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ABSTRACT

The problem of interaction between fluids and structures is of practical signifi-

cance in many fields of engineering. This interaction has to be taken into account

in analyzing floating objects, ship sloshing, fluid containers subject to earthquake,

flutter of airplane wings, suspended bridge subject to wind, submerged structures

such as submarines, dam-reservoir systems, and blood flow through arteries. Such

problems are known as the fluid-structure interaction (FSI) problems, where a struc-

tural domain interacts with an internal or surrounding fluid. A comprehensive study

of these problems still remains a challenging task because of the coupling between

the two domains and the existence of strong nonlinearity. For most FSI problems,

constructing a complete mathematical model is the most difficult part because of

different descriptions of motions used for fluids and solids. Most studies involving

FSI embrace many simplifying assumptions to make the problem tractable.

In this dissertation, finite element formulations are presented to study two types

of representative FSI problems. First, we investigate the effect of the fluid region on

the free vibration of beam and plate structures; in particular, natural frequencies and

mode shapes of the beams and plates when they are surrounded by a fluid medium

are determined. In these problems, we assume that the strains and rotations are

considered to be infinitesimally small. Finite element models are constructed for both

structural and fluid domains. To connect these two regions, the solid-fluid interface

conditions, using the concept of an added mass, are used to construct a coupled finite

element model of the problems. Then, we focus on the transient response of plates

in the presence of a fluid medium, wherein we consider the geometric nonlinearity

with small strains and moderate rotations.
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Second, we study the effect of arterial walls on the blood flow through large

arteries. Although we make several assumptions to simplify the development and

formulate the finite element model, we obtain a reasonable amount of useful knowl-

edge from this exercise. The problem is nonlinear due to the Navier-Stokes equations

governing the fluid domain, even without considering the geometric nonlinearity of

the arterial wall. The existence of first derivatives of primary variables, such as vol-

ume flow rate, cross-sectional area and pressure, in the obtained system of differential

equations allows us to take the advantage of least-squares formulation to construct

a corresponding finite element model.
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1. INTRODUCTION

The dynamic analysis of structures, characterized by natural frequencies, mode

shapes, and transient response, is of considerable importance in design. In engi-

neering problems in which a structure is in contact with a fluid medium, one needs

to deal with a fluid-structure interaction (FSI). The FSI problems include flutter of

aerodynamic structures, structural deformation due to explosions, vortex induced vi-

brations of sub-sea pipelines and risers, inflatable dams, parachute dynamics, blood

flow through arteries, to name a few. In these problems it is important, from both

theoretical and practical viewpoints, to develop a methodology for studying their

dynamic response. For instance, the dynamic response of beams and plates sur-

rounded by a fluid domain and the effect of internal flow on the arterial walls need

to be effectively addressed. Generally, finding analytical solutions to FSI problems

is made difficult by geometric complexity, nonlinearities, and coupled phenomena.

Therefore, researchers have resorted to experimental or numerical simulations.

1.1 Background of the Study

FSI problems are often categorized into loosely-coupled (stagger) and strongly-

coupled (in terms of the equations governing the structure and the fluid). In the

loosely-coupled FSI problems, typically the interaction of fluid on structure is taken

through the forces exerted by the fluid, while in the strongly-coupled ones, the effect

of the fluid on the structure and the deformation of the structure on the fluid flow are

considered. Thus, the loosely-coupled FSI approach is suitable for cases wherein the

structure undergoes infinitesimal deformations (e.g., ship dynamics). On the other

hand, a strongly-coupled problem requires the solution of the complete equations of

fluid flow and the structure that is in contact (i.e., solve the Navier–Stokes equations
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and the equations governing the structure simultaneously).

A significant body of research has been dedicated to loosely-coupled FSI prob-

lems, including beams and plates. Shabani et al. [1] studied the free vibration of a

cantilever micro-beam in contact with bounded incompressible fluid using Fourier-

Bessel series formulations. They provided a natural frequency comparison between

wet and dry conditions. Jones [2] suggested a damping model in order to approximate

the dynamic behavior of a beam surrounded by a fluid medium. Aureli and Porfiri

[3] pursued the nonlinear vibration of a cantilever beam submerged in viscous fluids.

However, their results are limited to low frequency and large amplitude oscillations.

The research of Sedlar et al. [4] is focused on the experimental modal analysis of

cantilever beams in the air as a fluid. A vibrational analysis of FSI Timoshenko

beams has been carried out by Lee and Schultz [5]. Lamb [6] investigated the first

bending mode shape of a circular plate by calculating the kinetic energy of the fluid

using Rayleigh’s method. This result is verified experimentally by Powell [7] and [8].

Muthuveerappan et al. [9] simulated the dynamic behavior of a submerged cantilever

plate using the finite element approach. Lindholm and Chu [10] calculated the first

six resonance frequencies of a cantilever plate as functions of plate thickness, width,

and immersion depth. Zhou and Cheung [11] considered the vibration of a vertical

plate on a rigid wall in contact with water from only one side. Facci and Porfiri [12]

studied the flow dynamics induced by the vibration of a submerged cantilever plate.

Liew et al. [13] obtained the natural frequencies of a simply supported thick rect-

angular plate using the three-dimensional elasticity equations and the Ritz method.

The dynamic behavior of thick rectangular plates were addressed by Ferreira et al.

[14] using the first-order shear deformation plate theory and a meshless method.

Robinson and Palmer [15] performed a modal analysis of a thin flat horizontal plate

floating on an incompressible fluid; however, their studies were limited to normal
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modes only. Fu and Price [16] discussed dynamic characteristics of vertical and hori-

zontal cantilever plates with a semi-finite fluid medium interaction. Volcy et al. [17]

conducted an experimental research on the fundamental natural frequencies of plates

immersed in a fluid medium. Kerboua et al. [18] developed a method to analyze the

FSI problem of rectangular plates based on the Sander’s shell theory and the Ritz

approach. Haddara and Cao [19] derived an approximate expression for dynamic re-

sponse of a rectangular plate interacting with a fluid medium. Hosseini-Hashemia et

al. [20] investigated the dynamic analysis of a moderately thick rectangular plate in

contact with a fluid medium using the first-order shear deformation (Mindlin) plate

theory. Ergin and Ugurlu [21] used ANSYS software to characterize the dynamic

behavior of vertical cantilever plates submerged partially in fluid, and they com-

pared the results with the case of vacuo-interaction. Yadykin et al. [22] considered a

low aspect ratio for cantilever plates oscillating in a stationary fluid using the airfoil

theory.

In all of the above studies, it is verified that the presence of fluid medium decreases

the natural frequencies of the structure significantly. One of the most common

techniques in evaluating the dynamic behavior of an FSI problem is to introduce the

concept of “added mass”. The term “added mass” is defined as an external force

applied to the submerged structure representing the effect of fluid pressure. There are

several studies available in the literature using this concept. Liang et al. [23] used the

empirical added mass formulation along with the Ritz method to study the dynamic

behavior of an FSI plate problem. Kwak [24] found a dimensionless added mass for

the vibration of rectangular plates interacting with fluid, and proposed a formula

approximating the natural frequencies of a wet plate as functions of corresponding

natural frequencies for the vacuum case, assuming that the mode shapes for both wet

and vacuum cases are almost the same. Brugo and Minak [25] developed an empirical

3



method by considering the added mass in order to analyze the relationship between

the resonance frequencies and the plate width and immersion depth, for a vertical

cantilever plate which is partially or completely immersed in water. Muthuveerappan

et al. [26] also analyzed the dynamic behavior of a submerged cantilever plate using

the concept of added mass.

The transient analysis of FSI problems is also carried out in the literature. Qiu

[27] analyzed the transient behavior of a flexible beam floating in an unboundad

water domain. Qiu and Liu [28] adopted a finite element procedure to study the

hydroelastic transient response of floating plates subjected to dynamic loads. Sturova

[29] and [30] considered the unsteady behavior of an elastic beam and a circular elastic

plate in shallow water, as well as the case in which an elastic beam is floating on the

surface of an infinitely deep fluid. Korobkin [31] solved a two-dimensional unsteady

problem of a plate floating on a finite depth water; however, this solution does not

include the effect of gravity. Meylan and Sturova [32] determined the time-dependent

solution of an elastic plate floating on water surface, but the solution is limited to

very large floating structures. Jin and Xing [33] presented the transient dynamic

analysis of a beam in contact with water affected by a landing beam.

In studies involving blood flow through arteries, it has been shown that the pre-

diction of blood pressure variations plays an important role in characterizing the

dynamic behavior. A large number of methods are proposed to analyze the pressure

propagation phenomena in arterial systems. Konig et al. [34] analyzed the fluid do-

main in FSI problems using moving boundaries for different levels of viscosity. Their

model was particularly suitable for high viscosity regimes. Stergiopulos et al. [35]

constructed a computer model for simulating the pressure and flow propagation in

the human arterial system. Bathe and Kamm [36] performed an FSI finite element

analysis on unsteady blood flows using the ADINA commercial code. Sherwin et
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al. [37] proposed a finite element method based on the discontinuous Galerkin and

Taylor-Galerkin formulations to develop a one-dimensional model for the blood flow

in arteries. Wan et al. [38] conducted a finite element analysis to solve unsteady

blood flows in elastic vessels. Their method is based on the space-time finite element

method using the discontinuous Galerkin method. Larrabide et al. [39] presented

a simulation tool called Hemodynamics Modeling Laboratory (HeMoLab) to model

the human cardiovascular system. Porenta et al. [40] provided a nonlinear mathe-

matical model for arterial blood flow, taking into account the tapering, branching,

and presence of stenosed segments. Gijsen et al. [41] presented a three-dimensional

finite element simulation for a steady flow to study the influence of non-Newtonian

properties of blood on the velocity distribution. Perktold et al. [42] compared the

Newtonian and non-Newtonian results for pulsatile flows in a three-dimensional hu-

man carotid arteries. Perktold et al. [43] analyzed the flow and stress patterns in

human carotid artery bifurcation models. They approximated the governing Navier–

Stokes equations by means of a pressure correction finite element method. Avolio

[44] studied the multi-branched model of the human arterial system by dividing the

arteries into uniform thin-walled elastic tethered segments with realistic arterial di-

mensions and wall properties. Holzapfel et al. [45] conducted a finite element analysis

for structural models considering the viscoelastic behavior of arterial walls.

1.2 Objectives of the Present Study

The methods discussed in the literature concerning the loosely-coupled (stag-

gered) FSI problems are limited to certain structural geometries, such as cantilevered

beams and plates. The present study is an attempt to understand the influence of

the fluid medium on the dynamic response of beam and plate structures, where the

influence of shear deformation is considered through a higher-order theories (e.g.,
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the Reddy third-order shear deformation beam and plate theories [46, 47, 48]), and

carry out a simple study to determine the response of arteries with internal blood

flow. Various finite element models are developed to represent the dynamic response

of elastic structures in the presence of an inviscid fluid medium. In addition, a

nonlinear finite element formulation is presented to investigate the effect of fluid

medium on the transient response of elastic plates. Such formulation is developed

based on well-known theories in the literature, enabling the developed methodology

to be suitable for all beam and plate problems independent of geometric and ma-

terial properties and boundary conditions. It is worth mentioning that there exist

no studies of the FSI problems using the Reddy third-order shear deformation beam

and plate theories.

The approaches used in the literature for the study of blood flow through large

arteries are based on several assumptions, which result in simplicity and reduction

in the computational cost. However, the behavior of blood flow considering the

arterial walls as a rigid structure is substantially different from the case where the

blood vessels are assumed to be deformable. This dissertation provides a simple,

one-dimensional FSI least-squares-based finite element formulation to predict the

pressure variation of the blood flow through the arteries with a low computational

cost.

The rest of the dissertation is organized as follows. In Section 2, the effect of

the fluid presence on the vibrations of structures, including beams and plates, is

investigated. In particular, we study the free vibration of these structures assuming

small strains and rotations resulting in the construction of linear finite element mod-

els. The proposed method employs the three well-known beam and plate theories

[47, 48], and corresponding numerical results are provided for all three theories.

In Section 3, the transient response of plates in contact with a fluid domain is

6



studied through reformulating the method presented in Section 2 for the nonlinear

case. Specifically, we consider small strains and moderate rotations in analyzing

the transient response of these FSI problems; the nonlinear forms of the three plate

theories discussed in Section 2 are utilized. This nonlinear formulation may be used

for a broad range of applications.

In Section 4, a finite element formulation is presented to solve the FSI problem of

blood flow through large arteries. Since the Navier–Stokes equations involve nonlin-

ear terms, the resulting finite element model includes nonlinear terms as well, even

without considering the geometric nonlinearity. The nature of the derived system of

partial differential equations suggests the use of a least-squares formulation [49] in

our approach.

Finally, some concluding remarks are provided in Section 5.
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2. VIBRATION OF ELASTIC STRUCTURES IN THE PRESENCE OF AN

INVISCID FLUID MEDUIM*

2.1 Introduction

The main aim of this section is to study the influence of the presence of fluid

in contact with a structure on its dynamic response. In general, the fluid pressure

affects the structure deflections and correspondingly the structure deflections change

the fluid boundary conditions. So we are dealing with a two-way coupling, and this

coupling is intensified when high-speed flows and/or geometrically complex structures

are involved. In order to examine our method, we make a number of simplifications

throughout this section. For instance, we consider the structural deflections to be

small, the fluid to be inviscid, the flow to be low velocity and acceleration, and the

surrounding temperature of the fluid to be at environment temperature.

A good understanding of the influence of fluid on the structural response is of

great importance in many engineering problems. Most structures consist of beams,

plates, and shells as structural elements. Therefore, it is of interest to study the

effect of fluid on structural response.

Analytical solutions are available only for rigid structures without any interac-

tion. Also several numerical studied have been published in the field of vibrations of

structures. So we are looking for a method that can be used in order to make them

applicable for FSI problems.

*Part of the data reported in this chapter is reprinted with permission from ”Vibration of
Elastic Beams in the Presence of an Inviscid Fluid Medium” by H. Soltani, G. S. Payette, and
J. N. Reddy, International Journal of Structural Stability and Dynamics, Volume 14, Issue 06,
1450022 [29 pages], Copyright @ 2014 World Scientific Publishing Company, and ”Free Vibration
Analysis of Elastic Plates in Contact with an Inviscid Fluid Medium” by H. Soltani and J. N. Reddy,
International Journal of Applied Mechanics, Volume 7, Issue 03, 1550041 [20 pages], Copyright @
2015 Imperial College Press.

8



In the present section, we evaluate the interaction between an inviscid fluid and

a linear elastic structure using the added mass phenomena. The governing equations

for the fluid and solid regions are developed using various structural theories including

shear deformation beam and plate theories, considering the coupling between these

two regimes. The weak-form finite element models of the governing equations in both

regions are developed as an eigenvalue problem, and numerical results are presented.

2.2 Theoretical Formulations

In this sub-section, the governing equations of beams and plates in the presence

of a fluid medium are presented. Figures 2.1 and 2.2 contain the domain of the

FSI problem with the boundary conditions and typical fluid mesh for the beam

and plate, respectively. Three different beam theories, namely, the Euler-Bernoulli,

Timoshenko and Reddy third-order beam theories are considered in formulating the

beam analysis, and for the case of plate analysis, we will study Classical plate theory,

first-order, and Reddy third-order shear deformation plate theory (see Reddy [47] and

Wang, Lee, and Reddy [46]).

Figure 2.1: Domain of the beam fluid-structure interaction problem with the (a)
boundary conditions and (b) typical fluid mesh.
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Figure 2.2: Domain of the plate fluid-structure interaction problem with the (a)
boundary conditions and (b) typical fluid mesh.

2.2.1 Fluid Mechanics

In the present analysis, we use the continuum hypothesis to formulate an equation

governing fluid motion. In general, fluid motion is described by the conservation

principles of linear and angular momentum which can be expressed as (see Reddy

[50])

∇ · σσσ + ρfb = ρf v̇ (2.1)

where σσσ is the Cauchy stress tensor, ρf is the fluid density, b is the force vector,

which in the present case has only nonzero component due to gravity (per unit mass

in the z direction), v is the velocity vector, and ∇ is the gradient operator with

respect to the spatial coordinates x. If we assume the fluid to be inviscid, then the

stress tensor can be expressed as

σσσ = −pI (2.2)
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where I is the second order identity tensor and p is the pressure. As a result, the

momentum equations assume the form

−∇p+ ρfb = ρf v̇ (2.3)

Taking the divergence of Eq. (2.3) results in the following equation

−∇2p = ρf∇.v̇ (2.4)

where we have used the fact that b is constant and have also assumed the fluid to

be incompressible.

For slowly moving flow, we neglect the right hand side of Eq. (2.4), which results

in the following Laplace equation for p

−∇2p = 0 (2.5)

For two dimensional flows, Eq. (2.5) can be expressed in the Cartesian coordinate

system as

−
(
∂2p

∂x2
+
∂2p

∂z2

)
= 0 (2.6)

And for three dimensional flows, the expression in the Cartesian coordinate system

is as follow

−
(
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2

)
= 0 (2.7)

It is important to note that although time does not appear explicitly in Eqs. (2.5)-
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(2.7), it does enter the formulation through the solid-fluid interface. As a result p is,

in general, a function of time.

2.2.2 Solid Mechanics

The solid region of the current study is a linearly elastic beam or plate. For our

analysis, we will consider Euler-Bernoulli, Timoshenko, and Reddy third-order beam

theories for beam structures. For plate structures, our studies will be focused on

Classical plate theory, first-order shear deformation plate theory and Reddy third-

order shear deformation plate theory.

For beams, the x-axis is taken along the length of the beam, passing through

the geometric centroid, and z-coordinate is taken transverse to the length (i.e., the

y-coordinate is into the plane of the paper). In the case of plates, the xy-plane is

the midplane of the plate with the z-axis transverse to the plane of the plate. The

total height of the beam and thickness of the plate are denoted with H.

2.2.2.1 The Euler-Bernoulli Beam Theory (EBT)

The governing equation for the EBT under the assumption of small strains and

rotations can be expressed as

∂2

∂x2

(
EI

∂2w

∂x2

)
+ms

∂2w

∂t2
− msH

2

12

(
∂4w

∂x2∂t2

)
= −Wp (2.8)

where w is the vertical displacement. In Eq. (2.8) EI denotes the bending stiffness

(E is Youngs modulus and I is the second moment of area); ms = ρsA is the mass

inertia (ρs is the density of the beam material; A is the cross-sectional area of the

beam with W being the width and H being the height); and p is the fluid pressure

acting normal to the beam. In writing Eq. (2.8), the beam rotary inertia is included

[the last term on the left side of Eq. (2.8)]. This term can have a significant effect
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upon higher modes of beam vibration.

2.2.2.2 The Timoshenko Beam Theory (TBT)

The effect of transverse shear strains on the beam can be accounted for by using

the Timoshenko beam theory. The governing equations of the TBT are

∂

∂x

[
GAKs

(
φ+

∂w

∂x

)]
−Wp = ms

∂2w

∂t2
(2.9)

∂

∂x

(
EI

∂φ

∂x

)
−GAKs

(
φ+

∂w

∂x

)
=
msH

2

12

∂2φ

∂t2
(2.10)

where w is once again the vertical displacement, φ is the rotation of a transverse

normal, G is the shear modulus, and Ks is the shear correction factor due to the

constant shear strain obtained using this theory. Note that the rotary inertia term

is included in Eq. (2.10).

2.2.2.3 The Reddy Beam Theory (RBT)

The RBT is useful because it allows for a parabolic distribution of the shear strain

λxz and shear stress σxz through the thickness of the beam. As a result, the RBT

does not require the shear correction factor [46]. The governing equations for the

RBT can be expressed as

∂Q̄x

∂x
+ c1

∂2Pxx
∂x2

−Wp = I0
∂2w

∂t2
+ c1

(
J4

∂3φ

∂x∂t2
− c1I6

∂4w

∂x2∂t2

)
(2.11)

∂M̄xx

∂x
− Q̄x = K2

∂2φ

∂t2
− c1J4

∂3w

∂x∂t2
(2.12)
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where the quantities included in Eqs. (2.11) and (2.12) are defined as

I0 = ρsWH, I2 =
1

12
ρsWH3, I4 =

1

80
ρsWH5, I6 =

1

448
ρsWH7

M̄xx = Mxx − c1Pxx, Q̄x = Qx − 3c1Rx

K2 = I2 − 2c1I4 + c2
1I6, J4 = I4 − c1I6, c1 =

4

3H2
(2.13)

and the stress resultants are expressed as

Mxx = E

[
D2

∂φ

∂x
−D4c1

(
∂φ

∂x
+
∂2w

∂x2

)]
Pxx = E

[
D4

∂φ

∂x
−D6c1

(
∂φ

∂x
+
∂2w

∂x2

)]
Qx = G

[
D0

∂w

∂x
+D0φ− 3D2c1

(
φ+

∂w

∂x

)]
Rx = G

[
D2

∂w

∂x
+D2φ− 3D4c1

(
φ+

∂w

∂x

)]
(2.14)

In addition, the geometric parameters Dj are defined as

D0 = WH, D2 =
1

12
WH3, D4 =

1

80
WH5, D6 =

1

448
WH7 (2.15)

2.2.2.4 The Classical Plate Theory (CPT)

The other structure considered in this study is a rectangular plate. Figure 2.2

shows the dimensions, the boundary conditions, and load on the plate. The plate is

assumed to be made of homogeneous, isotropic and linear elastic material. The CPT

is governed by the equation

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
= −ms

∂2w

∂t2
+
msH

2

12

∂2

∂t2

(
∂2w

∂x2
+
∂2w

∂y2

)
− p (2.16)
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where D is the bending rigidity

D =
EH3

12(1− ν2)
(2.17)

and all other variables have the same meaning as before.

2.2.2.5 The First-order Shear Deformation Plate Theory (FSDT)

In order to take into account the plate transverse shear deformations in our

analysis, we extend the proposed method to the first-order shear deformation plate

theory. For the plate at hand, the governing equations of the this theory are of the

form

∂Qx

∂x
+
∂Qy

∂y
= I0

∂2w

∂t2
− p (2.18)

∂Mxx

∂x
+
∂Mxy

∂y
−Qx = I2

∂2φx
∂t2

(2.19)

∂Mxx

∂x
+
∂Myy

∂y
−Qy = I2

∂2φy
∂t2

(2.20)

where w, φx and φy are vertical displacement, rotation of a transverse normal about

y axis and rotation of a transverse normal about x axis, respectively. The stress

resultants in these equations are as follows:

Qx = KsGH

(
φx +

∂w

∂x

)
Qy = KsGH

(
φy +

∂w

∂y

)
Mxx = D

(
∂φx
∂x

+ ν
∂φy
∂y

)
Myy = D

(
∂φy
∂y

+ ν
∂φx
∂x

)
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Mxy =
GH3

12

(
∂φx
∂y

+ ν
∂φy
∂x

)
(2.21)

where D is the bending rigidity defined in Eq. (2.17).

2.2.2.6 Reddy Third-order Shear Deformation Plate Theory (RSDT)

The governing equations of the RSDT are given by the following three equations

∂Q̄x

∂x
+
∂Q̄y

∂y
+ c

(
∂2Pxx
∂x2

+ 2
∂2Pxy
∂x∂y

+
∂2Pyy
∂y2

)
+ p

= I0
∂2w

∂t2
− c2I6

(
∂4w

∂x2∂t2
+

∂4w

∂y2∂t2

)
+ cJ

(
∂3φx
∂x∂t2

+
∂3φy
∂y∂t2

)
(2.22)

∂M̄xx

∂x
+
∂M̄xy

∂y
− Q̄x = K

∂2φx
∂t2
− cJ ∂3w

∂x∂t2
(2.23)

∂M̄xy

∂x
+
∂M̄yy

∂y
− Q̄y = K

∂2φy
∂t2
− cJ ∂3w

∂y∂t2
(2.24)

The variables in Eqs. (2.22)-(2.24) are expressed as

I0 = ρsH, I2 =
1

12
ρsH

3, I4 =
1

80
ρsH

5, I6 =
1

448
ρsH

7

M̄αβ = Mαβ − cPαβ (α,β=x,y)

Q̄α = Qα − 3cRα (α=x,y)

K = I2 − 2cI4 + c2I6, J = I4 − cI6, c =
4

3H2
(2.25)
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The stress resultants, for this theory, are defined as

Mxx = D

[
(1− α)

(
∂φx
∂x

+ ν
∂φy
∂y

)
− α

(
∂2w

∂x2
+ ν

∂2w

∂y2

)]
Myy = D

[
(1− α)

(
∂φy
∂y

+ ν
∂φx
∂x

)
− α

(
∂2w

∂y2
+ ν

∂2w

∂x2

)]
Mxy =

(1− ν)D

2

[
(1− α)

(
∂φx
∂y

+
∂φy
∂x

)
− 2α

∂2w

∂x∂y

]
Pxx = D

[
β

(
∂φx
∂x

+ ν
∂φy
∂y

)
− γ

(
∂2w

∂x2
+ ν

∂2w

∂y2

)]
Pyy = D

[
β

(
∂φy
∂y

+ ν
∂φx
∂x

)
− γ

(
∂2w

∂y2
+ ν

∂2w

∂x2

)]
Pxy =

(1− ν)D

2

[
β

(
∂φx
∂y

+
∂φy
∂x

)
− 2γ

∂2w

∂x∂y

]
Qx = (1− µ)GH

(
φx +

∂w

∂x

)
Qy = (1− µ)GH

(
φy +

∂w

∂y

)
Rx = λGH

(
φx +

∂w

∂x

)
Ry = λGH

(
φy +

∂w

∂y

)
(2.26)

where

α =
1

5
, β =

4H2

35
, γ =

H2

28
, λ =

H2

30
, µ =

1

3
(2.27)

and D is the bending rigidity as in Eq. (2.17).

2.2.3 Solid-Fluid Interface

The interface between the solid and fluid medium requires special attentions. Of-

ten an interface between solid and fluid regions are treated by assuming the continuity
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of velocity v and traction t which can be expressed as

∂us
∂t

= vf (2.28)

σσσs.n + σσσf .n = 0 (2.29)

Evaluating the momentum equation (2.3) at the solid-fluid interface yields the fol-

lowing equation

−∂p
∂z
− ρfg = ρf

∂2w

∂t2
(2.30)

which can be expressed as

∂p

∂z
= −ρf

(
g +

∂2w

∂t2

)
(2.31)

Equation (2.31) is therefore the solid-fluid interface condition that will be used in

our analysis.

2.3 Finite Element Formulations

In this sub-section, we present finite element formulations for the solid and fluid

domains. We also impose the interfacial condition given by Eq. (2.31) to couple the

two domains. For details, the reader may consult the textbooks by Reddy [51],[49].

2.3.1 Fluid Medium

Here we consider one row of fluid elements along the beam length (refer to Fig.

2.1). We begin by constructing the weak form of the Eq. (2.5) over a typical fluid

element Ωe = (xa, xb) × (za, zb). We proceed by multiplying Eq. (2.5) by the first
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variation of p

0 = −
∫
Ωe

δp∇2p dxdz (2.32)

Using the vector identity ∇. (α∇φ) = ∇α.∇φ + α∇2φ and the divergence theorem,

Eq. (2.32) can be expressed as (see Reddy [51])

0 =

∫ zb

za

∫ xb

xa

(
∂δp

∂x

∂p

∂x
+
∂δp

∂z

∂p

∂z

)
dxdz +

∫ xb

xa

[
δp
∂p

∂z

]
z=0

dx−
∮

Γ̂e
δp∇p.n̂ ds

(2.33)

where n̂ is the unit normal to the surface with components (nx, nz). In Eq. (2.33),

Γ̂e denotes the boundary of a fluid element not in contact with the beam. Inserting

Eq. (2.31) into Eq. (2.33), we obtain

0 =

∫ zb

za

∫ xb

xa

(
∂δp

∂x

∂p

∂x
+
∂δp

∂z

∂p

∂z

)
dxdz −

∫ xb

xa

[
δpρf

(
g +

∂2w

∂t2

)]
z=0

dx

−
∮

Γ̂e
δp

(
∂p

∂x
nx +

∂p

∂z
nz

)
ds (2.34)

The finite element model for the fluid domain is obtained by assuming the following

approximation of the pressure p over each element (see Reddy [51])

p (x, z, t) =
n∑
j=1

Pj (t)ψj (x, z) (2.35)

where ψj are Lagrange family interpolation functions. For the present study, we

utilize two dimensional linear rectangular elements (i.e., n = 4). The interpolation
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functions are of the form

ψ1 =
1

4
(1− ξ) (1− η) , ψ2 =

1

4
(1 + ξ) (1− η)

ψ3 =
1

4
(1 + ξ) (1 + η) , ψ4 =

1

4
(1− ξ) (1 + η) (2.36)

where ξ and η are the element (normalized) coordinates defined as

ξ =
2x− xa − xb

hx
, η =

2z − za − zb
hz

(2.37)

Inserting Eq. (2.35) into Eq. (2.34), we obtain the following set of finite element

equations for the fluid medium

CP = f + Q (2.38)

where

Cij =

∫ zb

za

∫ xb

xa

(
∂ψi
∂x

ψj
∂x

+
∂ψi
∂z

ψj
∂z

)
dxdz (2.39)

fi =

∫ xb

xa

ρfψi

(
g +

∂2w

∂t2

)
dx (2.40)

Qi =

∮
Γ̂e
ψi

(
∂p

∂x
nx +

∂p

∂z
nz

)
ds (2.41)

The matrix C can be expressed explicitly as

C =
hz
6hx



2 −2 −1 1

−2 2 1 −1

−1 1 2 −2

1 −1 −2 2


+

hx
6hz



2 1 −1 −2

1 2 −2 −1

−1 −2 2 1

−2 −1 1 2


(2.42)
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where hx and hz are the element lengths along the x and z coordinates, respectively.

The procedure for the plate problem is the same, except that the fluid element for

plate problem is 3D element Ωe = (xa, xb)× (ya, yb)× (za, zb)

0 =

∫ zb

za

∫ yb

ya

∫ xb

xa

(
∂δp

∂x

∂p

∂x
+
∂δp

∂y

∂p

∂y
+
∂δp

∂z

∂p

∂z

)
dxdydz

−
∫ yb

ya

∫ xb

xa

[
δpρf

(
g +

∂2w

∂t2

)]
z=0

dxdy

−
∮

Γ̂e
δp

(
∂p

∂x
nx +

∂p

∂y
ny +

∂p

∂z
nz

)
ds (2.43)

All of the variables have the same definition as of the beam problem. We assume

the following form of the pressure p for the 3D elements

p (x, y, z, t) =
n∑
j=1

Pj (t)ψj (x, y, z) (2.44)

where ψej are Lagrange family interpolation functions in 3D. For the present study,

we utilize 8-node brick elements. The interpolation functions are of the form [51]

ψ1 =
1

8
(1− ξ) (1− η) (1− ζ) , ψ2 =

1

8
(1 + ξ) (1− η) (1− ζ)

ψ3 =
1

8
(1 + ξ) (1 + η) (1− ζ) , ψ4 =

1

8
(1− ξ) (1 + η) (1− ζ)

ψ5 =
1

8
(1− ξ) (1− η) (1 + ζ) , ψ6 =

1

8
(1 + ξ) (1− η) (1 + ζ)

ψ7 =
1

8
(1 + ξ) (1 + η) (1 + ζ) , ψ8 =

1

8
(1− ξ) (1 + η) (1 + ζ) (2.45)

Substitution of the approximation (2.44) into the weak form (2.43), we obtain

CP = f + Q (2.46)
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where

Cij =

∫ zb

za

∫ yb

ya

∫ xb

xa

(
∂ψi
∂x

ψj
∂x

+
∂ψi
∂y

ψj
∂y

+
∂ψi
∂z

ψj
∂z

)
dxdydz (2.47)

fi =

∫ yb

yb

∫ xb

xa

ρfψi

(
g +

∂2w

∂t2

)
dxdy (2.48)

Qi =

∮
Γ̂

ψi

(
∂p

∂x
nx +

∂p

∂y
ny +

∂p

∂z
nz

)
ds (2.49)

2.3.2 Solid Medium

In this sub-section, we formulate finite element models for the solid medium for

each beam theory as well as each plate theory.

2.3.2.1 The EBT

The weak form of Eq. (2.8) is given by

0 =

∫ xb

xa

[
EI

∂2δw

∂x2

∂2w

∂x2
+ δwms

∂2w

∂t2
+
msH

2

12

∂w

∂x

∂3w

∂x∂t2
+ δwWp

]
dx

−Q1δw (xa)−Q2

(
−∂δw
∂x

) ∣∣∣∣x=xa −Q3δw (xb)−Q4

(
−∂δw
∂x

)
|x=xb (2.50)

where the secondary variables Qj’s are defined as

Q1 = −
[
msH

2

12

∂3w

∂x∂t2
− ∂

∂x

(
EI

∂2w

∂x2

)]
|x=xa , Q2 =

(
EI

∂2w

∂x2

)
|x=xa

Q3 =

[
msH

2

12

∂3w

∂x∂t2
− ∂

∂x

(
EI

∂2w

∂x2

)]
|x=xb , Q4 = −

(
EI

∂2w

∂x2

)
|x=xb (2.51)

The finite element model for the EBT is obtained by interpolating the transverse

displacement w as

w (x, t) =
4∑
j=1

∆j (t)ϕj (x) (2.52)
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where ϕej are the Hermite cubic interpolation functions [51]

ϕ1 = 1− 3

(
x̄

hx

)2

+ 2

(
x̄

hx

)3

, ϕ2 = −x̄
(

1− x̄

hx

)2

ϕ3 = 3

(
x̄

hx

)2

− 2

(
x̄

hx

)3

, ϕ4 = −x̄

[(
x̄

hx

)2

− x̄

hx

]
(2.53)

where x̄ = x − xa, hx is the length of the element, and ∆ the nodal vector consists

of the deflection w and the slope θ ≡ −(∂w/∂x) at the nodes as shown in Fig. 2.3.

Substituting Eq. (2.52) into Eq. (2.50), we obtain a set of finite element equations

for the Euler-Bernoulli beam element

msM∆̈ + K∆ = q + F (2.54)

where

Mij =

∫ xb

xa

(
ϕiϕj +

H2

12

dϕi
dx

dϕj
dx

)
dx (2.55)

Kij =

∫ xb

xa

EI
d2ϕi
dx2

d2ϕj
dx2

dx (2.56)

qi =

∫ xb

xa

pWϕidx (2.57)

In addition F i are the generalized nodal forces and can be defined as

F1 =

{
Q1 Q2 Q3 Q4

}T
(2.58)
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Figure 2.3: (a) Geometry of a cantilever beam and applied load due to fluid pres-
sure, (b) finite element discretization of beam and (c) generalized displacements and
generalized forces on a typical Euler-Bernoulli beam element.

The mass matrix M and stiffness matrix K can be expressed as

M =
hx
420



156 −22hx 54 13hx

−22hx 4h2
x −13hx −3h2

x

54 −13hx 156 22hx

13hx −3h2
x 22hx 4h2

x


+

H2

360hx



36 −3hx −36 −3hx

−3hx 4h2
x 3hx −h2

x

−36 3hx 36 3hx

−3hx −h2
x 3hx 4h2

x


(2.59)
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K =
2EI

h3
x



6 −3hx −6 −3hx

−3hx 2h2
x 3hx h2

x

−6 3hx 6 3hx

−3hx h2
x 3hx 2h2

x


(2.60)

The general form of qi will be presented in Sub-section 2.3.4.1.

2.3.2.2 The TBT

The weak forms of Eqs. (2.9) and (2.10) are given by

0 =

∫ xb

xa

[
∂δw

∂x
GAKs

(
φ+

∂w

∂x

)
+ δwms

∂2w

∂t2
+ δwWp

]
dx (2.61)

− δw (xa)Q1 − δw (xb)Q3

0 =

∫ xb

xa

[
∂δφ

∂x
EI

∂φ

∂x
+ δφGAKs

(
φ+

∂w

∂x

)
+ δφ

msH
2

12

∂2φ

∂t2

]
dx

− δφ (xa)Q2 − δφ (xb)Q4 (2.62)

where the secondary variables Qj’s are defined as

Q1 = −
[
GAKs

(
φ+

∂w

∂x

)]
|x=xa , Q2 = −

(
EI

∂φ

∂x

)
|x=xa

Q3 =

[
GAKs

(
φ+

∂w

∂x

)]
|x=xb , Q4 =

(
EI

∂φ

∂x

)
|x=xb (2.63)

The finite element model for the TBT is obtained by interpolating the transverse

displacement w and beam rotation φ as

w (x, t) =
m∑
j=1

∆j (t)ψ
(1)
j (x)

φ (x, t) =
m∑
j=1

Φj (t)ψ
(2)
j (x) (2.64)
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where ψ
(1)
j and ψ

(2)
j are Lagrange interpolation functions, and the generalized dis-

placements (i.e., ∆j and Φj) are depicted in Fig. 2.4.

Figure 2.4: (a) Finite element discretization of beam and (b) generalized displace-
ments and generalized forces on a typical Timoshenko beam element.

In the present work, we use linear Lagrange interpolation functions for both ψ
(1)
j

and ψ
(2)
j (i.e., m = n = 2) which can be expressed as

ψ
(1)
1 = ψ

(2)
1 =

xb − x
xb − xa

ψ
(1)
2 = ψ

(2)
2 =

x− xa
xb − xa

(2.65)
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It is important to note that linear interpolation of both w and φ results in shear

locking in the thin beam limit. This can be alleviated by using reduced integration

of components of the resulting stiffness coefficients involving ψ
(2)
j . More details can

be found in the literature (see Reddy [51], [49]). Inserting Eq. (2.64) into Eq. (2.61)

results in the following set of finite element equations

ms

 M11 M12

M21 M22


 ∆̈e

Φ̈e

+

 K11 K12

K21 K22


 ∆e

Φe

 =

 q1

q2

+

 F1

F2


(2.66)

where the nonzero components of the mass matrices Mαβ, stiffness matrices Kαβ and

force vectors qα are given as

M11
ij =

∫ xb

xa

ψ
(1)
i ψ

(1)
j dx

M22
ij =

H2

12

∫ xb

xa

ψ
(2)
i ψ

(2)
j dx (2.67)

K11
ij =

∫ xb

xa

GAKs
dψ

(1)
i

dx

dψ
(1)
j

dx
dx

K12
ij =

∫ xb

xa

GAKs
dψ

(1)
i

dx
ψ

(2)
j dx

K21
ij =

∫ xb

xa

GAKsψ
(2)
i

dψ
(1)
j

dx
dx

K22
ij =

∫ xb

xa

(
EI

dψ
(2)
i

dx

dψ
(2)
j

dx
+GAKsψ

(2)
i ψ

(2)
j

)
dx (2.68)

q1
i = −

∫ xb

xa

pWψ
(1)
i dx (2.69)
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The mass and stiffness matrices can be expressed explicitly as

M11 =
hx
6

 2 1

1 2

 , M22 =
H2hx

72

 2 1

1 2

 (2.70)

K11 =
GAKs

hx

 1 −1

−1 1

 , K12 =
GAKs

2

 −1 −1

1 1


K21 =

GAKs

2

 −1 1

−1 1

 , K22 =
EI

hx

 1 −1

−1 1

+
GAKshx

4

 1 1

1 1

 (2.71)

and the generalized force vectors are defined as

F1 =

{
Q1 Q3

}T
F2 =

{
Q2 Q4

}T
(2.72)

The second term in K22 expression is obtained using reduced integration of com-

ponents of the resulting stiffness coefficients involving ψ
(2)
j . The effect of the fluid

pressure as manifested in q1
i will be addressed in Sub-section 2.3.4.2.
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2.3.2.3 The RBT

The weak forms of the RBT equations can be derived as follows:

0 =

∫ xb

xa

{I0ẅδw +

[
−c1J4φ̈+ c2

1I6
∂ẅ

∂x
+G

(
D0 − 6c1D2 + 9c2

1D4

)(
φ+

∂w

∂x

)]
∂δw

∂x

+ c1E

(
−L4

∂φ

∂x
+ c1D6

∂2w

∂x2

)
∂2δw

∂x2
+Wpδw}dx

−Q1δw (xa)−Q2

(
−∂δw
∂x

)
|x=xa −Q5δw (xb)−Q6

(
−∂δw
∂x

)
|x=xb (2.73)

0 =

∫ xb

xa

{
[
K2φ̈− c1J4

∂ẅ

∂x
+G

(
D0 − 6c1D2 + 9c2

1D4

)(
φ+

∂w

∂x

)]
δφ

+ E

(
M2

∂φ

∂x
− c1L4

∂2w

∂x2

)
∂δφ

∂x
}dx−Q4δφ (xc)−Q7δφ (xb) (2.74)

where the secondary variables Qj’s are defined as

Q1 = −Qx |x=xa , Q2 = −c1Pxx |x=xa , Q3 = −M̄xx |x=xa

Q5 = Qx |x=xb , Q6 = c1Pxx |x=xb , Q7 = M̄xx |x=xb (2.75)

For sake of brevity, we have also employed the following definitions in Eqs. (2.73)

and (2.74)

L4 = D4 − c1D6, M2 = D2 − 2c1D4 + c2
1D6 (2.76)

From Eqs. (2.73) and (2.74), it is evident that the primary variables for the RBT are

w, dw/dx and φ. As a result, φ can be interpolated using the Lagrange interpolation

functions, while w must be interpolated using the Hermite shape functions. We
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therefore interpolate the primary variables as

w (x, t) =
m∑
j=1

∆j (t)ϕej (x)

φ (x, t) =
m∑
j=1

Φj (t)ψj (x) (2.77)

where ϕj and ψj are Hermite cubic and Lagrange interpolation functions, respec-

tively. For the present study, we utilize Hermite cubic interpolation functions to

Figure 2.5: (a) Finite element discretization of beam and (b) generalized displace-
ments and generalized forces on a typical third-order beam element.

approximate w and Lagrange quadratic interpolation functions to approximate φ

(i.e., m = 4 and n = 3). As a result, the Hermite cubic interpolation functions ϕj

are given by Eq. (2.53), and the Lagrange quadratic interpolation functions ψj can
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be expressed as

ψ1 =

(
1− x̄

hx

)(
1− 2

x̄

hx

)
ψ2 = 4

x̄

hx

(
1− x̄

hx

)
ψ3 = − x̄

hx

(
1− 2

x̄

hx

)
(2.78)

Inserting Eqs. (2.53) and (2.78) into Eqs. (2.73) and (2.74), we obtain the following

set of algebraic equation

 M11 M12

M21 M22


 ∆̈

Φ̈

+

 K11 K12

K21 K22


 ∆

Φ

 =

 q1

q2

+

 F1

F2

 (2.79)

where the nonzero components of the mass matrices Mαβ, stiffness matrices Kαβ and

force vectors qα are in general given as

M11
ij =

∫ xb

xa

(
I0ϕiϕj + c2

1I6
dϕi
dx

dϕj
dx

)
dx

M12
ij = −

∫ xb

xa

c1J4
dϕi
dx

ψ
(3)
j dx

M21
ij = −

∫ xb

xa

c1J4ψ
(3)
i

dϕj
dx

dx

M22
ij =

∫ xb

xa

K2ψ
(3)
i ψ

(3)
j dx (2.80)
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K11
ij =

∫ xb

xa

[
Âs
dϕi
dx

dϕj
dx

+ c2
1ED6

d2ϕi
dx2

d2ϕj
dx2

]
dx

K12
ij =

∫ xb

xa

[
Âs
dϕi
dx

ψ
(3)
j − c1EL4

d2ϕi
dx2

dψ
(3)
j

dx

]
dx

K21
ij =

∫ xb

xa

[
Âsψ

(3)
i

dϕj
dx
− c1EL4

dψ
(3)
i

dx

d2ϕj
dx2

]
dx

K22
ij =

∫ xb

xa

[
Âsψ

(3)
i ψ

(3)
j − c1M2

dψ
(3)
i

dx

dψ
(3)
j

dx

]
dx (2.81)

q1
i = −

∫ xb

xa

Wpϕidx (2.82)

where Âs is defined as

Âs = G
(
D0 − 6c1D2 + 9c2

1D4

)
(2.83)

The explicit form of the element matrices is

M11 =
hxI0

420



156 −22hx 54 13hx

−22hx 4h2
x −13hx −3h2

x

54 −13hx 156 22hx

13hx −3h2
x 22hx 4h2

x


+
c2

1I6

30hx



36 −3hx −36 −3hx

−3hx 4h2
x 3hx −h2

x

−36 3hx 36 3hx

−3hx −h2
x 3hx 4h2

x



M12 =
c1J4

60



6 48 6

7hx −4hx −3hx

−6 −48 −6

−3hx −4hx 7hx


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M21 =
c1J4

60


6 7hx −6 −3hx

48 −4hx −48 −4hx

6 −3hx −6 7hx



M22 =
hxK2

30


4 2 −1

2 16 2

−1 2 4

 (2.84)

K11 =
Âs

30hx



36 −3hx −36 −3hx

−3hx 4h2
x 3hx −h2

x

−36 3hx 36 3hx

−3hx −h2
x 3hx 4h2

x


+

2c2
1ED6

h3
x



6 −3hx −6 −3hx

−3hx 2h2
x 3hx h2

x

−6 3hx 6 3hx

−3hx h2
x 3hx 2h2

x



K12 =
Âs
60



−6 −48 −6

−7hx 4hx 3hx

6 48 6

3hx 4hx −7hx


− c1EL4

h2
x



4 −8 4

−3hx 4hx −hx

−4 8 −4

−hx 4hx −3hx



K21 =
Âs
60


−6 −7hx 6 3hx

−48 4hx 48 4hx

−6 3hx 6 −7hx

− c1EL4

h2
x


4 −3hx −4 −hx

−8 4hx 8 4hx

4 −hx −4 −3hx


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K22 =
hxÂs

30


4 2 −1

2 16 2

−1 2 4

+
EM2

3hx


7 −8 1

−8 16 −8

1 −8 7

 (2.85)

and the generalized force vectors can be expressed as

F1 =

{
Q̂1 Q̂2 Q̂5 Q̂6

}T
F2 =

{
Q̂3 Q̂4 Q̂7

}T
(2.86)

The matrices given by Eq. (2.84) can be assembled into the general form given by

Eq. (2.79). We will address the specific form of q1
i in Sub-section 2.3.4.3.

2.3.2.4 The CPT

In this sub-section, we formulate the finite element formulation for the plate using

the CPT, which requires the use of Hermite cubic interpolation of the transverse

deflection (see Reddy [51, 49])

w(x, y, t) =
n∑
j=1

∆j(t)ϕj(x, y) (2.87)

Substituting above shape function in the weak form of the governing differential

equation results in the following system of equations (see Reddy [51] for the details):

M∆̈ + K∆ = q + F (2.88)
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where

Mij =

∫
Ωe

[
I0ϕiϕj + I2(

∂ϕi
∂x

∂ϕj
∂x

+
∂ϕi
∂y

∂ϕj
∂y

)

]
dxdy (2.89)

Kij =

∫
Ωe

D

[
∂2ϕi
∂x2

∂2ϕj
∂x2

+ ν

(
∂2ϕi
∂x2

∂2ϕj
∂y2

+
∂2ϕi
∂y2

∂2ϕj
∂x2

)
+
∂2ϕi
∂y2

∂2ϕj
∂y2

+ 4
∂2ϕi
∂x∂y

∂2ϕj
∂x∂y

]
dxdy (2.90)

qi =

∮
Ωe

pϕidxdy (2.91)

So we have four degrees of freedom (w, ∂w/∂x, ∂w/∂y, and ∂2w/∂x∂y) at each node.

This element is known to be the comforting element, CPT(C). The Hermite cubic

interpolation functions of such elements are as follows:

with ξ1 = −1, η1 = −1⇒



ϕ1 = (1/16)(ξ − 1)2(−ξ − 2)(η − 1)2(−η − 2)

ϕ2 = (1/16)(ξ − 1)2(−ξ − 1)(η − 1)2(−η − 2)

ϕ3 = (1/16)(ξ − 1)2(−ξ − 2)(η − 1)2(−η − 1)

ϕ4 = −(1/16)(ξ − 1)2(−ξ − 1)(η − 1)2(−η − 1)

with ξ2 = +1, η2 = −1⇒



ϕ5 = (1/16)(1 + ξ)2(ξ − 2)(η − 1)2(−η − 2)

ϕ6 = −(1/16)(1 + ξ)2(ξ − 1)(η − 1)2(−η − 2)

ϕ7 = (1/16)(1 + ξ)2(ξ − 2)(η − 1)2(−η − 1)

ϕ8 = (1/16)(1 + ξ)2(ξ − 1)(η − 1)2(−η − 1)
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with ξ3 = +1, η3 = +1⇒



ϕ9 = (1/16)(1 + ξ)2(ξ − 2)(η + 1)2(η − 2)

ϕ10 = −(1/16)(1 + ξ)2(ξ − 1)(η + 1)2(η − 2)

ϕ11 = −(1/16)(1 + ξ)2(ξ − 2)(η + 1)2(η − 1)

ϕ12 = (1/16)(1 + ξ)2(ξ − 1)(η + 1)2(η − 1)

with ξ4 = −1, η4 = +1⇒



ϕ13 = (1/16)(ξ − 1)2(−ξ − 2)(η + 1)2(η − 2)

ϕ14 = (1/16)(ξ − 1)2(−ξ − 1)(η + 1)2(η − 2)

ϕ15 = −(1/16)(ξ − 1)2(−ξ − 2)(η + 1)2(η − 1)

ϕ16 = −(1/16)(ξ − 1)2(−ξ − 1)(η + 1)2(η − 1)

(2.92)

2.3.2.5 The FSDT

The finite element model of FSDT is obtained using the following interpolations

w(x, y, t) =
n∑
j=1

∆j(t)ψ
(1)
j (x, y)

φx(x, y, t) =
n∑
j=1

Φx
j (t)ψ

(2)
j (x, y)

φy(x, y, t) =
n∑
j=1

Φy
j (t)ψ

(2)
j (x, y) (2.93)

Since there are three degrees of freedom w, φx and φy at each node, the Lagrange

interpolation of these primary variables will be used. Therefore, the interpolation

functions are the same as Eq. (2.36). Inserting Eq. (2.36) into the weak form of the
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governing equation, the following system of equations will be obtained.


M11 0 0

0 M22 0

0 0 M33




∆̈

Φ̈x

Φ̈y

+


K11 K12 K13

K21 K22 K23

K31 K32 K33




∆

Φx

Φy

 =


q1

q2

q3

+


F1

F2

F3


(2.94)

where the nonzero mass matrices Mαβ, stiffness matrices Kαβ, and force vectors qα

will be obtained using the following integrals:

M11
ij =

∫
Ωe

I0ψiψjdxdy

M22
ij = M33

ij =

∫
Ωe

I2ψiψjdxdy (2.95)

K11
ij =

∫
Ωe

GHKs

(
∂ψi
∂x

∂ψj
∂x

+
∂ψi
∂y

∂ψj
∂y

)
dxdy

K12
ij = K21

ij =

∫
Ωe

GHKs
∂ψi
∂x

ψjdxdy

K13
ij = K31

ij =

∫
Ωe

GHKs
∂ψi
∂y

ψjdxdy

K22
ij =

∫
Ωe

(
D
∂ψi
∂x

∂ψj
∂x

+
GH3

12

∂ψi
∂y

∂ψj
∂y

+GHKsψiψj

)
dxdy

K23
ij = K32

ij =

∫
Ωe

(
νD

∂ψi
∂x

∂ψj
∂y

+
GH3

12

∂ψi
∂y

∂ψj
∂x

)
dxdy

K33
ij =

∫
Ωe

(
GH3

12

∂ψi
∂x

∂ψj
∂x

+D
∂ψi
∂y

∂ψj
∂y

+GHKsψiψj

)
dxdy (2.96)

q1
i =

∫
Ωe

pψidxdy (2.97)
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2.3.2.6 RSDT

In order to formulate the RSDT finite element model, the following interpolations

are used for approximating the primary variables

w(x, y, t) ≈
n∑
j=1

∆j(t)ϕj(x, y)

φx(x, y, t) ≈
n∑
j=1

Φx
j (t)ψj(x, y)

φy(x, y, t) ≈
n∑
j=1

Φy
j (t)ψj(x, y) (2.98)

where ϕj’s are the Hermite cubic interpolation functions of comforting element,

RSDT(C), as presented in Eq. (2.92), and ψj’s are the Lagrange interpolation func-

tions defined in Eq. (2.36). Substituting Eq. (2.98) into the weak form of the RSDT

yields


M11 M12 M13

M21 M22 M23

M31 M32 M33




∆̈

Φ̈x

Φ̈y

+


K11 K12 K13

K21 K22 K23

K31 K32 K33




∆

Φx

Φy

 =


q1

q2

q3

+


F1

F2

F3


(2.99)
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where the nonzero mass matrices Mαβ, stiffness matrices Kαβ and force vectors qα

can be obtained using the following integrals:

M11
ij =

∫
Ωe

I0ϕiϕj + c2I6

(
∂ϕi
∂x

∂ϕj
∂x

+
∂ϕi
∂y

∂ϕj
∂y

)
dxdy

M12
ij = M21

ji =

∫
Ωe

−cJ ∂ϕi
∂x

ψjdxdy

M13
ij = M31

ji =

∫
Ωe

−cJ ∂ϕi
∂y

ψjdxdy

M22
ij = M33

ij =

∫
Ωe

Kψiψjdxdy (2.100)

K11
ij =

∫
Ωe

[
A

(
∂ϕi
∂x

∂ϕj
∂x

+
∂ϕi
∂y

∂ϕj
∂y

)
+ c2T

∂2ϕi
∂x2

(
∂2ϕj
∂x2

+ ν
∂2ϕj
∂y2

)

+2c2(1− ν)T
∂2ϕi
∂x∂y

∂2ϕj
∂x∂y

+ c2T
∂2ϕi
∂y2

(
ν
∂2ϕj
∂x2

+
∂2ϕj
∂y2

)]
dxdy

K12
ij = K21

ji =

∫
Ωe

(
A
∂φi
∂x

ψj − cF
∂2φi
∂x2

∂ψj
∂x

− cνF ∂
2φi
∂y2

∂ψj
∂y
− c(1− ν)F

∂2φi
∂x∂y

∂ψj
∂y

)
dxdy

K13
ij = K31

ji =

∫
Ωe

(
A
∂φi
∂y

ψj − cνF
∂2φi
∂x2

∂ψj
∂x

− cF
∂2φi
∂y2

∂ψj
∂y
− c(1− ν)F

∂2φi
∂x∂y

∂ψj
∂x

)
dxdy

K22
ij =

∫
Ωe

(
D
∂ψi
∂x

∂ψj
∂x

+
(1− ν)

2
D
∂ψi
∂y

∂ψj
∂y

+ Aψiψj

)
dxdy

K23
ij = K32

ji =

∫
Ωe

D

(
ν
∂ψi
∂x

∂ψj
∂y

+
(1− ν)

2

∂ψi
∂y

∂ψj
∂x

)
dxdy

K33
ij =

∫
Ωe

(
(1− ν)

2
D
∂ψi
∂x

∂ψj
∂x

+D
∂ψi
∂y

∂ψj
∂y

+ Aψiψj

)
dxdy (2.101)
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q1
i =

∫
Ωe

pψidxdy (2.102)

and the constants are

A =
8

15
GH, D =

17EH3

315 (1− ν2)
, F =

EH5

105 (1− ν2)
, T =

EH7

448 (1− ν2)
(2.103)

In Eq. (2.99), Fi are the generalized nodal force vectors. The general form of q1
i in

Eq. (2.102) will be presented in Sub-section 2.3.4.6.

2.3.3 Interface Connecting Fluid and Solid Regions

In this sub-section, we address the coupling between the fluid and solid finite

element models. At present, we note that the fluid and solid finite element models are

coupled in the respective force vectors of each model. There are several approaches

that can be used to solve the coupled equations. One approach is to assume a

solution for one regime (say the fluid regime) and use this assumed solution as an

input for solving the structure equations. The structure solution can then be used

as an input for solving the fluid mechanics equations. This process is repeated until

adequate convergence of solutions in both fluid and solid regimes is achieved. A

more direct approach is to formulate the equations using the appropriate assumed

displacements fields [see Eqs. (2.35), (2.44), (2.52), (2.64), (2.77), (2.87), and (2.93)]

in the evaluation of F and q. Using this approach results in the following finite

element equations for the fluid region

CP = f̂ + ρfS∆̈ + Q (2.104)

where S is called the solid-fluid coupling matrix and f̂ e is a force vector in the fluid

medium due to gravity. Equation (2.104) is valid for all three beam models and two
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plate models considered in the present study. However, as we will see, the specific

form of S is dictated by the chosen beam theory model; S and f̂ are therefore defined

as

Sij =

∫ xb

xa

ψiχjdx, f̂i =

∫ xb

xa

ρfgψidx for beam (2.105)

Sij =

∫ yb

ya

∫ xb

xa

ψiχjdxdy, f̂i =

∫ yb

ya

∫ xb

xa

ρfgψidxdy for plate (2.106)

In Eq. (2.105), χj = ϕj for the EBT, RBT, CPT. In the case of the TBT and FSDT,

χj = ψ
(1)
j . S can be expressed explicitly for the present EBT and RBT formulations

as formulations.

S =
hx
60



21 −3hx 9 2hx

9 −2hx 21 3hx

0 0 0 0

0 0 0 0


(2.107)

For the TBT formulations the solid-fluid coupling matrix is given as

S =
hx
6



2 1

1 2

0 0

0 0


(2.108)

2.3.4 Condensing out Pressure Degrees of Freedom

In the most general case, the fluid and structure (beam/plate) equations are

coupled such that it is not possible to condense out the pressure degrees of freedom.

As a result, the response of one domain cannot be determined independently from
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that of the other. In the current study, however, we have formulated our model such

that there is one row of fluid elements above the structure. Since the pressure is

specified as zero along the top of each fluid element (i.e., P3 = P4 = 0 for beam

problem and P5 = P6 = P7 = P8 = 0 for plate problem), it is possible to condense

out the pressure degrees of freedom in the finite element model. The additional

pressure degrees of freedom can be condensed out of the formulation by noting that

the pressures can be expressed as

P = C̄−1
(
f̂ + ρfS∆̈ + Q

)
(2.109)

where C̄−1 is defined as

C̄−1 =
2α

4α2 + 1



2 (1 + α2) 2α2 − 1 0 0

2α2 − 1 2 (1 + α2) 0 0

0 0 0 0

0 0 0 0


, α =

hz
hx

(2.110)

Equation (2.109) can be utilized in conjunction with the structure models to ex-

press the global finite element equations of the system solely in terms of generalized

structure displacements.

2.3.4.1 Euler-Bernoulli Formulation

Condensing out pressure degree of freedom, the finite element equations for the

EBT can be expressed as

msM∆̈ + K∆ = −WSTP + F (2.111)
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Using Eq. (2.109) allows Eq. (2.111) to be expressed as

(
msM +mfS

T C̄−1S
)

∆̈ + K∆ = F−WST C̄−1
(
f̂ + Q

)
(2.112)

where mf = Wρf and ms = HWρs. Equation (2.112) can be expressed in compact

form as

M̂Ü + K̂U = F̂ (2.113)

The general mass matrix M̂, stiffness matrix K̂, force vector F̂ and displacement U

vector per Eq. (2.113) are defined as

M̂ = msM +mfS
T C̄−1S

K̂ = K

F̂ = F−WST C̄−1
(
f̂ + Q

)
U = ∆ (2.114)

In Eq. (2.114), K̂ is given by Eq. (2.60). Equation (2.113) is the standard form of

the element equations of motion, with

Ma = mfS
T C̄−1S (2.115)

being the added mass due to the presence of fluid. Thus, the fluid-structure inter-

action problem is formulated as one in which the influence of fluid is represented

as an added mass to the structural problem. The added mass matrix M̂a for the
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Euler-Bernoulli finite element model is given by

M̂a = c0



666 + 1800α2 −hx (93 + 300α2) 234 + 1800α2 hx (57 + 300α2)

−hx (93 + 300α2) h2
x (14 + 50α2) −hx (57 + 300α2) −h2

x (11 + 50α2)

234 + 1800α2 −hx (57 + 300α2) 666 + 1800α2 hx (93 + 300α2)

hx (57 + 300α2) −h2
x (11 + 50α2) hx (93 + 300α2) h2

x (14 + 50α2)


(2.116)

c0 =
mfαh

2
x

1800 (1 + 4α2)
(2.117)

2.3.4.2 Timoshenko Formulation

To determine the element equations for the TBT, we follow the same procedure

employed in the previous sub-section for the EBT. Equation (2.66) can be expressed

using the solid-fluid coupling matrix S as

ms

 M11 M12

M21 M22


 ∆̈

Φ̈

+

 K11 K12

K21 K22


 ∆

Φ

 =

 −WSTPe

0

+

 F1

F2


(2.118)

Employing Eq. (2.109) allows Eq. (2.118) to be expressed as

ms

 M̄11 M12

M21 M22


 ∆̈

Φ̈

+

 K11 K12

K21 K22


 ∆

Φ


=

 −WST C̄−1
(
f̂ + Q

)
0

+

 F1

F2

 (2.119)
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where

M̄11 = M11 +
1

ms

Ma (2.120)

and as EBT the added mass matrix Ma is expressed as

Ma = mfS
T C̄−1S (2.121)

It is convenient to rearrange the TBT finite element equations (i.e., Eq. (2.119)) into

the general form given by Eq. (2.113). The generalized matrices can be expressed as

K̂ =
2EI

µh3
x



6 −3hx −6 −3hx

−3hx h2
x (1.5 + 6Λ) 3hx h2

x (1.5− 6Λ)

−6 3hx 6 3hx

−3hx h2
x (1.5− 6Λ) 3hx h2

x (1.5 + 6Λ)



M̄ =
hx
6



2 0 1 0

0 H2

6
0 H2

12

1 0 2 0

0 H2

12
0 H2

6



M̄a =
mfαh

2
x

6 (1 + 4α2)



2 (1 + 3α2) 0 1 + 6α2 0

0 0 0 0

1 + 6α2 0 2 (1 + 3α2) 0

0 0 0 0


(2.122)
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where U =

{
∆1 Φ1 ∆2 Φ2

}T
and

M̂ = M̄ + M̄a (2.123)

The numerical constants Λ and µ are defined as

Λ =
EI

GAKsh2
x

, µ= 12Λ (2.124)

2.3.4.3 Reddy Third-order Formulation

The element matrices of the RBT are constructed in the same way as for the

previous two theories. The element equations for the RBT model can be expressed

as M̄11 M12

M21 M22


 ∆̈

Φ̈

+

 K11 K12

K21 K22


 ∆

Φ

 =

 −WST C̄−1
(
f̂ + Q

)
f2


(2.125)

where

M̄11 = M11 + Ma (2.126)

and the added mass matrix Ma is again defined as

Ma = mfS
T C̄−1S (2.127)

As in the case of the Timoshenko formulation, it is useful to rearrange the equations

of the RBT into the form given by Eq. (2.113). The resulting matrices can be
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expressed as

M̂ = M̄ + Me
a, M̄ =

[
_

M
^

M

]
, K̂ =

[
_

K
^

K

]
(2.128)

where
_

M,
^

M,
_

K,
^

K, and Ma are expressed as

_

M =



13I0hx
35

+
6I6c21
5hx

−11I0h2x
210
− I6c21

10
J4c1
10

4J4c1
5

−11I0h2x
210
− I6c21

10
I0h3x
105

+
2I6hxc21

15
7J4hxc1

60
−J4hxc1

15

J4c1
10

7J4hxc1
60

2K2hx
15

K2hx
15

4J4c1
5

−J4hxc1
15

K2hx
15

8K2hx
15

9I0hx
70
− 6I6c21

5hx

I6c21
10
− 13I0h2x

420
−J4c1

10
−4J4c1

5

13I0h2x
420
− I6c21

10
− I0h3x

140
− I6hxc21

30
J4hxc1

20
−J4hxc1

15

J4c1
10

−J4hxc1
20

−K2hx
30

K2hx
15



(2.129)

^

M =



9I0hx
70
− 6I6c21

5hx

13I0h2x
420
− I6c21

10
J4c1
10

I6c21
10
− 13I0h2x

420
− I0h3x

140
− I6hxc21

30
−J4hxc1

20

−J4c1
10

J4hxc1
20

K2hx
30

−4J4c1
5

−J4hxc1
15

K2hx
15

13I0hx
35

+
6I6c21
5hx

11I0h2x
210

+
I6c21
10

−J4c1
10

11I0h2x
210

+
I6c21
10

I0h3x
105

+
2I6hxc21

15
7J4hxc1

60

−J4c1
10

7J4hxc1
60

2K2hx
15



(2.130)
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_

K =



6Âs
5hx

+
12D6Ec21

h3x
− Âs

10
− 6D6Ec21

h2x
− Âs

10
− 4EL4c1

h2x

8EL4c1
h2x
− 4Âs

5

− Âs
10
− 6D6Ec21

h2x

2Âshx
15
− 4D6Ec21

hx
3EL4c1
hx
− 7Âshx

60
Âshx

15
− 4EL4c1

hx

− Âs
10
− 4EL4c1

h2x

3EL4c1
hx
− 7Âshx
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(2.131)
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− Âs

10
− 6D6Ec21

h2x
− Âs
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− Âshx

30
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(2.132)

Ma = c0


666 + 1800α2 −hx

(
93 + 300α2

)
0 0 234 + 1800α2 hx

(
57 + 300α2

)
0

−hx

(
93 + 300α2

)
h2
x

(
14 + 50α2

)
0 0 −hx

(
57 + 300α2

)
−h2

x

(
11 + 50α2

)
0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

234 + 1800α2 −hx

(
57 + 300α2

)
0 0 666 + 1800α2 hx

(
93 + 300α2

)
0

hx

(
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)
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(
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)
0 0 hx

(
93 + 300α2

)
h2
x

(
14 + 50α2

)
0

0 0 0 0 0 0 0

 (2.133)

U =

{
∆1 ∆2 Φ1 Φ2 ∆3 ∆4 Φ3

}T
(2.134)
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2.3.4.4 Classical Plate Formulation

The finite element equations for the CPT can be expressed as

M∆̈ + K∆ = −STP + F (2.135)

Using Eq. (2.109) allows Eq. (2.135) to be expressed as

(
M + ρfS

T C̄−1S
)

∆̈ + K∆ = F− ST C̄−1
(
f̂ + Q

)
(2.136)

Equation (2.136) can be expressed in compact form as

M̂Ü + K̂U = F̂ (2.137)

The general mass matrix M̂, stiffness matrix K̂, force vector F̂ and displacement

vector U per Eq. (2.137) are defined as

M̂ = M + ρfS
T C̄−1S

K̂ = K

F̂ = F− ST C̄−1
(
f̂ + Q

)
U = ∆ (2.138)

49



2.3.4.5 First-order Shear Deformation Formulation

The finite element equations for the FSDT can be expressed as


M11 0 0

0 M22 0

0 0 M33




∆̈

Φ̈x

Φ̈y

+


K11 K12 K13

K21 K22 K23

K31 K32 K33




∆

Φx

Φy


=


−STP

0

0

+


F1

F2

F3

 (2.139)

Using Eq. (2.109) allows Eq. (2.139) to be expressed as


M̄11 0 0

0 M22 0

0 0 M33




∆̈

Φ̈x

Φ̈y

+


K11 K12 K13

K21 K22 K23

K31 K32 K33




∆

Φx

Φy


=


−ST C̄−1

(
f̂ e + Qe

)
0

0

+


F1

F2

F3

 (2.140)

where

M̄11 = M11 + ρfS
T C̄−1S (2.141)
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2.3.4.6 Reddy Third-order Shear Deformation Formulation

The finite element equations for the RSDT will be


M11 M12 M13

M21 M22 0

M31 0 M33




∆̈

Φ̈x

Φ̈y

+


K11 K12 K13

K21 K22 K23

K31 K32 K33




∆

Φx

Φy


=


−STP

0

0

+


F1

F2

F3

 (2.142)

which becomes
M̄11 M12 M13

M21 M22 0

M31 0 M33




∆̈

Φ̈x

Φ̈y

+


K11 K12 K13

K21 K22 K23

K31 K32 K33




∆

Φx

Φy


=


−ST C̄−1

(
f̂ + Q

)
0

0

+


F1

F2

F3

 (2.143)

using Eq. (2.109). In Eq. (2.143), M̄11 is

M̄11 = M11 + ρfS
T C̄−1S (2.144)
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2.3.4.7 Fully Discretized Equations

The global finite element equations can be assembled into the form

M∆̈ + K∆ = F (2.145)

by using the standard global finite element assembly procedure. We note that the

eigenvalue problem associated with free vibration of the structure (beam/plate) is

given by

(
−ω2M + K

)
∆0 = 0 (2.146)

The natural frequencies of this problem are expected to be lower than those without

influence of the fluid, due to the added mass.

2.4 Numerical Results

In this sub-section, some numerical results for beam and plate structures in con-

tact with a fluid medium are presented to bring out the influence of the fluid-structure

interaction on natural frequencies and mode shapes. The effect of the transverse shear

deformation is also studied through the use of the first-order and third-order shear

deformation theories for beams and plates.

2.4.1 Beam Structure

The following parameters are used in the beam problem:

E = 200GPa, ν = 0.25, ρs = 5000kg/m3

W = 0.05m, H = 0.01m, hz = 0.02m (2.147)

52



and we consider L and ρf to be varied for different cases. The numerical simulations

are performed using the three beam theories EBT, TBT, RBT, and for two different

meshes of 20 and 100 elements, for three different boundary conditions; a cantilever

beam, a clamped-clamped beam, and a simply supported beam. The corresponding

results are presented in Tables 2.1 through 2.6 for a cantilever beam, in Tables

2.7 through 2.12 for a clamped-clamped beam, and in Tables 2.13 through 2.18 for

a simply supported beam. The natural frequencies are presented in the following

nondimensional form

ω̄ = ω × L2

√
ms

EI
(2.148)

and the results are provided for various density ratios (β = ρf/ρs) and beam length-

to-height ratios (L/H). We included the rotary inertia term in all simulations. From

these results, it can be seen that increasing fluid density ρf , or immersion depth hz,

will decrease the natural frequencies for a specified (L/H) ratio and a fixed number

of elements. This result can be physically interpreted as follows: since the fluid

density ρf and the immersion depth hz serve as an added mass in the mass matrix

of the system equations and do not affect the stiffness matrix, increasing either of

these parameter decreases the natural frequencies.

Comparing corresponding numerical results of Tables 2.1 through 2.18 indicates

that EBT and RBT converge to final values with fewer number of elements com-

pared to TBT which requires more number of elements to converge. Moreover, for

a specified L/H ratio and β value, the convergence rate decreases for higher natural

frequencies.

As it can be observed, for the thin beam limit all of the three theories converge

to the unique solution. However, as L/H ratio decreases, i.e. the beam becomes
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Table 2.1: Comparison of nondimonsional natural frequencies of a cantilever beam
in contact with a fluid medium using EBT with 20 elements.

EBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.516
22.032
61.678
120.838
199.704

3.383
21.203
59.374
116.362
192.395

3.265
20.462
57.310
112.350
185.833

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.509
21.743
59.802
114.296
183.245

3.495
21.659
59.581
113.898
182.650

3.482
21.576
59.362
113.503
182.061

thicker, the EBT is not valid anymore. This statement is exactly consistent with

definition.

The mode shapes are also obtained using EBT, TBT and RBT for L/H = 100

and a mesh of 100 elements. It is concluded that the corresponding mode shapes of

all three beam theories are very similar to each other; and hence, we plotted the first

four mode shapes obtained using RBT in Figs. 2.6, 2.8, and 2.9 for three boundary

conditions. Now in order to see the effect of fluid-structure interaction on the beam

mode shapes for different L/H ratios (L/H = 10 and L/H = 100), we plotted the

first four mode shapes for β = 0 (without fluid interaction) and for β = 0.04 (with

fluid interaction) in Fig. 2.7 for a cantilever beam. From this figure, it can be realized

that by increasing L/H ratio, i.e. making the beam thinner, the fluid medium affects

the mode shapes more considerably.
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Table 2.2: Comparison of nondimonsional natural frequencies of a cantilever beam
in contact with a fluid medium using EBT with 100 elements.

EBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.516
22.032
61.677
120.830
199.670

3.383
21.203
59.372
116.352
192.349

3.265
20.462
57.308
112.337
185.779

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.509
21.743
59.801
114.290
183.216

3.495
21.659
59.580
113.891
182.620

3.482
21.576
59.361
113.496
182.030

Table 2.3: Comparison of nondimonsional natural frequencies of a cantilever beam
in contact with a fluid medium using TBT with 20 elements.

TBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.517
22.158
62.714
124.988
211.405

3.384
21.325
60.371
120.359
203.667

3.265
20.580
58.272
116.209
196.721

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.490
21.058
55.993
103.048
159.476

3.476
20.976
55.783
102.674
158.915

3.463
20.896
55.575
102.304
158.360
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Table 2.4: Comparison of nondimonsional natural frequencies of a cantilever beam
in contact with a fluid medium using TBT with 100 elements.

TBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.516
22.028
61.661
120.786
199.577

3.383
21.200
59.357
116.309
192.260

3.264
20.459
57.293
112.296
185.692

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.489
20.942
55.186
100.323
153.044

3.475
20.861
54.979
99.958
152.503

3.462
20.781
54.774
99.597
151.968

Table 2.5: Comparison of nondimonsional natural frequencies of a cantilever beam
in contact with a fluid medium using RBT with 20 elements.

RBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.516
22.023
61.620
120.627
199.150

3.383
21.195
59.318
116.159
191.861

3.264
20.454
57.255
112.154
185.318

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.489
20.955
55.269
100.591
153.645

3.476
20.874
55.062
100.225
153.104

3.462
20.794
54.856
99.864
152.568
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Table 2.6: Comparison of nondimonsional natural frequencies of a cantilever beam
in contact with a fluid medium using RBT with 100 elements.

RBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.516
22.023
61.618
120.616
199.107

3.383
21.195
59.315
116.146
191.807

3.264
20.454
57.253
112.138
185.255

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

3.489
20.950
55.236
100.485
153.412

3.476
20.869
55.028
100.120
152.871

3.462
20.789
54.823
99.758
152.335

Table 2.7: Comparison of nondimonsional natural frequencies of a clamped-clamped
beam in contact with a fluid medium using EBT with 20 elements.

EBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

22.372
61.662
120.861
199.751
298.341

21.529
59.349
116.360
192.389
287.494

20.775
57.278
112.327
185.785
277.750

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

22.259
60.523
116.215
186.969
270.397

22.172
60.292
115.793
186.333
269.547

22.086
60.065
115.376
185.704
268.705
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Table 2.8: Comparison of nondimonsional natural frequencies of a clamped-clamped
beam in contact with a fluid medium using EBT with 100 elements.

EBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

22.372
61.661
120.854
199.717
298.228

21.529
59.348
116.351
192.346
287.352

20.774
57.276
112.316
185.735
277.586

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

22.259
60.522
116.207
186.937
270.294

22.172
60.291
115.786
186.300
269.442

22.086
60.064
115.369
185.670
268.598

Table 2.9: Comparison of nondimonsional natural frequencies of a clamped-clamped
beam in contact with a fluid medium using TBT with 20 elements.

TBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

22.532
62.888
125.556
212.697
327.719

21.683
60.529
120.879
204.853
315.789

20.923
58.416
116.688
197.817
305.074

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

21.165
54.905
100.672
155.336
217.028

21.081
54.694
100.293
154.766
216.251

20.999
54.484
99.918
154.203
215.482
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Table 2.10: Comparison of nondimonsional natural frequencies of a clamped-clamped
beam in contact with a fluid medium using TBT with 100 elements.

TBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

22.365
61.629
120.765
199.530
297.889

21.522
59.316
116.266
192.166
287.024

20.768
57.246
112.234
185.561
277.268

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

21.024
54.005
97.833
148.873
204.826

20.941
53.797
97.465
148.326
204.091

20.859
53.591
97.101
147.785
203.363

Table 2.11: Comparison of nondimonsional natural frequencies of a clamped-clamped
beam in contact with a fluid medium using RBT with 20 elements.

RBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

22.359
61.581
120.589
199.069
296.908

22.010
60.624
118.731
196.034
292.445

21.677
59.712
116.956
193.134
288.177

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

21.050
54.182
98.393
150.111
207.038

21.046
54.174
98.379
150.089
207.009

21.043
54.166
98.364
150.067
206.979
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Table 2.12: Comparison of nondimonsional natural frequencies of a clamped-clamped
beam in contact with a fluid medium using RBT with 100 elements.

RBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

22.358
61.578
120.575
199.017
296.757

22.010
60.622
118.716
195.979
292.282

21.677
59.709
116.940
193.075
288.004

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

21.040
54.120
98.200
149.690
206.293

21.037
54.112
98.185
149.668
206.264

21.034
54.103
98.170
149.646
206.234

Table 2.13: Comparison of nondimonsional natural frequencies of a simply supported
beam in contact with a fluid medium using EBT with 20 elements.

EBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.869
39.472
88.797
157.827
246.551

9.497
37.990
85.484
151.993
237.551

9.164
36.663
82.516
146.763
229.470

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.829
38.845
85.714
148.464
224.775

9.791
38.696
85.400
147.953
224.057

9.752
38.549
85.090
147.447
223.346
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Table 2.14: Comparison of nondimonsional natural frequencies of a simply supported
beam in contact with a fluid medium using EBT with 100 elements.

EBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.869
39.472
88.794
157.810
246.487

9.497
37.989
85.479
151.971
237.468

9.164
36.662
82.511
146.736
229.372

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.829
38.845
85.711
148.448
224.717

9.791
38.696
85.397
147.936
223.997

9.752
38.549
85.086
147.430
223.285

Table 2.15: Comparison of nondimonsional natural frequencies of a simply supported
beam in contact with a fluid medium using TBT with 20 elements.

TBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.898
39.944
91.207
165.556
265.777

9.525
38.443
87.804
159.436
256.073

9.191
37.101
84.756
153.949
247.360

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.741
37.587
80.311
134.481
197.405

9.703
37.442
80.011
133.993
196.707

9.665
37.299
79.714
133.511
196.017
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Table 2.16: Comparison of nondimonsional natural frequencies of a simply supported
beam in contact with a fluid medium using TBT with 100 elements.

TBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.869
39.472
88.794
157.810
246.489

9.497
37.989
85.480
151.971
237.470

9.164
36.662
82.511
146.736
229.374

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.713
37.176
78.487
129.503
186.940

9.675
37.033
78.193
129.031
186.276

9.637
36.892
77.902
128.565
185.619

Table 2.17: Comparison of nondimonsional natural frequencies of a simply supported
beam in contact with a fluid medium using RBT with 20 elements.

RBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.868
39.453
88.698
157.517
245.797

9.714
38.840
87.329
155.109
242.087

9.567
38.254
86.021
152.808
238.540

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.712
37.161
78.430
129.379
186.747

9.711
37.156
78.418
129.360
186.720

9.709
37.150
78.407
129.342
186.693
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Table 2.18: Comparison of nondimonsional natural frequencies of a simply supported
beam in contact with a fluid medium using RBT with 100 elements.

RBT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.868
39.452
88.695
157.500
245.733

9.714
38.839
87.326
155.090
242.015

9.567
38.254
86.017
152.786
238.461

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

9.712
37.161
78.428
129.369
186.714

9.711
37.155
78.416
129.350
186.687

9.709
37.150
78.404
129.331
186.660

2.4.2 Plate Structure

The parameters used for the plate problem are as follows:

E = 200 GPa, ν = 0.25, ρs = 5000 kg/m3

Lx = Ly = L = 1 m, hz = 0.02 m, β =
ρf
ρs

(2.149)

and we consider h and ρf to be varied for different cases. The natural frequencies

are presented in the following nondimensional form

ω̄ = ω × L2
x

√
ρsh

D
(2.150)

In this sub-section, simulations are performed for three boundary conditions;

a plate with one edge clamped and all other edges free (CFFF), a plate with all

edges clamped (CCCC), and a plate with all edges simply supported (SSSS), and
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Figure 2.6: The first four mode shapes of a cantilever beam of unit length in an
inviscid fluid with L/H = 100 and using 100 third-order beam elements.

for three different fluid densities; β = 0 (corresponding to the case where the plate

is not in contact with fluid), β = 0.04, and β = 0.08. For each β value, two

different plate thickness ratios, L/H = 10 and L/H = 100, are considered. In all

cases, our mesh is 20 × 20 elements. The dynamic behavior of the plate for the

aforementioned cases followed the trend expected from the previous studies; it is

influenced by the immersion depth hz and fluid density ρf . For instance, increasing

hz (or correspondingly increasing ρf ) increases the added mass and consequently

decreases the natural frequencies. Moreover, changing L/H ratio results in different

variation of natural frequencies to the presence of the fluid medium. The variation of

the first six natural frequencies for different β values and L/H ratios are summarized

64



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

x/L

M
od

e 
sh

ap
e 

X n(x
)

 

 

L/H=10 without interaction
L/H=10 with interaction
L/H=100 without interaction
L/H=100 with interaction

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x/L

M
od

e 
sh

ap
e 

X n(x
)

 

 

L/H=10 without interaction
L/H=10 with interaction
L/H=100 without interaction
L/H=100 with interaction

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x/L

M
od

e 
sh

ap
e 

X n(x
)

 

 

L/H=10 without interaction
L/H=10 with interaction
L/H=100 without interaction
L/H=100 with interaction

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

x/L

M
od

e 
sh

ap
e 

X n(x
)

 

 

L/H=10 without interaction
L/H=10 with interaction
L/H=100 without interaction
L/H=100 with interaction

(d)

Figure 2.7: The first four mode shape of a cantilever beam of a unit length in an
inviscid fluid with L/H = 100 and using 100 RBT beam elements, (a) the first mode
shape, (b) the second mode shape, (c) the third mode shape and (d) the fourth mode
shape.

in Tables 2.19 through 2.21 for CFFF, in Tables 2.22 through 2.24 for CCCC, and

in Tables 2.25 through 2.27 for SSSS. It can be concluded that the effect of the

added mass for lower natural frequencies is more than for the higher frequencies.

Furthermore, increasing β (or hz) will decrease the natural frequencies. Moreover,

for higher β values (more dense fluids), the natural frequencies will be less affected

if one changes the fluid density ρf .

It can be observed that, at each β value, there is more decrease in the natural

frequencies for higher L/H ratios. In addition, the value of this decrease is larger for

the higher modes.
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Figure 2.8: The first four mode shapes of a clamped-clamped beam of unit length in
an inviscid fluid with L/H = 100 and using 100 third-order beam elements.

As shown in Tables 2.19 through 2.27, the results for higher L/H ratios converge

for all three plate theories; i.e. in the thin plate limits, we can use any of three plate

theories. However, for the lower L/H ratios, since the normality assumption is not

valid, CPT overpredicts the natural frequencies.

The mode shapes for CFFF, CCCC and SSSS for the case of β = 0.08 are depicted

in Figs. 2.10, 2.11 and 2.12, respectively. Since the obtained mode shapes for all

three theories are exactly the same, we only plotted the mode shapes of the RSDT.

These two figures indicate that for small deformations, the presence of the fluid does

not affect the mode shapes considerably.
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Table 2.19: Comparison of natural frequencies of a CFFF plate in contact with a
fluid medium using CPT with 20× 20 elements.

CPT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

1.033
2.666
6.380
8.239
9.505
16.714

0.910
2.356
5.668
7.356
8.466
15.015

0.822
2.134
5.152
6.708
7.707
13.746

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

1.031
2.650
6.292
8.074
9.348
16.236

1.017
2.614
6.212
7.978
9.232
16.056

1.003
2.580
6.135
7.884
9.121
15.882

Table 2.20: Comparison of natural frequencies of a CFFF plate in contact with a
fluid medium using FSDT with 20× 20 elements.

FSDT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

1.034
2.684
6.422
8.181
9.412
16.463

0.921
2.385
5.802
7.872
8.763
15.747

0.833
2.212
5.381
6.904
8.102
14.172

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

1.029
2.470
6.111
7.696
8.642
14.538

1.025
2.461
6.087
7.666
8.609
14.484

1.021
2.451
6.064
7.637
8.576
14.430
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Table 2.21: Comparison of natural frequencies of a CFFF plate in contact with a
fluid medium using RSDT with 20× 20 elements.

RSDT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

1.044
2.695
6.509
8.247
9.637
16.829

0.919
2.381
5.782
7.365
8.583
15.116

0.831
2.157
5.254
6.716
7.813
13.838

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

1.031
2.508
6.129
7.684
8.700
14.610

1.017
2.474
6.050
7.592
8.592
14.446

1.003
2.441
5.974
7.502
8.487
14.287

Table 2.22: Comparison of natural frequencies of a CCCC plate in contact with a
fluid medium using CPT with 20× 20 elements.

CPT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

10.828
22.092
22.097
32.772
39.592
39.779

10.524
21.474
21.480
31.861
38.495
38.676

10.245
20.906
20.911
31.021
37.484
37.660

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

10.723
21.587
21.592
31.623
37.896
38.093

10.692
21.527
21.533
31.538
37.796
37.992

10.661
21.468
21.473
31.453
37.697
37.892
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Table 2.23: Comparison of natural frequencies of a CCCC plate in contact with a
fluid medium using FSDT with 20× 20 elements.

FSDT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

10.787
22.213
22.213
32.747
40.543
40.736

10.381
21.381
21.381
31.525
39.035
39.221

10.017
20.636
20.636
30.431
37.684
37.863

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

9.804
18.898
18.898
26.505
31.680
31.981

9.765
18.825
18.825
26.405
31.561
31.861

9.727
18.754
18.754
26.306
31.444
31.742

Table 2.24: Comparison of natural frequencies of a CCCC plate in contact with a
fluid medium using RSDT with 20× 20 elements.

RSDT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

10.776
21.957
22.156
32.559
39.770
39.958

10.474
21.344
21.537
31.653
38.668
38.850

10.196
20.780
20.968
30.820
37.652
37.829

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

9.701
18.495
18.653
26.047
30.834
31.108

9.673
18.443
18.601
25.975
30.749
31.022

9.645
18.392
18.549
25.903
30.665
30.937

69



Table 2.25: Comparison of natural frequencies of a SSSS plate in contact with a fluid
medium using CPT with 20× 20 elements.

CPT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

5.953
14.831
14.833
23.833
29.598
29.607

5.786
14.416
14.418
23.169
28.776
28.784

5.632
14.034
14.036
22.558
28.019
28.026

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

5.905
14.538
14.540
23.093
28.462
28.470

5.888
14.497
14.499
23.031
28.386
28.394

5.871
14.457
14.459
22.968
28.310
28.318

Table 2.26: Comparison of natural frequencies of a SSSS plate in contact with a fluid
medium using FSDT with 20× 20 elements.

FSDT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

5.871
14.802
14.802
23.654
30.061
30.062

5.650
14.247
14.247
22.770
28.941
28.942

5.452
13.750
13.750
21.979
27.938
27.938

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

5.466
13.384
13.384
20.306
25.690
25.740

5.444
13.333
13.333
20.230
25.594
25.644

5.423
13.282
13.282
20.154
25.500
25.549
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Figure 2.9: The first four mode shapes of a simply supported beam of unit length in
an inviscid fluid with L/H = 100 and using 100 third-order beam elements.

2.5 Concluding Remarks

In this section, we studied the free vibration problems of fluid-structure interac-

tion for beams and plates, using classical and first-order and Reddy third-order shear

deformation theories. We considered the effect of a fluid medium as an added mass

incorporated into the mass matrix of the system equations. The effect of various

parameters, such as fluid density, structural dimensions, and boundary conditions

on the natural frequencies and mode shapes of the structures through numerical

simulations.
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(a)
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Figure 2.10: The first six mode shapes of a CFFF plate in an inviscid incompressible
fluid medium for L/H = 10 and β = 0.08. (a) The first mode shape, (b) the second
mode shape, (c) the third mode shape, (d) the fourth mode shape, (e) the fifth mode
shape, and (f) the sixth mode shape.
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Figure 2.11: The first six mode shapes of a CCCC plate in an inviscid incompressible
fluid medium for L/H = 10 and β = 0.08. (a) The first mode shape, (b) the second
mode shape, (c) the third mode shape, (d) the fourth mode shape, (e) the fifth mode
shape, and (f) the sixth mode shape.
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Figure 2.12: The first six mode shapes of a SSSS plate in an inviscid incompressible
fluid medium for L/H = 10 and β = 0.08. (a) The first mode shape, (b) the second
mode shape, (c) the third mode shape, (d) the fourth mode shape, (e) the fifth mode
shape, and (f) the sixth mode shape.

73



Table 2.27: Comparison of natural frequencies of a SSSS plate in contact with a fluid
medium using RSDT with 20× 20 elements.

RSDT
L/H ω̄N β = 0 β = 0.04 β = 0.08

100

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

5.874
14.639
14.800
23.517
29.555
29.565

5.709
14.230
14.386
22.861
28.734
28.744

5.558
13.853
14.005
22.258
27.977
27.987

10

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

5.402
13.108
13.237
19.935
25.002
25.048

5.386
13.071
13.200
19.880
24.933
24.979

5.371
13.035
13.163
19.825
24.865
24.911
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3. NONLINEAR TRANSIENT ANALYSIS OF ELASTIC STRUCTURES IN

CONTACT WITH A FLUID DOMAIN

3.1 Introduction

Beams, plates, and shells are considered to be the basic elements of almost any

structure. The presence of fluid around a structure can lead to failure of a structure.

Most FSI problems arising in aerospace, ship industry, oil and gas industry, and

biomedical, require finding a method to investigate the effect of fluid domain on

structural response. A coupled finite element formulation of problems involving FSI

is considered to be an accurate method to predict the transient response of structures

in contact with a fluid medium.

In Section 2, we studied the linear formulation in order to investigate the natu-

ral vibration of beams and plates in contact with a fluid medium. In this section,

our focus will be on the transient response of structures in the presence of a fluid

medium. However, in order to make our approach more applicable, we extend it to

the nonlinear formulation results in taking into account the geometric nonlinearity;

which in our study, we consider small strains and moderate rotations. Here, three

different plate theories; namely Classical Plate Theory (CPT), First-order Shear De-

formation Plate Theory (FSDT), and Third-order Shear Deformation Plate Theory

(TSDT) with specialization to Reddy Third-order Shear Deformation Plate Theory

(RSDT) are considered to model the solid medium, and the Navier-Stokes equation is

the theoretical equation governed the fluid medium. The governing equations of the

solid domain are based on the classical von-Karman nonlinear strains. The formu-

lation is a combination of the various structure theories and the solid-fluid interface

boundary condition, which is used to represent the interaction between the solid
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and fluid regimes. The main feature of the proposed methodology is to model the

fluid domain as an added mass; the external distributed force due to the presence

of the fluid. Then the finite element model of each plate theories will be developed

which includes the nonlinear term as expected. The nonlinear solution scheme dis-

cussed herein is Newton’s method following by the transient response solution of the

problem. Since the formulation presented in this study covers several theories in

literature, our formulation accounts for any plate geometry.

We will validate the accuracy of such formulation by means of some numerical

simulations. We can take the advantage of prescribing the effect of fluid flow on the

transient response in order to improve the structural design.

3.2 Theoretical Formulations

As in previous section, here we present theoretical formulation for three different

plate theories. The main difference between governing equations presented here with

those provided in Section 2 is that herein we do not limit our method to small strains

and small rotations. Extending our method to small strains and moderate rotations,

we are confronting the nonlinearity in our governing equations for the structural

domain. Similar to the previous section, Fig. 3.1 represents the domain of the

transient response plate problem and typical fluid mesh.

3.2.1 Fluid Mechanics

The fluid medium governing equation is as described in Section 2, since we are

planning to consider the geometric nonlinearity only. Just a quick review of what we

have done for deriving the equation governing the fluid domain, this domain assumed

to have a density of ρf and its motion is fully described by the conservation principles
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Figure 3.1: Domain of the plate fluid-structure interaction problem with the (a)
boundary conditions and (b) typical fluid mesh.

of linear and angular momentum as

∇ · σσσ + ρfb = ρf v̇ (3.1)

As it can be observed from Fig. 3.1, the force vector has only nonzero components

due to gravity and it is measured per unit mass in z direction. For the case of an
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inviscid fluid, it is possible to express the stress tensor as a function of the hydrostatic

pressure. Taking the divergence of the the obtained equation, taking the advantage

of constant incompressible fluid, for the slowly moving flow, we obtain the Laplace

equation in terms of p as the governing equation. For the plate problem at hand,

we are dealing with three dimensional flows; therefore, the corresponding Laplace

expression in the Cartesian coordinate system will be

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
= 0 (3.2)

In Eq. (3.2), time does not appear explicitly, however, since time enters the formu-

lation through the solid-fluid interface, p is generally a time-dependent variable. It

will be presented in Sub-section 3.2.3.

3.2.2 Solid Mechanics

3.2.2.1 The Classical Plate Theory (CPT)

For the CPT, the Kirchhoff hypothesis assumed the following form of the dis-

placement field

u (x, y, , z, t) = u (x, y, t)− z∂w
∂x

v (x, y, z, t) = v (x, y, t)− z∂w
∂y

w (x, y, z, t) = w (x, y, t) (3.3)

The von-Karman strain can be obtained using Green-Lagrange strain tensor. The

non-zero terms of the plane strain vector associated with the displacement field in
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Eq. (3.3) are calculated as


εxx

εyy

εxy

 =


∂u
∂x

+ 1
2

(
∂w
∂x

)2

∂v
∂y

+ 1
2

(
∂w
∂y

)2

∂u
∂y

+ ∂v
∂x

+ ∂w
∂x

∂w
∂y

− z


∂2w
∂x2

∂2w
∂y2

∂2w
∂x∂y

 (3.4)

The plane stress can be expressed as


σxx

σyy

σxy

 =


Q11 Q12 0

Q12 Q22 0

0 0 Q66




εxx

εyy

γxy

 (3.5)

where Qij are the elastic stiffnesses defined as

Q11 =
E1

1− ν12ν21

, Q2 =
E2

1− ν12ν21

Q12 =
ν21E1

1− ν12ν21

, Q66 = G12 (3.6)

Using the above strain and stress fields along with the dynamic version of the princi-

ple of virtual displacement, the equilibrium equations for nonlinear CPT are obtained

as follows:

∂Nxx

∂x
+
∂Nxy

∂y
= I0

∂2u

∂t2

∂Nxy

∂x
+
∂Nyy

∂y
= I0

∂2v

∂t2

∂

∂x

(
∂w

∂x
Nxx +

∂w

∂y
Nxy

)
+

∂

∂y

(
∂w

∂x
Nxy +

∂w

∂y
Nyy

)
+

(
∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2

)
= −p− I6

∂2

∂t2

(
∂2w

∂x2
+
∂2w

∂y2

)
+ I0

∂2w

∂t2
(3.7)
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where Ii is defined as

Ii =

∫ h
2

−h
2

ρ(z)idz (3.8)

where the stress resultants have the following definition:


Nxx

Nyy

Nxy

 =

∫ h
2

−h
2


σxx

σyy

σxy

 dz,


Mxx

Myy

Mxy

 =

∫ h
2

−h
2


σxx

σyy

σxy

 zdz (3.9)

3.2.2.2 The First-order Shear Deformation Plate Theory (FSDT)

For the FSDT, the normality condition is relaxed by assuming the following form

of the displacements field

u (x, y, , z, t) = u (x, y, t) + zφx (x, y)

v (x, y, , z, t) = v (x, y, t) + zφy (x, y)

w (x, y, , z, t) = w (x, y, t) (3.10)

The von-Karman nonlinear strain tensor associated with the above displacement field

will take the form
εxx

εyy

εxy

 =


∂u
∂x

+ 1
2

(
∂w
∂x

)2

∂v
∂y

+ 1
2

(
∂w
∂y

)2

∂u
∂y

+ ∂v
∂x

+ ∂w
∂x

∂w
∂y

+ z


∂φx
∂x

∂φy
∂y

∂φx
∂y

+ ∂φy
∂x

 γxz

γyz

 =

 φx + ∂w
∂x

φy + ∂w
∂y

 (3.11)
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The plane stress can be expressed as


σxx

σyy

σxy

 =


Q11 Q12 0

Q12 Q22 0

0 0 Q66




εxx

εyy

γxy

 σxz

σyz

 =

 Q44 0

0 Q44


 γxz

γyz

 (3.12)

Using the above strain and stress field along with the dynamic version of the principle

of virtual displacement, the equilibrium equations for nonlinear FSDT are obtained

as follows:

∂Nxx

∂x
+
∂Nxy

∂y
= I0

∂2u

∂t2

∂Nxy

∂x
+
∂Nyy

∂y
= I0

∂2v

∂t2

∂

∂x

(
∂w

∂x
Nxx +

∂w

∂y
Nxy

)
+

∂

∂y

(
∂w

∂x
Nxy +

∂w

∂y
Nyy

)
+
∂Qx

∂x
+
∂Qy

∂y
= −p+ I0

∂2w

∂t2

Qx −
∂Mxx

∂x
− ∂Mxy

∂y
= I2

∂2φx
∂t2

Qy −
∂Mxy

∂x
− ∂Myy

∂y
= I2

∂2φy
∂t2

(3.13)

81



where Ii is described by Eq. (3.8) and the stress resultants have the following defi-

nition:
Nxx

Nyy

Nxy

 =

∫ h
2

−h
2


σxx

σyy

σxy

 dz =


A11 A12 0

A12 A22 0

0 0 A66




∂u
∂x

+ 1
2

(
∂w
∂x

)2

∂v
∂y

+ 1
2

(
∂w
∂y

)2

∂u
∂y

+ ∂v
∂x

+ ∂w
∂x

∂w
∂y


Mxx

Myy

Mxy

 =

∫ h
2

−h
2


σxx

σyy

σxy

 zdz =


D11 D12 0

D12 D22 0

0 0 D66




∂φx
∂x

∂φy
∂y

∂φx
∂y

+ ∂φy
∂x

 Qx

Qy

 = Ks

∫ h
2

−h
2

 σxz

σyz

 dz =

 A44 0

0 A44


 φx + ∂w

∂x

φy + ∂w
∂y

 (3.14)

where the coefficients are expressed as

A11 =
Eh

1− ν2
, A12 =

νEh

1− ν2
, A44 = A66 = Gh =

Eh

2 (1 + ν)

D11 =
Eh3

12 (1− ν2)
, D12 =

νEh3

12 (1− ν2)
(3.15)

3.2.2.3 Reddy Third-order Shear Deformation Plate Theory (RSDT)

For the general Third-order Shear Deformation Plate Theory (TSDT), the fol-

lowing form of the displacement field are assumed

u (x, y, , z, t) = u (x, y, t) + zφx (x, y) + z2θx (x, y) + z3ψx (x, y)

v (x, y, , z, t) = v (x, y, t) + zφy (x, y) + z2θy (x, y) + z3ψy (x, y)

w (x, y, , z, t) = w (x, y, t) + zφz (x, y) + z2θz (x, y) (3.16)
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where we have the following defined variables

φx =

(
∂u

∂z

)
z=0

, φy =

(
∂v

∂z

)
z=0

, φz =

(
∂w

∂z

)
z=0

φx =

(
∂u

∂z

)
z=0

, φy =

(
∂v

∂z

)
z=0

, φz =

(
∂w

∂z

)
z=0

ψx =
∂3u

∂z3
, ψy =

∂3v

∂z3
(3.17)

RSDT invokes the free shear stress boundary conditions at the top and bottom

surface of the plate, i.e. the transverse shear stresses σxz and σyz are set to be zero

at these two surfaces which result in γxz and γyz to be zero. In addition if we set

φz = θz = 0, the number of generalized displacements reduces from 11 to 5 (u, v, w,

φx, and φy) which results in the following displacement field

u (x, y, , z, t) = u (x, y, t) + zφx − z3 4

3h2

(
φx +

∂w

∂x

)
v (x, y, , z, t) = v (x, y, t) + zφy − z3 4

3h2

(
φy +

∂w

∂y

)
w (x, y, , z, t) = w (x, y, t) (3.18)

Using the obtained displacement field in the Green-Lagrange strain tensor, the com-

ponents of the strain tensor take the form


εxx

εyy

γxy

 =


ε

(0)
xx

ε
(0)
yy

γ
(0)
xy

+ z


ε

(1)
xx

ε
(1)
yy

γ
(1)
xy

+ z3


ε

(3)
xx

ε
(3)
yy

γ
(3)
xy

 γxz

γyz

 =

 γ
(0)
xz

γ
(0)
yz

+ z2

 γ
(2)
xz

γ
(2)
yz

 (3.19)
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where ε
(i)
αβ and γ

(i)
αβ have the following definition based on RSDT


ε

(0)
xx

ε
(0)
yy

ε
(0)
xy

 =


∂u
∂x

+ 1
2

(
∂w
∂x

)2

∂v
∂y

+ 1
2

(
∂w
∂y

)2

∂u
∂y

+ ∂v
∂x

+ ∂w
∂x

∂w
∂y


ε

(1)
xx

ε
(1)
yy

ε
(1)
xy

 =


∂φx
∂x

∂φy
∂y

∂φx
∂y

+ ∂φy
∂x


ε

(3)
xx

ε
(3)
yy

ε
(3)
xy

 = −c1


∂φx
∂x

+ ∂2w
∂x2

∂φy
∂y

+ ∂2w
∂y2

∂φx
∂y

+ ∂φy
∂x

+ 2 ∂2w
∂x∂y

 γ
(0)
xz

γ
(0)
yz

 =

 φx + ∂w
∂x

φy + ∂w
∂y

 γ
(2)
xz

γ
(2)
yz

 = −c2

 φx + ∂w
∂x

φy + ∂w
∂y

 (3.20)

where the constants are

c1 =
4

3h2
, c2 =

4

h2
(3.21)
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Similar to CPT and FSDT, the plane stress are described as


σxx

σyy

σxy

 =


Q11 Q12 0

Q12 Q22 0

0 0 Q66




εxx

εyy

γxy

 σxz

σyz

 =

 Q44 0

0 Q44


 γxz

γyz

 (3.22)

Using Hamiltons’s principle, we can derive the equations of motion of the RSDT

∫ T

0

(δK − δU − δVE)dt = 0 (3.23)

where δK is the virtual kinetic energy, δU is the virtual strain energy, and δVE is

the virtual work done by external forces. Therefore, the governing equations are as

∂M
(0)
xx

∂x
+
∂M

(0)
xy

∂y
= I0

∂2u

∂x2

∂M
(0)
xy

∂x
+
∂M

(0)
yy

∂y
= I0

∂2v

∂x2

∂

∂x

(
∂w

∂x
M (0)

xx +
∂w

∂y
M (0)

xy

)
+

∂

∂y

(
∂w

∂x
M (0)

xy +
∂w

∂y
M (0)

yy

)
+
∂M̄

(0)
xz

∂x
+
∂M̄

(0)
yz

∂y
+ c1

(
∂2M

(3)
xx

∂x2
+ 2

∂2M
(3)
xy

∂x∂y
+
∂2M

(3)
yy

∂y2

)
+ p

= −c2
1I6

∂2

∂t2

(
∂2w

∂x2
+
∂2w

∂y2

)
+ c2Ī4

∂2

∂t2

(
∂φx
∂x

+
∂φy
∂y

)
+ I0

∂2w

∂t2

∂M̄
(1)
xx

∂x
+
∂M̄

(1)
xy

∂y
− M̄ (0)

xz = Î2
∂2φx
∂t2
− c1Ī4

∂3w

∂x∂t2

∂M̄
(1)
xy

∂x
+
∂M̄

(1)
yy

∂y
− M̄ (0)

yz = Î2
∂2φy
∂t2
− c1Ī4

∂3w

∂y∂t2
(3.24)
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where we have

M̄
(i)
αβ = M

(i)
αβ − c1M

(i+2)
αβ

M̄ (0)
αz = M (0)

αz − c2M
(2)
αz (3.25)

and

Ii =

∫ h
2

−h
2

ρ(z)idz

Īi = Ii − c1Ii+2

Îi = Īi − c1Īi+2 (3.26)
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The following equations relate generalized forces to the generalized displacement field

of this theory


M

(0)
xx

M
(0)
yy

M
(0)
xy

 =

∫ h
2

−h
2


σxx

σyy

σxy

 dz =


A11 A12 0

A12 A22 0

0 0 A66




εxx
(0)

εyy
(0)

γxy
(0)


M

(1)
xx

M
(1)
yy

M
(1)
xy

 =

∫ h
2

−h
2


σxx

σyy

σxy

 zdz

=


D11 D12 0

D12 D22 0

0 0 D66




εxx
(1)

εyy
(1)

γxy
(1)

+


F11 F12 0

F12 F22 0

0 0 F66




εxx
(3)

εyy
(3)

γxy
(3)


M

(3)
xx

M
(3)
yy

M
(3)
xy

 =

∫ h
2

−h
2


σxx

σyy

σxy

 z3dz

=


F11 F12 0

F12 F22 0

0 0 F66




εxx
(1)

εyy
(1)

γxy
(1)

+


H11 H12 0

H12 H22 0

0 0 H66




εxx
(3)

εyy
(3)

γxy
(3)

 M
(0)
xz

M
(0)
yz

 =

∫ h
2

−h
2

 σxz

σyz

 dz

=

 A44 0

0 A44


 γxz

(0)

γyz
(0)

+

 D44 0

0 D44


 γxz

(2)

γyz
(2)


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 M
(2)
xz

M
(2)
yz

 =

∫ h
2

−h
2

 σxz

σyz

 z2dz

=

 D44 0

0 D44


 γxz

(0)

γyz
(0)

+

 F44 0

0 F44


 γxz

(2)

γyz
(2)

 (3.27)

The constants in the above equations are defined as

A11 =
Eh

1− ν2
, A12 =

νEh

1− ν2
, A44 = A66 = Gh =

Eh

2 (1 + ν)

D11 =
Eh3

12 (1− ν2)
, D12 =

νEh3

12 (1− ν2)
, D44 = D66 =

Gh3

12
=

Eh3

24 (1 + ν)

F11 =
Eh5

80 (1− ν2)
, F12 =

νEh5

80 (1− ν2)
, F44 = F66 =

Gh5

80
=

Eh5

160 (1 + ν)

H11 =
Eh7

448 (1− ν2)
, H12 =

νEh7

448 (1− ν2)
, H66 =

Gh7

448
=

Eh7

996 (1 + ν)
(3.28)

3.2.3 Solid-Fluid Interface

The solid-fluid interface boundary conditions can be obtained by considering the

fact that structure deflection transfers the momentum to the fluid at the interface

which this distributed force in turn, changes the structure deflection. These condi-

tions can be assumed as the continuity of velocity and traction at the interface

∂us
∂t

= vf (3.29)

σσσs.n + σσσf .n = 0 (3.30)

Evaluating the momentum equation at the interface yields the following equation

−∂p
∂z
− ρfg = ρf

∂2w

∂t2
(3.31)
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which will be used later as the solid-fluid interface condition.

3.3 Finite Element Formulations

In this sub-section, we present finite element formulations for the solid and fluid

domains. We also impose the interfacial condition given by Eq. (3.31) to couple the

two domains. For details, the reader may review Section 2.

3.3.1 Fluid Medium Finite Element Model

The weak form of Eq. (3.2) over a typical fluid element Ωe = (xa, xb)× (ya, yb)×

(za, zb) is constructed by multiplying Eq. (3.2) by the first variation of p as

0 = −
∫
Ωe

δp

(
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2

)
dxdz (3.32)

where one row of fluid elements along the plate length is considered (Fig. 3.1). By

means of the vector identity∇. (α∇φ) = ∇α.∇φ+α∇2φ and the divergence theorem,

Eq. (3.32) can be expanded as (for details, the reader may consult the textbooks by

Reddy [51])

0 =

∫ zb

za

∫ yb

ya

∫ xb

xa

(
∂δp

∂x

∂p

∂x
+
∂δp

∂y

∂p

∂y
+
∂δp

∂z

∂p

∂z

)
dxdydz

−
∫ yb

ya

∫ xb

xa

[
δpρf

(
g +

∂2w

∂t2

)]
z=0

dxdy

−
∮

Γ̂e
δp

(
∂p

∂x
nx +

∂p

∂y
ny +

∂p

∂z
nz

)
ds (3.33)

where (nx, ny, nz) is the unit normal to the surface. In Eq. (3.33), Γ̂e represents the

boundary of a fluid element which does not have any interaction with the plate.

In the problem at hand, the last term of Eq. (3.33) is eliminated either by the corre-

sponding term from the adjacent element or by the prescribed boundary conditions.
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Substituting Eq. (3.31) into Eq. (3.33), one can obtain

0 =

∫ zb

za

∫ yb

ya

∫ xb

xa

(
∂δp

∂x

∂p

∂x
+
∂δp

∂y

∂p

∂y
+
∂δp

∂z

∂p

∂z

)
dxdydz

−
∫ yb

ya

∫ xb

xa

[
δpρf

(
g +

∂2w

∂t2

)]
z=0

dxdy

−
∮

Γ̂e
δp

(
∂p

∂x
nx +

∂p

∂y
ny +

∂p

∂z
nz

)
ds (3.34)

We assume the following form of the pressure p for the 3D elements

p (x, y, z, t) =
n∑
j=1

Pj (t)ψj (x, y, z) (3.35)

where ψej ’s are 3D Lagrange family interpolation functions. For our study, we consider

8-node brick elements. Therefore, one can utilize the following interpolation functions

[51]

ψ1 =
1

8
(1− ξ) (1− η) (1− ζ) , ψ2 =

1

8
(1 + ξ) (1− η) (1− ζ)

ψ3 =
1

8
(1 + ξ) (1 + η) (1− ζ) , ψ4 =

1

8
(1− ξ) (1 + η) (1− ζ)

ψ5 =
1

8
(1− ξ) (1− η) (1 + ζ) , ψ6 =

1

8
(1 + ξ) (1− η) (1 + ζ)

ψ7 =
1

8
(1 + ξ) (1 + η) (1 + ζ) , ψ8 =

1

8
(1− ξ) (1 + η) (1 + ζ) (3.36)

Inserting the approximation (2.44) into the weak form (3.34), we have

CP = f + Q (3.37)
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where the element matrices can be calculated by means of the following integrals

Cij =

∫ zb

za

∫ yb

ya

∫ xb

xa

(
∂ψi
∂x

ψj
∂x

+
∂ψi
∂y

ψj
∂y

+
∂ψi
∂z

ψj
∂z

)
dxdydz

fi =

∫ yb

yb

∫ xb

xa

ρfψi

(
g +

∂2w

∂t2

)
dxdy

Qi =

∮
Γ̂e
ψi

(
∂p

∂x
nx +

∂p

∂y
ny +

∂p

∂z
nz

)
ds (3.38)

3.3.2 Solid Medium

In this sub-section, we formulate finite element models for the solid medium for

each plate theory.

3.3.2.1 The CPT

In order to conduct finite element formulation, we use the following approxima-

tions for the primary variables of CPT, which are u, v, and w

u (x, y, t) ≈
n∑
j=1

Uj (t)ψj (x, y)

v (x, y, t) ≈
n∑
j=1

Vj (t)ψj (x, y)

w (x, y, t) ≈
n∑
j=1

∆̄j (t)ϕj (x, y) (3.39)

In the above approximation, u and v are interpolated using Lagrange family of

approximation, while we use the Hermite family of approximation in interpolating w.

Substituting the approximations in the governing equation results in the following
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finite element equations


M11 M12 M13

M21 M22 M23

M31 M32 M33




Ü

V̈

∆̈

+


K11 K12 K13

K21 K22 K23

K31 K32 K33




U

V

∆


=


q1

q2

q3

+


F1

F2

F3

 (3.40)

where the nonzero elements of mass matrices Mαβ, stiffness matrices Kαβ and force

vectors qα can be obtained using the following integrals:

M11
ij = M22

ji =

∫
Ωe

I0ψiψjdxdy

M33
ij =

∫
Ωe

I0ϕiϕj + c2I6

(
∂ϕi
∂x

∂ϕj
∂x

+
∂ϕi
∂y

∂ϕj
∂y

)
dxdy (3.41)
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K11
ij =

∫
Ωe

(
A11

∂ψi
∂x

∂ψj
∂x

+ A66
∂ψi
∂y

∂ψj
∂y

)
dxdy

K12
ij = K21

ji =

∫
Ωe

(
A12

∂ψi
∂x

∂ψj
∂y

+ A66
∂ψi
∂y

∂ψj
∂x

)
dxdy

K13
ij =

1

2

∫
Ωe

[
∂ψi
∂x

(
A11

∂w

∂x

∂ϕj
∂x

+ A12
∂w

∂y

∂ϕj
∂y

)
+A66

∂ψi
∂y

(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)]
dxdy

K22
ij =

∫
Ωe

(
A66

∂ψi
∂x

∂ψj
∂x

+ A22
∂ψi
∂y

∂ψj
∂y

)
dxdy

K23
ij =

1

2

∫
Ωe

[
∂ψi
∂y

(
A12

∂w

∂x

∂ϕj
∂x

+ A22
∂w

∂y

∂ϕj
∂y

)
+A66

∂ψi
∂x

(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)]
dxdy

K31
ij =

∫
Ωe

[
∂ϕi
∂x

(
A11

∂w

∂x

∂ψj
∂x

+ A66
∂w

∂y

∂ψj
∂y

)
+
∂ϕi
∂y

(
A66

∂w

∂x

∂ψj
∂y

+ A12
∂w

∂y

ψj
∂x

)]
dxdy

K32
ij =

∫
Ωe

[
∂ϕi
∂x

(
A12

∂w

∂x

∂ψj
∂y

+ A66
∂w

∂y

∂ψj
∂x

)
+
∂ϕi
∂y

(
A66

∂w

∂x

∂ψj
∂x

+ A22
∂w

∂y

ψj
∂y

)]
dxdy

K33
ij =

∫
Ωe

[
D11

∂2ϕi
∂x2

∂2ϕj
∂x2

+D12

(
∂2ϕi
∂x2

∂2ϕj
∂y2

+
∂2ϕi
∂y2

∂2ϕj
∂x2

)
+D22

∂2ϕi
∂y2

∂2ϕj
∂y2

+ 4D66
∂2ϕi
∂x∂y

∂2ϕj
∂x∂y

]
dxdy

+
1

2

∫
Ωe

{[
A11

(
∂w

∂x

)2

+ A66

(
∂w

∂y

)2
]
∂ϕi
∂x

∂ϕj
∂x

+

[
A66

(
∂w

∂x

)2

+ A22

(
∂w

∂y

)2
]
∂ϕi
∂y

∂ϕj
∂y

+ (A12 + A66)
∂w

∂x

∂w

∂y

(
∂ϕi
∂x

∂ϕj
∂y

+
∂ϕi
∂y

∂ϕj
∂x

)}
dxdy (3.42)

q3
i =

∫
Ωe

pϕidxdy (3.43)
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where the coefficients are expressed as

Aij = Qijh, Dij = Qij
h3

12
(3.44)

In Eq. (3.40), Fi are the generalized nodal force vectors. The general form of q3
i in

Eq. (3.43) will be presented in Sub-section 3.3.4.1.

3.3.2.2 The FSDT

In order to conduct finite element formulation, we use the following approxima-

tions for the primary variables of FSDT, which are u, v, w, φx, and φy

u (x, y, t) ≈
n∑
j=1

Uj (t)ψ
(1)
j (x, y)

v (x, y, t) ≈
n∑
j=1

Vj (t)ψ
(1)
j (x, y)

w (x, y, t) ≈
n∑
j=1

Wj (t)ψ
(2)
j (x, y)

φx (x, y, t) ≈
n∑
j=1

Φx
j (t)ψ

(3)
j (x, y)

φy (x, y, t) ≈
n∑
j=1

Φy
j (t)ψ

(3)
j (x, y) (3.45)

In the above approximation, u, v, w, φx, and φy are interpolated using Lagrange

family of approximation.

Substituting the approximations in the governing equation results in the following

finite element equations

M∆̈ + K∆ = F (3.46)
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or in matrix form, we have



M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

M51 M52 M53 M45 M55





Ü

V̈

Ẅ

Φ̈x

Φ̈y



+



K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K45 K55





U

V

W

Φx

Φy


=



q1

q2

q3

q4

q5


+



F1

F2

F3

F4

F5


(3.47)

where the nonzero elements of mass matrices Mαβ, stiffness matrices Kαβ and force

vectors qα can be obtained using the following integrals:

M11
ij = M22

ij =

∫
Ωe

I0ψ
(1)
i ψ

(1)
j dxdy

M33
ij =

∫
Ωe

I0ψ
(2)
i ψ

(2)
j dxdy

M44
ij = M55

ij =

∫
Ωe

I2ψ
(2)
i ψ

(2)
j dxdy (3.48)
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K11
ij =

∫
Ωe

(
A11

∂ψ
(1)
i

∂x

∂ψ
(1)
j

∂x
+ A66

∂ψ
(1)
i

∂y

∂ψ
(1)
j

∂y

)
dxdy

K12
ij = K21

ji =

∫
Ωe

(
A12

∂ψ
(1)
i

∂x

∂ψ
(1)
j

∂y
+ A66

∂ψ
(1)
i

∂y

∂ψ
(1)
j

∂x

)
dxdy

K13
ij =

1

2

∫
Ωe

[
∂ψ

(1)
i

∂x

(
A11

∂w

∂x

∂ψ
(2)
j

∂x
+ A12

∂w

∂y

∂ψ
(2)
j

∂y

)

+A66
∂ψ

(1)
i

∂y

(
∂w

∂x

∂ψ
(2)
j

∂y
+
∂w

∂y

∂ψ
(2)
j

∂x

)]
dxdy

K22
ij =

∫
Ωe

(
A66

∂ψ
(1)
i

∂x

∂ψ
(1)
i

∂x
+ A22

∂ψ
(1)
i

∂y

∂ψ
(1)
i

∂y

)
dxdy

K23
ij =

1

2

∫
Ωe

[
∂ψ

(1)
i

∂y

(
A12

∂w

∂x

∂ψ
(2)
j

∂x
+ A22

∂w

∂y

∂ψ
(2)
j

∂y

)

+A66
∂ψ

(1)
i

∂x

(
∂w

∂x

∂ψ
(2)
j

∂y
+
∂w

∂y

∂ψ
(2)
j

∂x

)]
dxdy

K31
ij =

∫
Ωe

[
∂ψ

(2)
i

∂x

(
A11

∂w

∂x

∂ψ
(1)
j

∂x
+ A66

∂w

∂y

∂ψ
(1)
j

∂y

)

+
∂ψ

(2)
i

∂y

(
A66

∂w

∂x

∂ψ
(1)
j

∂y
+ A12

∂w

∂y

ψ
(1)
j

∂x

)]
dxdy

K32
ij =

∫
Ωe

[
∂ψ

(2)
i

∂x

(
A12

∂w

∂x

∂ψ
(1)
j

∂y
+ A66

∂w

∂y

∂ψ
(1)
j

∂x

)

+
∂ψ

(2)
i

∂y

(
A66

∂w

∂x

∂ψ
(1)
j

∂x
+ A22

∂w

∂y

ψ
(1)
j

∂y

)]
dxdy

K33
ij =

∫
Ωe

(
A55

∂ψ
(2)
i

∂x

∂ψ
(2)
j

∂x
+ A44

∂ψ
(2)
i

∂y

∂ψ
(2)
j

∂y

)
dxdy

+
1

2

∫
Ωe

{[
A11

(
∂w

∂x

)2

+ A66

(
∂w

∂y

)2
]
∂ψ

(2)
i

∂x

∂ψ
(2)
j

∂x

+

[
A66

(
∂w

∂x

)2

+ A22

(
∂w

∂y

)2
]
∂ψ

(2)
i

∂y

∂ψ
(2)
j

∂x

+ (A12 + A66)
∂w

∂x

∂w

∂y

(
∂ϕi
∂x

∂ϕj
∂y

+
∂ψ

(2)
i

∂y

∂ψ
(2)
j

∂x

)}
dxdy
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K34
ij = K43

ji =

∫
Ωe
A55

∂ψ
(2)
i

∂x
ψ

(3)
j dxdy

K35
ij = K53

ji =

∫
Ωe
A44

∂ψ
(2)
i

∂y
ψ

(3)
j dxdy

K44
ij =

∫
Ωe

(
D11

∂ψ
(3)
i

∂x

∂ψ
(3)
j

∂x
+D66

∂ψ
(3)
i

∂y

∂ψ
(3)
j

∂y
+ A55ψ

(3)
i ψ

(3)
j

)
dxdy

K45
ij = K54

ij =

∫
Ωe

(
D12

∂ψ
(3)
i

∂x

∂ψ
(3)
j

∂y
+D66

∂ψ
(3)
i

∂y

∂ψ
(3)
j

∂x

)
dxdy

K55
ij =

∫
Ωe

(
D66

∂ψ
(3)
i

∂x

∂ψ
(3)
i

∂x
+D22

∂ψ
(3)
i

∂y

∂ψ
(3)
i

∂y
+ A44ψ

(3)
i ψ

(3)
j

)
dxdy (3.49)

q3
i =

∫
Ωe

pψ
(2)
i dxdy (3.50)

In Eq. (3.47), Fi are the generalized nodal force vectors. The general form of q3
i in

Eq. (3.50) will be presented in Sub-section 3.3.4.2.
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3.3.2.3 The RSDT

In order to conduct finite element formulation, we use the following approxima-

tions for the primary variables of RSDT, which are u, v, w, φx, and φy

u (x, y, t) ≈
n∑
j=1

Uj (t)ψ
(1)
j (x, y)

v (x, y, t) ≈
n∑
j=1

Vj (t)ψ
(1)
j (x, y)

w (x, y, t) ≈
n∑
j=1

∆̄j (t)ϕj (x, y)

φx (x, y, t) ≈
n∑
j=1

Φx
j (t)ψ

(2)
j (x, y)

φy (x, y, t) ≈
n∑
j=1

Φy
j (t)ψ

(2)
j (x, y) (3.51)

In the above approximation, u, v, φx, and φy are interpolated using Lagrange family

of approximation, while we use the Hermite family of approximation in interpolating

w. Generally, it is not necessary to use the same degree of interpolation for (u, v)

and (φx, φy), however we consider the same interpolation function for all of them.

Substituting the approximations in the governing equation results in the following

finite element equations

M∆̈ + K∆ = F (3.52)
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or in matrix form, we have



M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

M51 M52 M53 M45 M55





Ü

V̈

∆̈

Φ̈x

Φ̈y



+



K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K45 K55





U

V

∆

Φx

Φy


=



q1

q2

q3

q4

q5


+



F1

F2

F3

F4

F5


(3.53)

where the nonzero elements of mass matrices Mαβ, stiffness matrices Kαβ and force

vectors qα can be obtained using the following integrals:

M11
ij = M22

ij =

∫
Ωe

I0ψ
(1)
i ψ

(1)
j dxdy

M33
ij =

∫
Ωe

I0ϕiϕj + c2
1I6

(
∂ϕi
∂x

∂ϕj
∂x

+
∂ϕi
∂y

∂ϕj
∂y

)
dxdy

M34
ij = M43

ji = −c1I4

∫
Ωe

∂ϕi
∂x

ψ
(2)
j

M35
ij = M53

ji = −c1I4

∫
Ωe

∂ϕi
∂y

ψ
(2)
j

M44
ij = M55

ij =

∫
Ωe

Î2ψ
(2)
i ψ

(2)
j dxdy (3.54)
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K11
ij =

∫
Ωe

(
A11

∂ψ
(1)
i

∂x

∂ψ
(1)
i

∂x
+ A66

∂ψ
(1)
i

∂y

∂ψ
(1)
i

∂y

)
dxdy

K12
ij = K21

ji =

∫
Ωe

(
A12

∂ψ
(1)
i

∂x

∂ψ
(1)
i

∂y
+ A66

∂ψ
(1)
i

∂y

∂ψ
(1)
i

∂x

)
dxdy

K13
ij =

1

2

∫
Ωe

[
∂ψ

(1)
i

∂x

(
A11

∂w

∂x

∂ϕj
∂x

+ A12
∂w

∂y

∂ϕj
∂y

)

+A66
∂ψ

(1)
i

∂y

(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)]
dxdy

K22
ij =

∫
Ωe

(
A66

∂ψ
(1)
i

∂x

∂ψ
(1)
i

∂x
+ A22

∂ψ
(1)
i

∂y

∂ψ
(1)
i

∂y

)
dxdy

K23
ij =

1

2

∫
Ωe

[
∂ψ

(1)
i

∂y

(
A12

∂w

∂x

∂ϕj
∂x

+ A22
∂w

∂y

∂ϕj
∂y

)

+A66
∂ψ

(1)
i

∂x

(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)]
dxdy

K31
ij =

∫
Ωe

[
∂ϕi
∂x

(
A11

∂w

∂x

∂ψ
(1)
j

∂x
+ A66

∂w

∂y

∂ψ
(1)
j

∂y

)

+
∂ϕi
∂y

(
A66

∂w

∂x

∂ψ
(1)
j

∂y
+ A12

∂w

∂y

ψ
(1)
j

∂x

)]
dxdy

K32
ij =

∫
Ωe

[
∂ϕi
∂x

(
A12

∂w

∂x

∂ψ
(1)
j

∂y
+ A66

∂w

∂y

∂ψ
(1)
j

∂x

)
+

∂ϕi
∂y

(
A66

∂w

∂x

∂ψ
(1)
j

∂x
+ A22

∂w

∂y

ψ
(1)
j

∂y

)]
dxdy
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K33
ij = c2

∫
Ωe

[
H11

∂2ϕi
∂x2

∂2ϕj
∂x2

+ 2H12

(
∂2ϕi
∂x2

∂2ϕj
∂y2

+
∂2ϕi
∂y2

∂2ϕj
∂x2

)
+H22

∂2ϕi
∂y2

∂2ϕj
∂y2

+ 4H66
∂2ϕi
∂x∂y

∂2ϕj
∂x∂y

]
dxdy

+
1

2

∫
Ωe

{[
A11

(
∂w

∂x

)2

+ A66

(
∂w

∂y

)2
]
∂ϕi
∂x

∂ϕj
∂x

+

[
A66

(
∂w

∂x

)2

+ A22

(
∂w

∂y

)2
]
∂ϕi
∂y

∂ϕj
∂x

+ (A12 + A66)
∂w

∂x

∂w

∂y

(
∂ϕi
∂x

∂ϕj
∂y

+
∂ϕi
∂y

∂ϕj
∂x

)}
dxdy

+

∫
Ωe
Â44

(
∂ϕi
∂x

∂ϕj
∂x

+
∂ϕi
∂y

∂ϕj
∂y

)
dxdy

K34
ij = K43

ji =

∫
Ωe

[
−c

(
F̄11

∂2ϕi
∂x2

∂ψ
(2)
j

∂x
+ 2F̄66

∂2ϕi
∂x∂y

∂ψ
(2)
j

∂y
+ F̄12

∂2ϕi
∂y2

∂ψ
(2)
j

∂x

)

+Â44
∂ϕi
∂x

ψ
(2)
j

]
dxdy

K35
ij = K53

ji =

∫
Ωe

[
−c

(
F̄12

∂2ϕi
∂x2

∂ψ
(2)
j

∂y
+ 2F̄66

∂2ϕi
∂x∂y

∂ψ
(2)
j

∂x
+ F̄22

∂2ϕi
∂y2

∂ψ
(2)
j

∂y

)

+Â44
∂ϕi
∂y

ψ
(2)
j

]
dxdy

K44
ij =

∫
Ωe

(
D̂11

∂ψ
(2)
i

∂x

∂ψ
(2)
j

∂x
+ D̂66

∂ψ
(2)
i

∂y

∂ψ
(2)
j

∂y
+ Â44ψ

(2)
i ψ

(2)
j

)
dxdy

K45
ij = K54

ij =

∫
Ωe

(
D̂12

∂ψ
(2)
i

∂x

∂ψ
(2)
j

∂y
+ D̂66

∂ψ
(2)
i

∂y

∂ψ
(2)
j

∂x

)
dxdy

K55
ij =

∫
Ωe

(
D̂66

∂ψ
(2)
i

∂x

∂ψ
(2)
i

∂x
+ D̂22

∂ψ
(2)
i

∂y

∂ψ
(2)
i

∂y
+ Â44ψ

(2)
i ψ

(2)
j

)
dxdy (3.55)

q3
i =

∫
Ωe

pϕidxdy (3.56)

In Eq. (3.53), Fi are the generalized nodal force vectors. The general form of q3
i in

Eq. (3.56) will be presented in Sub-section 3.3.4.3.

101



3.3.3 Interface Connecting Fluid and Solid Regions

The finite element model for the coupling between the fluid and solid can be

obtained considering that the fluid and solid finite element models are coupled in the

respective force vectors of each model. The most common approach to solve such

coupled equations is to assume a solution for structure regime (or fluid regime) and

use this assumed solution as an input for solving the fluid regime (or solid regimes).

Obtained solutions can be used repeatedly as an input for solving the other regime

equations. This loop will be stopped when a desirable convergence of solutions in

both regimes is achieved. However, formulating the equations using the appropriate

displacements fields [see Eqs. (3.35), (3.39), (3.45), and (3.51)] in the evaluation of

F and q is much more direct. Following this approach, the finite element equations

for the fluid domain can be expressed as

CP = f̂ + ρfS∆̈ + Q (3.57)

where S is known as the solid-fluid coupling matrix and f̂ is a gravity force vector in

the fluid medium. Equation (3.57) is accurate for all three plate models considered

in the present study. However, it will shortly be presented that the specific form of

S is defined by the chosen plate theory model; therefore, one can describe S and f̂

as

Sij =

∫ yb

ya

∫ xb

xa

ψiχjdxdy

f̂i =

∫ yb

ya

∫ xb

xa

ρfgψidxdy (3.58)

In Eq. (3.58), χj = ϕj for the CPT and RSDT. In the case of the FSDT, χj = ψ
(1)
j .
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3.3.4 Condensing out Pressure Degrees of Freedom

Condensing out the pressure degrees of freedom seems to be impossible in the

most general case. This is due to the coupling between the fluid and structure

equations. Consequently, determining the response of one domain independently

from that of the other can not be achieved. However, our model is formulated such

that there is only one row of fluid elements above the plate. Considering the specified

pressure along the top of each fluid element (i.e., P e
5 = P e

6 = P e
7 = P e

8 = 0), it is

possible to condense out the pressure degrees of freedom in the finite element model.

Therefore, we describe the following equation for pressure in order to condense out

the additional pressure degrees of freedom:

P = C̄−1
(
f̂ + ρfS∆̈ + Q

)
(3.59)

Equation (3.59) can be used along with any plate theory to express the global finite

element equations of the system in terms of the generalized structure displacements.

3.3.4.1 Classical Plate Formulation

Condensing out pressure degree of freedom, the finite element equations for the

CPT can be expressed as


M11 0 0

0 M22 0

0 0 M33




Ü

V̈

∆̈

+


K11 K12 K13

K21 K22 K23

K31 K32 K33




U

V

∆


=


0

0

−STP

+


F1

F2

F3

 (3.60)
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Using Eq. (3.59), one can describe Eq. (3.60) as


M11 0 0

0 M22 0

0 0 M̄33




Ü

V̈

∆̈

+


K11 K12 K13

K21 K22 K23

K31 K32 K33




U

V

∆


=


0

0

−ST C̄−1
(
f̂ + Q

)
+


F1

F2

F3

 (3.61)

where the added mass is ρfS
T C̄−1S, therefore, we have

M̄33 = M33 + ρfS
T C̄−1S (3.62)

3.3.4.2 First-order Shear Deformation Formulation

Similarly, the finite element equations for the FSDT can be described as



M11 0 0 0 0

0 M22 0 0 0

0 0 M33 0 0

0 0 0 M44 0

0 0 0 0 M55





Ü

V̈

Ẅ

Φ̈x

Φ̈y



+



K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K45 K55





U

V

W

Φx

Φy


=



0

0

−STP

0

0


+



F1

F2

F3

F4

F5


(3.63)
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Using Eq. (3.59) allows Eq. (3.63) to be expressed as



M11 0 0 0 0

0 M22 0 0 0

0 0 M̄33 0 0

0 0 0 M44 0

0 0 0 0 M55





Ü

V̈

Ẅ

Φ̈x

Φ̈y



+



K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K45 K55





U

V

W

Φx

Φy


=



0

0

−ST C̄−1
(
f̂ + Q

)
0

0


+



F1

F2

F3

F4

F5


(3.64)

where

M̄33 = M33 + ρfS
T C̄−1S (3.65)
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3.3.4.3 Reddy Third-order Shear Deformation Formulation

And finally, the finite element equations for the RSDT will be



M11 0 0 0 0

0 M22 0 0 0

0 0 M33 M34 M35

0 0 M43 M44 0

0 0 M53 0 M55





Ü

V̈

∆̈

Φ̈x

Φ̈y



+



K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K45 K55





U

V

∆

Φx

Φy


=



0

0

−STP

0

0


+



F1

F2

F3

F4

F5


(3.66)
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We can use Eq. (3.59) to represent Eq. (3.63) as



M11 0 0 0 0

0 M22 0 0 0

0 0 M̄33 M34 M35

0 0 M43 M44 0

0 0 M53 0 M55





Ü

V̈

∆̈

Φ̈x

Φ̈y



+



K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K45 K55





U

V

∆

Φx

Φy


=



0

0

−ST C̄−1
(
f̂ + Q

)
0

0


+



F1

F2

F3

F4

F5


(3.67)

In Eq. (3.67), M̄33 is

M̄33 = M33 + ρfS
T C̄−1S (3.68)

3.4 Solution Methods

3.4.1 Newmark’s Scheme; Fully Discretized Equations

Using the standard global finite element assembly procedure, one can assemble

the global finite element equations into the form

M∆̈ + K∆ = F (3.69)
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The equation of motion given by Eq. (3.69) can be solved for transient response.

This is especially meaningful if the structure is placed in a vertical column of fluid

and excited by some external transient force. The fully discretized finite element

equations can be expressed incrementally using the Newmark’s scheme for numerical

time integration. The Newmark scheme leads to the following set of equations

K̂n+1∆n+1 = F̂n,n+1 (3.70)

where

K̂n+1 = Kn+1 + a3M
n+1

F̂n,n+1 = Fn+1 + Mn+1
(
a3∆

n + a4∆̇
n + a5∆̈

n
)

(3.71)

At the end of each time step, the new acceleration and velocity vectors are calculated

as

∆̈n+1 = a3

(
∆n+1 −∆n

)
− a4∆̇

n − a5∆̈
n

∆̇n+1 = ∆̇n + a2∆̈
n + a1∆̈

n+1 (3.72)

In addition, the constants aj per Eqs. (3.71) and (3.72) are defined as

a1 = α∆t, a2 = (1− α) ∆t, a3 =
1

β(∆t)2 , a4 = a3∆t, a5 =
1

γ
− 1, β =

1

2
γ

(3.73)

Therefore, we obtained a system of algebraic equations by using a time-integration

method. Now we must solve this system of nonlinear equation iteratively using

iteration methods available in literature.
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3.4.2 Newtonian Iteration Method; Tangent Matrices

The system of algebraic equations obtained in the previous sub-section includes

nonlinear terms which necessitate linearizing these equations for the incremental so-

lution at the (r + 1)st iteration. Herein, we use the Newtonian iteration method

where we have to calculate tangent stiffness matrices for the corresponding stiff-

ness matrices associated with all three plate theories. Newtonian iteration method

involves solving the following form of the equations

T̂
(
∆r

s+1

)
δ∆ = −Rr

s+1 (3.74)

where δ∆ is the incremental solution. Moreover, tangent stiffness matrices T and

residual vectors R have the following definitions

T̂
(
∆r

s+1

)
≡
[
∂R

∂∆

]r
s+1

Rr
s+1 = K̂

(
∆r
s+1

)
∆r

s+1 − F̂r
s+1 (3.75)

Therefore, the total solution will be obtained from

∆r+1
s+1 = ∆r

s+1 + δ∆ (3.76)

Using the definitions provided in Eq. (3.75), one can calculate the tangent stiffness

matrices as

Tαβij ≡
∂Rα

i

∂∆β
j

=
∂

∂∆β
j

(
5∑

γ=1

nγ∑
k=1

Kαγ
ik ∆γ

k − F
α
i

)

= Kαβ
ij +

nγ∑
k=1

∂Kαγ
ik

∂∆β
j

∆γ
k −

∂Fα
i

∂∆β
j

(3.77)
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In order to compute tangent stiffness matrices, we are interested in the stiffness

matrices which depend on the solution. Otherwise, the tangent matrix is the same

as the corresponding stiffness matrix. The only solution that appears in the stiffness

matrices is w.

It worth mentioning that the matrices K̂r
s+1, T̂r

s+1, and force vector Rr
s+1 are

updated at each iteration using the most recent solution ∆r
s+1.

3.4.2.1 CPT

For CPT, we have the same tangent stiffness definition as for the stiffness coeffi-

cient for the following submatrices

Tα1
ij = Kα1

ij , T 1α
ij = K1α

ij

Tα2
ij = Kα2

ij , T 2α
ij = K2α

ij (3.78)

Therefore, we have to calculate T 13
ij , T 23

ij , and T 33
ij . After eliminating the terms that

are independent of w, we have

T 13
ij = K13

ij +
n∑
k=1

∂K13
ik

∂wj
wk

= K13
ij +

1

2

∫
Ωe

[
∂ψi
∂x

(
A11

∂w

∂x

∂ϕj
∂x

+ A12
∂w

∂y

∂ϕj
∂y

)

+ A66
∂ψi
∂y

(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)]
dxdy
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T 23
ij = K23

ij +
n∑
k=1

∂K23
ik

∂wj
wk

= K23
ij +

1

2

∫
Ωe

[
∂ψi
∂y

(
A12

∂w

∂x

∂ϕj
∂x

+ A11
∂w

∂y

∂ϕj
∂y

)

+ A66
∂ψi
∂x

(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)]
dxdy

T 33
ij = K33

ij +
n∑
k=1

(
∂K31

ik

∂wj
uk +

∂K32
ik

∂wj
vk +

∂K33
ik

∂wj
wk

)
= K33

ij +

∫
Ωe

[
∂ϕi
∂x

(
A11

∂u

∂x

∂ϕj
∂x

+ A66
∂u

∂y

∂ϕj
∂y

)

+
∂ϕi
∂y

(
A66

∂u

∂y

∂ϕj
∂x

+ A12
∂u

∂x

∂ϕj
∂y

)]
dxdy

+

∫
Ωe

[
∂ϕi
∂x

(
A12

∂v

∂y

∂ϕj
∂x

+ A66
∂v

∂x

∂ϕj
∂y

)

+
∂ϕi
∂y

(
A66

∂v

∂x

∂ϕj
∂x

+ A11
∂v

∂y

∂ϕj
∂y

)]
dxdy

+

∫
Ωe

[(
A11

(
∂w

∂x

)2

+
A12 + A66

2

(
∂w

∂y

)2
)
∂ϕi
∂x

∂ϕj
∂x

+

(
A12 + A66

2

(
∂w

∂x

)2

+ A11

(
∂w

∂y

)2
)
∂ϕi
∂y

∂ϕj
∂y

+

(
A12 + 3A66

2

)
∂w

∂x

∂w

∂y

(
∂ϕi
∂x

∂ϕj
∂y

+
∂ϕi
∂y

∂ϕj
∂x

)]
dxdy (3.79)
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3.4.2.2 FSDT

For FSDT, we have the same tangent stiffness definition as for the stiffness coef-

ficient for the following submatrices

Tα1
ij = Kα1

ij , T 1α
ij = K1α

ij

Tα2
ij = Kα2

ij , T 2α
ij = K2α

ij

Tα4
ij = Kα4

ij , T 4α
ij = K4α

ij

Tα5
ij = Kα5

ij , T 5α
ij = K5α

ij (3.80)

Therefore, we have to calculate T 13
ij , T 23

ij , and T 33
ij . After eliminating the terms that

are independent of w, we have:

T 13
ij = K13

ij +
n∑
k=1

∂K13
ik

∂wj
wk

= K13
ij +

1

2

∫
Ωe

[
∂ψ

(1)
i

∂x

(
A11

∂w

∂x

∂ψ
(2)
j

∂x
+ A12

∂w

∂y

∂ψ
(2)
j

∂y

)

+ A66
∂ψ

(1)
i

∂y

(
∂w

∂x

∂ψ
(2)
j

∂y
+
∂w

∂y

∂ψ
(2)
j

∂x

)]
dxdy

T 23
ij = K23

ij +
n∑
k=1

∂K23
ik

∂wj
wk

= K23
ij +

1

2

∫
Ωe

[
∂ψ

(1)
i

∂y

(
A12

∂w

∂x

∂ψ
(2)
j

∂x
+ A22

∂w

∂y

∂ψ
(2)
j

∂y

)

+ A66
∂ψ

(1)
i

∂x

(
∂w

∂x

∂ψ
(2)
j

∂y
+
∂w

∂y

∂ψ
(2)
j

∂x

)]
dxdy
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T 33
ij = K33

ij +
n∑
k=1

(
∂K31

ik

∂wj
uk +

∂K32
ik

∂wj
vk +

∂K33
ik

∂wj
wk

)

= K33
ij +

∫
Ωe

[
∂ψ

(2)
i

∂x

(
A11

∂u

∂x

∂ψ
(2)
j

∂x
+ A66

∂u

∂y

∂ψ
(2)
j

∂y

)

+
∂ψ

(2)
i

∂y

(
A66

∂u

∂y

∂ψ
(2)
j

∂x
+ A12

∂u

∂x

∂ψ
(2)
j

∂y

)]
dxdy

+

∫
Ωe

[
∂ψ

(2)
i

∂x

(
A12

∂v

∂y

∂ψ
(2)
j

∂x
+ A66

∂v

∂x

∂ψ
(2)
j

∂y

)

+
∂ψ

(2)
i

∂y

(
A66

∂v

∂x

∂ψ
(2)
j

∂x
+ A11

∂v

∂y

∂ψ
(2)
j

∂y

)]
dxdy

+

∫
Ωe

[(
A11

(
∂w

∂x

)2

+
A12 + A66

2

(
∂w

∂y

)2
)
∂ψ

(2)
i

∂x

∂ψ
(2)
j

∂x

+

(
A12 + A66

2

(
∂w

∂x

)2

+ A11

(
∂w

∂y

)2
)
∂ψ

(2)
i

∂y

∂ψ
(2)
j

∂y

+

(
A12 + 3A66

2

)
∂w

∂x

∂w

∂y

(
∂ψ

(2)
i

∂x

∂ψ
(2)
j

∂y
+
∂ψ

(2)
i

∂y

∂ψ
(2)
j

∂x

)]
dxdy (3.81)

3.4.2.3 RSDT

For RSDT, we have the same tangent stiffness definition as for the stiffness coef-

ficient for the following submatrices

Tα1
ij = Kα1

ij , T 1α
ij = K1α

ij

Tα2
ij = Kα2

ij , T 2α
ij = K2α

ij

Tα4
ij = Kα4

ij , T 4α
ij = K4α

ij

Tα5
ij = Kα5

ij , T 5α
ij = K5α

ij (3.82)
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Therefore, we have to calculate T 13
ij , T 23

ij , and T 33
ij . After eliminating the terms that

are independent of w, we have:

T 13
ij = K13

ij +
n∑
k=1

∂K13
ik

∂wj
wk

= K13
ij +

1

2

∫
Ωe

[
∂ψ

(1)
i

∂x

(
A11

∂w

∂x

∂ϕj
∂x

+ A12
∂w

∂y

∂ϕj
∂y

)

+ A66
∂ψ

(1)
i

∂y

(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)]
dxdy

T 23
ij = K23

ij +
n∑
k=1

∂K23
ik

∂wj
wk

= K23
ij +

1

2

∫
Ωe

[
∂ψ

(1)
i

∂y

(
A12

∂w

∂x

∂ϕj
∂x

+ A11
∂w

∂y

∂ϕj
∂y

)

+ A66
∂ψ

(1)
i

∂x

(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)]
dxdy

T 33
ij = K33

ij +
n∑
k=1

(
∂K31

ik

∂wj
uk +

∂K32
ik

∂wj
vk +

∂K33
ik

∂wj
wk

)
= K33

ij +

∫
Ωe

[
∂ϕi
∂x

(
A11

∂u

∂x

∂ϕj
∂x

+ A66
∂u

∂y

∂ϕj
∂y

)

+
∂ϕi
∂y

(
A66

∂u

∂y

∂ϕj
∂x

+ A12
∂u

∂x

∂ϕj
∂y

)]
dxdy

+

∫
Ωe

[
∂ϕi
∂x

(
A12

∂v

∂y

∂ϕj
∂x

+ A66
∂v

∂x

∂ϕj
∂y

)

+
∂ϕi
∂y

(
A66

∂v

∂x

∂ϕj
∂x

+ A11
∂v

∂y

∂ϕj
∂y

)]
dxdy

+

∫
Ωe

[(
A11

(
∂w

∂x

)2

+
A12 + A66

2

(
∂w

∂y

)2
)
∂ϕi
∂x

∂ϕj
∂x

+

(
A12 + A66

2

(
∂w

∂x

)2

+ A11

(
∂w

∂y

)2
)
∂ϕi
∂y

∂ϕj
∂y

+

(
A12 + 3A66

2

)
∂w

∂x

∂w

∂y

(
∂ϕi
∂x

∂ϕj
∂y

+
∂ϕi
∂y

∂ϕj
∂x

)]
dxdy (3.83)
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Despite the nonlinear nature of the stiffness matrices, the tangent matrices for the

all three considered plate theories are symmetric.

3.5 Numerical Results

Numerical results are presented to investigate the effect of the fluid-structure

interaction on transient response of rectangular plates using the proposed models.

In the numerical calculations, we used the following parameters:

E = 200 GPa, ν = 0.25, ρs = 5000 kg/m3

Lx = Ly = L = 1 m, hz = 0.2 m, β =
ρf
ρs
, f = 105 N/m2

and we consider H and ρf to be varied for different cases. The transverse deflection

of the plate is presented in the following nondimensional form

w̄ = 100w (0, 0, t)
Eh3

fL4
(3.84)

Here, we consider two boundary conditions for the rectangular plate; a plate with all

edges clamped (CCCC) and a plate with all edges simply supported (SSSS). Numeri-

cal simulations are performed for three different fluid densities; β = 0 (corresponding

to the case where the plate is not in contact with fluid), β = 0.04, and β = 0.08.

For each β value, two different plate thickness ratios, L/H = 10 and L/H = 100,

are considered. In all cases, the mesh used is 20× 20 elements. This mesh is arrived

after a number of convergence studies to make sure that the results are independent

of mesh.

The variation of the nondimensionalized transverse deflection for different β val-

ues and L/H ratios are summarized in Table 3.1 for CCCC, and in Table 3.2 for

SSSS. The transient behavior of the plate for the aforementioned cases followed the
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trend expected from previous studies; it is influenced by the immersion depth hz

and fluid density ρf . For instance, increasing hz (or correspondingly increasing ρf )

increases the added mass and consequently increases or decreases the transverse

deflection depending on the direction of the external mechanical load applied. More-

over, changing L/H ratio results in different variation of transverse deflection to the

presence of the fluid medium.

From the results in Tables 3.1 and 3.2, it can be concluded that the effect of the

added mass is considerable for thin plate limit. Furthermore, increasing β (or hz)

will decrease transverse deflection in our simulations, since both external load and

fluid interactions are applied in the opposite directions. For higher β values (more

dense fluids), the transverse deflection will be less affected if one changes the fluid

density ρf .

The other point worth mentioning is that the results for higher L/H ratios con-

verge for all three plate theories; i.e. in the thin plate limits, we can use any of three

plate theories. However, for the lower L/H ratios, since the normality assumption

is not valid, CPT does not converge to the final solution.

Figures 3.2 and 3.5 represents the transverse deflection of a plate in contact with

an inviscid incompressible fluid medium for CCCC and SSSS, respectivley. These

plots are provided for L/H = 10 and β = 0.08 based on the RSDT. For clamped

boundary condition, Figs. 3.3 and 3.4 compare nondimensional transverse deflection

of a plate in an inviscid incompressible fluid medium versus time for L/H = 10

and L/H = 100, respectively. The effect of the fluid presence is to reduce the

amplitude and increase the period of the transverse deflection and this effect is more

considerable in the thin plate limit. Corresponding results are depicted in Figs. 3.6

and 3.7 for a plate with simply supported boundary condition.
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Table 3.1: Comparison of nondimonsional transverse deflection of a CCCC plate in
contact with a fluid medium using CPT, FSDT and RSDT with 20× 20 elements.

L/H β CPT FSDT RSDT

10
0.00
0.04
0.08

1.3953
1.3856
1.3739

1.5428
1.5346
1.5291

1.5412
1.5311
1.5273

100
0.00
0.04
0.08

1.3955
1.3864
1.3752

1.3987
1.3897
1.3779

1.3964
1.3886
1.3771
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Figure 3.2: Transverse deflection of a CCCC plate in an inviscid incompressible fluid
medium for L/H = 100 and β = 0.08.
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Figure 3.3: Nondimensional transverse deflection of a CCCC plate in an inviscid
incompressible fluid medium versus time for L/H = 10.

Table 3.2: Comparison of nondimonsional transverse deflection of a SSSS plate in
contact with a fluid medium using CPT, FSDT and RSDT with 20× 20 elements.

L/H β CPT FSDT RSDT

10
0.00
0.04
0.08

4.5600
4.5545
4.5496

4.7826
4.7745
4.7678

4.7805
4.7718
4.7661

100
0.00
0.04
0.08

4.5603
4.5548
4.5497

4.5628
4.5561
4.5523

4.5615
4.5553
4.5514
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Figure 3.4: Nondimensional transverse deflection of a CCCC plate in an inviscid
incompressible fluid medium versus time for L/H = 100.

119



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

Figure 3.5: Transverse deflection of a SSSS plate in an inviscid incompressible fluid
medium for L/H = 100 and β = 0.08.
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Figure 3.6: Nondimensional transverse deflection of a CCCC plate in an inviscid
incompressible fluid medium versus time for L/H = 10.
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Figure 3.7: Nondimensional transverse deflection of a CCCC plate in an inviscid
incompressible fluid medium versus time for L/H = 100.
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3.6 Concluding Remarks

In this section, we studied the transient analysis of the plate fluid-structure in-

teraction problem considering geometry nonlinearity. In our study, we considered

the classical, first-order and the Reddy third-order plate theories, and an compre-

hensive study was conducted independent of the plate geometry. The effect of fluid

medium was introduced as an added mass through the mass matrix of the system

of equations. The effect of various parameters, such as fluid density and geometric

dimensions, on the transverse deflection of the CCCC and SSSS plate structure were

investigated through numerical simulations. The obtained numerical results are in

good agreement with the results available in literature.
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4. BLOOD FLOW THROUGH LARGE ARTERIES

4.1 Introduction

In order to understand the behavior of human vascular system, detailed knowl-

edge of the response of the blood vessels and blood flow is of significant importance.

Having a deep insight of this response provides getting the idea on connection be-

tween blood flow and the development of diseases. It also may help improving medical

device design such as heart valves, artificial heart, and so on. The problem of blood

flow through human arteries is one of the representative applications of the flow of

a viscous incompressible fluid through a tube. Corresponding to all FSI problems,

deformability of the blood vessel influences velocity and pressure of blood in arteries

and vice versa. Conducting a study on this problem requires developing a model

and simulating the blood flow which describes this influence. In general, the blood

flow in human arteries is too sophisticated to be solved analytically, however, several

simplifications can be made in order to ease the calculations. For instance, although

arterial walls are composed of anisotropic and heterogeneous layers with completely

different biomechanical properties, there are several methods which describe them

with average-value properties so that arterial walls can be considered as a homo-

geneous layer with nonlinear elastic behavior. Moreover, although this problem is

a complicated 3D problem, simplifying it to the 1D problem provides a reasonable

insight into the most general case of blood flow. In the analysis of blood flow, it

is common to treat the blood as a single homogeneous Newtonian fluid rather than

considering two-phase fluid with varying properties. In other word, one can approx-

imate blood properties by averaging properties determined from measurements in

whole blood. Dynamics of the blood flow is basically governed by the continuity and
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conservation of linear momentum principles. Using these principles does not get the

idea of how the constraint of blood vessels may affect the flow. Therefore, another

constitutive equation is required to show this interaction.

The approach that we are studying in this section is based on the fact that the

blood flow is generally a three dimensional motion. Then considering the asymmet-

ric nature of the problem along with the appropriate boundary conditions, we can

simplify the governing equations to the one dimensional problem. Moreover, we as-

sume the pressure to be constant over the cross-sectional area at any distance x form

the origin of the coordinate system. In addition, the impermeability of the vessel is

assumed. We will discuss more about the assumptions throughout the section.

Herein, we develop a finite element approach in order to solve transient FSI

problems involving moving boundaries; the problems that arise in modeling blood

flow through arteries. Depending on the characteristics of the blood flow and arteries,

several formulations can be derived. Regardless of the formulation categories, since

FSI problems are dealing with the strong coupling between fluid and solid behavior,

solving such problems requires numerical methods. In case of nonlinearity, the least-

squares finite element formulation has the capability to solve these problems using a

single variational approach. Fluid flow in our model, is derived by two-dimensional

incompressible Navier-Stokes equations, while we take the advantage of axisymmetric

flow for building the linear elastic model. The structure and fluid medium are fully

coupled by means of describing fluid pressure as a function of artery cross-sectional

area which makes sense in explaining the blood flow through arteries problem.
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4.2 Mathematical Models of Blood Flow

4.2.1 Blood Flow

In order to study the blood flow, several models has been used based on different

types of simplifications. The most complicated one belongs to the 3D fluid-structure

interaction which requires the accurate information about the vessel geometry and

material properties of several branches. The blood flow mathematical formulation is

too complex and, therefore, a numerical model is needed for solving the governing

equations. In analyzing blood flow, an Eulerian description of blood fluid motion

will be used in the field equations (fluids elements are assumed to be fixed in space).

The following types of flow can be considered in analyzing the blood flow:

1. Laminar or turbulent

The blood flow is generally laminar except under the disease condition and

in large arteries at branch points which is turbulent. When we are dealing

with laminar flow, i.e. the Reynolds number is very low, the inertial terms is

negligible, therefore, we do not have any nonlinear terms. The low Reynolds

number corresponds to high velocity or low viscosity flow.

2. Newtonian or non-Newtonian

In analyzing the blood flow, it is important to have a good understanding of

blood viscosity. The main factors that affect blood viscosity are plasma viscos-

ity, volume fraction of particles which red blood cells (RBCs) are their main

constitutive, mechanical properties of RBCs, i.e. their deformability and ag-

gregation, and also temperature. Viscosity of blood, and in general any fluids,

decreases with increasing temperature. Among all of the mentioned factors,

the volume fraction of RBCs has the most significant affect on blood viscosity.
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The flow can obey linear or nonlinear constitutive behavior. In latter case, the

viscosity depends on the shear rate and there exist several models formulating

this dependency, such as the power-law fluid relation. The point worth men-

tioning is that blood viscosity strongly depends on the shear rate. The higher

the shear rate is, the less viscous the blood becomes. Because of this property

of blood, it can be considered as a shear-thinning or pseudoplastic fluid. For

this reason, the blood behaves as a Newtonian fluid at high shear rate (∂u
∂y

). At

lower shear rate the RBCs aggregate and the viscosity will be increased.

For those categories of blood flows that are classifed into shear-thinning (non-

Newtonian) fluids, their behavior can be demonstrated by several theories, e.g.

Cassons equation which describes the nonlinear relation between shear stress

and strain and it is valid for the shear rates above 1s−1. Our research here

is focused on large vessels and veins whose characteristic dimensions is not

comparable with the characteristic size of the blood cells, and, therefore, blood

behaves as an isotropic, Newtonian and incompressible fluids. Otherwise it

behaves as a non-Newtonian one.

3. Steady or unsteady

The unsteady blood flow is called the pulsatile blood flow. In this kind of flow,

the flow velocity and wall shear stress during the pulse cycle are of great im-

portance. And the most complex part of study goes to the study of branching

regions and sharp curvature parts of the vessel. Flow separation, flow recircu-

lation, and low wall shear stress are observed in this kind of flow. Womersley

parameter used for unsteady flow (α = R
√

ωρ
µ

with ω being the angular ve-

locity of a given harmonic) is corresponding to Reynolds number for steady

flow (Re = ρuD
µ

). For α < 10 the flow is assumed to be steady. The term

127



viscous resistance is introduced through Poiseuille law which is valid for fully

developed (there is no variation in the direction of the flow for velocity, ∂u
∂x

= 0)

and steady flow (∂u
∂t

= 0), keeping in mind that for most of the arteries, the

flow is considered to be laminar.

4.2.2 Arterial Walls

In order to simulate the blood flow in arteries, we need to model the arterial

wall which seems to be sophisticated. Arterial walls are composed of anisotropic

and heterogeneous layers with completely different biomechanical properties. Tunica

Intima, Tunica Media, and Tunica Adventitia are the main three layers of the ar-

teries. However, there are several methods which describe them with average-value

properties so that arterial walls can be considered as a homogeneous layer with non-

linear elastic behavior. So we need to make some assumptions in order to make the

calculations possible. One of the simple assumptions is converting the 3D problem to

2D problem by eliminating the variation in the third dimension. In other words, we

can consider the material with small deformation and small deformation gradient as

linearly elastic material. Since the thickness of the blood vessel wall is negligible in

comparison to two other dimensions, we can treat it as a 2D problem. Furthermore

we can reduce the mentioned model to a 1D model considering the axial symmetry

nature of the applied loading of the blood flow to the vessel walls. The other useful

assumption is to use the cylindrical shell models due to cylindrical geometry of an

artery section. And if we have the possibility to neglect the bending rigidity of the

arteries, we can use the membrane models instead.

According to the above discussions, it is a good idea to investigate the blood flow

characteristics in large arteries with simple geometry. Therefore, we are dealing with

the unsteady laminar flow of a Newtonian incompressible viscous fluid through a
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longitudinally tethered vessel without any branch. The most important assumption

in our study of blood flow in arteries is that there is no flow through any solid surface,

i.e. the impermeability property of the vessel should be held.

4.3 Theoretical Formulations

One dimensional models provide a simplified description of the fluid flow in ar-

teries and its interaction with the vessel wall displacement. Although being inappro-

priate to provide details on the flow field (such as recirculation or oscillating shear

stresses), they can however effectively describe the propagation phenomena due to

the wall compliance. The mass conservation and the linear momentum conservation

equation are the equations governing the blood flow. Considering the flow to be

laminar, the only velocity exist in the axial direction, i.e. the flow is such that there

are some laminates moving parallel to each other.

The following assumptions have been made during our investigations:

• The arterial curvature is neglected, i.e. it is assumed to be a straight tube with

circular cross-sectional area.

• Wall inertia and wall viscosity are assumed to be small, so we consider thin,

homogeneous, incompressible and elastic arterial walls.

• The structural arterial properties are constant over a cross-sectional area.

• Since we consider reasonably large arteries, the blood is considered as an incom-

pressible and Newtonian fluid, i.e. the density ρ and viscosity µ are constant

variables.

• The flow is considered to be laminar, i.e. the Reynolds number is lower than

2000 in arteries.
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• The effect of red blood cells are negligible in large arteries unless the shear rate

is very low.

• The no-slip boundary condition near the arterial wall is assumed.

In order to predict the blood flow and corresponding pressure profile in large

arteries, we start with the continuity equation and linear momentum equation which

ensure the conservation of mass and momentum, respectively.

4.3.1 Continuity Equation

The continuity equation for the incompressible flow takes the following form [52]

∇.u = 0 (4.1)

where u = u (ur, uθ, ux) is the velocity vector with the component in radial, tan-

gential and axial direction, respectively. An appropriate model that can describe

blood flow in large vessels is achieved by assuming the vessel is an elastic cylindrical

structure. So the above-mentioned equation is valid on a cylindrical domain which

changes in time because of the flow induced wall movement. Therefore, for cylindrical

coordinate, Eq. (4.1) can be expressed as

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂ux
∂x

= 0 (4.2)

Considering the blood flow in arteries being an axisymmetric flow, we have no de-

pendency on θ. Therefore, one can write Eq. (4.2) as

1

r

∂

∂r
(rur) +

∂ux
∂x

= 0 (4.3)
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where ur = ur (r, x, t) and ux = ux (r, x, t). Assuming that the vessel undergoes

radial motion only, i.e. the vessels are longitudinally tethered (Fig. 4.1), we have

R = R (x, t) and, hence, the vessel cross-sectional area is A = A (x, t) = πR2 (x, t).

Integrating Eq. (4.3) over the cross-sectional area and taking the advantage of

Figure 4.1: Geometry of longitudinally tethered blood vessel

Leibniz integral rule, we have

2π

∫ R

0

[
1

r

∂

∂r
(rur) +

∂ux
∂x

]
rdr

= 2π
∂

∂x

∫ R

0

uxrdr − 2π
∂R

∂x
[rux]R + 2π [rur]R = 0 (4.4)

where [ux]R = 0 due to no-slip boundary condition. Moreover, since the blood vessel

undergoes radial motion only, i.e. [ur]R = ∂R
∂t

, the last term of Eq. (4.4) takes the

following form

2π [rur]R = 2πR
∂R

∂t
=
∂A

∂t
(4.5)
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Keeping in mind that the volume flow rate is defined as volume change per time, we

have

Q = 2π

∫ R

0

uxrdr (4.6)

So the continuity equation for the one-dimensional flow at hand will be described as

∂Q

∂x
+
∂A

∂t
= 0 (4.7)

4.3.2 Linear Momentum Equation

The linear momentum equation can be defined as

∂u

∂t
+ (u.∇) u +

1

ρ
∇.P =

µ

ρ
∇2u (4.8)

where for the axisymmetric one-dimesional flow, the linear momentum equation con-

sists of only one equation in the direction of flow, which takes the form

ρ
∂ux
∂t

+ ρux
∂ux
∂x

+ ρur
∂ux
∂r

+
∂P

∂x
= µ

[
∂2ux
∂x2

+
1

r

∂

∂r

(
r
∂ux
∂r

)]
(4.9)

where ρ and µ are fluid density and viscosity, respectively. Since blood vessel is

generally long compared to its radius, the longitudinal viscous term in small in

comparison with the radial viscous term, and therefore, we neglect the first term in

the right side of Eq. (4.9). Also for modeling the blood flow through large arteries,

forces acting on the fluid are due to the pressure and viscosity. Integrating Eq. (4.9)
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over the cross-sectional area results in:

2πρ

∫ R

o

∂ux
∂t

rdr + 2πρ

∫ R

0

(
ux
∂ux
∂x

+ ur
∂ux
∂r

)
rdr + A

∂P

∂x
= 2πµ

[
r
∂ux
∂r

]
R

(4.10)

using the same procedure as for the continuity equation, we have

∂

∂t

(
2π

∫ R

0

uxrdr

)
− 2π

∂R

∂t
[rux]R

= 2π

∫ R

0

(
rux

∂ux
∂x
− ux

∂ (rur)

∂r

)
dr +

A

ρ

∂P

∂x
= 2π

µ

ρ

[
r
∂ux
∂r

]
R

(4.11)

Since we can consider flat velocity profile for the blood flow in large artery region

except for the boundary layer where the velocity profile should satisfy the no-slip

condition at the arterial walls, the one-dimensional linear moment equation can be

described as:

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+
A

ρ

∂P

∂x
= −2πµR

δ

Q

A
(4.12)

where δ is the overall thickness of the boundary layer. Lighthill [53] estimated the

value of δ to be 0.1 cm for blood flow in large arteries. Having continuity and

linear momentum conservation equation, there exist a set of two equations and three

unknowns; Q, A, and P . Therefore, the third equation needed to solve for these

three unknown is the relation between cross-sectional area and pressure, i.e. the FSI

issue.

4.3.3 Pressure-Area Equation

So far, we have two differential partial equations which are presented as Eqs. (4.7)

and (4.12) with three primary variables Q, A, and P . Therefore, one more equation is

required so that the system of equations can be solved. Since the obtained equations
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are the equations governing the fluid domain, it seems that third equation may relate

cross-sectional area with pressure, therefore, it may describe the FSI nature of the

problem at hand.

Vessel walls are made of anisotropic and viscoelastic material and are not perfectly

cylindrical. Therefore, the pressure is not only the function of area, but also the

function of its derivative. However, since the effect of area derivative is negligible

in comparison to area, we ignored the functionality of pressure to area derivatives.

There exists several pressure-area relations used in the literature. Among all of

proposed model; i.e. the linear elastic, nonlinear elastic, viscoelastic and so on, the

viscoelastic models are the most complete and most complicated as well. If we ignore

the effect of wall viscosity, which is a reasonable assumption, we can use nonlinear

elastic relation. So the model proposed by Olufsen [54] will be considered

P = P0 + β
(√

A−
√
A0

)
(4.13)

where P0 is the pressure exerting form surrounding tissues, and A0 is the cross-

sectional area when the only pressure is P0. In Eq. (4.13), β is the parameter

describes the material properties of the elastic blood vessel.

β =

√
πhE

A0 (1− ν2)
(4.14)

In this equation, h is the vessel thickness, E is the Youngs modulus of elasticity, and ν

is the Poissons ratio which is considered to be 0.5 since the vessel walls are assumed to

be incompressible. This set of three nonlinear equations and three unknowns along

with appropriate boundary and initial conditions can be solved to yield values of

cross-sectional area, volume flow rate, and pressure as functions of time and arterial
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position x.

4.3.4 Least-Squares Formulations

The least-squares approach has been a useful method for the approximate solution

of first-order systems of partial differential equations. A least-squares functional

can be set up by summing up the squares of the residuals of all partial differential

equations which can be stated as

J (Q,A, P ) = ‖E1‖2
0 + ‖E2‖2

0 + ‖E3‖2
0 (4.15)

which in the integral form can be written as follows

J (Q,A, P ) =

∫
Ω

|E1|2dΩ +

∫
Ω

|E2|2dΩ +

∫
Ω

|E3|2dΩ (4.16)

Substituting E1, E2 and E3 form Eqs. (4.7), (4.12) and (4.13) into Eqs. (4.15) and

(4.16), we have

J (Q,A, P ) =

∥∥∥∥∂Q∂x +
∂A

∂t

∥∥∥∥2

0

+

∥∥∥∥∂Q∂t +
∂

∂x

(
Q2

A

)
+
A

ρ

∂P

∂x
+

2
√
πµ

δ

Q√
A

∥∥∥∥2

0

+
∥∥∥P − P0 − β

(√
A−
√
A0

)∥∥∥2

0

=

∫
Ω

∣∣∣∣∂Q∂x +
∂A

∂t

∣∣∣∣2dΩ +

∫
Ω

∣∣∣∣∂Q∂t +
∂

∂x

(
Q2

A

)
+
A

ρ

∂P

∂x
+

2
√
πµ

δ

Q√
A

∣∣∣∣2dΩ

+

∫
Ω

∣∣∣P − P0 − β
(√

A−
√
A0

)∣∣∣2dΩ (4.17)

Keeping in mind that the above-mentioned functional includes the products of at

most first derivatives. Therefore, the least-squares principle can be presented as:

Find (Q,A, P ) which minimizes J over an appropriate class of V . Here the

135



function class V consists of H1 (Ω) flux rate, cross-sectional area and pressure field,

constrained by boundary conditions. Minimization of J requires the following equa-

tion in the integral form

δJ =
∂J
∂∆j

= 2

∫
Ω

(
Ei
∂Ei
∂∆j

)
dΩ = 2

∫
Ω

(Ei.δEij) dΩ = 0 (4.18)

which ∆j is the solution vector (j = Q,P, andA), Ei are the ith equations, while δEij

are their first variation with respect to the dependent variables. Therefore, we are

seeking the solution vector ∆ which satisfies Eq. (4.18). With the specification of

problem at hand, the first governing equation and its first derivative with respect to

three primary variables Q, A, and P are as follows

E1 :
∂Q

∂x
+
∂A

∂t
= 0

δE1Q :
∂δQ

∂x

δE1A :
∂δA

∂t

δE1P : 0

The second governing equation and its first derivative with respect to three primary
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variables Q, A, and P can be describes as

E2 :
∂Q

∂t
+

∂

∂x

(
Q2

A

)
+
A

ρ

∂P

∂x
+

2
√
πµ

δ

Q√
A

= 0

=
∂Q

∂t
+

2Q

A

∂Q

∂x
− Q2

A2

∂A

∂x
+
A

ρ

∂P

∂x
+

2
√
πµ

δ

Q√
A

= 0

δE2Q :
∂δQ

∂t
+

2

A

∂Q

∂x
δQ+

2Q

A

∂δQ

∂x
− 2Q

A2

∂A

∂x
δQ+

2
√
πµ

δ
√
A
δQ

δE2A : −2Q

A2

∂Q

∂x
δA+

2Q2

A3

∂A

∂x
δA− Q2

A2

∂δA

∂x

+
1

ρ

∂P

∂x
δA− 2

√
πµQ

A
√
A

δA

δE2P :
A

ρ

∂δP

∂x

And finally, the third governing equation and its first derivative with respect to three

primary variables Q, A, and P are

E3 : P − P0 − β
(√

A−
√
A0

)
= 0

δE3Q : 0

δE3A :
βδA

2
√
A

δE3P : δP

As the above equations indicated, δJ is a nonlinear function of ∆j which necessitate

using iterative method in order to solve the least-squares formulation.

4.4 Finite Element Formulations

Since we can treat variable t as a single variable in the finite element approxima-

tion, we assume the following interpolating of the flow rate Q, cross-sectional area
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A, and pressure P over each element

Q (x, t) =
n∑
j=1

Qjψ
(1)
j (x, t)

A (x, t) =
n∑
j=1

Ajψ
(2)
j (x, t)

P (x, t) =
n∑
j=1

Pjψ
(3)
j (x, t) (4.19)

where ψ
(α)
j (α = 1, 2, 3) are Lagrange family interpolation functions, while Qj, Aj,

and Pj are the nodal values. In other word, we consider t as the second coordinate.

This assumption converts the time-dependent 1D problem to the steady state 2D

problem. Therefore, for the present study, we utilize two dimensional linear rectan-

gular elements in x and t directions. Generally, it is not necessary to use the same

degree of interpolation for Q, A, and P , however, we consider the same interpolation

function for all of them. Substituting the approximations (4.19) in the obtained

least-squares formulations Eq. (4.18), we have the following finite element model in

the matrix form 
K11 K12 K13

K21 K22 K23

K31 K32 K33




Q

A

P

 =


F1

F2

F3

 (4.20)
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where the nonzero components of the stiffness matrices Kαβ and force vectors Fα

defined as

K11
ij =

∫
Ωe

[
∂ψi
∂x

∂ψj
∂x

+

(
∂ψi
∂t

+
2

A

∂Q

∂x
ψi +

2Q

A

∂ψi
∂x
− 2Q

A2

∂A

∂x
ψi +

α√
A
ψi

)
(
∂ψj
∂t

+
2Q

A

∂ψj
∂x

+
α√
A
ψj

)]
dxdt

K12
ij =

∫
Ωe

[
∂ψi
∂x

∂ψj
∂t

+

(
∂ψi
∂t

+
2

A

∂Q

∂x
ψi +

2Q

A

∂ψi
∂x
− 2Q

A2

∂A

∂x
ψi +

α√
A
ψi

)
(
−Q

2

A2

∂ψj
∂x

)]
dxdt

K13
ij =

∫
Ωe

(
∂ψi
∂t

+
2

A

∂Q

∂x
ψi +

2Q

A

∂ψi
∂x
− 2Q

A2

∂A

∂x
ψi +

α√
A
ψi

)(
A

ρ

∂ψj
∂x

)
dxdt

K21
ij =

∫
Ωe

[
∂ψi
∂t

∂ψj
∂x

+

(
−2Q

A2

∂Q

∂x
ψi +

2Q2

A3

∂A

∂x
ψi −

Q2

A2

∂ψi
∂x

+
1

ρ

∂P

∂x
ψi −

αQ

2A
√
A
ψi

)
(
∂ψj
∂t

+
2Q

A

∂ψj
∂x

+
α√
A
ψj

)]
dxdt

K22
ij =

∫
Ωe

[
∂ψi
∂t

∂ψj
∂t

+

(
−2Q

A2

∂Q

∂x
ψi +

2Q2

A3

∂A

∂x
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Q2

A2

∂ψi
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+
1

ρ

∂P

∂x
ψi −

αQ

2A
√
A
ψi

)
(
−Q

2

A2

∂ψj
∂x

)]
dxdt

K23
ij =

∫
Ωe

[(
−2Q

A2

∂Q

∂x
ψi +

2Q2

A3

∂A

∂x
ψi −

Q2

A2

∂ψi
∂x

+
1

ρ

∂P

∂x
ψi −

αQ

2A
√
A
ψi

)(
A

ρ

∂ψj
∂x

)
− β√

A
ψiψj

]
dxdt

K31
ij =

∫
Ωe

(
A

ρ

∂ψi
∂x

)(
∂ψj
∂t

+
2Q

A

∂ψj
∂x

+
α√
A
ψj

)
dxdt

K32
ij =

∫
Ωe

−Q2

Aρ

∂ψi
∂x

∂ψj
∂x

dxdt

K33
ij =

∫
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(
A2

ρ2

∂ψi
∂x

∂ψj
∂x

+ ψiψj
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dxdt (4.21)
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F 2
i =

∫
Ωe
− β

2
√
A

[
P0 + β

(√
A−

√
A0

)]
ψidxdt

F 3
i =

∫
Ωe

[
P0 + β

(√
A−

√
A0

)]
ψidxdt (4.22)

where α is defined as 2
√
πµ
δ

. Since the above matrices and vectors are nonlinear

functions of primary variables Q, A, P , and their first derivatives, it requires an

initial guess in ordered to be solved numerically.

4.5 Numerical Results

The following parameters are used in the 1-D blood flow problem:

E = 1 MPa, ν = 0.5, ρ = 1056 kg/m3, µ = 3.5× 10−3 Pa.s

Rt = 0.5 cm, Rb = 0.7 cm, δ = 0.05 cm, L = 20 cm, h = 0.1 cm

P0 = 0.012 MPa

Moreover, for numerical simulation, we need appropriate boundary conditions. One

of the boundary conditions is flow rate Q at the inlet of the blood vessel. This data

can be specified using a magnetic resonance measurement of the flow in arteries.

Since our main concern here is to develop a formulation, we extracted this data from

one of the studies in the literature ([54]). Figure 4.2 represents the initial flow rate

at the inlet of artery. Other boundary condition can be considered for the cross-

sectional area A. According to Fig. 4.1, we can calculate A at t = 0 using the

following equation which can be obtained easily based on the geometry.

A =

(
L− x
L

)
At +

(x
L

)
Ab (4.23)
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Figure 4.2: The initial flow rate at the inlet of artery (Extracted from [54])

And finally the prescribed boundary condition for P at t = 0 can be obtained based

on Eq. (4.13) by setting A = A0, i.e. P = P0 at t = 0.

Solving obtained finite element model of Eq. (4.20) for the prescribed boundary

conditions, Figs. 4.3 and 4.4 represent the variation of cross-sectional area and

pressure along the blood vessel at t = 1.5 s, respectively. It is evident that there

exists pressure drop through the arteries. Similarly, Figs. 4.5 and 4.6 indicate the

result for the variation of cross-sectional area and pressure at a location of x = L/2

for a time interval of 1 second, respectively. It can be observed that there is an

increase in pressure as the flow rate increases, and for the case where the flow rate

is decreased, we can see the pressure drop. Comparing the obtained results with the

results available in literature validates the efficiency of the proposed finite element

model.

Figure 4.7 shows the linear relation between pressure and cross-sectional area

at x = L
2
. It indicates that although we considered a nonlinear elastic model as a
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constitutive equation describing P as a function of A, variation of P with respect

to A at a specific location in arteries is linear. This linearity can be interpreted

due to the small variation of cross-sectional area at certain location. However, the

assumption of linearity is not valid along the artery, as Fig. 4.8 does not represent

linear relation. The obtained nonlinearity is due to the fact that the variables in the

formulation which affect the dependency.
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Figure 4.3: The cross-sectional area along the artery at t = 1.5 s

4.6 Concluding Remarks

A finite element model of the fluid-structure interaction of blood flow through

large arteries was developed. The problem contains large nonlinearity that makes

it quite impossible to solve it analytically. Since the obtained system of equations

contains primary variables and their first derivatives, a least-squares formulation is

adopted to construct the finite element model. Several assumptions were made in
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Figure 4.4: The pressure along the artery at t = 1.5 s
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Figure 4.5: The artery cross-sectional area at x = L
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versus time
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versus time
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2
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Figure 4.8: Variation of artery pressure through the artery versus cross-sectional area
at t = 1.5 s

order to simplify the problem. Even though blood flow through large arteries is

treated as a 1D problem, a good insight of the blood flow behavior is obtained. Such

understanding of the blood flow characteristics by considering FSI can be used to

improve medical care.
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5. CONCLUSIONS

This dissertation proposed finite element formulations to study the dynamics

of Fluid-Structure Interaction (FSI) systems with applications to a wide range of

engineering and science problems including blood flow through large arteries.

In Section 2, we developed a finite element model characterizing the free vibra-

tion of elastic beams and plates in the presence of an inviscid fluid medium. We

introduced an “added mass” phenomena in our formulations in order to investigate

the effect of the fluid pressure on the natural frequencies and modeshapes of the

solid structure. Through numerical simulations, we studied the effect of various pa-

rameters, such as fluid density and structure thickness, on the structure’s modal

response. In order to validate our method, we used several theories in the literature

for structural domain. In our analysis throughout this section, we assumed small de-

flections and rotations. The numerical results indicate that the presence of fluid has

significant effect on the dynamic behavior of the structure. Generally, FSI decreases

the corresponding natural frequencies. For the beam problems, EBT and RBT con-

verged to final values with fewer number of elements rather than TBT, while for the

plate structures, CPT and RSDT showed similar trend compared to FSDT. Further-

more, for the thin structure limit, all of the theories are in good agreement with each

other, however, for the thick structure limit, EBT and CPT, as expected, converge

to different final values because they do not take the shearing effect into the account.

Finally, by increasing the length-to-height ratio, geometrically translated to making

the structure thinner, the effect of the fluid medium on the free vibration becomes

more considerable.

In Section 3, we extended the formulation developed in Section 2 for the plate
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structures to a nonlinear case, by assuming small deflections and moderate rotations

for the structural domain, to study the transient response of the structure. As a

result, our finite element formulation embraces nonlinear terms which necessitates

the linearization of the equations through an iteration method. In our numerical

examples, we used the Newtonian iteration method calculating the tangent matrices

and residual vectors. Considering all the plate theories, namely CPT, FSDT, and

RSDT, we found that the FSI affects the transverse deflection of the plate. Further-

more, CPT and RSDT converged to the final solution with fewer number of elements

compared to FSDT. For the thin plate limit, all theories agree with each other, but

for the thick plate limit, CPT, as anticipated, does not converge to the final solution

as it does not consider the shearing effect. Similar to the free vibration case, making

the structure thinner, the fluid medium effect on the transverse deflection of the

structure is proved to be more significant.

Eventually, in Section 4, a finite element formulation was presented for solving an

unsteady FSI problem involving moving boundaries which has important applications

to the modeling of blood flow through large arteries. The governing equations for the

blood flow domain are the well-known Navier-Stokes equations including nonlinear

terms recommending the use of iteration methods for linearization purposes. Since

the obtained equations have only first derivative terms, a least-squares approach is

employed. Our numerical simulations show consistency to the results available in

the literature. We made a set of reasonable assumptions to simplify the governing

equations, for instance, considering the blood flow as a one-dimensional fluid flow.

However, our results revealed a deep insight into the blood flow behavior even un-

der such assumptions. The proposed approach can be readily extended to higher

dimensional geometries.

147



REFERENCES

[1] R. Shabani, H. Hatami, F.G. Golzar, S. Tariverdilo, and G. Rezazadeh, Coupled

vibration of a cantilever micro-beam submerged in a bounded incompressible fluid

domain. Acta Mechanica, 224(4): pp. 841–850, 2013.

[2] A.T. Jones, Vibration of beams immersed in a liquid. Experimental Mechanics,

10(2): pp. 84–88, 1970.

[3] M. Aureli, and M. Porfiri, Low frequency and large amplitude oscillations of

cantilevers in viscous fluids. Applied Physics Letters, 96(16): pp. 164102, 2010.

[4] D. Sedlar, Z. Lozina, and D. Vucina, Experimental investigation of the added

mass of the cantilever beam partially submerged in water. Tehnicki Vjesnik-

Technical Gazette, 18(4): pp. 589–594, 2011.

[5] J. Lee, and W.W. Schultz, Eigenvalue analysis of Timoshenko beams and ax-

isymmetric Mindlin plates by the pseudospectral method. Journal of Sound and

Vibration, 269(3-5): pp. 609–621, 2004.

[6] H. Lamb, On the vibrations of an elastic plate in contact with water. Proceedings

of the Royal Society of London Series A, 98(690): pp. 205–216, 1920.

[7] J.H. Powell, On the frequency of vibration of circular diaphragms. Proceedings of

the Physical Society of London, 35: pp. 170–182, 1923.

[8] J. H. Powell and J. H. T. Roberts, On the frequency of vibration of circular

diaphragms, Proceedings of the Physical Society of London, 35: pp. 170–182,

1923.

148



[9] G. Muthuveerappan, N. Ganesan, and M.A. Veluswami, Vibration of a cantilever

plate immersed in water. Journal of Sound and Vibration, 63(3): pp. 385–391,

1979.

[10] D.D.K. Lindholm, W.H. Chu, Elastic vibration characteristics of cantilever

plates in water. J. Ship Res., 9(1): pp. 11–22, 1965.

[11] D. Zhou, and Y.K. Cheung, Vibration of vertical rectangular plate in contact

with water on one side. Earthquake Engineering and Structural Dynamics, 29(5):

pp. 693–710, 2000.

[12] A.L. Facci, and M. Porfiri, Analysis of three-dimensional effects in oscillating

cantilevers immersed in viscous fluids. Journal of Fluids and Structures, 38: pp.

205–222, 2013.

[13] K.M. Liew, K.C. Hung, and M.K Lim, Three-dimensional vibration of rect-

angular plates: effects of thickness and edge constraints, Journal of Sound and

Vibration, 182(5): pp. 709–727, 1995.

[14] A.J.M. Ferreira, R.C. Batra, C.M.C.Roque, L.F. Qian, R.M.N. and Jorge, Nat-

ural frequencies of functionally graded plates by a meshless method, Composite

Structures, 75(1-4): pp 593–600, 2006.

[15] N.J. Robinson, and S.C. Palmer, A modal-analysis of a rectangular plate floating

on an incompressible liquid. Journal of Sound and Vibration, 142(3): pp. 453–

460, 1990.

[16] Y. Fu, and W.G. Price, Interactions between a partially or totally immersed

vibrating cantilever plate and the surrounding fluid, Journal of Sound and Vi-

bration, 118(3): pp 495–513, 1987.

149



[17] G.C. Volcy, P. Morel, M. Bureau, and K. Tanida, Some studies and researches

related to the hydro-elasticity of steel work, Proceedings of the 122nd Euromech

Colloquium on numerical analysis of the dynamics of ship structures, Ecole Poly-

technique, Paris, pp. 403–406, 1979.

[18] Y. Kerboua, A.A. Lakis, M. Thomas, and L. Marcouiller, Vibration analysis of

rectangular plates coupled with fluid, Applied Mathematical Modelling, 32(12):

pp. 2570–2586, 2008.

[19] M.R. Haddara, and S. Cao, A study of the dynamic response of submerged

rectangular flat plates, Marine Structures, 9(10): pp. 913–933, 1996.

[20] Sh. Hosseini-Hashemia, M. Karimia, and H. Roknia, Natural frequencies of rect-

angular Mindlin plates coupled with stationary fluid, Applied Mathematical Mod-

elling, 36(2): pp. 764–778, 2013.

[21] A. Ergin, and B. Ugurlu, Linear vibration analysis of cantilever plates partially

submerged in fluid. Journal of Fluids and Structures, 17(7): pp. 927–939, 2013.

[22] Y. Yadykin, V. Tenetov, and D. Levin, The added mass of a flexible plate

oscillating in a fluid, Journal of Fluids and Structures, 17(1): pp. 115-123, 2003.

[23] C.C. Liang, C.C. Liao, Y.S. Tai, and W.H. Lai, The free vibration analysis of

submerged cantilever plates. Ocean Engineering, 28(9): pp. 1225–1245, 2001.

[24] M.K. Kwak, Hydroelastic vibration of rectangular plates. Journal of Applied

Mechanics, 63: pp. 110–115, 1996.

[25] T. Brugo, R. Panciroli, G. Minak, Study of the dynamic behavior of plates

immersed in a fluid. IMEKO TC15 - Experimental Mechanics (Proceedings of

the 11th Youth Symposium on Experimental Solid Mechanics, Brasov, Romina),

pp. 34–39, 2012.

150



[26] G. Muthuveerappan, N. Ganesan, and M.A. Veluswami, Influence of fluid added

mass on the vibration characteristics of plates under various boundary-conditions.

Journal of Sound and Vibration, 69(4): pp. 612–615, 1980.

[27] L. Qiu, Modeling and simulation of transient responses of a flexible beam floating

in finite depth water under moving loads. Applied Mathematical Modelling, 33(3):

pp. 1620–1632, 2009.

[28] L. Qiu, H. Liu, Three-dimensional time-domain analysis of very large oating

structures subjected to unsteady external loading. J. Offshore Mech. Arct. Eng.,

129(1): pp. 21–28, 2006.

[29] I. V. Sturova, Unsteady behavior of an elastic beam floating in shallow water

under external loading. Journal of Applied Mechanics and Technical Physics,

43(3): pp. 415–423, 2002.

[30] I. V. Sturova, The action of an unsteady external load on a circular elastic

plate floating in shallow water, Applied Mathematics and Mechanics, 67(3): pp.

407–416, 2003.

[31] A. A. Korobkin, Unsteady hydroelasticity of floating plates. Journal of Fluids

and Structures, 14(7): pp. 971–991, 2000.

[32] M.H. Meylana, I.V. Sturova, Time-dependent motion of a two-dimensional float-

ing elastic plate. Journal of Fluids and Structures, 25(3): pp. 445–460, 2009.

[33] J.Z. Jin, J.T. Xing, Transient dynamic analysis of a floating beamwater inter-

action system excited by the impact of a landing beam. Journal of Sound and

Vibration, 303(1-2): pp. 371–390, 2007.

[34] C.S. Konig, C. Clark, M.R. Mokhtarzadeh-Dehghan, Comparison of fluid in

numerical and physical models of a ventricular assist device using low and high-

151



viscosity fluids. Journal of Biomedical Engineering, 116(1-2): pp. 294–301, 1999.

[35] N. Stergiopulos, D.F. Young, and T.R. Rogge, Computer simulation of arterial

flow with applications to arterial and aortic stenoses. Journal of Biomechanics,

25(12): pp. 1477–1488, 1992.

[36] M. Bathe and R.D. Kamm, A fluid-structure interaction finite element analysis

of pulsatile blood flow through a compliant stenotic artery. Journal of Biome-

chanical Engineering, 121: pp. 361–369, 1999.

[37] S.J. Sherwin, L. Formaggia, J. Peiro, and V. Franke, Computational model-

ing of 1D blood flow with variable mechanical properties and its application to

the simulation of wave propagation in the human arterial system. International

Journal for Numerical Methods in Fluids, 43(6-7): pp. 673–700, 2003.

[38] J. Wan, B. Steele, S.A. Spicer, S. Strohband, G.R. Feijoo, T.J.R. Hughes, and

C.A. Taylor, A one-dimensional finite element method for simulation-based med-

ical planning for cardiovascular disease. Computer Methods in Biomechanics and

Biomedical Engineering, 5(3): pp. 195–206, 2002.

[39] I. Larrabide, P.J. Blanco, S.A. Urquiza, E.A. Dari, M.J. Venere, N.A. de Souza

e Silva, R.A. Feijo, HeMoLab–Hemodynamics Modelling Laboratory: an applica-

tion for modelling the human cardiovascular system. Computers in Biology and

Medicine, 42(10): pp. 993–1004, 2012.

[40] G. Porenta, D.F. Young, and T.R. Rogge, A finite-element model of blood flow

in arteries including taper, branches, and obstructions. Journal of Biomechanical

Engineering, 108(2): pp. 161–167, 1986.

[41] F.J.H. Gijsen, F.N. van de Vosse, and J.D. Janssen, The influence of the non-

Newtonian properties of blood on the flow in large arteries: steady flow in a

152



carotid bifurcation model, Journal of Biomechanics, 32(6): pp. 601–608, 1999.

[42] K. Perktold, M. Resch, H. Florian, Pulsatile non-Newtonian flow characteristics

in a three-dimensional human carotid bifurcation model. Journal of Biomedical

Engineering (ASME), 113: pp. 464–475, 1991.

[43] K. Perktold, RO. Peter, M. Resch, and G. Langs, Pulsatile non-Newtonian flow

in three-dimensional carotid bifurcation models: a numerical study of flow phe-

nomena under different bifurcation angles. Journal of Biomechanical Engineering

(ASME), 113: pp. 507–515, 1991.

[44] A. Avolio, Multi-branched model of the human arterial system. Medical and

Biological Engineering and Computing, 18(6): pp. 709–718, 1980.

[45] G.A. Holzapfel , T.C. Gasser, and M. Stadler, A structural model for the vis-

coelastic behavior of arterial walls: Continuum formulation and finite element

analysis. European Journal of Mechanics-A/Solids, 21(3): pp. 441–463, 2002.

[46] C.M Wang, J.N. Reddy, and K.H. Lee, Shear Deformation Theories of Beams

and Plates. Relationships with Classical Solution, Elsevier, U.K., 2000.

[47] J.N. Reddy, Energy Principles and Variational Methods in Applied Mechanics,

2nd ed., John Wiley and Sons, New York, 2002.

[48] J.N. Reddy, Mechanics of Laminated Composite Plates and Shells, 2nd ed., CRC

Press, Boca Raton, FL, 2004.

[49] J.N. Reddy. An Introduction to Nonlinear Finite Element Analysis, 2nd ed.,

Oxford University Press, UK, 2015.

[50] J.N. Reddy, An Introduction to Continuum Mechanics, 2nd ed., Cambridge

University Press, New York, 2013.

153



[51] J.N. Reddy. An Introduction to the Finite Element Method, 3rd ed., McGraw-

Hill, New York, 2006.

[52] J.N. Reddy, D.K. Gartling, The Finite Elemet Method in Heat Transfer and

Fluid Dynamics, 3rd ed., CRC Press, FL, 2010.

[53] J. Lighthill, Mathematical Biofluiddynamics, 3rd ed., Philadelphia: Society for

Industrial and Applied Mathematics, pp. 227–253, 1989.

[54] M.S. Olufsen, C.S. Peskin, W.Y. Kim, E.M. Pedersen, A. Nadim, and J. Larsen,

Numerical simulation and experimental validation of blood flow in arteries with

structured-tree outflow conditions. Annals of Biomedical Engineering, 28: pp.

1281–1299, 2000.

154


