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ABSTRACT 

 

Interior Alaska’s Healy Lake archaeological locality contains a cultural sequence 

spanning 13,500 years, with some of the oldest known human occupations in Alaska. 

This dissertation is composed of three investigations presenting new data on the 

prehistoric archaeology of Linda’s Point and the Village site at Healy Lake. Analyses of 

curated and newly excavated lithic assemblages have allowed a reassessment of culture 

history, and new assessments of lithic technological organization at Healy Lake and the 

Alaskan interior. 

The first investigation presents a general report for the Linda’s Point site, 

excavated from 2011-2013. Detailed recording has clearly separated the lowest cultural 

occupations, dating to 13,000-11,000 cal B.P. and associated with a thick paleosol. They 

contain hearths, debitage, and small triangular points similar to those seen at the Village 

site. Upper silt deposits contain a variety of lithic tool types among a dense scatter of 

debitage and bone fragments spanning a wide time range. Linda’s Point appears to have 

been used as a habitation site throughout its history. 

The second study presents a technological analysis of toolstone selection and use 

at Healy Lake, assessing assemblage composition, diversity, and lithic reduction streams 

at each site. The earliest components show strong similarities with a few differences 

suggesting longer-term habitation at the Village site. Assemblages show a shift in the 

Holocene towards primary reduction and use of lower-quality but readily-available local 

material, suggesting longer occupation times and reduced overall mobility. Local 
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reduction is most prevalent at Linda’s Point, indicating potential embedded local 

resource procurement. 

The third study presents a technological analysis and description of Chindadn 

bifaces from early archaeological sites of interior Alaska, dating 12,000 cal B.P. and 

older. Convex-based bifaces are unique for informal reduction techniques and minimal 

evidence of use. Triangular and subtriangular bifaces show diverse reduction 

characteristics and low rates of hafting wear, suggestive of generalized point tips 

designed to conserve raw materials in Beringian climates. Concave-based bifaces show 

intensive flaking, haft element breakage, and abrasion, placing them outside the range of 

Chindadn biface technology. 
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DEDICATION 

 

For Healy Lake — its people, its landscape, and its history. 
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CHAPTER I 

INTRODUCTION 

 

Interior Alaska figures prominently in the archaeology of Beringia, long 

interpreted to hold the key to our understanding of Native American origins and earliest 

prehistory. The Bering Land Bridge, open during the last glacial maximum of the late 

Pleistocene, was a gateway for Siberian populations to disperse into the Americas. 

Genetic and linguistic studies support the hypothesis of an Asian migration originating 

during the late glacial, when warming climates opened pathways for human expansion 

into Siberia and across the land bridge (Fagundes et al. 2008; Goebel et al. 2008; Gruhn 

2006; Kari and Potter 2011; Kemp et al. 2007). While general archaeological 

continuities on both sides of the modern-day strait support the Beringian migration 

hypothesis, specific aspects of the Beringian archaeological record remain poorly 

understood, and archaeological inconsistencies within Alaska continue to complicate this 

otherwise well-established explanation for Native American origins.  

One of the greatest confusions surrounds the relationship of microblade and 

biface technologies, and their use as cultural markers across Beringia. Microblade 

technology, widespread in northeast Asia between 20,000-14,000 calendar years ago (cal 

B.P.) (Goebel 1999; Goebel et al. 2008; Graf 2010; Ineshin and Teten'kin 2011; 

Mochanov and Fedoseeva 1996; Slobodin 2011), is also found in the oldest known 

Alaskan occupation at Swan Point dating as early as 14,000-13,700 cal B.P. (Holmes 

1998, 2011), and has been proposed to be a suitable marker of early Beringian migrants. 
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However, early microblades are seemingly rare. Instead, basal components of most early 

sites in central Alaska and Kamchatka, typically dated between 13,500 and 13,000 cal 

B.P. are characterized by small, thin teardrop-shaped and triangular points with far fewer 

correlates in the Siberian archaeological record (Goebel 2011; Goebel et al. 1991; 

Goebel et al. 2010; Holmes 2011). Given such conflicting patterns, how can we relate 

late Pleistocene Alaskan archaeology to the Beringian migration hypothesis? Were 

microblade technologies important for early Beringian migrants, and if so, why are they 

an uncharacteristic part of most early assemblages? 

Exhibiting a unique pattern of microblades and small triangular points assigned 

to a single component, the Healy Lake Village site may hold the answers to these 

questions. Inconsistency in the radiocarbon dates between and within excavation levels 

suggests that a lack of vertical control between arbitrarily defined depth units led to an 

artificial lumping of separate components (Dumond 2011; Hamilton and Goebel 1999; 

Hoffecker et al. 1993). Despite these problems, the Village site is the type-site for the 

Chindadn complex, defined by the presence of small projectile points, microblades, 

microblade cores, burins, and triangular and teardrop-shaped Chindadn bifaces (Cook 

1969, 1996). While the Chindadn complex has been accepted by some as an 

archaeological entity (Dixon 1985; Holmes 2001, 2011; Potter 2011), it stands in 

contradiction to the Nenana and Denali complexes proposed to exist in the Nenana River 

valley. There, Chindadn bifaces are found stratigraphically separated from overlying 

microblade artifacts. If the stratigraphic context of the artifacts recovered from Healy 
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Lake Village is questionable, so then is its use to define a controversial grouping of 

artifacts as a single complex. 

This research addresses the many questions that have surrounded Healy Lake 

since its original study in 1968, returning to Healy Lake to re-assess the controversial 

Village site assemblage, and contributing new data from the Linda’s Point site for 

correlation and comparison.  

History of Study at Healy Lake 

The history of archaeological study at Healy Lake extends beyond the 

appearance of Euro-American academic researchers. Village resident Margaret 

Kirsteatter was one of the first collectors, breaking Athabascan traditions that made 

disturbance of ancestral items taboo in favor of the knowledge to be gained from the past 

(Fred Kirsteatter and Evelyn Combs, pers. comm. 2012, 2013). Along with her son, Fred 

Kirsteatter, she collected a variety of carved bone, obsidian tools, lanceolate points, 

debitage, and historic trade items, which attracted the attention of Robert McKennan, the 

first ethnographer to visit the area in 1962. McKennan returned to the area over the 

following years to conduct systematic survey. Based on local knowledge and collection, 

followed by survey and shovel testing with the aid of Fred Kirsteatter, McKennan’s team 

recorded eleven prehistoric and one historic site along the edges of the lake (Cook 1969).  
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Figure 1. Aerial view of north shore of Healy Lake, facing northwest, with Linda’s Point in the 
foreground, the Village site in the far background, and modern-day Healy Lake 
Village between them. 

 

 

Figure 2. Aerial view of the point of land containing the Village site. 
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The Village site was the largest and most accessible of the Healy Lake sites, 

located on a point of land only a mile away from the modern Native village (Figures 1 

and 2). Shovel tests exposed artifacts across the entire point, and between 1967-1972 

John Cook directed excavations at the site under the supervision of McKennan. From 

over 170 five-foot square (approximately 1.5x1.5 m2) units, these excavations produced 

43,000 artifacts. To address an apparent lack of stratigraphy, Cook excavated in two-

inch arbitrary levels. Excavation methods were standard for the early era of subarctic 

archaeology, and no metric chains or tapes were available in Fairbanks at the time. The 

legacy of these methods is partly responsible for our limited the ability to interpret 

Cook’s results: sediments were not screened, detailed provenience data was only 

recorded for artifacts deemed diagnostic at the time, and measurement of arbitrary levels 

began at the top of the mineral horizon for each unit rather than from a single site datum, 

so that few vertical controls now exist to compare depth measurements between units. 

Much important data collected during the Village site excavation was not used in 

analysis, and has never been reported. The archaeologists were extremely attentive to 

detail, and recorded stratigraphic associations, drew profiles, floor maps, feature maps, 

and artifact sketches, and recorded voluminous qualitative notes. Unfortunately, data 

collection was not standardized, and field notes occasionally varied widely between 

units and excavators. Despite some limitations, great interpretive potential remains, as-

yet unpublished. Cook supervised the collection of feature matrices, soil samples, and 

geological specimens, ensured the proper identification of dated charcoal, archived all 

materials for future research, and conducted flotation analysis for floral remains. He 
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presented a detailed description of the first year’s excavation results in his dissertation 

(Cook 1969), which he expanded over the next few decades in unpublished conference 

paper presentations. He published small papers providing a site overview, selected 

artifact descriptions, and an ethnohistoric study (Cook 1968, 1989, 1996, 2011); 

however, as yet a full excavation report and analysis of the entire site assemblage has not 

been presented or published.  

Cook’s dissertation outlines four stages at the Village site, each attributed to a 

group of arbitrary levels generally associated to the stratigraphic profile, and based on a 

modified seriation approach: levels with similar ranges of artifacts were grouped 

together, not as single occupations or moments in time, but as representing repeated 

occupation during periods of stability in cultural development (Table 1). The greater 

number of levels in the lowest cultural grouping was attributed to a higher rate of 

deposition at the end of the Donnelly glaciation. 

Following further excavation and intensive laboratory analyses, Cook presented a 

slight refinement of the data at a series of conferences (Cook 1972, 1980; Cook et al. 

1971; Cook and McKennan 1970; McKennan and Cook 1970) as well as a single 

publication (Cook 1975). Major changes included the identification of teardrop and 

triangular points as a typological entity, and the redefinition of the earliest cultural 

horizon as the Chindadn Complex (Table 2). The final published works on the Village 

site to date are sumarize the historic (Cook 1989) and prehistoric (Cook 1996) 

assemblages, providing the only site-wide summaries in existence. 
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Table 1. Cultural Sequence at Healy Lake Village Proposed by John Cook (1969). 

Cultural 
Designation Level No. 

Dates 
Range  

(14C years B.P.) Artifacts 

Athapaskan 1-2 2 810-1440 Convex-based stemmed points, notched points, microblades, 
Campus core rejuvenation, burins 

     
Tuktu 3 - - Convex-based stemmed points, notched points, lack of burins. 

Microblades are wide with selectivity of medial fragments 
     Quartzite 
Horizon 4-5 1 8810-9110 Large, blocky quartzite scrapers and bifaces, endscrapers, lack of 

microblades 
     

Early Horizon 6-9 1 10,920-11,220 Narrow microblades, blade-like-flakes, generalized bifaces, low 
amounts of obsidian and high proportions of yellow agate 
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Table 2. Revised Cultural Sequence at Healy Lake Village Proposed by John Cook (1996). 

Cultural 
Designation Level No. 

Dates 
Range  

(14C years B.P.) Soil Association Artifacts 

Athapaskan 1–3 13 380–4460 Reddish B2 Horizon 
Proto-Athabascan to modern Athabascan cultures: 
microblades, Campus cores, notched and lanceolate 
points, notched transverse burins, burin spalls 

      
Transitional 4–5 4 2150–8960 Loess Few; representative of an in-situ transition to 

Athabascan cultural systems 
      

Chindadn 6–10 17 8210–11,410 
Red to purple 
paleosol and coarse 
sand below 

Thin triangular- and teardrop-shaped points, lanceolate 
bipoints, blade and microblade technology. Increased 
number of hearths and high frequency of bird and small 
mammal bone compared to upper levels 
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A major theme of Cook’s interpretation was the in-situ development of 

Athabascan culture over time. The interwoven “motifs” of burin and microblade 

technology, at Healy Lake and elsewhere in the Alaskan interior, were interpreted to 

represent a cultural continuity through time since the earliest occupations (Cook 1975), 

despite other major technological changes, and potential occupational hiatuses indicated 

by radiocarbon dating. Furthermore, Cook’s Chindadn Complex conflicts with many of 

the other classification schemes presented for Alaska’s early prehistory. Chindadn points 

are not generally interpreted to extend as late as 9500 cal B.P., nor are they thought to be 

associated with lanceolate projectile points. The Healy Lake site has been cited as 

potential evidence that these trends are more fluid than previously interpreted (Holmes 

2001; Potter 2008b), but has more often been dismissed due to the presence of 

chronological ambiguities (Bever 2001; Dilley 1998:248; Dixon 1985; Hamilton and 

Goebel 1999; Holmes 2001; Pontti 1990).  

Over the last five years, a land transfer near Healy Lake Village has spurred 

renewed archaeological study in the region by the Tanana Chiefs Conference (TCC). In 

collaboration with Texas A&M University (TAMU), TCC has directed and sponsored 

archaeological testing, excavation, and field school education from 2010–2014 at the 

Linda’s Point site on the northern shore of the lake. The site has been found to exhibit 

stratigraphic deposition and cultural materials similar to those seen at the Village site, 

providing an opportunity for comparison between sites. 
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Figure 3. Excavations at the Linda’s Point site, 2013 field season. 

 

Research Questions 

Within the context of the current focal questions in Beringian archaeological 

research, and the history of previous work at Healy Lake, this dissertation has focused 

on five key specific research goals: 

1. To define the geologic and stratigraphic contexts of the occupations at the 

Linda’s Point site. Collaborative geoarchaeological analysis with researchers from the 

Tanana Chiefs Conference and Baylor University helped to define the depositional and 

soil development history of the Linda’s Point site, and compare it to records from the 
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nearby Village site. Most importantly, sources of potential stratigraphic disturbance were 

sought, explored, and mitigated during analysis, when possible. 

2. To determine the sequence and age of cultural occupations at Healy Lake. 

The primary culture-historical goal was to separate the basal component at Linda’s 

Point, and determine whether it represents a single Chindadn-aged occupation. 

Secondarily, Holocene components were explored to determine whether they can be 

separated, either stratigraphically or spatially, followed by absolute and relative dating of 

all occupations. Finally, these occupations were correlated to dates and materials from 

the Village site. 

3. To characterize technological activities and organizational strategies 

represented in the Chindadn and later assemblages. Lithic technological organization 

was explored through a variety of avenues. This study assessed the reduction sequences 

present at Linda’s Point and the Village site, hoping to answer questions of how the 

site’s occupants procured, used, and discarded tool-stone. I examined variation in these 

practices between sites and over time, asking whether lithic technological strategies vary 

in relation to social and environmental influences. 

4. To assess technological organization in response to changing environments. 

Using the information gathered by addressing the first three research questions, I 

endeavored to place the results in context to assess site occupation, mobility, and 

subsistence strategies at Healy Lake. Do changes in these activities through time 

coincide with climatological variations or the development of lakeshore environments? 
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Can evidence from other archaeological sites in the region be used to assess wider 

patterns of environmental adaptations and cultural responses? 

5. To consider the scientific results in the context of multivocality and 

community involvement. We endeavored to include the Healy Lake community in all 

steps of the archaeological process. Both myself and TCC staff presented research goals, 

ongoing excavation, site tours, and results to the Village Council at multiple junctures. 

During these meetings, we discussed community concerns and interests, answered 

questions about our methods and interpretations, performed site tours, and gained the 

opportunity to discover a wide range of local knowledge of the region’s history and 

prehistory. TCC employed a youth from Healy Lake village during 2011-2012 

archaeological excavations, and community archaeology was practiced with the 

incorporation of both Native and non-Native Alaskan volunteers and field schools. 

Dissertation Outline 

This dissertation is organized as a series of independent chapters, linked by a 

central goal of exploring the meaning of the Chindadn complex and early human 

occupations in the Alaskan interior. Do archaeological excavations in correlative 

deposits elsewhere around Healy Lake support the artifact groupings established at the 

Village site? Can technological analyses, rather than typological analyses, provide 

insight into the lives and settlement patterns of early Alaskans, expanding our 

knowledge of human occupations beyond proposed cultural lineages? And how do the 
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enigmatic Chindadn bifaces fit into a larger picture of early Beringian technological 

activities? 

 In Chapter II, I present a technical report of recent archaeological excavations at 

Linda’s Point. This chapter addresses research questions 1 and 2 regarding geology and 

chronology, while touching on questions 3 and 4 regarding lithic technology. Chapter II 

is published as a coauthored paper (Younie and Gillispie 2016), and is included in the 

dissertation with the permission of the copyright holder, Arctic. I prepared the majority 

of the paper and figures, including the lithic analysis that makes up the research focus. 

Sections on the stratigraphy and dating of the site, and Figure 7, were drafted with 

geoarchaeologist and coauthor Tom Gillispie of TCC. 

In Chapter III, I discuss the technological characteristics of occupations at 

Linda’s Point and the Village site, comparing lithic material use and procurement 

patterns between locales and over time. This chapter focuses on research question 3 in 

detail, characterizing lithic assemblages and technology, and in turn contributing to 

aspects of environmental contexts in research question 4. 

In Chapter IV, I present a detailed analysis of Chindadn biface technology, 

assessing aspects of manufacture, use, and discard that might provide clues to their role 

in Beringian toolkits, and to their disappearance at the beginning of the Holocene. This 

chapter uses the results of the previous chapters to place the Linda’s Point and Village 

site bifaces chronologically within the entire sample of Chindadn-era bifaces. It 

addresses a new facet of research question 4, using technological analyses to address a 
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typological question, the meaning of Chindadn bifaces within Beringian cultural 

adaptive systems. 

Finally, I summarize these results in Chapter V, and discuss their relevance to 

our wider understanding of Beringian prehistory. 
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CHAPTER II 

LITHIC TECHNOLOGY AT LINDA’S POINT, HEALY LAKE, ALASKA1 

 

The prehistory of interior Alaska is represented by numerous well-stratified sites 

concentrated along the major drainage basins of the Tanana and Nenana valleys (Figure 

4), many of which are securely dated to the late Pleistocene and early Holocene (LPEH) 

(Goebel and Buvit 2011; Potter 2008c). With the exception of the unique early 

component at Swan Point (Holmes 2011), the earliest occupations are approximately 

contemporaneous with Clovis, the earliest widespread and well-represented 

archaeological culture to have proliferated south of the continental ice sheets (Waters 

and Stafford 2007). Intensive excavation, numerous site reports, and geological and 

paleoenvironmental studies published during the last two decades have broadened our 

understanding of early Beringian chronology (Potter 2008c; Saleeby 2010). This work is 

complemented by an emerging literature on Beringian lithic technological organization 

(Goebel 2011; Graf and Goebel 2009) and faunal subsistence (Potter et al. 2013; Yesner 

2007), standing in contrast to more traditional narratives based on typology and the 

question of a microblade/non-microblade dichotomy (Dumond 2011; Goebel and Buvit 

2011). Discussion centers around two general technological forms: bifacial tools and 

composite osseous tools inset with tiny specialized flakes known as microblades (Elston 

and Brantingham 2002; Wygal 2011).  

                                                 

1 Reprinted with permission from “Lithic Technology at Linda’s Point, Healy Lake, Alaska,” by Angela 
M. Younie and Thomas Gillispie, 2016. Arctic Vol. 69 Issue 1. Copyright Arctic, 2016. Stylistic 
modifications have been made for consistency within the current document. 
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Figure 4. Archaeological sites of interior Alaska dating to the late Pleistocene and early 
Holocene. Figure created usingArcMap (Esri 2011; Esri et al. 2014b). 

 

In the Nenana valley, a fairly straightforward pattern exists beginning 13,300 cal 

B.P. Basal occupations at Dry Creek, Owl Ridge, Moose Creek, and Walker Road have 

been assigned to the Nenana complex based on the presence of blade tools, flake tools, 

gravers, and small, thin bifacial teardrop-shaped and triangular points (often called 

Chindadn points), as well as a consistent lack of microblade technology (Goebel 2011; 

Gore and Graf in press; Hoffecker et al. 1993; Pearson 1999; Powers and Hamilton 

1978; Powers and Hoffecker 1989). After 12,750 cal B.P., Chindadn points disappear, 
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and core and blade technologies are replaced by those centered around microblades and 

wedge-shaped cores, lanceolate bifaces, and burins, assigned to the Denali complex 

(Powers and Hoffecker 1989; West 1980) and found at Dry Creek (Component 2), 

Moose Creek (Component 2), Teklanika West, and Owl Ridge (Component 2) (Coffman 

2011; Gore and Graf in press; Pearson 1999; Powers and Hamilton 1978). Similarly-

aged basal components at Carlo Creek and Panguingue Creek contain Denali-like 

assemblages, although they lack microblades (Bowers 1980; Bowers and Reuther 2008; 

Goebel and Bigelow 1996). This toolkit persists throughout the Younger Dryas and early 

Holocene. Traditionally, the two complexes are interpreted as distinct cultural groups 

with different technological systems.  

Tanana valley cultural sequences are not so clearly separated. The earliest 

occupations at Swan Point date from 14,440–13,550 cal B.P., representing the earliest 

known occupation of eastern Beringia, and containing a microblade technology 

interpreted to be similar to Diuktai in Yakutia, Russia (Holmes 2011; Holmes et al. 

1996). After this, the Tanana record shows a pattern similar to that seen in the Nenana 

valley, with blades and small thin bifaces in early components. However, Chindadn-like 

points occur as late as 12,000–11,300 cal B.P. at Broken Mammoth and Swan Point, and 

are potentially associated with microblade technology (Holmes 1996, 2011; Krasinski 

2005; Potter 2008b, 2011). These regional inconsistencies have led to the proposition 

that different technologies signify behaviorally adaptive strategies rather than stylistic or 

culturally normative choices (Potter et al. 2013; Wygal 2011). Different technological 

choices may represent variation in climate, seasonality, prey choice, raw-material 
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availability, site use, or a combination of factors (Graf and Bigelow 2011; Rasic 2011). 

However, despite local temporal differences within the Tanana basin, the overarching 

pattern remains the same: lanceolate bifaces are notably absent, and microblades and 

burins are rare prior to the Younger Dryas, after which both are found at Upward Sun 

River, Healy Lake, and Gerstle River, and farther south in the Tangle Lakes region 

(Cook 1996; Graf and Bigelow 2011; Potter 2005; Potter et al. 2014; West 1996; West et 

al. 1996).  

The Healy Lake Village site has been referenced as a prime example of the 

coinciding presence of various technologies during the LPEH in the Tanana valley 

(Holmes 2001; Potter 2008b). Based on 1967–1972 excavation data, J. Cook grouped 

basally thinned triangular and teardrop-shaped points, lanceolate bifaces, microblades, 

wedge-shaped cores, and burins into the Chindadn complex, assigned to a single 

component dating from 13,500–9150 cal B.P. (Cook 1969, 1996). It has since been 

questioned whether these materials truly represent a single cultural tradition, or whether 

instead their apparent co-ocurrence could be attributed to compressed stratigraphy, 

natural and cultural disturbances, and excavation methods (Dilley 1998:248; Dixon 

1985; Erlandson et al. 1991; Hamilton and Goebel 1999). Lack of detailed published 

information on the site has precluded clear answers.  

As part of a series of studies aimed at clarifying the Healy Lake archaeological 

record, we conducted excavations from 2011–2014 at Linda’s Point, an archaeological 

site located on the northern shore of Healy Lake only 1.8 km east of the Village site 

(Figure 5). Here we report on our initial results, focusing on our preliminary research 
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goals: summarizing the stratigraphy and cultural chronology of the site, with special 

focus on the lithic assemblages. Based on spatial and stratigraphic data, we first divide 

the assemblage into two major components, a lower suite of occupations dating to the 

late Allerød and Younger Dryas, and upper occupations dating to the early Holocene. 

We then describe the lithic assemblage of each component. Finally, we discuss changes 

in lithic procurement and technological organization at the site through time, as well as 

in a regional context at Healy Lake and in the wider Alaskan interior. Future research 

goals will build from this work, focusing on more detailed geochronological analysis and 

assessments of lithic technological organization. 

 

 

 

Figure 5. Environmental context of the Healy Lake basin (by Christine A. Fik). 
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Linda’s Point 

Local Environment 

Healy Lake is one of several water bodies impounded along the east margin of 

the Tanana River floodplain, where the broad fluvial lowlands intersect the bedrock 

escarpments of the Yukon-Tanana uplands (Figure 5). The uplands are forested by birch 

(Betula papyrifera), spruce (Picea glauca and P. mariana), and aspen (Populus 

tremuloides) typical of boreal continental macroclimates. The lake is shallow, with a 

shoreline dotted by numerous islands, marshes, inlets, ponds, and wetlands where willow 

(Salix spp.) and shrub birch (Betula glandulosa) are dominant (Anderson 1975). Today it 

presents an ideal residential setting, with nearby access to lake and wetland resources, 

upland hunting overlooks, and intermediary sheltered forests. At the lake outlet, the 

narrow Healy River snakes through silty overbank deposits and marshland into the 

Tanana River two kilometers to the west, presenting a major transportation corridor.  

The Linda’s Point site is located on a series of terraces on the hillside of a wide 

point of land on the northern lakeshore. Healy Lake is an open-basin system impounded 

against the foothills of the uplands by a low, natural levee of the Tanana River. The 

gradient between the lake and the river is slight, and during summer flood events 

drainage is frequently reversed, causing large volumes of silt-laden water from the 

Tanana to enter the lake. Over time, this has resulted in the development of a complex 

delta (Reger et al. 2008:3). Lake levels in nearby closed-basin systems in the Tanana 

valley fluctuated widely during the LPEH in response to changes in effective moisture 
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(Abbott et al. 2000; Barber and Finney 2000), but whether Healy Lake followed a 

similar history is difficult to evaluate due to differing basin geometries and uncertainties 

surrounding the timing of the Healy Lake impoundment. It may have been initiated by 

glacio-fluvial alluviation of the Tanana valley during the last glacial maximum (Reuther 

2013:441), followed by decreased sediment input and local dissection during the late 

glacial (Péwé 1977:38). However, the modern Tanana is an aggrading river system, and 

given the slight elevation of the modern levee, aggradation during Holocene flooding 

appears equally likely (Anderson 1975; Mason and Begét 1991).  

During the time of earliest known human occupation of the region, Beringian 

landscapes were composed of arid steppe and tundra-like biomes, inhabited by grazing 

migratory megafauna and influenced by extreme, seasonally variable, and annually 

unpredictable climates (Bigelow and Powers 2001; Guthrie 2001; Hoffecker and Elias 

2007). Available resources and environmental challenges would have been quite 

different from those influencing ethnographic populations: unsheltered open vistas, 

predominance of large grazing herd animals, and limited small shrubby vegetation to 

provide woody materials for dwellings, sleds, basic tools, or fuel (Hoffecker 2005). It is 

commonly hypothesized that early humans on the open Beringian landscapes practiced 

higher levels of mobility than seen in ethnographic foraging populations, maintaining 

lower population densities, residential mobility, a heavy reliance on faunal resources, 

and seasonally determined patterns of landscape and resource use (Graf 2010; 

Hazelwood and Steele 2003; Kelly 2003; Meltzer 1995). In contrast, precontact and 

early-contact era Athabascans of the Tanana region followed patterns of logistical 
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seasonal mobility, following seasonal changes in resource availability. Family groups 

coalesced into larger bands at summer fishing villages, and dispersed back into smaller 

foraging parties in the winter when game became more scarce (Helm 1981; McKennan 

1959; VanStone 1974). Potter (2008a) hypothesizes that this system of logistical 

mobility did not develop until increasing population densities and moderating 

environmental conditions of the Holocene favored semi-sedentary settlement patterns. 

Site Excavation 

First recorded in the 1960s by local resident Linda Kirsteatter, Linda’s Point was 

provisionally tested in 2005, and systematically between 2010–2014 (Sattler et al. 2011). 

Testing of the middle terrace in 2010 produced ample concentrations of debitage and 

bone, flake tools, microblades, a lanceolate biface, and a deeply buried, intact hearth 

dating to 13,120–12,830 cal B.P. (Beta-293544). From 2011–2013, we excavated twelve 

1x1-m units to below the base of cultural deposits (Figure 6), focusing on an area 

surrounding the hearth to ensure the recovery of early deposits within our sample area. 

Excavations produced a total of 6164 cultural items. Field methods included data 

recording of three-point provenience, angle of repose, and stratigraphic context of all 

artifacts found in situ. All sediments were screened by quadrant and 5-cm level through 

one-eighth-inch mesh, with mapping and photography of each floor by unit and level. To 

maximize stratigraphic analysis, we preserved balks 0.5 to 1 m wide between excavation 

blocks. Shovel tests from the upper terrace have produced an obsidian scraper, obsidian 

microblade-production debitage, and a deeply buried small discoidal biface. Additional 
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excavation is ongoing in this area, the results of which will be discussed separately upon 

completion. 

 

 

Figure 6. Linda’s Point shovel testing and excavation (by Christine A. Fik). 

 

Site Chronology 

The cultural materials from Linda’s Point are separable into two major 

components, each representing multiple occupations, and a third sparse component 

found within the modern soil. Artifacts were assigned to components based on their 
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relationship to marker beds and soil horizons observed during excavation, discussed 

below, as well as through two- and three-dimensional plotting of artifact locations, and 

the locations of refitted artifacts. Of 30 refits, 27 are among artifacts from the same 

component, while three reflect intrusive disturbance by a pit feature in the northwest 

area of the excavation. Further excavation of a wider sampling area may allow for 

identification of individual occupations within the two main components. 

Delineation of geoarchaeological strata was conducted by one of the authors 

(Gillispie), combining the assessment of site-formation processes and geochemical and 

micromorphological assessments of depositional activities, details of which will be 

reported separately. Briefly, there are ten major sedimentary deposits distinguishable, 

containing two major paleosols and reaching 130 cm in total depth (Figure 7). The 

depositional sequence is similar to that seen at other sites in the Tanana valley, most 

notably Swan Point (Hamilton and Goebel 1999; Holmes 2001, 2011; Reuther 2013). 

Resting on schist bedrock and frost-shattered schist regolith (Bed 1), containing quartz 

ventifacts (Bed 2), are three late-glacial eolian sand deposits (Beds 3 through 5) totaling 

40–60 cm thick. They are overlain by a series of loess deposits (Beds 6 through 8) 

totaling 50–70 cm thick. The lowest (Bed 6) is 15–20 cm of sand-loess containing two 

paleosols, lower PS1 and upper PS2. Fine loess above the paleosols contains two slightly 

overlapping zones of thermal contraction, each 15–30 cm thick. The upper zone (Bed 8) 

contains fine cracks of Holocene origin, while the lower zone (Bed 7) is assigned to the 

early Holocene, and contains a network of iron-clay lamellae and soil wedges, relicts of 

infilled thermal contraction cracks developed during seasonal permafrost freeze-thaw 
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cycles (French 2007). Finally, the top 5–10 cm of the section contain a weakly 

developed A horizon composed of organic silt (Bed 9) overlain by a thin organic horizon 

of roots and leaf litter (Bed 10). 

 

 

Figure 7. Generalized stratigraphic profile at Linda’s Point (split-sample dates noted by * and 
**). 
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Figure 8. Artifact and feature distributions within C1. 

 

The earliest cultural occupation is represented by a horizon of lithic artifacts, 

bone fragments, manuports, and four closely-spaced features (Figure 8). These are 

assigned to Component 1 (C1), found either resting on the PS2 surface, or impressed 

into the underlying silt-loess. Artifacts from C1 are mainly oriented horizontally, with an 

average maximum resting angle of 25.3 degrees from the horizonal, indicating minimal 

post-depositional disruption. Two hearths are represented by reddened soil, fire-cracked 
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rock, and high concentrations of burnt and calcined bone, and the third is visible as 

charcoal and reddened soil in the eastern wall of the excavated block, associated with 

heat-reddened quartz. A fourth feature of unknown function is visible as an area of 

disrupted paleosol in the north wall of the excavation block, with associated stones, 

artifacts, and a light scatter of charcoal. Preliminary identification of bone fragments 

indicates the presence of large-mammal vertebrae and longbone shaft fragments.  

Eleven charcoal samples, including two split samples, from C1 hearths and 

dispersed contexts have provided thirteen dates ranging between 18 200 and 11,200 cal 

B.P. (Table 3). Eleven of these fall between 13,100 and 11,200 cal B.P. and likely 

represent the age of C1. Of the remaining two, one is a small sample of Salix charcoal 

collected from the stone feature near the northern wall (Beta-378556) that yielded an 

aberrant date of 18 340–17 930 cal B.P., which we reject based on a split from this 

sample (UGAMS-18995) that provides a stratigraphically consistent result of 12,380–

11,960 cal B.P. The discordant date is potentially attributed to laboratory error or 

anomaly, while the consistent date of the split supports acceptance of the sample within 

the site chronology. A twelfth date (Beta-343988), collected from below C1 in mid-Bed 

5, yielded a discordantly late date of 12,700–12,430 cal B.P. Subsequent excavation 

revealed the sample location to be an in-filled, charcoal-containing rodent burrow, and 

we interpret that the sample and date should be rejected as having been displaced from 

the overlying C1.  
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Table 3. Radiocarbon Dates from the Linda’s Point Site. 

Laboratory ID 
No. 

Comp-
onent Stratum Charcoal 

ID 
Conventional 

Radiocarbon Age δ13C 2σ Date (cal B.P.)a 

Beta-343989 3 Bed 9 hearth feature  510 ± 30 -24.8 620-610; 550-500 
Beta-395435 2 Bed 8  5220 ± 30 -24.5 6170-6160; 6100-6080; 6010-5910 

Beta-361630 2 intrusive feature Salix sp. 8110 ± 50 -25.4 9260-8980; 8910-8900; 8880-8870; 
8830-8790 

Beta-361631 2 intrusive feature Salix sp. 8160 ± 50 -24.4 9260-9010 
Beta-314661 2 Bed 7/8 contact  8970 ± 40 -26.8 10,230-10,120; 10,070-9930 
Beta-378554 1 Bed 6 feature 2 Salix sp. 9840 ± 40 -25.9 11,310-11,200 
Beta-378555 1 PS2, Bed 6 feature 1  9960 ± 40 -25.0 11,610-11,520; 11,500-11,250 
Beta-372906 1 Bed 6  10,110 ± 60 -25.6 11,990-11,400 

Beta-343986 1 Bed 6  10,290 ± 40 -24.3 12,380-12,330; 12,310-12,270; 
12,240-11,940; 11,890-11,830 

UGAMS-
18995b 1 Bed 6 feature 4  10,310 ± 30 -25.2 12,380-12,340; 12,300-12,280; 

12,240-11,960 
Beta-378556b 1 Bed 6 feature 4 Salix sp. 14,900 ± 50 -24.5 18 290-17 930 
Beta-372905 1 Bed 6 Salix sp. 10,370 ± 50 -26.2 12,420-12,020 
Beta-343988 - Bed 5 krotovina  10,600 ± 50 -23.3 12,700-12,520; 12,490-12,430 
UGAMS-18996 1 Bed 6 feature 3  10,930 ± 30 -25.8 12,830-12,710 
Beta-372911 1 PS2, Bed 6 feature 4 Salix sp. 10,990 ± 50 -23.5 13,000-12,730 
Beta-343987 1 Bed 6 feature 2  11,030 ± 50 -23.8 13,030-12,750 
Beta-293543c 1 Bed 6 feature 1  11,050 ± 60 -25.2 13,060-12,760 
Beta-293544c 1 Bed 6 feature 1  11,150 ± 60 -24.8 13,120-12,830 

acalibrated with CALIB v 7.0.2 using the IntCal 13 calibration curve (Reimer et al. 2013) 
b, c split samples 
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The ten accepted samples show a range of ages indicating a palimpsest of 

terminal Pleistocene occupations with re-use of hearths and surrounding activity areas. 

Temporal clustering suggests that C1 may be divided into two main occupation 

intervals: one dating from 13,100–12,700 cal B.P. and another from 12,400–11,200 cal 

B.P. While the artifacts themselves cannot be divided into separate occupations, further 

excavation may isolate activity areas, allowing a partial separation.  

Above the paleosols, a 10–15-cm layer of culturally sterile loess separates C1 

from a younger series of occupations. Component 2 (C2) is a dense cloud of bone and 

lithic artifacts within stratigraphic beds 7 and 8, and seems to represent multiple 

palimpsest occupations dating into the Holocene. Bone fragments are scattered 

throughout the upper deposits rather than concentrated in features, with a few items 

identified preliminarily as small mammal. Dispersed charcoal dating to the early 

Holocene (10,100 cal B.P., Beta-314661) was found closely associated with large 

fragments of quartz debitage from the middle-lower portion of the C2 artifact cloud, 

marked by the transition between beds 7 and 8. This component is also represented by a 

pit feature, containing a fill of silt, flakes, and high concentrations of well-preserved 

wood charcoal dating around 9200 cal B.P. It originates near the base of Bed 8 and 

extends into Bed 5. Artifacts from within the fill were refitted to artifacts from 

undisturbed sediments of both C1 and C2, indicating the intrusive feature was dug into 

the lower deposits and then infilled with a mixture of old and new deposits. Finally, a 

dispersed charcoal sample from near the top of the artifact cloud within Bed 8 dates 
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around 6,100 cal B.P. Based on this information, C2 likely includes a wide range from 

10,200 to 5900 cal B.P.  

Charcoal from a hearth feature in the wall just below Bed 10 dates to 

approximately 550 cal B.P., representing a potential Component 3, which was not 

included in the present analysis due to the sparseness of artifacts just below the organic 

horizon.  

Piece-plotted artifacts were assigned to each component based on their direct 

spatial and stratigraphic location, while screened artifacts were assigned to component 

based on the stratigraphic associations of the quadrant and level from which they were 

excavated. Ambiguous stratigraphic contexts such as rodent burrows, the pit feature, and 

quadrants containing multiple potential stratigraphic associations were not ascribed to a 

component (NA), and their artifacts were omitted from analysis. 

Research Methods 

One of the authors (Younie) conducted lithic analysis of the excavated 

assemblage from Linda’s Point. Lithic materials were divided into tools and debitage, 

with marginally modified flakes assessed in both categories. Formal tools were 

photographed, classified and described following standard methods. Bifaces were 

classified as hafted versus unhafted, with descriptions for outline, flaking, abrasion, 

fracture patterns, and reduction stage following Andrefsky (2005). Flake tools were 

classified based on characteristics of the working edge, and described based on outline, 

retouch type and location, and fracture patterns, again following Andrefsky. Microblade 
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tools and debitage are described collectively to evaluate the full microblade reduction 

sequence. 

Complete and proximal debitage was classified by type based mainly on platform 

characteristics, with additional information according to shape, size, and dorsal flake-

scar characteristics following standard technological analysis (Andrefsky 2005:120-

127). Simple core-reduction flakes were identified as having non-acute platform angles, 

wide bodies, and wide or crushed platforms, with more robust percussion bulbs, ripple 

marks, éraillure scars, and hinged, stepped, or broken terminations. Retouch flakes 

included pieces resulting from thinning and trimming retouch. Flakes with acute angles, 

feathered terminations, and lipped platforms were classed as thinning flakes, and smaller 

items with narrow pressure-flaked platforms as trimming flakes. Trimming flakes were 

further distinguished as unifacial, with single-faceted platforms and sharp curvature, or 

bifacial, with multifaceted platforms and lower curvature (Andrefsky 2005). To provide 

accurate minimum flake counts, complete pieces and proximal fragments were assessed 

collectively as “proximal flakes,” while distal and medial fragments were grouped as 

unidentifiable flake fragments. All debitage was assigned to size classes in 1-cm 

increments, based on maximum dimension. For the purposes of our discussion, primary-

reduction debitage includes those pieces relating to core reduction and flake production, 

including cores, cortical spalls, simple flakes, and shatter. Secondary-reduction debitage 

includes those pieces relating to tool shaping and edge working, including unifacial and 

bifacial thinning and trimming flakes, burin spalls, and other specialized flakes. 
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Toolstone types were classed through visual examination of grain size, luster, 

and color under 15x magnification. To identify geographic sources for obsidian and 

rhyolite and to differentiate ambiguous materials, we conducted pXRF analysis of 

geochemistry using a Bruker Tracer III-V at the University of Alaska Museum of the 

North, following methods described by Phillips and Speakman (2009). We assessed all 

obsidian pieces over 1 cm in diameter, as well as a sample of cortical and non-cortical 

rhyolite tools and debitage. Obsidian sources were assigned with reference to the Alaska 

Obsidian Database (Reuther et al. 2011), and rhyolite sources with reference to work by 

Coffman and Rasic (Coffman and Rasic 2015).  

Lithic Assemblages 

Lithic tools and debitage make up the majority of the Linda’s Point 

archaeological materials (Table 4), followed by mainly small, fragmentary faunal 

remains, and finally larger pieces of fire-cracked rock (FCR), unmodified cobbles, and 

blocks of schist and quartz bedrock manuports used in hearths or other features. Overall, 

the upper and lower components share basic similarities, such as high proportions of 

debitage, and low numbers of cores and tools. C1 differs distinctly in the relatively high 

frequency of schist and quartz feature stones, reflecting a high density of hearth features. 

Raw Materials 

The Linda’s Point assemblage exhibits a diversity of lithic materials, with ten 

raw-material classes represented (Table 5). The majority are a variety of crypto-
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crystalline silicates, divided into fibrous chalcedony, granular cherts, and 

microcrystalline silicates (MCS) distinguished by coarser grains visible under a hand 

lens. Macro-crystalline quartz is common as quartz cobbles and ventifacts, as well as a 

few rare quartz crystal and quartzite artifacts. Igneous materials present at the site 

include mainly rhyolites and basalts, some obsidian, and a few coarser andesites 

classified under “other.” 

 

Table 4. Cultural Materials from Linda's Point by Component. 

Artifact Types 
Lower 
(C1) 

Upper 
(C2) 

Recent 
(C3) NA  Total 

Debitage 1140 3394 25 296 4855 
Faunal Remains 456 488 2 77 1023 
Fire-Cracked Rock 106 13 1 4 124 
Flake Tool 9 25 - 2 36 
Microblade - 34 - 2 36 
Retouched Flake 9 18 - - 27 
Biface 8 17 - - 25 
Core 3 16 - 1 20 
Feature Stone 13 1 - 1 15 
Cobble 1 1 - - 2 
Floral Remains - 1 - - 1 
Total 1745 4008 28 383 6164 

 

Local lake beaches, streams, and rivers are sandy with few cobbles or pebbles 

available other than quartz and schist bedrock. Quartz is locally present as marginally 

knappable blocks of irregular crystal size, found in bedrock outcrops along the shores of 
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the lake, and as ventifacted cobbles at the base of the soil profile. There is a distinct 

difference between the two components in the use of this local toolstone, with quartz 

making up only 11% of the C1 lithic assemblage compared to 41% in C2. Quartz crystal 

is reported by local residents to have been collected in the uplands north of the lake. 

 

Table 5. Toolstone Types from Linda’s Point. 

Lithic Material 
Lower 
(C1) 

Upper 
(C2) 

Recent 
(C3) NA  Total 

Quartz 130 1421 16 116 1683 
Rhyolite 161 860 3 53 1077 
Chert 389 491 2 52 934 
Chalcedony 289 452 - 35 776 
Argillite 116 63 2 29 210 
Basalt 84 34 - 3 121 
Obsidian 1 86 1 5 93 
Other 6 55 - 4 65 
MCS 14 22 1 6 43 
Quartz Crystal 2 24 - - 28 
Total 1192 3508 25 303 5028 

 

Obsidian in C2 is sourced to Wiki Peak and Baza Tena (Table 6), two of the most 

common sources in the region, located over 300 km from the site to the southeast and to 

the northwest, respectively (Cook 1995; Reuther et al. 2011). C1 contains a single piece 

of obsidian, a concave-based projectile point (Figure 9a). It closely matches the rare 

obsidian group CC, currently known to include this artifact and ten pieces from the 

Trapper Creek Overlook site in the Susitna valley of southcentral Alaska: five pieces 
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from the early Holocene component I, and five from the middle Holocene component II, 

including a microblade (Rasic 2015; Wygal and Goebel 2012).   

Five major rhyolite source groups are represented at Linda’s Point (Table 6). 

Although their exact origins are at this time unknown, they also occur at the Village site 

(S. Coffman, pers. comm. 2014). At Linda’s Point, C1 is characterized by groups E and 

F, while C2 rhyolite derives mainly from the more widespread A and B groups. The 

rhyolite groups are not identifiable by color; based on artifacts with color mottling and 

refitted pieces of varied colors, it seems color differences are more likely related to 

internal variations, soil staining, weathering, or heat treatment. 

 

Table 6. Items Assigned to Lithic Source Groups at Linda’s Point. 

Source Group 
Lower 
(C1) 

Upper 
(C2) NA Total 

Obsidian 
    

 A (Wiki Peak) 0 7 0 7 

 B (Baza Tena) 0 15 0 15 

 Unknown 1 0 0 1 
Rhyolite     
 A 1 14 4 19 

 B 0 13 0 13 

 E 3 0 0 3 

 F 3 1 0 4 

 H 0 2 0 2 

Total 8 52 4 64 
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Component 1 

Component 1 displays fairly even counts of bifaces and flake tools (Table 7), 

with a heavy emphasis on cherts and chalcedonies in the debitage, and an even greater 

emphasis on chalcedony used for formal tools (Table 8). 

 

Table 7. Tools from Linda’s Point. 

Tool Type 
Lower 
(C1) 

Upper 
(C2) Total 

Biface Tool 8 17 25 

 
Unfinished Biface Fragment 3 10 13 

 
Unhafted Biface 1 4 5 

 
Hafted Biface 4 3 7 

Flake Tool 9 25 35 

 
Unknown 0 8 8 

 
Combination Tool 2 5 6 

 
Side and End Scraper 0 4 4 

 
End Scraper 2 2 4 

 
Scraper 1 0 3 

 
Intensively Retouched Flake 3 1 3 

 
Side Scraper 0 2 2 

 
Burin 0 2 2 

 
Notch 1 0 2 

 
Knife 0 1 1 

Total 17 42 60 
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Table 8. Linda’s Point Debitage and Tools by Material Type (continued next page). 

Flake Type 
Argillite  Basalt  Chert  Chalcedony  MCS  
C1 C2   C1 C2   C1 C2   C1 C2   C1 C2   

Proximal Flake 
               

 
Retouch Flake 53 21 

 
25 13 

 
133 177 

 
105 161 

 
3 14 

 
 

Simple Flake 3 3 
 

6 1 
 

10 32 
 

7 14 
 

2 1 
 

 
Bipolar Flake 

               
 

Cortical Spall 
       

2 
       

 
Technical Spall 

       
4 

       
 

Core Rejuvenation Flake 
       

1 
       Flake Fragment 

               
 

Flake Fragment 56 38 
 

51 19 
 

224 218 
 

166 266 
 

9 6 
 

 
Shatter 

   
1 

  
13 7 

 
1 1 

    
 

Potlid 
      

1 1 
       Microblade 

               
 

Microblade 
 

1 
     

24 
  

3 
  

1 
 

 
Microblade Core 

       
1 

  
1 

    
 

Technical Spall 
       

1 
       Cobble 

               Core 
        

2 
       Marginally Retouched Flake 2 

     
5 5 

 
2 

     Formal Tool 2 
  

1 
  

2 16 
 

8 6 
    Total   116 63   84 33   388 491   289 452   14 22   
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Table 8 Continued. 

Flake Type  Obsidian  Other  Quartz  
Quartz 
Crystal  Rhyolite Total 

  C1 C2   C1 C2   C1 C2   C1 C2   C1 C2 C1 C2 
Proximal Flake 

               
 

 
 

Retouch Flake 
  

47 
 

1 10 
 

5 70 
    

64 251 389 764 

 
Simple Flake 

  
7 

  
8 

 
14 167 

  
3 

 
9 93 51 329 

 
Bipolar Flake 

       
1 14 

  
1 

   
1 15 

 
Cortical Spall 

       
8 4 

     
1 8 7 

 
Technical Spall 

        
1 

     
1 0 6 

 
Core Rejuvenation Flake 

              
1 0 2 

Flake Fragment 
               

 
 

 
Flake Fragment 

  
30 

 
4 36 

 
53 635 

 
2 14 

 
84 480 649 1742 

 
Shatter 

       
23 498 

  
5 

 
2 13 40 524 

 
Potlid 

        
3 

    
1 2 2 6 

Microblade 
               

 
 

 
Microblade 

              
1 0 30 

 
Microblade Core 

               
0 2 

 
Technical Spall 

               
0 1 

Cobble 
     

1 
 

1 
       

1 1 
Core 

        
3 10 

  
1 

  
3 3 16 

Marginally Retouched Flake 
  

2 
     

9 
     

2 9 18 
Formal Tool 

 
1 

     
2 8 

    
1 12 17 42 

Total     1 86   5 55   110 1419   2 24   161 860 1170 3505 
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Figure 9. C1 bifaces:(a-b) complete triangular points; (c-d) basal fragments of triangular points; 
(e) refitted unfinished biface; (f) crescentic biface. 
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Bifacial Tools 

C1 contains four complete bifaces and four biface fragments. These include two 

finished hafted bifaces and two bases, a nearly complete mid-stage preform refitted from 

two fragments, a complete crescentic biface, and an unfinished edge fragment (Figure 9). 

With the exception of the latter two items, all are consistent with the central Alaskan 

Chindadn biface type. 

A complete subtriangular, concave-based point of opaque green-brown obsidian 

is the most striking of the bifaces (Figure 9a). It is extensively worked, with finely 

feathered and stepped straight and oblique parallel flaking, as well as light edge-

grinding, and abrasion along the basal and proximal lateral margins. Parallel basal 

thinning flakes extend from both faces of the basal margin, obscuring prior thinning 

flakes on the proximal half of the point. The margins are smoothly convex and 

symmetrical, while one corner of the base is longer than the other, potentially indicating 

reworking of a broken corner. As discussed above, its geochemical signature is rare for 

Alaska. 

The second complete biface is very thin, triangular in outline, and lenticular in 

cross-section, extensively but irregularly flaked on Group A rhyolite (Figure 9b). Lateral 

margins are slightly convex and asymmetrical. Edge-grinding is present along the 

margins, and obscured by light abrasion near the proximal end. 

Two straight-based fragments of green argillite were found at the same elevation 

but horizontally about 1 m apart. Their basal-corner angles are slightly acute, indicating 

they are likely fragments of triangular points. Both exhibit short, narrow, feathered 
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basal-thinning scars. The shorter fragment is broken just above the base in a rolling snap 

fracture (Figure 9c), and it has a shallow notch on the basal margin created by a smaller 

fracture. The larger fragment exhibits fine, shallow, straight parallel flaking and straight, 

regular margins, with light hafting abrasion near the base. The distal end is unusually 

thick and has been fully reworked, obscuring any previous breakage with a steep, 

concave scraping edge (Figure 9d). 

The refitted biface is on a semi-translucent, pitted and irregular gray chalcedony 

that appears to have broken during manufacture (Figure 9e). The two pieces were found 

at the same elevation, approximately 40 cm apart horizontally, and conjoin at a heavy 

rolling hinge off the stepped termination of a few wide thinning flake scars. Another 

fragment of the same material (Figure 10i) was found 2 m away at a similar depth below 

surface. It is small with minimal flaking and appears to have been broken along an 

incipient flaw in the material. 

The final biface is a bi-marginally retouched tool on a thin gray chert flake, semi-

circular and crescentic in outline (Figure 9f). The reduction approach is similar to that 

seen on many teardrop-shaped Chindadn points: marginal and unpatterned, with a few 

remnant dorsal scars and stepped thinning flakes not crossing the entire artifact. A small 

patch of stream-rolled cobble cortex is visible on the dorsal face; however, the artifact 

has been sufficiently reduced to completely obscure the original flake platform. No 

edge-grinding or abrasion is visible on the margins, but there is light stepped use-wear 

towards the center of the convex edge.  
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Figure 10. C1 flake tools and biface fragment: (a,c) combination tools; (b, d, f) heavily 
retouched flakes; (e) notch; (g,h) end scrapers; (i) biface edge fragment; (j) large 
basalt scraper. 
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Flake Tools 

C1 flake tools (n=9) are mainly small, fairly informal fragments of scrapers and 

heavily edge-retouched flakes (Table 7). Of the three complete items, the largest is a 

thick basalt side scraper on a robust flake (Figure 10j). It appears to have been heavily 

used so that the ventral face was abraded smooth along the working edge, accompanied 

by a few macroscopically visible striations perpendicular to the working edge. Two 

smaller end scrapers, one of chalcedony (Figure 10g) and the other of chert (Figure 10h), 

exhibit steep unifacial retouch and heavy use wear, as well as moderate to light shaping 

of the lateral margins.  

The remaining flake tools are more expedient, on the border between formal 

tools and marginally retouched flakes. The largest are two robust quartz tools on thick 

blocky flakes, steeply retouched with extensive use damage on both lateral margins. One 

exhibits yellowed cortex (Figure 10f), while the other exhibits a wide, steep notch near 

the distal end (Figure 10e). Of the smaller tools only one is compete, a small triangular 

flake on gray chalcedony, with distal flaking to create a straight, shallow scraping edge 

(Figure 10b). A second retouched flake is on a cortical spall of dark gray chert, 

exhibiting patches of stream-rolled cobble cortex and steep use-wear on both margins, 

terminating in step fractures along natural fracture planes in the dorsal cortex (Figure 

10d). The tool exhibits light use-wear and is broken, apparently through heavy bipolar 

impact. The final two items are classified as combination tools due to the presence of 

multiple working edges, both on small delicate flakes of toolstone rare to the collection. 

One is a notched graving tool on a distal flake fragment of cream-colored chert, with two 
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small spurs, one at the snapped edge and the other on the other end of the notch (Figure 

10a). The other is clear chalcedony, and also exhibits retouch on a snapped edge, with 

use-damage on the proximal and distal broken corners (Figure 10c). As well as the 

formal tools, an equal number of marginally retouched flakes of a variety of materials 

are present, most of which are fragmentary (Table 8). 

Debitage 

The C1 debitage assemblage contains 1152 items and is dominated in numbers 

by flake fragments and secondary retouch flakes of chert and chalcedony (Table 8). By 

weight, the assemblage is represented mainly by quartz and marginally also by chert 

(Table 9). Although shatter, cores, cortical spalls, a single cobble, and single bipolar 

flake are present, they make up only 4.7% of the debitage, and the majority of these 

items (63%) are quartz. Simple flakes make up another 4.4% and are dominated by 

quartz, chert, and chalcedony. Overall, the debitage is extremely small. Removing the 

cores and cobbles from the sample, the debitage has an average weight of .64 g, while 

93% of the debitage measures less than 2 cm and 67% measures less than 1 cm in 

maximum dimension. 

Flake characteristics support the classification of the C1 assemblage as 

representing mainly secondary reduction activities (Figure 11). There is almost no cortex 

in the assemblage, and 90% of proximal flakes exhibit multiple remnant flake scars on 

the dorsal surface, with an average count of three. Overall, flake platforms are either 

smooth or complex with very few cortical or collapsed platforms, indicating an absence 

of heavy early-stage percussion. Further, 80% of the smooth platforms in the assemblage 
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are accounted for within the retouch debitage, indicating secondary-stage reduction of 

unifacial flake tools. Of the proximal retouch flakes, 215 (57%) have complex platforms 

likely relating to biface reduction, compared to 153 (43%) with simple platforms, more 

likely related to unifacial reduction. 

Only three cores are present in the C1 assemblage: two amorphous, unprepared 

unidirectional cores and a bipolar core, all on quartz with multiple cortical surfaces. 

With an average weight of 311 g and an average maximum dimension of 102.5 mm, they 

represent some of the largest pieces in the assemblage, and yet they are only informally 

reduced, with few faces and only four to seven flake scars per piece. 

 

Table 9. Counts and Weights for all Debitage, Including Cores and Retouched Flakes,  
Except Cobbles. 

Material 
Type 

Count  Weight 

C1 C2 Total   C1 C2 Total 

Argillite 114 63 177 
 

23.0 15.9 38.9 
Basalt 83 33 116 

 
22.1 2.4 24.5 

Chert 386 475 861 
 

49.6 279.9 329.5 
Chalcedony 281 446 727 

 
23.7 33.9 57.6 

MCS 14 22 36 
 

5.7 8.5 14.2 
Obsidian 

 
86 86 

 
.0 5.6 5.6 

Other 5 54 59 
 

.0 22.8 22.8 
Quartz 107 1411 1518 

 
1522.4 3176.7 4699.1 

Quartz Crystal 2 24 26 
 

.1 7.2 7.3 
Rhyolite 160 848 1008 

 
28.3 180.4 208.7 

Total 1152 3462 4614   1697.4 3733.3 5408.2 
 



 

46 

 

Figure 11. Debitage characteristics for C1 and C2, shown as percentages of the debitage 
assemblage for each component.Debitage counts given above each bar. Cortex counts 
also include shatter.  

 

Component 2 

C2 displays a relatively high proportion of flake tools, followed by bifacial 

preform fragments (Table 7). There is a heavy emphasis on the use of quartz and rhyolite 

in the debitage, compared to an emphasis on chert and rhyolite for formal tools (Table 

8). 
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Bifacial Tools 

While C2 contains 17 bifacially worked pieces, only three are finished hafted 

bifaces. These include one complete specimen each of chert and rhyolite, lanceolate in 

outline, with narrow tongue-shaped bases and a combination of straight and slightly 

oblique parallel flaking (Figure 12l,m). Slightly irregular in outline and cross-section, 

both exhibit proximal hafting abrasion and distal impact fractures. The third is a parallel 

and collaterally-flaked lanceolate fragment on mottled cream and gray chert (Figure 

12k), which has been reworked into a bifacial flake tool after loss of the distal end due to 

impact fracture. Its distal end exhibits burin and scraping use-damage, and its proximal 

is broken along one margin and retouched into a steep scraping edge on the other. The 

remainder are two ovate preforms, one of chert (Figure 12j) and one fragment on 

rhyolite, two large quartz bifaces, potentially cores or chopping tools (Figure 13d,e), and 

eight thick, irregular unfinished biface fragments made on chert, chalcedony, and 

rhyolite. Two of the fragments show evidence of use-retouch on broken and bifacially 

sharpened edges. 

Flake Tools  

C2 contains 25 flake tools (Table 7), eight of which are unidentifiable fragments 

of quartz, rhyolite, chert and chalcedony with evidence of working (for example, Figure 

13b). Eight of the identifiable tools are various forms of side and end scrapers. All but 

one rhyolite end scraper (Figure 12f) and one quartz side scraper (Figure 13a) are made 

on thick gray chert flakes (for example, Figure 12e,g). With the exception of the quartz 

scraper, the tools lack cortex and were discarded unbroken.  
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Figure 12. Sample of C2 tools and bifaces: (a, d-g) scraper tools; (b) microblade core tablet; (c) 

microblade core; (h) burin spall; (i) limace-like scraper; (j) biface; (k-m) lanceolate 
bifaces. 
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Figure 13. Quartz tools from C2: (a) scraper; (b) flake tool fragment; (c) combination tool; (d,e) 
bifaces. 
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The six combination tools in C2 include various working-edge combinations of 

scrapers, burins, notches, gravers, and bifacial tools, and are made on a variety of sizes 

and types of quartz, quartz crystal, rhyolite, and chert. Three are simple burinated 

scraping tools, one is a gray-chert multi-pronged denticulate, graver, and notch (Figure 

12d), another is a quartz-crystal tool of unknown original form reworked into a notch 

with bifacial scraping edge (Figure 13c), and the last shows characteristics of a small, 

delicate limace, a double-sided scraper with rounded ends (Figure 12i). It is re-worked to 

exhaustion, so that its two working edges meet in the middle. Finally, C2 includes a 

dihedral burin on a thin gray-chert flake, a burin on a chalcedony flake, and a large 

brown-chert cortical spall marginally retouched into a robust knife edge (Figure 12a). 

Besides the formal flake tools, there are 18 marginally retouched flakes and fragments, 

half of which are on local quartz while the remainder are spread between chert, obsidian, 

and rhyolite. 

Microblade Technology 

Microblade-related lithic pieces in C2 consist of a single microblade core of red 

chert (Figure 12c), a thin, wide core tablet (Figure 12b), a small chalcedony fragment 

with blade-like scars, and 32 microblades and fragments made almost entirely on gray 

and brown cherts. Microblades are mainly trapezoidal and include four complete pieces 

and 11 proximal, 12 distal, and three medial fragments. The core is small and exhausted 

such that its original shape and reduction process cannot be determined; it shows neither 

bifacial reduction nor a wedge-shaped outline. The tablet is round and might have come 

from a semi-conical core rather than a wedge-shaped form. It is very thin (2.8 mm), with 
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a complex platform and four remnant flute scars located on the tablet’s slightly hinged 

distal end, potentially indicating multiple fluted faces. Its upper surface exhibits remnant 

side-blow flaking, indicating multiple approaches to platform maintenance. 

Debitage 

The C2 debitage assemblage of 3463 pieces is dominated in numbers and weight 

by quartz flake fragments and shatter (Table 9). Flake fragments and secondary retouch 

flakes of rhyolite, chert, and chalcedony are the next-most common (Table 8), with 

retouch flakes making up 22% of the assemblage. Shatter and simple core flakes make 

up 25% of the C2 debitage. The majority of shatter is composed of quartz; simple flakes 

are mainly quartz and rhyolite. Rare debitage includes microblades, cores, bipolar flakes, 

technical spalls (Figure 12h), cortical spalls, potlidded fragments, and a cortex-covered 

cobble of unidentifiable material. Overall, debitage sizes are extremely small. Removing 

the cores and cobble from the sample, the debitage has an average weight of .67 g, 

despite the high proportion of blocky quartz pieces, which average 1.27 g. In terms of 

size class, 90% of the debitage pieces measure less than 2 cm, and 62% less than 1 cm, 

in maximum dimension. 

Although overall flake characteristics support the classification of the C2 

assemblage as being mainly secondary retouch flake debitage, the local quartz debitage 

follows a distinct pattern. Quartz is represented mainly by primary debitage of shatter 

and simple flakes, with low platform counts and larger sizes compared to other debitage. 

Overall for C2, including quartz, there is almost no cortex, and the majority of proximal 

flakes exhibit more than one remnant flake scar on their dorsal surface (Figure 11). For 
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the assemblage overall, flake platforms are either smooth or complex with very few 

cortical or collapsed platforms, suggesting a low rate of early-stage heavy percussion. 

Although 58% of the smooth platforms in the assemblage are accounted for within the 

retouch debitage, indicating unifacial tool shaping and retouch, another 37% of the 

simple flakes are found within simple flake debitage, indicating that core reduction and 

flake detachment stages are also prominent. Of the retouch flakes, 395 (51%) have 

complex platforms related to biface thinning and retouch, compared to 338 (44%) with 

simple platforms, more likely related to unifacial reduction, and the remainder are 

unidentifiable. 

Of the 16 cores in the C2 assemblage, 10 are on quartz, including four 

multidirectional cores, four unidirectional cores, one bipolar core, and two core 

fragments. They are large and blocky, with little preparation and an average weight of 

86.1 g. Besides these, and the microblade core described above, the remaining cores are 

small, weighing an average of 5.8 g. They include two unidirectional rhyolite core 

fragments, a single completely exhausted multidirectional rhyolite core, a chert bipolar 

split pebble, a bifacially-worked chert core, and a quartz-crystal core fragment. 

Lithic Material Use and Technological Organization at Linda’s Point 

Toolstone Selection 

Throughout prehistory, a few major aspects of lithic material procurement and 

use appear to have consistently influenced the choices made by occupants at Linda’s 
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Point. A lack of high-quality local materials has led to variety in the materials brought to 

the site from regional and exotic locations, seen in mainly late-stage lithic reduction, 

exhausted cores of high-quality material, and highly curated tools. However, there is a 

distinct difference between components in the treatment of lower-quality locally-

available quartz, which is largely ignored in C1 but became a focal point of an expedient 

and informal industry in C2, making up nearly half of the C2 assemblage. Rhyolite, 

slightly coarser than the cherts and chalcedonies, also became relatively more prominent 

in C2, especially within the tool assemblage. Overall, there appears to be greater 

selectivity in the Holocene, with quartz used more often for expedient tools, cherts for 

microblades and flake tools, and rhyolite for bifaces. Although some selectivity in the 

C1 occupation is seen in a general preference for chalcedonies, it is seen for all tool 

types, with a variety of other material types following no discernible patterning. 

Tool Production and Reduction Strategies 

There is a marked difference between components in terms of the toolkits being 

worked and used on site, potentially reflecting differences in activities and site 

occupation over time, most notably a diminished emphasis on biface use in C2. For C1, 

bifacial pieces make up 47% of the formal tool assemblage, and all but two fragments 

are finished tools or hafted bifaces. For C2, bifacial artifacts make up 40% of the formal 

tool assemblage, but only three are finished hafted bifaces, and the remainder are 

rejected, generalized preforms and partially worked bifacial tools. Flake-tool technology 

is relatively expedient in both components, with a wide variety in shape and size, and 
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high frequency of informal marginally retouched flakes. In general, however, C2 flake 

tools are more curated than those from C1, with higher proportions of combination tools 

(25% versus 10% of the flake tools per component, respectively) and an overall lower 

proportion of expedient marginally retouched flakes (20% of all C2 tools compared to 

35% for C1). 

Both components at Linda’s Point have relatively high proportions of late-stage 

reduction debitage, and a low proportion of simple flakes and cores. Early-stage debitage 

is more prevalent in C2, seen mainly as large, blocky pieces of local quartz. C2 

reduction technologies are also more diverse; C1 debitage reflects the byproducts of 

core-and-flake reduction and bifacial reduction, while the C2 assemblage reflects these 

as well as specialized burination retouch and microblade production. In comparison, C1 

exhibits a slightly greater emphasis on bifacial versus unifacial retouch, consistent with 

the higher proportion of discarded bifaces.  

Patterns of Lithic Material and Landscape Use 

The emphasis on late-stage secondary reduction of non-local materials in both 

components indicates that inhabitants manufactured many tools off-site and then 

transported their materials to Healy Lake to be used, reworked, and occasionally 

discarded. This pattern appears to have changed little through time, and is expected 

given that few toolstone resources are available at Linda’s Point, while the local quartz 

that is available is riddled with inclusions and incipient fractures. Substantially higher 

proportions of quartz debitage in C2 most likely indicate a potential shift in lithic 
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procurement strategies from dominantly nonlocal in the terminal Pleistocene to more 

locally-focused in the Younger Dryas and Holocene. Alternatively, this could be the 

result of sampling, and the current discussion may require adjustment upon future 

excavation. 

 The earliest site inhabitants preferred a lithic technological strategy emphasizing 

curation and transport of materials, such that tools manufactured at one site were carried 

to the next when the group moved within their settlement range, rather than 

manufacturing new, locally-sourced tools at the new camp (Odell 1996). We hypothesize 

that the use of local materials became more important later in time as inhabitants became 

more familiar with the area and its resources, and established larger band-sized groups 

rather than highly-mobile foraging groups. As larger groups lengthened their residence 

time at Linda’s Point, raw material choices might have shifted towards locally accessible 

toolstone (Kelly 1988, 1992; Surovell 2009). This is consistent with the observed 

patterns of material use in C2, such as increased use of local materials, decreased 

curation, and a decreased reliance on highly portable bifacial technology. Similarly, 

increased selectivity seen in C2 may be the result of more sedentary populations 

conserving non-local, high-quality transported toolstone for more delicate knapping 

tasks such as microblade production. The presence of a pit-hearth feature in C2, 

compared to the apparently unlined hearths in C1, suggests increased energy investment 

in feature construction, and provides further evidence for increased occupation length. 

While exotic obsidian could be evidence of embedded procurement in a developing 
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logistical settlement system, it might also reflect developing regional trade networks, 

given increasing obsidian usage in the Holocene throughout Alaska. 

Alternative environmental explanations for the shift in toolstone emphasis might 

be that quartz material was accessible at different locations during the terminal 

Pleistocene due to erosion, fluvial sorting along riverbanks, or seasonal coverage by 

snow or marshy vegetation. Rising lake levels and erosion, perhaps in the late 

Pleistocene or perhaps during the Holocene, might have exposed new quartz seams 

along the shoreline, providing materials accessible directly near the site. The occupants 

of the earliest component might have flintknapped quartz materials further off-site at 

exposures on the Healy River or open floodplain. However, the presence of many large 

schist and quartz feature stones in C1 indicates that at least some sources of bedrock 

were available nearby during the earlier occupation, and the low presence of smooth 

cortex on quartz debitage in both components indicates procurement from eroded 

bedrock exposures rather than smaller, weathered ventifacts. 

Rather than affecting lithic procurement alone, the changing environmental 

context of the Healy River basin likely also affected the role of Linda’s Point within 

regional subsistence and settlement strategies. The transition from a high-energy riverine 

environment to a shallow lake with numerous deltaic wetlands likely increased the long-

term habitability of the site, providing a wider array of available resources and increased 

accessibility to the Tanana River. A transition away from residentially mobile settlement 

patterns would be explained by Holocene impoundment and rising lake levels, and 

further encouraged by increasing Holocene forestation and the subsequent shift from 
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large seasonally predictable herd animal populations to individually-encountered, 

solitary browsing ungulates drawn to lakeshores and wetlands. 

The presence and meaning of a Holocene transition to a local quartz industry 

may be explored by further testing and excavation around the lake margins. Localized 

presence of different reduction stages, such as core testing or decortication at collection 

sites, or discard of more carefully finished tools at hunting or fishing sites, would 

indicate increased logistical mobility. An increase in the proportion of quartz over time 

at multiple sites would provide more generalized evidence for reduced residential 

mobility and longer site occupation times. Cook identified local quartz material at the 

Village site, calling it quartzite due to the presence of macroscopic, grain-like crystals 

(Cook 1969). As with the Linda’s Point quartz, flakes of this material were notably 

larger than those of other materials. He identified the presence of a “Quartzite Horizon,” 

a pulse of quartz activity in the transitional levels between the Chindadn and Athabascan 

levels, dating circa 9000 cal B.P., but in fact noted a “conspicuous scarcity” of it in the 

upper levels (Cook 1969:131), indicating the pattern may be more complex than can be 

interpreted through data from Linda’ Point alone. However, this interpreted scarcity is 

based on flake counts, and Cook’s data show that quartz is actually quite prevalent in 

terms of weight (Cook 1969:131-135). Clearly, further study in the Healy Lake area is 

needed to clarify the question of a local Holocene quartz industry. 
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Regional Context 

Cultural Chronology 

The archaeological record at Linda’s Point can answer long-debated questions 

about the stratigraphy, tool assemblages, and cultural chronology at Healy Lake. Thus 

far at Linda’s Point, microblades, microblade cores, and lanceolate bi-points occur only 

in the upper strata. They are clearly spatially separated from the small triangular 

“Chindadn” points associated with multiple hearths in the basal deposits, dating near 

12,000–13,000 cal B.P. Although occurring later in time, the C2 quartz items are 

suggestive of a “Quartz Horizon” similar to that originally proposed by Cook. Given 

these results, caution is advised in the use of the original definition of the Chindadn 

complex, which spanned four thousand years. It encompassed the rapid environmental 

fluctuations of the terminal Pleistocene, including the Allerød warm interval, the sharp 

cooling of the Younger Dryas at 12,800–11,700 cal B.P., and the return to warmer 

temperatures during the first millennium of the Holocene (Graf and Bigelow 2011). This 

makes its temporal context even broader than the overarching concept of the East 

Beringian Tradition (Holmes 2011). Such broadly defined complexes and traditions 

inherently pose the danger of glossing over a wide range of potential cultural and 

behavioral variability, potentially implying static — rather than responsive and adaptive 

— cultural systems (Odess and Rasic 2007). 

Extending the results from C1 further into a regional context adds to the culture 

history of the middle Tanana as well. At this time, the LPEH is represented in the middle 
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Tanana by a number of well-dated components spanning from 14,200 cal B.P. to the 

beginning of the Holocene, covering the entire timeline originally proposed to be 

encompassed within the Chindadn complex, and slightly earlier at Swan Point (Figure 

14). The dates at the earliest components of Linda’s Point and the Village site cluster 

into discrete, non-overlapping date ranges, strongly correlative to occupations at Swan 

Point, Broken Mammoth, Mead, and Upward Sun. These early components, notably 

Swan Point CZ3, Broken Mammoth CZ3, and Mead CZ4, share characteristics similar to 

those at Healy Lake: numerous ephemeral hearths, Chindadn bifaces, and rare or 

ambiguous microblade technology, focused within a time range of 13,000-11,500 cal 

B.P., and as early as 13,500 cal B.P. at the Village site. These sites are located in similar 

lowland settings, overlooking wetland deltas along the glaciofluvial floodplain of the 

Tanana River. 

Subsistence patterns indicate a variety of large-mammal prey in the oldest sites in 

the Tanana, while early Holocene subsistence shows a range of large-mammal species, 

and a wider range of small-mammal species, than in the preceding Allerød or Younger 

Dryas assemblages (Potter et al. 2013). Potter and colleagues suggest a potential link 

between Chindadn points and upland sheep and caribou hunting, compared to lower-

terrain bison and wapiti hunting for microblade technology. They point to evidence of 

caribou and sheep hunting in Nenana valley components compared to a heavier presence 

of bison in lowland Tanana sites, which have a longer history of microblade technology 

(Potter 2011; Potter et al. 2013). However, microblades are present in upland 

components in the Nenana dating to the Younger Dryas, and a wide array of Chindadn 
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points are present in lowland Tanana basin sites containing a variety of faunal remains 

and exhibiting complex chronological patterning.  

 

 

Figure 14. Age ranges of terminal Pleistocene components of archaeological sites in the Tanana 
basin.Calibrated dates from Cook (1996), Holmes (2011), and Potter et al. (2013).  

 

Initial evaluation of the Linda’s Point faunal materials, though not presented 

here, indicates similarities to the regional pattern, with a focus on larger mammals in C1 

and a variety of smaller mammals in C2. The presence of a crescent-shaped biface in C1, 

similar in outline to lunate crescents of the Northwest Coast (Moss and Erlandson 2013), 

hints at greater diversity. Crescents from Northwest Coast and Great Basin wetland 

locations are commonly medially edge-ground in a similar manner as the Linda’s Point 

specimen, which is interpreted to facilitate hafting suggestive of ethnographically 
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recorded lunate bird-hunting points (Moss and Erlandson 2013). Lowland Tanana valley 

site locations like Healy Lake would present ideal locations for the hunting of waterfowl 

throughout prehistory, and the regional archaeological record presents concurring 

evidence for the early development of a broad-spectrum diet beyond the pursuit of 

megafauna. A crescent-like biface also occurs in the CZ3 component of Swan Point 

(Holmes, 2011:Fig. 10.9.h), resembling “butterfly” or “trapezoidal” crescents in existing 

typologies (Moss and Erlandson 2013), while avian and fish remains are found at Mead 

CZ3, Swan Point CZ3, and Broken Mammoth CZ3 (Holmes 2011; Potter et al. 2013). In 

comparison, the older Swan Point CZ4 with its associated Diuktai microblade 

assemblage is heavily focused on processing of megafauna (Potter et al. 2013). Clearly, 

Beringian subsistence patterns are more complex than can be assessed through the 

current small sample of preserved faunal remains. Detailed faunal analysis at both 

Linda’s Point and the Village site is needed to place Healy Lake in the context of 

regional subsistence patterns. 

Adaptive Strategies of Lithic Resource Use 

Linda’s Point C1 follows many of the existing patterns of LPEH sites in interior 

Alaska — multiple hearths with faunal remains, accompanied by debitage, flake and 

blade tools, and small bifaces. Toolstones are dominated by fine-grained chalcedonies 

and cherts, acquired off-site but presumably within the general region. Obsidian is rare, 

especially in comparison to Holocene occupations. Raw materials seem to be chiefly 

extra-local.  
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Current data indicate that a variety of lithic resource-use strategies existed within 

the Alaskan interior. At Walker Road in the Nenana valley, detailed lithic technological 

analysis showed extensive use of locally available river cobble materials, accompanied 

by a prevalence of early-stage reduction (Goebel 2011), interpreted to reflect a 

settlement system relying on local materials to reduce transport costs. Similar patterns 

are seen in Dry Creek Component I (Graf and Goebel 2009), while the presence of 

nonlocal materials increased in the later Component II, accompanied by a decrease in 

cortex, and increase in secondary and finishing stages of reduction. In the Tanana valley, 

Mead CZ3b shows a combination of local and nonlocal material use; discarded tools are 

of nonlocal materials while on-site reduction focused strongly on local gray chert (Little 

2013). The slightly earlier Mead CZ4 shows similar patterns to Linda’s Point C1, with a 

limited number of material types used compared to other components and a focus on 

curated chalcedony tools, interpreted to indicate higher mobility and shorter occupation 

times than CZ3. However, unlike Linda’s Point C1, there was a heavy focus on local 

quartz, which is interpreted to relate to opportunistic use rather than habitation length or 

group size (Little 2013). Overall, current studies of material use throughout the LPEH 

indicate variability in lithic procurement and usage, and seem to reflect flexibility to 

account for toolstone availability on the landscape and duration of occupation, rather 

than overarching cultural tendencies.  
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Conclusions and Future Research  

Our results suggest that the Linda’s Point site was used as a residential camp 

during the occupation of both components. Hearths and highly fragmented burnt and 

calcined animal bone represent domestic cooking and marrow extraction. Small 

sharpening and retouch flakes, combined with discarded broken projectile points, 

microblades, small flake tools, and exhausted cores represent the maintenance of a 

variety of tools for hunting and hide-working. Finally, the presence of burins, burin 

spalls, steep-angled side scrapers, and spurred flake tools and gravers indicate the 

working of osseous and woody materials. Lithic raw materials are diverse and debitage 

overall is small and focused on secondary reduction activities, indicating the use and 

reuse of tools manufactured elsewhere. These patterns are consistent with the overall 

lack of local raw-material sources, with the exception of local quartz deposits. All of 

these characteristics are consistent with human use of an accessible low terrace 

landform, near to water and to wetland resources, and ideal for habitation by a full 

residential group. 

C1 seems to represent multiple short-term occupations, with numerous, nearly 

overlapping ephemeral hearth features and scattered lithic deposits. Tools for faunal 

processing are present but expedient, while there is a notable emphasis on the use and 

discard of small finished bifaces. C2 is represented by dense scatters of lithic and 

calcined bone fragments, combined with the presence of intensive early-stage reduction 

of local quartz, suggesting increased use of local resources and hence longer durations of 

occupation than during the terminal Pleistocene. The presence of a 9000-year-old flake-
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and-charcoal-filled pit feature indicates that occupations may have been less transient, 

with more time taken for the building of fires or disposal of refuse in an organized camp 

structure. 

The currently excavated area is small but has provided a high density of features 

and materials with precisely defined stratigraphic contexts, showing promise that further 

excavations using contemporary excavation methods would help to delineate 

subcomponents within C1 and C2 and further clarify the Healy Lake archaeological 

record. Expansion of the existing excavation block will enhance the interpretation of 

activity areas and relationships between features at the site, while addition of new 

excavation areas will show whether the patterns observed here are consistent across the 

site, or show variation within more complex site structures. Continued excavation of 

surrounding sites along the lake margins, and comparisons to contemporary occupations 

along the Tanana, will help to establish local and regional patterns of differentiated lithic 

adaptive strategies and settlement patterns. These in turn will help to illuminate our 

understanding of human responses to LPEH environmental change and ultimately the 

early human settlement of Beringia. 
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CHAPTER III 

REINVESTIGATING THE ARCHAEOLOGICAL RECORD OF HEALY LAKE, 

ALASKA: CHANGING PATTERNS OF LITHIC TECHNOLOGICAL 

ORGANIZATION, AND IMPLICATIONS FOR PREHISTORIC SETTLEMENT AND 

RESOURCE USE 

 

Terminal Pleistocene archaeological assemblages, dating 15,000–13,000 years 

ago (cal B.P.), mark the earliest known human occupation of Alaska (Goebel and Buvit 

2011; Hoffecker 2011). Migration of early populations from northeast Asia has been 

traced through genetic and linguistic continuities across the Bering Strait, and continuity 

of cultural traditions, most notably the production of organic points with inset 

microblades. However, microblades are in fact rare in the earliest known Alaskan 

occupations, and lithic traditions are instead focused on small triangular and teardrop-

shaped Chindadn bifaces with few cultural affinities outside Alaska (Goebel and Buvit 

2011; Wygal 2011), leaving our understanding of early Alaskan culture history 

ambiguous. 

Recent technological studies in Beringia have begun to provide a wider 

perspective of Beringian cultures and adaptive strategies of lithic procurement, use, and 

reduction. For example, at Ushki-5 (Kamchatka) and Dry Creek (central Alaska), on 

opposing sides of the Bering Land Bridge, sites transition from a 13,500–13,000 cal B.P. 

emphasis on blade and flake core technology during the Allerød to a 12,500–11,600 cal 

B.P. emphasis on bifacial and microblade technology during the Younger Dryas, with 



 

66 

increased use of exotic materials and greater toolstone selectivity (Goebel 2011; Graf 

2010; Graf and Goebel 2009). These changes may reflect increasing logistical mobility 

and command of local and nonlocal resources as migratory populations settled and 

gained increasing knowledge of the lithic landscape. Within the wider Ushki site 

complex, obsidian is common throughout early occupations and has been traced to a 

range of long-distance outcrops, indicating high mobility of Beringian migrants (Kuzmin 

et al. 2008), as well as thorough landscape knowledge. Further, in the 13,000 cal B.P. 

Walker Road assemblage, a focus on primary reduction of local materials for blade and 

flake tools suggests that inhabitants were aware of their lithic landscape and able to 

travel carrying few curated or pre-manufactured tools (Goebel 2011). 

The early archaeology of Healy Lake has played a central role in the 

archaeological interpretation of terminal Pleistocene Beringia. At the Village site, 

microblades were found in association with Chindadn bifaces (Cook 1969, 1975, 1996); 

however, it has been questioned whether this association is due not to concurrent 

occupations, but instead to compressed and disturbed stratigraphy, or to Cook’s 

recording of artifact provenience using arbitrary depth levels (Bever 2001; Dixon 1985; 

Hamilton and Goebel 1999; Holmes 2001). The Village site nevertheless contains one of 

the richest early Beringian archaeological assemblages, and its debitage assemblage has 

never been presented. The recently excavated Linda’s Point site at Healy Lake presents a 

comparable archaeological record in terms of both antiquity and artifact types.  

In this paper, I compare the lithic assemblages from these two Healy Lake sites from a 

technological perspective, assessing patterns of lithic procurement and reduction with 
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the aim of incorporating Healy Lake into the Beringian archaeological record regardless 

of culture historical ambiguities. If lithic technological choices represent wider cultural 

adaptations to environmental and cultural contexts, it is expected that patterns of 

occupation and lithic material use will be comparable with those from other Beringian 

sites, and further that they will show change over time with the transition from terminal 

Pleistocene to Holocene environments.  

Healy Lake 

Healy Lake is located in the middle Tanana Valley, in the heart of eastern 

Beringia (Figure 15). Of numerous archaeological sites recorded around the lake’s 

shoreline, two have been extensively studied (Figure 16). The Healy Lake Village 

(HLV) site, named for a nearby abandoned Native village, is located on a small point of 

land jutting out from the north shore. In the 1960s and early 1970s, R. McKennan and J. 

Cook excavated more than 170 five-foot-square units at the Village site, covering an 

area of about 380 m2 and collecting approximately 43,000 artifacts (Cook 1969, 1996). 

Excavators maintained detailed field notes, soil descriptions, and sketches; however, 

sediments were not screened, and due to a lack of apparent geological stratigraphy, depth 

was measured in 2-inch arbitrary levels (Cook 1996). On a site-wide basis, Cook 

grouped excavation levels with similar artifacts into phases, which he interpreted to 

represent the in-situ development of Athabascan culture through time (Cook 1975). The 

earliest Chindadn phase (13,300–9100 cal B.P.) was represented by Chindadn points, 

lanceolate points, microblades, blades, scrapers, and a high density of small hearths and 
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processed faunal remains (Cook 1996). The Transitional phase (9100–5000 cal B.P.) 

represents a hiatus in occupation and transition to the Athapaskan phase (5000 cal B.P. 

to the protohistoric period), containing transverse burins, microblades, wedge-shaped 

and tabular microblade cores, and lanceolate, stemmed, and notched bifacial points. 

Approximately 1.8 km to the east, local resident Linda Kirsteatter found a 

projectile point near the lakeshore, identifying the first evidence of the Linda’s Point site 

 

 

Figure 15. Archaeological sites discussed in text : (1) Ushki Lake sites; (2) Spein Mountain; 
(3) Mesa; (4) Hilltop; (5) Nenana Valley sites including Dry Creek and Walker Road; 
(6) Shaw Creek sites including Mead, Swan Point, and Broken Mammoth; (7) Healy 
Lake sites including Linda’s Point and Healy Lake Village; (8) Tangle Lakes region. 
Figure created using ArcMap (Esri 2011; Esri et al. 2014a). 
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Figure 16. Healy Lake areas of archaeological study showing excavation and sampled units: (a) 
Healy Lake basin; (b) Healy Lake Village Site; (c) Linda’s Point. Part (a) made using 
ArcMap .(Esri 2011; GINA 2010) 

 

(Figure 16). From 2010–2013, testing and excavation on a relict terrace approximately 

20 m above the modern shore revealed a sequence of cultural components similar to that 

seen at the Village site (Sattler et al. 2011; Younie and Gillispie 2016). From twelve 1x1 
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m2 excavation units, researchers collected 6164 cultural items, including lithic debitage, 

tools, and cores, burnt and calcined bone, and hearth stones. 

Geology and Geochronology 

The Village and Linda’s Point sites exhibit similar stratigraphic profiles 

(Gillispie et al. 2014b; Younie and Gillispie 2016), facilitating direct chronological 

comparisons (Figure 17). At both sites, a base of schist bedrock and layer of quartz 

ventifacts are buried in a thick deposit of Pleistocene sands that make up the lower half 

of the profile. Above this, warming climates are suggested by a transition to loess, within 

which a dark reddish-pink paleosol marks warmth and environmental stability of the 

Allerød, as well as the earliest cultural component at both sites. Component 1 (C1) 

contains ephemeral hearths, lithic debris, and burnt and calcined bone. The upper portion 

of the stratigraphic profile is a 30-cm thick deposit of loess containing Component 2 

(C2), spanning much of the Holocene. Pedogenic processes are represented within the 

loess by a mottled spodic horizon, frost cracks, and a lower series of clay-infilled 

lamellae. A third historic and late prehistoric suite of deposits appears within the thin 

forest soil, sparse at Linda’s Point but rich at the Village site (Cook 1989). At Linda’s 

Point, the profile reaches a depth of 100–120 cm, and a 10–15-cm thick deposit of 

culturally sterile loess separates the lower paleosol and the upper lamellar zone. At the 

Village site the profile is more compressed, so that the paleosol and lamellae often 

overlap, and separation between the Chindadn and upper components is 5 cm or less. 
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Figure 17. Stratigraphic context of Healy Lake cultural deposits. 

 

Using archived field notes, I assigned Village site artifacts to C1 based on 

provenience within the paleosol and below the lamellae zone. While Cook’s chronology 

dates the Chindadn component between 13,300–9100 cal B.P. (Cook 1996), this is based 

on the level system, and likely encompasses a wider date range than the stratigraphically 

defined C1. A redating program of this component is currently underway (Gillispie et al. 

2014a) that suggests this lowest occupation may be consistently dated to 13,500–13,000 

cal B.P. (Gillispie et al. 2013). C2 artifacts were identified based on their presence in the 

upper silts above the culturally sterile section. Based on Cook’s existing level-based 

chronology, these deposits can be assigned a range of at least 6000 cal B.P. to the 

historic period (Cook 1996), but potentially extending much earlier. 

At Linda’s Point, C1 hearths and the associated paleosol range in age from 

13,100 to 11,200 cal B.P., indicating a palimpsest of multiple occupation periods 

spanning the late Allerød and Younger Dryas (Younie and Gillispie 2016). Although 
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stratigraphic contexts at Linda’s Point closely mirror those form the Village site, dating 

of components does not perfectly coincide: thus far charcoal samples from C2 at Linda’s 

Point have provided dates ranging from 10,200 to 6000 cal B.P. These differences are 

hypothesized to have been created by the arbitrary level system and associated dating 

inconsistencies at the Village site. Ongoing geochronological study may clarify the 

dating of both sites. 

Materials & Methods 

Theoretical Considerations 

The goal of the research presented here is to describe and compare the lithic 

assemblages of the Village and Linda’s Point sites from a technological framework. It is 

based on the theoretical perspective that stone tools, their physical properties and 

intended functions, are strongly tied to adaptive strategies. Prehistoric choices made in 

tool manufacture, use, refurbishing, and discard reflect reactions to environmental 

challenges and raw material characteristics, and not just culturally dictated templates 

(Dunnell 1978; Lyman and O'Brien 2004). Curation may be an adaptive response to 

material availability, such as a scarcity in a given area or during winter seasons, or 

selectivity in the reuse and recycling of higher-quality rare or exotic materials 

(Andrefsky 1994); it is also a reflection of resource procurement strategies within 

cultural systems of land use and settlement.  
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Binford’s models of mobility assess hunter-gatherer settlement patterns along a 

spectrum. At one end are highly mobile residentially-organized foragers, moving 

residential base-camps to their desired resource locations; at the other are logistically 

organized collectors, bringing resources to their base-camps from specialized extraction 

sites (Binford 1980). Similarly, resource management can be viewed within a range of 

strategies allowing groups either to provision individuals as they move across the 

landscape, or to bring provisions to a single more permanent place on the landscape 

(Graf 2010). In a general sense, more mobile groups will be represented archaeologically 

by the presence of assemblages with little inter-site variability and curated, transportable 

technologies such as bifaces (Kelly 1988; Shott 1989). In comparison, more logistically 

organized populations will produce sites with variable activities and occupation lengths. 

Due to the ability to collect and cache stores of material, more “wasteful” expedient 

core-and-flake technologies are possible (Parry and Kelly 1987). While providing useful 

heuristics for discussing strategies of settlement and resource use, these opposing ends of 

the spectrum are theoretical, with cultural groups often falling somewhere between them. 

A single group may adopt differing strategies according to seasonal or regional 

environmental variation, while factors such as seasonal lithic material availability and 

“gearing up” activities may also mimic settlement strategies. 

Within this theoretical framework, it is expected that more mobile Beringian 

migrant populations should reflect transportable biface technologies and curated 

materials, with later occupations showing increasing knowledge of the lithic landscape 

represented by increasing lithic selectivity, tool diversity, specialization of microblade 
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and biface technology, and lithic selection dependent on local availability. Increasing 

logistical mobility in the Holocene, reflecting a transition to historic Athabascan land-

use patterns, is expected to be seen in increasing inter-assemblage diversity and the 

development of specialized resource extraction sites. 

Materials 

From the Village site, I selected a sample of 23 5x5 ft2 units (Figure 16) based on 

field note descriptions indicating deep profiles and distinct lower paleosols, and presence 

of C1 deposits. Collections were accessed at John’ Cook’s laboratory, the University of 

Alaska Museum of the North, and on loan through the Canadian Museum of 

Civilization. Of 975 catalog entries selected for the sample, 676 matching items and 

flake lots were relocated, providing a sample of 5622 lithic artifacts for analysis. Missing 

entries were distributed across the units and levels and include a variety of artifact types, 

indicating their loss does not create a systematic bias, and might be attributed to 

inconsistencies in five decades of curation and cataloguing across various institutions. I 

accessed the Linda’s Point materials at the Tanana Chiefs Conference, and the sample of 

4998 lithic artifacts was taken from the entire area of completed excavation units. 

I divided the materials into components 1 and 2 at each site based on geological 

associations recorded in the original site field notes. Although not accounted for during 

the original Village site analysis, rodent burrows and modern disturbances are clearly 

marked in the field notes. Artifacts from these contexts, from compressed areas lacking 

clear spatial separation of components, from areas lacking clear soil descriptions, and 
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from historic occupation levels at the ground surface, were grouped into an “other” 

category. These were included in overall site counts but omitted from the main 

comparative analysis.  

Lithic Analysis 

Lithic analysis followed a single classification scheme for both site assemblages. 

Toolstones were classified through visual examination under 15X magnification. 

Material class groups such as chert and rhyolite share common characteristics of 

workability and general material source, while material type groups represent potential 

specific lithic packages or package sources, such as red chert or banded chalcedony. 

During fieldwork, archaeologists at Linda’s Point observed locally available materials 

along the lakeshores and in bedrock outcrops, while exotic obsidian sources were traced 

through XRF analyses. To assess regional availability of the remaining material types, I 

plotted each material by total volume and artifact count against frequency of cortex and 

retouch, similar to methods used by Potter (2005:394-396). 

Classification of different materials according to whether they were most 

strongly related to bifacial, flake tool, or microblade production included complete and 

proximal debitage pieces. Assessment was based on shape, size, platform characteristics, 

and dorsal flake scar characteristics of debitage, following standard technological 

analysis (Andrefsky 2005:120-127). I also calculated proportions of artifacts displaying 

characteristics attributable to each stage of a basic reduction sequence (primary debitage, 

secondary debitage, or tool). Primary reduction debitage included those pieces relating to 
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core reduction and flake production, including cores, cortical spalls, simple flakes, and 

shatter; secondary reduction debitage included pieces relating to tool shaping and edge 

working, including unifacial and bifacial thinning and trimming flakes, burin spalls, and 

other specialized flakes (Goebel 2011; Graf and Goebel 2009). 

I assessed tool reduction levels using Kuhn’s (1990) geometric index of 

reduction (GUIR). For bifaces, I assessed overall reduction through a generalized flaking 

index (Smallwood 2010), and curation and resharpening of finished bifaces through 

Andrefsky’s (2006) hafted-biface retouch index (HRI). I calculated richness, evenness, 

and an overall diversity index for lithic material types and formal tool types in each of 

the four assemblages using R Studio © version 2.3-1 (Oksanen et al. 2015; R Core Team 

2015). Richness was calculated as the number of types in each component (Jones et al. 

1983), complemented by a rarified richness measure using repeated subsampling to 

control for assemblage size (Hurlbert 1971). Simpson’s Measure of Evenness provided a 

numerical value describing how evenly items are distributed between types; and 

Simpson’s Diversity Index [D-1] measured overall diversity (Bettinger 1980). 

Results 

Material Summary 

Lithic materials used at Healy Lake are highly variable, but encompass a nearly 

identical suite of over 50 material types in all assemblages (Table 10). At both sites, 

cherts are found in a wide range of colors, all of which are fine-grained and easily 
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worked, with few inclusions, cortex, or incipient fractures apparent. Rhyolite is fine-

grained and workable, and comes in various shades of grey and tan that appear to relate 

to soil staining, as discussed in Chapter II (p. 35). Although multiple rhyolite source 

groups have been identified at Healy Lake, full classification would require chemical 

analysis of each piece, and so rhyolites were classed as a single group. Argillite is found 

in fine-grained black and green varieties. Obsidian includes two major types, a smoky 

translucent grey obsidian typically traced to Batza Tena (Alaska Obsidian Database 

source group B), and banded opaque black and translucent grey obsidian typically traced 

to Wiki Peak (source group A) (Reuther et al. 2011). Colorless translucent and opaque 

grey obsidians are also present, as well as opaque brown and red obsidians at the Village 

site. Linda’s Point has a single rare piece of opaque mottled green obsidian sourced to 

the rare CC group, also discussed in Chapter II (p. 34). Mottled white and clear quartz 

materials are large-grained, durable, and marginally knappable due to thick cortex, 

incipient fractures, and straight cleavage planes. They are analogous to materials 

classified by J. Cook as quartzite. Rarer reddened quartz found at both sites is likely 

heat-exposed or cortical local quartz. Rare, less workable materials classified under 

“other” include coarse volcanics, sandstone, slate, petrified wood, and unidentifiable 

degraded materials. 
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Table 10. Material Types for all Lithic Artifacts Measured at Healy Lake (continued next page). 

Material Type 
HLV LPS 

Total Total 
(n) 1 2 Other 1 2 Other 

Chert 36.5% 41.3% 40.7% 33.1% 14.0% 16.6% 30.0% 3187 

 
Dark grey chert 18.6% 14.8% 19.8% 11.6% 5.3% 4.0% 11.8% 1258 

 
Medium grey chert 6.9% 7.1% 7.8% 7.7% 4.7% 4.6% 6.3% 672 

 
Black chert .1% 5.2% 1.9% .8% 1.9% 2.8% 2.6% 280 

 
Light grey chert 1.7% 3.9% 1.8% .6% .4% .6% 1.8% 196 

 
Red chert .9% 1.0% 1.0% 6.8% .2% 1.2% 1.4% 145 

 
Brown chert 1.9% 1.5% 1.8% 1.3% .9% 1.8% 1.4% 145 

 
Blue grey chert 2.6% 1.7% 3.1% .1% .1% .0% 1.2% 124 

 
Other chert .6% 1.4% 1.0% .9% .0% .0% .7% 75 

 
Tan chert .5% 1.8% .4% .0% .0% .0% .7% 73 

 
Tan/grey mottled chert .6% .1% .4% 3.3% .2% .9% .6% 64 

 
Grey banded chert .2% 1.4% .1% .0% .3% .6% .6% 62 

 
Rainbow chert .9% 1.1% .3% .0% .0% .0% .5% 52 

 
White chert 1.1% .3% 1.4% .1% .1% .0% .4% 41 

Quartz 9.0% 2.2% 11.5% 9.4% 40.5% 39.9% 18.4% 1955 

 
White/clear quartz 8.8% 2.0% 11.5% 6.4% 40.1% 37.4% 17.8% 1888 

 
Reddened quartz .2% .2% .0% 3.0% .4% 2.5% .6% 67 

Rhyolite 7.9% 10.8% 11.4% 13.8% 24.5% 17.2% 15.6% 1652 
Chalcedony 15.8% 13.1% 16.6% 24.7% 12.9% 10.7% 14.9% 1578 

 
Grey chalcedony 5.1% 7.5% 7.2% 9.4% 4.3% 3.7% 6.2% 660 

 
White/black agate 1.5% 4.2% 5.2% 3.0% 7.7% 4.6% 5.0% 531 

 
Clear chalcedony 3.5% .8% 1.6% 11.8% .6% 2.1% 2.4% 253 

 
Orange chalcedony 3.0% .2% 1.0% .1% .0% .0% .5% 54 

 
White chalcedony 1.3% .2% .5% .3% .3% .3% .4% 42 

 
Other chalcedony 1.3% .2% 1.0% .2% .1% .0% .4% 38 
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Table 10 Continued. 

Material Type 
HLV LPS 

Total Total 
(n) 1 2 Other 1 2 Other 

Argillite 18.3% 15.5% 13.5% 9.9% 1.8% 9.5% 10.3% 1099 

 
Black argillite 2.0% 14.6% 8.9% 2.5% 1.5% 3.1% 6.6% 698 

 
Green argillite 16.4% .9% 4.6% 7.4% .3% 6.4% 3.8% 401 

Basalt 7.2% 10.9% 1.5% 7.2% .9% .9% 5.7% 601 
Obsidian .3% 2.6% 1.1% .1% 2.5% 1.8% 1.8% 195 

 
Smoky obsidian .2% .9% .5% .0% 1.7% 1.5% 1.0% 101 

 
Black/banded obsidian .1% 1.0% .2% .0% .6% .3% .5% 58 

 
Other obsidian .1% .7% .3% .1% .2% .0% .3% 36 

Mcs 2.3% 1.2% .8% 1.2% .6% 2.1% 1.1% 120 
Other 1.2% 1.2% .7% .3% .9% .6% .9% 100 
Welded tuff 1.2% .6% 1.9% .0% .0% .0% .5% 53 
Quartzite .1% .6% .1% .2% .7% .6% .5% 49 
Quartz crystal .2% .0% .1% .2% .7% .0% .3% 30 
Schist .0% .0% .1% .0% .0% .0% .0% 1 
Total (n = 100%) 1286 3432 911 1169 3503 326 100.0% 10,620 
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The Village site C1 and C2 assemblages are similarly composed (Table 10), with 

chert representing 40% of overall materials, followed by argillite (16%), chalcedony 

(14%), rhyolite (10%), and basalt (9%). The remaining 11% is made up of a wide array 

of rare materials. Linda’s Point shows more variability between components, mainly due 

to a shift from very low presence of quartz in C1 (9%) to very high in C2 (41%). The 

remaining Linda’s Point assemblage is split nearly evenly between rhyolites (22%), 

cherts (19%), and chalceonies (16%), and various rare materials (10%). The Village site 

contains a slightly wider variety of rare materials, and has consistently higher richness 

values in both components (Table 11). However, diversity indices are similarly high at 

both sites, with low evenness reflecting the overall prevalence of rhyolite and grey chert 

and chalcedony, although indices of both diversity and evenness are lower at the quartz-

heavy Linda’s Point C2. 

 

Table 11. Diversity Measures of Toolstone Types and Flake Tools. 

Statistic Measure HLV 1 HLV 2 LPS 1 LPS 2 

 
n 1282 3429 1170 3504 

Lithic Types Richness 42 54 30 36 
 Rarified Richness 41 44 30 30 

 
Diversity Index .907 .914 .915 .765 

  Evenness .255 .216 .394 .118 
      

 
n 30 69 12 28 

Tool Types Richness 12 13 7 11 
 Rarified Richness 8 7 7 8 

 
Diversity Index .878 .886 .806 .883 

 
Evenness .682 .672 .735 .775 
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Local, Nonlocal, and Exotic Materials 

The local lithic landscape today appears to provide few sources for the toolstones 

present in the Healy Lake assemblages. Local quartz outcroppings represent a well-used 

source material available on-site. Obsidian is a known exotic material, with both major 

sources originating over 300 km away. Sources for remaining materials are unknown. 

Regardless of cultural preferences, transport from greater distances should be reflected 

in lowered relative presence, lowered rates of cortex, and a higher tool to debitage ratio 

for all assemblages as a whole. Plotting total material weight against frequency of cortex 

(Figure 18a), exotic materials cluster near the graph origin, showing low weight and 

cortex as expected, while the known local materials present distant outliers of high 

weight and cortex. The majority of materials also cluster near the origin, with the 

exception of rainbow chert, which has a moderate prevalence of stream-rolled cobble 

cortex. Plotting item count versus retouch frequency (Figure 18b), materials cluster close 

to the x-axis, showing low retouch, but are separated by overall artifact counts. Cherts, 

chalcedonies, rhyolites, and basalts are very common by count but not by weight, 

indicating that they were heavily worked on-site, but perhaps arrived as tools or 

preforms at later, finer stages of reduction. Known exotic materials cluster as expected 

near the y axis with low counts and moderate retouch rates, along with other likely 

exotic materials: cherts and chalcedonies of rare colors, and the banded purple quartzite. 

Healy Lake, then, exhibits numerous rare material types, low presence of both 

cortex and retouch, and moderate levels clustering with exotic obsidian. This suggests a 

majority of material types were nonlocal but not necessarily exotic, available far enough 
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off-site that they were brought to the site after the decortication stages of reduction. 

Although rare, cobble cortex indicates procurement from streambeds or cobble fields, 

suggesting likely sources from streambeds along the nearby Tanana River and its 

tributaries. 

 

 

Figure 18. Local and nonlocal toolstone types : (a) proportion of each toolstone in the combined 
Healy Lake assemblage represented by weight, versus proportion of items in each 
type group exhibiting cortex; items closer to the origin are more likely to have been 
procured from remote locations; (b) proportion of each toolstone in the entire Healy 
Lake assemblage represented by count, versus proportion of items in each type group 
exhibiting retouch; items along the y-axis are more likely to have been procured from 
remote locations, and those along the x-axis more likely to have been procured 
locally. 

 

Assemblage Composition and Reduction Strategy 

People at Healy Lake manufactured and used a wide variety of stone tools in 

nearly all occupations. Bifaces and scrapers make up a large portion of tools in all 

components, most notably at the Village site (Table 12). At both sites, finished hafted 
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bifaces are most common overall. Unfinished bifaces are almost nonexistent in C1 of 

both sites, becoming slightly more common during C2, especially at Linda’s Point, 

where C2 contains numerous unidentifiable biface fragments. Marginally retouched 

flakes are by far the most common flake tool type in all components, followed by side 

scrapers and end scrapers, combination tools, burins, knives, and amorphously retouched 

flakes. The combination tools include permutations of scraping edges, denticulates, 

notches, gravers, and burins, as well as bifaces and points reworked into scraping tools, 

knives, and burins. 

Although richness values are high at the Village site, rarefied values are 

consistent across all components, ranging from 7–8 tool types and indicating that the 

greater number of tool types is a result of the large sample size at the Village site (Table 

11). Diversity indices range from .878–.886, with a slightly lower value of .806 at 

Linda’s Point C1. Overall the results suggest a high diversity of tool types for the given 

sample sizes. Tools are well-dispersed among these types, leading to overall high 

evenness values of .735–.775 at Linda’s Point and .672–.682 at the Village site. Lower 

values at the Village site are likely caused by a high proportion of scrapers in both 

components. Despite this variation, Fisher’s exact test (FET) shows no significant 

difference between components in terms of biface types (FET = 8.26; df = 6, 38; p = 

.153), flake tool types (FET = 37.19; df = 33, 84; p = .087), or overall proportions of 

biface and flake tools (FET = 14.12; df = 12, 122; p = .220). 
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Table 12. Healy Lake Tool Types. 

Tool Type 
HLV LPS 

Total 
1 2 1 2 

Biface 17% 20% 28% 20% 20% 

 
Hafted biface 10% 10% 16% 3% 9% 

 
Unhafted biface 3% 4% 8% 6% 4% 

 
Unknown biface 1% 2% 4% 9% 4% 

 
Unhafted biface fragment 1% 2% - 2% 2% 

 
Hafted biface fragment 1% 2% - - 1% 

Scraper 23% 22% 16% 13% 20% 

 
End scraper 9% 4% 8% 3% 5% 

 
Scraper 1% 7% 8% - 4% 

 
End and side scraper 4% 3% - 6% 4% 

 
Side scraper - 4% - 3% 3% 

 
Scraper fragment 6% 1% - - 2% 

 
Side-side scraper - 2% - - 1% 

 
Thumb scraper 3% 1% - - 1% 

Flake tool 10% 2% 4% 17% 7% 

 
Flake tool fragment 3% 1% 4% 13% 4% 

 
Burin 3% 1% - 2% 2% 

 
Knife 3% - - 2% 1% 

 
Burin fragment - - - 2% 0% 

 
Wedge 1% - - - 0% 

Combination tool 1% 7% 8% 13% 7% 

 
Combination tool 1% 6% 4% 6% 5% 

 
Reworked biface - 1% - 3% 1% 

 
Combination tool fragment - - 4% 2% 1% 

 
Reworked biface fragment - - - 2% 0% 

Retouched flake 46% 41% 44% 30% 40% 

 
Retouched flake/fragment 3% 4% 8% 2% 4% 

 
Marginally retouched flk/frg 43% 36% 36% 28% 36% 

Microblade 3% 8% - 8% 6% 
Total  
(n) 

100% 
(70) 

100% 
(137) 

100% 
(25) 

100% 
(64) 

100% 
(296) 
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Reduction strategies for individual material types follow similar overall patterns 

within each component (Tables 4–7). Low-quality quartz is represented largely by core-

and-flake technologies, consistent with its use mainly for flake tools and informally 

retouched flakes. Brittle obsidian materials are also represented by core-and-flake 

debitage, and although rare in the tool assemblages include both bifaces and flake tools. 

Tougher rhyolites are also more strongly represented by core-and-flake debitage, despite 

being strongly represented by bifacial tools and points in the tool assemblages. 

Conversely, argillite and basalt debitage emphasize bifacial characteristics, despite a 

strong emphasis on flake tools in the tool assemblages. Debitage characteristics are fairly 

evenly distributed among the more versatile chert and chalcedony materials, with minor 

variations between components. These last two material types make up the majority of 

the tools in all components, reflecting their dominance in the overall site assemblages. 

They are most commonly seen as flake tools but are also represented by bifacial tools 

and points. In C2 at both sites, chert and chalcedony were selectively used for 

microblade production. 
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Table 13. Biface, Microblade, and Flake Tool Reduction Represented in HLV 1 Debitage and Tools. 

Material 
Type 

Debitage   Tool 

Biface 
Core & 
Flake 

Micro-
blade 

Total 
n 

Total 
%   Biface Blade 

Flake 
Tool 

Retouch-
ed Flake 

Micro-
blade 

Total 
n 

Total 
% 

Argillite 56% 41% 2% 87 100% 
 

- - 44% 56% - 9 100% 
Basalt 40% 60% - 47 100% 

 
- - 100% - - 1 100% 

Chalcedony 44% 50% 6% 84 100% 
 

17% - 39% 44% - 18 100% 
Chert 66% 31% 3% 179 100% 

 
24% - 31% 38% 7% 29 100% 

MCS - 100% - 14 100% 
 

100% - - - - 1 100% 
Obsidian 100% - - 1 100% 

 
- - - - - 1 100% 

Other - 100% - 8 100% 
 

- - 100% - - 1 100% 
Quartz 3% 97% - 73 100% 

 
- - 100% - - 1 100% 

Quartzite - 100% - 1 100% 
 

- - - - - 0 0% 
Rhyolite 31% 69% - 41 100% 

 
14% 14% 14% 57% - 7 100% 

Welded tuff 10% 90% - 10 100% 
 

- - - - - 0 0% 
Total 44% 54% 2% 545 100%   18% 1% 36% 42% 3% 70 100% 
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Table 14. Biface, Microblade, and Flake Tool Reduction Represented in HLV 2 Debitage and Tools. 

Material 
Type 

Debitage   Tool 

Biface 
Core & 
Flake 

Micro-
blade 

Total 
n 

Total 
%   Biface 

Flake 
Tool 

Retouched 
Flake 

Micro-
blade 

Total 
n 

Total 
% 

Argillite 69% 31% - 178 100% 
 

11% 44% 44% - 18 100% 
Basalt 59% 41% - 157 100% 

 
71% 14% 14% - 7 100% 

Chalcedony 35% 59% 6% 186 100% 
 

14% 43% 19% 24% 21 100% 
Chert 44% 49% 7% 688 100% 

 
14% 36% 42% 7% 69 100% 

MCS 56% 38% 6% 16 100% 
 

- - 100% - 1 100% 
Obsidian 31% 67% 2% 55 100% 

 
40% 20% 40% 

 
5 100% 

Other 20% 70% 10% 20 100% 
 

100% - - - 1 100% 
Quartz 7% 93% - 42 100% 

 
- - 100% - 1 100% 

Quartzite 88% 13% - 8 100% 
 

- - - - 0 0% 
Rhyolite 57% 42% 1% 142 100% 

 
36% 36% 27% - 11 100% 

Welded tuff 27% 73% - 11 100% 
 

- - - - 0 0% 
Total 47% 49% 4% 1503 100%   20% 36% 37% 7% 134 100% 
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Table 15. Biface, Microblade, and Flake Tool Reduction Represented in LPS 1 Debitage and Tools. 

Material 
Type 

Debitage   Tool 

Biface 
Core & 
Flake 

Micro-
blade 

Total 
n 

Total 
%   Biface 

Flake 
Tool 

Retouched 
Flake 

Micro-
blade 

Total 
n 

Total 
% 

Argillite 71% 29% - 52 100% 
 

50% - 50% - 4 100% 
Basalt 48% 52% - 31 100% 

 
- 100% - - 1 100% 

Chalcedony 65% 35% - 112 100% 
 

22% 56% 22% - 9 100% 
Chert 52% 48% - 154 100% 

 
14% 14% 71% - 7 100% 

MCS 60% 40% - 5 100% 
 

- - - - 0 100% 
Obsidian - - - 0 0% 

 
100% - - - 1 100% 

Other - 100% - 1 100% 
 

- - - - 0 0% 
Quartz 5% 95% - 55 100% 

 
- 100% - - 2 100% 

Rhyolite 42% 58% - 76 100% 
 

100% - - - 1 100% 
Total 50% 50% 0% 486 100%   28% 36% 36% 0% 25 100% 
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Table 16. Biface, Microblade, and Flake Tool Reduction Represented in LPS 2 Debitage and Tools. 

Material Type 
Debitage   Tool 

Biface 
Core & 
Flake 

Micro-
blade 

Total 
n 

Total 
%   Biface 

Flake 
Tool 

Retouched 
Flake 

Micro-
blade 

Total 
n 

Total 
% 

Argillite 46% 54% - 24 100% 
 

- - - 100% 1 100% 
Basalt 57% 43% - 14 100% 

 
- - - - 0 0% 

Chalcedony 54% 44% 2% 179 100% 
 

33% 67% - - 6 100% 
Chert 41% 50% 9% 246 100% 

 
21% 46% 21% 13% 24 100% 

MCS 47% 53% - 15 100% 
 

- - - 100% 1 100% 
Obsidian 39% 61% - 49 100% 

 
- - 100% - 2 100% 

Other 25% 75% - 12 100% 
 

- - - - 0 0% 
Quartz 4% 96% - 763 100% 

 
12% 35% 53% - 17 100% 

Quartz crystal - 100% - 10 100% 
 

- - - - 0 0% 
Quartzite 71% 29% - 7 100% 

 
- - - - 0 0% 

Rhyolite 43% 57% - 362 100% 
 

54% 31% 15% - 13 100% 
Total 26% 72% 2% 1681 100%   25% 39% 28% 8% 64 100% 
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Village Site 

The earliest Village site occupations in the study sample are characterized by 

high tool counts, few cores, high proportions of bifacial reduction debitage among chert 

materials, and high proportions of core-and-flake reduction debitage among rhyolite, 

basalt, and welded tuff (Table 13; Figure 19). Bifaces are present as five small teardrop-

shaped points and fragments, one triangular point, a finely-thinned indented point base, a 

point tip, and five unhafted ovate to teardrop-shaped preforms and fragments. Flake 

tools are most heavily represented by retouched flakes, end scrapers, and side scrapers, 

as well as a few burins and knives, a wedge-shaped piece, and a combination tool (Table 

12). A single rhyolite blade tool is also present. Cherts and chalcedonies are the most 

common material for all tool groups. 

Within the sample area, 23 artifacts from Levels 6–9 had previously been 

identified as Chindadn microblades. Based on field notes, many of these microblades 

were in fact from upper sediments and stratigraphically ambiguous locations, and eight 

items were re-identified as bladelets and blade-like flake fragments. Within C1 as 

defined in the current study, microblade technology is more limited, represented by a 

chert ridge flake, chalcedony platform preparation flake, and 12 microblade fragments of 

argillite, chert, and chalcedony. Of these, a ridge flake and two proximal microblade 

fragments were described in field notes to have come directly from the purple paleosol 

marking the earliest occupations, while the remaining 11 pieces were assigned to C1 

based on their position in the lower silt package or below the sterile section between 

components. Whether this placement represents the presence of microblade technology 
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within the earliest occupations, or compression of 9000–13,000 cal B.P. deposits into a 

palimpsest spanning multiple cultural horizons, may be at least partially clarified with 

future dating programs. 

 

 

Figure 19. Component 1 tools from Healy Lake Village (a, g, h, k, l) and Linda’s Point (b-f, i-j, 
m-n): a) bladelet tool, b-d, f) flake tools, e) end scraper, g-h) bifaces, i) end scraper, j) 
crescentic biface, k-n) Chindadn bifaces. 
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The C2 component of the Village site is characterized by nearly even 

distributions of flake tools and informally retouched flakes, slightly fewer bifaces, and a 

relatively small number of retouched microblades (Table 14; Figure 20). Debitage 

overall is evenly divided between biface and core-and-flake technologies, with 

individual material types following general patterns common to all components. Bifaces 

are made from a variety of materials, and include eight lanceolate points and fragments, 

eight unidentifiable base and tip fragments, four ovate unhafted bifaces, one foliate 

biface, and six unfinished edge fragments. Flake tools are composed mainly of scrapers, 

including side scrapers, end scrapers, and combination tools (Table 12). Within the tool 

assemblage, basalt and rhyolite exhibit an emphasis on bifaces while the remaining types 

are mainly used for flake tools and retouched flakes. Microblade technology includes 2 

microblade cores, 3 ridge flakes, 3 platform tablets, 2 frontal rejuvenation spalls, 10 

retouched microblade fragments and 56 discarded unretouched microblade fragments. 

The majority of these are chert, as well as a few of chalcedony, rhyolite, obsidian, and 

other rare materials. 
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Figure 20. Component 2 tools from Healy Lake Village (c-d, g-h, k-l) and Linda’s Point (a-b, e-
f, i-j, m-n): a) microblade core, b) microblades and fragments; c-d, i) scrapers; e-f, j, 
m) retouched flake tools; g) platform tablet; h, k-l) broken bifaces and preforms, n) 
lanceolate point. 
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Linda’s Point 

C1 of Linda’s Point is unique for a complete lack of microblade technology in 

the tool and debitage assemblages (Table 15; Figure 19). It has a slightly higher 

proportion of biface technology compared to the other components, represented by a 

small triangular point, a finely thinned indented-based point, two small straight-based 

basal point fragments, a crescent-shaped biface, a broken preform and a small unfinished 

edge fragment. Bifaces are made on chert, chalcedony, argillite, rhyolite, and obsidian 

— many of which are rarer types with little to no corresponding debitage on-site. Flake 

tools include two end scrapers, a robust basalt scraper, small burinated retouched flakes, 

and a few marginally retouched flakes, with flake tools made primarily on chalcedonies, 

as well as chert and basalt, and informally retouched flakes more commonly made from 

cherts (Table 12). 

At Linda’s Point C2, local quartz is prominent compared to other components, as 

well as heavily dominated by core-and-flake debitage (Table 16; Figure 20). Bifaces in 

this component are represented by two lanceolate projectile points, a medial point 

fragment, four ovate unhafted bifaces and preforms, and eight unfinished fragments. 

Flake tools include a wide variety of end scrapers, side scrapers, combination tools, 

reworked bifaces, burins, and a knife tool (Table 12). Microblade technology is 

represented by a small wedge-shaped core and a fragment, a wide core tablet, 5 

retouched microblade fragments and 25 discarded unretouched microblade fragments. 

Few discarded C2 tools are represented by rare or exotic materials, instead being mainly 

represented by the common rhyolite, grey chert, and local quartz. Selectivity is evident: 
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nearly all microblades are made on chert, while the majority of rhyolite tools are bifaces, 

and chalcedony was more commonly used for flake tools. The less workable local quartz 

was most commonly used for flake tools and informal retouched flakes. 

Reduction Intensity 

Reduction intensity is similar across components at Healy Lake. While bifaces 

are generally finished or near complete, they are not finely finished, reflected in average 

flaking indices of 3.2–3.6, and HRI indices near .52–.56 (Table 17), with the exception 

of Linda’s Point C1, which has a significantly higher flaking index than the other 

assemblages. Flake tools appear to be well-curated, with GUIR values near .7–.9 for 

flake tools overall, and a marginally significantly lower average value for Linda’s Point 

C2, mainly in comparison to Linda’s Point C1 (Table 17). Reduction indices of scrapers 

alone show no significant differences, which may be due to the standardized measurable 

edge on scraper tools, indicating that the significant differences in reduction may relate 

to variability among other flake tools. 
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Table 17. Tool Reduction Indices at Healy Lake. 

Reduction Index Statistic HLV 1 HLV 2 LPS 1 LPS 2 
Kruskal-
Wallis 
p-value 

Biface Flaking 
Index 

n 10 17 4 6  
µ 3.626 3.181 5.052 3.281 .037 
s .838 1.033 .626 1.440  

       
 n 7 12 3 5  
Biface HRI µ .524 .561 .947 .548 .125 
 s .350 .245 .065 .123  
       

Flake Tool 
GUIR 

n 21 23 8 20  
µ .707 .782 .595 .863 .050 
s .188 .203 .324 .263  

       
 n 14 15 4 8  
Scraper GUIR µ .799 .799 .842 .871 .728 
 s .120 .200 .260 .286  

 

Reduction Sequences 

Every step of the reduction sequence from core to finished tool is represented in 

the four assemblages at Healy Lake; however, activities are distinctly skewed towards 

the later steps (Figure 21). Within the entire sample of analyzed artifacts for both sites, 

there are 32 cores, 1619 primary debitage pieces, 2625 secondary pieces, and 290 tools. 

The remaining 4766 pieces are distal flakes and fragments that could not reliably be 

assigned to a stage. 
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Figure 21. Reduction stage composition of lithic material assemblages in each component. 

 

In both components of the Village site, a weak correlation is visible between 

proportion of secondary debitage and proportion of tools. While chert and chalcedony 

range widely from mostly primary to mostly secondary debitage, fine-grained volcanics 

are more balanced, and local quartz and low-quality “other” materials are represented by 

mainly primary debitage. The majority of C1 materials at the Village site represent 
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intermediate to late stages of reduction with a relatively high proportion of discarded 

tools compared to the other components (Figure 21). Only a single core of medium-grey 

chert is present. In comparison, the C2 assemblage shows a lower proportion of tools 

and a slight increase in cores and primary debitage, although reduction is still mainly 

secondary (Figure 21). Material types are more consistently used, with obsidian, fine-

grained volcanics, and the majority of chalcedonies grouped together near 5–15% tool 

rates, and 70–80% secondary debitage. 

The Linda’s Point site is almost entirely represented by secondary reduction in 

C1 (Figure 21), with relatively few discarded tools. Local quartz includes cores and 

primary reduction debitage, representing the only common material to be represented 

mainly by primary reduction. Rare, poor quality materials are also represented by higher 

proportions of secondary debitage. Similar patterns are seen in C2, with a few notable 

exceptions. There is a shift in focus towards greater primary reduction of quartz and 

many of the chert materials, while other rarer and exotic materials cluster very highly 

towards secondary reduction. Cores of quartz, rhyolite, and grey chert also become more 

prevalent. 

Discussion: Lithic Reduction Strategies at Healy Lake 

Some of the originally predicted patterns of technological organization are 

apparent at Healy Lake, such as increasing selectivity, increasing prominence of 

microblade technology, and increasing presence of exotic materials between C1 and C2. 

Although differing from early occupations at Dry Creek and Walker Road, a high 
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proportion of late-stage reduction debitage in C1 suggests curation and transport of 

nonlocal materials, and is consistent with expectations for highly mobile terminal 

Pleistocene populations, as is the presence of high average biface flaking indices. 

Furthermore, the presence of different lithic procurement and reduction strategies 

between the sites in C2 is consistent with the expected transition towards logistical 

organization.  

A few potential sources of sampling bias should be noted. The current Village 

site study sample was selected from units at the center of the main excavation area, 

where C1 deposits were known to be present. This was intended to mirror the excavation 

sampling strategy at Linda’s Point, where the initial group of excavation units was 

placed over a known C1-aged hearth, but still may have introduced some bias. Further, 

screens were not used at the Village site, so that potential loss of smaller debitage during 

excavation may inflate tool-to-debitage ratios while decreasing secondary debitage 

ratios. Finally, it is not known whether Village site excavators consistently identified and 

collected the large, blocky quartz debitage as cultural materials, as was done at Linda’s 

Point. These potential inconsistencies in sampling may increase differences in apparent 

material selectivity and tool diversity. 

Assemblage Diversity and Site Function 

A wide variety of similar tool types are found throughout all assemblages at 

Healy Lake, indicating a variety of activities related to hunting, food processing, 

leatherworking, tool maintenance, and fine working of organic materials. Their 
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occupations can be interpreted to represent some extent of habitation beyond simple 

hunting or extraction activities. Although proportions of hafted bifaces are similar in all 

components, reduction indices differ. This perhaps reflects differences in reduction of 

different types: crescentic, triangular, and indented-based points at Linda’s Point, 

compared to more informally reduced teardrop-shaped bifaces at the Village site (see 

Chapter IV for detailed discussion of technological differences between these biface 

types). Higher levels of point reduction and curation may indicate Linda’s Point C1 

represents a more limited-use hunting and faunal processing camp, in contrast to longer-

term occupation at the Village site where bifaces were produced and used for functions 

other than projectiles. Conversely lower flake-tool reduction indices at Linda’s Point C1 

may also support this, indicating more expedient tool use during a shorter occupation 

period. 

Procurement Strategies and Reduction Stages 

All four assemblages at Healy Lake show a strong emphasis on later-stage 

reduction from nonlocal but regionally available materials, consistent with the lack of 

locally available high-quality materials. One of the few exceptions to this trend is the 

local quartz industry, which makes up a substantial aspect of the Healy Lake 

archaeological record despite the low workability of the material. Although present in all 

components, heavy use of local quartz appears to be unique to C2 at Linda’s Point. The 

Village site does not show a similar spike in local material use in C2, indicating inter-

site differences in procurement. However, given the potential influence of differing 
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excavation methodologies, definitive conclusions cannot be reached without further 

excavation in the region to clarify the role of local quartz use at multiple sites. 

Corresponding with the changing focus from C1 to C2 towards greater primary 

reduction of local materials, there is a trend at both sites toward increasing primary 

reduction of other material types. Overall, patterns of lithic reduction of nonlocal 

materials are consistent with the transport of previously worked cores and preforms to 

the site from other locations. Non-quartz cores are generally found only in common 

materials such as rhyolite and grey chert, and are often small, discarded after exhaustion. 

Increasing visibility of primary reduction and core discard in C2 may reflect longer 

occupation times, and therefore time during which to exhaust flake cores; alternatively it 

may reflect a shift to occupation patterns where inhabitants knew they could procure 

new materials easily at their next camp location, or where cores were exhausted during 

“gearing-up” tool production activities. 

Increasingly selective use of lithic materials between C1 and C2 corresponds to 

increasing production of microblades, which are made primarily from fine-grained cherts 

with predictable fracture patterns, as well as increasing use of fine-grained volcanics for 

biface production, and chalcedonies for almost all other tools. This is adaptively 

explained by the sharper edges provided by more brittle chert and obsidian, and a 

potentially lower failure rate for more resilient rhyolite projectiles. Producing larger and 

more expedient flake tools from the poorly knappable local quartz would further allow 

selective use of finer-grained materials for more delicate burins and microblade tools. 

These intentional choices would become increasingly adaptive with increasing 
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knowledge of the lithic landscape over time, and with increasing flexibility to access 

them during procurement forays within a logistical system.  

The relative lack of emphasis on local materials in C1 of both sites mirrors lithic 

use choices seen at Ushki Lake in Kamchatka, with its low availability of high-quality 

toolstones and corresponding emphasis on nonlocal materials (Graf and Goebel 2009). 

Within the Tanana valley, the C1 occupations at Healy Lake differ from the 13,000 cal 

B.P. Mead CZ4, where similar locally available quartz makes up a large portion of the 

debitage assemblage, accompanied by maintenance and use of tools of nonlocal material 

(Little 2013). They are instead similar to the 12,000 cal B.P. Mead CZ3, where low 

diversity of tools and materials are interpreted to represent high-mobility residential 

camp bases, or possibly multiple short-term palimpsest occupations (Little 2013). 

Although differences in the richness of tools and materials between Linda’s Point and 

Village site have been shown to be a result of sample size, preventing comparative 

interpretations of occupation length based on richness and diversity, radiocarbon 

chronologies of both sites indicate the potential for palimpsest occupations.  

Overall, it seems that Beringian lithic procurement strategies, and possibly also 

mobility, varied in response to environmental conditions and the lithic landscape. 

Adaptive choices appear to have been based as much on availability and opportunistic 

use of materials as on predetermined selectivity and settlement patterns. As suggested by 

Goebel, the foreknowledge to predict local availability at campsites would allow 

inhabitants to discard heavy stone tools before travel and to manufacture new tools from 

locally available materials at the next stopping point (Goebel 2011). This foreknowledge 
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requires both planning and knowledge of the landscape, and indicates that early 

Beringian occupations do not simply represent transient migrants passing through the 

region, but a well-adapted, long-lasting cultural system within the larger Beringian 

environment. 

Conclusions 

Toolstone selection and use strategies of the early inhabitants of Healy Lake 

were influenced by the scarcity and low quality of local materials, with evidence for 

curation, selectivity, and later-stage reduction of nonlocal materials found throughout the 

occupation of both the Village site and Linda’s Point. A wide diversity of material types 

common to all sites, combined with a low presence of cortex and low discard rates of 

exhausted cores, all indicate a combination of procurement from nonlocal sources, 

perhaps glacial cobble beds, as well as intentional strategies for procuring and 

transporting materials. The shift towards primary reduction and use of lower-quality but 

readily-available local material, most notably in the later component at Linda’s Point, 

potentially indicates longer occupation times and reduced overall mobility in the 

Holocene compared to earlier terminal Pleistocene populations. 

Similar to Healy Lake, patterns of increasing toolstone selectivity over time are 

seen at Dry Creek and Ushki (Graf and Goebel 2009), suggesting common behaviors 

across Beringia in response to changing environments. Patterns of selectivity are 

consistent, showing use of fine-grained volcanics for bifaces and crypto-crystalline 

silicates for flake tools, and are even seen quite early in Alaska at Walker Road (Goebel 
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2011). Toolstone selection and use also appears to have been tailored to the lithic 

resources present at different sites, indicating either knowledge of the lithic landscape, 

limited logistical organization, or both. These patterns together suggest the presence of 

nascent adaptive strategies that became stronger as populations gained increasing 

familiarity with the local resources after extended habitation of Beringia, and shifted to 

more complex settlement patterns allowing greater command of available lithic 

resources. 
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CHAPTER IV 

TERMINAL PLEISTOCENE BIFACES OF CENTRAL ALASKA: TYPOLOGY, 

TECHNOLOGY, AND ADAPTIVE STRATEGIES 

 

Chindadn points, the diagnostic biface used to mark the Chindadn (Cook 1975; 

Cook et al. 1971) and Nenana complexes (Goebel et al. 1991), are an integral part of the 

early interior Alaskan archaeological record. Simply defined, a Chindadn point is a 

small, thin, triangular or teardrop-shaped biface, and most likely to be a part of an 

otherwise unifacial late Pleistocene toolkit of blade tools, flake tools, gravers, and 

scrapers (Goebel 2011; Goebel et al. 1991; Holmes 2001, 2011). Chindadn points are 

found in early occupations of archaeological sites in the Nenana and Tanana River 

basins (Figure 22), where some of the earliest human activity in eastern Beringia is 

represented in components ranging from 13,470-11,390 cal BP (Holmes 2011; Potter et 

al. 2013). Although easily recognized typologically, the very simplicity of the Chindadn 

form has left it a poorly understood, loosely defined artifact type, with an ambiguous 

role within the terminal Pleistocene cultural repertoire. Its functions are not well 

understood — despite the presence of a distinct distal tip, the simple shape of the basal 

element does not directly imply hafting or use as projectiles, nor are there readily 

apparent utilized edges. Further, although associated toolkits are relatively consistent, 

the biface’s role in relation to microblade technology is not well-established. The current 

research seeks to address these problems by providing a more detailed technological  
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definition of Chindadn biface technology, and to understand their adaptive role 

within a terminal Pleistocene Beringian cultural system.  

 

 

Figure 22. Map of interior Alaska showing terminal Pleistocene archaeological sites. Figure 
produced using ArcMap (Esri 2011; Esri et al. 2014b). 

 

Background 

Chindadn points were originally recognized by John Cook in the earliest 

occupation levels of the Village site at Healy Lake as very thin teardrop-shaped bifaces 



 

107 

(Cook 1975:131; Cook and McKennan 1970). He assigned them to the Healy Lake 

Chindadn complex, containing triangular and basally thinned bifaces, microblades, 

Denali-like microblade cores, and Donnelly burins, all estimated to be about 11,000 

years old (Cook 1969, 1975). Since this time, similar small, thin bifaces with teardrop, 

triangular, or subtriangular outlines have been found throughout the Tanana River basin, 

in the earliest occupation at the nearby Linda’s Point site (Younie and Gillispie 2016), 

the earliest component at Chugwater (Maitland 1986), and in the second-earliest 

occupations at Broken Mammoth (CZ3), Swan Point (CZ3), and Mead (CZ4) (Holmes 

2001, 2011; Potter et al. 2013). A14,200 cal BP microblade industry has been found 

stratigraphically underlying Chindadn bifaces at Swan Point (Holmes 2011), and the 

chronological relationship between these technologies is ambiguous in the Tanana 

valley. Holmes divides early Alaskan bifaces from these sites into four types, placing 

them within a wider East Beringian Tradition: Chindadn type 1 (>12,800 cal BP), 

Cook’s original teardrop shaped outline; Chindadn type 2 (ca. 12,050 cal BP), a 

triangular to subtrianguloid form; Chindadn type 3 (ca. 12,050 cal BP), a basally 

thinned, convex-based form; and Chindadn type 4 (ca. 11,000 cal BP), a lanceolate bi-

pointed form typically attributed to the Denali complex, but reportedly found in earlier 

components at the Healy Lake Village site (Cook 1996; Holmes 2001, 2011).  

In the neighboring Nenana River valley, Goebel and Pontti (1991) defined 

Chindadn points as small, thin teardrop-shaped bifaces, 3 to 5 cm in length, made on 

bifacially and bimarginally retouched flakes and blades. Along with triangular forms, 

they have been noted in the earliest cultural components at Dry Creek (Powers et al. 
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1983; Powers and Hamilton 1978), Walker Road (Powers et al. 1990), Moose Creek 

(Pearson 1999), and Owl Ridge (Graf and Bigelow 2011). They are a diagnostic artifact 

of the Nenana complex, which represents the earliest occupation in the region at 13,500-

13,000 cal BP and is characterized by blade and flake cores, unifacial scrapers and blade 

tools, and gravers (Goebel 2011; Goebel et al. 1991; Hoffecker et al. 1993). Within the 

Nenana valley, the complex is consistently stratigraphically separated from later 

microblade-bearing components assigned to the Denali complex (Goebel and Buvit 

2011; Powers and Hoffecker 1989). 

Chindadn bifaces are typically referred to as points, and often discussed as 

projectile tips related to hunting; however, these hypotheses have not been tested. Based 

on their presence in association with hide processing implements at campsites, Goebel 

and Pontti (1991) hypothesized that the teardrop-shaped bifaces likely functioned as 

perforators or knives, noting the presence of similar artifacts at Ushki and Berelekh in 

Siberia, while Powers et al. (1983) interpreted the triangular bifaces to represent 

projectile points, due to their sharp regular margins, symmetrical tip, and flat cross-

section. Noting their small size, Dixon (2011) hypothesized their potential role within an 

early northern bow-and-arrow technological system. Graf and Bigelow (2011) 

hypothesized that they were used as part of a simple, expedient hunting toolkit 

specialized to the pre-Younger Dryas, compared to the more diverse and deliberate 

Younger Dryas toolkit of bifaces and composite points. In contrast, Potter and 

colleagues have suggested that throughout all periods of the terminal Pleistocene, small 

triangular points in the uplands of the Nenana valley were used in upland sheep and 
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caribou hunting, while microblade-composite projectile systems were related to the 

lowland hunting of larger bison and wapiti (Potter 2011; Potter et al. 2013). 

This study describes and quantifies the technology of Chindadn biface 

manufacture, and evidence for use and reuse, to clarify the potential role of these bifaces 

within the adaptive cultural system of eastern Beringians. While the shape and size of 

the triangular varieties are similar to Holocene projectile tips, the teardrop forms are 

more ambiguous, and the associated presence of concave-based and subtriangular forms 

all hint at a range of potential functions. To explore reasons for this variation in shape, I 

consider regional and temporal distributions, lithic materials, technologies, breakage, 

and discard patterns. Finally, results are considered within the context of Beringian 

environments and potential adaptive systems, providing new hypotheses for future 

testing and analysis. 

Materials and Methods 

Sample Selection 

The sample selected for analysis includes the available bifaces from the terminal 

Pleistocene components of archaeological sites in interior Alaska, dating to 12,000 cal 

BP and earlier (Appendix A). Specialized bifacially-shaped tools such as crescents and 

spokeshaves were not included, nor were informally-worked bifacial fragments. From 12 

different sites, I evaluated 80 bifaces, 70 directly and 10 based on published data (Table 

18), as well as 12 small biface edge and tip fragments. Bifaces unavailable at the time of 
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research included four from Mead (Potter et al. 2013), one from Broken Mammoth 

(Heidenreich 2012), and a stolen biface from Dry Creek (Hoffecker et al. 1996; Powers 

et al. 1983). Four bifaces from Little John (Easton 2008), were also indirectly assessed. 

Chronology was established using pooled mean radiocarbon dates presented by Potter 

(Potter 2008c; Potter et al. 2013), updated to IntCal13 from IntCal09 (Ramsey 2009), 

with exceptions calculated following Ward and Wilson (1978) and calibrated with 

CALIB v 7.0.2 using the IntCal 13 calibration curve (Ramsey 2009; Reimer et al. 2013). 

Statistical tests are based mainly on a primary sample of 58 bifaces. The 

remaining 22 bifaces were excluded from statistical study, but still used for general 

regional comparisons. The Little John bifaces are stratigraphically assessed to be older 

than an overlying 10,000 cal BP occupation, but not directly dated (Easton 2008; Easton 

et al. 2011). The Chugwater site is shallow, with most bifaces either surface collected or 

found in stratigraphically insecure contexts, as well as having chronological 

inconsistencies within the target study period (Erlandson et al. 1991; Lively 1996). 

Insufficient published information is available for the Mead bifaces to be included. 

Finally, bifaces from Eroadaway, found at the southern limit of the study area (Holmes 

et al. 2010), were assessed separately and determined to be unique from the Chindadn 

bifaces (Appendix B).  
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Table 18. Chindadn Biface Sample. 

Sample Archaeological Site1 
Date (cal BP) Comp-

onent 

Complete 
/Basal 

Fragments 

Unidenti-
fiable 

Fragments Total 
Primary    56 12 68 

 Village Chindadn2 13,300 - 9,410 basal 21 3 24 

 Swan Point CZ33 12,830-11,390 second 9 5 14 

 Walker Road 13,270-12,850 basal 7 - 7 

 Broken Mammoth CZ3 12,390-11,810 second 5 - 5 

 Dry Creek C1 13,130-12,760 basal 5 1 6 

 Linda's Point C14 12,540-12,420 basal 5 - 5 

 Moose Creek C1 13,180-12,880 basal 2 - 2 

 Owl Ridge C1 13,080-12,810 basal 2 3 5 
 Owl Ridge C25 12,420-12,080 second 1  1 

 Broken Mammoth CZ4 13.420-13,140 basal 1 0 1 
      
Secondary   22 - 22 

 Eroadaway 12,820-12,700 basal 13 - 13 

 Little John >10,000 basal 4 - 4 

 Mead CZ4 13,050–12,830 second 4 - 4 

 Chugwater >10,000 basal 1 - 1 
Total     80 12 92 
1Dates based on average C14 values from Potter at al. 2013 unless otherwise noted 
2Cook 1996 
3Holmes 2014 
4pooled mean from dates presented by Younie et al. (in press). 
5Pooled mean from dates presented by Graf et al. (2011) 

 

Ironically, the inclusion of Healy Lake Village site bifaces was problematic. 

Prior definition of the Chindadn complex was based on absolute depth measurements 

and arbitrary levels, preventing confident chronological assessment (Erlandson et al. 

1991). I based the current selection of Village site bifaces on stratigraphic association 

and relative depth within the profile, following methods outlined in Chapter III (see 

p. 71). Several lanceolate bipoints originally attributed to the Chindadn complex were 
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re-assigned to the base of the overlying component or to potentially compressed 

contexts, and so these items were excluded. 

Classification 

Many common methods of biface classification and analysis were difficult to 

apply to the study sample. First, a clear distinction between finished and unfinished 

bifaces was not present. Many artifacts with only marginal flaking, or thinning of only 

one face, were otherwise fully finished with regular margins, edge-grinding, and 

sometimes even hafting abrasion. Secondly, simple basal shapes and ambiguity of the 

hafting element prevented classification according the shaping and finishing of the haft. 

To isolate unfinished preforms from finished bifaces for further analysis, I instead 

explored the assemblage according to more objective measures of shape and size. I 

measured all complete artifacts with a digital scale and digital calipers to determine 

weight, maximum length, maximum thickness, and maximum width (Figure 2), and 

calculated a geometric mean of all four variables. 

Analysis of finished biface form was also limited by the simplicity of Chindadn 

hafting elements. No notch, stem, or haft element lengths, angles, or ratios were 

available for measurement. Given the small sample size, I sought measurements that 

could be applied to fragments so as not to further limit the sample to only complete 

specimens. Three variables were used for shape classification (Figure 23). Basal width 

ratio (BWR) and basal indentation ratio (BIR) are taken from Morrow and Morrow 

(1999), calculating the ratios of basal width and basal indentation, respectively, to 
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maximum width. The maximum width ratio (MWR) used here is modified from the ratio 

used by Morrow and Morrow, replacing maximum length with maximum width to 

calculates the ratio of the height of the maximum width position to the value of the 

maximum width. 

 

 

Figure 23. Metrics evaluated, as seen on various haft shapes: (a) maximum width position; (b) 
maximum length; (c) basal width; (d) maximum width; (e) basal indentation. 

 

 

Description & Comparison 

To evaluate the technology of biface production, I recorded the lithic raw 

material type, presence and type of cortex, flake scar size, termination, and 

directionality, the presence and regularity of the longitudinal midline, regularity of the 

lateral margins, presence of basal thinning, extent of flaking overlap, and presence of 

differences between the two faces in terms of these characteristics. Flaking variables 
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were assessed qualitatively, and assigned to nominal categories. I assigned reduction 

stages on a ranked scale from biface blank to finished biface following Andrefsky 

(2005:187-190). Flaking intensity was quantified using a flake scar count index 

(Smallwood 2010), and retouch on finished bifaces quantified with a hafted biface 

retouch index (HRI) (Andrefsky 2006). Artifact function was assessed through size, 

cross section, and macroscopic evidence of hafting abrasion, edge grinding, and use-

wear when examined under a 15x magnification hand lens. Breakage patterns and 

evidence of recycling were used to assess function, reuse, and discard patterns.  

Within the basal shape classes, I assessed technological characteristics as a whole 

within each group, and compared each variable across groups to determine whether there 

are statistically relevant differences in reduction based on basal shape. Accounting for 

small sample size, I used the Kruskall-Wallis and Mann-Whitney U-Test for metric and 

ranked variables such as reduction index, and Fisher’s exact test (FET) with post-hoc 

Bonferroni comparisons for nominal variables such as presence of hafting abrasion. 

Statistical testing was conducted using IBM SPSS Statistics © Version 22. Finally, 

generalized descriptions of each biface reduction sequence were compiled based on 

categorical and descriptive data collected. 
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Results 

Isolation of Finished Bifaces 

Complete bifaces show strong positive correlations between metric values (Table 

19), indicating that variability between artifacts is related to overall size and not to 

variation in length, width, or thickness ratios. Plots of length, width, thickness, weight, 

and edge angle show consistent weak clustering across nearly all variables, with the 

exception of edge angle (Figure 24). The smallest size group, containing 21 bifaces, is 

closely clustered with measurements ranging 20-45 mm in length, 15-30 mm in width, 

and 0-8 g in weight (Table 20). The next largest group, containing 14 bifaces, ranges 45-

75 mm in length, 30-50 mm in width, and 10-35 g in weight. Finally, two outliers are 

distinct for having thicknesses >15 mm and weight >40 g. For further analysis, I used 

these criteria to classify incomplete bifaces for a total of 47 small, 25 large, and 3 outlier 

bifaces (40 small, 15 large, and 2 outlier items within the primary sample). 

 

Table 19. Correlation Matrix of Metric Values for Complete Bifaces in Primary 
Sample, (p = .000 for all results). 

  Weight Length Width Thickness 
Geometric 

Mean 
Weight 1.000 .861 .785 .961 .930 
Length - 1.000 .845 .789 .981 
Width - - 1.000 .731 .885 
Thickness - - - 1.000 .867 
Geometric 
Mean - - - - 1.000 
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Figure 24. Complete bifaces plotted according to weight, width, and geometric mean. 
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Table 20. Distinguishing Metric Variables of Biface Size Classes. 

Size 
Class Variable µ Range s 

 
weight 51.55 42.00 - 61.10 13.51 

 
length 74.70 63.59 - 85.81 15.71 

Outlier width 42.52 38.95 - 46.08 5.04 

 
thickness 18.44 15.07 - 21.80 4.76 

 
geometric mean 102.36 90.32-114.41 17.03 

     
 

weight 16.47 5.60 - 30.00 6.55 

 
length 59.95 42.02 - 72.34 9.55 

Large width 36.42 27.87 – 50.86 6.08 

 
thickness 8.32 4.56 - 11.56 1.99 

 
geometric mean 69.66 52.99-87.59 10.09 

     
 

weight 2.96 1.07 – 5.90 1.44 

 
length 34.83 22.71 - 45.37 6.50 

Small width 21.06 15.11 – 27.22 3.51 

 
thickness 4.57 2.12 – 7.36 1.18 

  geometric mean 41.56 29.83-52.29 7.08 

 

Table 21. Reduction Indices for Size Classes. 

Measurement Shape 
Class n µ σ Mann-Whitney: Small 

vs. Large Bifaces 

 small 139 4.7 .7  
Visually assessed 
stage 

large 16 3.1 1.0 U = 5.333, p = .000 
outlier 2 2.3 .4  

      
 small 30 3.87 1.27  
Flaking index large 14 2.41 1.08 U = 3.301, p = .000 

 outlier 2 1.56 .72  
      
 small 34 .691 .281  
Andrefsky HRI large 7 .421 .185 U = 2.436, p = .014 
  outlier 0 - -   
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Within the primary sample, significant differences in reduction indices support 

the distinction of the smaller group as finished pieces compared to the larger group as 

preforms, knives, and unhafted tools (Table 21). The outliers both exhibit cortex as well 

as very low reduction indices, indicating discard at the early preform stage. Overall, the 

larger biface group shows basic, unremarkable flaking patterns indicative of mid-stage 

biface reduction (Figure 25): minimal to moderate overlap of flakes with high variability 

in size and termination, random or roughly collateral flaking, irregular cross sections, 

and one face generally showing greater intensity and regularity of flaking than the other. 

Outlines are most often teardrop and ovate, with a high rate of complete specimens. The 

majority of fractures that are present are most likely attributable to manufacturing errors, 

often originating near hinged and stepped flake scars, and often with complete refitting 

pieces found closely associated in situ. Fisher’s exact comparisons show no significant 

difference between large and small bifaces in terms of lithic material choices (FET = 

5.357, df = 7, 55; p = .666), which may indicate that size groups are related along a 

single reduction stream, or may simply indicate selectivity in biface production overall. 
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Figure 25. Large Chindadn bifaces: (a) Dry Creek; (b) Linda’s Point C1; (c) Walker Road; (d-f) 
Healy Lake Village Chindadn. 
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Base Shape Classification 

Clustering of haft shape variables produced four distinct groups, three of which 

are distinguished by extreme values of one of the measured variables, and a fourth 

distinguished by a combination of values (Figure 26; Table 22). A group of 11 bifaces is 

distinguished by a lack of basal indentation, lack of corner angles, basal width ratios 

near zero, and maximum widths found well above the base, creating a convex base and 

overall teardrop-shaped outline (Figure 27). A second group of 11 bifaces is 

distinguished by a maximum width located at or very near the base (MWR = 0, BWR ≈ 

.9-1.0) and a lack of basal indentation, creating a triangular outline (Figure 28). The third 

group, containing only five bifaces, is distinguished by noticeable basal indentation (BIR 

> .1) (Figure 29a-d). Occasionally overlapping with other groups in clustering analyses 

is a final, less well-distinguished group of nine bifaces with variable values for all 

indices, reflecting very slight basal indentation, and slight contraction toward the base, 

creating a subtriangular outline (Figure 29e-i). 

Unclassified Pieces 

An additional sample of 12 non-basal fragments includes four base and corner 

fragments, five tip fragments, an unidentified edge fragment, and one nearly complete 

small biface missing the basal edge. Two corner fragments show strong indentation 

indicating they are likely concave-based points, and the nearly complete biface lacks 

corners on the visibly remaining surface, indicating it is likely a convex-based form. 

Two thicker late-stage lanceolate-like fragments were found in an ambiguous 
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stratigraphic level of the Village site, slightly above the paleosol in which the majority of 

Chindadn points are found. A few of the convex-based points are also from this section, 

and this portion of the stratigraphy may represent a disturbed or compressed section that 

explains the original incorporation of bipointed lanceolates into the Chindadn complex.  

 

 

Figure 26. Small bifaces plotted according to BWR, MWP, and BIR. 
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Table 22. Distinguishing Variables of Basal Shape Classes. 

Measurement Shape Class µ Range s 

 convex base .000 .000 - .000 .000 
BWR straight base .998 .976 - 1.00 .008 

 subtriangular .862 .691 - .977 .102 

 concave base .912 .845 - .959 .055 

     
 convex base .000 .000 - .000 .000 
BIR straight base .018 .000 - .061 .025 

 subtriangular .031 .000 - .100 .044 

 concave base .198 .086 - .295 .089 

     
 convex base .434 .335 - .531 .066 
MWR straight base .000 .000 - .000 .000 

 subtriangular .434 .200 - .959 .257 

 concave base .609 .578 - .659 .044 

 

Regional & Temporal Patterns 

With the exception of the Little John and Eroadaway, archaeological sites 

containing Chindadn bifaces are fairly strongly concentrated in two separate areas, the 

Tanana and Nenana drainage basins. Although five such sites are found in each basin 

(Table 23), those in the Tanana valley have produced large collections of bifaces, 

compared to relatively isolated finds in the Nenana valley. Regional differences in basal 

shape are visible although not statistically significant (FET = 2.404; df = 3; p = .532): 

while a full half of the Nenana small bifaces are convex-based specimens, the Tanana 

contains a wider variety of forms, and all but one of the concave-based items, as well as 

the two concave-like corner fragments. Large bifaces are rare but present in both 

locations. 
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Figure 27. Sample of convex-based bifaces. (a) Swan Point CZ3; (b-c), (f), (h-i): Healy Lake 
Village Chindadn; (d), (g): Walker Road; (e): Moose Creek C1. 

 

The short time span of pre-Denali occupation, and the fact that the majority of 

sites are overlapping in time range, makes an evaluation of chronological patterning 

difficult. Biface types show fairly nebulous seriation (Table 24), with the classic convex 

and straight-based forms being most common early in Alaskan occupation, giving way 

to subtriangular and concave bases over time, with visibly increasing tendencies towards 
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basal constriction after approximately 12,500 cal BP. However, Chindadn bifaces in 

general are found slightly later in the Tanana, and unlike in the Nenana, do not represent 

the earliest occupation of the area. Greater variation in the Tanana may be accounted for 

by a greater timespan during which biface technology could develop and diversify, or it 

might simply be an artifact of the larger sample size from the Tanana valley. 

 

 

Figure 28. Sample of straight-based bifaces: (a), Village Site; (b), (f), (h) Linda’s Point C1 ; (c) 
Moose Creek C1; (d-e), (g) Swan Point CZ3. 
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Figure 29. Sample of concave-based (top row) and subtriangular (middle and bottom row) 
bifaces: (a), (c), (e), (h) Village Site Chindadn; (b) Linda’s Point C1; (d), (g) Swan 
Point CZ3; (f) Dry Creek C1; (i) Broken Mammoth CZ3. 
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Table 23. Locations of Chindadn Bifaces. 

Area Archaeological Site Large Outlier Convex 
Base 

Straight 
Base 

Subtri-
angular 

Concave 
Base 

Un-
classed Total 

Nenana 7 1 4 2 2 1 4 21 

 Walker Road 3 1 3 - - - - 7 

 Dry Creek 3 - - - 2 - 1 5 

 Moose Creek - - 1 1 - - - 2 

 Owl Ridge 1 - - 1 - 1 3 6 
          
Tanana 9 1 7 9 7 5 16 54 

 Village Chindadn 6 1 6 1 2 2 6 24 

 Swan Point 1 - 1 5 1 1 5 14 

 Broken Mammoth 1 - - - 4 1 - 6 

 Linda's Point 1 - - 3 - 1 - 5 

 Mead - - - - - - 4 4 

 Chugwater - - - - - - 1 1 
         
Additional 6 0 0 0 0 0 11 17 

 Eroadaway 4 - - - - - 9 13 

 Little John 2 - - - - - 2 4 
Total 22 2 11 11 9 6 31 92 
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Table 24. Date Ranges of Chindadn Bifaces 

Site 
 

Age Range  
(cal BP1) Large 

Convex 
Base 

Straight 
Base 

Sub-
triangular 

Concave 
Base Total 

Swan Point CZ3a 11,970-11,390 1 - - 1 1 3 
Broken Mammoth CZ3 12,390-11,810  - - 4 1 5 
Owl Ridge C2 12,420-12,080     1 1 
Linda's Point C1 12,540-12,420 1 - 3 - 1 5 
Swan Point CZ3b 12,830-12,190 - 1 5 - - 6 
Owl Ridge C1 13,080-12,810 1 - 1 - - 2 
Dry Creek C1 13,130-12,760 3 - - 2 - 5 
Moose Creek C1 13,180-12,880 - 1 1 - - 2 
Walker Road 13,270-12,850 3 3 - - - 6 
Broken Mammoth CZ4 13,420-13,140 1     1 
Total   - 10 6 10 6 4 36 

1See Table 18 for sources of chronological information. 
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Table 25. Lithic Material Types of Chindadn Bifaces 

Material Type 
Frag-
ments 

Outlier 
Bifaces 

Large 
Bifaces 

Convex 
Base 

Straight 
Base 

Sub-
triangular 

Concave 
Base 

Un-
classed Total 

Chert 5 2 9 7 3 6 1 1 34 
Chalcedony 3 - 1 1 2 3 2 - 12 
Argillite - - 1 2 2 - - - 6 
Rhyolite 1 - 2 1 2 - - 1 7 
Basalt 1 - 1 - 2 - 1 - 5 
Andesite 1 - - - - - - - 1 
MCS - - 1 - - - 1 - 2 
Obsidian - - - - - - 1 - 1 
Quartz crystal 1 - - - - - - - 1 
Quartzite - - 1 - - - - - 1 
Total 12 2 16 11 11 9 6 2 70 
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Chindadn Technological Characteristics 

Lithic Material 

Terminal Pleistocene bifaces are generally made from high-quality, fine-grained 

materials common to interior Alaskan lithic industries of any time range (Table 25). 

Fisher’s exact comparisons show no significant difference between basal shape groups in 

terms of lithic selection (FET = 20.057; df = 3, 18; p = .144). All groups show a strong 

emphasis on the use of chert, which makes up half of the primary sample and fragments, 

while each group contains only a few items each of any other material type. Chalcedony, 

argillite, rhyolite, and basalt are common, while a single specimen each are made from 

coarser microcrystalline silicate, andesite, obsidian, quartz crystal, and quartzite.  

Reduction Stage and Intensity 

Visually assessed and measurement-based biface reduction stages are high for all 

basal shape classes, showing that despite wide variation in flaking intensities, the bifaces 

are generally found as fully-shaped preforms and finished bifaces (Table 26). This is 

reflected in a general lack of retention of flake blank characteristics, and a general lack 

of sinuosity in the margins (Table 27). Only two bifaces exhibit manufacturing breakage 

or cortex that might reflect discard during earlier reduction stages (Table 28). As might 

be expected, the small fragments identified as point tips and basal corners also show fine 

flaking and edge-grinding indicative of final reduction stages. 
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Table 26. Reduction Indices for Basal Shape Classes. 

Measurement Shape Class n µ Range s Kruskal-
Wallis 

 convex base 11 4.3 3.0 - 5.0 .6 χ2 = 7.57 
df = 3, 37 
p = .056 

Visually 
Assessed Stage 

straight base 11 4.6 2.0 - 5.0 .9 
subtriangular 9 4.9 4.0 - 5.0 .4 

 concave base 6 4.8 4.0 - 5.0 .4 
       
 convex base 8 2.78 1.61 - 4.10 .93 χ2 = 9.20 

df = 3, 28 
p = .027 

Flaking Index straight base 9 3.95 .97 - 5.53 1.47 

 subtriangular 7 4.46 3.56 - 6.12 .86 

 concave base 4 4.83 3.87 - 5.92 1.02 
       
 convex base 11 .498 .00 - 1.00 .28 χ2 = 7.97 

df = 3, 32 
p = .047 

Andrefsky HRI straight base 10 .747 .00 - 1.00 .34 
subtriangular 7 .808 .58 - 1.00 .16 

 concave base 4 .852 .72 - 1.00 .12 
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Table 27. Biface Flaking and Reduction Characteristics for Basal Shape Classes. 

Technological Trait Convex Base Straight Base Subtriangular Concave Base 

Biface retains visible 
flake blank 
characteristics 

variable, mainly 
yes no no no 

Sinuousity of lateral 
margins 

variable, mainly 
straight 

moderate to 
straight 

variable, mainly 
straight 

moderate to 
straight 

Presence and 
regularity of midline 

variable, often 
not present 

present but 
irregular 

present but 
irregular 

present and 
regular 

Flaking size and 
termination 

variable, even on 
a single artifact 

variable, mainly 
fine and 
feathered 

variable, mainly 
fine 

fine to very fine, 
feathered 

Extent of flaking 
Overlap minimal variable, mainly 

moderate 
variable, mainly 

high extensive 

Flaking Pattern variable, mainly 
marginal 

Various patterns 
and intensities 

Various patterns 
and intensities 

Overlapping and 
parallel 

Margin Shape variable, often 
irregular mainly straight variable mainly convex 

Portion most often 
present 

complete, some 
basal 

complete, some 
basal/medial 

complete, 
basal/medial, 

and basal 

basal, some 
complete 
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Table 28. Presence/Absence Rates of Technological Traits among the Basal Shape Classes (continued next page).  

Technological 
Trait 

 

Convex 
Base 

Straight 
Base 

Sub-
triangular 

Concave 
Base 

FET 
Statistic df 

Fischer's 
p 

Reduction 
intensity 

Manufacturing fracture 9% 0% 11% 0% 2.045 3 .818 

Cortex 10% 0% 0% 0% 2.777 3 .694 

Edge grinding 25% 55% 63% 80% 4.059 3 .283 

High flaking overlap 18% 60% 44% 80% 6.364 3 .094 

         

Flaking style and 
characteristics 

At least one face with 
parallel flaking 55% 40% 75% 67% 2.395 3 .550 

At least one face with 
only marginal flaking 73%* 10%* 13% 0% 11.676 3 .003 

Flaking pattern differs 
between faces 64% 10% 50% 25% 6.974 3 .058 

Basal thinning 18%** 90% 100% 100% 20.287 3 .000 

 

 

 

 

 



 

 

133 

Table 28 Continued. 

Technological 
Trait 

 

Convex 
Base 

Straight 
Base 

Sub-
triangular 

Concave 
Base 

FET 
Statistic df 

Fischer's 
p 

Function 

Impact fracture 9% 36% 22% 17% 2.431 3 .541 

Hafting fracture 0%* 9% 11% 50%* 6.541 3 .039 

Hafting abrasion 0%* 27% 33% 80%* 8.758 3 .024 

Recycling 0% 18% 0% 17% 6.980 3 .111 

*different from eachother, p<.05 according to Bonferroni assessment 
** different from other groups, p<.05 according to Bonferroni assessmen 
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Although all of the biface groups show characteristics generally indicative of late 

and final reduction stages, the convex-based bifaces show a few significant differences. 

Pairwise Kruskal Wallis comparisons show the convex-based bifaces to have lower 

reduction stages (p = .015-.055) flaking indices (p = .013-.027) and Andrefsky’s HRI 

values (p = .025-.034) compared to the other biface groups (Table 26). This is reflected 

in visually observed technological traits: the convex-based bifaces are the only group to 

commonly retain observable portions of the flake blank, often lack flaking midlines, and 

show the highest variability in flaking size and terminations (Table 27). Although not 

statistically significant, the convex-based bifaces also exhibit low levels of edge-

grinding, and are the only basal-shape group to exhibit cortex, found in a single 

specimen (Table 28). 

Flaking Characteristics 

Although few statistically significant differences exist between the groups in 

terms of technological characteristics, this does not appear to be due the presence of 

shared technologies, but instead to wide variation within groups as well as between 

them. Flaking size, regularity, and style are so variable that they exhibit no discernible 

patterns among the small bifaces, either as a group or as individual haft shape classes 

(Table 27). Flake scar size is constricted by the small size of the bifaces, and varies in 

size from medium to very small. Terminations are feathered, stepped, and hinged, often 

all on a single artifact. Patterns vary widely to include marginal, collateral, parallel 

straight, parallel oblique, parallel converging, chevron, unpatterned flaking, and the 

occasional overface flake. These characteristics vary not only between bifaces, but often 
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also between the faces and margins of individual artifacts. Similar variation appears in 

the lateral margin shapes, which include irregular, straight, and convex, and vary 

between haft shapes. Fisher’s Exact Tests indicate that the straight-based and 

subtriangular bifaces are nearly technologically identical, while the convex and concave-

based bifaces are statistically distinguished from eachother and from the group as a 

whole in characteristics reflecting flaking extent, finishing, and hafting (Table 28). 

Use-Wear and Breakage Patterns 

Generally, bifaces show evidence for hafting and likely use as projectiles, having 

high rates of basal thinning, moderate rates of edge-grinding, moderate rates of hafting 

abrasion, and moderate to low rates of impact and hafting fractures (Table 28). However, 

the convex-based bifaces show significantly low rates of basal thinning compared to the 

other basal shapes, slightly lower rates of impact and haft fractures, and a complete lack 

of hafting abrasion. In contrast, the concave-based bifaces show significantly high rates 

of hafting abrasion and basal haft fractures, although neither shows significant 

differences from the straight-based and subtriangular groups. Tip fragments often exhibit 

impact fractures. All broken corner fragments show evidence of either hafting abrasion 

or basal grinding, with strong abrasion present on the probable concave-based corner 

fragments.  

Chindadn Reduction Sequences 

By bringing together the full assemblage of bifaces, we can identify the 

overarching characteristics of the Chindadn reduction sequence. Perhaps the most 
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notable trait is a lack of patterning in flaking, which does not seem to be intended for 

extensive shaping. Flaking is usually sufficient to achieve a somewhat balanced cross 

section, which itself might take a variety of shapes from lenticular to irregular. Some 

outliers occur, such as the concave-based bifaces, and two complete, tiny, and very 

extensively-flaked chalcedony bifaces (Figure 27a and Figure 28a), apparently 

exhausted such that their original reduction sequence is now obscured. However, 

patterns do exist, and can be used to trace a reduction, use, and discard sequence for each 

biface group. 

Large Bifaces 

The large bifaces show a variety of characteristics that could lead to their 

definition as cores, tools, or preforms at various stages. While smaller and thinner 

bifaces within this group show characteristics that might be expected for early-stage 

biface production, potentially representing the first half of the Chindadn reduction 

sequence, many others appear to be part of a separate reduction stream from the smaller 

point types. The smaller biface group is characterized by thin flake blanks, often 

retaining platforms and remnant ventral surfaces, irregularly or marginally flaked, all of 

which would be unlikely if they were shaped and thinned from larger biface blanks. 

Some items within the small biface groups may themselves be discarded preforms. It 

appears the larger bifaces includes both preforms, and a separate group of tools and 

cores with Chindadn-like outlines that may be indicative of stylistic cultural templates. 
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Convex Bases 

It is clear why convex-based bifaces, correlating with the traditionally defined 

“teardrop-shaped” outlines, have been most commonly cited as a unique type specimen 

for early Alaskan assemblages. These bifaces are unique for more than their general 

shape, which is neither conducive to hafting, nor otherwise indicative of any specific, 

intuitively understood function (Figure 27). They have low average reduction indices, 

and a range of stages from apparent preforms with cortex and marginal retouch, to 

finished points with ground edges and overlapping feathered flake scars.  

Convex-based bifaces are almost universally made from thin flakes, often 

retaining visible flake blank landmarks. In most cases the dorsal surface exhibits light 

thinning, often as two or three narrow, parallel flake scars originating from the lateral 

margins and across the base. Flaking characteristically angles obliquely basewards from 

the one margin and tip-wards from the opposing margin, and in a few cases thinning 

angles centrally from the base. The ventral surface is usually smooth, with fine but 

irregular marginal retouch, creating lateral margins that are regular and straight in 

longitudinal cross section, although slightly asymmetrical. A few fully-thinned pieces 

with symmetrical lenticular cross sections are also present. The convex-based points 

exhibit a low rate of hafting abrasion or breakage. A number are chipped at the very tip, 

which might be related to use-pressure or to post-depositional breakage of their fine, thin 

edges. Bases show little to no evidence of macroscopic use-wear or grinding, although 

edge-grinding is present on lateral margins. 
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Triangular and Subtriangular 

Although the straight-based (Figure 28) and subtriangular (Figure 29) classes 

generally overlap with the “triangular” and “subtriangular” outlines often also assigned 

to the Chindadn complex, they in fact appear in a wide variety of outlines. Both groups 

include specimens with slightly concave bases, and convex, straight, and irregular 

margins, all sharing a common suite of semi-informal technologies. Flaking is typically 

very fine and shallow, with feathered and stepped terminations. Although flake blank 

surfaces are rarely retained, the extreme thinness of the artifacts suggests a flake blank 

similar to those seen in the convex-based bifaces. There are almost as many flaking 

styles as there are individual artifacts, varying from parallel straight and oblique to 

random, and usually with one face more formally patterned or reworked than the other. 

Many artifacts, especially the smallest specimens, appear to have been reworked 

multiple times, and have midlines obscured by very fine, highly overlapping and 

irregular flaking. With the exception of one extremely thin but only marginally worked 

point, all of these bifaces exhibit fine, short, and usually regular basal thinning, such that 

many of the artifacts are completely flat in basal cross section and have regular, ground 

basal margins.  

The lateral margins of many of the straight-based and subtriangular bifaces are 

ground, with minimal sinuosity. Moderate-to-low rates of hafting wear and abrasion, 

haft fractures, and impact fractures represent some of the only evidence for use present 

in the sample, with no macroscopically visible evidence of use-retouch, use-breakage, 

scraping, or cutting. Two straight-based basal fragments have been reworked into tools. 
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One has been unifacially reworked along a distal break, creating a wide, concave 

scraper-like surface stretching obliquely from the lateral margin to the edge of the break 

(Figure 28h). The other has been reworked along a lateral edge, with multiple tiny graver 

spurs on a basal corner and next to a lateral break across the medial portion of the biface 

(Figure 28g). The locations of the reworked edges suggest the bifaces were initially 

broken by impact fractures. Overall, triangular and subtriangular bifaces appear to be 

potentially classifiable as a single group, with more regular straight bases found earlier 

in the Nenana basin and more variable subtriangular items found later in the Tanana, 

potentially representing regional or inter-site stylistic variation.  

Concave Bases 

At this time, there are few known specimens with notably concave bases found in 

the Alaskan interior. They exhibit no cortex or residual blank surfaces, with faces 

covered entirely by finely overlapping, shallowly feathered, parallel straight flaking, 

creating straight, well-defined midlines (Figure 29). One point exhibits overface flake 

scars extending to the opposite margin (Figure 29a). Unlike the other classes, concave-

based points are flaked similarly on both faces and both margins, leading to smoothly 

lenticular cross sections that are well-thinned at the base with regular, parallel feathered 

flake scars. Fine finishing is seen in smooth, ground lateral margins. Accordingly, these 

bifaces represent the most extensively reduced specimens in the study sample. Concave-

based bifaces exhibit strong abrasion indicative of hafting at the base and on the 

proximal portion of the lateral margins. Breakage of these items almost exclusively 

reflects impact damage, with breakage occurring at the tips and hafts in conjunction with 
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impact flutes and burin-like scars on the margins below. A single specimen represents 

the only exception to these patterns, a more irregularly flaked point from Owl Ridge, 

which is also the only concave-based specimen thus far reported from the Nenana valley. 

Overall, these bifaces are clearly identifiable as small hafted projectile points, robust for 

their size compared to other terminal Pleistocene bifaces. 

Discussion 

Technological analysis of interior Alaskan bifaces securely dated to the terminal 

Pleistocene (ca. 11,400-13,500 cal BP) confirms many aspects of the existing definition 

of Chindadn. Bifaces are indeed small, thin, and very often teardrop-shaped. Although 

there is notable overlap in both time and technology, convex-based pieces appear, on 

average, temporally slightly earlier than triangular and subtriangular bifaces, and trend 

towards lower reduction indices and more ambiguous function. Triangular and 

subtriangular points may be statistically distinguished by general basal shape 

differences; however, they appear to represent a single technological group. The rare 

concave-based bifaces might be considered as an outlier group in terms of both 

technology and intended use. As yet, the sample of currently excavated bifaces in the 

region is too small for a definitive conclusions, and evidence for function is still 

ambiguous. At the minimum, further exploration of the Chindadn question is needed in 

the form of use-wear analyses and actualistic studies of hafting wear and breakage 

patterns. 
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Biface Groups 

Convex-Based Bifaces 

Convex-based bifaces, analogous to the teadrop-shaped type originally proposed 

by John Cook, show unique technological and morphological characteristics that support 

their continued distinction as a separate group compared to triangular and concave-based 

specimens. As a chronological marker, however, they are no more valid or common than 

the less striking triangular varieties. Their rounded bases provide little to no evidence of 

hafting or other functions, while their reduction sequence is simple and expedient. The 

informal approach to production and discard, and common discard of complete bifaces, 

suggest a relatively low value placed on the items in terms of shaping, curation, and 

overall effort expenditure. Evidence of lithic material conservation is rare, and only very 

occasionally do they show evidence of reuse or reworking. Together with a reduction 

pattern from flake blanks, they are suggestive of bifacially worked flake tools, rather 

than bifaces in the traditional sense. However, the presence of a distinct distal point 

suggests use as a projectile tip. While little evidence for use as flake tools was found in 

the current study, potential functions related to cutting, scraping, perforating, or 

engraving cannot be ruled out without complementary microscopic use-wear analysis. 

Triangular Bifaces 

The triangular and subtriangular bifaces are informally produced, similar to 

convex-based bifaces but not nearly as expediently so. They show low to moderate rates 

of hafting abrasion, impact damage, and lateral breakage patterns across the upper basal 
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portion, similar to the concave-based points but not nearly as consistently. Despite 

evidence of hafting, these bifaces were often discarded unbroken. Unlike the convex-

based bifaces, these triangular items are technologically and typologically nondescript, 

and are similar to artifacts that appear within archaeological assemblages across North 

America throughout the Holocene. Comparisons to Holocene points have also invoked 

suggestions that the small size of Chindadn points may indicate an early instance of 

North American bow and arrow technology (Dixon 2011). While the sample of terminal 

Pleistocene organic artifacts is too small for comparative analysis, no evidence is yet 

known of arrow shafts; however, other characteristics of small triangular Holocene 

points may instead be suggested by these forms, described below.  

Concave-Based Points 

The technologically unique concave-based points present a slightly different case 

than the others, showing more intensive flaking and finishing, hafting abrasion, and haft 

damage. They resemble the other early Alaskan bifaces studied here in overall size, 

shape, and thickess, but otherwise appear to be a separate entity that does not belong 

within the definition of Chindadn bifaces. They are isolated to the Tanana valley during 

the later part of the Beringian era, with the exception of a specimen from Owl Ridge C2 

(Graf et al. 2011), nearly 1000 years younger than the triangular bifaces found in C1 of 

the same site. Their extensive basal thinning — regular, long, and narrow — approaches 

but never quite matches the basal fluting technology seen in western Alaskan fluted 

points dating between 12,900 to 11,200 cal BP (Smith et al. 2013). However, complete 

specimens are relatively short, with curved basal indentation and convex margins, rather 
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than the longer, straight margins and v-shaped bases characteristic to Alaskan fluted 

points. That these items might represent diffusion and incorporation of fluted point 

characteristics, such as extensive hafting and basal shaping, onto the simpler triangular 

form is an extremely tempting hypothesis, but one that is not testable given the small 

sample size. 

Beringian Technologies 

Compared to the highly specialized fluted points found south of the continental 

ice sheets, or the extensively shaped stemmed and lanceolate points found in the Mesa 

complex, interior Alaskan bifaces exhibit a range of technologies, from marginally 

retouched flake-tools to fully reduced items with unpredictable flaking patterns. No 

matter the exact age, location, or size of site in which they are found, occupations 

containing Chindadn technology are almost always the basal component at the site, with 

a few exceptions in the Tanana River valley having very old underlying components. 

With the exceptions of the single-component Walker Road and Eroadaway, the post-

Chindadn occupation always contains either microblades, lanceolate bifaces, or both 

(Goebel and Buvit 2011; Graf and Bigelow 2011). Despite some ambiguity regarding the 

potential contemporaneity of these artifacts at the Village site, Broken Mammoth CZ3, 

and Swan Point CZ3, the overall pattern is consistent and unlikely to solely be 

influenced by variation in seasonality or occupation type.  

From a technological standpoint, the Beringian climate presented a number of 

constraints: cold climate, large dangerous prey with thick hides and fur, and lack of 
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access to plant materials for food, fuel, and building materials. Chindadn points present 

advantages in nearly all technological aspects. As a relatively expedient form of biface 

production, they are efficient, allowing many points to be made from a single flake core, 

reducing waste flakes due to their less extensive thinning and shaping. They are flexible, 

with the potential for preforms to be used or reworked as flake tools. One potential 

explanation for low rates of hafting abrasion and damage may be the use of small, 

loosely hafted point tips to increase maintainability in a manner similar to inset 

microblades, similar to the ubiquitous small, un-notched triangular points of the late 

Holocene across eastern North America (Engelbrecht 2014). These were a flexible 

technology, used for killing a wide variety of prey and also as weapons of warfare 

against other humans, with their key aspect of design as the detachability of the shaft for 

recovery and reuse (Christenson 1997), increasing penetration and damage to the target 

while decreasing damage to both the point and shaft (Boszhardt 2003; Engelbrecht 

2014). A similar strategy is ethnographically reported in the subarctic, used to ensure the 

retrieve-ability and reusability of arrow shafts (VanStone 1985).  

Although few organic artifacts have been found in terminal Pleistocene 

components, bone rods found at Broken Mammoth CZ4 have been suggested to be either 

foreshafts or point tips (Yesner 2000). Hard, impact-resistant materials such as ivory or 

antler may have been both rare and time-consuming to work. Value placed on such 

materials is suggested by the presence of antler foreshafts among the grave goods of the 

11,500 cal BP infant burial at Upward Sun River (Potter et al. 2014). While late 

Beringian environments likely provided wood for shaft materials in the form of willow 
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and birch shrub found in riverine and lowland environments (Bigelow and Powers 2001; 

Graf and Bigelow 2011), larger woody plants for long sturdy spears may have been rare, 

and difficult to replace during upland hunting forays or cold winter months. Evidence 

from organic materials preserved in ice-patches, dating from 9500-1100 cal BP, show 

that darts were preferentially made from birch staves rather than birch or willow saplings 

(Hare et al. 2004), suggesting larger raw materials may have been more effective and 

highly valued. These hypotheses might be tested through future research involving 

actualistic studies of impact damage and use-wear rates related to various hafting 

methods, with and without foreshafts.  

Conclusions 

The early Alaskan bifaces as a whole share many characteristics: small, thin, 

expediently produced, and with extremely simple outlines, lacking landmark features 

and regular flaking patterns. They are divisible into three separate groups with 

statistically significant differences in basal shape, flaking technology, evidence of 

function, and discard patterns. First, the classic “teardrop-shaped” Chindadn biface is 

unique for the presence of expedient, often marginal flaking and discard of mainly 

unbroken pieces with no hafting or macroscopic use-wear. In all but size and appearance 

these artifacts are more similar to flake tools than to the other bifaces. Second, the 

triangular and subtriangular types are informally reduced, extremely thin, and appear to 

be used as lightly hafted bifacial point tips. Finally, a few rare concave-based bifaces are 
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more intensively and consistently reduced, with distinct evidence for use as projectile 

tips and discard after breakage in the haft.  

The current evidence suggests that Cook’s original intent to separate the 

teardrop-shaped biface as a unique entity is accurate, although designating it a Chindadn 

point may be misleading. Triangular and subtriangular bifaces are clearly correlated to 

the teardrop shape in time and space, and assignable to a single phenomenon along with 

the teardrop-shaped items, though technologically distinct. Both groups might be best 

described as separate types within the category of Chindadn biface. At this time, the 

sample size of concave-based bifaces in the interior is too small to definitely place them; 

however, they are technologically distinct and are suggestive of the Northern Fluted 

Point tradition, making them unlikely candidates for inclusion within the Chindadn 

biface category, though they do share some traits, such as small size and subtriangular 

outline.  

Expedient technology, small size, and disposability of the Chindadn bifaces 

provided them a place within a flexible, maintainable, and also transportable Beringian 

toolkit. The need for conservation of material within both the terminal Pleistocene and 

Younger Dryas environments may provide some explanation for the narrow 

chronological and geographic distribution of these small, fairly delicate bifaces, as well 

as their rapid disappearance near the end of the Pleistocene. 
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CHAPTER V 

CONCLUSIONS 

 

Since their initial definition in the 1970s, the Chindadn complex, the associated 

Chindadn point, and their type-site at Healy Lake have played a significant role in the 

prehistory of interior Alaska. While Chindadn bifaces have been established as a unique 

hallmark of terminal Pleistocene western Beringian lithic assemblages, their functional 

and technological roles have been ambiguous, both within early Beringian cultural 

systems, and in relation to burin and microblade technology. Furthermore, discussions of 

the timing and technological role of microblades within the Chindadn, Nenana, and 

Denali complexes often return to the potentially mixed assemblages at the Village site. 

Lacking wide acceptance, however, the existing Village site chronology has provided 

few answers.  

Through three detailed assessments, this research has examined the Healy Lake 

Chindadn complex from three different perspectives. First, a detailed analysis of the 

Linda’s Point site has provided an updated interpretation of geochronology and culture 

history at Healy Lake, supporting many of the original interpretations at the Village site, 

while clarifying and refuting others. Second, a technological analysis of toolstone 

selection and use strategies has provided new depth to the understanding of human 

activities at the lake over time. And finally, a technological analysis of Chindadn biface 

manufacture and use has provided an alternative to the typological approach used to 

place these bifaces within wider Alaskan culture history. Considered together, these 
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three perspectives have also provided answers to the original research goals of this 

dissertation: 

1. To define the geologic and stratigraphic contexts of the occupations at the 

Linda’s Point site. The currently excavated area of Linda’s Point has shown stratigraphic 

sequences similar to those seen at the Village site, while lacking the historic disturbances 

and often very shallow soil profile that threw early interpretations into question. Like the 

Village site, there are few sedimentary boundaries to allow for distinguishing separate 

occupations within the Holocene. However, a terminal Pleistocene component is 

distinguished by a radiocarbon-dated paleosol and hearths, and separated from Holocene 

components by sterile loess. 

2. To determine the sequence and age of cultural occupations at Healy Lake. 

Radiocarbon dating has shown C1 at Linda’s Point to be composed of a 13,100–11,200 

cal B.P. series of palimpsest deposits. This timespan has been narrowed by half 

compared to the 13,500–9,000 cal B.P. Chindadn component of the Village site. It can 

be hypothesized that the ongoing redating program at the Village site, based on 

stratigraphic associations rather than arbitrary levels, will produce a similarly narrowed 

age range associated with the marker paleosol. At Linda’s Point, this lower occupation is 

characterized by small Chindadn bifaces, formal and expedient flake tools, and a lack of 

microblade technology. 

The upper occupations at Linda’s Point are found within a thick loess deposit, 

similar to the Village site and to many other sites in the Tanana Valley. Although C2 

cultural deposits within the existing excavated area are found as a dense cloud within 
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these loesses, further excavation may produce isolated activity areas from individual 

occupations that will allow for the definition of specific sub-components. At Linda’s 

Point, C2 is characterized by large lanceolate bifaces, large preforms, scrapers, 

microblades, and formal and expedient flake tools. 

3. To characterize technological activities and organizational strategies 

represented in the Chindadn and later assemblages. At Healy Lake, both the Village site 

and the Linda’s Point assemblages strongly emphasize curation of tools and secondary 

reduction of non-local materials, reflecting a low availability of high-quality local 

materials. In both C1 and C2, inter-assemblage differences are present between Linda’s 

Point and the Village site, indicating some level of site specialization. Because both sites 

are represented by palimpsest occupations, conclusions about settlement strategy must 

be considered preliminary, and should be tested by further excavation at other sites 

around the lake margins and nearby area. It can be hypothesized that other sites will 

show characteristics similar to Linda’s Point, representing shorter-term extraction sites 

to the more prominent and more extensively occupied Village site. Differing results, 

however, might indicate site specialization related to seasonality, or other less 

predictable factors, such as the interaction of multiple cultural or family groups 

4. To assess technological organization in response to changing environments.  

The presence of palimpsest deposits and generalized nature of lake formation 

data at Healy Lake prevented fine-grained paleoenvironmental analysis. The existing 

data allowed for a broader discussion of change over time, from postglacial climates and 

riverine environments, to warming Holocene climates and overall lake development. 
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Change in technological organization over time is readily apparent at Healy Lake. Both 

sites exhibit a shift from dominantly secondary reduction of nonlocal materials to a more 

diverse set of reduction strategies of local, nonlocal, and exotic materials. These changes 

likely reflect a combination of factors relating to population movements and 

environmental changes, including increased landscape knowledge and decreased 

mobility over time. In both eras, the presence of inter-site technological variability 

potentially indicates seasonal or logistical specialization. 

The currently known excavated sample of Chindadn biface technology is 

restricted to a few millennia during the terminal Pleistocene and Allerød, unlike the 

longer-lasting microblade technology characteristic of northern climates. Few known 

typological precursors exist to explain this geographic or chronological distribution from 

a culture historical standpoint. However the research presented here has shown them to 

be an expedient and informal biface technology, mirroring the informal flake tool 

technologies seen at early components of Linda’s Point and the Village site. Such 

characteristics might have allowed them to be a flexible and expendable component of a 

maintainable post-glacial northern toolkit, helping to conserve raw materials through 

small size, shortened lithic reduction streams, and flexible usage. 

5. To consider the scientific results in the context of multivocality and 

community involvement. The final products of this completed research are being 

distributed in paper and electronic form to the Healy Lake community, as well as being 

presented to the village council. The methods of TCC’s pioneering community field 

school programs at Linda’s Point will be further published and presented at conferences, 
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and it is hoped that future research programs in Alaska will consider similar methods. 

Most encouragingly, the ongoing work and continued interest in community history at 

Healy Lake has led to collaboration between village archaeologists and research 

institutions, and is expected to lead to future published research. 

Closing Thoughts and Future Research 

A common theme of the results across all studies presented in this dissertation 

has been the importance of technological decision making, and the need to consider it 

alongside analyses of cultural templates, settlement and mobility, or even environmental 

constraints. Toolstone selection and use strategies at the lake are focused on curation, 

selectivity, and later-stage reduction of nonlocal materials, reflecting scarcity and low 

quality of available materials along the lakeshore. However, no single piece of research 

provides a complete reconstruction of prehistoric cultures and activities on its own. 

While providing new information about the contested Healy Lake archaeological record, 

this research has also provided multiple future research. 

It is expected that the analysis of cultural materials presented here will be 

complemented with forthcoming stratigraphic and geochronological analyses that may 

elucidate some of the questions raised during reanalysis of the Village site materials and 

field notes. Well-preserved faunal remains at the Village site are still in need of detailed 

analysis. Some questions, such as the separation of potential palimpsest deposits, and 

outlining of activity areas, may only be addressed through expanding the excavated 

sample area at Linda’s Point, and perhaps complementary excavation data from multiple 
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sites around the shores of the lake. Chapter III raised the question of sample size at 

Linda’s Point, and its effects on tool richness, lithic material diversity, and the high 

proportion of quartz in C2, all of which also invite expansion of the excavation area.  

Analysis of Chindadn bifaces has also revealed further necessary research. 

Actualistic studies of hafting and breakage patterns might be used to evaluate the 

patterns seen in Chapter IV, and the reasons for low breakage rates of triangular 

Chindadn bifaces. Microscopic use-wear analysis might also be used to evaluate 

function, although it must be cautioned that “bag retouch” and other effects of long-term 

curation were visible on a number of items during analysis. Finally, with larger well-

dated samples potentially available in the future, more detailed geometric morphometric 

and principal component analysis of chronological and geological variation in shape 

patterns (Smith et al. 2014). 
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APPENDIX A 

CHINDADN BIFACE DATA TABLE 
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APPENDIX B 

EROADAWAY BIFACE ANALYSIS 

 

The Eroadaway bifaces present an interesting case in terms of clustering (Figure 

31). When originally included within the primary sample, they clustered fairly efficiently 

into size classes similar to the small bifaces, although tending to group together with low 

relative widths and high relative lengths. Charting of basal characteristics show similar 

mild separation; while some Eroadaway bifaces overlap with the subtriangular forms, 

over half of the Eroadaway bifaces group separately, with relatively high MWPs (Figure 

31). Given discrepancies in clustering and overall metric characteristics for this site 

compared to the overall sample, I removed the Eroadaway assemblage before 

conducting the final clustering and technological analyses described here. The basal 

shape scatterplots provide some evidence that the simplified basal metrics used here, 

adapted to a simple basal shape, are likely inadequate for more conventional biface 

assemblages with more complex shape characteristics, and caution should be used when 

comparing Chindadn points to other biface types. 

The Eroadaway bifaces have been described as unique in a number of ways , and 

it has been suggested that they may be related to Chindadn technology (Holmes et al. 

2010). A few similarities to Chindadn bifaces do exist, including narrow widths and thin 

cross sections, but the Eroadaway bifaces are relatively longer, with a lanceolate outline. 

They are generally straight-based, but do not fit into the straight-based Chindadn biface 

group according to basal measurements. They also differ in being made primarily from 
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argillite (63%), rather than the higher-quality cherts (0%) and chalcedonies (25%) that 

dominate classic Chindadn points. They exhibit moderately low rates of hafting abrasion 

(25%) and no haft fractures (0%), but high rates of manufacturing errors (38%), and 

reworking of apparent impact fractures through burination (38%). The majority of 

finished pieces have strikingly asymmetrical distal margins, accentuated by burination. 

They are consistently collaterally flaked with moderately overlapping feathered and 

stepped flake scars. There are two short specimens that could be described as small and 

slightly subtriangular, but with flaking characteristics more likely representing reused 

lanceolate points. These two specimens are both abraded at the haft and exhibit impact 

fractures at the tip, and are made on chalcedony. Other than a shared interpreted function 

as projectiles, very little in the shape, flaking characteristics, or apparent use and discard 

patterns of the Eroadaway bifaces strongly connects them to the Chindadn bifaces. 
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Figure 30. Complete bifaces plotted according to weight, width, and geometric mean, including 
Eroadaway bifaces. 

 



 

191 

 

Figure 31. Small bifaces plotted according to BIR, BWR, and MWR, including Eroadaway 
bifaces. 
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