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ABSTRACT

This thesis investigates the fundamental coupling between loads and locational

marginal prices (LMPs) in security-constrained economic dispatch (SCED). Theoret-

ical analysis based on multi-parametric programming theory points out the unique

one-to-one mapping between load and LMP vectors. Such one-to-one mapping is

depicted by the concept of system pattern region (SPR) and identifying SPRs is the

key to understanding the LMP-load coupling. The SPR identification problem is

considered from a market participant’s viewpoint. Built upon the characteristics of

SPRs, this paper proposes a data-driven approach to identifying SPRs. It is shown

that even without the knowledge of system topology and parameters, the SPRs can

be estimated by learning from historical load and price data. A 3-bus system serves

as an illustrative example. SPRs and posterior probabilities are visualized and dis-

cussed in details for better understandings. The proposed data-driven approach is

also examined on the IEEE 24-bus system and 118-bus system. The simulation re-

sults on both systems illustrate that the proposed method is effective, and some

computational issues are discussed.
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NOMENCLATURE

ci(PGi
) : the generation cost function of generator i

D : the load space

D : the set of all feasible vectors of loads

η+, η− : multipliers related with generation capacity constraints

H : shift factor matrix

J : set of indices of all the constraints J = {1, 2, · · · , nc}

λ : LMP vector

λ1 : LMP of the slack bus (energy component)

LMP : Locational Marginal Price

µ+, µ− : multipliers related with transmission capacity constraints

nb : number of buses in the system

nc : number of constraints in the SCED formulatio

ng : number of generators in the syste

nl : number of transmission lines in the system

MLP : Multi-parametric Linear Programming

π : system pattern π = (B,N )

B : the set of the indices of binding constraints in primal SCED
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N : the set of the indices of non-binding constraints in primal SCED

PG, PD : generation vector, load vector

s : vector slack variables in the primal SCED problem

Sπ : SPR related with system pattern π

SCED : Security-constrained Economic Dispatch

SPR : System Pattern Region

SVM : Support Vector Machine

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution of This Paper . . . . . . . . . . . . . . . . . . . . . . . . 2

2. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Security Constrained Economic Dispatch . . . . . . . . . . . . . . . . 4
2.3 Multi-parametric Linear Programming . . . . . . . . . . . . . . . . . 5

3. SCED ANALYSIS VIA MLP . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Definitions and Theorems . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 SPRs with Varying Parameters . . . . . . . . . . . . . . . . . . . . . 11
3.3 3 Bus System Example . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Practical Issues with SPRs . . . . . . . . . . . . . . . . . . . . . . . . 12

4. A DATA-DRIVEN APPROACH TO IDENTIFYING SPRS . . . . . . . . 16

4.1 The SPR Identification Problem . . . . . . . . . . . . . . . . . . . . . 16
4.1.1 SPR Identification as a Classification Problem . . . . . . . . . 16
4.1.2 SPR Identification with SVM . . . . . . . . . . . . . . . . . . 17

4.2 A Data-driven Approach . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



4.2.1 SPR Identification with Varying System Parameters . . . . . . 18
4.2.2 Fitting Posterior Probabilities of SVM Classifier . . . . . . . . 19
4.2.3 The Data-driven Approach . . . . . . . . . . . . . . . . . . . . 19
4.2.4 Probabilistic LMP Forecast . . . . . . . . . . . . . . . . . . . 21

5. CASE STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.1 3-fold Cross Validation . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . 22
5.1.3 LMP Forecast Accuracy . . . . . . . . . . . . . . . . . . . . . 22

5.2 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.3 Posterior Probabilities . . . . . . . . . . . . . . . . . . . . . . 24

5.3 118 Bus System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.2 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Discussions on Posterior Probabilities . . . . . . . . . . . . . . . . . . 27

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

APPENDIX A. ON THE ASSUMPTIONS . . . . . . . . . . . . . . . . . . . 34

APPENDIX B. POSTERIOR PROBABILITY CALCULATION . . . . . . . 37

APPENDIX C. MORE RESULTS OF THE 3-BUS SYSTEM . . . . . . . . . 39

APPENDIX D. DETAILED SETTINGS OF THE IEEE 118-BUS SYSTEM . 45

APPENDIX E. SOME UNPUBLISHED RESULTS . . . . . . . . . . . . . . . 48

APPENDIX F. PROOF OF THEOREMS . . . . . . . . . . . . . . . . . . . . 54

APPENDIX G. RESULTS OF THE IEEE 24-BUS SYSTEM . . . . . . . . . 66

viii



LIST OF FIGURES

FIGURE Page

3.1 3 Bus System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Primal Solution and Optimal Value Function (3-bus System) . . . . . 14

3.3 System Pattern Regions with Varying Transmission Limits . . . . . . 15

3.4 Number of SPRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 SPR Identification Problem with SVM . . . . . . . . . . . . . . . . . 18

4.2 The Data-driven Approach . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Generated Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Posterior Probabilities of Given Load Vectors . . . . . . . . . . . . . 24

5.3 Posterior Probability Surfaces . . . . . . . . . . . . . . . . . . . . . . 25

A.1 3-bus System (4 Generators) . . . . . . . . . . . . . . . . . . . . . . . 35

C.1 3D System Pattern Regions . . . . . . . . . . . . . . . . . . . . . . . 39

C.2 Visualization of Any Two System Pattern Regions . . . . . . . . . . . 40

C.3 3 Bus System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

C.4 SPR Class #1 and #2 . . . . . . . . . . . . . . . . . . . . . . . . . . 44

C.5 SPR Class #1 and #3 . . . . . . . . . . . . . . . . . . . . . . . . . . 44

C.6 SPR Class #2 and #3 . . . . . . . . . . . . . . . . . . . . . . . . . . 44

C.7 Error Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

E.1 All the Possible SPRs . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



F.1 Adjacent Sets (Example and Counter Example) . . . . . . . . . . . . 55

G.1 24 Bus System [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

G.2 Cumulative Distribution of System Patterns . . . . . . . . . . . . . . 67

G.3 Forecast Accuracy And Training Time . . . . . . . . . . . . . . . . . 69

x



LIST OF TABLES

TABLE Page

3.1 Number of SPRs in Test Systems . . . . . . . . . . . . . . . . . . . . 14

5.1 Classification Accuracy (3 Bus System) . . . . . . . . . . . . . . . . . 24

5.2 Average Computation Time of the Data-driven Approach (average of
3 folds, in seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Classification Accuracy (118 Bus System) . . . . . . . . . . . . . . . . 28

5.4 LMP Forecast Accuracy (118 Bus System) . . . . . . . . . . . . . . . 28

C.1 Details of SPRs in Fig. (3.3a). . . . . . . . . . . . . . . . . . . . . . . . 41

D.1 Settings of Generation Costs . . . . . . . . . . . . . . . . . . . . . . . 45

xi



1. INTRODUCTION

A fundamental issue with electricity market operation is to understand the impact

of operating conditions (e.g. load levels at each bus) on the locational marginal prices

(LMPs). This paper examines this key issue of the relationship between nodal load

levels and LMPs. This issue is further compounded by the increasing levels of demand

response and variable resources in the grid.

1.1 Literature Review

In the power systems literature, reference [5] is among the pioneering work that

uses perturbation techniques to compute the sensitivities of the dual variables in

SCED (e.g. LMPs) with respect to parameters (e.g. the nodal load levels). This

sensitivity calculation method is widely used in subsequent researches. However,

this approach is only valid for small changes and the marginal generator stays the

same. Reference [15] observed the “step changes” of LMPs with respect to increas-

ing system load level and discovered that new binding constraints (transmission or

generation) are the reason of the “step changes”. This is followed by further analysis

on identifying the critical load levels (CLLs) that trigger such step changes of LMPs

[16][2][3]. This line of work assumes that the system load change is distributed to

each bus proportional to the base case load, which, in many instances, do not neces-

sarily represent the real-world situations. Reference [21] analyzed this problem using

quadratic-linear programming (QLP) and the concepts of system patterns and sys-

tem pattern regions (SPRs) were first introduced. The SPRs depict the relationship

between loads and LMPs in the whole load space, which is not confined in a small

neighborhood of an operating point or constrained by a specific load distribution

pattern.
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This paper is inspired by [21] but focuses on the case of piecewise linear generation

costs, instead of the quadratic cost case in [21]. The reasons that we study the

piecewise linear cost case are

• piecewise linear cost curves are often quite representative of the market practice

in the real world.

• some new theoretical results based on piecewise linear cost curves are derived,

and are generalizable towards quadratic cost cases.

Characterizing the SPRs would provide important insights to both system op-

erators and market participants. Reference [13] advances the theory of SPR from

system operator’s perspective where the knowledge of system topology and parame-

ters is available. For market participants, such knowledge is not necessarily available.

Our previous work [10] examines the issue from market participant’s viewpoint and

applies the geometric features of SPRs to identify them.

1.2 Contribution of This Paper

This paper significantly advances our previous work [10] by

1. completing the theoretical characterization of SPRs as a function of nodal load

levels;

2. proposing a computational algorithm to identify SPRs using historical data;

3. introducing the posterior probabilities of SPRs with the presence of uncertain

system parameters such as transmission limits.

The rest of the paper is organized as follows. Section 2 formulates SCED in the

form of multi-parametric linear programming. Theoretical analysis of relationship

between nodal load levels and LMPs is presented in Section 3. A 3-bus system serves

2



as a illustrative example. A data-driven algorithm for market participants to identify

SPRs is described in Section 4. Section 5 illustrates the performance of the algorithm

on the IEEE 118-bus system. Section 6 presents the concluding remarks and future

work.
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2. PRELIMINARIES

2.1 Notations

The notations of this paper are summarized below: mathematical symbols in

hollowed-out shapes (e.g. R) represent spaces and symbols in Calligra font (e.g. Sπ)

stand for sets. The superscript “∗” indicates the variable is optimal, “ ˆ ” denotes

estimated values (e.g. λ̂). Variables with “ ¯ ” are expectations or average values

(e.g. λ̄). “ᵀ” denotes the transpose of a vector or matrix (e.g. 1ᵀ
n). The subscript

“i” represents the ith element of the vector (e.g. PGi
), and the superscript “(i)”

represents the ith element in a set (e.g. P
(i)
D ). The vector of n × 1 ones, matrix

of m × n zeros and the n × n identity matrix are denoted by 1n and 0m×n and In

respectively.

2.2 Security Constrained Economic Dispatch

In real-time energy market operations, the LMPs are the results from the security-

constrained economic dispatch (SCED), which is formulated as follows:

minimize
PG

nb∑
i=1

ci(PGi
)

subject to

nb∑
i=1

PGi
=

nb∑
j=1

PDj
: λ1

− F+ ≤ H(PG − PD) ≤ F+ : µ+, µ−

P−G ≤ PG ≤ P+
G : η+, η−

(2.1)

where PG is the generation vector, and PD is the load vector. Without loss of

generality, we assume there are both generation and load at each bus1. Let nb

1For the discussions about this assumption, please refer to Appendix A.
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denote the number of buses and nl denote the number of transmission lines, then

PG, PD ∈ Rnb . H ∈ Rnl×nb is the shift factor matrix. In Eqn. (2.1), bus 1 is assumed

to be the slack bus. For the sake of simplicity, line losses are not modeled explicitly

in this formulation.

The objective of SCED is to minimize the total generation cost and satisfy the

transmission and generation capacity constraints while keeping the real-time balance

between supply and demand. The generation cost function ci(PGi
) of generator

i is increasing and convex, and it is usually regarded as a quadratic function or

approximated by a piecewise linear function. To better reflect the current practice

in electricity markets, this paper studies the SCED problem with piecewise linear

generator bidding functions. And for the consideration of simplicity, the simplest

form, i.e.
∑nb

i=1 ci(PGi
) = cᵀPG is being considered in this paper2. The associated

Lagrangian Multipliers [λ1;µ
+;µ−; η+; η−] play a pivotal role in market pricing, and

the vector of locational marginal prices (LMPs) λ can be calculated as follows [20]:

λ = λ11nb
+Hᵀ(µ+ − µ−) (2.2)

2.3 Multi-parametric Linear Programming

In real-world market operations, the parameters associated with the SCED above

are typically time-varying. Therefore, it is essential to understand the effects of pa-

rameters on the optimality of the problem. Multi-parametric Programming (MP)

problem aims at exploring the characteristics of an optimization problem which de-

pending on a vector of parameters [4]. Multi-parametric Linear Programming (MLP)

theory, which is the foundation of this paper, pays special attention to Linear Pro-

gramming (LP) problems. The standard form of the MLP problem is stated as

2For the discussions about this assumption, please refer to Appendix A.
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follows:

Primal: minx{cᵀx : Gx ≤ W + Fθ} (2.3)

Dual: maxy{−(W + Fθ)ᵀy : Gᵀx = −c, x ≥ 0} (2.4)

where θ ∈ Rs is the vector of parameters, c ∈ Rn is the vector of costs. And θ belongs

to some parameter space Θ.

In other references (e.g. [1, 7]), the primal form of the MLP problem is different.

For the consideration of convenience of analyzing SCED problem, we follow the

formulations in [4]. Those two forms are interchangeable.

In this paper, we would like to understand the impact of parameters (i.e., load

levels, line capacities, etc) on the outcome of SCED (namely, the prices). In the next

Section, we pose the problem in view of MLP, and analyze the theoretical properties.

An important assumption we have is that unit commitment results stay unchanged

during the SCED time frame. Future work will investigate the impact of change of

unit commitment on the prices.

6



3. SCED ANALYSIS VIA MLP

3.1 Definitions and Theorems

Consider the SCED problem in MLP form1:

Primal: min{cᵀPG : APG + s = b+WPD, s ≥ 0} (3.1)

Dual: max{−(b+WPD)ᵀy : Aᵀy = −c, y ≥ 0} (3.2)

where:

A =



1ᵀ
nb

−1ᵀ
nb

H

−H

Inb

−Inb


, b =



0

0

F+

−F+

P+
G

−P−G


,W =



1ᵀ
nb

−1ᵀ
nb

H

−H

0nb×nb

0nb×nb


(3.3)

The load vector PD is the vector of parameters θ, and the load space D is the

parameter space Θ. Since not every PD in the load space leads to a feasible SCED

problem, D ∈ D denotes the set of all feasible vectors of loads. [7] shows that D is a

convex polyhedron in D.

Definition 1 (Optimal Partition/System Pattern). For a load vector PD ∈ D, we

could find a finite optimal solution P ∗G and s∗. Let J = {1, 2, · · · , nc} denote the

index set of constraints where nc = 2+2nl+2ng for Eqn. (3.1). The optimal partition

1The supply and demand balance constraint is rewritten as two equivalent inequalities (first two
rows of matrices A,W and vector b).
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π = (B,N ) of the set J is defined as follows:

B(PD) := {i : s∗i = 0 for PD ∈ D} (3.4)

N (PD) := {j : s∗j > 0 for PD ∈ D} (3.5)

Or in the dual form (Eqn. (3.2)):

B(PD) := {i : y∗i > 0 for PD ∈ D} (3.6)

N (PD) := {j : y∗j = 0 for PD ∈ D} (3.7)

Obviously, B ∩ N = ∅ and B ∪ N = J . The optimal partition π = (B,N ) divides

the index set into two parts: binding constraints B and non-binding constraints N .

In SCED, the optimal partition represents the status of the system (e.g. congested

lines, marginal generators), and is called system pattern.

Definition 2 (Critical Region/System Pattern Region). The concept critical region

refers to the set of vectors of parameters which lead to the same optimal partition

(system pattern) π = (Bπ,Nπ):

Sπ := {PD ∈ D : B(PD) = Bπ} (3.8)

For the consideration of consistency, the critical region is called system pattern region

(SPR) in this paper.

According to the definitions, each SPR is one-to-one mapped to a system pattern,

the SPRs are therefore disjoint and the union of all the SPRs is the feasible set of

vectors of loads: ∪iSπi = D. All the SPRs together represent a specific partition of

the load space. The features of SPRs, which directly inherit from critical regions in

8



MLP theory, are summarized as follows:

Theorem 1. The load space could be decomposed into many SPRs. Each SPR is

a convex polytope. The relative interiors of SPRs are disjoint convex sets and each

corresponds to a unique system pattern [21]. There exists a separating hyperplane

between any two SPRs [10].

Lemma 1. If the problem is not degenerate, then the partition of the load space is

unique, and Sπ is an open polyhedron of the same dimension as D [6].

Lemma 2. The optimal value function f ∗ = cᵀP ∗G(PD) is convex and piecewise affine

over D, and affine in each SPR. The optimal solution P ∗G within an SPR is an affine

function of the load vector PD [8].

Lemma 3 (Complementary Slackness). According to complementary slackness:

ABP
∗
G = (b+WPD)B (3.9)

ANP
∗
G < (b+WPD)N (3.10)

Aᵀ
ByB = −c, yB > 0 (3.11)

yN = 0 (3.12)

where the (·)B is the sub-matrix or the sub-vector whose row indices are in set B,

same meaning applies for (·)N .

Remark 1. The supply-demand balance equality constraint in SCED is rewritten

as two inequalities (Eqn. (3.1)). These two inequalities will always be binding and

appear in the binding constraint set B at the same time. One of them is redundant

and therefore eliminated from set B. In the remaining part of the paper, set B denotes

the set after elimination.

9



Remark 2. If the problem is not degenerate, the cardinality of binding constraint

set B is equal to the number of decision variables (i.e. number of generators ng)
2.

The matrix AB is invertible and P ∗G is uniquely determined by A−1B (b+WPD)B. This

is equivalent with Lemma 2 that the optimal solution is an affine function of the load

vectors within the same SPR.

Lemma 4 (Analytical Form of SPRs). Let IB · (b + WPD) represent the sub-vector

(b+WPD)B, where IB is the sub-matrix of the identity matrix whose row indices are

in set B. Then the analytical form of the SPRs could be solved from Eqn. (3.9) and

Eqn. (3.10) as follows:

(INA · (IBA)−1IB − IN )(b+WPD) < 0 (3.13)

Lemma 5. Within each SPR, the vector of LMPs is unique.

The proof of this lemma follows Eqn. (3.11) (dual form of system pattern defini-

tion) . Since the system pattern π is unique within an SPR Sπ, therefore the solution

y∗ is unique for any PD ∈ Sπ And the vector of LMPs can be calculated using Eqn.

(2.2). This lemma also illustrates that the LMP vectors are discrete by nature in the

case of linear costs.

Theorem 2. Different SPRs have different LMP vectors.

Lemma 2 shows that the optimal value function is piecewise affine, which means

the optimal value function is composed of several hyperplanes and each hyperplane

corresponds to an SPR. The LMP vectors are the partial derivatives of the optimal

value function f ∗ over the load vector PD. If two SPRs have the same LMP vector,

2This is consistent with the statement that the number of marginal generators equals to the
number of congested lines plus one.
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then those two hyperplanes are parallel to each other. But a piecewise affine function

with two parallel segments cannot be a convex function, this is contradictory to

Lemma 2 which also proves that f ∗ is convex. Therefore different SPRs have different

LMP vectors. A more rigorous proof can be found in Appendix F.

3.2 SPRs with Varying Parameters

Section 3.1 shows construction properties of the load space with fixed parameters

of the system (e.g. transmission constraints). However, these parameters might also

be time-varying (e.g. dynamic line ratings). This section reveals more features of

SPRs with respect to varying factors in the system.

Remark 3. Eqn. (3.13) could be written as:

(INA(IBA)−1IB − IN ) ·WPD < (IN − INA(IBA)−1IB)b (3.14)

This indicates the shape of the SPR Sπ only depends on two factors: (1) the cor-

responding system pattern π = (B,N ); (2) matrices A and W , namely the shift

factor matrix H according to Eqn. (3.3). Small change of vector b (e.g. changing

transmission limits) only leads to a parallel shift of the SPRs’ boundaries.

3.3 3 Bus System Example

An illustrative example is provided in this section. All the parameters of the

3-bus system are shown in Fig. 3.1. The 3-bus system in Fig. 3.1 is analyzed using

Multi-Parametric Toolbox 3.0 (MPT 3.0) [12].

Fig. (3.2a) and Fig. (3.2b) show that the optimal solution P ∗G and the optimal

value function is piecewise affine over D.

Fig. (3.3a) shows the SPRs when the vector of generation costs c is [20; 50; 100].

Within each SPR, the LMPs are identical. The analytical form of SPRs and corre-

11



sponding LMP vectors are calculated using Eqn. (3.13) and Eqn. (3.9). Details of

Fig. (3.3a) are summarized in [9].

Notice that PD2 and PD3 in Fig. (3.3a) could be negative. This is for the con-

sideration of renewable resources in the system, which are typically considered as

negative loads.

The features of SPRs with varying transmission limits can be observed from Fig.

(3.3a) and Fig. (3.3b). With decreasing transmission limits, the shape of all the

SPRs remain the same; SPR#2 and SPR#6 shrink, SPR#3, #4 and #5 expand.

3.4 Practical Issues with SPRs

The theoretical analysis above reveals that the load space could be partitioned

into many regions with fascinating features. This overall structure of the load space

could help solve the SCED problem and shift part of the online computational burden

to offline [14]. The number of SPRs in the load space could help evaluate the offline

computational burden.

The number of distinct system pattern regions is finite, an upper bound is 2ng−1×

C
ng−1
ng+nl

, which is the number of all the possible system patterns. But this number

is actually a very loose upper bound. Some benchmark systems are analyzed using

MPT 3.0 [12]. All the test systems except the 3-bus one are IEEE standard test

systems, and all the settings are from the case files of Matpower. The load vector is

the vector of parameter for analysis.

As shown in Table 3.13, the number of SPRs grows rapidly with the scale of

systems. There are around 104 buses in a real power system (e.g. 1.2 × 104 in

ERCOT), consequently there would be too many SPRs to be considered. This is a

major issue to analyze the SCED problem via MLP theory.

3The MPT toolbox also analyzed the IEEE 24-bus system. It took 7 days to find 2.7×106 SPRs
but still could not explore all the SPRs in the load space.
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Fig. 3.4 also demonstrates the growing of the number of SPRs. The x-axis of

Fig. 3.4 is the number of buses of test systems, and the y-axis is the log of the total

number of SPRs. The black circles are calculated numbers of SPRs, the red line is

the upper bound provided by 2ng−1×Cng−1
ng+nl

. Although this upper bound is relatively

loose, it satisfyingly describes the trend of number of SPRs. The green line indicates

an attempt to fit the actual number of SPRs using the upper bound. The equation

of the green line is 2ng−1 × Cng−1
ng+nl

/1.12ng+nl .

To avoid this issue, [14] focuses on the major stochastic factors (e.g. stochastic

generation) in the system. And [21] points out that only some subsets of the com-

plete theoretical load space could be achievable thus helpful in practice. This paper

follows the assumptions in [21], namely, starting from the load data and exploring

the practical SPRs instead of the whole load space.
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Figure 3.1: 3 Bus System

(a) Primal Solution (b) Optimal Value Function

Figure 3.2: Primal Solution and Optimal Value Function (3-bus System)

Table 3.1: Number of SPRs in Test Systems
System Info Number of SPRs Computation Time (s)
3 Bus System (Fig.3.1) 10 0.7
IEEE 6 Bus System 20 2.1
IEEE 9 Bus System 15 1.5
IEEE 14 Bus System 1470 31
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(a) Line Limits: (60, 60, 80) (b) Line Limits: (54, 54, 72)

Figure 3.3: System Pattern Regions with Varying Transmission Limits

Figure 3.4: Number of SPRs
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4. A DATA-DRIVEN APPROACH TO IDENTIFYING SPRS*

The SPRs depict the fundamental coupling between loads and LMP vectors.

Massive historical data could help market participants estimate SPRs, understand

the load-LMP coupling and then forecast LMPs. This section proposes a data-driven

method to identify SPRs, which is a significant improvement of the basic method

in [10]1 by considering varying system parameters and the probabilistic nature of

system parameters.

4.1 The SPR Identification Problem

4.1.1 SPR Identification as a Classification Problem

A classifier is an algorithm to give a label y to each feature vector x. The

feature vectors sharing the same labels belong to the same class. The objective

of the classification problem is to find the best classifier which could classify each

feature vector accurately. For the parametric classifiers, there is always a training

set, i.e. a group of feature vectors whose labels are known. There are usually two

steps in a classification problem: training and classifying. Training usually means

solving an optimization problem over the training set to find the best parameters

of the classifier. And classifying is to classify a new feature vector with the trained

classifier.

According to Section 3.1, the load vectors in an SPR share many common features

(e.g. vectors of LMPs). Theorem 2 proved that the LMP vectors are distinct for

different SPRs. Therefore, one SPR can be regarded as a class and the LMP vector is

*The description of the basic method is based on a previous publication: “A Data-driven Ap-
proach to Identifying System Pattern Regions in Market Operations” by Xinbo Geng and Le Xie, 
in Proceedings of Power and Energy Society General Meeting, Denver, CO, 2015. With permission 
from IEEE.
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the label of each class. Theorem 1 proves the existence of the separating hyperplanes.

Since each separating hyperplane labels two SPRs with different sides, it turned out

that the separating hyperplanes are classifiers and the key of identifying SPRs is to

find optimal hyperplanes, which is exactly the objective of Support Vector Machine

(SVM).

4.1.2 SPR Identification with SVM

Suppose there is a set of labeled load vectors for training and those load vectors

belong to only two distinct SPRs (labels y(i) ∈ {1,−1}). Then the SPR identification

problem with a binary SVM classifier (separable case) is stated below:

min
w,b

1
2
wᵀw (4.1)

s.t y(i)(wᵀP
(i)
D − b) ≥ 1, y(i) ∈ {−1, 1} (4.2)

The word “binary” here specifies only two classes (i.e. SPRs) are being considered.

Eqn. (4.2) is feasible only when the two SPRs are not overlapping and there exists

at least one hyperplane thoroughly separating them (separable case). For any load

vector PD in the load space, wᵀPD−b = 0 represents the separating hyperplane where

w is the norm vector to the hyperplane. Two lines satisfying wᵀPD−b = ±1 separate

all the training data and formulate an area with no points inside. This empty area is

called margin. The width of the margin is 2/||w||, which is the distance between those

two lines. The optimal solution refers to the separating hyperplane which maximizes

the width of the margin 2/||w||, therefore the objective of the binary SVM classifier

is to minimize the norm of vector w.

Due to the existence of multiple SPRs, multi-class classifiers are needed. Since

Theorem 1 guarantees the existence of separating hyperplanes between every pair of
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Figure 4.1: SPR Identification Problem with SVM

SPRs, the “one-vs-one” multi-class SVM classifier is incorporated in the data-driven

approach to identifying SPRs. Detailed procedures are summarized in Section 4.2.

4.2 A Data-driven Approach

4.2.1 SPR Identification with Varying System Parameters

When the system parameters are varying (e.g. dynamic line ratings), two SPRs

may overlap with each other (shown in Section 3.2, Fig. 3.3 and Fig. 5.1). The SPR

identification problem is no longer a separable case as in [10] (Eqn. (4.1) and Eqn.

(4.2)). The SVM classifier needs to incorporate soft margins to allow some tolerance

of classification error. The slack variable si is added to Eqn. (4.1) and Eqn. (4.2)

representing tolerant errors. Penalties of violation C
∑

i si are added in the objective

function. Large C means that the extent of tolerance is low.

min
w,b,s

1
2
wᵀw + C

∑
i s

(i) (4.3)

s.t y(i)(wᵀP
(i)
D − b) ≥ 1− s(i) (4.4)

s(i) ≥ 0, y(i) ∈ {−1, 1}
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4.2.2 Fitting Posterior Probabilities of SVM Classifier

Estimating the posterior probability P (class|input) is very helpful in practical

problems [18]. When identifying SPRs, knowing the probability P (y = i|PD and y ∈

{1, 2, · · · , n}) is not only about knowing the result y = i (PD belongs to SPR#i), but

also understanding the confidence or possible risk. The market participants could

accordingly adjust their bidding strategy and reduce possible loss.

Although the posterior probabilities are desired, the standard SVM algorithm

provides an uncalibrated value which is not a probability as output [18]. Modifica-

tions are needed to calculate the binary posterior probabilities P (y = i|PD and y ∈

{i, j}). Common practice is to add a link function to the binary SVM classifier and

train the data to fit the link function. Some typical link functions include Gaus-

sian approximations [11] and sigmoid functions [18]. In this paper, the sigmoid link

function is selected due to its general better performance than other choices [18].

In general, there are more than two SPRs. What we really want to know is the

multi-class posterior probabilities P (y = i|PD and y ∈ {1, 2, · · · , n}). For short, we

will use P (y = i|PD) to represent multi-class posterior probabilities. [11] proposed a

well-accepted algorithm to calculate multi-class posterior probabilities from pairwise

binary posterior probabilities. This algorithm is incorporated in our approach and

briefly summarized in Appendix B.

4.2.3 The Data-driven Approach

There are three steps in the proposed data-driven approach (Fig. 4.2):

4.2.3.0.1 Training Suppose there are n different SPRs in the training data set.

Each time two SPRs are selected, trained and we get a binary SVM classifier. This

pairwise training procedure is repeated C2
n = n(n− 1)/2 times and we collect n(n−

1)/2 binary classifiers, namely the n(n − 1)/2 separating hyperplanes between any
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Figure 4.2: The Data-driven Approach

two out of n SPRs.

4.2.3.0.2 Data Post-processing Calculate posterior probabilities P (y = i|PD) for

i = 1, 2, · · · , n by applying Platt’s algorithm and then Hastie and Tibshirani’s algo-

rithm.

4.2.3.0.3 Classifying/Predicting Given load forecast PD, there are two different

approaches to predicting, which are termed as “max-vote-wins” and “max-posterior-

wins”, respectively:

• (max-vote-wins:) each binary classifier provides a classification result (vote) for

the load forecast PD, the SPR which collects the most votes will be the final

classification result. The load forecast PD is therefore pinpointed to an SPR,

whose label vector (LMP vector) is the forecast of LMPs. This was proposed

in [10] and it does not require data post-processing (step (b)).

• (max-posterior-wins:) step (b) provides n(n − 1)/2 trained binary SVM clas-

sifiers with posterior probabilities, the classification result SPR#i∗ is the class

with the largest multi-class posterior probability: i∗ = arg maxi P (y = i|PD).

It is worth noting that the proposed approach considered but not limited to varying

system parameters. It could be generalized to many other scenarios with overlapping

SPRs in the data, e.g. estimating SPRs with nodal load data of one area instead of
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the whole system.

4.2.4 Probabilistic LMP Forecast

With the “max-posterior-wins” method, we obtain not only the SPR that PD

belongs to, but also the distribution of LMPs. The probabilistic LMP forecast is

built on the estimated multi-class posterior probabilities P (y = i|PD):

λ̂(PD) = E[λ] =
n∑
i=1

λ(i)P (y = i|PD) (4.5)

where λ(i) is the vector of LMPs of SPR#i.

The “max-vote-wins” methods forecasts the LMP vector in a deterministic way:

λ̂(PD) = λ(i
∗) where i∗ is the index of the SPR winning the most votes.
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5. CASE STUDY

In this section, we illustrate the proposed data-driven approaches in two systems.

We first introduce the performance metrics for the proposed algorithm.

5.1 Performance Metrics

5.1.1 3-fold Cross Validation

To evaluate the performance of the model to an independent data set and avoid

overfitting, the k-fold cross validation technique is being used. In k-fold cross-

validation, the overall data set is randomly and evenly partitioned into k subsets.

Every time a subset is chosen as validation data set, and the remaining k−1 subsets

are used for training. This cross-validation process is repeated k times (k folds),

and each subset serves as the validation data set once. The 3-fold cross validation is

being used in this paper.

5.1.2 Classification Accuracy

Classification accuracy is the major criteria to evaluate the performance of the

method. The classification accuracy α is the ratio of the correctly classified points in

the validation data set. When incorporating 3-fold cross validation, the classification

accuracy of each fold (α1, α2, α3) is calculated first, then the overall performance of

the method is evaluated by the average classification accuracy ᾱ = (α1 +α2 +α3)/3.

5.1.3 LMP Forecast Accuracy

The performance of the LMP forecast is evaluated by LMP forecast accuracy,

which is the average forecast accuracy of all the validation data points (j = 1, 2, · · · , nv)
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over all the buses (i = 1, 2, · · · , nb):

β =
1

nb

1

nv

nb∑
i=1

nv∑
j=1

|λ̂i[j]− λi[j]|
λi[j]

(5.1)

5.2 An Illustrative Example

We start with an illustrative 3-bus system example as shown in Fig. 3.1. This

succinct example provides key insights and visualization of the proposed method.

5.2.1 Data

The data set is generated using Matpower [22] with the following assumptions:

(1) the load vector is evenly distributed in the load space; (2) the transmission

limits F is time-varying. For simplicity, F is assumed to satisfy Gaussian dis-

tribution: F ∼ N(F̄ ,Σ), where F̄ = [60, 60, 80]ᵀ and 10% standard deviation

Σ = [6, 0, 0; 0, 6, 0; 0, 0, 8]. All the points generated are visualized in Fig. (5.1).

Each color represents an SPR. As shown in Fig. (5.1), some SPRs (e.g. blue and

red) are overlapping.

Figure 5.1: Generated Dataset
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Figure 5.2: Posterior Probabilities of Given Load Vectors

5.2.2 Simulation Results

Table 5.1 summarizes the classification accuracies. Both approaches, Max-Vote-

Wins and Max-Posterior-Wins, could accurately estimate SPRs and perform predic-

tion.

Table 5.1: Classification Accuracy (3 Bus System)
Method Fold#1 Fold#2 Fold#3 Average
Max-Vote-Wins 88.40% 89.92% 89.77% 89.36%
Max-Posterior-Wins 88.63% 89.69% 90.00% 89.44%

5.2.3 Posterior Probabilities

The estimated posterior probabilities are visualized in Fig. (5.3). There are 8

surfaces in the figure, which relates with the overall 8 SPRs and represents P (y =

i|PD) for i = 1, 2, · · · , 8 respectively. Due to varying line limits and overlapping

SPRs, the eight surfaces intersect with each other and formulate some “mountains”
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Figure 5.3: Posterior Probability Surfaces
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and “valleys”. The “mountains” correspond to the inner parts of SPRs, where the

overlapping of SPRs is almost impossible to happen. And the “valleys” always locate

at the boundaries among SPRs. Two examples are provided in Fig. (5.2). When

PD2 = PD3 = 100MW, the load vector is in the middle of SPR#3, P (y = 3|PD =

[100; 100]) ≈ 1 and other posterior probabilities are close to zero. However, when

PD2 = 175MW and PD3 = 74MW, the load vector is close to the boundaries of

SPR#2,#3,#4 and #6. In this case, P (y = 2|PD = 0.439), P (y = 2|PD = 0.276),

P (y = 2|PD = 0.156), P (y = 2|PD = 0.104) and other probabilities are close to

zero. With the estimated posterior probabilities, market participants could estimate

the risks associated with LMPs given different combinations of load levels without

running numerous simulations.

5.3 118 Bus System

A more comprehensive case study is conducted on the IEEE 118 bus system

for the following objectives: (1) to evaluate the performance and computational

burden of the data-driven approach on a complex system with realistic settings; (2)

to demonstrate a possible application (LMP forecast) for market participants with

estimated posterior probabilities.

5.3.1 System Configuration

Most of the system settings follow the IEEE 118-bus, 54-unit, 24-hour system in

[17] but with the following changes: the lower bounds of generators are set to zero,

but the upper bounds of generators remain the same as in [17]. Exact details of

generation cost are summarized in [9]. To consider dynamic line ratings, we assume

the line limits are random and satisfy normal distribution N(µ, σ). The expectation

of line limits µ is the same as [17], only the limit of line 127 (from bus 81 to bus 80)

is revised from 500MW to 100MW; the standard deviation σ is set to be 5% of the
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expectation, which means 95% of the time the line limits vary within 10% from the

mean µ.

5.3.2 Load

[17] also provides an hourly system load profile and a bus load distribution profile

(Table 5 and Table 6 in [17]). With linear interpolation, the hourly system load profile

is modified to be 5min-based. Since the load is stochastic by nature, we assume the

load at each bus satisfies normal distribution N (µ, σ). The expectation µ of each

nodal load is calculated from the system load profile and bus load distribution profile,

the standard deviation σ is set to be 5% of the expectation, i.e. σ = 5% × µ. 8640

(30 days, 5 min-based) load vectors are generated, then Matpower solved these 8640

SCED problems and recorded 8640 LMP vectors. The 8640 load vectors and LMP

vectors are the training and validation data for the 118 Bus system. These settings

of load focus on a small but practically meaningful portion of the load space, and

the calculation burden is significantly reduced.

5.3.3 Performance

The algorithm is implemented in Matlab, with the function fitcsvm and fitSVM-

Posterior in the Statistics and Machine Learning Toolbox. Table 5.2 summarizes

the computation time of each step in the data-driven approach on a PC with Intel

i7-2600 8-core CPU@3.40GHz and 16GB RAM memory. The classification and LMP

forecast accuracy are summarized in Table 5.3 and Table 5.4, respectively.

5.4 Discussions on Posterior Probabilities

According to Table 5.1, 5.3 and 5.4, the methods “max-vote-wins” and “max-

posterior-wins” have comparable performance in classification accuracy. This obser-

vation convinces us that the posterior probability calculation is correct. This is based
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Table 5.2: Average Computation Time of the Data-driven Approach (average of 3
folds, in seconds)

Steps Computation Time
(a) training 4.93s
(b) data post-processing 45.47s
(c1) max-vote-wins 184.79/2880 = 0.064s per forecast
(c2) max-posterior-wins 1033.78/2880 = 0.359s per forecast

Table 5.3: Classification Accuracy (118 Bus System)
Method Fold#1 Fold#2 Fold#3 Average
Max-Vote-Wins 95.14% 94.31% 94.32% 94.59%
Max-Posterior-Wins 95.24% 93.99% 94.79% 94.67%

on the understanding that all the load vectors satisfying P (y = i|PD) = P (y = j|PD)

should be approximately on the optimal separating hyperplane between SPR#i and

SPR#j, which is solved from Eqn. (4.3) and (4.4).

In the 118-bus system, the “max-posterior-wins” algorithm takes 45.47 seconds

fitting the posterior probabilities, which have many potential benefits. One example

of such benefits is about SPRs with high LMPs. In the 118-bus system, when load

vectors fall into SPR#8, the LMPs rocket up from $50/MWh to $200/MWh due

to the tripping of an expensive generator. In the validation dataset (2880 points),

there are 74 load vectors associated with this SPR. Both the “max-vote-wins” and

“max-posterior-wins” methods provide 61 correct classification results out of 74 vali-

Table 5.4: LMP Forecast Accuracy (118 Bus System)
Method Fold#1 Fold#2 Fold#3 Average
Max-Vote-Wins 95.24% 99.15% 96.55% 96.98%
Max-Posterior-Wins 98.68% 98.70% 97.02% 98.13%

28



dation points. The remaining 13 points are false negative points, i.e. there is a price

spike but we failed to predict it. However, the “max-posterior-wins” method pro-

vides posterior probabilities, which clearly show the confidence of our forecast. The

posterior probabilities of one false negative point is as follows: P (y = 8|PD) = 0.42,

P (y = 9|PD) = 0.56 and P (y = others|PD) = 0.02. Although the classification result

claims the load vector will not fall into the high price region (SPR#8), the possibil-

ity of having high prices is around 50%, the market participants should be cautious

and take actions. Another example of the benefits of calculating posterior proba-

bilities is stated in Table. 5.4, the LMP forecast could be improved with posterior

probabilities.

Quantification of the posterior probabilities could yield many interesting appli-

cations. For example, load serving entities (LSEs) could consider demand response

mechanisms to partially change the load vector and thus shift from high price SPRs.

Market participants could also estimate the price volatilities due to renewables in a

system.
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6. CONCLUSIONS

In this paper, we examine the fundamental coupling between nodal load levels

and LMPs in real-time SCED. It is shown that the load space can be partitioned

into convex system pattern regions, which are one-to-one mapped with distinct LMP

vectors. Based on the theoretical results, we propose a data-driven learning algo-

rithm for market participants to identify SPRs. Identifying SPRs is modeled as a

classification problem, and the proposed data-driven approach is built upon a “one-

vs-one” multi-class SVM classifier. The proposed algorithm is shown to be capable

of estimating SPRs solely from historical data without knowing confidential system

information such as network topology and bidding curves. Given many uncertainties

associated with SCED (e.g. transmission line capacities), we further quantify the

probabilistic distributions of SPRs by use of posterior probabilities. The posterior

probabilities could benefit market participants in various aspects such as improving

LMP forecast and quantifying risks. Simulation results based on the IEEE 118-bus

system demonstrates that the proposed algorithm is effective in understanding the

past and predicting the future.

This paper is a first step towards developing theoretically rigorous and compu-

tationally feasible algorithms to analyzing the market prices as a result of varying

loading levels. Future work should investigate the impact of unit commitment re-

sults on the system pattern regions. Another important avenue of research is to

develop efficient learning algorithm to process a large amount of historical data in

near real-time market operations.
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APPENDIX A

ON THE ASSUMPTIONS

In Section 2, we made the following assumptions:

1. The generation cost is linear.

2. There is only one generator at each bus.

This section aims at illustrating these assumptions are reasonable.

A.1 From Piecewise Linear Cost to Linear Cost

In general, the generation cost of generators is quadratic. In current electricity

market, the quadratic generation cost is approximated by a piecewise linear function.

In our paper, the cost function is further simplified from piecewise linear to linear.

The reason in details are summarized below:

For a generator with piecewise linear cost function f(PG):

f(PG) =



f1(PG) = cᵀ1PG PG0 ≤ PG ≤ PG1

f2(PG) = cᵀ2PG PG1 ≤ PG ≤ PG2

...
...

fn(PG) = cᵀnPG PGn−1 ≤ PG ≤ PGn

(A.1)

f(PG) has n linear segments (fi(PG), i = 1, 2, · · · , n).

In the formulation of SCED, it is obvious that a piecewise-linear-cost generator

with n linear segments is equivalent with n generators, each one has the same cost and
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upper/lower bound as one segment of the piecewise-linear-cost generator. Namely:

Generator 1: f (1)(PG = cᵀ1PG) and PG0 = P
(1)min
G ≤ PG ≤ P

(1)max
G = PG1

Generator 2: f (2)(PG = cᵀ2PG) and PG1 = P
(2)min
G ≤ PG ≤ P

(2)max
G = PG2

...
...

...

Generator n: f (n)(PG = cᵀnPG) and PGn−1 = P
(n)min
G ≤ PG ≤ P

(n)max
G = PGn

(A.2)

So we can only consider the scenario that there are many generators at one bus,

but all of they have linear cost functions. Next section argues that we could further

assume that there is only one generator at each bus.

A.2 From Multi Generators At A Bus to Only One Generator At A Bus

The key idea is: if there are several generators at one bus, there is an equivalent

network with different shift factor matrix. In the new network, there is only one

generator at each bus. We can analyze the equivalent network instead of the original

network.

A 3-bus system example is provided (Figure. A.1). The line flow of the 3-bus

Figure A.1: 3-bus System (4 Generators)
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system 1 can be expressed as:

F =


F12

F13

F23

 =


0 −2/3 −1/3

0 −1/3 −2/3

0 1/3 −1/3




PG1

PG2

PG3 + PG4

 (A.3)

=


0 −2/3 −1/3

0 −1/3 −2/3

0 1/3 −1/3




1 0 0 0

0 1 0 0

0 0 1 1





PG1

PG2

PG3

PG4


(A.4)

We can further define a new shift factor matrix Hnew as:

Hnew =


0 −2/3 −1/3

0 −1/3 −2/3

0 1/3 −1/3




1 0 0 0

0 1 0 0

0 0 1 1

 (A.5)

=


0 −2/3 −1/3 −1/3

0 −1/3 −2/3 −2/3

0 1/3 −1/3 −1/3

 (A.6)

Hnew is the shift factor matrix of a new network. This new network only has exactly

one generator at one bus, and its cost function is linear.

1consider generations only, we can use superposition to consider loads later.
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APPENDIX B

POSTERIOR PROBABILITY CALCULATION

First step: estimating posterior probabilities of every binary SVM classifier P (y =

i|PD and y ∈ {i, j}). According to [18], training data is fitted to a sigmoid function

(Eqn. (B.2)) by minimizing the negative log likelihood function (Eqn. (B.1)).

min
A,B

−
∑

k tk log(rk) + (1− tk) log(1− rk) (B.1)

where rk = P (y = i|P (k)
D and y ∈ {i, j})

= (1 + eAP
(k)
D +B)−1 (B.2)

The parameter tk associated with P
(k)
D is calculated in Eqn. (B.3), where P

(k)
D is the

kth load vector in the training set, N+ (N−) is the number of positive (negative)

examples.

tk =


N++1
N++2

if yk = +1

1
N−+2

if yk = −1
(B.3)

Second step: estimating multi-class posterior probabilities p̂i = P (y = i|PD and i ∈

{1, 2, · · · , n}) from the binary posterior probabilities, where n is the total number

of classes. The algorithm proposed in [11] is widely being used. If the multi-class

posterior probabilities p̂is are correctly estimated, then the estimated binary pos-

terior probabilities µ̂ij = p̂i
p̂i+p̂j

should be identical to the observed binary posterior

probabilities rijs by solving Eqn. (B.1) and (B.2). Therefore the objective of the

algorithm in [11] is to minimize the Kullback-Leibler distance between µ̂ij and rij.

Detailed algorithm is summarized below:
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1. Start with the initial guess for the p̂i and µ̂ij = p̂i
p̂i+p̂j

.

2. Repeat this (i = 1, 2, · · · , n, 1, 2, · · · ) until convergence:

p̂i ← p̂i
∑
j 6=i

nijrij/
∑
j 6=i

nijµij (B.4)

Then renormalize p̂i ← p̂i/
∑n

j=1 p̂j and recompute µ̂ij = p̂i
p̂i+p̂j

.

3. If p̂/
∑
p̂i converges to the same p̂, then the algorithm stops, the vector p̂ will

be the estimated multi-class posterior probabilities.
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APPENDIX C

MORE RESULTS OF THE 3-BUS SYSTEM

C.1 System Pattern Regions in the 3D Space

In the 3-bus 2-generator system, we assume there are loads (PD1 , PD2 , PD3) at

each bus. Therefore the system pattern regions (SPRs) are in the 3D space. We

visualize the SPRs by monte-carlo simulation.

Figure C.1: 3D System Pattern Regions

C.2 Analytical Results of the 3-bus System

Table C.1 summarizes the details of SPRs in Fig. (3.3a).
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Figure C.2: Visualization of Any Two System Pattern Regions
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Table C.1: Details of SPRs in Fig. (3.3a)

No. SP Analytical Form of The SPRs LMPs

1



1

2

3

14





1.0000 0

0.7071 −0.7071

−0.7071 0.7071

−1.0000 0


PD2

PD3

 ≤


−100.0000

−169.7056

205.0610

120.0000




20

50

35



2



1

2

9

14





0 −1.0000

0 1.0000

0.7071 0.7071

−0.7071 −0.7071


PD2

PD3

 ≤


−20.0000

80.0000

176.7767

−70.7107




50

50

50



3



1

2

4

14





0 1.0000

0 −1.0000

0.4472 0.8944

−0.4472 −0.8944


PD2

PD3

 ≤


140.0000

−80.0000

147.5805

−80.4984




20

50

80



4



1

2

4

10





−1.0000 0

−0.4472 −0.8944

1.0000 0

0.4472 0.8944


PD2

PD3

 ≤


−50.0000

−147.5805

170.0000

192.3018




20

60

100



5



1

2

13

14





0.8944 0.4472

0.4472 0.8944

−0.7071 0.7071

0.7071 −0.7071

0.7071 0.7071

−0.7071 −0.7071



PD2

PD3

 ≤



80.4984

80.4984

169.7056

169.7056

70.7107

0




20

20

20



41



6



1

2

9

10





1.0000 0

−1.0000 0

−0.7071 −0.7071

0.7071 0.7071


PD2

PD3

 ≤


230.0000

−170.0000

−176.7767

212.1320




100

100

100



7



1

2

4

5





0 −1

1 0

0 1

−1 0


PD2

PD3

 ≤


−140.0000

50.0000

190.0000

100.0000




20

50

100



8



1

2

3

10





1.0000 0

−0.8944 −0.4472

−1.0000 0

0.8944 0.4472


PD2

PD3

 ≤


290.0000

−214.6625

−230.0000

237.0232




20

180

100



9



1

2

5

13





1.0000 0

0.7071 −0.7071

−0.7071 0.7071

−1.0000 0


PD2

PD3

 ≤


−100.0000

−169.7056

205.0610

120.0000




20

−60

100



10



1

2

8

14





0 1.0000

0.7071 −0.7071

0 −1.0000

−0.7071 0.7071


PD2

PD3

 ≤


−100.0000

275.7716

120.0000

−169.7056




20

50

−10



C.3 Simulation Results on the 3-bus System (Linear Separable Case)

The 3-bus system used in this section (Fig. C.3) is different from previous sec-

tions. There are only two generators in the system.

The training and testing data sets are separately generated from the Monte-Carlo

simulation. There are 500 points used for training and 2000 points used for testing.
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Optimal separating hyperplanes are visualized in Fig. C.4 ∼ Fig. C.6. The overall

Figure C.3: 3 Bus System

classification accuracy is 99.1%, and the error points (0.9%) are plotted in Fig. C.7.

All the error points locate beside the separating hyperplanes (straight lines in the two-

dimensional space); there are no error points inside an SPR. Fig. C.7 also indicates

there are some significant points, called support vectors, having huge influence on

the separating hyperplanes. The support vectors are circled in Fig. C.4 ∼ Fig. C.6.

In the separable case, the optimal hyperplane is solely determined by the support

vectors, which means more support vectors could lead to a better identification of the

SPRs. This feature could be utilized to improve the performance of the algorithm.
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Figure C.4: SPR Class #1 and #2 Figure C.5: SPR Class #1 and #3

Figure C.6: SPR Class #2 and #3 Figure C.7: Error Points

44



APPENDIX D

DETAILED SETTINGS OF THE IEEE 118-BUS SYSTEM

D.1 The Modified IEEE 118 Bus System

The lower bounds of generators are set to zero, but the upper bounds of generators

remain the same as in [17]. Exact details of generation cost are summarized in the

next section. To consider dynamic line ratings, we assume the line limits are random

and satisfy normal distribution N(µ, σ). The expectation of line limits µ is the same

as [17], only the limit of line 127 (from bus 81 to bus 80) is revised from 500MW to

100MW; the standard deviation σ is set to be 5% of the expectation, which means

95% of the time the line limits vary within 10% from the mean µ.

D.2 Settings of Generation Costs

Table D.1: Settings of Generation Costs

Index Bus No. Pmin Pmax cost c

1 4 5 30 26.2438

2 6 5 30 26.2438

3 8 5 30 26.2438

4 10 150 300 12.8875

5 12 100 300 12.8875

6 15 10 30 26.2438

7 18 25 100 17.8200

8 19 5 30 26.2438

9 24 5 30 26.2438
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10 25 100 300 12.8875

11 26 100 350 10.76

12 27 8 30 26.24

13 31 8 30 26.24

14 32 25 100 17.82

15 34 8 30 26.24

16 36 25 100 17.82

17 40 8 30 26.24

18 42 8 30 26.24

19 46 25 100 17.82

20 49 50 250 12.32

21 54 50 250 12.32

22 55 25 100 17.82

23 56 25 100 17.82

24 59 50 200 13.29

25 61 50 200 13.29

26 62 25 100 17.82

27 65 100 420 8.339

28 66 100 420 8.339

29 69 80 300 12.88

30 70 30 80 15.47

31 72 10 30 26.2438

32 73 5 30 26.2438

33 74 5 20 37.6968

34 76 25 100 17.8200
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35 77 25 100 17.8200

36 80 150 300 12.8875

37 82 25 100 17.8200

38 85 10 30 26.2438

39 87 100 300 10.7600

40 89 50 200 12.8875

41 90 8 20 37.6968

42 91 20 50 22.9423

43 92 100 300 12.8875

44 99 100 300 12.8875

45 100 100 300 12.8875

46 103 8 20 37.6968

47 104 25 100 17.8200

48 105 25 100 17.8200

49 107 8 20 37.6968

50 110 25 50 22.9423

51 111 25 100 17.8200

52 112 25 100 17.8200

53 113 25 100 17.8200

54 116 25 50 22.9423

47



APPENDIX E

SOME UNPUBLISHED RESULTS

E.1 The Impacts of Different Generation Costs on SPRs

Remark 4. For a system pattern π = (B,N ), its SPR would remain the same as

long as the vector of costs c satisfies:

A−1B c < 0 (E.1)

This is a direct conclusion from Eqn. (3.11).

The last column of Table C.1 provides the analytical results on the 3-bus system.

We could also visualize the SPRs given different generation cost vectors. Fig.

(E.1a) shows the SPRs when c = [20; 50; 81]. When we reduce c3 from 81 to 79, we

get Fig. (E.1b). Part of the SPRs are different

(a) c= (20, 50, 81) (b) c= (20, 50, 79)
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E.2 All the SPRs Given Different Generation Costs

In this section, we explore all the possible SPRs given various generation cost

vectors. The system topology, transmission and generation capacity are fixed. The

results are summaried as following:
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Figure E.1: All the Possible SPRs
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Figure E.1: All the Possible SPRs (Cont’d)
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Figure E.1: All the Possible SPRs (Cont’d)
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Figure E.1: All the Possible SPRs (Cont’d)
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APPENDIX F

PROOF OF THEOREMS

F.1 Proof of the theorem “different SPRs have different LMP vectors”

We want to prove the theorem “different system pattern regions (SPRs) have

different LMP vectors”. This section will provide a detailed proof. It is worth noting

that there are some special cases where different SPRs might have the same LMP

vectors. In the following sections, we will describe and discuss those special cases in

details. It is shown that the special cases exist only when some unusual conditions

are satisfied, and could be further simplified.

F.1.1 Preparation

We first define adjacent sets.

Definition 3 (Adjacent Sets). Given two closed set Di and Dj, and dim(Di) =

dim(Dj) = d ≥ 2. We say Di and Dj are adjacent if Di∩Dj 6= ∅ and dim(Di∩Dj) =

d− 1.

An example of the adjacent sets is shown in Fig.F.1. In the 3-dimensional space,

there are three sets (cuboids). The black and green cuboids are adjacent sets because

their intersection has dimension 2 = 3 − 1. The red and green cuboids are not

adjacent, because their intersection belongs to a line, whose dimension is 1 6= 3− 1.

Then we prove two lemmas.

Lemma 6 (Convex Piecewise Linear Functions With Parallel Segments). Assume

the piecewise linear function f : Rn → R is composed of m linear functions fk = cᵀkx

where k = 1, 2, · · · ,m. Let D = domf , Dk = dom fk
1, and assume D and Di are

1It is obvious that D = ∪kDk.

54



Figure F.1: Adjacent Sets (Example and Counter Example)

closed convex sets 2. If f is convex and has two parallel segments: fi and fj (i 6= j)

with ∇ᵀfi = ∇ᵀfj, then fi and fj have to be on the same hyperplane. Namely:

1. ∀xi ∈ relint Di,∀xj ∈ relint Dj, f(xj) = f(xi) +∇ᵀf(xi) · (xj − xi).

2. ∀xi ∈ relint Di,∀xj ∈ relint Dj, if the convex combination of xi and xj belongs

to Dk instead of Di or Dj (i 6= j 6= k), then ∇ᵀfk = ∇ᵀfi = ∇ᵀfj and

f(xk) = f(xi) +∇ᵀf(xi) · (xk − xi).

Proof. f is differentiable in relint Di.

We first prove (1). Since f is convex, according to the first order condition:

f(xj) ≥ f(xi) +∇ᵀf(xi) · (xj − xi) (F.1)

Similarly,

f(xi) ≥ f(xj) +∇ᵀf(xj) · (xi − xj) (F.2)

2The word “closed” indicates for i 6= j: Di ∩Dj 6= ∅, but relint Di ∩ relint Dj = ∅
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Because ∇ᵀfi = ∇ᵀfj:

f(xj) ≤ f(xi)−∇ᵀf(xj) · (xi − xj) = f(xi)−∇ᵀf(xi) · (xi − xj) (F.3)

= f(xi) +∇ᵀf(xi) · (xj − xi) (F.4)

So f(xi) +∇ᵀf(xi) · (xj − xi) ≥ f(xj) ≥ f(xi) +∇ᵀf(xi) · (xj − xi).

Therefore f(xj) = f(xi) +∇ᵀf(xi) · (xj − xi).

Then we prove (2) According to the convexity of the function f :

f(x) = f(αxi + (1− α)xj) ≤ αf(xi) + (1− α)f(xj) (F.5)

We use the results in (1):

f(x) ≤ αf(xi) + (1− α)f(xj) (F.6)

= αf(xi) + (1− α)[f(xi) +∇ᵀf(xi)(xj − xi)] (F.7)

= f(xi) + (1− α)∇ᵀf(xi)(xj − xi) (F.8)

= f(xi) +∇ᵀf(xi)[αxi + (1− α)xj − xi] (F.9)

= f(xi) +∇ᵀf(xi)(x− xi) (F.10)

Also, according to the first order condition, we get (for x and xi):

f(x) ≥ f(xi) +∇ᵀf(xi)(x− xi) (F.11)

We combine Eqn. (F.10) and Eqn. (F.5):

f(xi) +∇ᵀf(xi)(x− xi) ≥ f(x) ≥ f(xi) +∇ᵀf(xi)(x− xi) (F.12)
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So

f(x) = f(xi) +∇ᵀf(xi)(x− xi) (F.13)

Therefore

∇ᵀf(x) = ∇ᵀf(xi) = ∇ᵀf(xj) (F.14)

Lemma 7 (System Patterns of Adjacent SPRs). Given two system pattern regions

(SPRs) Si and Sj and their system patterns πi = (Bi,Ni) and πj = (Bj,Nj). If Si

and Sj are adjacent3, then Bi and Bj only differ in one entry.

Proof. Lemma 7 is actually a direct corollary from Definition 3.

If Si and Sj are adjacent but Bi and Bj differ in k ≥ 2 entries. Then Si ∩ Sj

is depicted by k linear constraints. If the constraints are linear independent4, then

dimSi ∩ Sj = dimSi − k < dimSi − 1. This is contradictory with the definition of

adjacent sets, which requires dimSi ∩ Sj = dimSi − 1.

F.1.2 The LMP vectors of SPRs

F.1.2.1 KKT Conditions

Consider the Security-constrained Economic Dispatch (SCED) problem in the

form of Eqn. (2.1). Its Lagrangian L : Rnb × R × Rnl × Rnl × Rng × Rng → R is

defined as:

L(PG, λ1, µ+, µ−, η+, η−) = cᵀPG + λ1(1
ᵀPG − 1ᵀPD)

+ µᵀ
+(HPG −HPD − F+)− µᵀ

−(HPG −HPD − F−)

+ ηᵀ+(PG −G+)− ηᵀ−(PG −G−) (F.15)

3See Definition 3.
4If they are linear dependent, we can always eliminate the redundant constraints, which will not

make any difference.
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According to KKT conditions:

µ+, µ−, η+, η− ≥ 0 (F.16)

µᵀ
+,i(HiPG −HiPD − F+,i) = 0, i = 1, 2, · · · , nl (F.17)

µᵀ
−,i(HiPG −HiPD − F−,i) = 0, i = 1, 2, · · · , nl (F.18)

ηᵀ+,i(PG,i −G+,i) = 0, i = 1, 2, · · · , ng (F.19)

ηᵀ−,i(PG,i −G−,i) = 0, i = 1, 2, · · · , ng (F.20)

∇ᵀ
PG
L = 0 (F.21)

Where µ+,i (µ−,i, η+,i, η−,i) is the ithe entry of the vector µ+ (µ−, η+, η−). Hi is the

ith row of the shift factor matrix H.

And:

∇ᵀ
PG
L = c+ λ11 +Hᵀ(µ+ − µ−) + η+ − η− = c+ λ11 +Hᵀµ+ η = 0 (F.22)

where µ = µ+ − µ− and η = η+ − η−.

Also we calculate the LMP vector λ:

λ = −∇ᵀ
PD
L = λ11 +Hᵀµ (F.23)

This is consistent with [20].

F.1.2.2 Two System Pattern Regions Having The Same LMP Vector

Assume there exist two SPRs (i, j) which have the same LMP vector λ(i) = λ(j).

Notice that this equality λ(i) = λ(j) is true for each entry. For the slack bus (in

our assumption, bus #1), the LMPs are the same: λ
(i)
1 = λ

(j)
1 . In other words, the

energy components of the LMP vectors are the same. According to Hᵀµ = λ− λ11,
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the congestion components are also the same:

Hᵀµ(i) = Hᵀµ(j) (F.24)

According to Eqn. (F.22):

η(i) = −c− (λ
(i)
1 1 +Hᵀµ(i)) = −c− λ(i) (F.25)

= −c− λ(j) = −c− (λ
(j)
1 1 +Hᵀµ(j)) = η(j) (F.26)

η(i) = η(j) means the marginal generators (which are ON) of the two SPRs (i, j) are

also exactly the same.

Also, according to Lemma 6, there has to be two adjacent SPRs (say i and k5)

which have the same LMP vectors. And the system pattern of adjacent SPRs only

differ in one entry. This indicates that there is only one different binding constraints

(i.e. Bi), either one different congested line or one different marginal generator.

According to the analysis above, there are two possibilities that lead to different

SPRs having the same LMP vectors:

1. The congestion pattern (congested lines) are the same: µ(i) = µ(k). But the

same Lagrange multipliers η(i) = η(k) represent exactly one different generator

status.

2. The generator statuses are exactly the same, the congested lines are different

µ(i) 6= µ(k) but Hᵀ(µ(i) − µ(k)) = 0. And there is only one different congested

line form SPR i and k.

We will discuss these two possibilities/cases in the following sections, and

we will show:
5k 6= j is possible.
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• the first case is possible only when some bids from generators (or

generation costs) are the same.

• the second case is impossible.

F.1.2.3 Case 1: Congestion Lines are the same, but there is one different

marginal generator.

Eqn. (F.25): η(i) = −c− λ(i). Since λ(i) = λ(k), then η(i) = η(k).

This indicates: the same vector η = η(i) = η(k) represents two different sets

of marginal generators. This is possible only when there are some “equivalent”

generators, namely the generators with the same bids (or generation costs). In this

case, we call those generators hits the maximum (minimum) capacity constraint as

“max (min) generators”. Since their generation costs are the same, increasing the

output of one min generator but decreasing the same amount of another one will

not change the total system generation cost. It is worth noting that this would not

change the congestion pattern, otherwise the η vector would be different due to the

cost of congestions. For all those “equivalent” generators, their Lagrange multipliers

are the same (generation cost). This means they could be adjusted and therefore

not hit either upper or lower bounds. Their generation capacity constraints are not

binding.

The system pattern region (SPR) relates with this case is still convex. The reason

is as follow: the SPR is constrained by several hyperplanes (linear constraints in the

load space) regardless how many inequalities there are in the problem. The halfspace

is convex, and the intersection of halfspaces is also convex. Therefore the SPR is still

convex.

We could therefore argue that this case could be further reduced by regarding

the “equivalent generators” as one generator but with larger capacity.
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F.1.2.4 Case 2: Marginal Generators are the same, but there is one different

congested line.

We will show this case is not possible. The proof is as follows6:

There is one different congested line between SPR i and SPRj. Without loss of

generality7, we assume line 1 is congested in SPR i but not congested in SPR j.

Similarly, line 2 is congested in SPR j but not congested in SPR i. And the index

set of the lines congested in both SPR i and SPRj is denoted by C.

In our previous settings, the matrix AB, which relates with binding constraints,

has the structure as follows:

AB =


supply-demand balance constraint: 1ᵀ

nb

shift factor matrix related with congested lines

matrix related with generation upper/lower bounds

 (F.27)

We rearrange the structure of matrix AB as follows8:

AB =



supply-demand balance constraint: 1ᵀ
nb

matrix related with generation upper/lower bounds: G

shift factor matrix related with commonly congested lines: HC

shift factor matrix related with uniquely congested lines: HU


(F.28)

6This proof is so verbose that we cannot put it in the draft of our journal paper, we hope to
simplify it in future works.

7We can label the congested lines with any non-repetitive numbers.
8This step will not make any difference to the theoretical results, but will significantly simplify

the notations.
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For SPR i and SPR k:

ABi =



1ᵀ
nb

G

HC

h1


=


E

HC

h1

 , ABk =



1ᵀ
nb

G

HC

h2




E

HC

h2

 (F.29)

where [1ᵀ
nb

;G] is common for both SPR i and SPR k, we use matrix E = [1ᵀ
nb

;G] to

represent it. HC is the shift factor matrix related with lines congested in both SPR

i and SPR k. h1 is the row of line 1 in the shift factor matrix H, h2 is the row of

line 2 in the shift factor matrix H. h1, h2 ∈ R1×nb are row vectors, where nb is the

number of buses.

Let ΛBi = A−1Bi and ΛBk = A−1Bk , and the structure of ΛBi and ΛBk is as follows:

ΛBi = A−1Bi =

[
B

(i)
1 B

(i)
2 β

(i)
3

]
,ΛBk = A−1Bk =

[
B

(k)
1 B

(k)
2 β

(k)
3

]
(F.30)

where β
(k)
3 , β

(i)
3 ∈ R1×nb

Since ABiΛBi = I and ABkΛBk = I:

ABi × A−1Bi =


EB

(i)
1 EB

(i)
2 Eβ

(i)
3

HCB
(i)
1 HCB

(i)
2 HCβ

(i)
3

h1B
(i)
1 h1B

(i)
2 h1β

(i)
3

 =


I 0 0

0 I 0

0 0 1

 (F.31)

Similarly,

ABk × A−1Bk =


EB

(k)
1 EB

(k)
2 Eβ

(k)
3

HCB
(k)
1 HCB

(k)
2 HCβ

(k)
3

h2B
(k)
1 h2B

(k)
2 h2β

(k)
3

 =


I 0 0

0 I 0

0 0 1

 (F.32)

It is worth emphasizing that although ABi and ABk have common submatrix [E;HC],
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in the inverse matrices ΛBi and ΛBk :

 EB(i)
1 EB

(i)
2

HCB
(i)
1 HCB

(i)
2

 6=
 EB(k)

1 EB
(k)
2

HCB
(k)
1 HCB

(k)
2

 (F.33)

An interesting observation:

(Aᵀ
Bk)−1Aᵀ

Bi = (A−1Bk )ᵀAᵀ
Bi = (ABiA

−1
Bk )ᵀ


EB

(k)
1 EB

(k)
2 Eβ

(k)
3

HCB
(k)
1 HCB

(k)
2 HCβ

(k)
3

h1B
(k)
1 h1B

(k)
2 h1β

(k)
3


ᵀ

=


I 0 0

0 I 0

h1B
(k)
1 h1B

(k)
2 h1β

(k)
3


ᵀ

(F.34)

Multiply yBi on both sides:

(Aᵀ
Bk)−1Aᵀ

Bi × yBi = ((Aᵀ
Bk)−1Aᵀ

Bi)× yBi (F.35)

=


I 0 (B

(k)
1 )ᵀhᵀ1

0 I (B
(k)
2 )ᵀhᵀ1

0 0 h1β
(k)
3



α

µ
(i)
C

µ1

 (F.36)

=


α

µ
(i)
C

0

+ µ1


(B

(k)
1 )ᵀhᵀ1

(B
(k)
2 )ᵀhᵀ1

h1β
(k)
3

 (F.37)
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Also:

(Aᵀ
Bk)−1Aᵀ

Bi × yBi = (Aᵀ
Bk)−1(Aᵀ

Bi × yBi) = (Aᵀ
Bk)−1 × (−c) = yBk =


α

µ
(k)
C

µ2

 (F.38)

Therefore: 
α

µ
(k)
C

µ2

 =


α

µ
(i)
C

0

+ µ1


(B

(k)
1 )ᵀhᵀ1

(B
(k)
2 )ᵀhᵀ1

h1β
(k)
3

 (F.39)


0

µ
(k)
C − µ

(i)
C

µ2

 = µ1


(B

(k)
1 )ᵀhᵀ1

(B
(k)
2 )ᵀhᵀ1

h1β
(k)
3

 (F.40)

We get the following equations:

µ
(k)
C − µ

(i)
C = µ1(B

(k)
2 )ᵀhᵀ1 (F.41)

µ2 = µ1h1β
(k)
3 (F.42)

From the assumption λ(i) = λ(k) we get Hᵀ(µ(i)− µ(k)) = 0. Since the shadow prices

(multipliers) of the non-congested lines are zero, we get:

0 = Hᵀ(µ(i) − µ(k)) = Hᵀ
C (µ

(i)
C − µ

(k)
C ) + µ1h

ᵀ
1 − µ2h

ᵀ
2 (F.43)

From Eqn.(F.41), we get

0 = Hᵀ
C (µ

(i)
C − µ

(k)
C ) + µ1h

ᵀ
1 − µ2h

ᵀ
2 = −µ1H

ᵀ
C (B

(k)
2 )ᵀhᵀ1 + µ1h

ᵀ
1 − µ2h

ᵀ
2 (F.44)
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From Eqn.(F.32), we get Hᵀ
C (B

(k)
2 )ᵀ = I, therefore Eqn.(F.44) becomes:

0 = −µ1H
ᵀ
C (B

(k)
2 )ᵀhᵀ1 + µ1h

ᵀ
1 − µ2h

ᵀ
2 = −µ1h

ᵀ
1 + µ1h

ᵀ
1 − µ2h

ᵀ
2 = −µ2h

ᵀ
2 (F.45)

So µ2h
ᵀ
2 = 0.

Since line 2 is congested, µ > 0. The only possibility is hᵀ2 = 0. This is contra-

dictory with the physical meaning of h2, which is the row in the shift factor matrix

corresponding to line 29.

9If hᵀ
2 = 0, this simply means this line does not exist, which is impossible.

65



APPENDIX G

RESULTS OF THE IEEE 24-BUS SYSTEM

The IEEE 24-bus system [19] is shown in Fig. G.1). We pay special attention

to the tradeoff between classification accuracy and computational complexity. The

SVM algorithm from Matlab’s Statistics toolbox is used, with the linear kernel and

Sequential Minimal Optimization (SMO) method to find the optimal separating hy-

perplanes.

Figure G.1: 24 Bus System [19]
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Some of the system patterns represent extreme conditions of the system, e.g. all

the lines congested at the same time in the 24 bus system, which is almost impossible

to exist in any case. Since the vectors of loads are uniformly (and randomly) gen-

erated between 0 and their maxima, the ratio of points corresponding to the system

pattern i, denoted by n
(i)
s /ns, may sketch the possibility that the system pattern i

could happen. The IEEE 24 bus system is taken as an example. The cumulative

possibility function and probability density function of the system patterns are plot-

ted (Fig. G.2). As shown in Fig. G.2, around 25 system patterns dominate among

all the 445 distinct system patterns. Those dominating system patterns are defined

as major system patterns. The system is more likely to be operated in the major

system patterns, and those major system patterns should attract more attention.

Figure G.2: Cumulative Distribution of System Patterns

The data-driven approach is examined on the IEEE 24 bus system (Fig. G.1).

Around 105 of testing points are generated from the Monte-Carlo simulation, and

training data sets of different sizes are generated in the same way. Fig. G.3 shows
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the classification accuracy and training time with the increasing size of training data

set.

As shown in Fig. G.2, there are 445 distinct system patterns found in the 24

bus system. If we utilize the “one-vs-one” multi-class SVM on all the 445 system

patterns, we need to find C2
445 = 79800 optimal separating hyperplanes. There would

be both computational time and memory issues. Therefore, we focus on the 25 major

system patterns which corresponds to 95% of all the system patterns and ignore the

other minor system patterns. By doing this, we only need to find C2
25 = 300 optimal

hyperplanes, and the computational time is massively reduced (about 3% of the

computational time using all the system patterns). The maximum classification

accuracy only degrades from 100% to 95%.

As shown in Fig. G.3, the data-driven approach behaves better with more train-

ing points. However, if more than 1 × 104 data points are used for training, the

performance is improved slower and will reach the upper limit around 91%. Further-

more, too many training data points would lead to computation time and memory

issues. As shown in Fig. G.3, the training time increases almost linearly with the

increasing size of training data set. A compromise has to be reached between the

accuracy and the training time of the data-driven approach.
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Figure G.3: Forecast Accuracy And Training Time
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