Waterworks for Texas Farm Homes

issued by
The Extension Service
Agricultural and Mechanical College of Texas and
The United States Department of Agriculture
H. H. Williamson, Director, College Station, Texas
Waterworks for Texas Farm Homes

By M. R. Bentley, Extension Agricultural Engineer

WATER IS THE MOST NECESSARY and useful thing around the home, and yet in many homes very little attention has been given to making the water supply convenient.

There is a tendency to consider a farm home water system a luxury and not particularly a labor saving device. Probably the heaviest work around the farm house is carrying in the water and carrying out the waste water. This heavy work may be very much lightened by the installation of a kitchen sink with water piped to it, and a waste pipe to dispose of waste water. Such a simple water system does not cost a great deal.

One of the first considerations on a water system should be a supply of pure water. Many of the shallow, open topped wells, with the drainage from the stable and cow lot coming toward them and without the protection of a tight curb, present an unwholesome appearance and are actually dangerous. Every well should have a water tight curb extending from several feet below the ground surface to at least a foot above the surface. As a general rule the water from wells 75 feet or more in depth is safe unless contaminated by surface water. Shallow wells should also be protected from pollution by sur-

Fig. 1.—Poorly curbed wells are dangerous.
face water. However, the water in shallow wells is often polluted at its source so that no protection afforded the well itself will make the water safe. In this case a water tight underground cistern may afford the only safe and desirable water supply for the house.

If there is any doubt about the purity of the water supply, it should be tested. The State Board of Public Health at Austin, Texas, may be consulted in regard to such a test.

Fig. 2.—A well protected by a concrete top and bricks laid in mortar.

Fig. 3.—A well curb of concrete or clay tile with cemented joints.

Cisterns

Where it is necessary to use cistern water for drinking, care should be taken to obtain a sufficient supply and to see that it is kept clean. Precautions should be taken to keep trash and leaves or dead birds from the house gutters out of the cistern. Also, if the top is not made tight there may be pollution from bugs and crickets rotting in the water, and there is the same possibility of surface water running in the top of the
open cistern that there is in the well. Protection may be afforded by screening all openings in the cistern and making the top proof against the entrance of contaminated water.

The required size of the cistern to insure a supply will depend on conditions, but under average conditions in Texas, a cistern 7 feet in diameter and 10 feet deep will keep the average family supplied with water for kitchen use and drinking water.

Cisterns are frequently built by digging a hole in the ground and plastering the walls with about an inch of cement mortar, using wire poultry netting for reinforcing. This method is all right in soils that do not cause the plastering to crack. Brick laid in cement mortar and plastered is commonly used as a cistern wall. Galvanized iron is pretty generally used, especially for cisterns above the ground. Probably the best material for a cistern either above or below the ground is reinforced concrete. New concrete usually gives the water an undesirable taste for a time. The removal of the bad taste may be hastened by washing the walls several times and then removing the wash water.

Cistern Filters

Cistern filters are made in a number of ways. Many are little more than strainers. A filter should be built so that it will not freeze and burst. It should be so arranged that it can be easily cleaned. A good box filter may be built on top of the ground at a reasonable expense. The box should be made of some durable material, such as concrete, and have a tight cover over it. The size should be about 3 feet by 4 feet by 3 feet deep. The water from the house should pour onto a bed of sand about 2 feet thick to remove any particles from it. A layer of finely granulated charcoal about 6 inches thick under the sand will aid in removing any undesirable color, taste, or odor.

Fig. 4.—Water filter.
While a filter made in this way will give very desirable results, it will not work indefinitely without cleaning the filter material or replacing them.

A type of filter which gives very good results and requires very little care is shown in Figure 5. This consists of a partition in the cistern, through which the water must pass after it comes off the roof and before it reaches the compartment from which the water is drawn for use. This partition is built of porous brick laid in cement mortar and is not plastered. Sometimes the partition is made by building two walls of brick 6 or 8 inches apart, with the space between the walls filled with sand. In this construction no mortar is used either in laying the brick or for plastering. Unless the partition wall is properly built there is danger of it falling when water comes in on one side of it during a rain. The wall may be made strong by building it in the shape of a part of the wall of a cylinder, with the outside of the curvature to the incoming water.

Getting The Water Into The House

There are numerous ways of getting water from the well or cistern into the house other than by carrying it in a bucket. Since the expense of the water system is an important item in many cases, some of the inexpensive methods will be discussed along with the others.

Figure 6 shows an arrangement for piping the water from the well to the house where the water is drawn from the well in a bucket. The advantage of this arrangement is that men or boys of the home can easily draw the supply of water for the day and leave it so it is handy, without the women having to draw or carry it.
The kitchen sink may be homemade if desired or one can be bought for a few dollars. A kitchen sink of some kind should not be omitted from any arrangement that is made to put running water in the house. The hydrant on the back porch may bring the water nearer, but a big saving in labor is effected by putting the water faucet over a sink in the kitchen. An important feature of the sink is the disposal of the waste water through a pipe to the outside of the house. Carrying out waste water takes as much time as carrying in the fresh water.

Simple Water Systems

The several different simple water systems shown are intended to suggest methods by which any farmer can put running water into his home at a small expense. There are numerous other combinations which may be worked out to fit the conditions peculiar to the individual farmstead.

Where there is an elevated tank near the house it is usually an easy matter to complete the water connection to the kitchen sink, and any other fixtures desired. Since many do not have the elevated water tank, suggestions are made for putting up the elevated tank and also for getting water into the house without the elevated tank.
Pitcher Pump And Kitchen Sink

In Figure 7 is shown a very inexpensive method of making the water supply handy when conditions permit. A pitcher pump lifts the water from a nearby well or cistern. The vertical distance from the top of the water surface to the pump cylinder must be less than 20 feet. The pump cylinder may be placed under the floor of the house to reduce this suction lift if necessary. If the water supply is a considerable distance from the house the water cannot be lifted as much as 20 feet on account of the friction in the long pipe. A foot valve on the lower end of the pipe keeps the water from leaking back into the well while the pump is not in use. The trap under the sink is for the purpose of preventing foul odors from coming up the drain pipe and is not absolutely necessary on this system.
A list of the material necessary for this system follows. This material should not cost more than $20.00.

*30 feet 1 1/4 inch iron pipe (well to pump) *20 feet 1 1/2-inch iron pipe (drain)
1 pitcher pump 2 wall brackets for sink
1 sink 1 1 1/4-inch foot valve
1 1 1/2-inch sink trap 2 1 1/4-inch elbows

*These lengths will vary.

Fig. 8.—System with elevated tank.

An Elevated Tank Beside The House

Figure 8 shows a cistern placed under the eves of the house in order to catch rain water. A pipe carries the water from this cistern tank to the kitchen sink. In case the tank runs dry during a drouth, water may be pumped to the tank from a well or underground cistern. The size of the pipe from pump to tank should be 1 1/4-inch or 1-inch, and from tank to sink 1-inch or 3/4-inch.
A list of materials for this system follows:

1 force pump, cylinder, and pipe in well
1 elevated tank
*40 feet 1 1/4-inch iron pipe (pump to tank)
1 1 1/2-inch elbow
1 1 3/4-inch elbow
2 1 1/4-inch couplings
*16 feet 1 1/2-inch pipe (tank to sink)
1 sink
2 1 1/4-inch elbows
1 1 1/2-inch sink trap
2 1-inch lock nuts with washers
*20 feet 1 1/2-inch iron pipe (drain)
1 1-inch faucet
2 wall brackets for sink

*These lengths will vary.

Elevated Tank

Figure 9 shows convenient ways of placing a tank to get pressure. The tank in the barn loft is sometimes covered with hay to prevent freezing. A tank in the house or barn should have a large overflow pipe so as to eliminate the possibility of damage by accidental overflow. Only a small tank should be placed in a house attic on account of the weight. It should be placed over a partition wall that is on a good foundation.
Cover the supply tank. Water tanks set outside a building should be covered, not only to keep out anything that might contaminate the water but to form a shade, as well as to prevent the growth of a green scum on the water.

Protection of pipes against freezing. All water pipes should be buried 12 inches or more in the soil wherever practicable. Stop and waste cocks should be placed in exposed pipes so that the water can be cut off and the pipes drained during freezing weather.

Pipes connected to an elevated supply tank may be protected against ordinary freezing temperatures by packing sawdust, cottonseed hulls, or paper in a tube about 8 inches or more on each side made from boards. Wrapping the pipes with paper to a thickness of an inch or more will give considerable protection.

Salt may be put in the waste pipe traps and water closet bowls to protect them against freezing.

Outdoor Shower Bath

A shower bath such as is shown in Fig. 10 can be built at very little expense, and will be very much appreciated on the farm. This shower is built in the tower for the elevated tank so as to save pipe. The pipe from the tank is tapped and a cut-off valve set in a small pipe which carries the water overhead. The small pipe may be ½-inch or ¾-inch in size. The sprinkler on the pipe may be omitted if desired. The floor under the shower may consist of boards, covered with galvanized iron.
A more permanent floor may be made of concrete. The waste water can usually be run off at one side of the floor and ditched away, or a drain pipe may be installed.

Power For Pumping Water

The windmill is the most generally used source of power for pumping water to elevated tanks. It is an economic source of power and has only the one big disadvantage of being useless when the wind is not blowing. Another common source of power for pumping is the gasoline or kerosene engine. When electric current is available, the electric motor is a very convenient source of power for pumping. There are some places where water may be raised to an elevated tank by means of a hydraulic ram. Where a ram can be operated it furnishes the most economical means of elevating water.

Pumps For Use With A Windmill Or Small Engine

There are a number of types of pump heads and cylinders for pumping from wells. The kind of pump and cylinder to use for getting the best results frequently depends on the kind and depth of the well and rate of pumping desired.

Figure 11 shows the most common types of pumps used with windmills and pump jacks in Texas. In Figure 11, pump A is an underground force pump. The cut-off valve is below the ground so there is no trouble from the pump freezing. The pipe leading off to the supply tank may be kept underground as it leaves the pump. Any ordinary lifting cylinder may be used with this pump. A tubular well cylinder is shown. With this type of cylinder the piston and check valve may be drawn out without removing the pipe from the well.
Fig. 11.—Pumps for forcing or lifting water to supply tanks, for use with a windmill or small engine.
Pump B is a very common type of force pump. The pipe to the supply tank is connected to the pump opposite the spout. The pump is shown here with a driven well. With the cylinder located as it is shown here the well must necessarily be a shallow one, and water must be found in coarse sand or gravel. This type of cylinder is generally used in all kinds of wells that are reasonably shallow. However, the cylinder is usually placed under the water as shown in well C.

In pump and well C, an ordinary lifting pump is placed under the water in the well and the water is lifted to the tee joint. From the tee the water is forced through an underground pipe to the supply tank. A stuffing box is placed over the upper end of the pipe and around the sucker rod.

One of the most common methods of raising water to elevated tanks is shown in D. This outfit consists of a cylinder under the water which lifts the water through the vertical pipe until it is high enough to run out through a tee joint and horizontal pipe to the elevated tank. A deep well cylinder is shown here. The cylinder is smaller than the pipe, so that the piston and check valve may be drawn out without disturbing the pipe.

With the pumps and cylinder shown in Figure 11 various combinations can be made other than these shown and a suitable outfit arranged for any ordinary farm well.

Equipment of this kind can usually be obtained from the local hardware dealer.

It is nearly always best to install the type of pump that has been found best suited, by the experience of others, to the wells of the locality. If the pumps in the various wells of the community are similar, hardware dealers can afford to keep repairs in stock for them.
Water Supply Systems With Elevated Tank

Figure 12 shows a water supply system which is one of the most common in Texas except that the water is usually piped to the barn and not to the house. If it is piped to the house, too often it is not brought into the house to a kitchen sink. A pipe of 1-inch or 3/4-inch diameter is suitable for running water from the tank to the sink. The waste water from the drain is run into underground drain tile where it may seep away without forming a mud puddle. It may be used to subirrigate a garden.

![Diagram of water supply system with elevated tank.](image)

Fig. 12.—Popular water system.

Figure 13 shows a concrete storage tank with a milk cooling trough in the room below. By means of the three-way valve the water may be pumped to the milk trough, from which it overflows through a pipe to the horse trough; or by turning the valve the other way the water is pumped to the storage tank. The overflow pipe in the cooling trough consists of a short piece of pipe which will unscrew from a coupling set in the bottom of the trough.
Figure 14 shows how a nearby hill may be utilized to support a tank at an elevation above the house. The hill may be between the well and the house. A concrete tank built underground on a hill top makes a good reservoir as it keeps the water from freezing in the winter and cool in the summer.
Water-Air System

Figure 15 shows a system where an air-tight tank is used for water storage and for furnishing pressure to force the water to all fixtures. In sections where a windmill cannot be depended upon to pump water regularly, it would be best to plan to use an engine or electric power pump with this system unless a very large tank is used to give plenty of storage.

The pressure to force the water from the tank is furnished by the compressed air above the water in the tank. It is necessary to replenish the air as well as the water. This may be taken care of by using a special cylinder that pumps some air into the tank along with the water, or the air may be pumped in by a hand pump. Some advantages of this kind of a tank are that it can be placed where it will not freeze, a rather high pressure can be had at the faucets, and no tank tower is needed. The water and air may be put into this tank with hand pumps if desired.
Automatic Water-Air System

An automatic control may be used with the water-air tank. The control is arranged so that when the pressure in the tank goes down to a certain point, the pump motor will be started, or the windmill will be thrown in gear. Then when the pressure in the tank is raised, the motor will be stopped, or the windmill will be thrown out of gear automatically. If a gas engine is used for power, it may be stopped automatically when the pressure in the tank has been raised to a certain point.

Many of the companies making farm electric plants also furnish a water system of the kind mentioned above. Where electric power is available, the water tank need not be large because with an automatic control, the motor pumps up the tank whenever the water gets low. This kind of water system may be used for pumping from any ordinary well or cistern. The automatically controlled motor may be made to operate whatever kind of pump is necessary to pump the water from the well.
Tankless System

Where electric current is available and the water is obtained from a shallow well or cistern, an electric motor may be so controlled that it will pump water direct from the well, whenever a faucet is opened. An automatic electric switch is controlled by the pressure in the pipes. The opening of a faucet reduces the pressure and starts the motor. When the faucet is closed the rise in pressure in the pipes immediately stops the motor from pumping.

This system is similar to the automatic water-air system except that the tank is eliminated.

The Hydraulic Ram

A ram is very cheap as to first cost and requires practically no attention or upkeep. Its use is, of course, limited to places where a stream of water is flowing or to flowing wells. Also some fall must be obtained between the water supply and the ram within a reasonable distance, except in the case of artesian flow. The ram is operated by what is commonly known as "water hammer." It utilizes the power from a large amount of water falling a short distance, to lift a part of the falling water to a greater height.

Rams will operate where a flow of water of two gallons or more per minute may be obtained, and a fall of two feet or more is available. The height to which the water may be raised will depend on the available fall through the drive pipe and the proportion of the flow that is to be delivered. Where a ram can be operated to furnish a home water supply, the water may be delivered to an elevated tank, or into an air-tight tank on the ground or in the basement of the house. If the water is delivered to a pressure tank, the water would be forced to the faucets by air pressure in the tank as in the case of the water-air systems.
A ram will deliver from about one-sixth to one twenty-fifth of the water that enters the drive pipe. To get an approximate estimate of the quantity of water in gallons per minute that will be pumped by a ram, multiply the number of gallons of water per minute available, by the number of feet of vertical drop that can be obtained down to the ram, and divide this product by twice the vertical height in feet to which the water is to be lifted.

Plumbing And Fixtures In House

Figure 19 shows a set of plumbing fixtures and pipe connections. A water heater burning kerosene is more convenient in Texas than a water heater in a wood or coal stove, since such a stove is not used much except in the winter. Note that the pipes are sloped to drain at stop cocks when shut off in freezing weather. The supply pipes going to the fixtures
may be reduced from 1-inch or $\frac{3}{4}$-inch main pipe, to $\frac{1}{2}$-inch pipe. This system having a water closet, it is necessary that a sewage disposal system be provided. The sewer pipe is usually 4-inch cast iron pipe until the sewer line is carried a few feet from the building. A bill of material of the pipe and fixtures shown is given as an aid to obtaining an estimate of the cost of such an outfit.

1 kitchen sink with fittings
1 bath tub with fittings
1 lavatory with fittings
1 water closet with fittings
1 hot water tank with fittings
1 kerosene heater with fittings
50 feet $\frac{3}{4}$-inch galvanized iron pipe
55 feet $\frac{1}{2}$-inch galvanized iron pipe

1 faucet for hot water tank
3 $1\frac{1}{2}$-inch elbows
2 $1\frac{1}{2}$-inch tees
2 $\frac{3}{4}$-inch stop and waste cocks
15 feet 4-inch cast iron soil pipe
12 feet 3-inch cast iron soil pipe
1 4-inch cast iron quarter bend
1 roof flashing
5 $\frac{3}{4}$-inch tees
4 $\frac{1}{2}$-inch tees
8 $\frac{3}{4}$-inch elbows
Sewage Disposal System

After water has been piped into the house many desire to include with the fixtures, the water closet.

When this fixture is included, attention must be given to the safe disposal of the waste water from the house. About the only practical means of doing this is by running the waste water through a septic tank and then into a bed of disposal tile.

Figure 20 shows a sewage disposal system with a one chamber septic tank. The sewage is brought into and carried a few feet from this tank in sewer tile with tight joints. Then the sewage goes into open jointed tile where it passes out into the soil. The septic tank is merely a water tight box where the
sewage should remain under a natural scum until the solids in it decompose.

The open jointed tile should run under the ground within a foot or so of the surface so that sewage may be acted upon by the air and sunlight.

A bill of material necessary for this system is given in order that one may figure on the cost of putting in a sewage disposal system:

Material For A Septic Tank For 8 Persons

- 20 sacks of cement
- 1½ cu. yds. of sand
- 3 cu. yds. of gravel or crushed stone
- 375 feet of ¼-inch rods for reinforcing (woven wire may be used instead of rods)
- 2 sewer tile Y's, 4-inch

Tile To And From The Septic Tank

- 100 feet (may vary) sewer tile, 4-inch (house to tank)
- 20 feet of 4-inch sewer tile (tank to disposal tile)
- 200 feet of 4-inch farm drain tile, open joints (usual minimum requirement for 8 person tank)
- 5 pounds of oakum (for sewer tile joints)
 - Small quantity of cement mortar

Complete plans for a one-home sewage disposal system may be obtained by writing the Extension Service, A. and M. College, College Station, Texas.

Further information on Farm Home Water System may be obtained from Farmers' Bulletins, Nos. 1426, 1448 and 1460.
Coupling Union Reducing Coupling

Tee 90° Elbow 45° Elbow

Lock Nut Bushing Nipple

Stop and Waste Cock Plug Cap

Compression Hose Bibb Fuller Plain Bibb Globe Valve

Check Valve S Trap Bath Tub Trap

25M—1-37