 3 7587.75796 2529.25265 7.50 0.0005 

Error 35 11796.60101 337.04574   

Corrected Total 38 19384.35897    

 

 

R-Square 

Coeff 

Var 

Root 

MSE count Mean 

0.391437 40.61222 18.35881 45.20513 

 

 

Source 

D

F Anova SS Mean Square 

F 

Value Pr > F 

diet 3 7587.7579

64 

2529.252655 7.50 0.000

5 

 

Tukey's Studentized Range (HSD) Test for count 

 

Alpha 0.05 

Error Degrees of Freedom 35 

Error Mean Square 337.0457 

Critical Value of Studentized Range 3.81400 

Minimum Significant Difference 22.503 

Harmonic Mean of Cell Sizes 9.682152 
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Note: Cell sizes are not equal. 

 

 

Means with the same letter are not 

significantly different. 

Tukey Groupin

g Mean N diet 

 A 63.222 9 CCA 

 A    

B A 53.500 10 CPA 

B     

B C 40.667 9 FCA 

 C    

 C 26.636 11 FPA 
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APPENDIX W 

INFORMATION ON THE DATA IN EACH OF THE SUPPLEMENTARY FILES 

(IDENTIFIED BY BULLET AND BOLDED TEXT) IS PROVIDED BELOW 

• ChII.Distal_v_Proximal_Supplemental-Data-1 -DEs DERs 

 

As detailed in section 2.2.5  

SICER program was employed to select regions that exhibited significant differences 

(DERs) in the tag counts between the two colonic regions (P-value < 0.00001; FC > 2).  

The nearest gene to each island, i.e., within 2 kb of the island, was identified using 

closestBed from the BEDTools software suite (Quinlan and Hall 2010) and the refGene 

table downloaded from the UCSC Genome Browser for the Baylor 3.4/rn4 assembly 

(Gibbs, Weinstock et al. 2004). 

Sheets B_H3K4me3-seq and C_H3K9me3-seq 

island signal directionality: gives information indicating whether calculated fold change 

was decreased or increased in proximal versus distal colon. 

gene symbol: gene annotated to that genomic region (island) 

fold change: fold change increase or decrease of island intensity in proximal compared 

to distal colon 

island start: genomic start position  of island 

island end: genomic end position  of island 

island chr: chromosome where island is located 

accession: accession number for annotated gene 

distance to TSS as % of gene length: island distance (in bp) to TSS as % of total gene 

length (in bp) 

annotation source: Database source of annotated genes 

gene description: definition of annotated gene 

Sheets A_RNA-seq 

As detailed in section 2.2.8 Differential expression (DE) analyses were performed using 

cuffdiff2 and cummeRbund (Trapnell, Roberts et al. 2012). 

gene: gene symbol annotated to that transcript 

locus: genomic location of transcript 

status:  Cuffdiff parameters indicating whether FPKM<0 in either of the 2 samples 

Proximal_FPKM:  intensity of transcript from proximal colon 

Distal_FPKM: intensity of transcript from distal colon 

log2(fold_change):  Differential expression (DE) as log2(distal/proximal) 

p_value: extremal probability for calculated log2(fold_change) under the null 
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hypothesis, not accounting for multiple comparisons  

q_value: extremal probability for calculated log2(fold_change) under the null 

hypothesis, accounting for multiple comparisons  

significant: ‘yes’ if q-value<0.05 

 

• ChII.Distal_v_Proximal_Supplemental-Data-2 – ncRNA 

 

As detailed in section 2.2.8  

The cuffcompare program of cufflinks2 pipeline (reference annotation based method) 

was used to classify the assembled transfrags into different classes.  The transfrags 

annotated with class codes u (unknown intergenic transcript) and i (a transfrag falling 

entirely within a reference intron) were selected to annotate against known lncRNA's.  A 

custom perl script was written to fetch sequences for the coordinate information 

produced by cuffcompare. NONCODE v3, UCSC, and fRNAdb v3.0 databases were 

downloaded and only non-coding RNA (ncRNA) sequences belonging to the rat genome 

whose length was greater than 100 bp were used to create a unified database (Mituyama, 

Yamada et al. 2009, Bu, Yu et al. 2012, Meyer, Zweig et al. 2013).  The fetched 

sequences from UCSC were then queried for ncRNA sequence similarity with blastn by 

thresholding at 1e-10 (Altschul, Madden et al. 1997, Johnson, Zaretskaya et al. 2008).  

High confidence hits, % with high-scoring segment pairs (HSPs) length greater than 100 

and whose identity was greater than 95% were retained.  Whenever possible, BLAST 

results were further filtered to remove hits that did not correspond to known ncRNA 

coordinate information. Due to the consistent lack of coordinate information for the 

known ncRNA sequences, the results include matches to multiple genomic locations. 

 

 

• ChII.Distal_v_Proximal_Supplemental-Data-3 - IPA pathway analysis 

• ChIII.Supplementary Table 3 - IPA Analysis Full Summary 

• ChIV.Supplemental Table 2 (networks)  

• ChIV.Supplementary Table 3 (URs) 

• ChIV.Supplemmentary Table 4 (BF) 

 

As detailed in section 2.2.9 and 3.2.12.    

To perform IPA analysis, all differentially expressed genes (adjusted P < 0.005) in the 

distal or proximal colon were uploaded into three columns for the purpose of generating 

Illumina probe ID, t-value (fold change) and adjusted P-value (FDR) data.  By 

convention, genes that were up-regulated in the distal colon are shown in red and genes 

that were down-regulated are shown in green.  By default, during IPA analysis, only 
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molecules from the data set associated with the Ingenuity Knowledge Base repository 

(Ingenuity Systems Inc.) were considered.  Functional Analysis identified the biological 

functions (BFs) and/or diseases that were most significant to the data set.  The 

significance of the association between the data set and the specific pathways of interest 

was determined in three ways: (1) ratio of the number of molecules from the data set that 

mapped to the pathway divided by the total number of molecules that mapped to the 

Ingenuity Knowledge Base pathway, (2) Fisher's exact test was used to calculate a P 

value determining the probability that the association between the genes in the data set 

and the pathway of interest could be explained by chance alone, and (3) activation state 

(“Increased” or “Decreased”) was inferred by the activation z-score.  The derivations of 

the z-scores are based on relationships in the molecular network that represent 

experimentally observed causal associations between genes and those functions. 

“Canonical pathway” analysis was used to identify networks from the IPA library that 

were most significantly modulated across anatomical sites.  Significance of the 

association between each data set and the canonical pathway was measured in 2 ways: 

(1) A ratio of the number of molecules from the data set that mapped to the pathway 

divided by the total number of molecules that mapped to the canonical pathway, and (2) 

Fisher’s exact test was used to calculate p‐values determining the probability that the 

association between genes in the dataset and each canonical pathway was explained by 

chance alone.   

“Upstream regulator” (UR) analysis was based on prior knowledge of expected 

associations between transcriptional regulators and their target genes stored in the 

Ingenuity® Knowledge database, and significance for each TF was measured in 2 ways: 

(1) Fisher’s Exact Test (p-value) was used to identify differentially expressed genes 

from the RNA-Seq data set which overlapped with genes known to be regulated by a TF.  

Since the regulation direction (“activating” or “inhibiting”) of an edge is not taken into 

account for the computation of overlap p‐values, the underlying network also included 

findings without associated directional attribute, such as protein‐DNA (promoter) 

binding.  In addition, the activation score (z-score) was used to infer the status of 

predicted transcriptional regulators by comparing the observed differential regulation of 

genes (“up” or “down”) in the dataset relative to the literature‐derived regulation 

direction which can be either “activating” or “inhibiting”. 

 

• ChIII.Supplementary Table 1 - AOM DEs  

• ChIV.Supplemental Table 1 - DE DER (DEs) 

 

As detailed in section 3.2.10 
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Regions showing differences in histone modification were identified using the edgeR 

package (Robinson, McCarthy et al. 2010, Nikolayeva and Robinson 2014) for the R 

software environment (Zhang, Liu et al. 2008, Robinson, McCarthy et al. 2010).  Read 

counts per gene were normalized using the scaling factor method of Anders and Huber 

(Anders and Huber 2010).  Differential expression testing of genes was performed using 

likelihood ratio tests on the negative binomial GLMs estimated by edgeR (Robinson, 

McCarthy et al. 2010, Nikolayeva and Robinson 2014).  Regions with FDR < 0.1 and p-

val <0.01 and minimal threshold of one count per million mapped reads in at least four 

samples were selected as differentially enriched regions (DERs). 

Accession: gene accession id annotated to that transcript 

Pval_aom: extremal probability for calculated log2(fold_change) under the null 

hypothesis, not accounting for multiple comparisons  

AdjPVal (FDR) aom: extremal probability for calculated log2(fold_change) under the 

null 

hypothesis, accounting for multiple comparisons  

log2(FoldChange): Differential expression (DE) as log2 

FCsign: positive or negative one is assigned based on whether calculated fold change 

was positive or negative. 

locus: genomic location of transcript 

 

• ChIII.Supplementary Table 2 - AOM DERs 

• ChIV.Supplemental Table 1 - DE DER (DERs) 

 

As detailed in section 3.2.8  

To determine differential enrichment (DERs) The peak caller programme MACS 

(version 1.4.1) (Zhang, Liu et al. 2008) was used to identify peaks.  Islands were defined 

(using merge function of BEDTools (Quinlan and Hall 2010)) as the genomic areas 

enriched with the ChIPed protein (peaks) in at least one sequenced sample, and reads 

were quantified using coverageBed function of BEDTools (Quinlan and Hall 2010).  The 

UCSC Genome Browser was used to visualize bigwig data tracks.  The nearest gene to 

each island, i.e., within 5 kb of the island was identified using closestBed from the 

BEDTools software suite (Quinlan and Hall 2010) and the refGene table downloaded 

from the UCSC Genome Browser for the Baylor 3.4/rn4 assembly files (Gibbs, 

Weinstock et al. 2004). 

Regions showing differences in histone modification were identified using the edgeR 

package (Robinson, McCarthy et al. 2010, Nikolayeva and Robinson 2014) for the R 

software environment (Zhang, Liu et al. 2008, Robinson, McCarthy et al. 2010).  In 

order to increase the statistical power of our analysis (higher number of samples per 
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treatment) and detect key AOM effects associated with cancer progression, rats were 

pooled across the various diet groups described under the methods section “Chromatin 

Immunoprecipitation”.  Read counts per gene were normalized using the scaling factor 

method of Anders and Huber (Anders and Huber 2010).  Differential expression testing 

of genes was performed using likelihood ratio tests on the negative binomial GLMs 

estimated by edgeR (Robinson, McCarthy et al. 2010, Nikolayeva and Robinson 2014).  

Regions with FDR < 0.1 and minimal threshold of one count per million mapped reads 

in at least four samples were selected as differentially enriched regions (DERs). 

accession: gene accession number or genomic locus id of island/peak 

Pval_aom: extremal probability for calculated log2(fold_change) under the null 

hypothesis, not accounting for multiple comparisons  

AdjPVal (FDR) aom: extremal probability for calculated log2(fold_change) under the 

null 

hypothesis, accounting for multiple comparisons  

log2(FoldChange): Differential enrichment (DER) as log2 

FCsign: positive or negative one is assigned based on whether calculated fold change 

was positive or negative. 

 

• ChIII.Supplemmentary Table 4 – ncRNA 

 

As detailed in section 3.2.10  

Non-coding RNAs were identified using the lncRNApipe 

(https://github.com/biocoder/Perl-for-Bioinformatics/releases) software. 

Pipeline steps with further technical details: 

A total of approximately 1.25 billion (including all samples and replicates) 50bp single-

end Illumina reads were obtained from a multiplexing run.  

a. Reads were trimmed for low quality bases (phred score <Q20) and any 

adapter sequences using Trimmomatic (Bolger, Lohse et al. 2014). Any 

reads less than 25bp in length were discarded after trimming. 

b. A total of approximately 1.2 billion reads survived trimming which were 

then aligned against rn4 rat assembly (from UCSC) using tophat 

(Trapnell, Roberts et al. 2014) with multi-hit filtering for each replicate of 

a treatment. 

c. A total of approximately 590 million reads uniquely mapped to the 

transcriptome and resulting alignments for each treatment were merged 

using Sambamba (Tarasov, Vilella et al. 2015).  
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d. Merged read alignments for each treatment were processed with cufflinks 

(Trapnell, Roberts et al. 2014) to perform reference annotation based 

transcript assembly with bias and multi-read correction.  

e. Cuffcompare (Trapnell, Roberts et al. 2012) was run to compare 

assembled transcripts with reference annotation (rn4) and assign various 

class codes for transcript assembly of each treatment. 

f. Any transcripts that belonged to class codes “j”, “i”, “o”, “u” and “x” 

were considered and categorized into 5 categories: long intergenic 

lncRNAs (LincRNAs), intronic contained lncRNAs (Incs), partially 

overlapping lncRNAs (Poncs), completely overlapping lncRNAs (Concs) 

and exonic overlaps (LncRNAs with sense or antisense overlap with 

reference exon) (Pauli, Valen et al. 2012) by comparison to known 

RefSeq (Pruitt, Brown et al. 2014) gene annotation (rn4). When 

calculating exonic overlaps with reference exon boundaries, only 

cufflinks assembled transcripts whose exon (at least one) overlaps with 

reference exon by at least 80% of the exon length was considered. Single 

exon transcripts were also retained. 

g. Since RefSeq gene annotation consists both protein-coding and non 

protein-coding genes, the resulting catalog of categorized ncRNAs were 

compared to identify novel ncRNAs in rn4 i.e., any assembled transcripts 

from cufflinks which were not overlapping with RefSeq genes were 

marked as potential novel ncRNAs. 

h. FASTA sequences were created for the potential novel ncRNAs to run 

CPC (Coding Potential Calculator) (Kong, Zhang et al. 2007) with 

UniRef90 protein database, and any transcripts which were flagged as 

“coding” by CPC were discarded. 

i. Cmscan from INFERNAL1.1 (Nawrocki and Eddy 2013) was run with 

default E-value cutoff of 10 on the resulting transcripts using Rfam 

covariance models (CMs). Annotation from cmscan result was applied to 

putative non-coding RNA if at least 10% of query sequence was matched 

with the resulting best hit. 

j. Finally, RNAfold (Lorenz, Bernhart et al. 2011) was run to predict 

minimum free energy structure of putative novel ncRNAs. 

After the pipeline was run on each treatment, the individual putative novel lncRNA 

assemblies for each treatment were merged with cuffmerge (Trapnell, Roberts et al. 

2014) to create unified ncRNA transcript catalog for this experiment. BLAST (Camacho, 

Coulouris et al. 2009) homology search was performed against hg38, mm10 and rn6 

RefSeq genes for the merged transcripts with e-value cutoff of 1e-5, 95% sequence 
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identity and 90% query sequence coverage thresholds to eliminate any similar or newly 

identified ncRNAs in closely related species to rat. A final list of potential novel long 

non-coding RNAs (transcript length >= 150) was created. Cuffdiff (Trapnell, Roberts et 

al. 2014) was run using the final list of putative novel lncRNAs as reference between 

AOM and saline (control) conditions to identify differentially expressed putative novel 

lncRNAs. A total of 324 transcripts were identified as putative novel lncRNAs of which, 

266 have been assigned RNA families by INFERNAL with at least 10% query sequence 

coverage and E-value cut off of 10. None of the putative novel lncRNAs were 

significantly differentially expressed. 




