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ABSTRACT

This dissertation presents the final measurements of the forward–backward asym-

metry (AFB) of top quark–antiquark pair events (tt̄) at the Collider Detector at

Fermilab (CDF) experiment. The tt̄ events are produced in proton–anti-proton col-

lisions with a center of mass energy of 1.96 TeV during the Run II of the Fermilab

Tevatron. The measurements are performed with the full CDF Run II data (9.1 fb−1)

in the final state that contain two charged leptons (electrons or muons, the dilepton

final state), and are designed to confirm or deny the evidence-level excess in the AFB

measurements in the final state with a single lepton and hadronic jets (lepton+jets

final state) as well as the excess in the preliminary measurements in the dilepton

final state with the first half of the CDF Run II data. New measurements include

the leptonic AFB (A`FB), the lepton-pair AFB (A``FB) and the reconstructed top AFB

(Att̄FB). Each are combined with the previous results from the lepton+jets final state

measured at the CDF experiment. The inclusive A`FB, A``FB, and Att̄FB measured in

the dilepton final state are 0.072± 0.060, 0.076± 0.081, and 0.12± 0.13, to be com-

pared with the Standard Model (SM) predictions of 0.038±0.003, 0.048±0.004, and

0.010 ± 0.006, respectively. The CDF combination of A`FB and Att̄FB are 0.090+0.028
−0.026,

and 0.160± 0.045, respectively. The overall results are consistent with the SM pre-

dictions.
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1. INTRODUCTION

The standard model (SM) of particle physics [1, 2, 3] provides the current best

understanding of the known fundamental particles in nature as well as their inter-

actions. Despite its great success in describing almost all of the phenomena of the

elementary particles, it suffers from a number of problems. For example, it fails to

explain the presence of dark matter [4], which is estimated to constitute 85% of the

total matter in the universe. This calls for careful experimental examination of the

SM and following up on any hints that might lead to evidence for physics beyond

the SM.

One important category of the experimental examinations of the SM is the mea-

surement of the properties of the top quark, the last quark discovered in the SM,

and its interactions in high energy collisions. All these properties, including its mass,

lifetime, and production cross section, serve as input parameters to the SM; if new

phenomena or deviations from SM predictions are observed during measurements,

this could indicate first hints of physics beyond the SM (BSM) [5], or even the exis-

tence of new fundamental particles.

The top quark is the heaviest known fundamental particle and was first observed

by the CDF and D0 experiments at the Fermilab Tevatron collider in 1995 [6, 7],

a proton–antiproton collider running with a center-of-mass energy of 1.8 TeV (1800

times the proton mass in energy) at the time of the discovery. Ever since its discovery,

people have been probing the properties of this particle, both at the Tevatron at

Fermilab and at the Large Hadron Collider (LHC) [8] at CERN, which is a proton-

proton collider running at
√
s = 7, 8, and 13 TeV.

While most of the measurements yield results consistent with the SM predic-
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tions [9], one set of measurements generated a lot of interest. This set of measure-

ments studied high energy proton–antiproton collisions at the Fermilab Tevatron

which can produce pairs of top quarks (actually a top quark and a top antiquark,

often denoted as tt̄), and considers the probability of the outgoing top quark going

in the direction of the proton (the “forward” direction) versus the direction of the

antiproton (the “backward” direction), as shown in Fig. 1.1. The difference between

the two probabilities is denoted as the “forward–backward asymmetry” (AFB). The

simplest calculation (with only the Leading Order Feynman diagrams) with the SM

predicts equal number of top quarks produced going in the forward and backward

directions. Thus, there would be zero asymmetry. If more top quarks are observed

to go in the forward direction, we would have a positive asymmetry. Detailed calcu-

lations (taking into account higher order diagrams) of the SM predict a small, but

measurable asymmetry at the Tevatron. This makes it unique because at the LHC,

despite running at higher energies and producing a lot more tt̄ pairs, the collisions

are between protons and protons and are symmetric along the beamline direction,

therefore there is no asymmetry expected at any order.

Early calculations, shortly after the discovery of the top quark but before any

measurements were done, suggested a measurable asymmetry at about about the

5-6% level [10, 11, 12, 13, 14]. The first measurements from both the CDF and

the D0 collaborations, from the second major run of the Tevatron using a center-of-

mass energy of 1.96 TeV, were published in 2008 [15, 16] and both showed results

consistently higher than the prediction, around ∼20%, yet still agreed with the SM

prediction within statistics due to large uncertainties (within 2σ). This spurred a

huge amount of activity, including refining the predictions and adding more data

to the measurements as it became available. By 2012, when the work presented

in this dissertation began, the deviation had become statistically significant at the
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Figure 1.1: The tt̄ pair production and decay in a proton–antiproton collision. The
proton direction is denoted as the “forward” direction while the antiproton direction
is denoted as the “backward” direction.

∼3σ level [19, 17, 20, 18]. This deviation was incredibly exciting to the particle

physics community, and generated many talks and papers, because, if confirmed, it

might suggest a hint of the existence of a new fundamental particle in nature [21].

The analyses presented in this dissertation are designed to either confirm or deny the

deviations between the experimental results and the SM predictions with independent

observables.

In this section we provide a brief summary of the SM of particle physics with an

emphasis on the top quark, and explain why and how we will do this particular set of

measurements. We also put the current analysis in its historical context, give some

theoretical remarks about what the predictions from the SM are, as well as what the

predictions would be if there were new fundamental particles in nature. In addition,

we provide a summary of the experimental status of other results that have come

forward during the time these analyses were in progress. This section ends with an
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outline of the dissertation.

1.1 Overview of the Standard Model of Particle Physics

The SM of particle physics serves as a “periodic table” for the fundamental par-

ticles, as shown in Fig. 1.2, and well describes the three fundamental forces, the

strong, the week, and the electromagnetic forces. (The gravitational force is not yet

included in the SM.) The fundamental particles are categorized into quarks, leptons,

gauge bosons, and the Higgs boson. The quarks and the leptons are fermions, with

spin 1/2, and act as the building blocks of matter. For example, three quarks (two

up quarks and one down quark) make up the proton; the electron is a lepton and

is the other fundamental building block of the atoms that fill the universe. There

are six flavors of quarks, and six flavors of leptons, grouped into three generations.

The corresponding particles among the three generations have the same charge and

spin numbers, but different masses. The quarks are not stable by themselves. All

quarks but the top quark can form hadrons (stable or semi-stable particles consist-

ing of quarks) [9]. Top quarks decay immediately after their production due to an

extremely short lifetime [9].

The gauge bosons and the Higgs boson have integer spins (0 or 1). The gluons are

the carriers of strong force; the photons are the carriers of the electromagnetic force;

and the W and Z bosons are the carriers of the weak force. The Higgs mechanism [22]

is responsible for the masses of the particles, and predicts the last particle of the SM,

the Higgs boson, which was observed in 2012 at the Tevatron and the LHC [23, 24, 25].

The quarks are subject to the strong, weak and electromagnetic forces, while the

leptons are subject to only the weak and electromagnetic forces. A detailed review

of the SM can be found in Ref. [9].
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Figure 1.2: Summary of the particles in the standard model [26].

1.2 Properties, Production and Decays of the Top Quark

In this section we briefly summarize a selection of the properties of the top quark

(its mass and lifetime), how it can be produced via proton–antiproton or proton–

proton collisions, and how it decays. This will help us understand how to identify

top quarks in collisions, as well as how to make predictions for what we expect in our

experiment. As detailed in Sec. 2, we call the products of one collision an “event”,

and an ensemble of events a “sample”.

1.2.1 Top-quark Mass, Lifetime, and Production

The top quark is the heaviest known elementary particle, and its mass is an

important parameter of the SM [27]. It provides a critical input to check if the SM is

a self-consistent model [5], which is done with a global fit of the entire SM to all the

results of the measurement of the SM parameters. The most precise measurement

of the top-quark mass to date is the Tevatron combination [28], with a result of

mtop = 174.34± 0.64 GeV.
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The lifetime of top quark is another feature that makes the top quark special.

Because its lifetime is shorter than the typical hadronization time scale, it does

not form any bound state (stable or semi-stable composite particles) with other

quarks, but rather decays immediately after its production [29]. This provides a

unique opportunity to study a “bare” quark. The CDF collaboration performed a

direct measurement of the top quark width, which is directly related to the top-

quark lifetime, with the full CDF Run II dataset resulting in a result of τ top =

2.98+3.00
−1.35 × 10−25 s [30]. The D0 collaboration measured the top-quark lifetime in

an indirect way, yielding a result of τ top = 3.29+0.90
−0.63 × 10−25 s [31]. These results

verified that the top-quark lifetime is shorter than the typical hadronization time

scale (O(10−24 s)).

While the mass of the top quark is an inherent property, the production of top

quarks in high energy collisions reveals information about the interactions between

top quarks and protons (actually the quarks and gluons inside the protons), and

potentially other mediators. Large deviations between the measured cross section

and the expected value would suggest that new particles or interactions beyond

the SM exist in the process. The expectations from the SM are that top quarks

can be produced via both strong interactions and electroweak interactions at the

Tevatron and the LHC. The strong production of top quarks is dominated by tt̄ pair

production, in particular the quark–antiquark annihilation process at the Tevatron

(85%, as shown in Fig. 1.3a) and the gluon–gluon fusion process at the LHC (90%, as

shown in Fig. 1.3b) [9]. The electroweak interactions typically produce a single top

quark. The t-channel diagram dominates at both the Tevatron and the LHC, while

the contributions from the s-channel and the tW -channel at both places have been

observed to be small [9]. We will focus on tt̄ pair production in this dissertation, since

this is the production mode where the aforementioned forward–backward asymmetry
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observables are based on, and where the initial discrepancy was observed [10, 15, 19,

17, 20, 16, 18]. We refer the reader to Ref. [9] for further details about the electroweak

production of top quarks, and note that the ability to measure an asymmetry with

them does not yet exist.

(a) (b)

Figure 1.3: Dominant Feynman diagrams of tt̄ pair production in the SM with quark–
antiquark annihilation process (a) and gluon–gluon fusion process (b) [32].

The inclusive production cross section of tt̄ at the Tevatron, integrating over

all known processes, has been measured by the CDF and the D0 collaborations.

At a center-of-mass energy of 1.96 TeV, the most precise measurement is 7.60 ±

0.41 pb [33], which is in agreement with the SM calculation of 7.35+0.20
−0.24 pb at next-

to-next-to-leading order with additional corrections from gluon contributions [34, 35].

Results at the LHC also show consistency with SM predictions [9].We note here that

the measurement of the forward–backward asymmetry, which is the main analysis

described in this dissertation, is essentially a more sophisticated measurement of the

production mechanisms as it probes the cross section of tt̄ as a function of the angle

between the beam line and the top-quark outgoing direction.

1.2.2 Top-quark Decays

Due to its large mass (being much heavier than the W boson), the top quark is the

only quark that can decay (and dominantly does decay) into a real (on shell) W boson
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and a down-type quark (d, s, and b quark). In addition to decaying before forming

any hadron due to its short lifetime, the probability that a top quark decays into

the down-type quark in the same generation (a b quark) instead of other down-type

quarks is predicted and observed to be close to unity [9], indicating that top quark

decays almost exclusively to a W boson and a bottom (b) quark. Sequentially, the

W boson either decays leptonically into a charged lepton and a neutrino (W+ → `+ν

and its charge conjugate, about 1
3

of the time) or hadronically into two light quarks

(W+ → qq̄′ and its charge conjugate, where qq̄′ is dominated by ud̄ and cs̄, about 2
3

of

the time). The light quarks and the b quark then “hadronize” after their production

by pulling quark–antiquark pairs out of the vacuum and recombining into hadrons

until they reach a state where there is no free quark. The newly formed hadrons,

together with their cascade decay products, form a spray of particles within a narrow

cone following the original direction of the parent quark, which is referred to as a

“jet” [36].

Depending on the W -boson decay modes, tt̄ events have multiple final states, as

summarized in Figs. 1.4 and 1.5. Three major categories are:

1. The final state where both W bosons decay hadronically (tt̄ → W+W−bb̄ →

qq̄′qq̄′bb̄ → all jets, as shown in Fig. 1.4a) is denoted as the “all-jets” final

state. This final state features the largest branching fraction (46%), so it

has the largest expected number of events, but also the largest number of

backgrounds, other SM processes that mimic the same final state. Also, due

to the large uncertainty in the jet energy measurement and the difficulty in

determining the charge of the jets, it is hard to reconstruct the top momenta

in this final state, and almost impossible to distinguish the top quark from the

top antiquark. Thus, no AFB measurement is performed in this final state.
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2. The final state where one of the W boson decays leptonically and the other

W boson decays hadronically (tt̄ → `νqq̄bb̄, as shown in Fig. 1.4b) is denoted

as the “lepton+jets” final state. This final state has a decent branching frac-

tion (30%), and the charged lepton in the final state provides distinguishing

power between the top quark and the top antiquark. The backgrounds are

limited but substantial. It is because of this balance that it is known as the

“golden final state” for the top AFB measurements. The previous CDF top

AFB measurements are made in this final state.

3. The final state where both W bosons decay leptonically (tt̄ → `+`′−νν̄ ′bb̄,

as shown in Fig. 1.4c) is denoted as the “dilepton” final state. It has the

advantage that there are even fewer SM background processes that produces

the same signature of this final state, so any sample of selected events will have

a higher expected purity of tt̄ events. Also, both charged leptons are measured

with high precision, and this allows a new observable, the AFB of the lepton

pairs, to be measured. However, the two neutrinos in the final state escape

the CDF detector without leaving a trace, thus it is difficult to reconstruct

the momenta (in particular the direction) of the top quark and antiquark from

their decay products. In addition, the small branching fraction of this final

state (5%) also limits the number of events to study, which leads to the large

statistical uncertainty in the analyses presented in this dissertation. Taking all

these into consideration, this is the second best measurement option for the

AFB observables, and a natural complement to the lepton+jets measurements.

We focus on this final state in this dissertation.

We note that while the final states including τ leptons are not explicitly used in

these analyses, the scenarios where the τ lepton decays leptonically into an electron
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(a)

(b) (c)

Figure 1.4: Feynman diagrams of tt̄ pair production with proton–antiproton col-
lisions, and decaying into the all-jets (a), lepton+jets (b), and dilepton (c) final
states [37].

or a muon are included implicitly in the corresponding lepton+jets and dilepton final

states.

1.3 Top-Quark Pair Production Forward–Backward Asymmetry

1.3.1 Historical Remarks

In this subsection we present a more detailed historical review of the top-quark

pair production forward–backward asymmetry predictions and measurements at the

Tevatron to explain the powerful motivation for the analyses in this dissertation.

The first SM calculation of top AFB was made back in 1998, before the start of the

second run of Tevatron (Run II, with a center of mass energy of 1.98 TeV). The

calculation was based on the Feynman diagrams shown in Fig. 1.6, which are the
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Figure 1.5: The tt̄ branching fractions. The branching fraction of the “all-jets”, the
“lepton+jets”, and the “dilepton” final states are 46%, 30%, and 5%, respectively.
The final states with a τ lepton are not explicitly used, but the scenarios where the
τ lepton decays leptonically into an electron or a muon are included implicitly in the
corresponding lepton+jets or dilepton final states [37].

Leading Order (LO) diagram as shown on the left, and the Next-to-Leading Order

(NLO) contributions on the right [10, 11]. This calculation suggested a small but

measurable asymmetry of 5-6% with proton–antiproton collisions at a center-of-mass

energy around 2 TeV [10, 11], as a precise probe of top-quark production.

The first (unpublished) measurement of the top quark AFB was made in 2006

at CDF with less than 700 pb−1 of data (around 1/15 of the entire dataset) in the

lepton+jets final state [38]. This measurement yielded a large asymmetry of ∼20%,

but still consistent (within 2σ) with the SM predictions due to its large uncertainty.

More dedicated calculations of top-quark AFB for Tevatron Run II quickly followed

this measurement, and by 2008 more precise predictions gave values between 4% and

8% [13, 14, 12]. Rather than publish the first measurement, the CDF collaboration

kept refining the measurement and adding in more data as they became available.
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Figure 1.6: The leading order (a) and next-to-leading order (b) Feynman diagrams
of the tt̄ pair production with quark–antiquark annihilation process [19].

In 2008 CDF released its first publication with ∼2 fb−1 of data (1/5 of the final

dataset), reporting an asymmetry larger than predicted (again at the 20% level, still

with large uncertainty) [15]. In the same year the D0 collaboration released their

first publication of top-quark AFB with ∼1 fb−1 of data, confirming a larger-than-

expected asymmetry (also at the 20% level) [16]. The large asymmetry reported

by both collaborations triggered a tremendous amount of interest, followed by over

200 proposals of physics beyond the SM (typically the presence of new particles)

that could explain this “anomaly” (Ref. [21] and references therein). By 2011, the

CDF collaboration had published their results with the first half of the full dataset

(∼5 fb−1). This set of results included a new measurement of the asymmetry as

a function of the invariant mass of the tt̄ system, which showed a deviation from

the best SM calculation at that time at the 3σ level (considered the standard for

“evidence” in particle physics) [19]. This observation is particularly exciting since

such a deviation as a function of mass is a natural consequence of the existence of a

new particle.

To try to understand the deviation between the theoretical calculation and the

experimental results, the particle physics field (both on the theoretical side and on the
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experimental side) took three approaches: 1) to make more precise SM calculations,

2) to consider theoretical models beyond the SM that could predict the larger-than-

expected asymmetry but not affect all the other observations that were consistent

with SM predictions, and 3) to measure the asymmetry with more data, other final

states, other observables, and alternative techniques. On the theoretical side, by

the year 2012, the community had produced a enormous number of creative new

physics proposals, but perhaps more importantly had made significant progress in

the SM calculation techniques, for example by including previously omitted extra

effects, such as contributions from the electroweak processes (diagrams other than

those in Fig. 1.6, for example with photons included) [42, 39, 40, 41]. We will discuss

examples of new particle predictions in Sec. 1.3.4.

In the mean time, on the experimental side, the CDF and D0 collaborations took

the third approach and started by measuring the top-quark AFB with their entire

dataset (a doubling of the dataset used by the previous measurement), and in an

alternative final state (the dilepton final state). Using more sophisticated techniques

(reducing the uncertainties caused by the measurement techniques, as well as mea-

suring differential AFB values as a function of |∆yt| and mtt̄), the result from the CDF

collaboration was still significantly larger than the state-of-art SM prediction at that

point [20, 42]. At the same time, a preliminary top AFB measurement in the dilepton

final state at CDF using the first half of the full dataset yielded an extremely large

asymmetry ((42± 16)%) [17]. This anomalous result was the first AFB measurement

in a different final state, and further led the field to seriously consider that this might

be a real hint to physics beyond the SM. However, due to the large uncertainty in all

the results, no definite conclusion could be drawn. The results from the D0 during

the same period of time, with half of the the entire dataset, showed a tantalizingly

high asymmetry, around 20% [18], but still consistent with SM predictions within
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uncertainties. Figure 1.7 shows the evolution of the top AFB SM predictions and the

published results from the CDF and D0 collaborations around the time this work

started.

In an attempt to shed further light on this puzzle, the CDF collaboration pur-

sued an alternative observable that is potentially sensitive to the same phenomenon,

namely the forward–backward asymmetry of the charged leptons (electrons or muons)

from the top quark decays. This observable is closely related to the original top-quark

AFB due to the fact that the charged leptons tend to follow the direction of their

parent top quarks. On the other hand, this observable is a less direct measurement

of the production asymmetry of the top-quark pairs, because it is sensitive to new

features of the production (the spin of top quarks). On the experimental side, this

observable features a simpler measurement technique that is less prone to the un-

certainties in the determination of the directions of top quarks (which need to be

reconstructed from their decay products). The result was released slightly after the

analysis in this dissertation started, and again yields a result significantly higher

than the SM calculation [43, 42] (3.8% predicted vs. (9.4+3.2
−2.9)% observed).

To quickly summarize, from 2006 to 2012, when the analyses in this dissertation

started, both the CDF and D0 collaborations observed a growing significance of

the deviation between multiple SM predicted top-quark AFB observables and the

experimental results. If these deviations were confirmed, it could be a real hint to

the presence of a new particle. The analyses presented in this dissertation serve as

a follow up on the various potential anomalies by measuring all the top AFB related

observables in the dilepton final state with the full CDF dataset. These analyses are

designed to use all the updated knowledge accumulated about the tt̄ production and

decay as well as comparisons to the latest theoretical predictions. The purpose of

the work presented in this dissertation is to use novel, state of the art experimental
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techniques on the full CDF top dilepton dataset and perform independent checks

regarding the previous excess in the top AFB measurements, and to combine the

results in this final state with the previous results to gain the best determination of

the top AFB observables. Since other work, both calculations from the theoretical

community and experimental measurements at D0, was occurring concurrently we

will present the full set of results at the very end of this dissertation to give a coherent

picture of the current status at the end of 2015.

Figure 1.7: History of top AFB SM predictions and results from CDF and D0 [44].
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1.3.2 Definition of the Forward–Backward Asymmetry Observables

We will probe the asymmetric behavior of the production and decay of top-quark

pairs using three different, but complementary observables. These are 1) the AFB of

the momenta of top quarks, 2) the single lepton AFB, and 3) the lepton-pair AFB.

The definitions, advantages and disadvantages of each observable are detailed in the

following subsubsections and summarized in Table 1.1.

1.3.2.1 Definition of the AFB of top-quark momenta

For reasons that will be explained shortly, in this work we will use the following

definition of the AFB of the fully reconstructed tt̄ system:

Att̄FB =
N(∆yt > 0)−N(∆yt < 0)

N(∆yt > 0) +N(∆yt < 0)
(1.1)

where N is the number of events, y is the rapidity of the top quark or antiquark, and

∆yt = yt− yt̄. The rapidity (y) of a particle (a top quark in this scenario) is defined

as y = 1
2

ln E+pz
E−pz , where E is the energy of the particle, and pz is the momentum of

the particle along the proton–antiproton beam axis (z component). This observable

will be referred as the “reconstructed top AFB” (or simply Att̄FB), since the momenta,

or the rapidities, of top quarks need to be reconstructed from their decay products.

The rapidity y quantifies the direction the top-quark or antiquark is moving. The

case y = 0 indicates the quark is moving perpendicular to the beam line; positive

y is in the forward direction and negative y is in the negative direction; the more

positive (negative) the rapidity, the smaller the angle between the momentum of the

quark and the forward (backward) direction. In this sense we can clearly see how

the value of y is directly related to the definition of forward and backward. We

choose the variable ∆yt instead of the top-quark outgoing angle θ or the rapidity
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y of either the top quark or antiquark for a number of reasons. The first is that

the variable ∆yt gauges the relative direction between the top-quark and the top-

antiquark, so that the asymmetry is properly accounted in the situation where both

top quarks and antiquarks have the same sign of y (due to the initial quark or gluon

pairs being heavily boosted). It also has a larger predicted AFB than the one using

just the y of the quarks along, which makes it easier to measure. Also, ∆yt has the

advantage of being invariant under Lorentz boosts along the beamline (the rapidity

itself is not, nor is the angle θ), so that this observable measured in the frame of the

laboratory (pp rest frame) can be interpreted easily in any frame moving parallel to

the beamline (e.g. frames where qq or tt̄ only moves perpendicular to the beamline).

Finally, comparing to the angle θ, ∆yt is less sensitive to the transverse momentum

of the tt̄ system, whereas θ needs to be measured in the tt̄ rest frame, which is subject

to the potential bias when the modeling of pT,tt̄ is not sufficiently good (details will

be discussed in Sec. 5). This observable defined with ∆yt is a thus a better, while

still direct, probe of the production of the top quark than using just θ or y, and is

therefore the variable used in the initial measurements which were inconsistent with

SM predictions.

Comparing to the other two leptonic observables described below, it has the

advantage that the expected magnitude of the value from the SM is larger for this

asymmetry, thus it’s a more significant effect to measure relative to zero. However,

since top quarks decay immediately after their production, the momenta of the top

quarks need to be reconstructed from their decay products. This is a complicated

procedure, and the directions of the top-quarks determined from the reconstruction

come with non-negligible resolutions. This introduces systematic uncertainties and

potential biases into the measurement.

We note that in addition to the inclusive asymmetry values, measurements of the
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differential Att̄FB as a function of both the invariant mass of the tt̄ system (mtt̄) and

|∆yt| can help probe the interactions in important ways. Specifically, the asymmetry

is expected to rise as a function of mtt̄ or |∆yt| in the SM [10, 19]. This occurs because

the contribution from quark–antiquark annihilation production (which is asymmet-

ric) is expected to be larger in high mtt̄ and high |∆yt| regions. While as the gluons

tend to have lower energy, the gluon-gluon production (which is symmetric) tend to

produce tt̄ with low invariance mass, and low |∆yt| due to the kinematic correlation

between them. In addition, certain hypothetical new particles are expected to affect

the asymmetry in certain kinematical regions significantly, thus alter the trend of

AFB vs. mtt̄ or |∆yt| [45], but might not have as big an impact on the inclusive value

of AFB. Thus, the differential measurement of AFB can be more sensitive to the pres-

ence of certain new particles than the inclusive value and thus provides important

complementary information.

1.3.2.2 Definition of the single lepton AFB

The single lepton AFB (A`FB) is defined as

A`FB =
N(q`η` > 0)−N(q`η` < 0)

N(q`η` > 0) +N(q`η` < 0)
, (1.2)

where N is the number of charged leptons (summed over all events), q` is the electric

charge of the charged leptons from top cascade decays, and η` is the pseudorapid-

ity of the charged leptons. The pseudorapidity is the rapidity in the limit of zero

particle mass, and is invariant under Lorentz boosts along the beamline. Making

the reasonable assumption of charge-parity symmetry (CP) conservation, for leptons

of opposite electric charge, the effects on the lepton pseudorapidity from both the

top-quark asymmetry (even with a possible polarization) are equal in magnitude but

opposite in sign [43]. Thus, including the charge of the lepton naturally merges both

18



the positive and the negative leptons into a single observable, but effectively doubles

the size of data.

This observable has advantages and disadvantages. On the one hand, the charged

leptons tend to follow the direction of their parent top quarks, making the direction

of the charged lepton a good, albeit imperfect, measurement of the top direction,

and the direction of the charged leptons are much more precisely measured than the

direction of the top quarks themselves. On the other hand, this observable is not only

dependent on the production diagrams, but on the top-quark decay process, which is

sensitive to the spin of the produced top quarks. Then again, if any new intermediate

state (new particles) couples only to top quarks with specific spin states, it can affect

the Att̄FB and A`FB observables in different ways, making both measurements valuable

in their own right. Experimentally, this observable only requires one charged lepton

in the final state, and can be measured in both the lepton+jets and the dilepton

final state (with two measurements per event in the dilepton final state). In terms

of absolute magnitude of the asymmetry, the value of A`FB is “diluted” by a factor

of ∼2 in the scenario of SM-like top-quark decays (which is approximately isotropic

in the rest frame of the top quark in the scenario no spin), thus this is an even more

subtle effect to measure.

1.3.2.3 Definition of the lepton pair AFB

The lepton pair AFB (A``FB) is defined in a way that is similar to the definition of

the reconstructed AFB as

A``FB =
N(∆η > 0)−N(∆η < 0)

N(∆η > 0) +N(∆η < 0)
, (1.3)

where ∆η = η`+ − η`− . The expected A``FB is typically larger than the expectation of

A`FB for kinematic reasons [42], which indicates that the asymmetry of ∆η is a more
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significant effect. However, this observable requires two charged leptons in the final

state, thus can only be measured in the dilepton final state. Despite the expected

large uncertainty due to the limited number of events accessible, it provides extra

information if new physics were present in this process for the same reasons as in the

single lepton case.

1.3.3 Theoretical Predictions with SM

With the definitions of the AFB observables specified in Sec. 1.3.2, we start our

discussion by listing the theoretical predictions of each observable from the SM;

BSM predictions will be given in Sec. 1.3.4. Since the top quark pairs are expected

to be predominately produced via strong interactions, they are described primarily

by quantum chromodynamics (QCD), the part in the SM that describes the strong

interactions. At leading order (LO) as shown in Fig. 1.6a, QCD predicts no net AFB in

tt̄ production. All asymmetric effects come from higher order QCD contributions [10]

as well as contributions from electroweak interactions [42]. At next-to-leading order

(NLO) as shown in Fig. 1.6b, the asymmetry arises from the interplay between

the two sets of interferences among diagrams: the interference between the “Born”

diagram (the leading order s-channel diagram as shown in Fig. 1.6a) and the “box”

diagram (the upper row of Fig. 1.6b) and the interference between the initial- and

final-state radiation diagrams (the lower row of Fig. 1.6b). The interference between

the Born diagram and the box diagram gives rise to a positive asymmetry, while

the interference between the initial- and final-state radiation diagrams gives rise to a

negative asymmetry. These two opposite-signed effects, convoluted with the expected

weights from the SM, result in a small net asymmetry, as well as an asymmetry that

varies as a function of mtt̄ and |∆yt|.

There are many different approaches in estimating the NLO SM prediction of the
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inclusive value of Att̄FB, and current predictions range from 0.05 to 0.125, as discussed

in Ref. [21] and references therein. The NLO SM calculation we compare to (we

will refer to it as our baseline NLO method) yields Att̄FB = 0.088 ± 0.006 [42], as it

contains the QCD calculation at NLO with the LO electroweak contributions. Higher

order calculations are only available recently: a next-to-next-leading order (NNLO)

calculation yields Att̄FB = 0.095 ± 0.007 [46], and Att̄FB = 0.100 ± 0.006 after adding

in soft-gluon corrections (NNLO+NNLL) [47]. For the differential measurements of

Att̄FB as a function of mtt̄ and |∆yt|, both results are well described (and quantified)

with linear functions (although there is no a priori reason for them to be linear). An

NNLO calculation estimates the slope of Att̄FB vs. |∆yt| to be 0.114+0.005
−0.012 [46, 48]. On

the other hand, there is no NNLO prediction of the slope of Att̄FB vs. mtt̄; an NLO

prediction yields a slope of (3.4± 1.2)× 10−4 (GeV/c2)−1 [19].

For the leptonic observables, no NNLO or beyond calculations are current avail-

able. The baseline NLO SM calculation yields A`FB = 0.038 ± 0.003, and A``FB =

0.048 ± 0.004 [42]. A special prediction for the A`FB is made based on the re-

lationship between the Att̄FB and the A`FB assuming the SM-like top-quark decay

process (A`FB/A
tt̄
FB ∼ 0.46). If the genuine value of Att̄FB would be that measured

by the CDF collaboration in the lepton+jets final state [20], the predicted value

for A`FB for top quarks decaying according to the SM would rise from 0.038 to

0.070 < A`FB < 0.076 [43].

We note here that comparing with the initial prediction around 5-6% in 1998 [10],

the SM prediction of Att̄FB itself has increased to 10%. The original experimental

“anomaly”, the difference between the observation and the SM expectation, is re-

duced due to the refinement of SM calculations. While the “significance” of the

anomaly is clearly reduced (which lessens the excitement), the field can take pride in

the advancement of the SM calculations because of the “observation” of the anomaly
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in the top-quark AFB observables. Looking forward, we will always compare to the

best known values for each observable.

Besides the SM calculations mentioned above, we use computer programs that

perform calculations of particle interactions and decay with Monte Carlo (MC) tech-

niques to simulate the detailed properties of the tt̄ production and decay in an

event-by-event way. These programs are referred as “MC event generators” (or sim-

ply “generators”). A set of events simulated with a specific hypothesized underlying

physical scenario (with a specific generator) is referred to as a sample. The simu-

lations with MC event generators have advantages and disadvantages. On the one

hand they are usually not as precise as the dedicated calculations mentioned above

due to limitations in the MC generators; the best available generators can calculate

the SM scenario to NLO, and the new particle scenarios only to LO. On the other

hand, these simulations are extremely useful as they mimic the collisions happen-

ing in the detector so that we can take into account important experimental effects.

As described in further detail in Sec. 3, in addition to simulating the collisions and

their final state particles, we can simulate the process the final state quarks undergo

as they develop into jets, as well as the interaction between the particles and the

detector. In this way, we study the behavior of certain physical scenarios as if we

observe them in the detector. This allows us to develop and validate methodologies

to correct for the detector effects and measure the underlying physical observables.

We employ a variety of MC event generators to simulate scenarios with the SM

both at LO and at NLO. Different generators are used for different purposes. We use

the MC sample generated by the program known as powheg [49] as our benchmark

as it has the most precise SM simulation at NLO. Samples from SM calculations at LO

generated by other programs, which go by the names of Pythia [50], Alpgen [51],

and Herwig [52], are used for cross checks. The differences among the three LO SM
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event generators are subtle: the pythia generator doesn’t take particle spins into

consideration, while the other two do; also, the herwig generator uses a different

model to simulate the hadronization of quarks from pythia; the alpgen generator

does not perform parton hadronization, but it can be set up to pass the simulation

results to either herwig or pythia for that. For these reasons, we use all three to

investigate if these subtle differences have significant impact on the measurements

as they could indicate systematic biases in the measurement.

1.3.4 Predictions with Physics beyond the SM

A variety of samples with scenarios containing particles beyond the SM have also

been simulated with MC event generators. We have mainly explored two categories

of scenarios s-channel production of axigluons (Fig. 1.8a) and t-channel production

of Z ′ bosons (Fig. 1.8b). These two are the simplest extensions to the SM that can

alter the various observables significantly from SM-only predictions.

Axigluons are hypothesized bosons which are similar to SM gluons, but are mas-

sive. The scenarios with axigluons alter the top AFB due to the interference between

the s-channel “Born” diagrams (Fig. 1.6a and Fig. 1.8a). The width (Γ) of the ax-

igluons are chosen to be wide so that they are not excluded by the null results from

existing searches for di-jet resonances. Since we cannot exhaust all possible configu-

rations, we picked three axigluon masses (below the tt̄ production threshold, around

the threshold, and above the energy reach of the Tevatron but will produce off-shell

effects) as our new physics scenarios.

The Z ′ bosons are hypothesized particles that share similar properties with the

Z bosons, but have a different mass. The scenarios with Z ′ bosons alter the top

AFB via a scattering between the quarks in the protons and the antiquarks in the

antiprotons.
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(a)

Z ′

q

q̄

t

t̄

(b)

Figure 1.8: Example Feynman diagrams of the tt̄ pair production via hypothetical
new particles beyond the SM, including the axigluons via a s-channel production (a)
and the Z ′ bosons via a t-channel production (b).

The selection of the model parameters (e.g. the particle masses and couplings)

are specifically tuned so that they don’t produce expectations conflicting with the

existing experimental results in, for example, the tt̄ production cross section [33]. We

note that some of the scenarios originally selected for use in the analysis in 2011 are

now disfavored by other experiments, but are included here for completeness. The

detailed list of the scenarios we considered with particles beyond the SM is described

below, with the predicted AFB values (along with those with the SM scenarios)

summarized in Table 1.2:

1. The scenario with a 200 GeV/c2 mass axigluon with different types of cou-

plings [53]: Three types of couplings are considered: 1) the scenario where the

axigluons only interact with the left-handed top quarks and right-handed top

antiquarks (left-handed coupling); 2) the scenario where the axigluons only in-

teract with the right-handed top quarks and left-handed top antiquarks (right-

handed coupling); 3) the scenario where the axigluon interacts in an opposite

way with the left-handed top quarks and the right-handed top quarks (pure

axial couplings). Since this axigluon is light, below the production threshold of

the tt̄ process (∼ 350 GeV), it doesn’t affect the tt̄ production cross section in
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a way that would be measurable with current experimental uncertainties. The

different couplings produce the same value of Att̄FB, but very different values of

A`FB and A``FB.

2. The scenario with an axigluon with a mass of 425 GeV/c2 which is near the tt̄

production threshold with an axial coupling [54]: This model is different than

the above model as it would produce a different sign of Att̄FB below and above

the mass of the axigluon.

3. Two scenarios with a heavy axigluon with an axial coupling and mass of 1.8

or 2.0 TeV/c2 [19]: These heavy masses were chosen so that the axigluons do

not affect the tt̄ production cross section much, but predict a large Att̄FB that

matches the results from the lepton+jets final state at CDF. However they are

recently disfavored by the LHC results [55] using other techniques.

4. The scenario with a t-channel Z ′ boson with a mass of 200 GeV/c2 [56]: These

models are chosen because they predict an Att̄FB that matches the larger-than-

SM results from the lepton+jets final state at CDF. However, we note that

they are disfavored now by a detailed study of the tt̄ differential cross section

from the lepton+jets final state from the CDF collaboration [57].

1.3.5 Experimental Status

The historical evolution of the experimental status before the start of this work

was summarized in Sec. 1.3.1, and the current state of the art of SM predictions

(which did change significantly in the last few years) were summarized in Sec. 1.3.3.

In this section, we summarize the current status of the other experimental results

that occurred during the time of this work to lay out the final context for our results.
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As stated earlier, the measurement of the inclusive Att̄FB can be made in the

tt̄ → `νqq̄bb̄ (lepton+jets) final state and the tt̄ → `+`′−νν̄ ′bb̄ (dilepton) final state.

During the same time period of this work, both the CDF and the D0 collaborations

released their final measurements of the three top AFB observables with all the data

both collaborations collected. These include the measurement of the inclusive recon-

structed top AFB (Att̄FB), the differential measurement of Att̄FB as functions of mtt̄ and

∆yt, as well as both leptonic observables. They are summarized in Table 1.3 and

discussed below.

The inclusive Att̄FB results are shown at the bottom of Fig. 1.7. With the CDF

data corresponding to 9.4 fb−1 of integrated luminosity, the measurement in the

lepton+jets final state [20] yields a value of 0.164 ± 0.047, which is consistent with

the NNLO SM prediction of 0.095±0.007 within 1.5σ. The same measurements with

D0 data corresponding to 9.7 fb−1 of integrated luminosity in the lepton+jets [60]

and dilepton final state [62] show results of 0.106±0.030 and 0.180±0.086, which are

consistent with the NNLO SM prediction. On the other hand, the Att̄FB measurement

in the dilepton final state with the first half of the CDF data (the predecessor to

this analysis) yields a surprisingly high result of 0.42± 0.16 [17]. However, because

of the large uncertainty, it is only 2σ higher than the NNLO SM prediction.

The measurements in the lepton+jets final states also reported the differential

Att̄FB results as functions of |∆yt| and mtt̄. The differential Att̄FB as a function of |∆yt|

measurement by CDF in the lepton+jets final state [20] yields a slope of 0.253 ±

0.062, which is 2.2σ higher than the NNLO SM prediction of 0.114+0.005
−0.012. The same

measurement carried out at D0 in the lepton+jets final state [60] yields a slope of

0.154 ± 0.043 which is consistent with the NNLO SM prediction. We note that

the final differential Att̄FB as a function of mtt̄ measured at CDF of 15.5 ± 4.8 ×

10−4 (GeV/c2)−1 shows a 2σ deviation from the NLO SM prediction of 3.4 ± 1.2 ×
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10−4 (GeV/c2)−1, while the measurement at D0 of 3.9±4.4×10−4 (GeV/c2)−1 shows

consistency.

For the leptonic AFB observables, the measurements of A`FB in the lepton+jets fi-

nal state by the CDF collaboration and in the lepton+jets and dilepton final state by

the D0 collaboration yielded 0.094+0.032
−0.029 [43] and 0.047±0.027 [61, 59], respectively.

Again, the result by the CDF collaboration shows mild tension with the NLO SM pre-

diction of 0.038± 0.003 while the result from D0 shows consistency. A measurement

of A``FB by the D0 collaboration in the dilepton final state is A``FB = 0.123±0.056 [61],

consistent with the NLO SM prediction of 0.048±0.004. A figure summarizing all the

top AFB results at the Tevatron, including the results presented in this dissertation,

can be found in Sec. 8.

It is worth mentioning one more relevant result before the description of our

analysis and results. A more detailed study of the production cross section of the

tt̄ system as a function of the outgoing angle of the top quark in the tt̄ rest frame

(θ∗) was performed in the lepton+jets final state at CDF [57]. The differential cross

section dσ
d cos θ∗

was measured and the results were decomposed in terms of Legendre

polynomials. It was determined that the “excess” in the Att̄FB measurement in this

channel is due to the coefficient of the first order Legendre polynomial, which is the

term linearly dependent on cos θ∗. This result is used later in the Att̄FB measure-

ment in Sec. 6 to motivate an ad hoc procedure to explore variations in Att̄FB in a

more model independent way without causing significant changes to other kinematic

distributions.

1.4 Outline of the Dissertation

At the time this work started, the top AFB measurements in the lepton+jets final

state with the full CDF dataset were approaching their completion, indicating both
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the inclusive and differential results different from the SM prediction at the 2σ level.

At the same time, the top AFB measured in the dilepton final state with the first

half of the CDF dataset observed a result that showed surprisingly large asymme-

try, but with large statistical uncertainties. These all indicated potential hints for

physics beyond the SM, perhaps suggesting the presence of new particles (although

the SM predictions are now larger than they were then). The measurements and new

techniques presented in this dissertation are designed to follow up on these hints by

measuring all the top AFB observables in the dilepton final state with the full CDF

dataset. The final results will be presented, along with the updated theory results

and the set of results from the D0 collaboration, which helps bring this story to a

close. All the results presented here are either already published or are in process of

the final submission, thus the dissertation itself is partially historical in approach.

The structure of this dissertation is as follows: Since many of the experimental

details and basic techniques that these results build upon have been established for

over a decade, in Sec. 2 we will only very briefly summary the experimental tools

used for this analysis, namely the Fermilab Accelerator Complex, the Tevatron Col-

lider, and the CDF II detector. In this section we also mention briefly the way

that the physical objects produced in collisions and decays of top quarks (electrons,

muons, jets, etc.) are reconstructed based on the outputs from the detector. The

event selection criteria used in this analysis to select out a set of events which are

dominantly (∼70%) from the tt̄ → `+`′−νν̄ ′bb̄ process is also described in Sec. 2.

Section 3 describes the estimation and validation of the sources of events that com-

pose the dataset that survive the event selection criteria listed in Sec. 2. Section 4

describes the measurement of A`FB and A``FB in the dilepton channel at CDF as this

is a simpler measurement (and because it was done first). It also details many of the

new techniques that were first developed during the analysis process (with even more
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novel understanding of the phenomenological aspects of the methodology placed in

Appendix E). Since the measurement of the Att̄FB requires the reconstruction of the

momenta of the tt̄ events, which is a complicated and difficult process, Sec. 5 details

the algorithm to reconstruct the momenta of the top quarks and antiquarks from

their decay products, which are used for the Att̄FB measurement. Section 6 describes

the measurement of the inclusive Att̄FB and the measurement of the Att̄FB vs. |∆yt| in

the dilepton channel at CDF; the measurement of Att̄FB vs. mtt̄ is not performed due

to the limited statistics in the dilepton final state. Section 7 describes the combina-

tion of the top AFB observables in both the lepton+jets and the dilepton final states

at CDF. The final conclusions, including the current state of affairs in the field, are

given in Sec. 8.
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2. EXPERIMENTAL TOOLS AND EVENT SELECTION

In this section we provide a very brief summary of the experimental tools used for

the measurements in this dissertation and the criteria we apply to select events that

are consistent with the production and decay of tt̄ in the dilepton final state. The

experimental tools include the Fermilab Tevatron particle accelerator and the CDF II

detector, which have been in existence since the 1980’s and are well documented

elsewhere. For more details we refer the reader to extensive documentation in the

literature. See for example, Refs. [63, 64, 66, 65]. Since the Tevatron delivers more

than a million collisions per second in the center of the detector, we apply a set of

event selection criteria (cuts) to obtain a sample of events which are predominantly

from the production and decay of tt̄ events in the dilepton final state (the “signal”

process in this dissertation), and to reduce the contributions from other SM processes

that mimic the signature (“background” processes). The description of the event

selection criteria is again a very brief summary of the detailed work of the CDF

collaboration done over more than twenty years, and which has been used in multiple

analyses to measure the top quark and its properties over the last decade. We refer

to Ref. [67] for more details. We note that in the measurement of Att̄FB with top

reconstruction in Sec. 6, we will introduce additional requirements based on top

reconstruction to further improve the sensitivity of that measurement.

2.1 The Fermilab Tevatron

The Tevatron is located at the Fermi National Accelerator Laboratory (Fermilab)

in Batavia, Illinois which is just west of Chicago. It is a circular particle accelerator

colliding high energy protons against antiprotons. Figure 2.1 shows the accelerator

chain of the Fermilab Tevatron. The accelerating process starts by periodically (every
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Figure 2.1: The accelerator chain of Fermilab Tevatron, including the location of the
CDF and D0 experiments [72].

66 ms) ionizing small amounts of compressed hydrogen gas and extracting negatively-

charged hydrogen ions (H−) to form a stream of H− ions (H− beam). The H−

beam is accelerated by the Cockcroft-Walton preaccelerator (to 750 keV) [68] and

the Linear Accelerator (Linac) (to 400 MeV) [69]. During the acceleration in the

Linac, the beam is separated into discrete packets of particles (bunches). After

being accelerated by the Linac, the electrons from the H− ions are stripped off to

form H+ ions (or protons) [68]. The proton beams are then further accelerated by

a series of accelerators, namely the Booster (to 8 GeV) [70], the Main Injector (to

150 GeV) [71] and finally the Tevatron [64], to an energy of 980 GeV.

The antiprotons are produced by directing a proton beam from the Main Injector

to a nickel alloy target, and then using a magnet system to direct all the antiprotons

created in the collision in a specific direction. This set of particles, at an energy of

about 8 GeV, is passed to the Debuncher [73] which reduces their momentum spread

so that they can be efficiently bunched, transferred and accelerated, and accumulated
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in the Accumulator. The antiprotons are then transferred to the Recycler [73] in the

Main Injector when enough of them are collected, and are accelerated to 150 GeV.

The antiprotons are ultimately transferred to the Tevatron for final acceleration, also

to an energy of 980 GeV [73].

The protons and antiprotons circulate in opposite directions along the Tevatron

ring in 36 bunches. The beams are focused at two points for collisions, where two

general purpose detectors, named CDF and D0, are located with the collision points

at the center of each detector. The bunches of protons and anti-protons pass through

each other (called a bunch crossing) every 396 ns, at nearly the center of the detector,

and with a Gaussian distribution along the beam line with a width of ∼24 cm. Each

bunch crossing is labeled as an “event”, and there are often multiple collisions per

event. The density of the proton or anti-proton in a bunch is proportional to the

“instantaneous luminosity” of the collisions, and thus proportional to the number

of collisions in the event. The instantaneous luminosity kept increasing during the

Tevatron Run II, with the highest average collisions per event peaking around seven;

this was achieved at the end of Run II. During the Tevatron Run II between Mar.

2001 and Sep. 2011, the Tevatron delivered proton-antiproton (pp) collisions at the

center of mass energy of
√
s = 1.96 TeV with an integrated luminosity of 11.8 fb−1

(about 7× 1014 collisions, or about 70,000 tt̄ events).

2.2 The CDF II Detector

The CDF II detector, shown in Figs. 2.2 and 2.3, is a general purpose detector

located at one of the two collision points at the Tevatron. We define the beam axis

as the z-axis of our coordinate system, and call the proton direction as the positive

direction, or “forward”, while the antiproton direction is denoted as the negative

direction, or “backward”. The CDF detector is azimuthally symmetric around the
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beam line and forward–backward symmetric. It is a cylinder-shape detector with a

“barrel” portion in the center and two endcap (plug) portions at both ends. From

inside (the beamline) to outside (along the cylindrical radius direction) the detector

consists of a tracking system to measure the trajectory 4-momentum of the charged

particles [74, 75], an electromagnetic calorimeter to measure the energy of the elec-

trons and the photons [76], a hadronic calorimeter to measure the energy of hadrons

and jets (for example from the hadronization of the light quarks and b-quarks from

the top-quark decays) [77], and muon systems that measure the properties of the

muons [78, 79]. The tracking system is contained in a superconducting solenoid, pro-

viding a 1.4 T magnetic field parallel to the beam axis which allows us to determine

the electric charges of particles, as well as their 4-momenta.

We will refer to two different cylindrical coordinate systems. The first is with

the origin at the center of the detector when referring to the detector structure, and

a second which places the origin where the highest-energy collision happens during

each bunch crossing (denoted as the “primary vertex” as explained in Sec. 2.3) when

referring to the kinematic variables of an event. Since the z-axis is defined as point-

ing in the direction of the proton beam, we define θ and φ to represent the polar and

azimuthal angles, respectively. Since the rest frame of the incoming quarks or gluons

is not measurable (within the proton each quark/gluon carries a variable fraction

of the proton momentum), but overwhelmingly does move along the beamline, we

define two parameters similar to θ: rapidity and pseudorapidity. These two variables

are useful as they are invariant under a boost along the beamline. (Actually the

difference between two rapidities is invariant under boosts along beamline, while a

single rapidity is not.) Rapidity is defined as y = 1
2

ln E+pz
E−pz , where E is the en-

ergy of the particle, and pz is the longitudinal momentum in the direction of the

beamline defined as p cos θ. We use rapidity to quantify the direction the particle
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goes: y = 0 indicates that the particle is going perpendicular to the beam line;

the larger a positive (negative) y is, the more the particle is going in the forward

(backward) direction. Pseudorapidity, η, is the rapidity in the limit of zero particle

mass. Since the relation between η and θ is monotonic, we also use η to refer to the

polar angle of a detector component, in which case the expression can be simplified

as η = −ln tan(θ/2). The transverse momentum pT (transverse energy ET ) is de-

fined to be p sin θ (E sin θ). We note that for the final state particles whose masses

are small compared to their kinematic energy, we use pT and ET interchangeably

(although p is usually used when we measure quantities from the tracking chamber,

and E is used when we measure quantities from the calorimeter). In general all kine-

matic quantities are measured in the lab frame, but calculated using the collision

position (as measured by the primary vertex of the event). However, there are some

variables, typically detector quantities, which are measured in a coordinate system

that is determined by the center of the detector. We will point these out explicitly

when they arise.

Of the 11.8 fb−1 data the Tevatron delivered, the CDF II detector acquired

9.9 fb−1 of them that are good for physics studies. Within these data, a list of

data-taking periods (runs) during which the detector is in a stable and good working

status is selected as the “good run list”. The good run list used by the analyses in

this dissertation is standard at CDF and corresponds to an integrated luminosity

of 9.1 fb−1, and is described in detail in Ref. [67]. We note that only a subset of

these runs have the inner layer of the tracking system, the silicon detector, in a fully

functional status. When the information from the silicon detector is used in studies

to validate our data (for identifying secondary vertices from jets originating from

b-quarks), a subset of the good run list is used, which corresponds to an integrated

luminosity of 8.7 fb−1. This will be described in more detail in Sec. 3 as the sample
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Figure 2.2: A cutaway view of the CDF II detector with quadrant cut to expose the
different subdetectors [80].
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Figure 2.3: The elevation view of CDF II detector so we can see the inner detectors
more clearly. Only half of the detector is shown [66].
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with the requirement of a secondary vertex is not used in the main analyses, but is

useful to confirm the robustness of the measurements with a sample that is expected

to have a higher purity of top quarks, but of a smaller size due to the inefficient

b-quark identification algorithm.

2.3 Identification of the Reconstructed Objects

The CDF II detector is used to identify and reconstruct the properties of the

final state objects, i.e., electrons, muons, collimated clusters of hadrons (jets), as

well as the imbalance of ET (E/T ) which is caused by undetectable particles such as

neutrinos. The object identification and reconstruction techniques have been used

in hundreds of analyses published by the collaboration, so we will not describe them

in detail here, but point the reader to Refs. [83, 81, 82].

The main idea of the object identification is to look for an expected set of detector

responses from a specific object. For example an electron will leave a charged particle

trajectory through the tracking chamber, then deposit almost all of its energy in the

electromagnetic calorimeter. The signature responses in the detector from various

objects are summarized in Fig. 2.4. We apply a set of selection criteria for the

identification of each object. If a group of responses in the detector passes the criteria,

we “reconstruct” a candidate object from this group of responses, and measure the

corresponding parameters of the object, for example its 4-momentum. We define the

purity of a sample of objects as the fraction of the objects in the sample surviving

the requirements that are originated from the real corresponding objects (instead of

some other objects mimicing the signature); while the efficiency of the requirements

is defined as the fraction of real objects that pass the requirements. The same

definitions of purity and efficiency are also applicable for the event selection criteria

in Sec. 2.4. The object identification criteria (as well as the event selection criteria)
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are designed for an optimal balance between purity and efficiency.

Figure 2.4: The signature responses in the detector from various objects [84].

Here we very briefly summarize the object identification techniques that are cru-

cial to this analysis. Charged particles that traverse the detector are identified as

curved trajectories (tracks) in the tracking chamber, and are reconstructed with

a silicon microstrip detector and/or a large open-cell drift chamber in the 1.4 T

solenoidal magnetic field. The position of any collision is reconstructed by grouping

the projections of tracks to the beam line [82] which we will refer to as a vertex; the

vertex from which the tt̄ event originates is referred to as the primary vertex. In the

presence of a particle with a relatively long lifetime (O(10−12 s)), a particle might

travel a fraction of a millimeter or longer before it decays, resulting in a bunch of

particles originating from a position away from the beam line. In this situation, a

“secondary vertex” can be reconstructed from the tracks that is significantly away

from the beam line. The existence of a secondary vertex is used for identifying jets

from b-quark hadronization, which is further described below.
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Electrons are identified by matching, high momentum charged-particle tracks to

a localized deposit of a large amount of energy in the electromagnetic calorimeter.

Muons travel all the way through the tracking chamber, calorimeters and steel shield-

ing and eventually hit the muon detectors, and are identified by matching tracks to

hits in the muon detectors. A series of identification requirements are imposed to

select electrons or muons candidates. These requirements are selected so that the

majority of the objects passing the requirements originate from real electrons and

muons from W boson decays, and only a tiny fraction of the identified objects are

from a different particle or a cluster of particles (for example a spray of particles

from a jet) that mimic the features of an electron or a muon. We will refer to objects

that pass all the electron or muon identification requirements, but are not from real

electrons or muons (regardless of their source), as “fakes”. The identification re-

quirements for electrons and muons have been standardized at CDF for many years

and are summarized in Appendix A and detailed in Ref. [83].

For the identification of the leptons, to help obtain a better balance between the

purity and the efficiency in selecting events in the dilepton final state, we define two

sets of categories: 1) a “tight” category vs. a “loose” category, and 2) an “isolated”

category vs. a “non-isolated” category. The detailed definitions of these categories

are summarized in Appendix A. A lepton is described as being a “tight” lepton if

it satisfies all the object identification criteria, thus the sample of tight leptons is

expected to have a higher purity, but a lower selection efficiency. A lepton not passing

all the criteria (fails the tight lepton identification) but passing a specific subset of

them is described as a “loose” lepton, thus a sample of loose leptons is expected to

have a lower purity but higher efficiency, which also indicates that more real lepton

events passing the criteria.

Since the leptons from the decay of a W boson in tt̄ events are likely to be far,
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in the η − φ space, from all the other final state objects, we can use this tendency

to further refine the event selection process. Specifically, we consider the amount

of energy around a lepton and refer to this as the amount of isolation energy, and

refer to leptons which have a small amount of energy nearby as being ”isolated” [83].

In both the tight and loose lepton categories, the leptons are further categorized

into isolated leptons (for those which pass the isolation requirement) or non-isolated

leptons (for those which fail). The isolated leptons are expected to have higher

purity than the non-isolated ones, since the non-isolated leptons are likely to be

from a cascade leptonic decay of a hadron in a jet, whereas leptons from the decay

of a W boson are not expected to have any energy nearby, and are thus expected to

be isolated. We note here that in the event selection criteria described in Sec. 2.4,

we require one electron or muon to be both tight and isolated, and allow the second

electron or muon to be from either category (tight or loose, isolated or non-isolated),

for a balance of high expected signal purity and overall selection efficiency.

Since the decay products of final state quarks and gluons are a spray of collimated

hadrons, we reconstruct them as jets with the standard JETCLU cone algorithm [81]

by grouping all the energy deposited in the calorimeter in a cone with a radius of 0.4,

where the radius of a cone is defined as ∆R =
√

(∆η)2 + (∆φ)2. Since the detector

is not perfect, and responds differently to each type of jet, a variety of corrections

can be applied to the measurement of the energy of jets so that the observed jet

energy better reflects the original parton (quark or gluon) energy better.

The jets from b-quark hadronization can be identified (b-tagged) based on the

presence of a secondary vertex due to the finite lifetime of the B hadrons. This is

done with an algorithm known as the SecVTX algorithm [82]. Jets from b-quarks

have a ∼50% chance of being identified using this technique, while only ∼1% of light

quark/gluon jets would fake the criteria due to resolution effects. Note that this is a
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very powerful technique, and is used in many analyses when high purity is needed.

However, in our analysis we need higher efficiency so we will not require b-tagged

jets in our final event selection criteria, but we will select a sample of events with a

b-tagged jets for studies to confirm our understandings of the final sample.

In the scenario where one or more particles (mostly neutrinos) leave the detector

without being detected, the transverse momentum observed in the detector does not

match that before the collision. Since the initial state has essentially zero transverse

momentum (less than a few GeV), this results in a net transverse momentum leftover,

denoted as the imbalanced transverse momentum (imbalanced transverse energy, or

the “missing transverse energy” in the limit of negligible particle mass, which is a

good assumption for the final state particles involved in this analysis). The missing

transverse energy, ~E/T , is measured in the detector as −ΣiE
i
T n̂i, where i sums all

the transverse energies everywhere in the detector, in particular all the segments

(towers) of the electromagnetic and hadronic calorimeters with |η| < 3.6, n̂i is a unit

vector perpendicular to the beam axis and pointing at the ith calorimeter tower. In

the calculation of E/T , any energy deposited by muons in the calorimeter is removed

from the sum since they deposit only a few percent of their energy in the calorimeter;

and the transverse momentom of any muon, as measured by the tracking chamber,

is added back in. The scalar quantity E/T is the magnitude of ~E/T .

2.4 Event Selection

Since collisions happen in the center of the detector every 396 ns (corresponding

to a frequency of 2.5 MHz), an enormous amount of data is created every second.

Due to the limit on the speed at which data can be written to long-term storage for

later analysis (∼23 MB/s) and the large amount of data per event, the frequency

of event recording cannot exceed ∼100 Hz. Dedicated online selection (trigger) and
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data acquisition systems are designed to accommodate the large data volume by

only recording collisions of interest based on preliminary information from tracking,

calorimetry and muon systems in real time [85, 86]. The analyses presented in this

dissertation use events that are selected by the trigger system based on the presence

of a high-momentum (pT > 18 GeV) electron or muon detected by the barrel part

(|η| < 1.1) of the detector (the central high pT electron and muon triggers) [83].

After the events passing the online event selection and are recorded by the long-

term storage, we further apply a set of offline event selection criteria to obtain a

sample that is enriched by our signal events with tt̄ production and decay in the

dilepton final state. The event selection used in the analyses presented in this disser-

tation (referred as the “baseline” event selection) is the standard Top Dilepton event

selection with minor modifications. These criteria were used in the measurement

of the tt̄ cross section in the dilepton final state, and more details can be found in

Ref. [67]. Below we list the key features of this event selection criteria, as well as the

motivations of them.

Since there is no way to tell in data whether an individual event is from the signal

process or from any background processes, we employ a set of event selection criteria

to select a ensemble of events in which a large portion of the sample is from the signal

process. This also allows for robust estimations of the contributions from each of the

signal and background processes. The estimations of the contributions are described

in Sec. 3, but we note the major background processes and their signatures here to

describe the motivation of the event selection criteria.

An example Feynman diagram of the top pair production and decay in the dilep-

ton final state (tt̄ → `+`′−νν̄ ′bb̄) is shown in Fig. 1.4c. The key signature of the

signal process is the presence of two high-energy oppositely charged leptons, two or

more jets from b-quarks, and large E/T from the two neutrinos (dilepton+dijet+E/T ).
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The background processes include SM production of W bosons, Z/γ∗, J/ψ, Υ, and

diboson (WW , WZ, ZZ, and Wγ) processes, with associated production of extra

jets. Below we list each background processes, and the way they mimic the signal.

After that we will list the event selection requirements that aim to reject each:

• The production of a W boson in association with three or more jets (W+jets)

where one of the jets fakes a lepton (W jjj → `νjfakejj → ``fakejj + E/T ): This

process can mimic the dilepton+dijet+E/T signature when the W boson decays

to a charged lepton and a neutrino (causing real E/T ), and one jet is mis-

identified as a charged lepton. Despite the small probability of a jet being

mis-identified as a charged lepton, this is one of the major backgrounds due

to the huge production cross section of this process (two orders of magnitude

larger than the tt̄ production cross section).

• The production of a Z boson or a virtual photon (Drell-Yan process, denoted

as DY or Z/γ∗) in association with two or more jets (DY+jets, or Z/γ∗+jets):

We separate the Z/γ∗ production into two categories, since they mimic the

signal in different ways: 1) where the Z/γ∗ decays to a pair of electrons or

muons, and 2) where the Z/γ∗ decays to a pair of τ leptons.

1. The situations where the Z/γ∗ decays to a pair of electrons or muons

(Z/γ∗ → e+e−/µ+µ−) can mimic the signal when an instrumental mis-

measurement of energy occurs, resulting in fake E/T (Z/γ∗jj → `+`−jj →

`+`−jj + E/T ,fake).

2. When the Z/γ∗ decays to a pair of τ leptons (Z/γ∗ → τ+τ−), and the τ

leptons decay leptonically into electrons, muons and neutrinos (Z/γ∗jj→

ττ jj → `+`−ννννjj → `+`−jj + E/T ), this background processes features

the same dilepton+dijet+E/T signature as the signal.
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• Standard Model diboson production, including the WW , WZ, ZZ, and Wγ

productions in associated with jets: Among these, the WW process is ex-

pected to have the largest contribution. The WW process can mimic the

dilepton+dijet+E/T signature when both W bosons decay leptonically.

• Low-mass dilepton resonance (J/ψ, Υ, etc.) production in association with

jets: Similar to the Z/γ∗ → ee/µµ category, this category of events can mimic

the dilepton+dijet+E/T signature when an instrumental mis-measurement of

energy occurs, resulting in fake E/T .

• The top-pair production in the lepton+jets final state, when one jet is misiden-

tified as a charged lepton: Since this category is actually from tt̄ production,

events in this category could be interpreted as signals in certain measurements.

However, since one of the the charged leptons from these events is faked by a

jet (usually a b-quark jet), they behave differently from the tt̄ dilepton events

in the analyses in this dissertation, thus we consider them as backgrounds.

Below we list the key features of the event selection criteria which are designed to be

efficient for our signal while rejecting the majority of the backgrounds. Before going

into that, we note that it will be useful to have a number of control regions where the

contribution from the signal does not dominate, so that we can test the methods to

estimate the contributions from each background process. For this purpose, we group

our baseline event selection criteria into two phases: we define a set of “minimal”

cuts that selects events with dilepton+E/T signature, and then a set of “signal” cuts

to further select opposite-charged dilepton events with two or more jets as well as

other kinematic cuts that have a high efficiency for signal, but are targeted to reject

the backgrounds described above. Events passing the minimal cuts but with zero or

one jet fall into our “0-jet” and “1-jet” control regions, respectively.
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The set of requirements are summarized in Table 2.1, and described below. The

minimal requirements include:

• Exactly two high energy (ET > 20 GeV) charged leptons consistent with the

dilepton final state. At least one of the two charged leptons is required to pass

the tight lepton and isolated lepton identification criteria to enhance the purity

of the sample, but the second is only required to pass the loose requirement

and is not required to be isolated to retain high selection efficiency. This

requirement is especially helpful against W + jets backgrounds. It has been

found that the requirement of a second lepton is needed, but that only looser,

more efficient, requirements are needed since the backgrounds are small enough.

Any event with more than two charged leptons are rejected.

• Large E/T (E/T > 25 GeV) that is consistent with two high energy neutrinos

from W -boson decay leaving the detector. This is helpful in rejecting events

like Z/γ∗ → ee/µµ, J/ψ, or Υ, which have no physical source of E/T in the

final state.

• Extra large E/T (E/T > 50 GeV) when the direction of E/T is within 20◦ of any

lepton or jet, to reject events whose E/T originates from instrumental effects,

or E/T produced as part of the decay of a τ lepton. This is particularly helpful

in rejecting processes with Z/γ∗ → ττ .

• The parameter E/T -significance is defined as METSig =
E/T√
EsumT

, where Esum
T is

the scaler sum of the ET of all the charged leptons and jets in an event. This

parameter quantifies the likelihood that the E/T is from a real physical source

(e.g. neutrino leaving the detector) rather than instrumental mismeasurement.

This variable is motivated by the fact that as more energy that is deposited in
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the calorimeter, the probability for getting a large absolute value of the E/T rises

significantly. The resolution of E/T measurement is proportional to
√
Esum
T , so

the variable METSig effectively quantifies how many standard deviations the

measured E/T is away from zero. We require METSig > 4
√

GeV for di-electron

and di-muon events, but only for events where it is needed, specifically when

the invariant mass of the two charged leptons (mll) is consistent with the Z-

boson mass (76 GeV/c2 < mll < 106 GeV/c2) to reject contamination from

Z/γ∗ production in associated with jets.

• To reduce the sample contamination from low mass dilepton resonances from

J/ψ and Υ sources, we require a minimal value of mll. In analyses that pre-

date this analysis, this requirement was set at 5 GeV [67]. Since we only have

Z/γ∗ + jets simulations with the mll > 8 GeV, we have raised the dilepton in-

variant mass cut to 10 GeV to avoid potential mismodelling in the low dilepton

invariant mass region. This modification in the event selection criteria has a

minor effect on the analysis.

To separate events from the control samples and the final signal samples, we include

the following additional requirements:

• The two leptons (electrons or muons) have opposite electric charges. This is

a signature of tt̄ → `+`′−νν̄ ′bb̄ decay and helps reject against W + jets events

where the charge of the fake lepton is not necessarily opposite in charge from

the leptons from the W -boson decay.

• Two or more high energy jets with ET > 15 GeV and |η| < 2.5. This is

helpful in rejecting Diboson+jets and Z/γ∗+jets events since all jets in those

backgrounds are typically at low energy, or have large |η|, as they are from
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Table 2.1: The top dilepton event selection. We refer the reader to Ref. [67] for
further details.

M
in

im
al

R
eq

u
ir

em
en

ts
Exactly two leptons with ET > 20 GeV and passing standard
identification requirements [83]

-At least one central lepton that pass the online selection

-At least one tight and isolated lepton

E/T > 25 GeV, but E/T > 50 GeV when there is any lepton or jet
within 20◦ of the direction of E/T

METSig (=
E/T√
EsumT

) > 4
√

GeV for ee and µµ events when

76 GeV/c2 < mll < 106 GeV/c2

mll > 10 GeV/c2

S
ig

n
al

R
eq

u
ir

em
en

ts Two or more jets with ET > 15 GeV within |η| < 2.5

HT > 200 GeV

Two oppositely charged leptons

initial- and/or final-state radiations, and the b-quark jets from the top quark

decays are expected to be very energetic.

• The summed transverse energy over all the particles in an event (HT ) satisfying

HT > 200 GeV. The typical tt̄ process has at least twice the top mass (2 ×

175 GeV = 350 GeV) produced in the collision, so that there are a lot of high

energy final state objects. This is not usually the case most of the backgrounds.

We note that in the measurement of Att̄FB with top reconstruction in Sec. 6, we will

introduce more event selection requirements based on top reconstruction to further

improve the sensitivity of that measurement.

With our dataset defined we move next to the modeling of the signal and the
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backgrounds in Sec. 3.
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3. SIGNAL AND BACKGROUND MODELING

Even after the set of dedicated event selection criteria described in Sec. 2, the

data are still a mixture of events from a variety of sources, including events from the

process of interest (tt̄ → `+`′−νν̄ ′bb̄, signals) as well as events from other processes

(backgrounds). In order to properly measure the important physics parameters of

interest, we need to model both the signal (with different model parameters) as well

as the backgrounds. We note that we use multiple signal models as it allows us to

test the behavior of the signal events under different physical scenarios (different

potential values of the AFB), and to develop and validate the methodology used to

perform the measurements to determine the correct AFB from what we observe from

the detector. In this section we describe our various tt̄ signal models as well as the

modeling of each of the background sources. The signal and background modeling

methodology is very similar to that used in the tt̄ cross section measurement in the

same final state [67], with a few minor updates, thus we will only summarize it here,

but give more details in Appendix B when needed.

We begin this section with a description of the various tt̄ production models,

including hypotheses with LO and NLO SM, as well as with scenarios with physics

beyond the SM (BSM) in Sec. 3.1. In Sec. 3.2 we describe the background model-

ing methodology used in this analysis, with an emphasis on the improvements we

have made relative to previous measurements. Note that some of the details of the

improvements are summarized in Appendix B to maintain the flow the the main

text. In Sec. 3.3 we present the data validation with the baseline event selection

criteria. A set of validation checks, using events with the 0-jet and 1-jet control

regions, and separately with the subset of the events with an additional b-tagging
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requirement are summarized in Appendices C and D, respectively. We note that the

data validation for the measurement of Att̄FB, after additional requirements based on

top reconstruction quality, will be presented in Sec. 6.

3.1 Top-pair Production Signal with Different Physics Models

We listed the SM and BSM models we employ to simulate tt̄ production and

decay in Table 1.2. The detailed kinematic properties of each scenario are simulated

using Monte Carlo (MC) event generators. The event generators use calculations

based on the Feynman diagrams to create an ensemble of collision events (a sam-

ple) that mimic the events we would see in the detector if nature were described

by the corresponding Feynman diagram. The generators include alpgen [51], her-

wig [52], madgraph [58], powheg [49], and pythia [50]. The hadronization of

the outgoing quarks, the process during which the quarks pull apart and recom-

bine quark-antiquark pairs from the vacuum until all particles are in a color-neutral

state (parton showering), is also calculated using MC techniques by the herwig or

pythia programs. We also use the herwig or pythia programs to add in initial-

and final-state radiation to simulate the extra jets in the process. Since the Teva-

tron collides a bunch of protons against a bunch of antiprotons, there could be more

than one collision happening during each bunch crossing. The number of extra col-

lisions besides the highest energy collision we are interested in is closely related to

the instantaneous luminosity, which reflects how many particles are in a bunch of

proton/antiproton. The extra collisions are simulated with the pythia event gener-

ator, with the number of extra collisions per event configured to match the profile

of the instantaneous luminosity in the actual data taking periods. The simulation of

the detector response to the generated events, both the primary collision and extra

interactions, is accomplished with a geant-based [87] package named cdfsim [88].
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After the simulation of the detector responses, the samples are passed through the

same object reconstruction and identification algorithms as data.

In addition to the AFB values for the SM and BSM models we listed in Table 1.2,

here we list additional details about each sample in Table 3.1. We note that unless

specified otherwise, the powheg sample is used throughout this dissertation as our

default sample for signal modeling.

3.2 Background Modeling

For modeling the background contributions, we use a combination of data-based

and MC-based techniques. We need to both estimate the number of events as well

as model the kinematic properties for each background component in our data. We

mostly follow the same procedure that was used in the tt̄ cross section measurement

in the same final state [67], but introduce a number of improvements that will be

enumerated below.

In Table 3.2 we list background MC samples with their corresponding cross sec-

tion, along with the generator used to create each. We note that instead of using the

cross section predicted by the generator, we use standalone calculations of the cross

sections for WW , WZ, and ZZ processes at NLO. For cross sections of Wγ and DY

processes, which are calculated at LO, a set of K-factors, which are estimates of the

multiplicative corrections on the cross sections for NLO effects not accounted in the

corresponding LO calculations, are derived elsewhere and used with the generator

calculated cross sections [67]. The K-factors are included in the table. The final

cross sections we used are the cross sections listed multiplied by the corresponding

K-factors, so all background calculations of the event rates correspond to the SM

predictions at NLO. We next outline the key points of the background estimation

procedure:
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• The diboson (WW , WZ, ZZ and Wγ) backgrounds are estimated by normal-

izing the corresponding MC samples to the integrated luminosity to data with

the cross-sections (and K-factors) listed in Table 3.2. While each simulation

is at LO, we use the pythia MC to add initial- and final-state radiation to

simulate the extra jets.

• The W+jets background is estimated with a data-driven method, based on

a series of probabilities a jet being mis-identified as a lepton, derived from a

separate data set. This procedure has been used for many years and is described

in detail in Ref. [67].

• The DY→ ee/µµ and DY → ττ backgrounds are estimated with a data-MC

hybrid method, with details described in Appendix B. The method we use is

an improvement over the previous method used in Ref. [67].

• Each MC sample is corrected for the trigger efficiency, the object identification

efficiency, the vertex z0 reconstruction efficiency, the fake charge rates for elec-

trons in the plug detector, and normalized to the integrated luminosity from

the corresponding triggers. These details are described in Ref. [67].

While we mostly follow the same procedure as the tt̄ cross section measurement,

we have made the following improvements since the previous analyses:

• We consider tt̄ events in the lepton+jets final state faking the dilepton fi-

nal state to be a background to the analysis. To do this, we added a back-

ground category denoted as “tt̄ non-dilepton”, and estimate it by normalizing

the powheg tt̄ MC samples to the integrated luminosity to data with the

theoretical cross section of 7.4 pb [33].
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Table 3.2: A table of background MC samples.

Process
Cross Section K-

Generator
(pb) factor

WW 11.34±0.68 N.A. Pythia
WZ 3.47±0.21 N.A. Pythia
ZZ 3.62±0.22 N.A. Pythia

W (→ eν)γ 32±3.2 1.36 Baur [89]
W (→ µν)γ 32±3.2 1.34 Baur

DY

75 GeV < mll < 105GeV, ee+0p 157 1.4 Alpgen
75 GeV < mll < 105 GeV, ee+1p 21.5 1.4 Alpgen

75 GeV < mll < 105 GeV, ee+≥2p 4.14 1.4 Alpgen
75 GeV < mll < 105 GeV, µµ+0p 157 1.4 Alpgen
75 GeV < mll < 105 GeV, µµ+1p 21.6 1.4 Alpgen

75 GeV < mll < 105 GeV, µµ+≥2p 4.12 1.4 Alpgen
75 GeV < mll < 105 GeV, ττ+0p 157 1.4 Alpgen
75 GeV < mll < 105 GeV, ττ+1p 21.6 1.4 Alpgen

75 GeV < mll < 105 GeV, ττ+≥2p 4.13 1.4 Alpgen
20 GeV < mll < 75 GeV, ee+0p 159 1.4 Alpgen
20 GeV < mll < 75 GeV, ee+1p 8.36 1.4 Alpgen

20 GeV < mll < 75 GeV, ee+≥2p 1.81 1.4 Alpgen
20 GeV < mll < 75 GeV, µµ+0p 160 1.4 Alpgen
20 GeV < mll < 75 GeV, µµ+1p 8.30 1.4 Alpgen

20 GeV < mll < 75 GeV, µµ+≥2p 1.81 1.4 Alpgen
20 GeV < mll < 75 GeV, ττ+0p 160 1.4 Alpgen
20 GeV < mll < 75 GeV, ττ+1p 8.35 1.4 Alpgen

20 GeV < mll < 75 GeV, ττ+≥2p 1.81 1.4 Alpgen
105 GeV < mll < 600 GeV, ee+0p 4.06 1.4 Alpgen
105 GeV < mll < 600 GeV, ee+1p 0.707 1.4 Alpgen

105 GeV < mll < 600 GeV, ee+≥2p 0.141 1.4 Alpgen
105 GeV < mll < 600 GeV, µµ+0p 4.06 1.4 Alpgen
105 GeV < mll < 600 GeV, µµ+1p 0.702 1.4 Alpgen

105 GeV < mll < 600 GeV, µµ+≥2p 0.141 1.4 Alpgen
105 GeV < mll < 600 GeV, ττ+0p 4.06 1.4 Alpgen
105 GeV < mll < 600 GeV, ττ+1p 0.710 1.4 Alpgen

105 GeV < mll < 600 GeV, ττ+≥2p 0.140 1.4 Alpgen
8 GeV < mll < 20 GeV, ee+0p 1514 1.4 Alpgen
8 GeV < mll < 20 GeV, ee+1p 19.7 1.4 Alpgen
8 GeV < mll < 20 GeV, ee+2p 6.98 1.4 Alpgen
8 GeV < mll < 20 GeV, µµ+0p 1508 1.4 Alpgen
8 GeV < mll < 20 GeV, µµ+1p 19.6 1.4 Alpgen
8 GeV < mll < 20 GeV, µµ+2p 6.96 1.4 Alpgen
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• We note that part of the MC samples we use in this analysis now use the

luminosity profile corresponding to the full CDF Run II periods. These include

the WW , the DY, and the tt̄ powheg samples. Studies indicate that not using

the full luminosity profile has a negligible effect on the final analysis results.

• We introduce scale factors for DY to correct for mismodeling of cross-section

and E/T in MC. The procedure is described in Appendix B.

3.3 Validation of the Signal and Background Modeling

In this section we present the validation of the signal and background modeling.

We first show the validation with the baseline event selections described in Sec. 2.4;

this data set is used for the measurements of the A`FB and A``FB. We note that the

validation of the data set used for the measurement of Att̄FB is shown in Sec. 6.

We first list the expected number of events from each background component as

well as from tt̄ dilepton signal compared with the observed numbers in Table 3.3,

listed by lepton categories. The number of observed events is consistent with the

expectations.

As a check we compare differential distributions from all sources with data for

our final state. These were selected to form a complete list of the properties of the

final state objects. Figures 3.1 and 3.2 show a number of distributions, with each

individual background components shown separately along with tt̄ and overlaid with

data. Figures 3.3 and 3.4 combines all background sources into one component.

Figures 3.5 and 3.6 shows distributions from tt̄ signal MC, overlaid with data after

background subtraction. In all cases the data looks well modeled by the expectations.

We note that we also have checked signal and background modeling in a number

of different ways. The first is in the 0-jet and 1-jet control regions. These two

control regions do not receive significant contributions from the tt̄ dilepton signal,
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Figure 3.1: The comparison of the observed distributions with the expectation, with
individual background components specified. The distributions of (a) E/T , (b) mll,
(c) pT of both leptons, (d) pT of the dilepton system, (e) HT, and (f) jet multiplicity
are shown.
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Figure 3.2: The same plots as Fig. 3.1, but with (a) leading jet ET, (b) secondary
jet ET, (c) positive lepton q`η`, (d) negative lepton q`η`, (e) q`η` of both leptons, and
(f) ∆η.

61



 (GeV) TE

E
ve

nt
s 

/ 2
5 

G
eV

0

50

100

150

200

250
Data

Background 

 
=7.4 pb)σ(

t tPOWHEG

Uncertainty
Systematic

TE + 2 jets + -l+l → tt
)-1CDF Run II Preliminary (9.1 fb

 (GeV) TE
50 100 150 200

D
at

a-
S

M

-50
0

50 Data-SM Exp.

Uncertainty 
Systematic 

(a) E/T

 ( GeV ) llM
50 100 150 200 250 300

E
ve

nt
s 

/ 2
0 

G
eV

0

20

40

60

80

100

120

140
Data

Background 

=7.4 pb) σ NLO (tt

Uncertainty

)-1                 CDF RUN II Preliminary (9.1 fb
T

E DiLepton + 2 jets + → tt

50 100 150 200 250 300

D
at

a-
S

M

-50

0

50 Data-SM Exp.

Uncertainty 
Systematic 

(b) mll

 (GeV/c)
T

Lepton p

 L
ep

to
ns

 / 
20

 G
eV

/c

0

100

200

300

400

500 Data

Background 

 
=7.4 pb)σ(

t tPOWHEG

Uncertainty
Systematic

TE + 2 jets + -l+l → tt
)-1CDF Run II Preliminary (9.1 fb

 (GeV/c)
T

Lepton p
50 100 150 200

D
at

a-
S

M

-50
0

50 Data-SM Exp.

Uncertainty 
Systematic 

(c) pT for both leptons

 ( GeV ) 
T

DiLepton P
0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s 

/ 2
0 

G
eV

0
20
40
60
80

100
120
140
160
180 Data

Background 

=7.4 pb) σ NLO (tt

Uncertainty

)-1                 CDF RUN II Preliminary (9.1 fb
T

E DiLepton + 2 jets + → tt

0 20 40 60 80 100 120 140 160 180 200

D
at

a-
S

M

-40

0

40 Data-SM Exp.

Uncertainty 
Systematic 

(d) DiLepton pT

HT ( GeV ) 
200 250 300 350 400 450 500 550 600

E
ve

nt
s 

/ 2
0 

G
eV

0

10
20
30

40
50
60
70

80 Data

Background 

=7.4 pb) σ NLO (tt

Uncertainty

)-1                 CDF RUN II Preliminary (9.1 fb
T

E DiLepton + 2 jets + → tt

200 250 300 350 400 450 500 550 600

D
at

a-
S

M

-40

0

40 Data-SM Exp.

Uncertainty 
Systematic 

(e) HT

# of jets
0 1 2 3 4 5 6 7 8 9

E
ve

nt
s

0
50

100
150
200
250
300
350
400
450

Data

Background 

=7.4 pb) σ NLO (tt

Uncertainty

)-1                 CDF RUN II Preliminary (9.1 fb
T

E DiLepton + 2 jets + → tt

0 1 2 3 4 5 6 7 8 9

D
at

a-
S

M

-60

0

60 Data-SM Exp.

Uncertainty 
Systematic 

(f) Jet Multiplicity

Figure 3.3: The same as Fig. 3.1, but where all the backgrounds are combined.
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Figure 3.4: The same as Fig. 3.2, but where all the backgrounds are combined.
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Figure 3.5: The comparison of the expected distribution from the powheg simu-
lation with the observation after subtracting off the contributions from background
processes. The distributions of (a) E/T , (b) mll, (c) pT of both leptons, (d) pT of the
dilepton system, (e) HT, and (f) jet multiplicity are shown.
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Figure 3.6: The same plots as Fig. 3.5, but with (a) leading jet ET, (b) secondary
jet ET, (c) positive lepton q`η`, (d) negative lepton q`η`, (e) q`η` of both leptons, and
(f) ∆η.
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and are thus ideal for validation of the modeling of the backgrounds. The results

are in Appendix C. The observations are consistent with the expectations in both

control regions. In addition, we have checked the signal and background modeling in

the signal region with an extra requirement of at least one jet being b-tagged. This

sample is purer than the nominal signal sample without the additional requirement,

but has about half of the expected events due to the efficiency of the SecVTX b-

tagging algorithm (∼50%) [82]. The results are summarized in Appendix D. In all

cases, the expectation agree with the observation well, indicating the modeling of

the signal and background processes is robust.

Now that we have powerful modeling of the signal and background processes, we

move on to describing the measurement methodology of the A`FB and A``FB as well as

the measurements themselves in the next section.
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4. MEASUREMENT OF THE FORWARD–BACKWARD ASYMMETRY OF

LEPTONS FROM TOP-QUARK PAIRS∗

With our dataset in hand and our backgrounds well understood, we are now

ready to proceed with our measurements of the top AFB observables. We will first

describe the leptonic AFB measurements, A`FB and A``FB (also denoted as Alep
FB and A∆η

FB

in some figures, respectively) [90], since these two measurements do not involve the

reconstruction of the top 4-momenta. We will then introduce the top reconstruction

algorithm we use in Sec. 5, and the measurements of Att̄FB and Att̄FB vs. |∆yt| follow

in Sec. 6.

The goal of the A`FB and A``FB measurements is to determine the inclusive parton-

level asymmetries. (Note that we use the terms of “parton-level”, “truth-level”,

“generator-level”, and “hepg-level” interchangeably, where “hepg” is an acronym for

high-energy-physics generator.) Since we do not reconstruct all the events, we will

need a measurement methodology to account for both the limited detector acceptance

as well as event selection effects. As explained shortly, the leptonic asymmetry is

a subtle effect to measure. The data we will use is the measured q`η` from each

lepton in each event (or the ∆η from each event), and we will turn the distribution

of this observable into a second distribution (the “asymmetric part” of the q`η` or

∆η distribution, the A(q`η`) in Sec. 4.1) which is sensitive to the asymmetry itself.

In this section, we will first describe the distributions of the observables we will

consider for our measurement, and the cleaver way we will measure parameters from

∗Reprinted with permission from “Measurement of the inclusive leptonic asymmetry in top-
quark pairs that decay to two charged leptons at CDF” by the CDF Collaboration, 2014, Phys.
Rev. Lett. 113, 042001, and “Forward-Backward Asymmetry of Leptonic Decays of ttbar at the
Fermilab Tevatron” by Z. Hong, R. Edgar, S. Henry, D. Toback, J.S. Wilson, and D. Amidei, 2014,
Phys. Rev. D 90, 014040. Copyright [2015] by the American Physical Society.
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the distribution that are directly related to the inclusive asymmetry. In particular,

the measurement methodology is based on the asymmetric part of the q`η` distribu-

tion as described in Sec. 4.1. A detailed validation is presented in Sec. 4.2, first at the

generator level, as if we had a perfect detector that reconstructs every event perfectly.

Then we will show, using full detector response simulation, that the methodology

works as well when the detector and event selection effects are taken into consider-

ation. We note that the methodology, before we began this analysis and first used

by in the lepton+jets analysis, was known to work, but it was not fully understood

why it worked [43, 91]. A detailed study about why it works, performed during the

analysis of the data, is presented in Appendix E and published separately in Ref. [92].

The methodology is then applied to data, and the systematic uncertainties of the

measurement are estimated, with the results given in Sec. 4.3.

4.1 Leptonic AFB Measurement Methodology

The definition of A`FB is given in Eq. 1.2 and can be interpreted as the probability

of a lepton going forward minus the probability of a lepton going backward. Due to

the limited detector coverage, the imperfect detector acceptance, the finite detector

resolution, and contamination from non-tt̄ sources, a measurement methodology is

needed to retrieve the inclusive parton-level leptonic AFB from data. To do so, we

use the same procedure used in measuring the A`FB in the lepton+jets final state,

but present in this section and Appendix E a detailed study and validation of why it

works [43, 92]. In this section, we describe an overview of the measurement method-

ology. Note that while we will be using the same methodology for both A`FB and

A``FB, our description here will first mention A`FB explicitly. The results for A``FB will

be listed after that.

We note before beginning that, as stated in Sec. 1, we will follow the assumption
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of CP conservation, and use the parameter q`η` to merge both the positively charged

and negatively charged leptons into a single observable [43], and will use both leptons

in each event for our measurement of A`FB. As there is potential concern about the

correlation between the leptons, we have studied this issue in detail. As shown in

Appendix F, the impact on the measurement is very small compared to the dominant

uncertainties. Thus, we use both leptons to enhance statistics. A second issue we

mention before continuing is that because we only have ∼500 expected tt̄ events in

the final sample, the expected statistical uncertainty on the final A`FB result is at the

0.05 level, and is expected to be our major uncertainty. Any uncertainty we discuss

throughout this section is compared to this.

For the measurement of A`FB and A``FB, we use the NLO SM sample powheg as

our benchmark SM model, and two additional LO SM samples, alpgen and pythia

for comparison. We also employ the three 200 GeV axigluon models with left-handed,

right-handed and pure axial couplings described in Table 1.2 as our benchmark BSM

scenarios. These three axigluon models are particularly interesting as they have

the same Att̄FB values, which are consistent with the experimental results from the

lepton+jets final state, but different couplings so that each has a very different A`FB

and A``FB value. The three samples are denoted as “AxiL”, “AxiR”, and “Axi0”

respectively. All six MC samples will be used both to develop and validate our

measurement methodology.

Figure 4.1 shows the q`η` distribution at the generator level from each of the six

tt̄ MC samples. From counting the numbers of forward and backward events, we

determine that they span the range of −6% < A`FB < 15%, which well-surrounds the

SM expectation of 3.8%, as well as the results from the lepton+jets measurement

of 9.2%. Despite the significant differences in A`FB, the spectra look quite similar

visually. Thus, we need a good way to distinguish between the subtle differences.
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Figure 4.1: The q`η` distribution of charged leptons produced from tt̄ cascade decay
from simulations with various physics models at parton level, before any selection
requirements.

We employ a novel technique which uses a variable that is sensitive to this subtle

difference, and was first applied in the CDF measurement of A`FB in the lepton+jets

final state [43, 91]. This technique uses a decomposition of the q`η` spectrum into a

symmetric part (the S(q`η`) term) and an asymmetric part (the A(q`η`) term). The

decomposition can be done with the following formulas in the range q`η` ≥ 0:

S(q`η`) =
N (q`η`) +N (−q`η`)

2
, and (4.1a)

A(q`η`) =
N (q`η`)−N (−q`η`)
N (q`η`) +N (−q`η`)

, (4.1b)

where N (q`η`) represents the number of events as a function of q`η`. With this

decomposition, the A`FB defined in Eq. 1.2 can be rewritten in terms of S(q`η`) and

A(q`η`) as:

A`FB =

∫∞
0

dx [A(x) · S(x)]∫∞
0

dx′ S(x′)
. (4.2)

The S(q`η`) term and the A(q`η`) term distributions from the benchmark samples
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Figure 4.2: The S(q`η`) term (a) and the A(q`η`) term (b) of the q`η` distribution
from various physics models. The lines in (b) correspond to the best fits from the
a · tanh model.
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are shown in Fig. 4.2a and Fig. 4.2b, respectively, and show the benefit of the de-

composition technique. From Fig. 4.2a we can readily see that since the variation of

the S(q`η`) term among the various tt̄ samples is small, choosing any one of them in

the calculation of Eq. 4.2 for the measurement introduces an uncertainty that is tiny

compared to the dominant uncertainties. The small differences for |q`η`| < 0.2 do

not have much effect on the measurement for the reasons described in Appendix E.

On the other hand, as shown in Fig. 4.2b, the A(q`η`) term varies significantly from

model to model and is thus a strong predictor of A`FB. Using trial and error, it has

been found that the A(q`η`) term is well described in the region |q`η`| < 2.0 using

the functional form of

A(q`η`) = a · tanh

(
1

2
q`η`

)
, (4.3)

where a is a free parameter that is directly related to the final asymmetry. Best fits

of the simulations to the a · tanh model from Eq. 4.3 are also shown in Fig. 4.2b. (A

detailed discussion of why this functional form works is given in Appendix E.)

The previous description of the methodology is based on the generator level quan-

tities. In another word, no detector response is considered yet. Next, we comment on

how the detector effects will be included before doing the validation of the method

at the generator level. We note that in the formulas below, the superscript “truth”

indicates that the quantity is measured at the generator level before any detector

response or event selection, and the superscript “reco” indicates that the quantity is

measured after the detector response, object identification, and event selection. We

omitted the superscript “truth” for the N (q`η`), S(q`η`), and A(q`η`) terms previ-

ously in Eqs. 4.1, 4.2, and 4.3 for briefness.

Before starting discussing the detector effects on the measurement, we note that
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since the S(q`η`) term does not vary among different models, we will use the S(q`η`)

term estimated from the powheg MC sample at the generator level, before any se-

lection requirement or detector response. Thus, the S(q`η`) term we use corresponds

to the truth level S(q`η`), or Struth(q`η`). On the other hand, the A(q`η`) distribution

is very sensitive to different A`FB values. We will measure the A(q`η`) distribution

from data (corresponding to Areco(q`η`)), which is subject to the effects of the detec-

tor response, object identification, and event selection. Because of this, we need to

correct for the detector effects on the Areco(q`η`) back to Atruth(q`η`), so that we can

calculate parton-level inclusive A`FB with Eq. 4.2. Next we will show the corrections

only on the Areco(q`η`) distribution.

As will be shown shortly, the definition of the Areco(q`η`) distribution has the

advantage that it greatly reduces the effect of the detector response on the mea-

surement. We note that after choosing a reasonable binning (large compared to the

detector resolution, which is ∼0.04), bin-to-bin migration due to detector response

is negligible, so the correction on the detector response is simplified to a bin-by-bin

multiplicative correction as a function of q`η`. This correction is denoted as the

“acceptance correction”, which corrects for the fact that we can only measure a frac-

tion of the events that are generated, due to the limited detector coverage and the

inefficiency in the event selection. Here we use C(q`η`) to represent the bin-by-bin

acceptance correction, which is the ratio of the number of events in a certain q`η`

range at generator level to that after detector simulation, reconstruction, and event

selection, as

C(q`η`) =
N truth(q`η`)

N reco(q`η`)
, (4.4)

where N (q`η`) is the number of events in the corresponding q`η` range.

In the limit of small asymmetries, as proved mathematically in Ref. [91], we can

73



use the Struth(q`η`) directly from the generator-level calculations from MC samples,

and only the Areco(q`η`) term receives a correction. We find in addition that only

the asymmetric part of the acceptance correction affects A`FB acting as an additive

correction to A(q`η`) as in the formula below with q`η` > 0:

Atruth(q`η`) = Areco(q`η`) +AC(q`η`) (4.5)

where Atruth(q`η`) represents the asymmetric part of the q`η` distribution before the

detector response or any event selection (which is what is calculated in Eq. 4.1b),

Areco(q`η`) represents the asymmetric part of q`η` distribution after detector simula-

tion and reconstruction, calculated in the region of q`η` > 0 as

Areco(q`η`) =
N reco(q`η`)−N reco(−q`η`)
N reco(q`η`) +N reco(−q`η`)

, (4.6)

and AC(q`η`) is the asymmetric part of bin-by-bin acceptance correction, which is

calculated again when q`η` > 0 as

AC(q`η`) =
C(q`η`)− C(−q`η`)
C(q`η`) + C(−q`η`)

(4.7)

where AC is found to be small because the CDF detector is designed to be forward–

backward symmetric.

Eventually, we need the term Atruth(q`η`), which will be used in Eq. 4.2 to obtain

the parton-level inclusive A`FB. However, we can only measure Areco(q`η`) in our

data. The correction term AC(q`η`) is derived from tt̄ MC samples (which will be

shown to be consistent with zero) to bring us from Areco(q`η`) to Atruth(q`η`).

Considering the features of the decomposition technique described above, the

strategy of this method is
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1. Measure Areco(q`η`) in the data,

2. Estimate the correction term AC(q`η`) from tt̄ MC samples,

3. Use Eq. 4.5 to get Atruth(q`η`),

4. Fit the Atruth(q`η`) distribution with an a ·tanh function, which is our modeling

of Atruth(q`η`),

5. Obtain the S(q`η`) term from the best tt̄ MC sample at parton level, which

corresponds to Struth(q`η`) to be used in Eq. 4.2,

6. Use the Atruth(q`η`) modeled by the a · tanh fit in (4) and the Struth(q`η`) in (5)

to get the parton-level inclusive A`FB with Eq. 4.2.

Note that since only the asymmetric part of the acceptance correction contributes

to the asymmetric part of the q`η` distribution, and we use the symmetric part from

generator level tt̄ MC, this methodology corrects for the detector response and the

limited detector η coverage at the same time. In the next section, we will provide the

validation of the measurement methodology by using the samples to create pseudo-

datasets and show that by using the procedure we reproduce the generator level

A`FB.

4.2 Validation of the Measurement Methodology

In this section we provide a detailed validation of the measurement methodology

at the parton-level and after including the detector effects. In Sec. 4.2.3 we show the

validation of applying the same methodology to the A``FB measurement.

4.2.1 Validation at Generator Level

The true value of A`FB for each MC sample is calculated using the full set of

generated events, and counting the numbers of events with q`η` > 0 and q`η` < 0.
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This is readily compared with the result using our methodology to determine both

the value of a from the A(q`η`) distribution (where we only use the events with

|q`η`| < 2.0 to do a simple simulation of the detector and use the minuit package [93]

to estimate the best values of a and their uncertainties), and then turning the value of

a into our best estimate of A`FB using Eqs. 4.2 and 4.3. The comparison between the

predicted A`FB and the A`FB obtained with the measurement methodology is shown

in Fig. 4.3 and Table 4.1. The differences are on the order of a fraction of a percent,

which is tiny compared to the expected dominant uncertainties at the level of 0.05.
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Figure 4.3: A comparison between the predicted A`FB from simulations and the A`FB

as measured using the a · tanh parametrization with parton level information from
|q`η`| < 2.0. The dashed line indicates the location of the equal values, while the
points are superimposed at their measured locations. All the points lie along the line
within uncertainties.

4.2.2 Validation with Detector Effects

In this subsection we describe the measurement of the A`FB taking the detector

and object reconstruction effects into account. Since we have imperfect detector
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Table 4.1: Comparison between the generated A`FB and the results of the measure-
ment methodology at the generator level from the various MC models. No noticeable
bias is observed.

Model
A`FB A`FB Difference

Fit parameter
(Generated) (Gen. level measured) (a)

AxiL -0.0626±0.0024 -0.0640±0.0021 0.0014 -0.182±0.006
AxiR 0.1513±0.0024 0.1477±0.0020 0.0036 0.419±0.005
Axi0 0.0497±0.0024 0.0484±0.0021 0.0013 0.137±0.006

Alpgen 0.0032±0.0013 0.0026±0.0012 0.0006 0.007±0.003
Pythia 0.0001±0.0008 0.0011±0.0009 -0.0010 0.003±0.002
Powheg 0.0236±0.0007 0.0229±0.0008 0.0007 0.065±0.002

resolution and incomplete detector coverage, we use simulated data from all six tt̄

MC samples to see if there are any biases in our methodology or if further corrections

are needed.

Since this analysis is statistics limited, we choose our binning of q`η` carefully.

There are about 1100 leptons (signal and backgrounds together) expected in data.

Since the expectation is that the AFB approaches zero when q`η` goes to zero due

to the continuity of the q`η` spectrum, we intentionally choose the first bin to be

narrower. In this methodology we are doing a fit on the asymmetric part of the q`η`

distribution, thus ideally we want as many bins as possible across the whole q`η`

range, but for each bin to have reasonable number of events. To balance the number

of bins and the statistics in each bin, we chose to have 6 bins across the whole η

range. The first bin is chosen to have half as many expected entries, and the rest

of the five bins are chosen so that they have roughly the same expected number of

entries. The choice of 6 bins is not thoroughly optimized, but we tried the same

binning idea with 5 or 7 bins, and they give similar result. Table 4.2 shows the q`η`

binning choice we use for measuring A`FB.

We next consider the issue of whether the data needs to be corrected for either
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Table 4.2: The binning choice of the q`η` distribution used in the measurement of
A`FB, along with the expected number of events from tt̄+backgrounds, where tt̄ is
simulated using powheg.

Bin range tt̄+backgrounds

(-2, -0.81) 109.1± 7.9

[-0.81, -0.61) 98.4± 7.2

[-0.61, -0.42) 98.6± 7.2

[-0.42, -0.26) 101.7± 7.4

[-0.26, -0.10) 98.8± 7.2

[-0.10, 0) 57.8± 4.3

[0, 0.10) 54.9± 4.1

[0.10, 0.26) 101.7± 7.4

[0.26, 0.42) 100.6± 7.2

[0.42, 0.61) 100.1± 7.2

[0.61, 0,81) 100.4± 7.3

[0.81, 2) 113.6± 8.2

the lepton η resolution or the detector acceptance as a function of η. We note at the

beginning, that our studies show that the answer is no, but give more details next to

show our evidence for this conclusion. As proved in Ref. [91] and shown in Eq. 4.5,

only the asymmetric part of the acceptance correction affects the AFB measurement.

Due to the small branching ratio and acceptance in the TopDilepton channel, the

errors on the asymmetric part of acceptance correction are non-negligible even with

our biggest signal sample; the powheg tt̄ sample with 10M events only produces

about 70k candidate events. Fig. 4.4 shows the asymmetric part of the acceptance

correction (defined in Eq. 4.5) estimated with the powheg tt̄ MC sample. Though

the middle 4 bins appear negative, the corrections in all bins are consistent with

zero within statistics. In principle, small corrections might be needed, but we don’t

have the ability to determine the asymmetric part of acceptance correction with

precision. In practice, we will proceed using zero correction, show that the impact
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of this assumption is small, and then assign a systematic uncertainty due to this

approach.
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Figure 4.4: The distribution of the asymmetric part of the bin-by-bin acceptance
correction, AC(q`η`), as estimated with the powheg tt̄ MC.

We will next show that with zero acceptance correction, we can get back to the

truth level A`FB with various tt̄ MC samples within statistics, and that the uncer-

tainty due to this approach is small compared to the dominant systematic uncer-

tainty. With the assumption of zero acceptance correction, we perform the fit with

Eq. 4.3 on the q`η` distribution of the sample of events that pass all the selection

requirements in Table 2.1 (after full simulation) from each tt̄ MC sample. Fig. 4.5

shows the comparison between the fit at generator level and the fit at reconstructed

level. The variation in the fit results is small compared to the dominant systematic

uncertainty. Fig. 4.6 shows the reconstructed level asymmetric part of q`η` from all

samples together with the best a · tanh fits. Fig. 4.7 and Table 4.3 show the result of

the extrapolated A`FB with each of the tt̄ models. We note that with the a · tanh fit
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Table 4.3: Comparison between the generated A`FB and the results of the measure-
ment methodology from the various MC models, using the sample of reconstructed
events that pass all the event selection requirements in Table 2.1. No noticeable bias
is observed.

Model
A`FB A`FB Difference

Fit parameter
(Generated) (Reco. level measured) (a)

AxiL -0.0626±0.002 -0.063±0.011 0.0001 -0.178±0.032
AxiR 0.151±0.002 0.147±0.011 0.004 0.417±0.031
Axi0 0.050±0.002 0.065±0.011 -0.015 0.183±0.031

Alpgen 0.003±0.001 -0.004±0.006 0.008 -0.012±0.017
Pythia 0.0001±0.0008 -0.005±0.004 0.005 -0.014±0.011
Powheg 0.024±0.0007 0.029±0.003 -0.006 0.084±0.009

on the reconstructed level asymmetric part of q`η` distribution, Areco(q`η`), together

with symmetric part from powheg tt̄ MC, Struth(q`η`), we get back to the truth level

A`FB values with no noticeable bias. The differences are small compared to expected

statistical uncertainty around 0.05.

For concreteness, and to estimate our uncertainties conservatively, we quote the

difference from powheg sample (0.006) as the systematic uncertainty for the “Asym-

metric Modelling” to cover potential biases caused by the a · tanh fit and the zero

acceptance correction assumption.
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Figure 4.5: A comparison of the binned result, along with the a · tanh fit, on the
asymmetric part of the q`η` distribution as estimated from the various MC samples.
We plot both the generator level (hepg) and reconstructed level (reco) on top of each
other. The fit parameters at generator level are slightly different from the number
shown in Table 4.1 due to different binning. In all cases, the variation in the fit
results is small compared to the dominant systematic uncertainty.
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4.2.3 Validation for A``FB Measurement

With our validation of the methodology on the A`FB measurement now complete,

we show that the same approach also works for measuring A``FB.

As shown in Table. 4.4, we choose the binning of ∆η distribution in the same

manner as described in Sec. 4.2.2 although the number of events per bin is reduced

by 50%. . In the same way, we start by looking at the ∆η distribution at gener-

ator level from various tt̄ MC samples, and its decomposition into the symmetric

and asymmetric parts, together with hyperbolic tangent fit on the asymmetric part.

The a · tanh fit is then applied to the asymmetric part of the ∆η distribution after

reconstruction, and the asymmetric part of acceptance correction is tested with the

powheg tt̄ MC. The results are shown in Figs. 4.8 and 4.9. Tables 4.5, and 4.6 and

Figs. 4.10 and 4.11 show the comparison between the truth level A``FB and the A``FB

obtained with a · tanh fit at generator and reconstructed level.

The A``FB values obtained with the a · tanh fit after reconstruction from various tt̄

samples agree with the truth level A``FB from each of the six test samples within statis-

tics. The difference obtained from the powheg tt̄ sample is quoted as a systematic

uncertainty for the extrapolation methodology for A``FB conservatively.
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Figure 4.8: The same results as in Fig. 4.1, 4.2a, 4.2b, but using ∆η instead of q`η`.
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Figure 4.9: The same results as in 4.4 and Fig. 4.6, but using ∆η instead of q`η`.
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Table 4.4: The binning choice of the ∆η distribution used in measurement of A``FB,
along with the expected number of events from tt̄+backgrounds, where tt̄ is simulated
using powheg.

Bin range tt̄+backgrounds

(-3.5, -1.14) 53.9± 3.9

[-1.14, -0.80) 50.3± 3.8

[-0.80, -0.54) 50.1± 3.8

[-0.54, -0.32) 52.1± 4.0

[-0.32, -0.1) 52.6± 3.9

[-0.1, 0) 24.6± 1.9

[0, 0.1) 23.6± 1.8

[0.1, 0.32) 49.7± 3.7

[0.32, 0.54) 51.3± 3.8

[0.54, 0.8) 50.0± 3.6

[0.8, 1.14) 50.6± 3.8

[1.14, 3.5) 59.1± 4.3
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Figure 4.10: The same as Fig. 4.5, but using ∆η instead of q`η`.
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Figure 4.11: The same results as in Fig. 4.3 and 4.7, but with A``FB (labelled as A∆η
FB

in the figures).
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Table 4.5: The same as Table 4.1, but with ∆η and A``FB instead of q`η` and A`FB.

Model
A``FB A``FB Difference

Fit parameter
(Generated) (Gen. level measured) (a)

AxiL -0.0920±0.0034 -0.0933±0.0030 0.0013 -0.197±0.006
AxiR 0.2185±0.0033 0.2042±0.0028 0.0143 0.432±0.006
Axi0 0.0656±0.0034 0.0665±0.0029 -0.0009 0.141±0.006

Alpgen 0.0029±0.0018 0.0036±0.0016 -0.0007 0.008±0.003
Pythia 0.0013±0.0012 0.0015±0.0012 -0.0002 0.003±0.002
Powheg 0.0301±0.0010 0.0314±0.0010 -0.0013 0.066±0.002

Table 4.6: The same as Table 4.3, but with ∆η and A``FB instead of q`η` and A`FB.

Model
A``FB A``FB Difference

Fit parameter
(Generated) (Reco. level measured) (a)

AxiL -0.092±0.003 -0.086±0.016 -0.006 -0.182±0.034
AxiR 0.218±0.003 0.215±0.015 0.003 0.454±0.032
Axi0 0.066±0.002 0.092±0.015 -0.026 0.194±0.032

Alpgen 0.003±0.002 -0.006±0.008 0.009 -0.013±0.018
Pythia 0.001±0.001 -0.006±0.006 0.008 -0.013±0.012
Powheg 0.030±0.001 0.042±0.004 -0.012 0.089±0.010
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4.3 Measurement of the Leptonic AFB from Data

With the methodology described in the last section well validated, we can take

the data, subtract off the backgrounds and extrapolate to get the final measured

values of the AFB. We first report the measurement of A`FB with the estimation of

its systematic uncertainties, then we show briefly the measurement of A``FB with the

same approach, together with its systematic uncertainties.

4.3.1 Measurement of the A`FB and Uncertainty Estimation

We start by calculating the A`FB with a direct counting method from data only and

from data after background subtraction without correcting for the detector effects

(uncorrected A`FB) in Sec. 4.3.1.1, then apply our measurement methodology on the

data after background subtraction in Sec. 4.3.1.2 for the parton-level result. The

estimation of the systematic uncertainties is described in Sec. 4.3.1.3.

4.3.1.1 Measuring raw A`FB with a direct counting

The q`η` distribution from data is shown in Fig. 3.2e, and the distribution after

background subtraction is shown in Fig. 3.6e. Table 4.7 lists measured uncorrected

A`FB, which is done with a straight counting of the numbers of the forward and the

backward leptons with no correction for the detector responses, together with the

uncorrected A`FB from the powheg tt̄ MC. While this is interesting comparison, the

parton-level inclusive value of the A`FB considers the q`η` distribution and the full

measurement methodology described in the previous subsection.

4.3.1.2 Parton-level A`FB

Table 4.8 gives the number of leptons in each q`η` range both before and after

background subtraction, and compares it to the expectations from the powheg MC

samples. The decomposition of the background-subtracted data into the symmetric
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Table 4.7: The uncorrected A`FB, with a straight counting of the numbers of the
forward and the backward leptons, from the data only and the data after background
subtraction, together with the expectation from the powheg tt̄ MC, which is with
NLO SM with QCD corrections but without electroweak corrections.

Source
Uncorrected

A`FB

Powheg tt̄ 0.024±0.003

Data 0.02±0.03
Background Subtracted Data 0.04±0.04

and asymmetric part is performed according to Eq. 4.1, and Fig. 4.12 shows the

symmetric part of q`η` distribution from data after background subtraction, along

with the expectations from powheg. The agreement is good. Fig. 4.13 shows the

a · tanh fit on the asymmetric part of data after background subtraction. We find

a = 0.21± 0.15(stat.). The A`FB retrieved from this fit is

A`FB = 0.072± 0.052(stat.),

where the uncertainty is statistical only, derived from the statistical uncertainty on

the fit parameter a.

4.3.1.3 Systematic uncertainties for A`FB

The systematic uncertainties are estimated using techniques that are similar to

those used in the lepton+jets measurement [43]. As will be seen, the dominant

uncertainty on the measurement is the statistical uncertainty, while the dominant

systematic uncertainty is from the estimation of the background. The results are

summarized in Table 4.9.

To estimate the uncertainty on A`FB from both the uncertainty in the normaliza-

tion of the backgrounds as well as from the uncertainty in the shape of the background
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Table 4.8: A comparison of the number of leptons in each q`η` range, bin-by-bin,
before and after the background subtraction. Note that the tt̄ contributions are
estimated using the powheg MC.

(a) tt̄ + backgrounds and data

Bin Range tt̄+backgrounds Data

(-2, -0.81) 109.1±7.9 101

[-0.81, -0.61) 98.4±7.2 95

[-0.61, -0.42) 98.6±7.2 98

[-0.42, -0.26) 101.7±7.4 102

[-0.26, -0.10) 98.8±7.2 110

[-0.10, 0) 57.8±4.3 54

[0, 0.10) 54.9±4.1 53

[0.10, 0.26) 101.7±7.4 91

[0.26, 0.42) 100.6±7.2 108

[0.42, 0.61) 100.1±7.2 115

[0.61, 0,81) 100.4±7.3 93

[0.81, 2) 113.6±8.2 118

(b) tt̄ and data after background subtraction

Bin Range tt̄ Data−backgrounds

(-2, -0.81) 74.4±3.6 66.3±11.2

[-0.81, -0.61) 68.9±3.3 65.4±10.6

[-0.61, -0.42) 70.8±3.4 70.2±10.7

[-0.42, -0.26) 72.4±3.5 72.6±11.0

[-0.26, -0.10) 72.0±3.5 83.2±11.2

[-0.10, 0) 40.3±2.0 36.4±7.8

[0, 0.10) 40.1±2.0 38.2±7.6

[0.10, 0.26) 75.1±3.6 64.4±10.3

[0.26, 0.42) 75.2±3.6 82.6±11.0

[0.42, 0.61) 75.0±3.6 89.9±11.3

[0.61, 0,81) 73.1±3.5 65.8±10.4

[0.81, 2) 79.4±3.8 83.8±11.9
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subtraction, with the expectations from powheg overlaid.

|
l

η|q
0 0.5 1 1.5 2

|) lη
 (

|q
le

p
F

B
A

-0.3
-0.2
-0.1

0
0.1
0.2
0.3

)-1             CDF Run II Preliminary (9.1 fbTE + 2 jets + -l+l → tt

Data
Fit

t tPOWHEG

)σ1 ±      (
Uncertainties

Stat. 
Stat.+Sys. 

Figure 4.13: The asymmetric part of q`η` distribution from data after background
subtraction. The green line shows the expectations from powheg.

93



q`η` spectra, we generate two sets of pseudoexperiments. For the first set of pseudo-

experiments, we add in fluctuations in the tt̄ signal only (ignoring the backgrounds)

and use this to help estimate the statistical uncertainty solely due to the tt̄ signal. To

do this, we use the powheg tt̄ MC as our signal sample to simulate the q`η` distribu-

tion in a binning that is the same as for the data. To simulate a pseudoexperiment,

we normalize the total number of tt̄ events according to the expected tt̄ event count

and its total uncertainty (statistical and systematic) and fluctuate each bin of the

q`η` distribution according to Poission statistics with the expected number of events

in that bin as the mean. The fluctuated q`η` distribution, our pseudoexperiment,

is then subject to the decomposition and extrapolation procedure to get the fully

extrapolated A`FB for each experiment, with the result from 10k pseudoexperiments

shown in Fig. 4.14a. A Gaussian function is fitted to the distribution and we find

that the mean is consistent with the expected A`FB; the RMS of the distribution,

0.043, represents the statistical uncertainty from signal.
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Figure 4.14: The results of pseudoexperiments to estimate the uncertainty due to
background fluctuation. Fig. 4.14a shows theA`FB obtained by only fluctuating signal,
and Fig. 4.14b shows the A`FB obtained by fluctuating both signal and backgrounds.
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To estimate the uncertainty due to the backgrounds we generate a second set

of pseudoexperiments but using both the tt̄ signal and each background component.

We create the bin-by-bin q`η` distribution according to their mean rate and total rate

uncertainties. Each bin of each component is fluctuated according to Poission statis-

tics. The sum of the fluctuated signal and backgrounds is subjected to the nominal

background subtraction and a·tanh fit, then A`FB is retrieved from the a·tanh fit. The

results are shown in Fig. 4.14b and a Gaussian function is fitted to the distribution.

The mean A`FB is consistent with mean of previous set of pseudoexperiments, and the

RMS of 0.052 represents the statistical uncertainty from the signal and background

and is consistent with the result given previously. While the difference between the

two RMS values in quadrature (0.029) can be thought of as the uncertainty due to

the statistical fluctuations of the backgrounds, we take a systematic uncertainty on

the normalization and shape of the backgrounds to be equal to this value, and add

it in quadrature for the final uncertainty estimate. As previously noted, this is the

dominant systematic uncertainty in our measurement.

To get a validation of the estimation of the background systematics, we test

the background systematics with another approach, even though we are quoting the

previous result as our final estimation of background systematics. Since the W+jets

and DY+jet processes are the two leading background components, we estimate the

A`FB as if all the backgrounds were from W+jets or DY+jets. We estimate the A`FB

from data by scaling the W+jets background template to the overall background rate

and suppress other background template, and get an A`FB of 0.062. When doing the

same process with DY+jets, we obtain an A`FB of 0.106. Comparing to the nominal

A`FB result at 0.072, the corresponding background systematics is at the level of

0.030. This estimation of background systematics provides the confidence that the

background systematics we are quoting is at a reasonable conservative level.
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As mentioned in Sec. 4.2.2, we assign the difference between the measured A`FB

and the A`FB at truth level from powheg MC as the A-part Model systematic un-

certainty to cover potential mismodeling introduced by the a · tanh fit and zero

acceptance correction. This has a value of 0.006.

To estimate the systematic uncertainty due to the variation in the symmetric part

of q`η` distribution from different physics model, which we call the S-part Model un-

certainty, we calculate A`FB using the S(q`η`) model from alpgen, herwig, pythia,

AxiL, AxiR, and Axi0, and take the largest difference between these A`FB values and

the central value of the measured A`FB. We find this to be 0.001.

Other systematic uncertainties are estimated according to the standard proce-

dures in the top group of the CDF collaboration [20], and are very small in compar-

ison with the dominant uncertainties. We quickly summarize each:

• The jet energy scale (JES) systematic uncertainty is estimated by simultane-

ously shifting all jet energies up and down 1σ, and taking the larger difference

between shifted A`FB and central value.

• The parton showering systematic uncertainty estimated to be the difference

between the A`FB values obtained with alpgen MC showered by pythia and

alpgen MC showered by herwig.

• The color reconnection systematic uncertainty is estimated to be the difference

between the A`FB values obtained with two tt̄ MC samples with two alternative

color reconnection models.

• The initial- and final-state radiation (I/FSR) uncertainty is estimated to be

half of the difference between A`FB values obtained with samples with “more”

or “less” amounts of I/FSR.
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Table 4.9: Table of uncertainties for the A`FB measurement.

Source of Uncertainties Value
Backgrounds 0.029
A-part Model 0.006

JES 0.004
S-part Model 0.001

PDF 0.0002
Parton Showering 0.0002

Color Reconnection 0.00007
IFSR 0.00008

Total Systematic 0.030
Statistical 0.052

Total Uncertainty 0.060

• The PDF uncertainty is calculated according to standard procedure of the CDF

top group by re-weighting the pythia sample corresponding to different PDF

models.

Table 4.9 summaries the systematic and statistical uncertainties for A`FB. The total

systematic uncertainty is 0.03, which is estimated by adding all the systematics in

quadrature, and is dominated by the systematic uncertainty of backgrounds.

4.3.1.4 Result of the measurement of A`FB

After applying the full measurement methodology to the data, after background

subtraction, and taking the systematic uncertainties into account, the parton-level

A`FB result is:

A`FB = 0.072± 0.052(stat.)± 0.030(syst.) = 0.072± 0.060,

which is consistent with the NLO SM prediction of 0.038 ± 0.003. The comparison

between this result and all other results and the SM predictions are summarized in
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Sec. 8.

4.3.1.5 Cross checks for A`FB

We performed the same measurement in several subsets of the data as cross

checks. The subsets we used are with different lepton categories (ee, µµ, and eµ),

with different lepton charges (positive and negative leptons only), and with events

with at least one SecVTX b-tagged jet.

Table 4.10 lists the measured values of A`FB from positive and negative leptons

only, and from the ee, µµ and eµ categories separately. The plots for the fits can

be found in Figs. 4.15 and 4.16. All sub-categories are consistent with each other

within statistics.

Table 4.10: The extrapolated A`FB results in different lepton categories. The uncer-
tainties are statistical only.

Lepton Category Extrapolated A`FB

All 0.072±0.052
ee 0.128±0.101
µµ 0.075±0.117
eµ 0.044±0.070

Positive Lepton 0.099±0.073
Negative Lepton 0.043±0.070

A separate check is done with a subset of the data with at least one tight SecVTX

b-tagged jet. This subset of data has a higher purity, but lower statistics makes it

not worth making this the final result since it is expected to have an overall worse

sensitivity as we are statistics limited. Figure 4.17 shows the fit with this subset of

data. The result is

A`FB(b-tag) = 0.105± 0.062(stat.).
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Figure 4.15: The a · tanh fits for the positive and negative leptons separately.
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Figure 4.16: The a · tanh fits for ee, µµ, and eµ final states separately.
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The result is consistent with the result without the extra cut as well as the NLO SM

prediction.
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Figure 4.17: The a · tanh fit for the A`FB data but with the additional requirement
of at least one b-tagged jet.

4.3.2 Measurement of the A``FB and Uncertainty Estimation

The same extrapolation method is also applied to the ∆η distribution to extract

A``FB (also denoted as A∆η
FB in some figures). The distributions of ∆η before and after

the background subtraction are shown in Fig. 3.2f and Fig. 3.6f, and the numbers

are listed bin-by-bin in Table 4.11. The uncorrected A``FB values, with a straight

counting with no corrections for the detector response, from data before and after

the background subtraction are listed in Table 4.12, together with the prediction

from powheg. The symmetric and asymmetric parts of the ∆η distribution are

shown in Fig. 4.18 with the a · tanh fit, yielding a = 0.16 ± 0.15(stat.). The A``FB

extracted from this fit is

A``FB = 0.076± 0.072(stat.)± 0.039(sys.) = 0.076± 0.082,
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where we have used the uncertainties listed in Table 4.13, which are estimated using

the same techniques as in Sec. 4.3.1.3. This result is consistent with the NLO SM

prediction of 0.040 ± 0.004. The comparison between this result and other results

and SM predictions are summarized in Sec. 8.

The cross check with at least one tight SecVTX b-tagged jet is also performed

with the A``FB measurement. The plot for the fit is shown in Fig. 4.19. The result is

A``FB(b-tag) = 0.148± 0.092(stat.),

which is consistent with both the result without the extra b-tagging requirement and

the SM prediction.
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Table 4.11: A comparison of the number of leptons in each ∆η range bin-by-bin
before and after the background subtraction. Note that the tt̄ contributions are
estimated using the powheg MC.

(a) tt̄ + backgrounds and data

Bin Range tt̄+backgrounds Data

(-3.5, -1.14) 53.9±3.9 49

[-1.14, -0.80) 50.3±3.8 49

[-0.80, -0.54) 50.1±3.8 55

[-0.54, -0.32) 52.1±4.0 46

[-0.32, -0.1) 52.6±3.9 52

[-0.1, 0) 24.6±1.9 26

[0, 0.1) 23.6±1.8 15

[0.1, 0.32) 49.7±3.7 58

[0.32, 0.54) 51.3±3.8 61

[0.54, 0.8) 50.0±3.6 59

[0.8, 1.14) 50.6±3.8 42

[1.14, 3.5) 59.1±4.3 57

(b) tt̄ and data after background subtraction.

Bin Range tt̄ Data−backgrounds

(-3.5, -1.14) 41.1±2.0 36.3±7.2

[-1.14, -0.80) 35.1±1.7 33.8±7.4

[-0.80, -0.54) 34.2±1.7 39.1±7.8

[-0.54, -0.32) 34.8±1.7 28.7±7.3

[-0.32, -0.1) 36.1±1.8 35.5±7.6

[-0.1, 0) 16.8±0.8 18.3±5.2

[0, 0.1) 17.1±0.9 8.5±4.0

[0.1, 0.32) 36.4±1.8 44.6±7.9

[0.32, 0.54) 35.9±1.8 45.5±8.1

[0.54, 0.8) 37.4±1.8 46.3±7.9

[0.8, 1.14) 37.2±1.8 28.5±6.8

[1.14, 3.5) 46.3±2.2 44.2±7.8
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Table 4.12: The uncorrected A``FB, with a straight counting of the numbers of the
forward and the backward leptons, from the data only and the data after background
subtraction, together with the expectation from the powheg tt̄ MC, which is with
NLO SM with QCD corrections but without electroweak corrections.

Source
Uncorrected

A``FB

Powheg tt̄ 0.030±0.004

Data 0.03±0.04
Background Subtracted Data 0.06±0.06

Table 4.13: Table of uncertainties for the A``FB measurement.

Source of Uncertainties Value
Backgrounds 0.037
A-part Model 0.012

JES 0.003
S-part Model 0.004

PDF 0.0001
Parton Showering 0.00003

Color Reconnection 0.00004
IFSR 0.00009

Total Systematic 0.039
Statistical 0.072

Total Uncertainty 0.082
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Figure 4.18: The symmetric and asymmetric parts of ∆η.
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Figure 4.19: The a · tanh fit for the A``FB data but with the additional requirement
of at least one b-tagged jet.
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5. RECONSTRUCTION OF THE MOMENTA OF TOP-QUARK PAIRS

In this section we describe the algorithm we use to reconstruct the momenta of

the top quark and antiquark in tt̄ production for use in the measurement of the Att̄FB

described in the next section. An example Feynman diagram of a tt̄ event in the

dilepton final state (tt̄ → `+`′−νν̄ ′bb̄) is shown in Fig. 1.4c. We reconstruct the top

quark and antiquark by combining the final-state decay products together to form

two W bosons and then two top quarks. This involves pairing each lepton with some

portion of the E/T to reconstruct a W -boson, and then pairing each reconstructed

W with one of the jets to form a top. The primary challenges of the reconstruction

technique are 1) to choose the correct lepton-jet pairing, 2) to solve for the neutrino

momentum within each pairing, and 3) to determine the best solution when multiple

solutions exist.

We follow the lead of previous dilepton analyses, done with 5.1 fb−1 of data,

which use the method of reconstructing the top kinematics aiming to identify the

most probable solution with a likelihood-based algorithm [17]. To make better use

of the information, and improve on previous measurements, we make a number of

important changes to the reconstruction algorithm:

1. We add back the mass of the b-quarks, which was previously assumed to be

zero in the reconstruction algorithm.

2. We use the templates of the kinematic variables derived from a NLO MC

(powheg [49, 94]) instead of those derived from a LO MC (pythia [50]).

3. Instead of taking the most likely solution from each event by as determined

from the likelihood term, as in Ref. [17], this analysis uses a Markov-chain
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Monte Carlo [97] (MCMC) to scan the parameter space effectively and extract

the full probability distribution of all possible solutions for each event.

4. We include both the track-weighted jet charge [98], the ∆Rmin(lepton, jets),

and the mlb [99] information to better select lepton-jet pairings, and to reject

badly reconstructed events and backgrounds.

5. We make quality cuts on the reconstruction to reject badly reconstructed

lepton-jet pairings and events.

We will explore different combinations of various strategies and chose the best strat-

egy based on the expected uncertainty of Att̄FB. These will be partially described in

this section and partially in Section 6.1.

In the following sections, beginning in Sec. 5.1, we will first describe the basic

ideas of the top reconstruction algorithm in the dilepton final state, the energy

momentum conservation equations we use to reconstruct the top-quark kinematics,

as well as the issues that confront our measurement uncertainties. The effects of the

detector resolutions and the physics assumptions are described in Sec. 5.2. These

include the details about the b-jet energy corrections and the resolutions of the jet

ET and E/T . In addition, since even with all the measurements we have, we still

have an under-constrained system, we must use additional information to help us

decide the probability of each of the many potential solutions. Specifically, we use

the kinematics of the event for each possible solution, and compare it to the expected

kinematics of the tt̄ production as predicted by powheg; this comparison will be

included in the likelihood. The description of the pz,tt̄, pT,tt̄ and mtt̄ distributions

used in the comparison are also shown in Sec. 5.2. In Sec. 5.3 we lay out the rest of

the pieces needed for the likelihood equation, and the equation itself. We describe

the final implementation in Sec. 5.4. A comparison of the data to expectations
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after the reconstruction is given in Sec. 6 after introducing additional event selection

requirements based on the reconstruction quality and used in the final minimization

of the expected uncertainty of the measurement.

5.1 Top Reconstruction Basics

We quickly overview the tt̄ event reconstruction which we will use to determine

yt, yt̄, and ∆yt event-by-event. A fully measured set of the final state objects from

a tt̄ → `+`′−νν̄ ′bb̄ → `+`− + jets + E/T event does not yield enough information to

uniquely determine the kinematics of the original top and/or anti-top. As such it is

an forms an under-constrained system. We can only determine the four-momenta of

the top quark and antiquark probabilistically by using the measured values of the

four-momenta of all the final state particles as well as some assumptions about the

production and decay. As previously mentioned, the primary issues come with the

b/b̄ ambiguity and the ability to pick the correct solution when multiple solutions

exist within a given pairing choice. Within the top reconstruction we assume/use:

1. Four mass constraints in the tt̄ system and its decay products: the two W -

boson masses (mW = 80.4 GeV/c2) and the two top-quark masses (mt =

172.5 GeV/c2) [9].

2. The two opposite-charged leptons are measured with high precision. We take

the measured momenta of the charged leptons as their true values (i.e., negli-

gible uncertainties on magnitudes and directions).

3. We assume the two jets with the largest ET (and |η| < 2.5) come from the

hadronization of the b and the b̄ quarks, but make no initial assumption about

which is which. The directions of the jets are assumed to correctly indicate the

directions of their original quarks. However, for the energies, we apply a top-
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specific (b-)jet energy correction after the standard CDF jet energy correction

(referred as the Level 5 or L5 correction for technical reasons) [83] so that the

mean of the jet ET matches the b-quark ET [17]. Within the reconstruction

procedure we create two “jet deviation (jd)” parameters which allow the jet

ET values to float according to their mean values and resolutions in the fit (as

described in Sec. 5.2). We fix the masses of the b(b̄) quarks to 4.66 GeV/c2.

4. A charged lepton needs to be paired with a b/b̄ quark to form a t/t̄ quark

(together with the undetected neutrinos). Since there is no perfect separation

between jets from the b-quarks and jets from the b̄-quarks, we consider both

lepton-jet pairings in the reconstruction, but will use techniques to reduce the

contamination of the measurement from wrong pairings.

5. While the two neutrinos in the final state are not detected, resulting in six

unknown variables (assuming massless neutrinos), the sum of the transverse

momenta of the two neutrinos produces an imbalanced-pT of the event ( ~E/T )

which can be used. However, since the two measured components of ~E/T (E/x

and E/y) have large resolutions, the vector sum of the transverse momenta of

the neutrinos are allowed to float according to the measured mean values and

resolutions of E/x and E/y (which are assumed to be identical).
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With these pieces, we write down the energy momentum conservation equations:

M2
`+ν = (E`+ + Eν)

2 − (~p`+ + ~pν)
2 = M2

W

M2
`−ν̄ = (E`− + Eν̄)

2 − (~p`− + ~pν̄)
2 = M2

W

M2
`+νb = (E`+ + Eν + Eb)

2 − (~p`+ + ~pν + ~pb)
2 = M2

t

M2
`−ν̄b̄ = (E`− + Eν̄ + Eb̄)

2 − (~p`− + ~pν̄ + ~pb̄)
2 = M2

t

(~pν + ~pν̄)x = E/x

(~pν + ~pν̄)y = E/y.

(5.1)

There are ten unknown variables in the tt̄ dilepton final state (six variables from the

momenta of the neutrinos, two variables characterizing the floating of the jet ETs

and two variables characterizing the floating of the ~E/T ). On the other hand, we

have only six constraints from Eq. 5.1 (the two W -boson masses, the two top-quark

masses, and the constraints from E/x and E/y). Thus, for each event the variables

and constraints form two under-constrained systems with degenerate solutions (from

the b/b̄ ambiguity) in two four-dimensional parameter spaces. By the time we are

done, we calculate the likelihood of the tt̄ event kinematics as a function of the 4

continuous parameters (related to 2 jet energy and 2 neutrino φ solutions) and one

discrete (lepton-jet pairing choice) parameter.

In the following section, we will detour a little bit to describe the b-jet energy

corrections and the resolutions for the jet ET and E/T and the distributions of pz,tt̄,

pT,tt̄ and mtt̄ (we will refer to these as templates), which are key ingredients of the

likelihood fit (Sec. 5.3).
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5.2 Detector Resolution and Physics Assumptions for the Reconstruction

To include the best information about the b-jets in the likelihood, following

Ref. [17], we use the jet ET values after two sequential energy corrections: 1) the

Level 5 jet energy corrections mentioned above (yielding the value EL5
T,jet) [81], and

2) a top-specific b-jet energy correction so that the mean of the reconstructed jet ET

matches the ET of the b-quark from the top quark decay (as determined in MC, here

labeled as Etrue
T,b ). The additional scale factor is defined as the mean value of

SFjet =
Etrue
T,b − EL5

T,jet

EL5
T,jet

, (5.2)

denoted as (SFjet), and is parametrized as a function of EL5
T,jet in three sections of η

ranges |ηjet| < 0.7, 0.7 < |ηjet| < 1.3 and 1.3 < |ηjet| < 2.5. We note that the sample

to derive the corrections are made with events from the powheg MC with full

detector simulation (done with CDFSim [88]) that pass the full set of baseline cuts

in Table 2.1, and the requirement that the generator-level b-quark appears within

a cone of the jet with the size of 0.4, are used to create the correction terms. The

mean values of SFjet are shown in Fig. 5.1 and each is fitted with a function of the

form of

exp(p0 + p1x) + p2. (5.3)

The best fit values are summarized in Table 5.1. We use the corrected jet ET in our

top reconstruction algorithm via

Ecorr
T,jet = SFjet · EL5

T,jet (5.4)

In addition to the best value of the ET of the jets, in our likelihood calculation we
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Figure 5.1: The mean value of SFjet as a function of EL5
T , fitted with Eq. 5.3. The

best fit values, summarized in Table 5.1, are derived from the NLO MC sample
(powheg), and are used to correct the jets for use in the final fit function.

Table 5.1: Best fit values for the mean values of SFjet (SFjet) and the resolutions (σ)
of SFjet and E/x,y (σSFjet

and σE/x,y
, respectively). These are derived from the NLO

MC sample (powheg).

p0 p1 p2

|ηjet| < 0.7
SFjet 0.144 -0.032 0.013

σSFjet
-0.196 -0.028 0.138

0.7 < |ηjet| < 1.3
SFjet 0.191 -0.037 0.029

σSFjet
-0.260 -0.028 0.117

1.3 < |ηjet| < 2.5
SFjet -0.275 -0.045 0.030

σSFjet
-0.573 -0.030 0.114

σE/x,y
-0.381 0.007 15.032
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will need the jet energy resolution. To do this, instead of using the resolution of the jet

directly, we use the resolution (RMS) of SFjet which is also measured with powheg

MC sample. The results are shown in Fig. 5.2 and found to be well parametrized as

a function of the EL5
T,jet. Using the same functional form as in Eq. 5.3, the best fit

values are shown in Fig. 5.2 and also summarized in Table 5.1. The resolution of the

jet ET is calculated as

σjet = σSFjet
· EL5

T,jet. (5.5)
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Figure 5.2: The RMS of SFjet as a function of EL5
T , fitted with Eq. 5.3. The best fit

values are summarized in Table 5.1, and will be used in the final likelihood recon-
struction. These are derived from the NLO MC sample (powheg).
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Our studies have shown that recalculating the ~E/T after the corrections to jet ET

does not improve the resolution so we do not perform this correction. We also find

that since the E/T , on average, well reproduces the mean true E/T , no other correction

is used.

The resolution (RMS) of E/x and E/y (σE/x
and σE/y

, respectively, and where

we assume the two are equal to each other) are estimated using techniques similar

to those described above. The results are shown in Fig. 5.3 and we note that the

resolution is well parametrized as a function of the sum of the two jet ET values at

Level-5 (EL5
T,jet1 + EL5

T,jet2) before the top-specific correction. The histogram is then

fitted with Eq. 5.3. The best fit values are again summarized in Table 5.1.
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Figure 5.3: The RMS of E/x and E/y as a function of EL5
T (jet1) + EL5

T (jet2), fitted
with Eq. 5.3. The best fit values are summarized in Table 5.1. These are derived
from the NLO MC sample (powheg).

To help distinguish between more-likely reconstruction results of the tt̄ and less-

likely ones, we compare the various potential solutions from the fitter to the expected

kinematic distributions of tt̄ at generator level. We again use the sample of events

that pass all the cuts in Table 2.1. Specifically, we compare the the z and transverse
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components of the momentum of the tt̄ system as well as the invariant mass of the tt̄

system (pz,tt̄, pT,tt̄ and mtt̄). The distributions, or templates as we will refer them, are

shown in Fig. 5.4 and each is fit with a custom function that well-approximates the

shape. The fit functions and the best fit values are summarized in Table 5.2. Note

that in all three cases the parameter p0 in an overall normalization factor that is only

related to the size of the MC sample, it thus has no effect on the top reconstruction

algorithm.
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Figure 5.4: The templates of pz,tt̄, pT,tt̄ and mtt̄ derived from the powheg MC at the
generator level for the sample of reconstructed events that pass the baseline event
selection criteria. Note that the functional forms are designed purely to get a good
estimate of the shape, not to be used in any determination of each parameter.
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Table 5.2: The fit functions and the best fit values of templates pz,tt̄, pT,tt̄ and mtt̄

derived from the powheg MC at the generator level.

Quantity Fit function Parameters

pz,tt̄ p0 exp

[
−1

2

(
x
p1

)2
]

p0 p1

2961 193.6

pT,tt̄

p0 p1 p2

p0[exp(−p1x) + p2 exp(−p3x)] 1613 0.03645 3.743
·[1− exp(−p4x− p5x

2)] p3 p4 p5

0.1447 0.1861 0.06633

mtt̄
p0 exp [−p1(x− 340)] p0 p1 p2

· [1− exp(−p2(x− 340))] 9243 0.01156 0.2873

We note that creating likelihoods for a potential solution using powheg MC does

introduce a model dependence in the top reconstruction algorithm. The result with

this top reconstruction should thus be interpreted with this in mind.

5.3 Likelihood for Possible Solutions

In this section we define the four independent variables that will be used to

parametrize the likelihood term derived from Eq. 5.1. Even if we do not allow the

jet ET values and E/x,y to float, there are up to four solutions to each set of equations

due to the quadratic structure of Eq. 5.1. The probability density function of the

solution in ∆yt is then the sum of a couple of delta functions at the positions of each

solution. The two lepton-jet pairings further introduce two sets of equations, which

leads to two sets of solutions. In practice, as described in the previous sections, we

allow the two jet ET values and E/x,y to float, which naturally “smears” the delta

functions to peaks with finite widths, or said differently, to a multi-peaked probability

distribution in ∆yt for any given event. Our goal is to determine this multi-peaked

probability distribution in ∆yt on the event-by-event basis. To accomplish this goal

more efficiently, we parametrize our likelihood in terms of two values for the b/b̄-quark
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jet ET values, and two for the two neutrinos. We next discuss each.

Due to the large resolution of jet energy measurements, we allow the jet energy

to float in the fit. The way this is done in practice is to create a “jet deviation”

parameter

jd =
Ecorr
T,jet − Efit

T,b

σjet

(5.6)

for each jet to characterize the difference between the corrected jet ET and the

current guess of the ET of the b/b̄ quark in the fit, Efit
T,b. A large jd guess means

that to accomplish the current hypothetical kinematics of the tt̄ event, the jet ET

needs to be “pulled away” from its measured value, thus it will be assigned with a

smaller probability (according to a Gaussian distribution) in the likelihood term we

will introduce later in this section.

With each lepton-jet pairing and a specific ET of the b(b̄) quark, for the determi-

nation of the neutrino momenta, it is advantageous to work in the rest frame of the

`+b system as shown in Fig. 5.5. In this case each leg of the system (t→ W+b→ `+νb

and its charge conjugate) can be straightforwardly determined up to the azimuthal

angle (φ) of the neutrino (ν) around the lepton momentum as shown in the figure.

In that frame, one can solve the energy momentum conservation equations to obtain

p̂ν =
m2
t −m2

`b

2m`b

p̂ν cos θ̂ =
2Ê`p̂ν −m2

W

2p̂`
,

(5.7)

where p̂ν is the magnitude of the momentum of the neutrino in the corresponding

`+b rest frame, Ê` and p̂` are the energy and magnitude of the momentum of the

charged lepton in the `+b rest frame, and mlb is the invariant mass of `+b. Keep in

mind that the momentum of the neutrino in this construction is dependent on the jet
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ET, thus the neutrino information is described with two parameters (jd, φ), where

jd determines the b-quark momentum, the mlb and the rest frame of ` + b, and φ is

our second free parameter for the fit. Note that have not marked the φ parameter

with a hat to simplify the equations which will arise. Also note that the constraint

of | cos θ̂| < 1 determines the kinematic allowed parameter space.

After transferring back to the lab frame, the neutrino momentum can be written

as ~pν = ~pν(jd, φ). The E/x,y of in terms of any neutrino solution is then

E/x
fit

= (~pν(jdν , φν) + ~pν̄(jdν̄ , φν̄))x

E/y
fit

= (~pν(jdν , φν) + ~pν̄(jdν̄ , φν̄))y,

(5.8)

where the subscript ν denotes the `+b leg with negatively charged `, and the subscript

ν̄ denotes the other leg. The values in Eq. 5.8 are compared to their measured values

in the reconstruction, and due to the large resolution of E/x,y, we also allow each to

float according to their measured values and the corresponding resolutions (σ(E/x,y)).

Given the above, for each lepton-jet pairing, every possible solution is uniquely

determined by a set of four parameters (jd1, jd2, φ1, φ2) and the likelihood of the

solution can be calculated as the product of the terms as follows:

1. The likelihood of the two hypothetical b-quark ET values matching the cor-

rected jet ET values.

2. The likelihood of the hypothetical E/x,y matching the measured E/x,y.

3. The likelihood of the hypothetical fitted tt̄ system (pz,tt̄, pT,tt̄ and mtt̄), based

on the previous assumptions, matching the a priori templates derived from the

powheg MC.
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b

`

ν
θ

φ

Figure 5.5: The momentum of the neutrino in the `+b rest frame. The neutrino
momentum can be determined in this frame up to the azimuthal angle φ, which is a
free parameter and is used as an input to the final likelihood fit.

The likelihood used in top reconstruction algorithm can be written explicitly as

L(φ1, φ2, jd1, jd2) = P (pz,tt̄)× P (pT,tt̄)× P (mtt̄)

× 1

σjet1

exp


−1

2

(
Ecorr
T,jet1 − Efit

T,b

σjet1

)2

× 1

σjet2

exp


−1

2

(
Ecorr
T,jet2 − Efit

T,b

σjet2

)2



× 1

σ(E/x)
exp


−1

2

(
E/

meas
x − E/fit

x

σE/x

)2

× 1

σ(E/y)
exp


−1

2


E/

meas
y − E/fit

y

σE/y




2
 ,

(5.9)

where E/
meas
x,y are the x and y components of the measured ~E/T and P (pz,tt̄) P (pT,tt̄)

and P (mtt̄) are the probabilities as determined from the templates of pz,tt̄, pT,tt̄ and

mtt̄. Note that because of our definition of the jd parameter, the middle terms in

Eq. 5.9 simplify to 1
σjet1,2

exp
(
−1

2
jd1,2

2
)
.
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5.4 Full Probability Reconstruction

Each set of the four parameters (jd1, jd2, φ1, φ2) in the kinematic allowed region

in a lepton-jet pairing represents a possible solution of the tt̄ system, and the likeli-

hood of the solution is specified with Eq. 5.9. We employ an MCMC [100] method to

effectively scan the four-dimensional parameter space with each of the two lepton-jet

pairings, and meanwhile map out the probability distributions of the parameters of

interest (∆yt in this analysis) after integrating out all other parameters (marginal-

ization). The package we use for MCMC sampling is the Bayesian Analysis Toolkit

(BAT) [97].

To illustrate the probability distribution function for an event, we choose a well

measured event from powheg MC sample and display the reconstruction results.

Figures 5.6, 5.7, 5.8 and 5.9 show the posterior distributions as a function of jd1,

jd2, φ1, φ2 and corresponding values of yt, yt̄ and ∆yt. The two columns represent

the two lepton-jet pairings. For this event, based on generator-level information, the

left column of plots are from the correct lepton-jet pairing while the right column of

plots are from the incorrect pairing. The red vertical lines and the green cross show

the position of the true values. Since the two φ parameters are defined in the `+b

rest frame, which depends on each hypothesis of the jd parameter, we cannot plot

the true value on those plots. Note that in this event the true pairing appears to

be well reconstructed (although there are solutions which are not perfect), and the

wrong pairing is far from the expectation for being from a top pair.

Visually, good reconstruction usually has the feature that the probability dis-

tributions of the jd parameters are peaked around zero, while for wrong lepton-jet

pairing or for background events, the reconstruction algorithm sometimes needs to

pull the jet ET far away from the measured values to successfully reconstruct the
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tt̄ system. We will take the advantage of this feature later in the optimization pro-

cess. We can also see multiple peak structure in the posteriors of φ and ∆yt. This

illustrates the multiple solution structure of Eq. 5.1.

Figures 5.10, 5.11 and 5.12 show the scatter plots of the log-likelihood (log of

Eq. 5.9) versus the same set of parameters. Again the left column of plots are from

the correct lepton-jet pairing while the right column of plots are from the incorrect

pairing. Each point in the plot is a possible solution to Eq. 5.1, and the y-axis value

shows its log-likelihood; the MCMC algorithm is designed to draw more points in the

high-likelihood region. The red vertical lines show the position of the true values,

the green horizontal lines show the value of the maximum likelihood, and the two

“true” φ parameters are not shown for the reasons mentioned above.

For comparison with the previous analysis, we note that the top reconstruction

algorithm used in the analysis with 5.1 fb−1 [17] picks the highest point in Figs. 5.10,

5.11 and 5.12. With our MCMC-based reconstruction algorithm, we have the possi-

bility of choosing between the old method of using the maximum-likelihood solution

or using the full probability distribution within each lepton-jet pairing. In the same

manner, we have the possibility of either picking the more-likely lepton-jet pairing

or weighting the two pairings according to their likelihoods. For the purposes of

demonstrating results we will weight the two lepton-jet pairings with the maximum

likelihood achieved in each pairing (Lmax,even and Lmax,odd, even for pairing the lead-

ing ET lepton with the leading ET jet, etc.). The weight of each lepton-jet pairing

is determined by

weven =
Lmax,even

Lmax,even + Lmax,odd

wodd =
Lmax,odd

Lmax,even + Lmax,odd

.

(5.10)

We will explore different combinations and chose the better strategy based on the
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expected uncertainty of Att̄FB. We will improve Eq. 5.10 in Sec. 6.1 using information

from an track-momentum-weighted jet charge algorithm [98] to separate b-jets from

b̄-jets.

The difference between the reconstructed ∆y (denoted as ∆y(reco)) and the gen-

erated ∆y (denoted as ∆y(hepg), where “hepg” stands for high-energy-physics gen-

erator ) for the powheg MC sample is shown in Fig. 5.13. This figure characterizes

the resolution of the ∆yt with these choices of the top reconstruction algorithm. We

note that this plot is made with only the baseline cuts described in Sec. 2; a final ver-

sion after the optimization procedure will be shown in Sec. 6.3. We also note that the

figure is made by stacking the full probability distribution of ∆y(reco) −∆y(hepg)

for each event, normalizing each event to unity, and where the two lepton-jet pairings

in each event are weighted according to Eq. 5.10. We note that 61% of the time the

∆yt is reconstructed within 0.5 of its true value. We note here that the events in the

tails of the distribution in Fig. 5.13 would cause a badly mis-measured ∆y (with the

corresponding probability), which worsens the uncertainties of the parton-level Att̄FB

measurements quickly, as explained in Sec. 6.1. This motivates the various pieces of

the optimization procedure in Sec. 6.1 to reduce the tails of this distribution.

With a procedure to measure ∆yt for our data, the next step of the analysis is to

develop an unfolding procedure to extract the Att̄FB information at the parton level

from the output of the top reconstruction. After that, an optimization procedure

will be performed to minimize the expected uncertainties of the Att̄FB measurement.

The data will be processed with the optimum configuration and presented in the

next section.
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(a) jd1

(b) jd2

Figure 5.6: The posterior distribution of jd1 and jd2 for one example event from
the powheg MC. Based on the generator-level information the left column is for
the correct lepton-jet pairing and the right column is the incorrect pairing. The red
vertical lines show the true values of the parameter.
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(a) φ1

(b) φ2

Figure 5.7: The same as Fig. 5.6, but for φ1 and φ2 for one example event from
the powheg MC. Based on the generator-level information the left column is for the
correct lepton-jet pairing and the right column is the incorrect pairing. Since the two
φ parameters are defined in the `+b rest frame, which depends on each hypothesis
of the jd parameter, we cannot plot the true value on those plots.
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(a) yt

(b) yt̄

Figure 5.8: The same as Fig. 5.6 but for yt, yt̄, for one example event from powheg
MC. Again, the left column is the correct lepton-jet pairing and the red vertical lines
show the true values of the parameter.
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(a) ∆yt

(b) yt vs. yt̄

Figure 5.9: The same as Fig. 5.6 but for ∆yt and yt vs. yt̄, for one example event
from powheg MC. Again, the left column is the correct lepton-jet pairing and the
red vertical lines and the green cross show the true values of the parameter.
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(a) jd1

(b) jd2

Figure 5.10: The scatter plot of the log-likelihood vs. jd1 and jd2 for the same event
as Fig. 5.6. Again, the left column is the correct lepton-jet pairing, the red vertical
lines show the true values of the parameter, and the green dashed horizontal lines
show the maximum log-likelihood value.
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(a) φ1

(b) φ2

Figure 5.11: The same as Fig. 5.10, but for φ1 and φ2. Again, the left column is the
correct lepton-jet pairing, and the green dashed horizontal lines show the maximum
log-likelihood value. Since the two φ parameters are defined in the `+b rest frame,
which depends on each hypothesis of the jd parameter, we cannot plot the true value
on those plots.
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(a) yt

(b) yt̄

(c) ∆yt

Figure 5.12: The same as Fig. 5.10, but for yt, yt̄, and ∆yt. The true values for yt
and ∆yt in the wrong jet assignment column are outside the range of the figure.
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Figure 5.13: Stacking the full probability distribution of ∆y(reco) − ∆y(hepg) for
each event from the powheg sample, normalizing each event to unity, which gives an
overall normalization to the size of the powheg sample. Note that this plot is made
only with the baseline cuts described in Sec. 2, and the two lepton-jet pairings in
each event are weighted according to Eq. 5.10. A final version after the optimization
will be shown in Sec. 6.3 in Fig. 6.24.
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6. MEASUREMENT OF THE FORWARD–BACKWARD ASYMMETRY OF

TOP-QUARK PAIRS

With a full measurement of the ∆yt distribution in hand in this section we de-

scribe the measurement of Att̄FB in the dilepton final state. In order to obtain parton-

level results so that they can be compared with theoretical calculations and results

from other measurements, we introduce a state-of-the-art measurement methodol-

ogy, described in Sec. 6.1. We perform an optimization of the selection criteria and

methodology to reduce the measurement uncertainty in Sec. 6.2 that takes into ac-

count a number of new techniques that reflect the field’s understanding of how to

separate signal from backgrounds, and to maximize the impact of each signal event.

The validation of the final methodology is shown in Sec. 6.3. The measurement of

Att̄FB from data and the estimation of uncertainties are described in Sec. 6.4. We will

first do the inclusive Att̄FB, then the differential values as a function of |∆yt|. We

note that due to the limited sample size in the dilepton final state (small number

of events in each bin, which will break our statistics model), we cannot perform the

measurement of the differential Att̄FB as a function of mtt̄ in this analysis.

6.1 Top AFB Measurement Methodology

For the same reasons described in Sec. 4, mostly because of the limited acceptance

and the efficiency of the detector, the imperfect resolution of the ∆yt reconstruction

and the background contributions, a sophisticated procedure is needed to turn the

measured ∆yt distribution into parton-level AFB measurements. The procedure we

use is to bin the data into four bins of ∆yt, and create a Bayesian model to correct

for all the effects and take us back to the true ∆yt distribution, and then use this to

determine Att̄FB. We will refer to this technique as the “unfolding” procedure.
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To develop and test the unfolding procedure, we need a set of samples for the tt̄

signal under different physical hypotheses, which span the possible range of Att̄FB. We

then use the unfolding procedure to measure the underlying Att̄FB from each sample

to test if the unfolding procedure works as we expect. For example, if we put in a

model with a true Att̄FB of 10%, we want the measurement methodology to report

a result that is consistent with the 10% asymmetry, based on the observed objects

from the detector (or detector simulation). The same is true for -10%.

While we have a number of models of tt̄, as described and used in Sec. 4, we

want a better motivated method. Since there is no free parameter in the SM which

causes Att̄FB to vary, we use a hint suggested by a previous CDF measurement [57]

to create a series of samples based on powheg, but with different Att̄FB, to validate

an unfolding procedure. We will also check our results with benchmark new physics

models but do not expect models of new physics, which have kinematics that are not

similar to that of the SM (which is crucial to the reconstruction), to give a result

that is unbiased by our methodology.

In this section we will first show the procedure we use to create the reweighted

powheg samples with −10% < Att̄FB < 30% and show some of the sample properties

in Sec. 6.1.1. Following that, we will describe the unfolding model in Sec. 6.1.2. In

Sec. 6.1.3 we describe the “compound Poisson” statistics we use in comparing the

expectations with the observations. Sections 6.1.4 and 6.1.5 show the implementa-

tion of the unfolding model and the pseudoexperiment tests with signal only and

with signal+backgrounds. We will perform an optimization of the measurement in

Section 6.2. A complete set of validation of the methodology, after the optimization

procedure, will be shown in Sec. 6.3.
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6.1.1 Reweighting the POWHEG MC to Create the Att̄FB Methodology Testing

Samples

We start by describing the technique to create our samples with various Att̄FB for

use in testing and validating our unfolding procedures. The measurement of the

top quark differential cross section ( dσ
d cos θ∗

) in terms of Legendre polynomials in the

lepton+jets final state [57], shown in Fig. 6.1, suggests that the “excess” of Att̄FB is

due to the coefficient of the first order Legendre polynomials, the a1 · cos(θ∗) term.

All other Legendre moments are measured to be in good agreement with the NLO

SM prediction.
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Data (stat uncertainty only)

tt̄→ `ν+jetsCDF Run II
∫
L = 9.4 fb−1

Figure 6.1: Decomposition of the top quark differential cross section ( dσ
d cos θ∗

) in terms
of Legendre polynomials, taken from Ref. [57].

Motivated by this result, we create a series of MC samples with various Att̄FB
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by reweighting the NLO SM MC powheg with various extra linear contributions

to dσ
d cos θ∗

. To be specific, we use −0.3 < extra a1 < 0.5 with steps of 0.05, which

corresponds to −0.1 < Att̄FB < 0.3. We note that cos θ∗, ∆yt and mtt̄ are correlated.

Figures 6.2 and 6.3 shows a comparison of all three variables for the nominal powheg

sample (extra a1 = 0, Att̄FB = 0.052) and the reweighted powheg sample with extra

a1 = 0.25, corresponding to Att̄FB = 0.177. The ∆yt distribution and Att̄FB shift as

expected. Figure 6.4 shows the parton-level Att̄FB as a function of extra a1 used in

reweighting the powheg MC sample. In the region of interest, Att̄FB appears roughly

linearly dependent with the extra a1.

6.1.2 Parton-level Att̄FB Measurement Methodology

The data we have for use in the unfolding is the ∆yt distribution. Based on the

expectations from the SM we use four bins of ∆yt at both parton level and after

the reconstruction described in Sec. 5, designed to have similar expected number

of events per bin. They are (-∞, -0.5), (-0.5, 0), (0, 0.5) and (0.5, ∞). The bin-

width weighted ∆yt distributions from powheg at generator level before any event

selection, and after reconstruction and baseline event selection, are shown in Fig. 6.5.

This binning choice results in two forward bins and two backward bins. The truth

level (parton level) inclusive Att̄FB is expressed as

Att̄FB(incl.) =
(Nparton[3] +Nparton[4]−Nparton[1]−Nparton[2])

(Nparton[3] +Nparton[4] +Nparton[1] +Nparton[2])
, (6.1)

where Nparton[p] represents the number of events in the p-th bin at parton-level.

The differential Att̄FB values will be defined later in this subsection with the re-

parametrization of the unfolding model.

The reweighted powheg samples described in Sec. 6.1.1 are used to create and

validate our unfolding procedure. There are two primary effects that must be cor-
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Figure 6.3: The same as Fig. 6.2, but with mtt̄. Note that cos θ∗, ∆yt and mtt̄ are
correlated.
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Figure 6.4: The value of Att̄FB as a function of extra a1 used in reweighting powheg
MC sample.
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event selection.

138



rected for in the unfolding process:

1. The limited acceptance and efficiency: This is due to the fact that not all

particles fall in the detector coverage, and that not all signal events that do

fall into the detector coverage pass the event selection.

2. The smearing effect: This is because that the properties of objects, like jets

and ~E/T , measured by the detector are not identical to their true properties,

and the ∆yt values reconstructed by the top reconstruction are not identical

to the true values.

The unfolding model is the current state-of-the art for the field and is subtle and

depends on the assumed value of Att̄FB. We incorporate it in a Bayesian model and use

a Markov-chain Monte Carlo to scan the parameter space and map out the posterior

probability density. The expected number of events in each bin, Nexp[r], for a set of

candidate parton-level bin counts can be expressed as

Nexp[r] =
4∑

p=1

Nparton[p] · Eff[p](Att̄FB) ·Det[p][r], (6.2)

where

• Nparton[p] is the number of events in the p-th bin at parton level,

• the term Nexp[r] is the expected number of events in r-th bin, given a set of

hypothetical Nparton[p],

• the term Eff[p](Att̄FB) represents the bin-by-bin efficiency, to account for the

acceptance imposed by the detector coverage and the efficiency caused by event

selections (which depends on Att̄FB, which is dependent on the current hypothesis

of Nparton[p]),
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• and Det[p][r] represents the smearing matrix to account for the imperfect de-

tector resolution and the top reconstruction procedure.

As shown below, this last term shows no substantive dependence on the Att̄FB input.

The backgrounds will be incorporated later in Sec. 6.1.5.

Figure 6.6 shows the Eff[p](Att̄FB) as a function of Att̄FB, as estimated using the

reweighted MC samples, overlaid with a linear fit in the four ∆yt bins. The linear

fit results are used to interpolate the Eff[p](Att̄FB) value for each set of Nparton[p] hy-

pothesis. Figure 6.7 shows the detector smearing matrix, Det[p][r], derived with the

nominal powheg MC sample, where the smearing matrix represents the probability

of an event with a parton-level ∆yt in the p-th bin getting reconstructed in the r-th

bin. The matrix is normalized so that the row-wise sum is equal to unity. Fig-

ure 6.8 shows that the Det[p][r] term is stable with different Att̄FB. For this reason,

we use the results from the nominal powheg sample in our unfolding procedure.

The statistical uncertainties due to the limited MC size in deriving the Eff[p](Att̄FB)

and Det[p][r] terms are taken into consideration in the Bayesian model, but only

introduce negligible effects.

6.1.3 Compound Poisson Statistics

In this subsection we take a quick diversion to describe some important statistical

issues that must be taken into account to get the correlation between the bins correct.

With the model we defined in Eq. 6.2, we compare the observed bin count from data,

Nobs[r], with the expectation Nexp[r] using a compound Poisson distribution, with

correlations among bins taken into account. The compound Poisson distribution

used here follows the same idea as in Ref. [57] in estimating the Legendre moments

of the differential cross section of tt̄ production in the lepton+jets final state. Here

we provide a quick description of the model we use in this analysis.
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Figure 6.6: The value of Eff[p](Att̄FB) as a function of Att̄FB overlaid with a linear
fit, shown in the four ∆yt bins. Note that all the points in each of the figures are
correlated. A final version after the optimization is shown in Fig. 6.25 and the fits
are summarized in Fig. 6.26.
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Figure 6.7: The detector smearing matrix with nominal powheg MC, which is the
Det[p][r] term in our unfolding method. The final version is in Fig. 6.24b.

We note first that the output of the top reconstruction described in Sec. 5 is

a set of probability density function of the parameter of interest, for example, the

probability density function of ∆yt as shown in Fig. 5.9a. With the binning specified

in Sec. 6.1.2, each event has a certain probability of being in each of the 4 bins, and

we refer to that probability as the “weight” of the event for that bin.

A compound Poission distribution can be used to describe the probability of

observing a number of events, each with a specific weight. If 1) the weight of an

event (W ) follows an (unspecified) distribution, 2) each event is independent of all

the others, and 3) the number of events (N) follows a Poisson distribution, then the

sum of the weights (Y =
∑N

i Wi) follows the “compound Poisson distribution”. The

mean (E) and variance (Var) of the compound Poisson distribution can be estimated
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Figure 6.8: Row-slice of Fig. 6.7, with extra a1 = -0.3, 0 and 0.5. The variations
among the three samples are tiny. This shows that we do not need Det[p][r] to be a
function of Att̄FB, so we take the nominal powheg result.
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as described in Ref. [101] using

E(Y ) = E(N)E(W ),

Var(Y ) = E(N)E(W 2).

(6.3)

In our analysis, we need to take the correlation among the four bins into con-

sideration. We assume the events with parton-level (truth-level) ∆yt in bin p will

be smeared into the four reconstructed-level bins (indexed with r) with probabilities

Wr,p, where for each event
∑4

r=1Wr,p = 1. For events in the p-th parton-level bin

(for a specific p), the distributions Wr,p follows an (unspecified) distribution; events

are independent of each other and the number of events Np follows a Poisson distri-

bution, with the expectation value of E(Np) = Nparton[p] · Eff[p](Att̄FB) following the

first part of Eqn. 6.2. Thus, the distribution of the vector (4 bins in r) of the sum of

the weights (a.k.a. bin content, Yr =
∑Np

i=1Wi;r,p) and the corresponding covariance

matrix follows

E(Yr,p) = E(Np)E(Wr,p), (6.4a)

Cov(Yr,r′,p) = E(Np)E(Wr,p ·Wr′,p). (6.4b)

Note that E(Wr,p) is essentially the same as our definition of the detector smearing

matrix Det[p][r], and Eqn. 6.4a is equivalent to Eqn. 6.2. The final covariance matrix
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(Cov(Yr,r′)) is obtained by summing Eqn 6.4b over the four truth-level bins:

Cov(Yr,r′) =
4∑

p=1

Cov(Yr,r′,p)

=
4∑

p=1

E(Np)E(Wr,p ·Wr′,p)

=
4∑

p=1

Nparton[p] · Eff[p](Att̄FB) · E(Wr,p ·Wr′,p).

(6.5)

Note that the covariance matrix depends on the current guess of the parton-level

distribution Nparton[p], which is a function of the inclusive Att̄FB guess.

Since we expect enough statistics in our data sample, we approximate the com-

pound Poisson distribution with a multi-variable Gaussian distribution, with the

terms in the covariance matrices estimated with powheg MC. The MCMC tech-

nique is used to fit for the best parameters that matches data, and the parton-level

Att̄FB is extracted with marginalization techniques.

6.1.4 Parameters and Signal-Only Uncertainty Expectations

For better motivation of the priors of the parameters for use in our reconstruction,

instead of doing our unfolding with the expected number of events in each bin, we

do our unfolding using four alternative parameters. We re-parametrize with four

parameters determining Nparton[p], which allow us to easily use a Bayesian method

with flat priors to determine the parton-level Att̄FB. We choose:

1. Ntot =
4∑
p=1

Nparton[p] is the total number of events, with a uniform non-negative

prior distribution

2. Ain = Nparton[3]−Nparton[2]

Nparton[3]+Nparton[2]
= Att̄FB(|∆yt| < 0.5) is the asymmetry of bins 2 and 3,

with a uniform prior in (-1, 1)
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3. Aout = Nparton[4]−Nparton[1]

Nparton[4]+Nparton[1]
= Att̄FB(|∆yt| > 0.5) is the asymmetry of bins 1 and 4,

with a uniform prior in (-1, 1)

4. Rin = Nparton[2]+Nparton[3]

ntot
is the fraction of events in the inner two bins, with a

uniform prior in (0, 1).

With this new parametrization, the inclusive Att̄FB is

Att̄FB = Rin · Ain + (1−Rin) · Aout, (6.6)

and the differential Att̄FB terms as a function of |∆yt| are given by Ain and Aout.

We note here that this model is not readily applicable to the measurement of Att̄FB

as a function of mtt̄, in which case an extra dimension of smearing effect is intro-

duced. In addition, adding an extra dimension of binning would reduce the number

of events in each bin to a degree that using a multi-variable Gaussian distribution to

approximate the compound Poisson distribution will be invalid. For these reasons,

we have not performed a measurement of the differential Att̄FB as a function of mtt̄ in

the dilepton final state.

We again use BAT [97] to scan the parameter space and obtain the probability

distributions of the parameters, including Att̄FB(|∆yt| < 0.5) and Att̄FB(|∆yt| > 0.5).

The probability distribution of the inclusive Att̄FB is obtained by marginalizing out all

other parameters. After making sure the MCMC chains converge and all posteriors

have reasonable shapes, each Att̄FB measurement and its uncertainty is extracted by

fitting a Gaussian function to the central region of the Att̄FB posterior distribution.

Figure 6.9 shows the posterior distribution of the inclusive value of Att̄FB with

the full set of reconstructed events from the nominal powheg MC sample. The

Att̄FB is extracted with a Gaussian fit to the central region of this distribution. The
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result Att̄FB = 0.053±0.013 is consistent with the generator-level value of 0.0524, and

the uncertainty reasonably reflects the ∼70k reconstructed events in the powheg

sample. The agreement is excellent and the posterior is very Gaussian. While more

statistics could be generated, there is no reason to believe it would help the result.
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Figure 6.9: The posterior distribution of of the inclusive value of Att̄FB with the full set
of reconstructed events from the powheg MC sample. The Att̄FB is extracted with a
Gaussian fit to the central region of this distribution. The result Att̄FB = 0.053±0.013
is consistent with the generator-level value of 0.0524.

We test the unfolding model with 5k pseudoexperiments (P.E.). Each P.E. is

generated by randomly picking events from the nominal powheg MC sample with

the number of events matching the expectation for data (408 events, see Table 3.3,
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allowing the number of events in each P.E. to float according to the uncertainty

on the expectation). Each P.E. is processed with the nominal unfolding procedure.

The results of the unfolding procedures are collected and summarized in Fig 6.10.

The pull distribution, which is the distribution of the difference between the result

of one P.E. and the true Att̄FB divided by the uncertainty of the measured value, is

consistent with a Gaussian distribution with a mean of zero and an RMS of one,

which indicates the measurement methodology and its uncertainty estimation is not

biased [102]. The expected signal-only statistical uncertainty, estimated as the RMS

of Fig. 6.10a, is 0.107.

We perform the same procedures for the two differential values of Att̄FB vs. |∆yt|.

As shown in Eq. 6.6, Ain and Aout, representing the two binned measurement of Att̄FB

vs |∆yt|, are two free parameters in our unfolding model, each with flat prior distri-

butions in (−1, 1). Figure 6.11 shows the posterior distributions of Att̄FB(|∆yt| < 0.5)

and Att̄FB(|∆yt| > 0.5) from powheg MC for signal only. The mean values (0.02,

0.08) can be compared with (0.017, 0.081) from the generator level. pseudoexperi-

ments are again used to test the uncertainty estimation, as shown in Fig. 6.12. The

pull distributions look good as well, i.e., have a mean of approximately zero, appear

Gaussian, and have an RMS of approximately one. The expected signal-only statis-

tical uncertainty is 0.28 for Att̄FB(|∆yt| < 0.5) due to large bin migration between the

two central bins and 0.13 for Att̄FB(|∆yt| > 0.5).

6.1.5 Adding Backgrounds to the Methodology

The Bayesian model can be extended to include the background components in

data with

Nexp[r] =
4∑

p=1

Nparton[p] · Eff[p](Att̄FB) ·Det[p][r] +Nbkg[r], (6.7)
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150



where Nbkg[r] is the expected background contribution in r-th bin. The background

contributions also follow a compound Poisson distribution, and the covariance ma-

trices are estimated from the background samples with the formula:

Cov(Yr,r′;b) = E(Nb)E(Wr;b ·Wr′;b)

= NExp,b · E(Wr;b ·Wr′;b),

(6.8)

where the b indexes each component of the background estimation, and NExp,b cor-

responds to the estimated background contributions (e.g. in Table 3.3 or the corre-

sponding ones with additional optimization cuts to be described later).

The procedure, including the backgrounds, is also tested with pseudoexperiments.

We again generated 5k P.E.s, each with randomly picked events from powheg sample

as signal and background estimation samples (the same samples as in Sec. 4), with

the number of events matching the expectations for data with the number of events

from each allowed to float according to the uncertainties on the expectations. Each

P.E. is again processed with the unfolding procedure. The results of the unfolding

procedures are collected and summarized in Fig 6.13. The pull distribution looks

good. The expected statistical uncertainty from data (namely the total statistical

uncertainty), estimated as the RMS of Fig. 6.13a, is 0.122. As this uncertainty will

be larger than all the systematic uncertainties described in Sec. 6.4, this will be the

dominant uncertainty. We also test the unfolding procedure with the BSM scenarios.

The results will be shown after the optimization in Sec. 6.3.

Pseudoexperiments are again used to test the uncertainty estimation with signal

+ backgrounds for the differential Att̄FB vs. |∆yt|, as shown in Fig. 6.14. The pull

distributions look good. The expected total uncertainty is 0.34 for Att̄FB(|∆yt| < 0.5)

due to large bin migration between the two central bins and 0.16 for Att̄FB(|∆yt| > 0.5).
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Since, as we will show, the uncertainty due to the background shapes will be the

next dominant uncertainty we comment on it here and use it in the optimization

procedure. To be conservative, and following the procedure in Sec. 4, we estimate

the background systematic uncertainty to be equal to the difference between the

total statistical uncertainty and the signal-only statistical uncertainty in quadrature

(σ2
bkg = (RMS of Fig. 6.13a)2−(RMS of Fig. 6.10a)2). In Sec. 6.2 we will perform the

optimization where we aim at minimizing the sum of the total statistical uncertainty

and the background systematic uncertainty in quadrature. We will refer to this

uncertainty as the expected uncertainty.

6.2 Analysis Optimization

The top reconstruction algorithm and the parton-level Att̄FB extraction procedures

are designed to allow for an optimization strategy that minimizes the expected un-

certainties. Besides the statistical uncertainty due to the limited data sample size

and backgrounds, the uncertainty of the parton-level Att̄FB receives a significant con-

tribution from the resolution of the reconstruction, especially the events with ∆yt

reconstructed far away from their parton-level values. For comparison the statistical

uncertainty on the A``FB measurement, which has negligible uncertainty due to the

small lepton direction resolution, is 0.072, so of the predicted value of 0.122 (from

Fig. 6.10a) we currently have about 0.071 (estimated as
√

0.1222 − 0.0722) due to

resolution effects. We next describe our optimization procedure.

We start by noting that the simplest analysis choice (chosen in the previous

dilepton analysis with 5.1 fb−1 of the data), within the reconstruction, of picking

the maximum-likelihood solution suffers from two primary problems: 1) the algo-

rithm sometimes selects the wrong lepton-jet pairing and 2) the algorithm sometimes

gives the highest likelihood values to a set of very wrong values of the parameter
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Figure 6.13: The same as Fig. 6.10, but where we have included the backgrounds.
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Figure 6.14: The same as Fig. 6.12, but with signal+background. The pull dis-
tributions look good. The expected total statistical uncertainties with signal +
backgrounds are 0.34 for Att̄FB(|∆yt| < 0.5) and 0.16 for Att̄FB(|∆yt| > 0.5).
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choices within the right lepton-jet pairing. Each contributes significant tails to the

∆yt(reconstructed) −∆yt(generated) distribution, which cause the significant addi-

tional measurement uncertainty. The reconstruction algorithm used in this analysis

allows us to incorporate more information in the procedure to help us optimize the

analysis. We will take advantage of this by using this new information, and additional

tools, to:

1. Choose between the maximum-likelihood solution per event or using the full

probability distribution

2. Pick the higher-likelihood lepton-jet pairing or weight both according to the

best available information

3. Apply additional requirements to reject low-quality lepton-jet pairings, which

rejects backgrounds or poorly reconstructed events

4. Add in more information about the jet charge to do better in choosing or

weighting the lepton-jet pairings

To be more explicit, we note that for each lepton-jet pairing described in Sec. 5 we

have the choice to either use the max-likelihood solution or keep the full probability

distribution. We can also either choose the lepton-jet pairing that provides the better

likelihood, or weight both according to the weights defined in Eqn. 5.10. Besides

these, we can introduce quality cuts based on jd1,2 and ∆Rmin(lepton, jet), as well

as incorporating extra information of track-weighted jet charge or the lepton-jet

invariant mass m2
lb.

In this section, we describe the expectations when we consider all these various

possibilities with MC, and choose the algorithm that minimizes the expected total

statistical + background systematic uncertainty before looking at the data. For now
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we ignore the non-background systematics since they are small and expected to not

change much from choice to choice, and come back to them in Sec. 6.4.

For each optimization choice, we run 5k pseudoexperiments with signal only and

with signal+background to determine the expected signal-only and total statistical

uncertainty, which in turn gives us the systematic uncertainty due to the back-

grounds, and thus an effective total uncertainty as described in the previous section.

We will refer to this uncertainty as the “Total Statistical+Background Systematic

Uncertainty” in the figures, but as the expected uncertainty in the text. The best

optimization choice is made by minimizing the expected uncertainty.

6.2.1 Max Likelihood vs. Full Probability and Weighting

For each lepton-jet pairing, the MCMC-based top reconstruction produces a pos-

terior probability distribution and likelihood for each parameter (jd1, jd2, φ1, φ2 as

well as any parameter of interest yt, yt̄, ∆yt, etc.), as described in Sec. 5.4. Within

each lepton-jet pairing, we have the choice of picking the max-likelihood solution,

or using the full probability distribution. We can also pick the lepton-jet pairing

with higher likelihood, or weight both pairings according to the weights defined in

Eqn. 5.10. We have estimated the uncertainties for all 4 scenarios, and the different

uncertainty numbers are summarized in Table 6.1. We find that keeping the full

probability and weighting both lepton-jet pairings always gives the best expected

uncertainty for the inclusive Att̄FB measurement, so we choose these options. We note

that while using the maximum-likelihood choice minimizes the background system-

atic, using the full probability optimizes the statistical uncertainty. Since that is the

dominant uncertainty, ultimately that is the best strategy. It improves the expected

uncertainty from 0.154 (as would be expected from the previous measurement style)

to 0.136.
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Table 6.1: The expected total statistical uncertainty, background systematic uncer-
tainty and the sum of the two in quadrature (the expected uncertainty), for the
choices of the max-likelihood solution or full probability, and the choice of the more
likely lepton-jet pairing (L-J pairing) or weighting both. The best set of choices is
with the full probability and weighting both lepton+jets pairings.

Stat./Bkg./Stat.+Bkg uncertainty Pick L-J pairing Weight both
Max-likelihood 0.144/0.055/0.154 0.137/0.054/0.147
Full probability 0.131/0.064/0.146 0.122/0.060/0.136

6.2.2 Optimization Based on Tunable Parameters

We perform further optimization by adding in a few more selection criteria and

tuning the weights for the lepton-jet pairings with more information. The additional

selection criteria and the new information that will be added into the weights have

a couple of tunable parameters, so that we can manipulate them to minimize the

expected uncertainty of the Att̄FB measurement. The parameters are

1. The position of the peak of the jd1,2 probability distributions, jdpeak

2. Track-weighted jet charge for each jet

3. The value of the square of the invariant mass of the charged lepton and the

b-quark (m2
lb) for each lepton-jet pairing

4. The value of ∆Rmin(lepton, jet) for the smallest pairing between any lepton

and any jet.

We will do a simultaneous optimization since many of these variables are correlated.

We start with a description of the optimization based on the peak position of the

jd1,2 distributions.

We can improve the resolution of the Att̄FB measurement by rejecting badly re-

constructed lepton-jet pairings. We have considered many parameters that help
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achieve this goal, like the width or number of peaks in the probability distributions

of φ1,2, the width of jd1,2, etc. While they are all heavily correlated, we find that

the peak position of the probability distribution of jd1,2 captures most of the infor-

mation. We saw in Fig. 5.6 that when the probability distribution of jd1,2 peaks

at small value this can correspond to the correct lepton+jet pairing; large values of

jdpeak’s typically corresponds to an incorrect pairing. Figs. 6.15 and 6.16 show the

distributions of the position of the mode of jd1,2 probability distributions (jd1,2peak)

for the sample of powheg events that pass all the reconstruction requirements (we

have used the generator level information to choose the correct pairing). It essen-

tially shows how far the top reconstruction algorithm has to shift the jet ET to

get the best fit tt̄ event-by-event. For the wrong lepton-jet pairing (or background

events), the top reconstruction algorithm sometimes needs to pull the jet ET far

away from their measured valued to make a valid tt̄, which results in large jd1,2.

The region |jd1,2peak| & 2 is dominated by wrong lepton-jet pairings. For simplicity,

we consider the estimate of the uncertainty when we reject any lepton-jet pairing

with
√

jd2
1,peak + jd2

2,peak > Θ(jd), and reject the event if both lepton-jet pairings are

rejected. We will optimize the Θ(jd) value based on the expected uncertainty.

The track-weighted jet charge is correlated with the charge of its original quark,

as detailed in Ref. [98], and can be used to help reject wrong lepton-jet pairings.

This technique was recently used to measure the AFB of bb̄ at high mass [103]. The

jet charge, Qjet, is defined as:

Qjet =

∑
i |~pi · ~Pjet|0.5qi∑
i |~pi · ~Pjet|0.5

, (6.9)

where ~pi and qi are the momentum and the charge of each good-quality track [98]

associated with a jet, and ~Pi is the momentum of the reconstructed jet. If there are
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Figure 6.15: The jdpeak distributions for the correct and the incorrect lepton-jet
pairings for the two jets.
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Figure 6.17: Distribution of the reconstructed jet charge, Qjet, for jets originating
from b and b̄ quarks as measured in our powheg sample passing all the dilepton
selection criteria.

no good-quality tracks in a jet, we set Qjet = 0.

Figure 6.17 shows the distribution of the reconstructed jet charge, Qjet, for jets

originating from b and b̄ quarks in our powheg sample (which jet is originating

from b/b̄ quark is determined by looking at generator-level information). Only about

90% of the jets have valid jet charge reconstructed. The events piling up at ±1

are due to jets having only one good-quality track. The determination power of the

track-weighted jet charge is not ideal, but useful.

We use the difference between the two jet charges δQ = Qjet1 −Qjet2, where jet1

is the jet with larger ET and jet2 is the other jet. The quantized jet charge ∆Q is

determined by the sign of δQ: ∆Q = 1 if δQ > 0; ∆Q = −1 if δQ < 0; and ∆Q = 0

otherwise. A value of ∆Q = 1 suggests that jet1 is from the b̄-quark and jet2 from

the b-quark, and ∆Q = −1 suggests the opposite; a value of ∆Q = 0 indicates that

the jet charge doesn’t provide any power to distinguish between the b/b̄ quarks.
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We introduce a tunable parameter, weight wQ, to quantify the probability that

the ∆Q gives the correct lepton-jet pairing, and amend the Lmax of the two pairings

used in Eqn. 5.10 to Lmax ∗ wQ if ∆Q suggests this pairing and Lmax ∗ (1 − wQ) if

∆Q suggests otherwise, and proceed with Eqn. 5.10 in determining the weights of

the two pairings. We optimize the value of wQ in the range of (0.5, 1.0) based on

the expected uncertainty, where wQ = 0.5 is equivalent to ignoring the jet charge

information, while wQ = 1.0 is equivalent to determining the lepton-jet pairing solely

based on the jet charge information.

As suggested in Ref. [99], a large value of m2
lb is not likely to come from the

correct lepton-jet pairing because of the heavy but finite top mass (i.e., m2
lb > m2

t ).

The distribution of m2
lb for the correct and incorrect lepton-jet pairings for events

from powheg after all the selection requirements in Table 2.1 are shown in Fig. 6.18.

While we could add the m2
lb information into our likelihood term in the overall likeli-

hood, or in the pairing weighting, for simplicity, we use this information to motivate

a cut. We reject the lepton-jet pairings with m2
lb > Θ(m2

lb), and reject the event

if both lepton-jet pairings are rejected. We optimize m2
lb > Θ(m2

lb) based on the

expected uncertainty.

We notice that events with a lepton that is very close to a jet in η − φ space

do not reconstruct well or are likely to be background event (usually from W+jets

events where a b-jet fakes both a lepton and a jet). This effect is quantized as the

minimum ∆R between any lepton and any jet (∆Rmin(lepton, jet)).

For visual purposes, to separate between well-reconstructed tt̄ events and poorly

reconstructed ones, we create two subsamples of events from our powheg sample. In

the well-reconstructed sample we require both yt and yt̄ to be reconstructed within

0.1 of their generated values. The sample of badly reconstructed tt̄ events is se-

lected by requiring either yt or yt̄ to be reconstructed 1.5 away from their generated
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values. Figure 6.19 shows the ∆Rmin(lepton, jet) distributions of well reconstructed

tt̄, badly reconstructed tt̄, as well as for background events (mostly W+jets back-

ground). From this we expect a requirement on the minimal ∆Rmin (Θ(∆Rmin))

would reject W+jets background events without significantly hurting the number of

the well reconstructed tt̄ events. While this plot is illustrative, the two samples are

not used determine the cut value. We optimize the cut value again based on the

expected uncertainty.

min
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Figure 6.19: The distributions for ∆Rmin(lepton, jet) of well reconstructed tt̄ events,
badly reconstructed tt̄ events, and the various backgrounds. The vertical dot-
dashed line shows ∆Rmin(lepton, jet) = 0.2, which is the optimal value determined
in Sec. 6.2.3.

6.2.3 Final Optimization Values and Results

The final selection of the parameters described in the previous subsection is based

on minimizing the expected uncertainty, and with all four parameters varied simul-

taneously to find the global minimum. For each cut or weight value, we run 5k

pseudoexperiments to obtain the expected uncertainty for that choice. Table 6.2
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shows the optimum values for all cuts and weights, and Figure 6.20 shows the ex-

pected uncertainties as functions of the cut and weight values with other values fixed

at the optimum points. None of the individual parameter changes the result signif-

icantly, but with all of them, we are able to obtain a signal efficiency of 95% while

rejecting 40% of the backgrounds after the baseline selection requirements. We find

that the expected statistical uncertainty from signal-only is 0.106 (down from 0.107);

the total statistical uncertainty from signal+backgrounds is 0.114 (down by 7% from

0.122); and the background systematic uncertainty is estimated to be 0.042 (down

by 30% from 0.060). Overall, the total expected uncertainty is improved by 11%

from 0.136 to 0.122.

Table 6.2: Summary of the optimum cut and weight values used in the final analysis.

Optimum cut and weight
Θ(jd) 3.5
wQ 0.7

Θ(m2
lb) 24000 (GeV2)

Θ(∆Rmin) 0.2

6.3 Validation of the Measurement Methodology

With the optimal configuration of the top reconstruction quality cuts and the

weights of the jet charge probability determined, in this section we show the valida-

tion of the background and signal modeling as well as for the unfolding algorithm.

We will first show the validation of the signal and background modeling after the

top reconstruction and optimization, then show tests of the unfolding procedure.
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Figure 6.20: The expected statistical uncertainty with signal only (brown dot-dashed
line), the total statistical uncertainty (with signal + background, blue dashed line),
and the total statistical + background systematic uncertainty (the expected uncer-
tainty in the text, green solid line), as functions of various cut and weight values. The
optimum values are based on the minimum point of the green line, as marked with
the red arrows on the plots, and summarized in Table 6.2. All other values are held
at their optimal values for each plot. The expected uncertainty, after optimization,
is 0.122.
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6.3.1 Additional Validation of Signal and Background Modeling

The expected numbers of events in data passing all top dilepton event selections

and top reconstruction quality selections, along with the observed number of events,

are summarized in Table 6.3. The agreement between the prediction and the obser-

vation is good. We again note that compared with Table 3.3, the signal efficiency of

the top reconstruction quality cut is 95% (408 vs. 386 expected) with a background

rejection of 40% (160 vs. 96 expected); mostly we have rejected W+jets events (from

64 to 28) and Z/γ∗+jets events (from 50 to 37).

Table 6.3: Expected number of events passing all top dilepton event selections and
top reconstruction quality selections, along with the observed number of events in
data.

CDF Run II Preliminary (9.1 fb−1)

Expected and observed events
(tt̄→ l+l− + 2jets + E/T )

Source Events
Diboson 26±5
Z/γ∗+jets 37±4
W+jets 28±9
tt̄ non-dilepton 5.3±0.3
Total background 96±18
Signal tt̄ (σ = 7.4 pb) 386±18
Total SM expectation 482±36
Observed 495

Figures 6.21 and 6.22 show the kinematic variables from data compared with

the predictions. The agreement between data and the predictions is good. The

reconstructed ∆yt is shown in Fig. 6.23 compared with the sum of backgrounds and

signal prediction from powheg. The Att̄FB will be extracted from this distribution.

166



# of jets
0 2 4 6 8

E
ve

nt
s

0

100

200

300
TE + 2 jets + -l+l → tt

)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(a) Jet multiplicity

 (GeV)TJet E
50 100 150

E
ve

nt
s 

/ 1
0 

G
eV

0

50

100

150
TE + 2 jets + -l+l → tt

)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(b) Jet ET

 ( GeV )
T

lep P
50 100 150 200

 L
ep

to
ns

 / 
20

 G
eV

0

100

200

300

400

500
TE + 2 jets + -l+l → tt

)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(c) pT of leptons

 ( GeV ) llM
50 100 150 200 250 300

E
ve

nt
s 

/ 2
0 

G
eV

0
20
40
60
80

100
120 TE + 2 jets + -l+l → tt

)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(d) mll

 ( GeV ) 
T

DiLepton P
0 50 100 150 200

E
ve

nt
s 

/ 2
0 

G
eV

0

50

100

150 TE + 2 jets + -l+l → tt
)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(e) pT of the dilepton system

η
2− 1− 0 1 2

E
ve

nt
s/

 1

0

200

400

600
TE + 2 jets + -l+l → tt

)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(f) q`η`

η∆
4− 2− 0 2 4

E
ve

nt
s/

 1
 

0

50

100

150

200

250 TE + 2 jets + -l+l → tt
)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(g) ∆η

 ( GeV ) TE
50 100 150 200

E
ve

nt
s 

/ 2
5 

G
eV

0

50

100

150

200
TE + 2 jets + -l+l → tt

)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(h) E/T

Figure 6.21: Kinematic variables from data compared to predictions after all cuts in
Tables 2.1 and 6.2.

167



 Q∆
1− 0.5− 0 0.5 1

 E
ve

nt
s/

bi
n

0

10

20

30
TE + 2 jets + -l+l → tt

)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(a) ∆Q

)2) (GeV/ctm(t
400 600 800 1000

)2
E

ve
nt

s 
/ (

10
0 

G
eV

/c

0

100

200

TE + 2 jets + -l+l → tt
)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(b) mtt̄

) (GeV/c)t(t
T

p
0 20 40 60 80 100

E
ve

nt
s 

/ (
10

 G
eV

/c
)

0

50

100

150 TE + 2 jets + -l+l → tt
)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(c) pT,tt̄

) (GeV/c)t(t
z

p
500− 0 500

E
ve

nt
s 

/ (
20

0 
G

eV
/c

)

0

50

100

150

200 TE + 2 jets + -l+l → tt
)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(d) pz,tt̄

(t) (GeV/c)
T

p
0 200 400 600 800

 E
ve

nt
s/

bi
n

0

50

100

150

200

250 TE + 2 jets + -l+l → tt
)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(e) pT (t)

) (GeV/c)t(
T

p
0 200 400 600 800

 E
ve

nt
s/

bi
n

0

50

100

150

200

250 TE + 2 jets + -l+l → tt
)-1CDF Run II Preliminary (9.1 fb

Data

Background 

=7.4 pb)σ(
tPowheg t

Uncertainty
Systematic

(f) pT (t̄)

Figure 6.22: The same as Fig. 6.21, but with additional variables.
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Figure 6.23: The final ∆yt distribution from data compared with the SM expectations
after all the event selection requirements and event reconstruction algorithms.

6.3.2 Validation of the Inclusive Att̄FB Measurement Methodology

Figure 6.24 shows the reconstruction resolution (∆yt(reconstructed) − ∆yt (gen-

erated)) and the detector smearing matrix (∆yt(generated) vs. ∆yt(reconstructed))

after the optimization. The center values and the uncertainties of the detector smear-

ing matrix, Det[p][r] in Eq. 6.7, are summarized in Table 6.4.

Figure 6.25 shows the efficiencies (Eff[p](Att̄FB) in Eq. 6.7) in each |∆yt| bin as a

function of Att̄FB, fitted with linear functions. The best fit parameters are summarized

in Table 6.5. The best fit functions are summarized in Fig. 6.26.

Figure 6.27 shows the results of the pseudoexperiments after the optimal require-

ments and weights, with signal only (LHS) and with signal+backgrounds (RHS). The

pull distributions look good. The expected statistical uncertainty from signal-only

is 0.106, and the statistical uncertainty from signal+backgrounds is 0.114, with the

background systematic uncertainty estimated to be 0.037 by taking the difference of

the two in quadrature as in Sec. 4.
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Figure 6.25: The same figures as Fig. 6.6, but after the optimization. The best fit
values are summarized in Table. 6.5 and shown in Fig. 6.26, and which corresponds
to Eff[p](Att̄FB) in Eq. 6.7.
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Figure 6.26: The best fit functions in Fig. 6.25. The best fit values are summarized
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Figure 6.27: Inclusive Att̄FB measurement results of the pseudoexperiments with the
optimal cuts and weights, with signal only (LHS) and with signal+backgrounds
(RHS) for the measurement of the inclusive Att̄FB. The pull distributions look good.
The expected statistical uncertainty with signal only is 0.106, and that with sig-
nal+backgrounds is 0.114. These can be compared to Fig. 6.10 and 6.13.
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Table 6.5: Summary of the efficiencies in each |∆yt| bin as a linear function of Att̄FB

taken from Fig. 6.25, after the optimization. This is Eff[p](Att̄FB) in Eq. 6.7. The
uncertainties in the table are the statistical uncertainties caused by the limited size
of the MC sample.

Eff[Bin](Att̄FB) = p0 + p1 · Att̄FB(true)
Generator-level bin p0 p1

∆yt < −0.5 0.0492±0.0001 0.0029±0.0008
−0.5 < ∆yt < 0 0.0581±0.0001 0.0029±0.0009
0 < ∆yt < 0.5 0.0584±0.0001 -0.0024±0.0009

∆yt > 0.5 0.0495±0.0001 -0.0016±0.0007

We test the unfolding procedure with the reweighted powheg samples described

in Sec. 6.1.1 by comparing the measured value returned by the unfolding procedure

to the true value from the generator level. The results are shown in Fig. 6.28. The

error bars correspond to the statistical uncertainties based on the whole MC sample

(10M events generated, ∼ 70k selected). There is no bias observed.

In addition, we test the unfolding algorithm with LO SM (pythia [50], alp-

gen [51] and herwig [52]) as well as the BSM scenarios (t-channel Z’ [56], 425 GeV

Axi [54], 200 Gev AxiL/A/R [53], and 1.8/2.0 TeV Axi [19]). We take the differ-

ence between the generated Att̄FB and the measured Att̄FB with pythia MC (0.02)

as a systematic uncertainty for unfolding to cover the potential bias caused by the

NLO SM assumption we made in the top reconstruction procedure and the unfolding

procedure.

We do not anticipate the unfolding procedure to work perfectly with BSM sce-

narios because they are generated at LO and have non-SM kinematics, and most of

them have already been ruled out. In particular, we do not expect the estimation of

Att̄FB to have zero bias in all BSM scenarios, since the assumptions of the pz,tt̄, pT,tt̄,

and mtt̄ distributions we made in top-momenta reconstruction will no longer hold,
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Figure 6.28: A comparison of the Att̄FB measured with the unfolding algorithm
compared with the Att̄FB generated, for the reweighted powheg MC samples, with
−0.1 < Att̄FB < 0.3. No bias observed. We note that all the data points are correlated.

both due to the effect of the new physics and because the tt̄ portion is only calculated

at LO. For example, the pT,tt̄ spectrum calculated at LO shows deviation from data

due to lack of higher-order diagrams with non-zero pT,tt̄, while the NLO calculation

provides reasonable agreement [20]. The results can be found in Fig. 6.29. We note

that the biggest deviation from expectation is 0.08, but we confirm that if we correct

for the non-realistic pT,tt̄ spectrum in the samples, we get back what we expect.

6.3.3 Validation of the Att̄FB vs. |∆yt| Measurement Methodology

Figures 6.30 and 6.31 show the results of the pseudoexperiments for the measure-

ments of Att̄FB(|∆yt| < 0.5) and Att̄FB(|∆yt| > 0.5) after the optimal cuts and weights,

with signal only and with signal+backgrounds, respectively. The pull distributions

look good. The expected statistical uncertainty from signal only is 0.27 and 0.13 for

the two |∆yt| bins, and the statistical uncertainty from signal+backgrounds is 0.30
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Figure 6.29: A comparison of the inclusive Att̄FB measured with the unfolding algo-
rithm with the Att̄FB generated, for the reweighted powheg MC samples and bench-
mark BSM scenarios. We take the difference between the generated Att̄FB and the
measured Att̄FB with pythia MC (0.02) as an unfolding systematic uncertainty.

and 0.14, with the background systematic uncertainty estimated at 0.13 and 0.06 in

the two |∆yt| bins.

Figure 6.32 shows the differential Att̄FB measured with the unfolding algorithm

compared with Att̄FB generated, for the reweighted powheg MC samples. The error

bars corresponds to the statistical uncertainties with the full powheg MC sample

(10M events in total, ∼70k selected). While there seems to be a small bias, we

note that the deviation between the measured values and the generated values in the

worst case is consistent with the statistical uncertainties, and negligible compared to

the expected statistical uncertainties from data (0.30 and 0.15 with |∆yt| < 0.5 and

|∆yt| > 0.5, respectively). We elect not to attempt to fix this negligible bias and

simply take the difference as systematic uncertainties according to Fig. 6.32.
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Figure 6.30: The same as Fig. 6.12 but after the final optimization requirements.
The pull distributions look good. The expected statistical uncertainties with signal
only are 0.27 for Att̄FB(|∆yt| < 0.5) and 0.13 for Att̄FB(|∆yt| < 0.5)
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Figure 6.31: The same as Fig. 6.14, but after the final optimization requirements.
The pull distributions look good. The expected statistical uncertainties with sig-
nal+backgrounds are 0.30 for Att̄FB(|∆yt| < 0.5) and 0.14 for Att̄FB(|∆yt| > 0.5).
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Figure 6.32: A comparison of the differential Att̄FB measured with the unfolding al-
gorithm with the Att̄FB generated for the reweighted powheg MC samples. The two
values are consistent with each other, but since there is some deviation which is in
the worst case negligible compared with the expected statistical uncertainties (0.30
and 0.15), we take the deviations as systematic uncertainties.
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6.4 Final Systematic Uncertainties and Measurement of the Top AFB from Data

In the previous section we focused on the statistical uncertainties as well as the

systematic uncertainties from the backgrounds. In this section, we summarize the

remaining systematic uncertainty estimations and then finally extracting the Att̄FB

values from data. The systematic uncertainties are estimated in the same way as in

the leptonic AFB measurement described in Sec. 4. Due to the limit of the size of

the systematic MC samples, some of the systematic uncertainties have non-negligible

statistical uncertainties from MC. In those cases, we add the statistical uncertain-

ties from MC in quadrature with the systematic uncertainties to be conservative,

although they do not contribute significantly because they are small compared to

the dominant uncertainties.

6.4.1 Measurement of the Inclusive Att̄FB and Uncertainty Estimation

In this subsection we first describe the estimation of the systematic uncertainties

of the inclusive Att̄FB measurement, then apply the methodology to data to obtain the

final result. The dominant systematic uncertainty is due to the uncertainties on the

background, which is estimated with the pseudoexperiments as described in Sec 6.3.2.

We quickly describe the remaining systematics and their estimation methods follow-

ing the description in Sec. 4, which follows the standard CDF procedures [43].

• The jet energy scaling (JES) systematics is estimated by simultaneously shifting

jet energy up and down 1σ, and taking the larger difference between the shifted

Att̄FB values and the central value.

• The parton showering systematic is estimated as the difference between the

Att̄FB values obtained with alpgen MC showered by pythia and alpgen MC

showered by herwig.
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• The color reconnection systematics is estimated as the difference between Att̄FB

obtained with two MC samples with two different color reconnection mod-

els [104].

• The initial- and final-state radiation (I/FSR) uncertainty is estimated as half

of the difference between Att̄FB obtained with MC samples with “more” or “less”

amount of I/FSR.

• The unfolding systematics is taken to be equal to the difference between the

measured Att̄FB and the generated value from pythia, as discussed in Sec. 6.3.2.

• The PDF uncertainty is estimated following the standard top-group guidelines,

and the same as the one used in Sec. 4.

For the systematic uncertainties due to parton showering, color reconnection, I/FSR

and unfolding, the statistical uncertainties due to the limited size of the MC samples

are added in quadrature to the differences stated above to be conservative. Table 6.6

summarizes the statistical and systematic uncertainties of the inclusive Att̄FB mea-

surement. The total is derived assuming all are uncorrelated and taking each in

quadrature.

The uncorrected Att̄FB from data only (counting the numbers with ∆yt < 0 and

∆yt > 0 in Fig. 6.23) is measured to be

Att̄FB(uncorrected, data) = 0.050± 0.032(stat.). (6.10)

After subtracting off the background contributions, the background-subtracted un-

corrected Att̄FB is measured to be

Att̄FB(uncorrected, data− bkg) = 0.060± 0.043(stat.). (6.11)
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Table 6.6: Table of uncertainties for the Att̄FB measurement.

CDF Run II Preliminary (9.1 fb−1)
(tt̄→ l+l− + 2jets + E/T )

Source of uncertainty
Value

Att̄FB

Statistical 0.11
Background 0.04
Parton Showering 0.03
Color reconnection 0.03
I/FSR 0.03
JES 0.02
Unfolding 0.02
PDF 0.01
Total systematic 0.07

Total uncertainty 0.13

Note that the correlations among bins are taken into account when estimating the

uncertainties.

To get our final answer, we apply the MCMC based unfolding procedure to the

data in Fig. 6.23. Figure 6.33 shows the posterior probability density for the inclusive

Att̄FB. A Gaussian function is fitted to the center of the distribution to extract the

result. Including the systematic uncertainties summarized in Table 6.6, the parton-

level inclusive Att̄FB is measured to be

Att̄FB = 0.12± 0.11(stat.).± 0.07(syst.) = 0.12± 0.13. (6.12)

The comparisons between this result and other results and SM predictions are sum-

marized in Sec. 8.
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Figure 6.33: Posterior probability density of the inclusive Att̄FB. A Gaussian function
is fitted to the center of the distribution to extract the result.

6.4.2 Measurement of Att̄FB vs |∆yt| and Uncertainty Estimation

In this subsection we again describe the estimation of the systematic uncertainties

of the differential Att̄FB vs. |∆yt| measurement first, then apply the methodology to

data to obtain the final result, as well as our estimation of the slope α of Att̄FB

vs. |∆yt|, where we assume a zero intercept at |∆yt| = 0. The systematics of

the two bins for the differential Att̄FB measurements are estimated in the same way

as in Sec. 6.4.1. The additional unfolding systematic uncertainties obtained from

Fig. 6.32 (0.02 for |∆yt| < 0.5 and 0.003 for |∆yt| > 0.5) are added in quadrature to

the original unfolding systematics (0.04 and 0.004, respectively). For the systematic

uncertainties due to parton showering, color reconnection, I/FSR and unfolding,

the statistical uncertainties due to the limited size of the MC samples are added in

quadrature to the differences stated above. The results are summarized in Table 6.7.

We did not run additional MC to help reduce them as it would not help the overall
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measurement.

Table 6.7: Table of uncertainties for the Att̄FB(|∆yt| < 0.5) and Att̄FB(|∆yt| > 0.5)
measurements.

CDF Run II Preliminary (9.1 fb−1)
(tt̄→ l+l− + 2jets + E/T )

Source of uncertainty Att̄FB(|∆yt| < 0.5) Att̄FB(|∆yt| > 0.5)
Statistical 0.33 0.13
Background 0.13 0.06
Parton Showering 0.07 0.06
Color reconnection 0.12 0.06
I/FSR 0.05 0.03
JES 0.02 0.02
Unfolding 0.06 0.02
PDF 0.01 0.01
Total systematic 0.20 0.11

Total uncertainty 0.39 0.17

Figure 6.34 shows the posterior probability densities of Att̄FB(|∆yt| < 0.5) and

Att̄FB(|∆yt| > 0.5) with Gaussian functions fitted to the center of the distributions

to extract the results. Figure 6.35 shows the two-dimensional posterior probability

density distribution of Att̄FB in the two |∆yt| bins, with the correlation between the

two results measured from the posterior probability density distribution to be -0.44.

Including the systematic uncertainties summarized in Table 6.7, the parton-level Att̄FB

vs |∆yt| values are measured to be

Att̄FB(|∆yt| < 0.5) = 0.12± 0.33(stat.)± 0.20(syst.) = 0.12± 0.39, (6.13)

Att̄FB(|∆yt| > 0.5) = 0.13± 0.13(stat.)± 0.11(syst.) = 0.13± 0.17. (6.14)

where the two measurements are correlated both statistically and systematically.
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These results are consistent with the predictions of 0.017 and 0.081 from powheg,

while no higher-order calculation is available.

Following the lead in the Att̄FB measurement in the lepton+jets final state [20],

we quantize the differential Att̄FB vs. |∆yt| with a linear fit with zero intercept. The

total covariance matrix of the measurements in the two |∆yt| regions is shown in

Table 6.8. The fit for the slope is obtained by minimizing a χ2 term defined as

χ2 =
6∑

i=1

6∑

j=1

(Att̄FB[i]− α · |∆yt|[i]) · Cov−1[i][j] · (Att̄FB[j]− α · |∆yt|[j]), (6.15)

where |∆yt|[i] represents the bin centroids of the two |∆yt| bins predicted by the

powheg MC (0.24 and 1.01 respectively) and Att̄FB[i] is the Att̄FB(|∆yt|) in the corre-

sponding bin, Cov−1[i][j] is the corresponding element of the inverse matrix of the

covariance matrix shown in Table 6.8, and α is the slope we are fitting for. Using

Minuit [93] to minimize the χ2, the slope is estimated to be α = 0.14 ± 0.15, con-

sistent with the result in the lepton+jets final state of 0.253 ± 0.062 [20] and the

NNLO SM prediction of 0.114+0.005
−0.012 [46, 48], and displayed in Fig. 6.36 for compari-

son. The comparisons between this result and other results and SM predictions are

summarized in Sec. 8.

In the next section, we will combine the A`FB result described in Sec. 4 and the

Att̄FB results described in this section with the corresponding results in the lepton+jets

final state, to obtain the best determination from the CDF data.

Table 6.8: Covariance matrix of total uncertainty for differential Att̄FB vs. |∆yt|.

Total covariance of Att̄FB(|∆yt|) |∆yt| < 0.5 |∆yt| > 0.5
|∆yt| < 0.5 0.152 -0.0223
|∆yt| > 0.5 -0.0223 0.0295
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Figure 6.34: Posterior probability density distributions of Att̄FB(|∆yt| < 0.5) and
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7. COMBINATION WITH PREVIOUS MEASUREMENTS∗

This section summarizes the CDF combinations of the top AFB measurements in

the lepton+jets final state and the dilepton final state. Three results are presented:

1. Inclusive A`FB,

2. Inclusive Att̄FB, and

3. Differential Att̄FB as a function of |∆yt|.

The combinations of the inclusive measurements are based on the Best Linear Unbi-

ased Estimates (BLUE) [105] method. In order to deal with the asymmetric uncer-

tainties in the measurement, the approach of Asymmetric Iterative BLUE (AIB) [108]

is utilized. The combination of the differential asymmetry is based on a simultaneous

χ2 fit for all the data points measured.

7.1 Outline of the BLUE Methodology and the AIB Technique

In this section we outline the BLUE method and the AIB technique used in

the combination of the top AFB measurements. The BLUE method is based on

the minimization of the χ2 to get the best estimate of the combination the two

measurements (µ). The χ2 is defined as

χ2(µ) = δT (µ) · S−1 · δ(µ), (7.1)

∗Reprinted with permission from “Measurement of the inclusive leptonic asymmetry in top-
quark pairs that decay to two charged leptons at CDF” by the CDF Collaboration, 2014, Phys.
Rev. Lett. 113, 042001. Copyright [2015] by the American Physical Society.
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where the column vector δ is defined as

δ =



m1 − µ

m2 − µ


 , (7.2)

in which mi is the result from the i-th measurement, the covariance matrix S is

defined as

S =
∑

e

Se, (7.3)

where

Se = σei · σej · ρe(i,j), (7.4)

where we sum over the covariance matrices for all types of uncertainties; σei is the

e-th type of uncertainty on the i-th measurement; σej is the e-th type of uncertainty

on the j-th measurement; and ρe(i,j) is the correlation of the e-th uncertainty between

measurements. After the covariance matrix is obtained, we can invert the covariance

matrix to get the best estimate of µ, µbest, and its uncertainty, σµ, using

sumw =
∑

i

∑

j

(S−1)i,j

wi =
∑

j

(S−1)i,j
sumw

µbest =
∑

i

wi ·mi and

σµ =
1√

sumw

.

(7.5)

Due to the asymmetric values of some of the uncertainties, we employ the AIB

technique, which uses a set of three BLUE combinations: a center BLUE combina-

tion, a upper-uncertainty combination, and a lower-uncertainty combination. The
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center BLUE combination is formed with the covariance matrix formed with the av-

erage values of the upper and lower uncertainties, and gives the center value of the

combination as well as the symmetrized uncertainty. The upper and lower BLUE

combinations are formed with the covariance matrix formed with the upper and lower

uncertainties, respectively. The final uncertainty is obtained with the following for-

mula:

R =
σupper BLUE

σupper BLUE + σlower BLUE

σupper = 2 · R · σcenter BLUE

σlower = 2 · (1−R) · σcenter BLUE,

(7.6)

where σupper/lower/center BLUE is the σµ from the upper-, lower-, and center uncertainty

BLUE, respectively, and σupper/lower are the upper and lower uncertainties of the final

combination.

7.2 CDF Combination of A`FB Measurements

The A`FB measurement in the lepton+jets final state is documented in Ref. [43],

while the same measurement in the dilepton final state is described in Sec. 4. The

result in the lepton+jets final state is

A`FB = 0.094± 0.024(stat.)+0.022
−0.017(syst.) (7.7)

and the result in the dilepton final state is

A`FB = 0.072± 0.052(stat.)± 0.030(syst.) (7.8)

The table of the uncertainties are summarized in Tables 7.1, which also gives the

correlations between the uncertainties in the two measurements. The two measure-

ments are done in two orthogonal final states, thus the statistical uncertainties are
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uncorrelated. On the other hand, the two measurements are done basically with

the same methodology, thus the correlations in the systematic uncertainties need

to be taken into consideration. A brief description of each category of systematic

uncertainty is listed below, as well as the reasons for treating the uncertainties as

correlated or uncorrelated.

Table 7.1: Table of uncertainties for A`FB measurement in the lepton+jets (L+J)
and the dilepton (DIL) final state. In the column of correlation, “0” indicates no
correlation and “1” indicates fully positive correlation.

CDF Run II Preliminary

Source of uncertainty L+J (9.4fb−1) DIL (9.1fb−1) Correlation

Backgrounds 0.015 0.029 0
Recoil modelling +0.013

0.006 1
(Asymmetric modelling) −0.000

Symmetric modelling - 0.001 0
Color reconnection 0.0067 0.00007 1
Parton showering 0.0027 0.0002 1

PDF 0.0025 0.0002 1
JES 0.0022 0.004 1
IFSR 0.0018 0.00008 1

Total systematic
+0.022

0.030−0.017
Statistics 0.024 0.052 0

Total uncertainty
+0.032

0.060−0.029

• Backgrounds: this uncertainty is designed to cover the biases introduced

when performing background subtraction from data. There are two sources of

the uncertainties that are included here, one is due to the variation in the nor-

malization of the background components, the other is due to the variation in

shape of the q`η` distribution. In both measurements with the lepton+jets final
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state and with the dilepton final state, the background uncertainty is estimated

with pseudoexperiments, where the overall normalizations of each background

components are fluctuated with Gaussian distribution, and the shape of q`η`

distribution is fluctuated with a Poisson distributed random number in each

q`η` bin. The uncertainty due to the variation of the overall normalizations is

very small compared to the uncertainty caused by the variation in the shape.

In principle, there should be some correlation of this uncertainty between the

two measurements, since the two measurements partially share the same source

of background, mostly from W+jets. However, due to the way this uncertainty

is estimated, the uncertainties caused by the shape variation are uncorrelated

between the two measurements, and the uncertainties caused by the variation

of the normalizations are partially correlated, but much smaller than the dom-

inant component. Due to these reasons, we take the background uncertainties

in the two measurements as being uncorrelated.

• Asymmetric modeling (Recoil modeling in lepton+jets final state

analysis): this uncertainty is designed to cover the potential biases introduced

by the acceptance modelling and the potential biases introduced by the a ·tanh

parametrization. We treat this uncertainty to be fully correlated between the

two measurements.

• Symmetric modelling: this uncertainty is only estimated in the measure-

ment with the dilepton final state. The uncertainty caused by this variation in

the measurement with the lepton+jets final state is small, thus it’s not included

in the analysis, and is taken as 0 in the combination.

• Color reconnection: this uncertainty is estimated with the two tt̄ signal MC

samples with different color reconnection tunings as described in Ref. [104],
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and is done in the same way in the two measurements. It’s treated as fully

correlated.

• Parton showering: this uncertainty is estimated with two Alpgen tt̄ signal

MC samples showered each by Pythia and Herwig, and is done in the same

way in the two measurements. It’s treated as fully correlated.

• PDF: this uncertainty is estimated with the official prescription of the top

group, and is done in the same way in the two measurements. It’s treated as

fully correlated.

• JES: This uncertainty is estimated by shifting the jet energy scaling up and

down 1σ simultaneously in all MC samples. It’s treated as fully correlated.

• I/FSR: This uncertainty is estimated with two tt̄ signal MC samples with

more and less I/FSR. It’s treated as fully correlated.

With the uncertainties specified in Table 7.1, we formed three covariance matrices

corresponding to the central uncertainties as well as the upper and lower uncertain-

ties. The three covariance matrices are summarized in Table 7.2. With the AIB

procedure, the combined A`FB is

A`FB = 0.090+0.028
−0.026 (7.9)

The weight of the measurement with the lepton+jets final state is 80%, while the

weight of the one with the dilepton final state is 20%. The correlation between the

two measurements is 2.6%. The result is 2σ higher than the NLO SM prediction of

0.038 ± 0.003 [42]. The comparison among the inclusive A`FB, along with the A``FB

measurements for completeness, is shown in Sec. 8.
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Table 7.2: Covariance matrices of the two measurements of the A`FB.

Covariance Matrix ( ×10−4 )

Central

(
9.10 0.46
0.46 35.91

)

Upper

(
10.36 0.85
0.85 35.91

)

Lower

(
8.68 0.07
0.07 35.91

)

7.3 CDF Combination of Inclusive Att̄FB Measurements

The measurement of the Att̄FB in the lepton+jets final state is documented in

Ref. [20] and the measurement in the dilepton final states is given in Sec. 6. The

inclusive value of Att̄FB measured in the lepton+jets final state is

Att̄FB = 0.164± 0.039(stat.)± 0.026(syst.) (7.10)

and the result in the dilepton final state is

Att̄FB = 0.12± 0.11(stat.)± 0.07(syst.) (7.11)

The uncertainties are summarized in Table 7.3, which calls out the correlations be-

tween the uncertainties in the two measurements. The correlations are the same as

those in the combination of the leptonic AFB in the previous section. Some notes

are in order: Again, the two measurements are done in orthogonal final states, thus

the statistical uncertainties are uncorrelated. On the other hand, the two measure-

ments are done basically with the same methodology, thus the correlations in the

systematic uncertainties need to be taken into consideration. A brief description of

each category of systematic uncertainty is listed below, as well as the reasons for the
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correlations we are taking.

Table 7.3: Table of uncertainties for the inclusive Att̄FB measurement in the lep-
ton+jets (L+J) and the dilepton (DIL) final state. In the column of correlation, “0”
indicates no correlation and “1” indicates fully positive correlation.

CDF Run II Preliminary

Source of uncertainty L+J (9.4 fb−1) DIL (9.1 fb−1) Correlation
Background shape 0.018

0.04 0
Background normalization 0.013

Parton shower 0.01 0.03 1
Jet energy scale 0.007 0.02 1

Inital- and final-state radiation 0.005 0.03 1
Correction procedure 0.004 0.02 0
Color reconnection 0.001 0.03 1

Parton-distribution functions 0.001 0.01 1
Total systematic 0.026 0.07

Statistical 0.039 0.11 0

Total uncertainty 0.047 0.13

• Background shape/normalization: this uncertainty is designed to cover

the biases introduced when modeling the background contributions in data.

There are two sources of the uncertainties that are included here, one is due to

the variation in the normalization of the background components, the other is

due to the variation in the shape of the ∆yt distribution. In the measurements

with the lepton+jets final state, the background normalization uncertainty is

due to the normalization uncertainty from Method-II, while the background

shape uncertainty is estimated with two alternative templates (0-tagged tem-

plate and W+jets template). In the dilepton analysis, the background uncer-

tainty is estimated with pseudoexperiments, where the overall normalizations

of each background components are fluctuated according to their expectations
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and uncertainties, and then randomly picking events according to the fluc-

tuated normalizations. In principle, there should be some correlation of this

uncertainty between the two measurements, since the two measurements par-

tially share the same source of background, mostly from W+jets. However, due

to the way this uncertainty is estimated, the uncertainties caused by the shape

variation are uncorrelated between the two measurements, and the uncertain-

ties caused by the variation of the normalizations are only partially correlated,

but much smaller than the dominant component. Due to these reasons, we sum

the background shape and background normalization uncertainties in the lep-

ton+jets analysis in quadrature for the overall uncertainty due to backgrounds,

and take that as uncorrelated with the background uncertainty in the dilepton

analysis.

• Correction procedure: this uncertainty is to cover the potential bias intro-

duced by the correction procedure, which is used to extract the parton-level

Att̄FB. The correction procedures in the two analyses are not the same. In the

lepton+jets analysis, the correction procedure is based on a regularized sin-

gular value decomposition of the detector smearing matrix and a bin-by-bin

correction for the acceptances and efficiencies [20]. The correction systematic

is assigned as the difference between the generated Att̄FB from powheg and the

after-reconstruction measured value of Att̄FB, partially caused by the regular-

ization introduced. In the dilepton analysis, the correction procedure is based

on an Markov-chain Monte Carlo (MCMC) scan on a Bayesian model, which

includes both the detector smearing matrix, as well as an Att̄FB-dependent ac-

ceptance and efficiency correction. This method works well with the powheg

sample. However, in the top reconstruction procedure in the dilepton analy-
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sis, templates of the kinematics of tt̄ (pT,tt̄, pz,tt̄, and mtt̄) are introduced to

help distinguish the better solutions and the less possible solutions, and the

templates are derived from NLO SM MC powheg. A correction systematic is

assigned as the difference between the generated and the measured Att̄FB from

LO SM MC pythia to cover the potential bias caused by the NLO assumption.

Due to the way the two systematics are estimated in the two analyses, they

are treated as uncorrelated.

• Parton shower, JES, I/FSR, Color reconnection, and PDF: theses are

treated in the same way as in the A`FB combination.

With the uncertainties specified in Table 7.3, we form a covariance matrix corre-

sponding to the uncertainties, and proceed with the BLUE combination. We find

Att̄FB = 0.160± 0.045 (7.12)

The weight of the measurement with the lepton+jets final state is 91%, while the

weight of the one with the dilepton final state is 9%. The correlation between the

two measurements is 10%. It is worth noting that again the weight of the dilepton

result is smaller than the weight of the lepton+jets result, and even smaller here than

in the leptonic analysis [90] for a few reasons. The first is that the lepton+jets final

state has a larger branching ratio, which means we have roughly six times more tt̄

events after all selection requirements in the lepton+jets analysis than in the dilepton

analysis. A second issue is that in the lepton+jets case, with only one neutrino, the

top reconstruction is overly constrained, providing a reconstruction resolution of

∼0.25; but with the dilepton final state there are two neutrinos so the kinematics

are under-constrained, so the resolution is about 0.5 which further affects the final
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sensitivity. Finally, in the leptonic AFB we are able to use both leptons as separate

measurements, but in the full reconstruction case we only have one measurement per

event. The combined Att̄FB result is 1.4σ higher than the NNLO SM prediction of

0.095± 0.007 [46]. The comparison among the inclusive Att̄FB measurements is shown

in Sec. 8.

7.4 CDF Combination of the Differential Att
FB vs. |∆yt|

The values of Att̄FB as a function of |∆yt| are measured at discrete values of |∆yt|,

in both the lepton+jets [20] and the dilepton final states, and have different numbers

of measured points. In both two analyses, the sets of points are used to characterize

the differential Att̄FB vs. |∆yt| with the slope of a linear function (with the assumption

that the asymmetry goes to zero at |∆yt| = 0). Since the Att̄FB in the two analyses are

measured at different values of |∆yt|, we elect not to try to combine the individual

points, and choose instead to report a best fit slope to the combined set of data

points.

The combination is done with a simultaneous fit for all six data points (four

from the lepton+jets final state and two from the dilepton final state) reported from

the two measurements. The bin-centroids and the measured values of the Att̄FB for

each data points are summarized in the LHS of Table 7.5. The correlations of the

uncertainties between the individual data points in the two analyses are the same

as described in the previous section. The total covariance matrix, which is obtained

by summing up the all the contributed covariance matrices, is shown in Table 7.4

and Fig. 7.1. For an alternative format of presentation, the eigenvalues and the

eigenvectors of the covariance matrix are shown on the RHS of Table 7.5. Everything

needed to do the simultaneous linear fit is contained in this table.
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The simultaneous fit is obtained by minimizing a χ2 term defined as

χ2 =
6∑

i=1

6∑

j=1

(Att̄FB[i]− α ·∆yt[i]) · Cov−1[i][j] · (Att̄FB[j]− α ·∆yt[j]), (7.13)

where ∆yt[i] and Att̄FB[i] are the i-th bin centroids, the Att̄FB(|∆yt|) are the measured

asymmetry values (given in the LHS of Table 7.5), Cov−1[i][j] is the corresponding

element of the inverse matrix of the covariance matrix shown in Table 7.4, and α is

the slope we are fitting for. We use Minuit [93] to find the slope α that minimizes

χ2 and determines its corresponding uncertainty. The result is found to be

α = 0.227± 0.057, (7.14)

which is between the two individual measurements of 0.253±0.062 in the lepton+jets

final state and 0.14±0.15 in the dilepton final state. The α of the CDF combination

is 2σ higher than the NNLO SM prediction of 0.114+0.005
−0.012 [46, 48]. The comparison

of the α measurements in different channels and NNLO SM prediction is shown in

Fig 7.2 and in another format in Sec. 8.
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Figure 7.2: A comparison of the data points from the dilepton Att̄FB vs. |∆yt| result
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8. CONCLUSIONS

We have presented the final measurements of the forward–backward asymmetry

(AFB) of top quark–antiquark pair events (tt̄) at the Fermilab Tevatron with the

CDF detector. The inclusive A`FB, A``FB, and Att̄FB are measured in the dilepton final

state to be 0.072 ± 0.060, 0.076 ± 0.081, and 0.12 ± 0.13, respectively. The CDF

combination of A`FB and Att̄FB are 0.090+0.028
−0.026, and 0.160 ± 0.045, respectively. Fig-

ure 8.1 summarizes the leptonic AFB (A`FB and A``FB) measurements from the CDF

and D0 collaborations, comparing with the SM predictions. Figure 8.2 summarizes

the inclusive reconstructed top AFB (Att̄FB) measurements from the CDF and D0 col-

laborations, along with the SM predictions. In Figure 8.3, we summarize in another

format the comparison of all Tevatron inclusive A`FB, A``FB, and Att̄FB measurements

and the NLO/NNLO SM predictions. All results are consistent with the SM predic-

tions [42, 46].

The differential Att̄FB values as a function of |∆yt| measured in the dilepton final

state are Att̄FB(|∆yt| < 0.5) = 0.12 ± 0.33(stat.) ± 0.20(syst.) = 0.12 ± 0.39, and

Att̄FB(|∆yt| > 0.5) = 0.13 ± 0.13(stat.) ± 0.11(syst.) = 0.13 ± 0.17. A linear fit

with zero intercept to the differential Att̄FB as a function of |∆yt| yields a slope of

α = 0.14± 0.15. The CDF combination of the slope yields α = 0.227± 0.057, which

is 2.0σ higher than the NNLO SM prediction [46, 48]. Figure 8.4 summarizes the

slope measurements of Att̄FB as a function of |∆yt|.

We find that all measurement results are consistent with the current state-of-the-

art SM predictions. However, we do find that all the results are higher than the

corresponding SM predictions. The final best “legacy” answers from the Tevatron

experiments, combinations of results from both the CDF and the D0 collaborations,
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is underway.

Only a few years ago it appeared that we may have hints of new physics. Many

channels showed larger-than-expected asymmetries and especially the previous Att̄FB

measurement in the dilepton final state at CDF with half of the final dataset [17].

It appeared to be true in lepton+jets and dilepton; it appeared to be true in the

total asymmetry and the leptonic asymmetries; and it appeared to be true at both

CDF and D0. However, with better measurements and better predictions of the SM,

the current data no longer support this. Our best understanding is that there is

no evidence for any anomalies suggesting for physics beyond the SM. While this is

disappointing, we note that the chase has been exciting. In the meanwhile, during

the chase we have learned a great deal about the production of the heaviest known

fundamental particle, not the least of which is that the production of tt̄ is not well

described by the LO predictions, as originally thought. In addition, the tools for

the measurements have changed significantly. We have come a long way, and left an

excellent legacy from the Tevatron which will help pave the way for the next round

of results from the LHC.
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Figure 8.1: Comparison of the inclusive A`FB measurements with lepton+jets and
dilepton final states from CDF [43], D0 [59, 61], and the NLO [42] SM calculations,
as well as the CDF combination.
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Figure 8.2: Comparison of the inclusive Att̄FB measurements with lepton+jets and
dilepton final states from CDF [20], D0 [60, 62], the NLO [42] and the NNLO [46]
SM calculations, as well as the CDF combination.
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Figure 8.3: Comparison of all inclusive top AFB results from the Tevatron with the
NLO and NNLO SM predictions.
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state from D0 [60], and the SM calculation at NNLO [46, 48].
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APPENDIX A

LEPTON IDENTIFICATION REQUIREMENTS

In this appendix, we describe briefly the lepton identification used for the anal-

yses in this dissertation, but give the full set of requirements using the technical

notation for completeness. These lepton identification techniques and requirements

are standardized at CDF [83] and have been used for many years in many analyses,

including almost all the studies and measurements of the top quark.

The portions of the detector used for lepton identification are shown in Figs. 2.2

and 2.3. The electrons detected by the barrel part of the detector, |η| < 1.1, are

denoted as the “CEM” (Central ElectroMagnetic calorimeter) electrons, and those

detected by the plug part, 1.1 < |η| < 2.0, are denoted as the “PHX” (PHoeniX)

electrons for historical reasons. There are three muon systems that are used together

for muon identification. They are the “CMU” (Central MUon chambers), the “CMP”

(Central Muon uPgrade chambers) and the “CMX” (Central Muon eXtension cham-

bers). Since there is significant, but not complete, overlap between the CMU and

CMP, many muons will go through both and we refer to such muons as “CMUP”

muons. The muons leaving signals in the CMX detector are denoted as the “CMX”

muons. The muon coverage in this analysis is |η| < 1.1.

All the leptons are categorized into a “tight” category or a “loose” category,

and further into “isolated” leptons or “non-isolated” leptons [83], as described in

Chapter 2. The “tight” leptons are those which satisfy all the object identification

criteria and thus have a higher probability of originating from a real lepton, while

the “loose” leptons are those which satisfy only a specific subset of the criteria

(but not including the tight leptons). The two categories are set up so that in the
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event selection criteria we can choose to apply either the tight or the loose object

identification, depending on whether we want the selected sample to have a higher

purity or we want a better selection efficiency. A CEM electron can fall in either the

tight or the loose category, depending on whether it satisfies all or only a subset of

the requirements. All PHX electrons belong to the tight category, so do the CMUP

and CMX muons. Muons that leave signals only in the CMU or CMP portion of the

muon sub-detectors, but not both, are denoted as “CMU” or “CMP” muons, and

can only contribute to the loose lepton category. A special category of muons which

pass all the selection cuts except the requirement of a signal in the muon detectors,

but from geometric considerations are not expected to hit the muon detectors, are

called the “CMIO” (Central Minimal IOnized particle) muons. These are also in the

category of loose leptons.

For completeness, we list all the technical requirements here. Tables A.1, A.2,

A.3, and A.4 list the identification requirements of each of the lepton categories. Note

that since these these technical terms are standard in CDF, we refer to Ref. [83] for

the technical terms quoted in these tables as well as more details regarding the

identification requirements and how the values of each requirement were selected.

217



Table A.1: The requirements used to select electrons in the Central ElectroMag-
netic calorimeter (CEM). Tight CEM electrons (“CEM”) are required to pass all
the criteria. Nonisolated CEM electrons (“nisoCEM”) pass all of the cuts except for
Isolation (marked with an *). Loose, but isolated, CEM electrons (“looseCEM”) are
required to pass only the criteria above the line. Nonisolated loose CEM electrons
(nisolooseCEM) pass all of the looseCEM cuts except isolation. We refer to Ref. [83]
for the technical terms quoted in these tables as well as more details regarding the
identification requirements.

Variable Requirement
Region CEM
Fiducial Fiducial TRUE
ET ≥ 20GeV
Track Z0 ≤ 60 cm
Track pT ≥ 10GeV/c
COT Axial Seg. ≥ 3
COT Stereo Seg. ≥ 2
Conversion 6= 1
Had/em ≤ (0.055 + (0.00045× E))
Isolation* ≤ 0.1
LshrTrk ≤ 0.2
E/P ≤ 2.0 unless pT ≥ 50 GeV/c
CES ∆Z ≤ 3.0 cm
Signed CES ∆X −3.0 ≤ q ×∆X ≤ 1.5
CES StripChi2 ≤ 10.0
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Table A.2: The requirements to identify electrons in the plug electromagnetic
calorimeter (PEM, and the electrons are identified with tracking package named
phenix, thus denoted as “PHX”). All the PHX electrons belong to the tight cate-
gory. We refer to Ref. [83] for the technical terms quoted in these tables as well as
more details regarding the identification requirements.

Variable Requirement
ET ≥ 20 GeV
Pes2DEta 1.2 ≤ |η| ≤ 2.8
Had/Em ≤ 0.05
Pem3x3FitTow 6= 0
Pem3x3Chisq ≤ 10
Pes5by9U ≥ 0.65
Pes5by9v ≥ 0.65
Isolation ≤ 0.1
∆R ≤ 3.0 cm
PhxMatch TRUE
NSi
hits ≥ 3
|ZPHX

0 | ≤ 60 cm

Table A.3: The muon identification selection requirements for candidates in the
CMUP systems. Tight muons must pass all the requirements in the table. Note that
loose muons “CMU” (“CMP”) are defined by not requiring the requirement below
the line on the “CMP” (“CMU”) counterpart. We refer to Ref. [83] for the technical
terms quoted in these tables as well as more details regarding the identification
requirements.

Cosmic tag FALSE
pT > 20 GeV/c
EEM < 2 + max(0, (p− 100) · 0.0115) GeV
EHAD < 6 + max(0, (p− 100) · 0.028) GeV
Eisol.
T /pT < 0.1

# of axial SL with ≥ 5 hits ≥ 3
# of stereo SL with ≥ 5 hits ≥ 2
|z0| < 60 cm
Tracks w/ no silicon hits: |d0| < 0.2 cm
Tracks w/ silicon hits: |d0| < 0.02 cm
Fiducial for CMU TRUE
|∆xCMU | < 7 cm
Fiducial for CMP TRUE
|∆xCMP | < 5 cm
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Table A.4: The muon identification selection requirements for candidates in the
CMX systems. All CMX muons fall in the tight category. We refer to Ref. [83]
for the technical terms quoted in these tables as well as more details regarding the
identification requirements.

Cosmic tag FALSE
Fiducial TRUE
pT > 20 GeV/c
EEM < 2 + max(0, (p− 100) · 0.0115) GeV
EHAD < 6 + max(0, (p− 100) · 0.028) GeV
Eisol.
T /pT < 0.1

# of axial SL with ≥ 5 hits ≥ 3
# of stereo SL with ≥ 5 hits ≥ 2
|z0| < 60 cm
Tracks w/ no silicon hits: |d0| < 0.2 cm
Tracks w/ silicon hits: |d0| < 0.02 cm
|∆xCMX | < 6 cm
Run > 1501445
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APPENDIX B

ESTIMATION OF THE DRELL-YAN BACKGROUNDS IN THE

DILEPTON+DIJET+E/T FINAL STATE

Drell-Yan (DY) production of lepton pairs through a Z and an off-shell photon

(Z/γ∗) production, in association with jets, is one of the dominant backgrounds in

this analysis. Since DY has very different kinematic distributions from tt̄, it has the

potential to systematically bias all our measurements. For these reasons we want to

get a robust estimation of the DY background, both in terms of the total number of

expected events as well as in the distributions of the kinematic variables in each of

the possible final states it produces.

In this appendix we describe the estimation of the contamination of the DY+jets

process in the data after the event selection described in Table 2.1. We note that this

estimation is only used to estimate the expected number of events; the distributions

of the kinematic variables will be estimated purely with the MC simulations after

normalizing the number of events to the estimated numbers from this appendix.

We first describe the reason why a simple estimation with MC method is not

good enough for our needs, and why a sophisticated method is required. This will

be done in Sec. B.1. The estimation method used in the previous CDF analyses,

for example the tt̄ cross section measurement in the dilepton final state, is given in

Sec. B.2. We note that this estimation method can only be applied to the scenario

where the Z/γ∗ decays to a pair of electrons or muons, and are reconstructed as

a pair of electrons or muons in the detector (denoted as DY → ee/µµ → ee/µµ).

As explained below, it cannot be applied to the scenarios where the Z/γ∗ decays to

a pair of electrons or muons, but are reconstructed as an electron plus a muon in
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the detector. We note that this usually happens when a muon bremsstrahlungs a

photon which is collinear with the original muon, thus the energy deposition in the

calorimeter by the photon and the muon track combined make an electron candidate.

Thus, this scenario is denoted as DY → ee/µµ → efakeµ. Finally, the original

estimation method does not apply to the scenario where the Z/γ∗ decays to a pair

of τ leptons, and the τ leptons further decay leptonically into the ee, eµ, or µµ final

states. This scenario is denoted as DY → ττ , which includes all three final states

(DY → ττ → ee/eµ/µµ). In Sec. B.3 we describe the updated estimation method,

which is consistent with the method described in Sec. B.2, but is applicable to the

final states of DY → ee/µµ→ efakeµ and DY → ττ .

B.1 Motivation for a Sophisticated DY Estimation Method

While it is true that we have MC event generators to simulate the production and

decay of DY, it is well known that they are not good enough for use by themselves [67].

We quickly summarizes the issues. One is that the additional jets must be produced,

and that isn’t done well by the MC. The dominant issue, however, is that in the case

of the DY → ee/µµ → ee/µµ final state the E/T measured in the event is due to

instrumental energy mis-measurement, and our detector simulation is known to be

not good enough to simulate very large mis-measurement correctly enough for our

purposes. Thus, we use data to help us properly estimate: 1) the cross section of

DY production with two or more associated jets and 2) the modeling of E/T where

all the E/T comes from mis-measurements from the detector.

In the previous tt̄ cross section measurement in this final state, the normalization

for DY → ee/µµ→ ee/µµ employed a sophisticated data-MC hybrid method where

data is used to correct the MC for the rate in the high-E/T regime [67], based on

normalizing the MC simulated cross sections to that observed in data in a region
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where DY → ee/µµ dominates. However, in the tt̄ cross section measurement, the

contribution of DY → ee/µµ process which is mis-identified as the eµ final state

(DY → ee/µµ → efakeµ), as well as the contribution of DY → ττ process, are

estimated only based on MC predictions normalized to theoretical predicted cross

sections, which are now known to be not an accurate assumption. Since the τ leptons

are not observable in the detector as they are not stable, and the DY → ee/µµ →

efakeµ scenario is caused by a mis-identification, there is no region in data where these

two scenarios dominate, thus there is no apparent way to apply the same data-MC

hybrid method in these scenarios. Because of this, an updated estimation method is

needed for these two scenarios.

In the following sections, we describe the estimation method used for DY →

ee/µµ → ee/µµ in the previous analyses in Sec. B.2, and then introduce the new

estimation method, which is consistent with the previous one, but can be extended

to the final states of DY → ee/µµ→ efakeµ and DY → ττ → ee/eµ/µµ in Sec. B.3.

B.2 The Data-MC Hybrid Estimation Method for the ee and µµ Final States

Here we describe the data-MC hybrid method for estimating the DY → ee/µµ→

ee/µµ backgrounds, which is detailed in Ref. [67]. We note before we start that the

description in this section is restricted to the ee and µµ final states; we will come

back to the eµ final state in the next section. In addition, we will be focusing on

estimating the contribution from DY → ee/µµ where the events are observed as di-

electron or di-muon events in the detector. While we will consider the contribution

from DY → ττ → ee/µµ as a background to the estimation of DY → ee/µµ, the

estimation of DY → ττ itself in all three dilepton flavors (ee, µµ, and eµ) will be

described in the next section.

The idea of the data-MC hybrid method is to measure the contribution from

223



DY → ee/µµ in data, using samples that are not the signal region but where DY →

ee/µµ is the dominant source (control regions), and use an extrapolation factor

(from the control regions to the signal regions) derived from MC samples to obtain

the expected contribution in data in the signal regions. We note here that this data-

MC hybrid method is functionally the same as normalizing the number of events in

the MC estimation in control regions to the number of events observed in data in

the same regions, which successfully avoids the mis-modeling of the inclusive cross-

section and the E/T distribution in the MC samples. The assumption in this method

is that the amount of mismodeling (which causes the deviation between the MC-

based predictions and the observations in data in the control regions) is the same in

both the control regions and the corresponding signal regions. To accomplish this

task, we define a couple of orthogonal regions which are our control regions and

signal regions.

As described in Table 2.1, the event selection criteria are different for 1) events

with same lepton flavor and with the dilepton invariant mass consistent with the Z-

boson mass (we will define “inside the Z-window” as the mass regime 76 GeV < mll <

106 GeV), with an extra requirement of high METSig (METSig > 4
√

GeV) and

2) events outside the window or with different lepton flavors, without any requirement

on METSig. Because of this, we select the set of events with the ee and µµ final

states, passing all the “minimal requirements” in Table 2.1 except the requirements

on METSig and mll, and break them into one of the four regions shown in Table B.1.

The four regions are defined separately with jet multiplicity of 0, 1, and ≥ 2, and

again separately with ee and µµ events, for a total of six versions of the table.

We note that the combined Regions 1, 2, and 4 form the sample that passes the

minimal requirement defined in Table 2.1, but further requirements corresponding to

the final “signal requirements” (oppositely charged leptons, ≥ 2 jets, and high HT )
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Table B.1: Definition of signal and control regions for DY estimation. Note that this
table is only for the events in the ee and µµ final states (not for the eµ final state).
The events in all regions defined here are after all the “minimal requirements” in
Table 2.1 except the requirements on METSig and mll. The estimations in Regions
1, 2, and 4, after applying the efficiency for the “signal requirements”, are the final
estimations in the signal region of this analysis. Note that there are six different
versions of this table, one for each of the ee and µµ final states, and each with a jet
multiplicity of 0, 1, and ≥ 2.

METSig > 4
√

GeV
Region 1 Region 2

(High METSig)

METSig < 4
√

GeV
Region 3 Region 4

(Low METSig)

76 GeV < mll < 106 GeV mll < 76 GeV or > 106 GeV

(In Z-window) (Outside Z-window)

are needed to get us to the predictions for the set of events passing the full set of

the requirements in Table 2.1. These further requirements are incorporated into our

estimation technique by deriving and applying the efficiencies of these requirements

to the number of events in Regions 1, 2, and 4. These efficiencies for the signal

requirements are derived from the DY → ee/µµ MC samples, and applied to the

estimations in Regions 1, 2, and 4, to obtain the estimation of the contamination

from the DY → ee/µµ → ee/µµ process in the final signal sample. Note that

the estimations with 0 or 1 jet are used for cross checks to build confidence in this

estimation method.

With these two ideas in mind, the data-MC hybrid method is:

1. For regions where DY → ee/µµ is expected to be the dominant source (Regions

3, and Region 1+3 combined), measure the contribution from DY → ee/µµ in

data (after subtracting off non-DY → ee/µµ contributions). We will refer to

these estimations as (NData
Region 3 −NNon-DY

Region 3) and (NData
Region 1+3 −NNon-DY

Region 1+3).
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2. Measure the relative ratios of
NDY MC

Region 1

NDY MC
Region 3

and
NDY MC

Region 2+4

NDY MC
Region 1+3

from the DY → ee/µµ

MC samples.

3. Use the numbers measured in (1) and ratios in (2) to calculate the contributions

of DY → ee/µµ in Regions 1, 2, and 4 (equations given below), corresponding

to the samples after the minimal cuts. These estimations are also used as cross

checks.

4. Derive the efficiency of the “signal requirements” in Table 2.1 (εSignal cut) from

the DY → ee/µµ MC samples.

5. Apply the εSignal cut to the estimated numbers in (3) with ≥ 2 jets, for the final

estimation of DY → ee/µµ→ ee/µµ in the signal region.

To display the estimation method in a mathematical way, we list the equations

used to estimate the number of DY → ee/µµ → ee/µµ events passing the minimal

requirements in Table 2.1 (NDY Estimation
Minimal cut ) and eventually calculate the final estimates

(NDY Estimation
Signal cut ). We note that the equations are applied to regions specified in Ta-

ble B.1, with 0, 1, and ≥ 2 jets separately, and again separately to the final states

of ee and µµ (eµ final state will be discussed in the next section). For briefness, the

notation “DY” in the equations refers exclusively to DY → ee/µµ, and the notation

“Non-DY” refers to all SM sources except DY → ee/µµ (to be explicit, DY → ττ is

included in Non-DY category). The equations are:

NDY Estimation
Minimal cut = NDY Estimation

Region 2+4 +NDY Estimation
Region 1 , (B.1)
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where we estimate the contributions from each using

NDY Estimation
Region 2+4 =

NDY MC
Region 2+4

NDY MC
Region 1+3

· (NData
Region 1+3 −NNon-DY

Region 1+3) (B.2a)

NDY Estimation
Region 1 =

NDY MC
Region 1

NDY MC
Region 3

· (NData
Region 3 −NNon-DY

Region 3) (B.2b)

where all N parameters indicate the number of events in the corresponding cat-

egory. The numbers with the superscript “Data” are measured from data, with

the corresponding requirements indicated by the subscript; the numbers with the

superscript “Non-DY” refers to the expected number of events from all sources ex-

cept DY → ee/µµ; the numbers with the superscript DY MC are measured in the

DY → ee/µµ MC samples, which are used to estimate the ratio of the number of

events in Region 2+4 over that in Region 1+3, and also the ratio in Region 1 vs.

Region 3. Note that we use this set of equations separately for jet multiplicities of

0, 1, and ≥ 2, and each in the ee and µµ final states separately. The inputs and

outputs of Eqs. B.2a and B.2b are collected in Tables B.2 and B.3 respectively. The

output numbers are the estimated number of events passing the minimal requirement

in Table 2.1 in the corresponding category.

As the final step, the efficiencies of the signal requirements defined in Table 2.1

are estimated with DY → ee/µµ MC samples. The final estimation of the DY →

ee/µµ → ee/µµ contribution to our signal (passing both the minimal requirements

and the signal requirements) is calculated as

NDY Estimation
Signal cut =

∑

``=ee,µµ

{
NDY Estimation

Region 1 (``) · εSignal cut
Region 1 (``)

+NDY Estimation
Region 2,4 (``) · εSignal cut

Region 2,4(``)
}
.

(B.3)

The results are collected in Table B.4. This is the estimated contamination of DY →
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ee/µµ→ ee/µµ in the final data sample used in the asymmetry analyses.

Despite its success, this method cannot be directly applied to the eµ final state,

nor can it be applied to estimate the contribution from DY → ττ , due to the lack

of the control regions where these two processes dominate. In the next section, we

will describe a new estimation method, which is consistent with the one described

in this section, but can be applied to the final state of DY → ee/µµ → efakeµ and

DY → ττ .
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Table B.4: Efficiencies of the signal requirements with ≥ 2 jets (εSignal cut). This is
the efficiencies for the opposite charged leptons and HT > 200 GeV requirements, to
be applied to the outputs with ≥ 2 jets in Tables B.2 and B.3 using Eq. B.3.

εSignal cut ee µµ

For NDY Estimation
Region 1 0.303±0.024 0.457±0.057

For NDY Estimation
Region 2+4 0.957±0.016 0.992±0.010
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B.3 Scale Factors for the eµ and ττ Final States

While the data-MC hybrid method described in the previous section can be used

to model DY → ee/µµ→ ee/µµ backgrounds, the background from DY → ee/µµ→

efakeµ and DY → ττ → ee/eµ/µµ cannot be estimated using the same techniques

because there are not good control samples. In the previous analysis, the rates were

estimated by simulating events and normalizing to the predicted LO cross section

with K-factors [67]. We now introduce a better modeling of these two categories

based on the assumption that the DY production cross section for the ee, µµ and

ττ final states are identical. This estimation is accomplished by deriving two sets

of scaling factors (SF) for 1) the overall DY normalization (SFDY) and 2) the E/T

distribution (SF
DY E/T

). We note from the beginning that following the naming

convention in the previous section, the ultimate estimation of the DY → ee/µµ and

DY → ττ contributions (NDY Estimation
Signal cut ) in the signal region or any control region is

calculated with

NDY Estimation
Signal cut = NDY MC

Signal cut · SFDY · SF
DY E/T

. (B.4)

The first set of scale factors is to correct for the discrepancy between the esti-

mation of DY → ee/µµ from MC and the observation in data, in a region that is

heavily dominated by the DY → ee/µµ process. This is thus a set of scale factors

for the production cross section of the DY process for ee and µµ separately, as well

as for 0, 1 and ≥ 2 jets separately. To obtain these scale factors, we first apply a set

of event selection criteria aiming to select a sample dominated by the DY → ee/µµ

process. The event selection criteria are: 1) two reconstructed charged leptons, 2) the

invariant mass of the two charged leptons being consistent with the Z-boson mass

(76 GeV < mll < 106 GeV). This region is denoted as “Region Z” for short. (This

Region Z is different from the Region 1+3 defined in the previous section since Region
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1+3 also requires the events to pass the E/T requirements.) Following the notations

in the previous section, we use the following equations to obtain the scale factors for

the DY production cross section (SFDY) with 0, 1, and ≥ 2 jets separately, and with

ee and µµ final states separately:

SFDY =
NData

Region Z −NNon-DY
Region Z

NDY MC
Region Z

. (B.5)

Table B.5 shows the numbers used in the calculation of the SFDY. The average

between ee and µµ categories in each jet multiplicity is used to scale the DY →

ee/µµ→ efakeµ and all DY → ττ components with the corresponding jet multiplicity,

as will be shown in Table B.7.

The second set of scale factors is used to correct for the not-well-estimated E/T

distribution in the MC simulations. In the DY → ee/µµ category, E/T is caused by

instrumental mis-measurement. It is known that the MC simulation does not model

the E/T spectrum for large E/T from instrumental mis-measurement well. This set

of DY E/T scale factors (SF
DY E/T

) is designed to correct for such mis-modeling in

MC simulations. To calculate this set of scale factors, we use the previously defined

region “Region 1+3”, but note that it is essentially the set of events in the Region Z,

but satisfying two additional criteria: 1) E/T > 25 GeV, 2) E/T > 50 GeV when there

is any lepton or jet within 20◦ of the direction of E/T . We name this region as “Region

Z+E/T” to be more intuitive. The ratio of the number of events in Region Z+E/T

over that in Region Z is defined as the selection efficiency of the E/T requirement

(εE/T
). The εE/T

can be estimated with two approaches: 1) estimating with data

after subtracting off Non-DY contributions, and 2) estimating with DY MC samples.
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The equations for this process are:

εData

E/T
=
NData

Region Z+E/T
−NNon-DY

Region Z+E/T
NData

Region Z −NNon-DY
Region Z

, and (B.6a)

εDY MC

E/T
=
NDY MC

Region Z+E/T
NDY MC

Region Z.
(B.6b)

The SF
DY E/T

is estimated as the ratio of the two efficiencies as:

SF
DY E/T

=
εData

E/T
εDY MC

E/T

. (B.7)

The SF
DY E/T

is also estimated separately with 0, 1, and ≥ 2 jets, and again sepa-

rately with ee and µµ final states. Table B.6 shows the calculation of the scale factors.

The SF
DY E/T

in the ee and µµ final states are quite different, indicating different

levels of mis-modeling in E/T in the detector simulation (due to different ways the elec-

trons and muons depositing energy with the detector). The average of the SF
DY E/T

in the ee and µµ categories is applied to the estimation of DY → ee/µµ → efakeµ

component, and the difference between SF
DY E/T

values in the ee and µµ categories

is taken as a systematic uncertainty of the averaged scale factor conservatively. Since

the E/T in the DY → ττ process is physical and there is a decent fraction of events

beyond E/T > 50 GeV (Fig. B.1), the mis-modeling of E/T is presumably small. A

SF
DY E/T

of 1.0 is applied to DY → ττ , and a systematic uncertainty of 0.1 is taken

conservatively, as 10% is more than enough to cover the potential bias even if E/T is

mis-measured by ∼5 GeV.
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Figure B.1: The E/T distribution of DY → ττ in the signal region as estimated from
the powheg MC.

B.4 Performance of the New DY Estimation Method

In this section we describe a check of the updated DY estimation method by

comparing the expected number of DY → ee/µµ → ee/µµ events with the data-

MC hybrid method with a pure MC estimate but including the scale factors derived

in the previous section. In Table B.7 we show the comparison in the signal region

(passing both the minimal requirements and the signal requirements in Table 2.1)

as well as in several control regions (passing only the minimal requirements and the

requirement of 0, 1, and ≥ 2 jets). The expected numbers in DY → ee/µµ →

ee/µµ using two methods agree with each other within uncertainties. This gives us

confidence that we can apply the two scale factors to the DY → ee/µµ → efakeµ

and DY → ττ categories. The estimation numbers in DY → ee/µµ → efakeµ and

DY → ττ categories are also listed in Table B.7. We note that ultimately in this

analysis, we use the result from the Data-MC hybrid method when applicable, and

the expectation after correction in other DY categories.
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APPENDIX C

BACKGROUND AND SIGNAL VALIDATION IN THE 0-JET AND 1-JET

CONTROL REGIONS

In Chapter 3 we discussed the modeling of the tt̄ signal and background for the

signal region, with dileptons+dijets+E/T signature, passing all the requirements in

Table 2.1. In this appendix, we describe the validation of the modeling of the tt̄

signal and background using events in the 0-jet and 1-jet control regions to help

give us confidence that our data is well modeled in the signal region. These two

control regions are defined with the minimal requirements described in Table 2.1, with

additional requirement of exactly zero or one jet with ET > 15 GeV within |η| < 2.5.

The contributions from the tt̄ are not significant in these two control regions, thus

each control region is well suited for validating the estimations of the background

contributions. The 0-jet control region is dominated by diboson (especially WW )

production, while the 1-jet control region is dominated by W+jets and DY+jets

productions.

The expected number of events from each background component, as estimated

using the techniques described in Chapter 3, as well as from tt̄ dilepton production

compared with the observed numbers in 0-jet and 1-jet control regions are summa-

rized in Tables C.1 and C.2. The observed numbers are in good agreement with the

expectations.

As shown in Table 3.3, we have multiple background sources, several of them

have non-negligible contribution to the signal region. It is critical to get a robust

modeling of the kinematics, especially the lepton q`η` spectrum, for the background

components. As a check, Fig. C.1 shows the comparison of the q`η` and ∆η distri-
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bution in the 0 and 1 jet control regions overlaid with data, and Table C.3 lists the

“uncorrected” A`FB and A``FB, calculated by simply counting the events in the forward

and backward regions, from data and from SM expectation in the two control re-

gions. The values from data and SM estimation are consistent with each other. All

the checks described in this appendix yield good agreement between the data and

the expectations, indicating that our modelling of background asymmetry is robust.
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Figure C.1: The distributions of q`η` and ∆η in the 0 and 1 jet control regions.
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Table C.3: The uncorrected A`FB and A``FB calculated by counting the number of
events in the forward and backward regions from data and SM expectation in the 0
and 1 jet control regions. The uncertainties are statistical only.

Sample Uncorrected A`FB Uncorrected A``FB

0 jet
Data -0.027±0.025 -0.102±0.036

SM Expectation -0.024±0.012 -0.044±0.017

1 jet
Data -0.018±0.030 0.005±0.043

SM Expectation -0.014±0.013 0.012±0.018
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APPENDIX D

BACKGROUND AND SIGNAL VALIDATION WITH B-TAGGING

REQUIREMENT

In this appendix, we show a validation of the modeling of the tt̄ signal and

backgrounds by using events in the signal region, passing all the requirements in

Table 2.1, but with an additional requirement of at least one jet being b-tagged. The

requirement of a SecVTX b-tagged jet rejects most of the backgrounds, but with

the cost of significant loss of tt̄ events. We lose events both due to the inefficiency of

the b-jet selection requirements (the efficiency of the b-jet tagging is approximately

50%) as well as the requirement of silicon detector to be working. The good run list

used with b-tagging corresponds to an integrated luminosity of 8.7 fb−1, as opposed

to 9.1 fb−1 without the requirement. Since this measurement is statistics limited,

the sample after b-jet tagging isn’t a better sample, but can provide an important

cross check.

Table D.1 shows the expected and observed number of events in each lepton flavor

after all event selection with at least one SecVTX b-tag. The purity goes from 72%

before b-tagging to 88% after, while the number of events surviving the requirements

drops from 569 to 246 (we predict that the number of tt̄ events is reduced from 408

to 225). Figures D.1, D.2, D.3, D.4, D.5, and D.6 show the distributions of expected

and observed kinematic variables after the b-tagging requirement and show that each

is well modeled, giving us further confidence in our background and signal estimation

methods.
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Figure D.1: The same plots as Fig. 3.1, but with at least one SecVTX b-tagged jet.
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Figure D.2: The same plots as Fig. 3.2, but with at least one SecVTX b-tagged jet.
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Figure D.3: The same plots as Fig. 3.3, but with at least one SecVTX b-tagged jet.
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Figure D.4: The same plots as Fig. 3.4, but with at least one SecVTX b-tagged jet.
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Figure D.5: The same plots as Fig. 3.5, but with at least one SecVTX b-tagged jet.
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Figure D.6: The same plots as Fig. 3.6, but with at least one SecVTX b-tagged jet.
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APPENDIX E

A DESCRIPTION OF WHY THE METHODOLOGY OF A`FB MEASUREMENT

WORKS

In Chapter 4, we presented the measurement methodology of A`FB. In particular,

we showed the asymmetric decomposition of the q`η` spectrum and found that the

shape was closely correlated with the A`FB of the sample. Previous results had found

that the a·tanh formulation worked well, especially if |q`η`| < 2.0, but did not present

any justification for this choice other than showing it worked beautifully, as shown in

Fig. 4.3. In this Appendix, we provide a partial explanation of where the hyperbolic

tangent functional form comes from as well as a better parametrization and what

the new understanding leads us to. This text summarizes the work published in

Ref. [92].

E.1 Single and Double Gaussian Modeling

The q`η` distributions in Fig. 4.1 appear to be roughly Gaussian distributed with

a non-zero mean. Figure E.1 shows the q`η` distribution at parton level from the

powheg tt̄ sample with a fit to a Gaussian function, but with the fit restricted to

|q`η`| < 1.4. Note that the fit is decent, but clearly not good for |q`η`| > 1.4. This

simple model is clearly insufficient.

Before moving on to a better model, we use this simple Gaussian model to illus-

trate the methodology of where the functional form of tanh comes from. We note that

the number of events in a single bin of data (for example each of the bins in Fig.E.1,
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corresponding to the interval of (q`η`, q`η`+δ(q`η`))) can be readily calculated using

N (q`η`, q`η` + δ(q`η`)) =

∫ q`η`+δ(q`η`)

q`η`

dx C · Exp(−(x− µ)2

2σ2
)

= C · Exp(−(q`η` − µ)2

2σ2
) δ(q`η`) ,when δ(q`η`)→ 0,

(E.1)

where C is a normalization constant, µ is the mean of the distribution and σ is the

width of the distribution. We can then calculate A(q`η`) with this function:

A(q`η`) = lim
δ(q`η`)→0

N (q`η`, q`η` + δ(q`η`))−N (−q`η` − δ(q`η`),−q`η`)
N (q`η`, q`η` + δ(q`η`)) +N (−q`η` − δ(q`η`),−q`η`)

=
Exp(− (q`η`−µ)2

2σ2 )− Exp(− (−q`η`−µ)2

2σ2 )

Exp(− (q`η`−µ)2

2σ2 ) + Exp(− (−q`η`−µ)2

2σ2 )

= tanh(
µ · q`η`
σ2

)

(E.2)

We note that it has the form of a hyperbolic tangent function, but with the

parameter inside the function argument, not an overall scaling factor as in Eq. 4.3.

Since the single Gaussian function works only in the small |q`η`| region, we tried

a more sophisticated model, and found that the sum of two Gaussian functions with

a common mean works very well at describing the data, even at |q`η`| > 2.0. We

have not uncovered an a priori explanation why this should be so, but it appears to

be true for all the models we considered [109]. We use the functional form:

dN (q`η`)

d(q`η`)
= C ·

(
Exp(−(q`η` − µ)2

2σ2
1

) + r · Exp(−(q`η` − µ)2

2σ2
2

)
)
, (E.3)

where C is a normalization constant, r is a multiplicative factor that covers the

relative normalization of the two components and σ1 and σ2 are the widths of the

two different distributions. Fig. E.2 shows a comparison between the best fit and

the parton level data. This functional form works well for all our benchmark signal
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samples; the two σ terms and the r term are very consistent as shown in Fig. E.3.

We find σ1 = 0.91, σ2 = 1.61 and r = 0.11. More importantly, the mean (µ) varies

significantly from one sample to another, and appears to be linear with A`FB. From

here on, we assume the two σ terms and the r term have the best fit values from the

benchmark samples for further studies.

The double-Gaussian modeling allows for closed form calculations of the S(q`η`)

and the A(q`η`) terms as well as the inclusive A`FB using just the µ, σ1, σ2 and r

parameters. We find the S(q`η`) term and the A(q`η`) term have the functional forms

of

S(q`η`) =
C

2
·
(
e
− (q`η`−µ)

2

2σ21 + e
− (q`η`+µ)

2

2σ21 + r · e−
(q`η`−µ)

2

2σ22 + r · e−
(q`η`+µ)

2

2σ22

)
, and

(E.4a)

A(q`η`) =
e
− (q`η`−µ)

2

2σ21 − e−
(q`η`+µ)

2

2σ21 + r · e−
(q`η`−µ)

2

2σ22 − r · e−
(q`η`+µ)

2

2σ22

e
− (q`η`−µ)2

2σ21 + e
− (q`η`+µ)

2

2σ21 + r · e−
(q`η`−µ)2

2σ22 + r · e−
(q`η`+µ)

2

2σ22

. (E.4b)

It is not clear how to simplify these. However, the inclusive A`FB from Eq. 4.2 can be

simplified to

A`FB =
σ1 · erf ( µ√

2σ1
) + r · σ2 · erf ( µ√

2σ2
)

σ1 + r · σ2

. (E.5)

This functional form is shown in Fig. E.4, and, in the limit of µ� σ1, which corre-

sponds to |A`FB| . 0.2, in Fig. E.4a, we find that A`FB = 1.22 · µ which approximates

the data well.

The SM prediction and most models of new physics all have values of |A`FB| < 0.2,

so this can have a significant impact in simplifying the measurements. We can show

the distribution of the S(q`η`) and A(q`η`) from Eq. E.4 with µ = −0.1, 0.02 and 0.2

in Fig. E.5. The S(q`η`) term is largely unchanged except for small values of q`η` as
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Figure E.1: The q`η` distribution from the powheg tt̄ sample at parton level, with
a fit to a single Gaussian function in the region |q`η`| < 1.4 (indicated by the dashed
lines). Note that the agreement is not good for |q`η`| > 1.4.
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Figure E.2: The q`η` distribution from the powheg tt̄ sample at parton level, overlaid
with the double-Gaussian fit. Note that both the tails and the central part of the
distribution are well described.
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Figure E.3: Fit parameters from our benchmark samples as a function of A`FB.
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Figure E.4: With the double-Gaussian modeling, and constraining the two σ values
and the r to the best estimated values from the benchmark simulations, A`FB appears
to be linear as a function of the mean of the double-Gaussian function in the small
A`FB region. In a larger region, A`FB asymptotes to ±1.

previously noted, and the A(q`η`) term varies significantly. We also note that the

distribution looks like a hyperbolic tangent function for q`η` < 2, but has different

structures for larger values of q`η`.

A second set of important results comes from a description of of how much con-

tribution there is to the total asymmetry as a function of q`η` (the differential con-

tribution). It can be calculated as

S(q`η`) · A(q`η`)∫∞
0
S(x) dx

, (E.6)

where the denominator normalizes the area under the curve to be the total asymetry.

The results are shown in Fig. E.6a for the same three µ values. In some ways the

three curves look very different, but they do share some common features. While the

area under the curve is strongly dependent on µ, the shape of the distribution looks

remarkably similar for all three curves. To see the similarity, we plot the normalized

shape by rewriting Eq. E.6 such that the integral under the curve is equal to unity.

258



Specifically:

S(q`η`) · A(q`η`)∫∞
0
S(x) · A(x) dx

. (E.7)

The results are shown in Fig. E.6b and we note that the shape of the differential

contribution stays remarkably stable.

We are now able to make a number of further observations. First, the dominant

contribution to the overall asymmetry comes from the region around |q`η`| = 1,

which is the place where the detectors have excellent coverage and resolution. We

can also see why the slight mismodeling in the vicinity of q`η` = 0 in the S(q`η`)

term, as shown in Fig. 4.2a, and the mismodeling from the a · tanh description in

the region where q`η` > 2.5 in the A(q`η`) term would only introduce small biases

in the overall measurement compared to the dominant uncertainties. Specifically,

even though most of the events have |q`η`| < 0.1, the contribution to A`FB from this

region is ∼2%. Similarly, the q`η` region where there is no detector coverage at CDF

or D0, |q`η`| > 2.0, contributes ∼11% to the inclusive A`FB; conversely, the region

where the a · tanh fit performs poorly, |q`η`| > 2.5, contributes only 4%. In addition,

the constancy of the shape of the differential contribution provides an explanation

for why the extrapolation technique from the measured A`FB to the inclusive A`FB is

robust. The fraction of the A`FB within certain |q`η`| ranges are shown in Fig. E.7,

and some interesting numbers corresponding to typical lepton coverages at CDF and

D0 are listed in Table E.1.

Table E.1: Fraction of A`FB within typical q`η` coverage at CDF and D0.

q`η` Coverage A`FB Fraction
1.25 0.73
1.5 0.82
2.0 0.93
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Figure E.5: The S(q`η`) term and the A(q`η`) term from the double-Gaussian model,
with the µ parameter varied.
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Figure E.6: Figures showing the differential contribution to the total asymmetry as
a function of q`η` using the double-Gaussian model. This is estimated using the
S(q`η`) term times the A(q`η`) term, with the µ parameter varied, with different
overall normalizations. (a) The curves are normalized so that

∫
S(q`η`) dq`η` = 1 as

in Eq. E.6. In this case, the areas under the curves give the inclusive asymmetry.
(b) The curves are normalized to

∫
S(q`η`) · A(q`η`) dq`η` = 1 as in Eq. E.7. In this

case, we can see that the differential contribution to the asymmetry as a function of
q`η` is largely independent of the value of µ for small values of µ.
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Figure E.7: Fraction of A`FB within a certain q`η` coverage. The vertical lines show
q`η` = 1.25, 1.5 and 2.0 corresponding to the typical detector coverages at CDF and
D0. The numbers are given in Table E.1. The horizontal line indicates that the
fraction asymptotes to one as the q`η` coverage goes to infinity.

E.2 Comparing the Sensitivity of the a · tanh, Single-Gaussian and

Double-Gaussian Models

We compare the sensitivity of the three possible measurement techniques in a

number of ways. First we compare them visually, then we consider how well the dif-

ferent measurement techniques would work. Fig E.8 shows the A(q`η`) term and

the differential contribution to the inclusive A`FB as a function of q`η` from the

powheg sample, overlaid with the best fit from the a · tanh model, the single-

Gaussian model and the double-Gaussian model described, when we only consider

events with |q`η`| < 2.0. All three models fit this q`η` region well. Since the region

|q`η`| < 2.0 is where most of the contribution to A`FB comes from, all three models

(including the single-Gaussian model) get back to the inclusive A`FB of the sample rea-

sonably well. The double-Gaussian model fits the asymmetric part better in the q`η`

region above 2.0 than the tanh model, thus the differential contribution predicted by

the double-Gaussian model lines up with the powheg predicted points marginally
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better. However, as stated earlier, the improvement is in the region where the con-

tribution to the inclusive A`FB is small, thus the improvement in the resultant A`FB

using the double-Gaussian model is very small. Fig. E.9 shows the double-Gaussian

model fit to the A(q`η`) distribution for all the six benchmark samples at parton

level. A comparison with Fig. 4.2b shows that the double-Gaussian model matches

all the simulated samples better than the a·tanh model, although the differences are

mostly in the high-q`η` region where the contribution to the inclusive A`FB is small,

and there is no data from the experiments in this region.

We next compare how well the various methods would work for simulated data

by considering just the set of powheg simulated events within |q`η`| < 2.0 and

employing different methodologies to see how well each reproduces the inclusive A`FB

of 0.0236. We performed 10,000 pseudoexperiments by varying the dN (q`η`)/d(q`η`)

distribution with statistical fluctuations for about 1 million simulated events. We

then measured A`FB for each pseudoexperiment using each of the four methods:

1. A pure counting of the number of events with positive and negative q`η` values,

with a correction for the limited detector coverage using the correction factor

of 0.93 (see Table E.1) to extrapolate to the inclusive value

2. Fitting the a · tanh model to the A(q`η`) term of the distribution for the pa-

rameter a and calculating the inclusive A`FB using the S(q`η`) distribution and

Eq. 4.2

3. Fitting the asymmetric part of the double-Gaussian model to the A(q`η`) term

of the distribution for the parameter µ and calculating the inclusive A`FB with

Eq. E.5

4. Fitting the double-Gaussian model to the q`η` distribution itself for the param-
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A(q`η`) distribution (done only using events with |q`η`| < 2.0), while (b) shows the
differential contribution to the A`FB as a function of q`η` from different models.
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tt̄ samples at generator level. This figure can be compared directly to Fig. 4.2b where
we fit the same data, but using the a · tanh function.

eter µ and calculating the inclusive A`FB again with Eq. E.5

The results of the pseudoexperiments are shown in Table E.2.

The average of the pseudoexperiments for each method is always within one

standard deviation of the input A`FB value, indicating none have noticeable bias. As

expected, the pure counting method has the largest uncertainty, as the fits incor-

porate the additional shape information to reduce the uncertainties. While there

does not seem to be much difference in the sensitivity of the fitting methods, we

note that the fit on the A(q`η`) term has the systematic advantage over the pure fit

to the mean, µ, of the full dN (q`η`)/d(q`η`) distribution as most of the systematic

uncertainties due to the acceptance of the detector are expected to cancel out [43].

Thus, we favor the use of the fit on the A(q`η`) distribution over the simple counting

for resolution reasons, and over the fit on the full distribution for robustness reasons.

Between the two fits on the A(q`η`) term, we see that the a · tanh formulation is eas-

ier to work with, but further checks to see if there are other effects due to detector
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response should be considered.

Table E.2: Results of pseudoexperiments using the different methods to reproduce
A`FB of the powheg simulation (0.0236), but only using events with |q`η`| < 2.0.
Note that the uncertainties listed are statistical only and are due to the size of the
simulated data sample.

Method Mean Mean-Expected Uncertainty

Counting 0.0241 0.0004 0.0008
a · tanh A(q`η`) Fit 0.0243 0.0006 0.0006

Double Gaussian A(q`η`) Fit 0.0236 -0.0001 0.0006
Double Gaussian Direct Fit 0.0238 0.0002 0.0006

We next test how well the a·tanh and the double-Gaussian methods reproduce the

inclusive A`FB values for all 6 simulated samples with only events within |q`η`| < 2.0.

A comparison of results is given in Table E.3. Table E.4 lists the fit parameter (a)

for the a · tanh model for comparison with the same fit with detector effects taken

into account in the next section. Though the double-Gaussian model works better

in the high q`η` region, the impact on the A`FB measurement is negligible compared

to the dominant uncertainties in the measurement (∼0.02 in the lepton+jets final

state [43] and ∼0.05 in the dilepton final state [90]

E.3 Conclusions of A`FB Measurement Methodology Study

The measurement methodology with an empirical functional form of a · tanh to

extrapolate from the limited detector η coverage to an inclusive parton-level estimate

is fortuitous but robust. The a · tanh parametrization is an approximation that is

only good for values of |q`η`| < 2.5, but it is more than good enough for the Tevatron

experiments. Our studies show that a more sophisticated empirical function, which

takes the form of the sum of two Gaussian functions with a common mean, and
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Table E.3: Comparison of the predicted A`FB values and the corresponding measured
A`FB values with the a · tanh model and the double-Gaussian model. The uncertain-
ties are statistical only and are always small compared to the expected statistical
uncertainty in data collected by the CDF and D0 experiments.

Model True A`FB

Measured A`FB Measured A`FB

(a · tanh model) (Double-Gaussian model)

AxiL -0.063(2) -0.064(2) -0.064(2)
AxiR 0.151(2) 0.148(2) 0.150(2)
Axi0 0.050(2) 0.048(2) 0.048(2)

Alpgen 0.003(1) -0.004(1) 0.002(1)
Pythia 0.001(1) -0.005(1) 0.001(1)
powheg 0.023(1) 0.024(1) 0.023(1)

Table E.4: Hyperbolic tangent fit on generator level asymmetric part

Model A`FB(Generator Level) Fit Parameter(a)
AxiL −0.0626± 0.0024 −0.182± 0.006
AxiR 0.1513± 0.0024 0.419± 0.005
Axi0 0.0497± 0.0024 0.137± 0.006

Alpgen 0.0032± 0.0013 0.007± 0.003
Pythia 0.0001± 0.0008 0.003± 0.002
Powheg 0.0236± 0.0007 0.065± 0.002
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with empirically determined values of the two σ and r parameters, describes the q`η`

distribution better at all q`η` values. This functional form has not yielded a simple

closed form for the A(q`η`) term. While the double-Gaussian parametrization is bet-

ter in principle, in practice using it does not provide additional useful measurement

sensitivity and it is more cumbersome to use. On the other hand, this better under-

standing of the expected shapes lead to some interesting and useful conclusions in

addition to the confidence we now have in the methods previously being employed.

First, it is advantageous to think of the asymmetry as coming from the shift of the

mean of the q`η` distribution. To a good degree of approximation, measuring the

A`FB is equivalent to measuring the mean, µ, in the limit of small A`FB; measuring the

A(q`η`) term of the distribution is one of a number of ways to do so, which also takes

advantage of the cancelling of the systematic uncertainties caused by the detector

response in the measurement. Ultimately, we now understand that the dominant

contribution to the inclusive A`FB comes from the region within the CDF detector

which are best covered, and that the extrapolation procedures allow for a robust

measurement.
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APPENDIX F

CORRELATION BETWEEN TWO LEPTONS IN EACH EVENT

In each tt̄ → `+`′−νν̄ ′bb̄ candidate event there are two reconstructed charged

leptons. Since we include both leptons in our leptonic AFB measurement to get

better statistics, as done in Chapter 4, we describe in this appendix that positive

and negative leptons follow the same q`η` distribution and are not correlated in a

way that would mislead us into thinking that the statistical uncertainty is smaller

than it should be, or that we might bias the result in a significant way.

Figure F.1 shows the distribution of q`η` for positive and negative leptons sep-

arately from the powheg tt̄ MC sample at generator level. The two distributions

agree with each other within statistics. This gives us confidence that by mixing the

two leptons together we are still measuring the same distribution.

To get a sense of the correlation between the two leptons in each event, we test

it with pseudoexperiments (P.E.s) from Powheg tt̄ MC sample in the following way.

There are over 70k candidate events after reconstruction in the MC sample. In each

P.E., we randomly pick 410 candidate events, which is the expected number of signal

events in data, to mimic the final event data sample size. In each P.E., a raw AFB

(calculated by directly counting the number of forward and backward leptons) is

calculated for positive lepton only, negative lepton only, and using both leptons. All

the A`FB values from each P.E. are filled into a histogram, and fitted with a Gaussian

function. The mean of the Gaussian function serves as an estimate of the true raw

AFB in the MC sample, and the RMS from the fit function gives an estimate of the

statistical uncertainty of AFB.

In addition, a set of P.E.s with 820 candidate events (twice as many independent
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events as in data) in each P.E. is generated to see the expected statistical uncertainty

if the two leptons are fully uncorrelated. Fig. F.2 shows the result of the P.E.s de-

scribed above. The means of the four situations shown in the figures are consistent

with each other, indicating that no bias is introduced when using both leptons in

an event for measuring leptonic AFB. With 410 independent entries, the statistical

uncertainty is ∼0.049. With 820 independent entries, the statistical uncertainty is

∼0.035. With 410 independent events, two entries per event, the statistical uncer-

tainty turns out to be 0.036, slightly larger than the statistical uncertainty with

820 independent entries, indicating a correlation between the two leptons that is

very small, and introduces a tiny effect compared to the expected resolution of the

A`FB measurement. From these results we concluded that in the A`FB analysis, we

can safely use both leptons to measure leptonic AFB as it increases our statistical

precision.
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Figure F.2: Pseudoexperiments to test correlation between two leptons in an event.
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