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ABSTRACT 

 

Mesoscopic materials typically have different properties compared to bulk 

materials because their dimensions can be smaller than certain characteristic lengths.  

Transport measurements on mesoscopic-sized disordered materials allow us to study 

quantum corrections to conductivity.  In this study, silver-stannic oxide composite 

nanotubes of different diameters and lengths have been fabricated. Their resistances 

have been measured from 300 K down to 1.8 K in magnetic fields up to 5 T, applied 

either parallel or perpendicular to the nanotube axis.  At temperatures below 10 K, the 

resistance has a linear dependence on the natural logarithm of temperature.  Applying a 

range of magnetic fields both parallel and perpendicular to the nanotube axis results in 

an isotropic and positive magnetoresistance.  An analysis of the data rules out weak 

localization as the dominant conduction mechanism, and it supports the existence of 

strong electron-electron interactions as the dominant conduction mechanism at low 

temperatures.  Hopping transport mechanisms have also been considered, but they result 

in unrealistic physical parameters. 
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1. INTRODUCTION 

 

1.1. Electrical Conduction 

1.1.1 Electric Current 

In general, electric current is the movement of charges form one region to 

another.  Metals contain free electrons which are able to move within the conducting 

material, but cannot escape due to their attraction to the positive ions which make up the 

material.  Although the free electrons move at great speed, their motion is completely 

random, and since there is no net flow of charge in any direction, no current is present.   

 If, however, an electric field 𝑬 is established within the conductor then the free 

electrons feel a force given by1 

 𝑭 = 𝑞𝑬. ( 1 ) 

 

Although frequent collisions do occur with the ions that make up the material, a net 

motion of charge also occurs in the direction of the electric force.  This slow drift of 

charged particles is known as the drift velocity 𝒗𝑑 and results in a net current within the 

conductor.  

 By definition, current is the net charge 𝑑𝑄 which flows through an area 𝐴 during 

a time 𝑑𝑡.   During this time particles with velocity 𝒗𝑑 will move a distance 𝒗𝑑𝑑𝑡.  If the 

conductor has a cylindrical shape with cross sectional area 𝐴, and a concentration of 

particles 𝑛, then the volume of the cylinder is 𝐴𝒗𝑑𝑑𝑡, and the number of particles within 

it is 𝑛𝐴𝒗𝑑𝑑𝑡.  If each particle has charge 𝑞, the current is  



 

2 

 

 𝐼 = 𝑛|𝑞|𝑣𝑑𝐴, ( 2 ) 

 

and the current density, which is current per unit cross-sectional area,1 is  

 𝐽 = 𝑛|𝑞|𝑣𝑑. ( 3 ) 

 

 

 

1.1.2 Resistance and Ohm’s Law 

 If a potential difference is maintained across the conductor, an electric field and 

current density are established in the conductor.  In the limit of a small electric field the 

current density is proportional to the electric field.1  The proportionality constant 𝜎 is the 

conductivity of the conductor and the equation known as Ohm’s Law is written as1  

 𝑱 = 𝜎𝑬. ( 4 ) 

 

We now consider the conductor to be a cylindrical wire with cross-sectional 

area 𝐴 and length 𝑙, and maintain a potential difference of 

 ∆𝑉 = 𝑉𝑏 − 𝑉𝑎 ( 5 ) 

 

across it.  Using the definition of potential difference  

 
𝑉𝑏 − 𝑉𝑎 = − ∫ 𝑬 ∙ 𝑑𝒔

𝑏

𝑎

= 𝐸 ∫ 𝑑𝑥
𝑙

0

= 𝐸𝑙, 
( 6 ) 

 

we can now rewrite the current density as  

 
𝐽 = 𝜎𝐸 = 𝜎

∆𝑉

𝑙
 . 

( 7 ) 

 

If we replace the current density with the current per unit cross-sectional area then we 

have  
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 𝐼

𝐴
= 𝜎

∆𝑉

𝑙
 , 

( 8 ) 

 

which we can rewrite as  

 
∆𝑉 = (

𝑙

𝜎𝐴
) 𝐼. 

( 9 ) 

 

The resistance 𝑅 of the conductor is equal to the quantity  

 
𝑅 = (

𝑙

𝜎𝐴
) , 

( 10 ) 

 

and is defined as the ratio of the potential difference across a conductor to the current 

through the conductor,  

 
𝑅 =

∆𝑉

𝐼
 . 

( 11 ) 

 

 Since the resistivity 𝜌 of a material is the inverse of its conductivity,1  

 
𝜌 =

1

𝜎
 , 

( 12 ) 

 

then for a uniform block of material  

 
𝑅 = 𝜌

𝑙

𝐴
 , 

( 13 ) 

 

The equation shows that the resistance of a sample depends on the geometry of the 

sample as well as on its resistivity.  All materials that follow Ohm’s Law have a 

characteristic resistivity that depends on the properties of the material and on 

temperature.  Plotting current versus potential difference for ohmic materials results in a 

straight line with slope 1 𝑅⁄ .   
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1.1.3 Drude Model of Electrical Conduction in Metals 

 Paul Drude introduced a classical model of electrical conduction in metals.  The 

Drude model is valuable because it introduces concepts that are applicable in more 

elaborate situations, but it does have limitations.  Charges in an electric field feel a force 

given by  

 𝐹 = 𝑞𝐸, ( 14 ) 

 

and Newton’s second law says  

 𝐹 = 𝑚𝑎, ( 15 ) 

 

so we can now write  

 
𝑎 =

𝑞𝐸

𝑚
 . 

( 16 ) 

 

A particle’s mean free path 𝑙 is the average distance traveled between collisions.  The 

average velocity of the particle is given by the drift velocity 𝑣𝑑.  The average time 

between collisions is given by 𝜏.  Assuming that the drift velocity is lost following each 

collision event, each collision event results in an acceleration of  

 𝑎 = −
𝑣𝑑

𝜏
 . ( 17 ) 

 

In a steady-state, 

 𝑞𝐸

𝑚
 −  

𝑣𝑑

𝜏
= 0. 

( 18 ) 

 

Therefore, we have 

 
𝑣𝑑 =

𝑞𝐸

𝑚
𝜏. 

( 19 ) 

 

Plugging into  



 

5 

 

 𝐽 = 𝑛𝑞𝑣𝑑, ( 20 ) 

 

we get  

 
𝐽 = 𝑛𝑞 (

𝑞𝑬

𝑚
𝜏) =

𝑛𝑞2𝐸

𝑚
𝜏. 

( 21 ) 

 

Lastly, since1  

 𝐽 = 𝜎𝐸 ( 22 ) 

 

we can write  

 
𝜎 =

𝑛𝑞2𝜏

𝑚
 , 

( 23 ) 

 

which is known as the Drude model of conductivity.   

 

 

1.1.4 Electrical Resistivity of Metals 

For a pure metal that has no defects, its resistivity, known as its intrinsic 

resistivity (𝜌𝑖), is the result of the charge carriers (electrons or holes) colliding with the 

phonon vibrations and with each other.2  According to the Bloch-Gruneisen formula3,4, 

as the temperature goes down to 0 K, the resistivity also approaches zero as some power 

law of T.  The Bloch-Gruneisen formula provides the theoretical expression for the 

intrinsic resistivity of a metal due to electron-phonon interactions and is given by4 

 
𝜌𝑖(𝑇) = 𝛼𝑒𝑙−𝑝ℎ (

𝑇

𝜃
)

5

∫
𝑥5

(𝑒𝑥 − 1)(1 − 𝑒−𝑥)

𝜃 𝑇⁄

0

𝑑𝑥, 
( 24 ) 

 

where 𝛼𝑒𝑙−𝑝ℎ is the electron-phonon coupling parameter, and 𝜃 is the Debye 

temperature.  In the limit that 𝑇 → 0, 𝜌𝑖(𝑇) ∝ 𝑇5.  In the limit that 𝑇 → ∞, 𝜌𝑖(𝑇) ∝ 𝑇.   
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If there are any impurities present, the impurities will also scatter the charge 

carriers, resulting in an increased resistivity.2  Each different type of impurity will make 

independent contributions to the resistivity which are proportional to the concentration 𝑐 

of that type of impurity.2  The residual resistivity 𝜌0 is the resistivity at 0 K due to 

impurities.2  Assuming that the resistivity due to impurities does not depend on 

temperature and is additive, then we can write 

 
𝜌 = 𝜌0(𝑐) + 𝜌𝑖(𝑇), 

( 25 ) 

 

which is known as the Matthiessen Rule.2  As the temperature approaches zero, the 

phonon vibrations freeze out.  The residual resistivity of the sample at low temperature 

provides a good indicator of the level of impurity in the sample.  We can calculate the 

residual resistance ratio (RRR), 𝑅𝑅𝑅 = 𝜌300 𝐾 𝜌1.8 𝐾⁄ = 𝑅300 𝐾 𝑅1.8 𝐾⁄ ,  

 

𝑅𝑅𝑅 =
𝜌300 𝐾

𝜌1.8 𝐾
=

[𝜌0(𝑐) + 𝜌𝑖(𝑇)]

𝜌0(𝑐)
= 1 +

𝜌𝑖(𝑇)

𝜌0(𝑐)
 , 

( 26 ) 

 

and use it as a good indicator of the level of impurity in the sample. 

 

 

1.2. Quantum Corrections to Conductivity 

The theory of metals begins with the Bloch theorem which discusses the 

behavior of electrons in an ideal periodic lattice.5  What happens for deviations in 

periodicity?  Anytime interference due to electrons being scattered by impurities or 

phonons occurs quantum corrections to conductivity are introduced.6  It is important to 
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note that there are two types of scattering events.  The elastic mean free path is the 

average distance an electron travels between two elastic collisions.7  Elastic collisions 

occur at surfaces, dislocations, or impurity atoms, which are all lattice defects.7  During 

elastic collisions, an electron preserves its energy8 and the phase of the wave function is 

simply shifted by a fixed amount.9  The average time between elastic collisions is 𝜏 and 

the elastic mean free path is given by 𝑙 = 𝑣𝐹𝜏, where 𝑣𝐹 is the Fermi velocity.10  The 

second type of collisions is inelastic scatterings.  The inelastic mean free path is the 

average distance an electron travels between two inelastic collisions.7  Inelastic 

collisions are dominated by the electron-phonon interactions, but also include electron-

electron interactions.7  Inelastic collisions cause the electron to change its energy8 and 

lose its phase memory.9 The average time8 between inelastic collisions is 𝜏𝜑, and the 

inelastic mean free path10 is given by 𝑙𝑖𝑛 = 𝑣𝐹𝜏𝜑.  The materials in which the highest 

frequency collisions are elastic scattering events (𝜏𝜑 ≫ 𝜏) are sometimes referred to as 

disordered or dirty metals.8,11  Basically, the increased disorder results in conduction 

pathways that diminish the charge transport.  

 

 

1.2.1 Weak Localization 

In disordered metals, we can treat the motion of electrons semi-classically due to 

their diffusive motion.9  Electrons travel as nearly plane waves and collide elastically 

with the randomly located impurities resulting in a random walk among the impurity 

sites.9  As in Figure 1, we can consider all the possible trajectories that form a closed 
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loop starting and ending at the same position designated 𝑟 = 0.  Weak localization arises 

from the self-intersecting paths in which electrons travel around the closed loop in 

opposite directions.  In classical physics, the probability of a particle being found at its 

starting position is simply the sum of the probabilities12 of its arrival along these two 

different paths |𝐴1|2 + |𝐴2|2 = 2𝐴2.   

 

 

 
Figure 1.   Closed loop of self-intersecting path and its time-reversal path leading to 

weak localization. 

 

 

In quantum mechanics the probability of finding the electron at the position 𝑟 =

0 is twice as large as the classical case.  Here the probability of finding the particle12 at 

the starting position is the sum of the amplitudes squared13 and is given by |𝐴1 + 𝐴2|2 =

|𝐴1|2 + |𝐴2|2 + 2|𝐴1||𝐴2| = 4𝐴2.  Since the probability of finding an electron at the 

point 𝑟 = 0 is higher, the electron spends more time at that point which is what leads to 

the corrections to conductivity.8   
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It is important to remember that in order for an electron to participate in 

interference it must return to the starting point before it loses its phase memory.8  The 

phase coherence length is defined as the distance a particle travels before losing its phase 

memory.  The phase coherence length and inelastic mean free path are sometimes 

thought to be interchangeable, but they are not.10  That is because there are some 

scattering events which are considered to be elastic and phase-breaking at the same time, 

such as spin-flip scatterings.14  The phase coherence length is given by15 

 
𝐿𝜑 = √𝐷𝜏𝜑 , 

( 27 ) 

 

where 𝐷 is the diffusion coefficient given by 

 𝐷 = 𝑣𝐹
2𝜏 𝑑⁄ . ( 28 ) 

 

The variable 𝑑 is equal to the dimension of the sample (1, 2, or 3).10  The time between 

inelastic scatterings, 𝜏𝜑, increases with decreasing temperature.  Therefore, the 

conductivity decreases (resistivity increases) as the temperature decreases.8  We know 

𝜏𝜑~𝑇−𝑝, where p is a value on the order of 1 and depends on the scattering mechanism 

and dimensionality.15  Also, as the dimension of the sample increases, the interference 

effect becomes weaker.8 

 The corrections to the conductivity were introduced by Anderson et al.6 and 

Gorkov16 et al. in 1979.  In three dimensions the change in conductivity of a sample due 

to weak localization is given by8 

 
∆𝜎3 ≈ −𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + (

𝑒2

ℏ
) 𝐿𝜑

−1. 
( 29 ) 
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In two dimensions the change in conductivity of a sample due to weak localization is 

given by8 

 
∆𝜎2 ≈ − (

𝑒2

ℏ
) ln (

𝜏𝜑

𝜏
) ≈ −2 (

𝑒2

ℏ
) ln (

𝐿𝜑

𝑙
). 

( 30 ) 

 

In one dimension the change in conductivity of a sample due to weak localization is 

given by8 

 
∆𝜎1 ≈ − (

𝑒2

ℏ
) 𝐿𝜑 . 

( 31 ) 

 

The scale, 𝑒2 ℏ⁄ , where 𝑒 is electron charge and ℏ is the reduced Planck constant, shows 

up in all the corrections to conductivity.8  After the theory was developed, several 

research groups17 began to study the resistance as a function of temperature in thin 

disordered films, and their experimental results seemed to serve as experimental proof of 

weak localization.  However, some of those results were later attributed to electron-

electron interaction which we will discuss next.18   

Figure 2 shows the resistance versus temperature results of amorphous indium 

oxide thin films by Ovadyahu and Imry.19  These thin films are considered to be two-

dimensional and they display the linear relationship between the resistance and the 

logarithm of the temperature. 
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Figure 2.   Resistance versus temperature plot for amorphous indium oxide films from 

Ovadyahu and Imry for three samples.  R = 640 Ω (bottom), R = 1000 Ω (middle), and  

R = 4000 Ω (top).19  (Used with permission Z. Ovadyahu and Y. Imry, Copyright © 

1981, American Physical Society, http://dx.doi.org/10.1103/PhysRevB.24.7439) 

 

 

1.2.2 Effect of Magnetic Field on Weak Localization 

An electron traveling in a magnetic field experiences a force 𝑭 = 𝑞𝒗 × 𝑩.  This 

means that two electrons which are traveling towards each other will be deflected by the 

field in opposite directions.  The cyclotron radius is 𝑟 and the cyclotron frequency is 

given by 𝜔 = 𝑞𝐵/𝑚.  In dirty metals, 𝜏 is not that high so in a moderate field 𝜔𝜏 ≪ 1 

and we can ignore the difference between the scattering angles in comparison to the 

other more pronounced effects.8  We know that in a magnetic field the momentum, 𝒑, in 
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the Hamiltonian-operator is replaced by 𝒑 − 𝑒𝑨, which takes into account the vector 

potential of the magnetic field.20  Then the original wave function, when no magnetic 

field is present,  

 
𝛹0 ∝ 𝑒

𝑖(𝒑∙𝒓−𝐸𝑡)
ℏ , 

( 32 ) 

 

must be modified to20 

 
𝛹 ∝ 𝑒

𝑖((𝒑−𝑒𝑨)∙𝒓−𝐸𝑡)
ℏ = 𝑒−𝑖(

𝑒
ℏ 

𝑨∙𝒓)𝑒
𝑖(𝒑∙𝒓−𝐸𝑡)

ℏ = 𝛹0𝑒−𝑖(
𝑒
ℏ 

𝑨∙𝒓). 
( 33 ) 

 

The term  

 𝑒−𝑖(
𝑒
ℏ 

𝑨∙𝒓)
 

( 34 ) 

 

illustrates that the electron wave function acquires a phase 

 𝑒

ℏ 
𝑨 ∙ 𝒓 ( 35 ) 

 

in the presence of a vector potential A.20  As the electrons travel along a given path 𝒍, 

this phase cumulates as  

 𝑒

ℏ 
∫ 𝑨 ∙ 𝑑𝒍, 

( 36 ) 

 

so that20 

 
𝛹 ∝ 𝛹0𝑒−𝑖(

𝑒
ℏ ∫ 𝑨∙𝑑𝒍), 

( 37 ) 

 

and it is easy to see that the old and new solution differs only by a phase factor.  We also 

know that the magnetic flux, 𝛷𝐵, through a surface, 𝑺, is 

 
𝛷𝐵 = ∫ 𝑩 ∙ 𝑑𝑺 = 𝐵𝑆, 

( 38 ) 

 

when the plane of the loop and the direction of the magnetic field are perpendicular to 

each other.  However, using Stokes’ theorem, we know this is equivalent to 
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𝛷𝐵 = ∫ 𝑩 ∙ 𝑑𝑺 = ∮ 𝑨 ∙ 𝑑𝒍 

( 39 ) 

 

where 𝒍, is the loop that bounds the surface 𝑺.  So now we can say  

 𝛹 ∝ 𝛹0 exp (−𝑖
𝑒

ℏ 
𝛷𝐵). ( 40 ) 

 

Then we can say  

 𝛹 ∝ 𝛹0 exp(−𝑖2𝜋𝛷𝐵 𝛷0⁄ ), ( 41 ) 

 

where 𝛷0 = ℎ/𝑒 is the flux quantum.21  The electron waves move along the loop in 

opposite directions, so when they get back to the origin, the two parts of the wave 

function have a phase difference8 of 𝜑 = 2𝜋(𝛷𝐵 𝛷0⁄ ).  This phase difference implies 

that the probability of finding a particle at 𝑟 = 0, should now be considered to be21 

|𝐴1 + 𝐴2|2 = |𝐴1|2 + |𝐴2|2 + 2|𝐴1||𝐴2| cos 𝜑 = 2𝐴2(1 + cos 𝜑).  Since the average 

value of cos 𝜑 = 0, we know that the magnetic field destroys the interference.8  Since 

the magnetic field suppresses the localization effect, the magnetoresistance turns out to 

be negative.22  Figure 3 shows the magnetoresistance versus magnetic field for a silicon 

metal-oxide-semiconductor field effect transistor by Bishop et al.23  From the figure we 

can see that the weak localization effect leads to a negative magnetoresistance.24   
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Figure 3.   Magnetoresistance for a Si metal-oxide-semiconductor field effect transistor 

by Bishop et al. showing the destruction of weak localization due to a magnetic field.23  

(Used with permission D. J. Bishop, R. C. Dynes, and D. C. Tsui, Copyright © 1982, 

American Physical Society, http://dx.doi.org/10.1063/1.3475771) 

 

 

1.2.3 Electron-Electron Interaction 

At around the same time as the theory of weak localization was developed, 

Altshuler, Aronov, and Lee showed that there was another effect which also leads to an 

natural logarithm correction to the conductivity.25  Although weak localization is due to 

self-intersecting paths, interference between wave functions of different electrons is also 

possible.8  In a metal free from defects, two electrons that happened to be close together 

at time 𝑡 = 0 move apart quickly8 at the Fermi velocity 𝑣𝐹.  This means that the distance 

between the two electrons would increase linearly8 with time such that 𝑟~𝑣𝐹𝑡.  Due to 

the diffusive motion of electrons in metals with defects however, the average distance 

between the electrons increases8 at a much slower rate, 𝑟~𝑙(𝑡 𝜏⁄ )1 2⁄ ~𝑣𝐹(𝑡𝜏)1 2⁄ .  This 
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means diffusion changes the conditions of electron interactions because it keeps the 

electrons close.8 

In the diffusive regime, the electron-electron interactions lead to a dip in the 

density of states on the Fermi level.26  When the electron-electron interactions are taken 

into account, a new characteristic length appears.26  This new phase coherence length or 

the length of the interference region, 

 

𝐿𝑒𝑒 = √
𝐷ℏ

𝜀
~ √

𝐷ℏ

𝑇
, 

( 42 ) 

 

determines the crossover to lower dimensions.26  If the thickness of a thin film is less 

than 𝐿𝑒𝑒, then it is considered to be 2-dimensional.26  The variable 𝜀 represents the 

energy of the electron.   

Unlike the weak localization case in which the inelastic collisions determine the 

phase coherence time, in electron-electron interaction the difference in the energies ∆𝜀 is 

important.8  The average difference in the energies of two electrons27 is given by ∆𝜀~𝑇, 

where 𝑇 is the temperature.  For electron-electron interactions the phase coherence time8 

is approximately 𝜏𝑒𝑒 ⋍ ℏ 𝑇⁄  following the uncertainty relation. 

 The correction to the conductivity due to electron-electron interactions in three 

dimensions is8  

 
∆𝜎3 ≈ −𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + (

𝑒2

ℏ
) 𝜏𝑒𝑒

−1. 
( 43 ) 

 

In two dimensions, the change in conductivity of a sample due to electron-electron 

interactions is given by8 



 

16 

 

 
∆𝜎2 ≈ − (

𝑒2

ℏ
) ln (

𝜏𝑒𝑒

𝜏
) ≈ −2 (

𝑒2

ℏ
) ln (

𝐿𝑒𝑒

𝑙
). 

( 44 ) 

 

In one dimension, the change in conductivity of a sample due to electron-electron 

interactions is given by8 

 
∆𝜎1 ≈ − (

𝑒2

ℏ
) 𝐿𝑒𝑒 . 

( 45 ) 

 

Since the corrections to the conductivity are similar for weak localization and electron-

electron interactions, it would not be possible to distinguish between the two by 

analyzing the resistance versus temperature data alone.  In order to distinguish between 

weak localization and electron-electron interaction we could analyze the 

magnetoresistance.  In a magnetic field the spin up and spin down bands are split and 

each one has its own energy.22  Basically, as the magnetic field is increased the electron 

spins want to align with the field.  Due to the exclusion principle, however, there can 

only be one electron per state.  As a result, the electron-electron interaction decreases the 

effective tunneling density of states.8  The magnetoresistance for a thin film due to 

electron-electron interaction is isotropic and positive for spin splitting.15,22  Unlike weak 

localization, the magnetoresistance due to electron-electron interactions is still evident at 

higher fields.24 
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1.3. Hopping Conductivity 

1.3.1 Localized States 

As described by Kramer and MacKinnon, localization is a property of the states 

in random quantum mechanical systems which shows up in the transport properties of 

condensed matter systems.21  Localized states are defined as states whose wave functions 

are mainly concentrated in a confined region and decay exponentially outside this 

region.  In other words, the envelope of the wave function decays exponentially away 

from the localization point.15  In general 

 𝜓 → 𝑓(𝑟)𝑒−𝑟 𝜉⁄ , ( 46 ) 

 

where 𝜉 is the localization length and is given by 

 
𝜉 =

ℏ

√2𝑚|𝐸|
 , 

( 47 ) 

 

where 𝐸 is the position of the electron level measured from the upper edge of the well.8 

 At finite temperatures, localized states will contribute to transport processes as 

carriers hop from occupied to free states.8  An important assumption of hopping 

conductivity is that two states with equal energies would be infinitely far from each 

other.8  To compensate for the differences in energy, hopping is accompanied by the 

emission or absorption of phonons.21  The statistics of the excitations and the distribution 

of the localized states (both in energy and space) result in a unique temperature behavior 

of the transport coefficients.21 
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1.3.2 Nearest-Neighbor Hopping 

Even if the electrons are all in localized states they can be excited by phonons so 

that they hop to other nearby localized states.  Electrical conduction then occurs as a 

result of a series of hops.  Hopping between nearest neighbors is the simplest form of 

hopping conductivity.8   

 In the nearest-neighbor hopping regime, the hopping probability can be written 

as 

 
𝑃ℎ𝑜𝑝~exp (−

2𝑟

𝜉
−

Δ𝐸𝑁𝑁𝐻

𝑘𝐵𝑇
), 

( 48 ) 

 

where 𝑘𝐵 is the Boltzmann’s constant, Δ𝐸𝑁𝑁𝐻 is the energy separation between the final 

and initial states, 𝑇 is the temperature, and 𝑟 is the hopping distance.28  From this 

equation, we can see that at relatively high temperatures the hopping conductivity is 

primarily determined by nearest-neighbor hopping.  As the temperature decreases, the 

second term becomes larger and larger until eventually freezing out nearest-neighbor 

hopping.  The resistivity as a function of temperature for nearest-neighbor hopping is 

given by28 

 
𝜌(𝑇) = 𝜌𝑁𝑁𝐻 exp (

Δ𝐸𝑁𝑁𝐻

𝑘𝐵𝑇
). 

( 49 ) 

 

In the equation above 𝜌𝑁𝑁𝐻 is a temperature independent pre-exponential factor. 
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1.3.3 Mott Variable-Range Hopping 

In order for nearest-neighbor hopping to occur there must be a localized state 

nearby that is empty.  Decreasing the temperature makes nearest-neighbor hopping 

energetically unfavorable, as these states may have large energy separations.  Therefore, 

at lower temperatures an electron is more likely to hop a longer distance in order to find 

an empty state that is closer in energy.29  This then increases the importance of hopping 

between the centers with energies in the vicinity of the Fermi level where empty sites are 

known to exist.8  Figure 4 shows a schematic diagram of the two hopping models, 

nearest-neighbor hopping and variable-range hopping.  At higher temperatures, when 

phonons are readily available to provide the difference in energy, electrons can hop to a 

nearest-neighbor empty state.  However, at lower temperatures, the phonons freeze out 

and electrons are more likely to hop a further distance in order to find an empty state that 

is closer in energy.  In the figure below, the dashed line represents the Fermi energy. 

 

 

 
Figure 4.   Schematic diagram showing both nearest-neighbor hopping (NNH) and 

variable-range hopping (VRH) models.    
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 In 1968 N. F. Mott derived the temperature dependent resistivity due to variable-

range hopping.30  For 3-dimensional hopping, the average hopping distance for Mott 

variable-range hopping is given by31 

 
𝑅̅𝑀𝑜𝑡𝑡 =

3

8
𝜉 (

𝑇𝑀𝑜𝑡𝑡

𝑇
)

1 4⁄

. 
( 50 ) 

 

As seen from this equation, the average hopping distance depends on the temperature 

and therefore as the temperature changes so does the average hopping length, hence the 

term variable-range hopping.  The average hopping energy in 3-dimensional Mott 

variable-range hopping is given by31 

 
∆̅𝑀𝑜𝑡𝑡=

1

4
𝑘𝐵𝑇 (

𝑇𝑀𝑜𝑡𝑡

𝑇
)

1 4⁄

, 
( 51 ) 

 

where the characteristic temperature coefficient, 𝑇𝑀𝑜𝑡𝑡 is given by30 

 
𝑇𝑀𝑜𝑡𝑡 =

18

𝑘𝐵𝑁(𝜀)𝜉3
 . 

( 52 ) 

 

For Mott variable-range hopping, the temperature dependent resistivity follows the form 

 

𝜌(𝑇) = 𝜌𝑀𝑜𝑡𝑡 exp [(
𝑇𝑀𝑜𝑡𝑡

𝑇
)

1
1+𝑛

], 

( 53 ) 

 

where 𝑛 = 1, 2, or 3 refers to one, two, or three-dimensional variable-range hopping.30  

The variable 𝜌𝑀𝑜𝑡𝑡 is a temperature independent pre-exponential factor.  

Figure 5 shows the experimental results by Yildiz et al. showing the temperature 

dependence of the conductivity plotted as ln(𝜎) versus 𝑇−1 4⁄  for a titanium dioxide thin 

film.32  The solid line in the figure corresponds to the three-dimensional Mott variable-

range hopping line fit for their data.32 
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Figure 5.   Yildiz et al. results32 for a thin TiO2 thin film showing the temperature 

dependence of the conductivity plotted as ln(σ) versus T-1/4.  (Used with permission A. 

Yildiz, S. B. Lisesivdin, M. Kasap, and D. Mardare, 2007) 

  

 

1.3.4 Efros-Shklovskii Variable-Range Hopping 

It is important to note that Mott variable-range hopping is only applicable when 

Coulomb interactions between the localized electrons are negligible.  In 1970 M. Pollack 

pointed out that electron-electron interactions actually reduce the density of states near 

the Fermi energy.33  A soft Coulomb gap opens up when long-range Coulomb 

interactions become significant.33  In the presence of a Coulomb gap, the number of 

states in the vicinity of the Fermi level is no longer constant.34  Figure 6 shows a 

schematic illustration of a Coulomb gap in the density of states near the Fermi level. 
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Figure 6.   Schematic illustration of a Coulomb gap in the density of states. 

 

 

In 1975 Efros and Shklovskii pointed out that at low enough temperatures, the 

density of states is not constant near the Fermi energy due to electron-electron 

interactions and proposed new conductivity equations.35  The average hopping distance 

for 3-dimensional Efros-Shklovskii variable-range hopping is given by31 

 
𝑅̅𝐸𝑆 =

1

4
𝜉 (

𝑇𝐸𝑆

𝑇
)

1 2⁄

. 
( 54 ) 

 

The average hopping energy for 3-dimensional Efros-Shklovskii hopping is given by31 

 
∆̅𝐸𝑆=

1

2
𝑘𝐵𝑇 (

𝑇𝐸𝑆

𝑇
)

1 2⁄

, 
( 55 ) 

 

and the characteristic temperature 𝑇𝐸𝑆 is given by35 

 
𝑇𝐸𝑆 =

2.8𝑒2

𝜅𝜉𝑘𝐵
 , 

( 56 ) 

 

where 𝜅 is the permittivity.  The temperature dependent resistivity equation for Efros-

Shklovskii hopping is given by 
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𝜌(𝑇) = 𝜌𝐸𝑆 exp [(
𝑇𝐸𝑆

𝑇
)

3
3+𝑛

], 

( 57 ) 

 

where again 𝑛 = 1, 2, or 3 refers to one, two, or three-dimensional variable-range 

hopping.36  Here 𝜌𝐸𝑆 is a temperature independent pre-exponential factor. 

 In 1991 Rosenbaum proposed a theoretical crossover temperature between Mott 

variable-range hopping and Efros-Shklovskii variable-range hopping.37  Since then the 

crossover temperature has also been confirmed experimentally38 on a number of 

occasions.39  The crossover temperature from Mott variable-range hopping conduction to 

Efros-Shklovskii variable-range hopping conductivity occurs at the temperature37  

 
𝑇𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = 16

𝑇𝐸𝑆
2

𝑇𝑀𝑜𝑡𝑡
 . 

( 58 ) 

 

Figure 7 shows the resistivity as a function of temperature for three-dimensional Mott 

variable-range hopping and three-dimensional Efros-Shklovskii variable-range hopping 

from Viana et al.36  The plot also points out the crossover temperature which occurs at 

16 K in their SnO2 nanobelt sample.36 
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Figure 7.   Results by Viana et al. for resistivity as a function of temperature for three-

dimensional Mott variable-range hopping and three-dimensional Efros-Shklovskii 

variable-range hopping.36  The crossover from Mott to Efros-Shklovskii variable-range 

hopping occurs at 16 K for the SnO2 nanobelt sample.36  (Used with permission E. R. 

Viana, J. C. Gonzalez, G. M. Ribeiro, and A. G. de Oliveira 2012) 

 

 

1.4. Mesoscopic Materials 

The electrical, magnetic, optical and mechanical properties of a solid can change 

if the dimensions of the solid become smaller than a critical length associated with the 

properties.40  In general, making the dimensions of a solid comparable to the wavelength 

of an electron could affect the electrical, and magnetic properties of the solid.40  The 

small dimensions could lead to electron confinement and quantized states, as well as 
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giant magnetoresistance.40  Extensive research has been done on the electrical and 

magnetoresistance properties of thin films, so nanowires and nanotubes are the next class 

of experimentally interesting materials.  There are still quite a bit of difficulties present 

in trying to measure the transport properties of single nanowires and nanotubes, but 

experimental data is needed as we continue to try to understand the transport properties 

of mesoscopic materials.  Since there are quite a few interesting transport behaviors that 

occur at low temperatures, my goal was to measure the electrical and magnetoresistance 

properties of disordered conducting nanotubes.   

A granular or composite material is one that consists of grains or granules which 

are a mixture of metallic and insulating regions.29  In composite materials, the variable 𝑥 

represents the fraction of the total volume occupied by metallic grains.8  The electrical 

properties of composite materials depend on the composition.  In the dielectric regime, 

electrical conduction has been found to occur as a result of hopping transport 

mechanisms in thin films.41,42  Once the relative volume of the metal reaches a certain 

stage, conductivity is activated.8,29  The system undergoes a metal-insulator transition 

once connected metallic pathways through the sample are established.29  For composite 

thin films in the metallic regime, typical dirty metal behavior has been observed.43   

Transport measurements on gold-aluminum oxide,42 nickel-stannic oxide,42 and 

silver-stannic oxide thin films have been previously analyzed.43  As one of the newer 

contact materials for relays, silver-stannic oxide is of particular interest.  As the 

dimensions of electrical components decrease, it is important to understand the electrical 
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transport properties that result.  My goal was to study the electrical conduction and 

magnetoresistance properties of silver-stannic oxide composite nanotubes.  
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2. SAMPLE FABRICATION 

 

2.1. Nanotube Templates 

In recent years, research groups have developed a significant number of template 

based nanotube and nanowire fabrication methods.  The two main types of templates 

used are anodized aluminum oxide templates and track-etched polycarbonate templates.  

Anodized aluminum oxide templates are sometimes preferred due to a higher pore 

density when compared to polycarbonate templates.  In other cases, polycarbonate 

templates are preferred due to their hydrophilic properties.  In the cases where I needed 

polycarbonate templates, I simply used the commercially available ones.  In my journey 

to try to fabricate long, ultrathin, conducting nanotubes I have in some cases used 

homemade anodized alumina templates, which offer greater pore ordering (honeycomb 

array) and smoother surfaces when compared to their commercially available 

counterparts.   

Anodizing is an electrochemical process that forms an oxide layer on various 

metals.  Using an electrolyte which is able to partially dissolve the oxide layer produces 

a porous oxide layer.  In 1941, J. D. Edwards and F. Keller described the hexagonal pore 

structure of the anodized aluminum oxide coatings.44  By 1953, F. Keller, M. S. Hunter 

and D. L. Robinson had described the structural features of various anodized aluminum 

oxide coatings.45  They showed how changing the electrolyte and anodizing voltage 

affected the dimensions of the pores.45  Therefore, a range of aluminum oxide template 

pore sizes is possible by changing the acid and/or the anodizing voltage.  Some groups 
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use multiple anodizing steps and low temperature to improve the ordering of pore 

structures.46  To make an anodized aluminum oxide template like the one seen in Figure 

8, I first electro-polished high purity aluminum sheets at 1 A for two minutes, using a 

4:1 ethanol to perchloric acid solution, and a piece of platinum foil as the counter 

electrode.   

 

 

 
Figure 8.   SEM micrograph which shows the bottom side of an anodized aluminum 

oxide template with approximately 190 nm pore diameter. 

 

 

During the anodizing process, a direct current passes through an electrolytic 

solution where the aluminum sheet is the anode.  Due to the current, hydrogen is 

released at the cathode (a piece of platinum foil in my case) and oxygen is released at the 
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surface of the aluminum anode.  The oxidation rate balances the dissolution of the 

aluminum oxide by the acidic solution, which results in a coating with microscopic 

pores.  For the template showed in the figure, I used a 0.5 % H3PO4 electrolytic bath.  

For the first anodizing step, I slowly increased the voltage to 195 V and let the process 

continue for about 3 hours.  Then I placed the anodized alumina into a 5 % H3PO4 

solution at 60 ℃  until I completely etched away the first oxide layer.  What is left is a 

piece of aluminum that has small indentations where the previous pores were grown.  

This helps increase the pore ordering for the second anodizing step.  I performed the 

second anodizing step under the same growth conditions, but left it for a much longer 

time (typically 12 hours).  A longer anodizing time results in longer pores.  Once the 

second anodizing process was complete, I attached one side to a glass slide using crystal 

bond to protect that side.  Then I removed the oppositely anodized side with the 5 % 

H3PO4 solution at 60 ℃ .  I also removed the remaining aluminum layer using a PCB 

etchant.  Lastly, I used the 5 % H3PO4 solution at 30 ℃ for about one hour to open the 

back side of the pores.  The resulting templates have a pore diameter of about 190 nm.  

Since the other side of the pores was covered, no pore widening occurred on that side.   

Homemade aluminum oxide templates offer quite a few benefits when compared to the 

commercially available templates and are significantly more cost effective, but I do note 

that in some cases due to time constraints, I simply used commercially available 

aluminum oxide templates. 
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2.2. Nanotube Fabrication 

There are also two main template deposition methods for nanotube and nanowire 

fabrication.  These processes can produce crystalline or amorphous structures, depending 

on parameters such as deposition settings, temperature, and chemical bath 

concentrations.  Although what I needed for my measurements was a silver-stannic 

oxide nanotube, as I attempted to learn more about the electroless and electroplating 

processes, I was able to fabricate successfully a variety of nanotubes, not all of which I 

will discuss here. 

 

 

2.2.1 Titanium Dioxide Nanotubes 

The first nanotubes I was able to make were titanium dioxide nanotubes, using 

the sol-gel method described by H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. 

Hirashima in their Journal of Materials Chemistry publication,47 using anodized 

aluminum oxide templates (Figure 9). 
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Figure 9.   Two hundred nanometer diameter titanium dioxide nanotubes fabricated 

using a sol-gel method in anodized aluminum oxide templates.   

 

 

This nanotube fabrication method is rather straightforward; I heated the 0.04 M TiF4 

solution to 60 ℃ and then immersed the anodized aluminum oxide templates (nominal 

pore size: 200 nm) in the solution for varying periods of time.  Then I heated the 

template to 225 ℃ for 2 hours.  To obtain the SEM micrograph, I attached the sample to 

a silicon wafer and used sodium hydroxide to dissolve partially the anodized aluminum 

oxide template.  Figure 10 shows how increasing the deposition time uniformly increases 

the nanotube thickness.  In those SEM micrographs, the titanium dioxide nanotubes are 

still in the anodized aluminum oxide template. 
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Figure 10.   Titanium dioxide nanotubes in anodized aluminum oxide templates.  Top 

left: empty template, no titanium dioxide.  Top right: 1 minute deposition.  Bottom left: 

3 minute deposition.  Bottom right: 5 minute deposition. 

 

 

These nanotubes are worth mentioning due to their potential use in tuning the 

anodized aluminum oxide template parameters.  During the anodizing process, the 

voltage determines the pore spacing and pore diameter of the template.  Subsequent 

etching could enlarge the pore diameters, but otherwise, it is difficult to tune the pore 

spacing and diameter separately.  Since an increase in deposition time leads to a uniform 

increase in wall thickness, titanium dioxide nanotubes could potentially be used to 

minimize the pore diameter without changing the pore spacing, in applications where 

specific pore spacing and diameters are required.  To show this is a viable option, we 

were able to fill the titanium dioxide pores with cobalt nanowires, but I do not include 

those results here. 
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2.2.2 Gold Nanotubes 

Next, I tried an electroplating technique similar to the one proposed by W. Lee, 

R. Scholz, K. Nielsch, and U. Gosele in which they suggest depositing silver 

nanoparticles on the anodized aluminum oxide template surfaces.48    Their method is 

based on the preferential growth of a metal along the pore walls due to the presence of 

metallic nanoparticles.48  In order to immobilize the silver nanoparticles on the pore 

surfaces, I first immersed the anodized aluminum oxide template (nominal pore size: 200 

nm) into a tin solution containing 0.02 M SnCl2 and 0.01 M HCl for 2 minutes.  I rinsed 

the template with de-ionized water, then with acetone, and dried the template on a 70 ℃ 

hot plate for one minute.   Next, I immersed the template into the 0.02 M AgNO3 

solution for two minutes.  I again rinsed and dried the sample as before.  One tin and one 

silver solution immersion made up one cycle, and I did 10 cycles.  Even with ten cycles, 

the silver nanoparticles on the pore surface did not form a continuous layer.  After the 

immobilization of silver nanoparticles in the pores, I sputtered a 10 nm, conductive, 

platinum/palladium layer on one template surface.  Although the platinum/palladium 

layer was conductive, it was not thick enough to cover the back pore openings, and 

served as the cathode in the electro-deposition process.  For the electro-deposition, the 

electrolyte was Auruna 5000, which is a commercially available gold plating solution, 

and I used a piece of platinum foil to serve as the anode.  I electroplated at a current 

density of 3.4 mA/cm2 for 30 minutes.  Figure 11 shows my typical results.  Each time, 

the sample started out as a nanotube, but after a short distance morphed into a nanowire.   
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Figure 11.   SEM micrograph (left) and TEM micrograph (right) which shows how they 

start out as nanotubes then morph into nanowires. 

 

 

For the SEM micrograph, I attached the template to a silicon wafer and then 

partially dissolved the template using sodium hydroxide.  For the TEM micrograph, I put 

the template into a sodium hydroxide solution until the template dissolved completely.  

Then I used a centrifuge and removed the sodium hydroxide solution from the 

nanotubes.  I rinsed the nanotubes with de-ionized water three times and then put them 

in isopropyl alcohol to end up with a suspension of gold nanotubes in isopropyl alcohol. 

 

 

2.2.3 Copper Nanotubes 

To fabricate copper nanotubes I used a process like the one described by B. 

Bercu, I. Enculescu, and R. Spohr,49 although I did make some minor modifications.  

Here I used an electroless deposition technique with polycarbonate membrane filters of 

nominal pore size 220 nm.  These commercially available templates have a layer of 
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poly(vinylpyrrolidone) added during production, which makes them hydrophilic.  First, I 

sensitized the polycarbonate template by immersing the sample in a tin solution 

containing 0.02 M SnCl2 and 0.01 M HCl for 6 minutes.  As described by V. P. Menon 

and C. R. Martin,50  the poly(vinylpyrrolidone) coating contains “metal-ion complexing 

amino and carbonyl groups” which serve as “molecular anchors that bond the Sn2+ to the 

surfaces of the template.”  Then I rinsed the templates with de-ionized water and dried 

them.  Next, I activated the Sn2+ surfaces using a palladium solution that consisted of 0.1 

wt. % PdCl2 and 1.0 wt. % HCl for 4 minutes.  I then rinsed and dried the templates 

again.  Then I placed the templates into a 200 ml copper deposition bath which 

contained 1 g CuSO4 ∙5H2O,  5 g potassium sodium L-tartate tetra-hydrate, 1.4 g NaOH, 

and 2 ml formaldehyde for 10 minutes at room temperature.  I rinsed and dried the 

samples one last time.  In order to analyze the copper templates, I attached the 

polycarbonate template to a piece of silicon wafer and then partially dissolved the 

template using dichloromethane.  Figure 12 shows the results. 
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Figure 12.   Copper nanotubes still in a partially dissolved polycarbonate template. 

 

 

One of the problems in fabricating the copper nanotubes was due to the chemical 

reactions involved in making the final copper metal.  This reaction produces quite a few 

bubbles at the surface.  Because the pore diameters are in the 200 – 300 nm range, the 

bubbles expel the solution from the pores, which hinders the growth of copper within the 

pores. 

 

 

2.2.4 Silver-Stannic Oxide Composite Nanotubes 

Eventually I was able to obtain nanotubes of a measurable length (approximately 

10-micron) using various components of different electroless deposition processes.  For 
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these nanotubes, I again used nominal pore size 220 nm polycarbonate templates, but 

slightly modified the sensitization and activation solutions from the copper method.   

This time the tin solution consisted of 10 g/l SnCl2 and 10 ml/l HCl.   I immersed the 

templates in the tin solution for 6 minutes and then rinsed with de-ionized water and 

dried them.  The activation solution contained 0.1 g/l PdCl2 and 10 ml/l HCl and I 

immersed the templates for 4 minutes then rinsed and dried them.  I completed ten 

cycles of template sensitization and activation.  After that, I placed the template in the 

silver solution for 45 minutes, resulting in a continuous layer.  The silver solution 

consisted of two-parts, part A and part B.  Part A included 2.3 g AgNO3, 1.9 ml NH4OH, 

and 22.7 ml de-ionized water; while part B consisted of 10.68 g KNaC4H4O6·4H2O, 0.57 

g MgSO4, and 18.2 ml de-ionized water.  I mixed equal parts of part A and part B with 

14.1 parts de-ionized water, and heated the solution to 35 ℃ before immersing the 

templates.  Then I rinsed and dried the sample.  Because this silver deposition process 

did not produce any bubbles, I was able to grow nanotubes that span the length of the 

template.  Then I dissolved the template using dichloromethane.  After I placed a drop of 

solution on the appropriate substrate, I rinsed the sample with methanol and water.   

Some of the as prepared samples initially had a very high resistance so I annealed 

them at 200 ℃ for a few minutes.  The annealing step was motivated by several factors.  

First of all, annealing is known to reduce disorder51 and stabilize the resistance.52  

Secondly, silver is known to spontaneously oxidize53 at temperatures below 195 ℃.  The 

reaction53 is stable at about 195 ℃ and reverses at temperatures above 195 ℃.  Lastly, 

researchers have also found a decrease in the resistivity of stannic oxide films due to 
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annealing.54  The decrease in resistance when annealed to 200 ℃ is attributed to the 

formation of metal conducting chains of excess metal particles,54 which is consistent 

with our results.  I found that annealing the sample for as little as 2 minutes lowered and 

stabilized the resistance.  Figure 13 shows a TEM micrograph of an annealed nanotube. 

 

 

 
Figure 13.   A TEM micrograph of a single silver-stannic oxide composite nanotube. 

 

 

It is important to note that even though a commercially available polycarbonate 

template with a 220 nm nominal pore diameter was used, the nanotubes I obtained have 

an outer diameter ranging between 270 nm and 310 nm.   This is due to the fact that 

these polycarbonate templates are actually membrane filters and even though one pore 
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opening is close to 220 nm, the whole diameter of the pore is not entirely uniform.  For 

the samples I chose for measurement, I specifically chose samples with a uniform 

diameter.   

As a side note, in order to verify that the tin/palladium cycles did not form a 

continuous nanotube, I dissolved parts of the template prior to the silver deposition.  All 

that was left each time were nanoparticles.  I also did a two probe resistance 

measurement and got overload each time indicating that the particles were not 

conducting.  After the silver deposition, the two probe measurements resulted in finite 

values.    

 

 

2.3. Sample Contacts 

2.3.1 Four-Point Probe 

For all my resistance measurements, I employed a four-point probe contact 

method.  A four-point probe is more accurate than the traditional two-probe 

measurement because it gets rid of the contact resistances and the impedance 

contribution of the wiring.  The four-point probe measurement technique uses separate 

leads for current carrying and voltage sensing.  Figure 14 shows a schematic diagram of 

the four-point probe setup.  The outermost leads supply the current.  This current 

generates a voltage drop across the nanotube, but also across the I+ and I- wires 

themselves.  The measured resistance is between the two inner leads labeled V+ and V- 
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respectively.  The technique’s accuracy is because almost no current flows through the 

inner leads. 

 

 

 
Figure 14.   Schematic diagram of a four-point probe measurement method. 

 

 

2.3.2 Connecting Nanotubes for Measurement 

Once I had sufficiently long nanotubes I was able to start connecting the contact 

leads to my nanotubes.  As a substrate I chose a silicon wafer with a silicon nitride 

isolation layer so that the top layer would be insulating.  I used a diamond tip cutting 

tool to cut the wafers into approximately 1 cm by 1 cm squares.  To clean the substrates I 

rinsed them with acetone, then methanol, then de-ionized water and dried them using 

nitrogen gas.  For the large contact pads, I crossed four small diameter wires at the 

center of my small silicon wafers and used that as a mask during evaporation.  I made 

sure to cover the edges of the wafers so that no evaporation would occur on the 

conducting part of the silicon wafer thereby shorting all of the leads.  I evaporated a 5 

nm layer of chromium followed by a 60 nm layer of silver to make large contact pads on 
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the silicon wafers.  After the evaporation, I placed a drop of nanotube suspension at the 

center cross section of the wafer. In order to view, design and pattern the platinum 

connections, I used the Tescan LYRA-3 Model GMH Focused Ion Beam (FIB) with a 

built in scanning electron microscope (SEM).  The accelerating voltage for the FIB was 

set to 30 kV and the platinum lines I drew were 250 nm wide.  Once I located a suitably 

long nanotube on the substrate, I used the FIB to deposit platinum and connect the 

nanotube to the large contact pads, as seen in Figure 15.   

 

 

 
Figure 15.   A nanotube connected to the large contact pads using only FIB deposited 

platinum.  The inset shows a magnified micrograph of the actual nanotube contact 

pattern. 
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Unfortunately, the patterns made using only the FIB turned out to have too high 

of a resistance.  The resistance of the platinum was high because the gas used for 

deposition has too many contaminants and is typically used as a protective layer for ion 

milling.  The length of patterns needed also contributed to the high resistance.  In order 

to minimize the length of the FIB patterns, Dr. Wenhao Wu drew an electron beam 

lithography (EBL) pattern connecting the large contact pads to the nanotube.  After the 

EBL pattern was drawn, I evaporated a 5 nm layer of chromium followed by a 50 nm of 

silver.  Then in order to ensure a good contact, I used the FIB to connect the nanotube to 

the EBL pattern.  On some samples, I drew more than four contact connections because 

that enabled me to measure different sections and lengths on the same nanotube.  Figure 

16 shows a completed pattern, including the large silver pads, the EBL pattern and the 

platinum lines deposited using FIB which connect to the nanotube.  It is important to 

note that the FIB pattern lines are short in order to decrease the contact resistance values 

and reduce damage to the nanotubes by the ion beam.   
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Figure 16.   A nanotube connected to large contact pads using a combination of EBL and 

FIB.  The inset shows a magnified micrograph of contacts across the nanotube. 

 

 

The figure also shows other nanotubes randomly distributed on the surface and that is 

due to the fact that I am using a liquid suspension of nanotubes and cannot control where 

the nanotubes end up.   

Table 1 shows a representative example of how annealing a nanotube for 2 

minutes, reduces its resistance.   This specific nanotube had five different leads, labeled 

1 through 5.  This was a simple two probe measurement where R12 represents the 

resistance between leads 1 and 2, R13 represents the resistance between leads 1 and 3, 

and so on. 
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Table 1.   Two probe resistance measurements for a nanotube before and after annealing. 

 No Annealing Annealed 2 minutes 

R12 1.7 kΩ 400 Ω 

R13 85 kΩ 3.7 kΩ 

R14 111 kΩ 5.0 kΩ 

R15 114 kΩ 5.5 kΩ 

R23 83 kΩ 3.5 kΩ 

R24 110 kΩ 4.8 kΩ 

R25 112 kΩ 5.2 kΩ 

R34 27 kΩ 1.4 kΩ 

R35 29 kΩ 1.8 kΩ 

R45 2.4 kΩ 560 Ω 

 

 

Using a four probe measurement, the post-annealing resistance between leads 2 and 3 

was 3.2 kohms.  This shows the contact resistance is low (0.3 kohms) compared to the 

sample resistance, and therefore this is a valid four-point probe measurement. 
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3. NANOTUBE CHARACTERIZATION 

 

3.1. Scanning Electron Microscope (SEM) 

I used the SEM built into the FIB to view and pattern the samples.  Figure 17 

shows the same nanotube (a) prior to and (b) after annealing for 30 minutes.  The SEM 

accelerating voltage was 10 kV.  For the micrograph of the nanotube prior to annealing 

the magnification was 36.6 kX and for the micrograph of the nanotube after annealing 

the magnification was 30.3 kX.  It appears that the nanotube edge becomes smoother and 

that the nanotube is not quite as granular after annealing.   

 

 

 
Figure 17.   SEM of a nanotube (a) prior to and (b) after annealing for 30 minutes. 
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The figure shows that the deposited platinum lines slightly distort the shape of the 

nanotube at the contacts.  It appears that the nanotube is slightly flattened by the 

platinum contacts. 

 

 

3.2. Transmission Electron Microscope (TEM) 

After dissolving the polycarbonate template in dichloromethane to release the 

silver-stannic oxide composite nanotubes, I placed a drop of solution on a TEM 400 

mesh copper grid.  These specific copper grids have a 5-6 nm thin film of pure carbon 

deposited on one side of the copper grid for additional support.  Dr. Hansoo Kim, an 

associate research scientist at Texas A&M University’s Microscopy and Imaging Center 

took some micrographs of the nanotubes, and analyzed the electron diffraction patterns 

and energy dispersive x-ray spectra of the nanotubes.  Dr. Kim used the FE Tecnai G2 

F20 ST TEM, and I compared nanotubes that had been annealed with those that had not 

been annealed.   

 Using the TEM we were able to observe a hollow inner section indicating a 

nanotube shape.  As mentioned earlier, the outer diameter of the nanotube depends on 

which section along the template pore the nanotube was formed.  In Figures 18 and 19, 

the micrographs also show that there are particles present within the inner nanotube wall.  

Keeping in mind that the nanotube is 3-dimensional and this is a 2-dimensional 

micrograph, it does not appear the particles are evenly distributed throughout the 

nanotube.  For that reason, the particles within the pore edge were not used to calculate 
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the wall thickness of the nanotube.  Figure 18 shows a TEM micrograph of a nanotube 

that had not been annealed with an outer diameter of 282 ± 2 nm and wall thickness of 

17 ± 2 nm.   

 

 

 
Figure 18.   A TEM micrograph of a nanotube that had not been annealed and its 

corresponding electron diffraction pattern. 

 

 

Figure 19 shows an annealed nanotube with outer diameter 272 ± 2 nm with a 17 ± 2 nm 

wall diameter. 
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Figure 19.   A TEM micrograph of a nanotube that had been annealed for 5 minutes and 

its corresponding electron diffraction pattern. 

 

 

3.2.1 Electron Diffraction Pattern 

Electron diffraction patterns are possible because of the electron’s wave nature.  

When a beam of electrons is directed toward a thin sample, the electrons interact with 

the sample structure and are diffracted.  The ring structure pattern seen in the diffraction 

image is formed on the back focal plane of the TEM and is due to the constructive 

interference of the electron waves.  For these diffraction patterns the acceleration voltage 

of the beam of electrons was 200 kV, and the camera length was 200 mm.  Figure 20 

shows the magnified diffraction pattern for the nanotube that had not been annealed (the 

same nanotube shown in Figure 18). 
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Figure 20.   Magnified electron diffraction pattern of the nanotube shown in Figure 18 

that had not been annealed. 

 

 

From the diffraction pattern we measured the radii of each of the rings, then took 

the reciprocal since the diffraction pattern corresponds to reciprocal space.  The 

reciprocal of each radii corresponds to the inter-planar spacing of the lattice structures.  

Using the obtained inter-planar spacing values we matched those values to the x-ray 

diffraction data provided by the International Centre for Diffraction Data (formerly Joint 

Committee on Powder Diffraction Standards) to determine which materials make up our 

sample.  The diffraction pattern revealed the presence of both silver and stannic oxide.  

The stannic oxide is from the precursor steps.   
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Silver has a face centered cubic structure with lattice parameter 𝑎 = 4.08 Å.  For 

a cubic structure with lattice parameter 𝑎, the inter-planar spacing 𝑑, is given by  

 1

𝑑2 =
ℎ2+𝑘2+𝑙2

𝑎2 . ( 59 ) 

 

Here ℎ, 𝑘, and 𝑙 represent the Miller indices and for a face centered cubic structure the 

only allowed reflections are from all even or all odd ℎ, 𝑘, and 𝑙.  This means we expect 

to find the (111), (200), (220), and (311) planes which correspond to inter-planar spacing 

values of 𝑑 = 2.36, 2.04, 1.44, and 1.23 Å, respectively. 

As seen from the magnified electron diffraction pattern, we have identified 𝑑 =

2.27 Å which corresponds to (111) planes; 𝑑 = 1.96 Å which corresponds to (200) 

planes; and 𝑑 = 1.39 Å which corresponds to (220) planes.  These results are in good 

agreement with previous research55 and vary less than 4 % from the expected values 

which is a reasonable result.  The values we are comparing to are the values for bulk 

materials.  Even though we are using a 200 kV accelerating voltage for our beam of 

electrons, the accelerating voltage is not always exact leading to slight variations. 

Stannic oxide has a tetragonal structure with 𝑎 = 4.738 Å and 𝑐 = 3.187 Å.  For 

a tetragonal crystal the inter-planar spacing is given by  

 1

𝑑2 =
ℎ2+𝑘2

𝑎2 +
𝑙2

𝑐2. ( 60 ) 

 

Based on our knowledge of the most pronounced peaks56 and from previous research57, 

we expect to see58 𝑑 = 3.35, 2.64, and 1.76 Å.  On the electron diffraction pattern, we 

have identified 𝑑 = 3.27 Å which corresponds to (110) planes; and 𝑑 = 2.68 Å which 
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corresponds to (101) planes.  This time the percent difference is less than 3 %, which is 

again a reasonable result. 

 

 

 
Figure 21.   Magnified electron diffraction pattern of the nanotube shown in Figure 19 

that had been annealed. 

 

 

Figure 21 shows the magnified electron diffraction pattern for the nanotube that 

had been annealed (originally shown in Figure 19).  In this figure we have identified 

silver with inter-planar spacing values of 𝑑 = 2.27 Å which corresponds to (111) planes; 

𝑑 = 1.96 Å which corresponds to (200) planes; 𝑑 = 1.39 Å which corresponds to (220) 
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planes; and 𝑑 = 1.19 Å which corresponds to (311) planes.  We were also able to 

identify the stannic oxide planes (110) which corresponds to 𝑑 = 3.27 Å; (101) which 

corresponds to 𝑑 = 2.68 Å; and (211) which corresponds to 𝑑 = 1.71 Å. 

 Typically a diffraction pattern made up of solid rings corresponds to amorphous 

structures, while a diffraction pattern made up of distinct spots corresponds to single 

crystalline structures.  Both of the diffraction patterns are a mixture of faint rings and 

some spots and therefore correspond to a polycrystalline structure.  We believe the grid 

supporting layer of amorphous carbon is also contributing to the faint ring patterns.  

Structural and/or compositional disorder are a significant feature of polycrystalline 

materials.  Comparing the electron diffraction patterns before and after the annealing 

process shows that the faint ring patterns become less pronounced.  I believe this is due 

to the fact that the annealing process helps to reduce the disorder in the nanotube  

 

 

3.2.2 Energy Dispersive X-ray Spectroscopy (EDS) 

In order to further analyze the nanotube structure we also analyzed the drift 

corrected energy dispersive x-ray spectrum.  Figure 22 shows the line scan for a 

nanotube that had not been annealed.  On the left side, the red line represents the 

location where the line scan was taken and the red square represents the section of 

nanotube used for drift correction.   
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Figure 22.   Drift corrected energy dispersive x-ray spectroscopy line scan for the 

nanotube that had not been annealed. 

 

 

Since we used tin in one of the precursor steps, the stannic oxide is confined to the outer 

edge of the nanotube.  It is important to note the presence of silver even at the very edge 

of the nanotube.  This supports the idea that the nanotube is not simply a nanotube with 

two distinct layers, but is instead a mixture of stannic oxide and silver.  There is a higher 

concentration of stannic oxide at the outer edge, but it appears the silver fills in the gaps 

between the stannic oxide and then starts to grow inward. This is consistent with the fact 

that when I dissolved the template prior to the silver deposition step all that was left was 

random nanoparticles and not nanotubes.   

 Figure 23 presents the full energy dispersive x-ray drift corrected spectrum 

profile for the nanotube that had not been annealed.  From this spectrum one can see the 

silver, tin and oxygen peaks from the nanotube as well as the copper and carbon peaks 

from the copper grid with supporting carbon film.  The variable 𝑥 represents the fraction 

of the total volume occupied by metallic grains.  From the EDS data of this specific 
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nanotube that had not been annealed, I was able to find that the fraction of the total 

volume occupied by metal grains was 𝑥 = 0.62. 

 

 

 
Figure 23.   Energy dispersive x-ray drift corrected spectrum profile for the nanotube 

that had not been annealed. 

 

 

We did a similar analysis on the nanotube that had been annealed for 5 minutes.  

On the left side of Figure 24, the red line again represents the location of the line scan 

and the red square represents the section of the nanotube used for drift correction.  In this 

figure it is clear to see that the particles that have grown into the inner part of the 

nanotube are made up of silver.  The big valley in the silver signal corresponds to a 

section across the line scan where there is no “large” particle present.  The silver count 

however, still does not go to zero, indicating there is still a thin layer of silver in the 

outer edge of the nanotube.   
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Figure 24.   Drift corrected energy dispersive x-ray spectroscopy line scan for the 

nanotube that had been annealed for 5 minutes. 

 

 

Figure 25 shows the complete energy dispersive x-ray drift corrected spectrum 

profile for the nanotube that had been annealed.  The results are similar to the nanotube 

which had not been annealed.  The silver, tin, and oxygen peaks from the nanotube are 

present, as well as the copper and carbon peaks from the TEM support grid. 
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Figure 25.   Energy dispersive x-ray drift corrected spectrum profile for the nanotube 

that had been annealed for 5 minutes. 

 

 

From the energy dispersive x-ray data we were also able to determine the silver to 

stannic oxide composition ratio.  From the EDS data of this specific nanotube that had 

been annealed, I was able to find that the fraction of space occupied by metal grains 

was 𝑥 = 0.58.  From the EDS data we are able to conclude that our nanotubes do not 

have the same values for 𝑥 indicating that the fraction of space occupied by metal grains 

is likely to vary from nanotube to nanotube. 
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4. RESULTS AND DISCUSSION 

 

After making contact with the nanotubes, I mounted the samples into the 

Quantum Design Model 6000 Physical Property Measurement System (PPMS).  I used 

the rotating resistivity puck mount for measurements so that I was free to rotate the 

nanotube and align it as necessary.  The resistivity puck comes with preset I+, I-, V+, and 

V- designations to which I connected the appropriate sections of the nanotube.  For all of 

the following resistance versus temperature and magnetoresistance measurements, I used 

a 0.1 𝜇A excitation current and the AC drive mode.  According to the user’s manual, in 

AC drive mode, the user bridge actually applies a DC excitation to the sample and 

measures the potential drop across the sample.  Then the user bridge reverses the 

direction of the current and measures the potential drop across the sample again.  It then 

averages the absolute values of the potential drops and from that calculates the resistance 

of the sample.  Since the absolute values of the potential drops are averaged, the PPMS 

also provides a standard deviation for each data point.  Using the standard deviation of 

each resistance measurement, I calculated the percent error for each data point.  For all 

of the resistance measurements using PPMS, the percent error was less than 0.5 %.  As a 

result, the lengths of the error bars are smaller than the data point designations and are 

therefore not shown. 

 Due to the fragility of the samples, only three of the samples actually survived all 

the measurements.  In the proceeding sections, I will discuss each sample in great detail.  

All three samples were taken from the same batch and therefore were prepared under 
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identical conditions.  It was not possible to measure the specific wall thickness of each 

nanotube measured, but from the previous TEM micrographs of various nanotubes, I 

know the wall thickness is about 17 ± 2 nm regardless of the sample diameter.  I 

measured the sample diameters after the platinum was deposited which caused a slight 

flattening of the nanotube.  Sample A had a diameter of 351 ± 10 nm, a measureable 

length of 1.68 ± .01 𝜇m and had not been annealed prior to measurements.  By 

measurable length, I mean the distance between the V+ and V- leads.  Sample B had a 

diameter of 354 ± 10 nm, a measureable length of 0.67 ± .01 𝜇m and had been annealed 

for 7 minutes prior to measurements.  Sample C had a diameter of 317 ± 10 nm, a 

measurable length of 1.89 ± .01 𝜇m and had been annealed for 2 minutes prior to 

measurements. 

 

 

4.1. Resistance versus Temperature 

 As mentioned earlier, all the resistance measurements from the PPMS have a 

percent error of less than 0.5 %.  Since the error bars are smaller than the point 

designations, they are not shown in the following resistance versus temperature plots. 

For the resistance versus temperature measurement of Sample A, the sample was 

cooled from 300 K down to 1.8 K.  From 300 K to 50 K, data were recorded every 50 K; 

from 50 K to 10 K, data were recorded every 10 K; and from 10 K down to 1.8 K, data 

were recorded every 2.05 K.  Figure 26 shows the resistance versus temperature plot for 

Sample A.  As seen in the figure, as the temperature decreased, the resistance increased 
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slowly.  Then as the sample cooled past approximately 50 K, the resistance increased 

more rapidly.  For Sample A at 300 K, the resistance was approximately 3.2 kohms, and 

at 1.8 K, the resistance was almost 11 kohms.  From 300 K to 1.8 K, the resistance of 

Sample A increased by 3.3 times.   
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Figure 26.   Resistance versus temperature plot for Sample A from 300 K to 1.8 K. 

 

 

For the resistance versus temperature measurement of Sample B, from 300 K to 

50 K, data were taken every 25 K; from 40 K to 10 K, data were taken every 5 K; and 

from 10 K to 1.8 K, data were taken every 1.025 K.  Figure 27 shows the resulting 

resistance versus temperature plot.  As seen in Figure 27, Sample B shows a pattern of 

behavior similar to Sample A, but the resistance is significantly lower.  For Sample B, as 
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temperature decreased, the resistance increased.  Once the temperature cooled past 50 K, 

the resistance increased at a faster rate.  At 300 K the resistance of Sample B was 

approximately120 ohms, and at 1.8 K the resistance was 150 ohms.  For Sample B, the 

resistance increased to 1.3 times its initial value as it cooled from 300 K to 1.8 K.   
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Figure 27.   Resistance versus temperature plot for Sample B from 300 K to 1.8 K. 

 

 

 

For the resistance versus temperature measurement of Sample C, the sample was 

cooled from 300 K down to 1.8 K.  From 300 K to 50 K, data were recorded every 25 K; 

from 40 K to 10 K, data were recorded every 5 K; and from 9 K down to 1.8 K, data 

were recorded every 1.03 K.  Figure 28 shows the completed resistance versus 

temperature plot for Sample C.  Figure 28 shows that the behavior of Sample C is 
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different from Samples A and B.  At 300 K the resistance of Sample C was 

approximately 3.3 kohms, and at 1.8 K the resistance was 3.4 kohms.  For Sample C, the 

resistance initially decreased as it cooled down, but then started to increase at around 50 

K.  Eventually the resistance rose to 1.02 times its initial value. 
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Figure 28.   Resistance versus temperature plot for Sample C from 300 K to 1.8 K. 

 

 

4.1.1 Resistivity 

Using the measured dimensions of each sample, I calculated their resistivity at 

300 K.  The resistivity can be calculated using the equation 𝜌 = 𝑅𝐴 𝑙⁄ .  Sample A had a 

calculated resistivity of 𝜌 = 3.26 ∙ 10−3 Ω ∙ cm, Sample B had a calculated resistivity 

of 𝜌 = 3.21 ∙ 10−4 Ω ∙ cm, and Sample C had a calculated resistivity of 𝜌 = 2.79 ∙
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10−3 Ω ∙ cm.  Since the annealing process helps to reduce the resistivity of a sample, it is 

interesting to note that Sample B, which was annealed the longest, had the smallest 

resistivity.  Furthermore, the sample which was not annealed at all, Sample A, had the 

largest resistivity.   As a comparison, the resistivity2 of bulk silver at 293 K is 𝜌 = 1.59 ∙

10−6 Ω ∙ cm.   

 

 

4.1.2 Residual Resistance Ratio 

Since we know that at low temperatures impurity scatterings contribute to the 

resistance, another valuable piece of information is the residual resistance ratio (RRR).  

In metals, the RRR serves as a rough estimate of the level of impurity in a sample.59  A 

large RRR indicates a high purity sample, while a small RRR indicates a high level of 

impurity in the sample.59  Although I have composite nanotubes, I will simply use the 

RRR as a tool for comparison of sample quality.  I will use it as a more general measure 

for the amount of disorder.  For Samples A and B, I used 𝑅𝑅𝑅 =  𝑅300 𝐾 𝑅1.8 𝐾⁄ .  The 

calculated values were 𝑅𝑅𝑅 = 0.30 for Sample A, and 𝑅𝑅𝑅 = 0.79 for Sample B.  For 

Sample C since the resistance reaches a minimum at 75 K, I used 𝑅𝑅𝑅 =  𝑅300 𝐾 𝑅75 𝐾⁄  

and got 𝑅𝑅𝑅 = 1.02. 

In the data, Sample C has the highest RRR indicating the lowest level of disorder 

and yet from the temperature dependent resistance data it still does not obey the Bloch-

Gruneisen formula, but instead strongly resembles that of a dirty metal.  In a dirty metal 

as the temperature initially cools down, the resistance decreases because the phonon 
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vibrations in the lattice decrease.  Once below a certain temperature, the resistance 

begins to increase as the effects of disorder begin to dominate.60 

In Samples A and B, it appears that the contribution due to disorder is already 

dominating even at room temperature.  In Sample A, which has the lowest RRR the 

resistance increases at a faster rate than in Sample B.   

 

 

4.2. Current – Voltage Curves 

Semiconductors and metals have very distinct current – voltage curves.  Since the 

nanotubes were made up of both stannic oxide and silver, it seemed useful to study the 

current – voltage curves.  For these measurements, I used a lock-in amplifier with a 1 V 

rms AC output voltage at 40 Hz and a 10 MΩ limiting resistor, resulting in a current of 

0.1 𝜇A.  I also used a 100 kΩ limiting resistor and swept the DC voltage from + 5 V to – 

5 V.  I took measurements at the following temperatures: 1.8 K, 3 K, 4 K, 6 K and 10 K.   

Figure 29 shows the current – voltage curves for Sample A.  The figure shows 

that the current – voltage curves at 1.8 K, 3 K and just barely at 4 K have non-linear 

behavior.  However, as the temperature increases, the non-linearity decreases.  For the 

measurements at 6 K and 10 K, the curves are linear, indicating ohmic behavior.  From 

the current – voltage curves, I calculated the inverse slope of each line to get the 

resistance at that temperature.  Since the PPMS resistance values at each of these 

temperatures had a percent error of less than 0.15 %, the resistance values from the 

current – voltage measurements were compared to those values.  For Sample A, the 
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resistance calculated from the current – voltage curves differed from the PPMS values 

by 2.2 % or less.   
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Figure 29.   The current – voltage curves for Sample A.  Data were taken at 1.8 K, 3 K,    

4 K, 6 K, and 10 K. 

 

 

Since the current – voltage curves were so close together, I also plotted the 

derivative of the current – voltage curves.  Taking the noise into account, if the current – 

voltage curve was a straight line, the derivative would have an overall horizontal line.  

Figure 30 shows the derivative of the current – voltage curves for sample A.  After 1.8 

K, each subsequent curve was offset by 0.15 µA/mV for clarity.  For the curves at 1.8 K, 
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3 K, and just barely at 4 K, there is a slight increase towards the outer edges of the curve.  

The 6 K and 10 K derivatives confirm that the current – voltage curves are straight lines.   
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Figure 30.   The derivatives of the current – voltage curves for Sample A.  After 1.8 K, 

each subsequent curve was offset by a value of 0.15 µA/mV. 

 

 

I used the same settings as before to measure the current – voltage curves for 

Sample B as shown in Figure 31.  For Sample B, the current – voltage relationship 

corresponded to a straight line for all the measured temperatures.  Since the PPMS 

resistance values at each of these temperatures had a percent error of less than 0.27 %, 

the resistance values from the current – voltage measurements were compared to those 
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values.  For Sample B, the resistance calculated from the current – voltage curves 

differed from the PPMS values by 4.4 % or less. 
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Figure 31.   The current – voltage curves for Sample B.  Data were taken at 1.8 K, 3 K,    

4 K, 6 K, and 10 K. 

 

 

Figure 32 shows the derivative of the current – voltage curves for sample B.  

After 1.8 K, each subsequent curve was offset by 6 µA/mV for clarity.  At each 

temperature, the derivatives confirm that the current – voltage curves are straight lines.   
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Figure 32.   The derivatives of the current – voltage curves for Sample B.  After 1.8 K, 

each subsequent curve was offset by a value of 6 µA/mV. 

 

 

 I used identical settings to measure the current – voltage curves of Sample C, but 

only have the results for the 1.8 K measurements.  As seen in Figure 33, the current – 

voltage curve result was a straight line even at 1.8 K.  If any non-linear behavior were to 

occur, it would have shown up in the 1.8 K measurement.  Since the PPMS resistance 

value at 1.8 K had a percent error of less than 0.02 %, the resistance from the current – 

voltage measurement was compared to that value.  For Sample C, the resistance 

calculated from the current – voltage curve differed from the PPMS value by 0.9 %. 
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Figure 33.   The current – voltage curve for Sample C measured only at 1.8 K. 

 

 

Figure 34 shows the derivative of the current – voltage curve for sample C.  The 

derivative confirms that the current – voltage curve is a straight line.   
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Figure 34.   The derivative of the current – voltage curve for Sample C.   

 

 

The non-linearity of the current – voltage curves for Sample A at temperatures 

1.8 K, 3 K, and just a slight amount at 4 K indicate a departure from Ohm’s law.  At 

these temperatures the resistance is no longer constant, but instead depends on the 

current applied.  The non-linearity of the current – voltage curves is not very 

pronounced, and only appears at the lowest temperatures in the sample with the highest 

level of disorder.  This sample, Sample A, was also the sample that was not annealed and 

is very likely the most granular of the samples.  The resistance for Sample A, is an order 

of magnitude larger than Sample C, and two orders of magnitude larger than Sample B 

at these temperatures, so it is possible that it is reaching some type of transport limit as it 

approaches these values.  At these temperatures, the enhanced disorder and granularity 

of the sample as well as electron-electron interaction could be resulting in an Coulomb 
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gap.8  However, since the non-linearity of the curve is not very pronounced and 

disappears in annealed samples, it is difficult to make such a conclusion with certainty.  

Also, there is no easy way to conclude if the non-linearity effect in Sample A is 

due to heating or not.  However, for all the PPMS resistance measurements I used a 0.1 

µA current, which was small enough that it was still in the linear regime.  Since the 

current used for measurements was in the linear regime, sample heating is not an issue 

for my measurements. 

4.3. Comparisons to Previous Work 

Although electrical transport measurements of similar composite nanotubes have 

not been reported elsewhere, I did find experimental results by Wei and Li on similar 

composite film materials.  Wei and Li analyzed 500 nm thick silver-stannic oxide nano-

granular films, and studied their resistivity as a function of temperature.43  Their results 

are shown in Figure 35. 
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Figure 35.   Wei and Li’s resistivity as a function of temperature measurements of 

Ag+SnO2 nano-granular films,43 for 0.59 ≤ x ≤ 0.80.  (Used with permission Y. F. Wei 

and Z. Q. Li, 2013) 

In their plot, the variable 𝑥 represents the fraction of the total volume occupied  

by metallic grains.  In their analysis of thin films for 𝑥 ≳ 0.67, as the temperature 

decreased, the resistivity also decreased.43  After the resistivity reached a minimum, it 

slightly increased with further decreasing temperature.43  They attributed this behavior to 

that of a dirty metal in which the conducting paths are formed by the connected silver 

particles.43  They also found that for 0.54 ≲ 𝑥 ≲ 0.65 the temperature coefficients of 

resistivity for each film were negative in the whole temperature range.43  They 

concluded that these samples were governed by tunneling to the second nearest 

neighboring particles and that most of the conducting paths were broken.43  In other 

words, the conduction is governed by hopping mechanisms. 



 

72 

 

0 50 100 150 200 250 300

1.0

1.5

2.0

2.5

3.0

3.5

 

 

 Sample A

 Sample B

 Sample C

R
/R

3
0

0
 K

Temperature (K)

 
Figure 36.  The normalized resistance R/R300 K of Samples A, B, and C as a function of 

temperature. 

 

 

To compare with the results by Wei and Li, I plotted my data as 𝑅/𝑅300 𝐾.  My 

results are shown in Figure 36.  As seen in the figure, my results are similar to those by 

Wei and Li, but unfortunately I do not know the specific 𝑥 values of my nanotubes.  Due 

to the fragility of my samples, as I tried to do additional measurements, all of my 

samples were damaged.  As a result, I was not able to measure the fraction of total 

volume occupied by silver grains for the nanotubes used in my transport measurements.  

Although I do not know the exact values of 𝑥 for the nanotubes I measured, I did analyze 

two other nanotubes which were made from the same batch.  For those nanotubes, the 

fraction of total volume occupied by silver grains varies between 0.58 ≤ 𝑥 ≤ 0.62.  

Since I know the 𝑥 values vary, it does not seem far-fetched that I could also have 



 

73 

 

samples with slightly higher values of 𝑥.  In fact, Sample A resembles the behavior of 

their sample 𝑥 = 0.59, Sample B, resembles their sample 𝑥 = 0.64, and Sample C, 

resembles their sample 𝑥 = 0.67.  I am not claiming that those are the 𝑥 values of the 

nanotubes, simply pointing out the similarities in behavior.  It seems plausible that even 

though the samples were all made from the same batch, some nanotubes may have a 

higher concentration of silver than others. 

The main difference between their samples and mine is in the total increase of 

resistance as the sample cools down.  None of their resistances increase to greater than 

1.07 times its initial value.  For the nanotube in my study with the greatest amount of 

disorder, the resistance increases to about 3.3 times its initial value.  This seems 

consistent with the fact that surface scattering plays a much more dominant role in my 

thin nanotubes (17 nm wall thickness) than in their 500 nm thick films. 

Since Wei and Li concluded that the transport in their silver-stannic oxide thin 

films was governed by hopping mechanisms, I chose to consider hopping as a transport 

mechanism for my samples as well.   

  

 

4.3.1 Nearest-Neighbor Hopping 

The equation for nearest-neighbor hopping is the same for any sample 

dimensionality and is given by28 

𝜌(𝑇) = 𝜌𝑁𝑁𝐻 exp (
Δ𝐸𝑁𝑁𝐻

𝑘𝐵𝑇
). 
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Since 𝑅 ∝ 𝜌, if nearest-neighbor hopping was the governing transport mechanism in the 

nanotubes, plotting the natural logarithm of the resistance as a function of the inverse 

temperature would reveal a linear dependence.  Figures 37, 38, and 39 show the ln(R) 

versus T-1 plots for Samples A, B, and C, respectively.  None of the samples exhibited a 

linear section in the natural logarithm of the resistance versus inverse temperature plots, 

indicating that nearest-neighbor hopping was not likely the transport mechanism 

governing electrical conduction in the nanotubes. 
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Figure 37.   The ln(R) versus T-1 plot for Sample A. 
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Figure 38.   The ln(R) versus T-1 plot for Sample B. 
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Figure 39.   The ln(R) versus T-1 plot for Sample C.  
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4.3.2 Mott Variable-Range Hopping 

The equation for Mott variable-range hopping is given by 

𝜌(𝑇) = 𝜌𝑀𝑜𝑡𝑡 exp [(
𝑇𝑀𝑜𝑡𝑡

𝑇
)

1
1+n

], 

where 𝑛 = 1,2, 𝑜𝑟 3 refers to one, two, or three-dimensional variable-range hopping.36  

Since 𝑅 ∝ 𝜌, if one-dimensional Mott variable-range hopping was the governing 

transport mechanism in the nanotubes, plotting the natural logarithm of the resistance as 

a function of the temperature raised to the negative 1/2 power would reveal a linear 

dependence.  Figures 40, 41, and 42 show the ln(R) versus T-1/2 plots for Samples A, B, 

and C, respectively.  None of the samples exhibited a linear section in the natural 

logarithm of the resistance versus temperature raised to the negative 1/2 power plots, 

indicating that one dimensional Mott variable-range hopping was not likely the transport 

mechanism governing electrical conduction in the nanotubes. 
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Figure 40.   The ln(R) versus T-1/2 plot for Sample A. 
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Figure 41.   The ln(R) versus T-1/2 plot for Sample B. 
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Figure 42.   The ln(R) versus T-1/2 plot for Sample C. 

 

 

 Based on the same equation, if two-dimensional Mott variable-range hopping 

was the governing transport mechanism in the nanotubes, plotting the natural logarithm 

of the resistance as a function of the temperature raised to the negative 1/3 power would 

reveal a linear dependence.  Figures 43, 44, and 45 show the ln(R) versus T-1/3 plots for 

Samples A, B, and C, respectively. 
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Figure 43.   The ln(R) versus T-1/3 plot for Sample A. 
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Figure 44.   The ln(R) versus T-1/3 plot for Sample B. 
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Figure 45.   The ln(R) versus T-1/3 plot for Sample C. 

 

 

Sample A did not exhibit a linear section in the natural logarithm of the 

resistance versus temperature raised to the negative 1/3 power plot, indicating that two-

dimensional Mott variable-range hopping was not likely the transport mechanism 

governing the electrical conduction in that sample.  Although Samples B and C seemed 

to exhibit a linear section in the natural logarithm of the resistance versus temperature 

raised to the negative 1/3 power plots, the temperature range for that section 

corresponded to temperatures between 4.9 K and 9 K.  Since the temperature range for 

the linear section was only 4.1 K, two-dimensional Mott variable-range hopping did not 

seem to be an appropriate fitting equation.   

Based on the same equation, if three-dimensional Mott variable-range hopping 

was the governing transport mechanism in the nanotubes, plotting the natural logarithm 
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of the resistance as a function of the temperature raised to the negative 1/4 power would 

reveal a linear dependence.  Figures 46, 47, and 48 show the ln(R) versus T-1/4 plots for 

Samples A, B, and C, respectively. 
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Figure 46.   The ln(R) versus T-1/4 plot for Sample A. 
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Figure 47.   The ln(R) versus T-1/4 plot for Sample B. 
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Figure 48.   The ln(R) versus T-1/4 plot for Sample C. 
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All three samples seemed to exhibit a linear section in the natural logarithm of 

the resistance versus temperature raised to the negative 1/4 power plot.  This time, the 

temperature range for the linear section corresponded to temperatures between 10 K and 

50 K.  The 40 K temperature range seemed to be sufficient enough to attempt a three-

dimensional Mott variable-range hopping fit for the data. 

Using the parameters of the linear fit corresponding to temperatures between 10 

K and 50 K.  I plotted the data with the three-dimensional Mott variable-range hopping 

fit for each of the samples.  Figure 49 shows the fitting results for Sample A.  At values 

above 50 K, there is an obvious departure from the Mott variable-range hopping fit.  At 

temperatures below 10 K, the shape of the curve fit is close to that of the data, but the 

resistance values do not match up.  Based on the fitting equation for three-dimensional 

Mott variable-range hopping fit, 𝑇𝑀𝑜𝑡𝑡 = 8.2 K for Sample A.  It is at this point that an 

issue arises.  As mentioned earlier, the average hopping length equation37 is 𝑅̅𝑀𝑜𝑡𝑡 =

3

8
𝜉 (

𝑇𝑀𝑜𝑡𝑡

𝑇
)

1 4⁄

.  This indicates that 𝑇𝑀𝑜𝑡𝑡 should be larger than the temperatures for which 

Mott variable-range hopping is thought to occur in order to make any physical sense.  

Since TMott is less than T, the (
𝑇𝑀𝑜𝑡𝑡

𝑇
)

1 4⁄

 part of the average hopping length equation is 

less than one.  As a result, the average hopping length is less than the localization length, 

which does not make physical sense.  In this case, we are considering that Mott variable-

range hopping is occurring at temperatures between 10 K and 50 K, and those 

temperatures are already above the calculated 𝑇𝑀𝑜𝑡𝑡.  This would indicate that the 

average hopping length is less than the localization length, which in turn indicates that 
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three-dimensional Mott variable-range hopping is not a likely explanation of the 

electrical transport data. 
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Figure 49.   Three-dimensional Mott variable-range hopping fit in the 10 to 50 K range 

for Sample A. 

 

 

Using the parameters from the linear fit of Sample B, I plotted the data with the 

three-dimensional Mott variable-range hopping fit in Figure 50.  Similar to the previous 

sample, at values above 50 K, there is an obvious departure from the Mott variable-range 

hopping fit.  Also, at temperatures below 10 K, the shape of the curve fit is close to that 

of the data, but the resistance values do not match up.  Although the fit seems to follow 

the data trend a little better than the previous sample, again I end up with an 
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unreasonable value for 𝑇𝑀𝑜𝑡𝑡, here 𝑇𝑀𝑜𝑡𝑡 = 0.03 𝐾.  Based on the same argument as 

before, the 𝑇𝑀𝑜𝑡𝑡, corresponding to an average hopping length which is less than the 

localization length, indicates that three-dimensional Mott variable-range hopping is not a 

likely explanation of the electrical transport data. 
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Figure 50.   Three-dimensional Mott variable-range hopping fit in the 10 to 50 K range 

for Sample B. 
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Figure 51.   Three-dimensional Mott variable-range hopping fit in the 10 to 50 K range 

for Sample C. 

 

 

Using the parameters from the linear fit of Sample C, I plotted the data with the 

three-dimensional Mott variable-range hopping fit in Figure 51.  Similar to the previous 

two samples, at values above 50 K, there is an obvious departure from the Mott variable-

range hopping fit.  Also, at temperatures below 10 K, the shape of the curve fit is close 

to that of the data, but the resistance values do not match up.  Again, I end up with a 

physically unreasonable value for 𝑇𝑀𝑜𝑡𝑡, here 𝑇𝑀𝑜𝑡𝑡 = 8.2 ∙ 10−5 𝐾.  Based on the same 

argument as before, the 𝑇𝑀𝑜𝑡𝑡, corresponding to an average hopping length which is less 

than the localization length, indicates that three-dimensional Mott variable-range 

hopping is not a likely explanation of the electrical transport data. 
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Although the resistance versus temperature data appear to resemble the behavior 

of Mott variable-range hopping, the fits do not correspond to any physically reasonable 

values, and are therefore not thought to be a viable explanation of the data. 

 

 

4.3.3 Efros-Shklovskii Variable-Range Hopping 

The equation for Efros-Shklovskii variable-range hopping is given by 

𝜌(𝑇) = 𝜌𝐸𝑆 exp [(
𝑇𝐸𝑆

𝑇
)

3
3+n

], 

where 𝑛 = 1,2, 𝑜𝑟 3 refers to one, two, or three-dimensional variable-range hopping.36  

Since 𝑅 ∝ 𝜌, if one-dimensional Efros-Shklovskii variable-range hopping was the 

governing transport mechanism in the nanotubes, plotting the natural logarithm of the 

resistance as a function of the temperature raised to the negative 3/4 power would reveal 

a linear dependence.  Figures 52, 53, and 54 show the ln(R) versus T-3/4 plots for 

Samples A, B, and C, respectively.  None of the samples exhibited a linear section in the 

natural logarithm of the resistance versus temperature to the negative 3/4 power plots, 

indicating that one-dimensional Efros-Shklovskii variable-range hopping was not likely 

the transport mechanism governing electrical conduction in the nanotubes. 
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Figure 52.   The ln(R) versus T-3/4 plot for Sample A. 
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Figure 53.   The ln(R) versus T-3/4 plot for Sample B. 
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Figure 54.   The ln(R) versus T-3/4 plot for Sample C. 

 

 

 Based on the same equation, if two-dimensional Efros-Shklovskii variable-range 

hopping was the governing transport mechanism in the nanotubes, plotting the natural 

logarithm of the resistance as a function of the temperature raised to the negative 3/5 

power would reveal a linear dependence.  Figures 55, 56, and 57 show the ln(R) versus 

T-3/5 plots for Samples A, B, and C, respectively.  None of the samples exhibited a linear 

section in the natural logarithm of the resistance versus temperature to the minus 3/5 

power plots, indicating that two-dimensional Efros-Shklovskii variable-range hopping 

was not likely the transport mechanism governing electrical conduction in the nanotubes. 
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Figure 55.   The ln(R) versus T-3/5 plot for Sample A. 
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Figure 56.   The ln(R) versus T-3/5 plot for Sample B. 
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Figure 57.   The ln(R) versus T-3/5 plot for Sample C. 

 

 

 Based on the same equation, if three-dimensional Efros-Shklovskii variable-

range hopping was the governing transport mechanism in the nanotubes, plotting the 

natural logarithm of the resistance as a function of the temperature raised to the negative 

1/2 power would reveal a linear dependence.  However, that would correspond to the 

same plots as those for one-dimensional Mott variable-range hopping since both have a 

T-1/2 dependence.  It has already been shown that none of the samples exhibited a linear 

section in the natural logarithm of the resistance versus temperature to the minus 1/2 

power plots, indicating that three-dimensional Efros-Shklovskii variable-range hopping 

was not likely the transport mechanism governing electrical conduction in the nanotubes. 
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4.4. Best Fit Equations 

Since I could not find a decent fit with any of the preexisting models, I decided to 

try to fit my data to an equation of the form 𝑅 = 𝑅0exp [(𝑇0 𝑇⁄ )𝑆].  Here 𝑅0 is a 

temperature independent pre-exponential factor, 𝑇0 is the characteristic temperature, and 

𝑆 is some fractional exponent.  Like the model used by Finlayson and Mason,61 I let the 

variables 𝑅0, 𝑇0, and 𝑆 be adjustable parameters in order to find the best fit.   

The optimized fit for Sample A is shown in Figure 58.  For sample A, 𝑅0 = 7.7 ∗

10−79 Ω, 𝑇0 = (190)1000 K, and 𝑆 = 0.001.  As seen from the figure, for temperatures 

below 50 K, the fitting equation is a good fit.  I was not able to find a fit for the whole 

range of the data.  In order to assess the quality of the fit, I used a model proposed by 

Finlayson and Mason to calculate the percent deviation.61  Here the percent deviation is 

given by the equation,  

 

% deviation = [
1

𝑛
∑

100

𝑅𝑖

(𝑅 − 𝑅𝑖)
2

𝑛

𝑖=1

]

1 2⁄

. 

( 61 ) 

 

Since the fit deviates from the data above 𝑇 = 50 K, I only calculated the percent 

deviation for temperatures below 50 K.  For Sample A, the percent deviation between 

the data and the optimized equation for temperatures below 50 K, is 6 %. 
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Figure 58.   The optimized fit for sample A. 

 

 

The optimized fit for Sample B is shown in Figure 59.  For Sample B, 𝑅0 =

91 Ω, 𝑇0 = 9.7 ∗ 10−3 K, and 𝑆 = 0.13.  As seen from the figure, the fitting equation 

appears to be a good fit across the whole range of temperatures.  For this sample, since 

the fit appears to be a good fit across the whole range of temperatures, I used the whole 

temperature range to calculate the percent deviation.  For Sample B, the percent 

deviation between the data and the optimized equation, is 0.2 %. 
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Figure 59.  The optimized fit for Sample B. 

 

 

The optimized fit for Sample C is shown in Figure 60.  For Sample C, 𝑅0 =

3.0 kΩ, 𝑇0 = 8.6 ∗ 10−7 K, and 𝑆 = 0.15.  As seen from the figure, the fitting equation 

appears to be a good fit only for temperatures below 50 K.  I was not able to find a good 

fit across the whole range of the data.  Since the fit deviates from the data, I only 

calculated the percent deviation for temperatures below 50 K.  For Sample C, the percent 

deviation between the data and the optimized equation for temperatures below 50 K, is 

0.3 %. 
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Figure 60.   The optimized fit for Sample C. 

 

 

 It should be noted that these fits do not seem to produce reasonable physical 

parameters, especially the characteristic temperature 𝑇0.  They are not likely to be 

relevant to the transport mechanism.  Although there is not currently a transport model 

with the fitting equations with any of the exponents I have found, the information could 

be useful in the future.   

 

 

4.5. Resistance as a Function of the Natural Logarithm of Temperature 

As mentioned earlier, due to the fragility of the samples, I only have three 

complete sets of data.  Since each sample shows differing results, more samples are 

needed to determine a systematic pattern of behavior for these nanotubes.  Due to the 
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differences in results for each measurement, it is difficult to say with certainty what 

amount of error is due to the limited sample size.  However, independent of the sample 

size, there are some similarities in the samples which can be used to draw reasonable 

conclusions.   

 In an attempt to understand the temperature dependent resistance data, I plotted 

the data in various forms.  One interesting form was resistance as a function of the 

natural logarithm of temperature.  Figures 61, 62, and 63 show the results for Samples A, 

B, and C, respectively.  The data points representing the resistance from 1.8 K to 10 K 

seem to have a linear dependence on the natural logarithm of temperature.  I plotted the 

linear fit to show the departure from the linear dependence at temperatures above 10 K.  

To analyze the linear fits, I considered the coefficient of determination 𝑅2.  The 

coefficient of determination is given by 

 
𝑅2 = [

1

𝑁
∑

(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝜎𝑥𝜎𝑦
]

2

, 
( 62 ) 

 

and indicates how much of the variability in the data is accounted for by the regression 

model.  In the 𝑅2 equation 𝑁 represents the number of observations used to fit the 

model, 𝑥𝑖 is the x value for observation i, 𝑥̅ is the average x value, 𝜎𝑥 is the standard 

deviation of x, and likewise for the y variable.  The values for 𝑅2 vary between 0 and 1, 

with a value close to 1 indicating a good linear fit.  A value of 0.99 indicates that 99 % 

of the variance in the dependent variable is predictable by the model.  Between 1.8 K 

and 10 K, the coefficient of determination was greater than 0.99 for each of the 

proceeding linear fits, indicating a good fit by the regression model. 
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Figure 61.   The R versus ln(T) plot for Sample A.  The black squares represent the 

actual data points and the red line is the linear fit connecting the points between 1.8 K 

and 10 K. 
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Figure 62.   The R versus ln(T) plot for Sample B.  The black squares represent the 

actual data points and the red line is the linear fit connecting the points between 1.8 K 

and 10 K. 
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Figure 63.   The R versus ln(T) plot for Sample C.  The black squares represent the 

actual data points and the red line is the linear fit connecting the points between 1.8 K 

and 10 K. 

 

 

It is interesting that for each of these samples the resistance appears to show a 

linear dependence on the natural logarithm of temperature for temperatures below 10 K.  

Also, the sample with lowest RRR value had the steepest slope in the linear fit, while the 

sample with the highest RRR value had the mildest slope.  This indicates that the effect 

is larger in samples with a higher level of disorder.   

There are two mechanisms known to cause a linear dependence on the natural 

logarithm of temperature, and they are weak localization and electron-electron 

interactions in two dimensional samples.   

In order to distinguish between the weak localization and electron-electron 

interaction in two-dimensional samples as the origin of the observed ln(T) behavior,22 
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the magnetoresistance data need to be analyzed.  For weak localization, if the applied 

magnetic field introduces a flux through the self-intersecting electron paths, the self-

interference contribution to the resistivity is destroyed, resulting in a negative 

magnetoresistance.22  In two dimensions, a negative magnetoresistance would show up 

for the perpendicular orientation, but not for the parallel orientation since a parallel field 

does not introduce a flux through the self-intersecting electron paths.  On the other hand, 

if electron-electron interaction is the mechanism, the effect of a magnetic field is to align 

the spins to the magnetic field by the Zeeman effect, resulting in a positive, isotropic 

magnetoresistance.15,22  

 

 

4.6. Resistance versus Magnetic Field 

When I mounted the samples into the PPMS, I used the rotating puck mount so 

that I could rotate the samples in order to align the axis of the nanotube to be either 

parallel or perpendicular to the direction of the magnetic field.  For the following 

measurements, I swept the magnetic field from +5 T to -5 T.  The magnetic field was 

scanned at a rate of 50 Oe/s, and data were taken in increments of 500 Oe.  I also wanted 

to see how temperature affected the magnetoresistance so data were taken at 1.8 K, 3 K, 

4 K, 6 K and 10 K.  As mentioned earlier, all the resistance measurements from the 

PPMS have a percent error of less than 0.5 %.  However, due to the propagation of 

errors, the magnetoresistance plots all have much more noticeable error bars.  In some 

cases, including those error bars would result in practically unreadable plots (see Figure 
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64).  For the sake of clarity, the error bars are not included in any of the following 

magnetoresistance plots.   
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Figure 64.   Magnetoresistance versus magnetic field plot for Sample B with error bars.  

The direction of the magnetic field is parallel to the axis of the nanotube.   

 

 

4.6.1 Parallel Orientation 

For the first set of data, I rotated the nanotube so that the axis of the nanotube 

was parallel to the direction of the magnetic field.  Figure 65 shows the 

magnetoresistance versus magnetic field results for Sample A.  The magnetoresistance is 

plotted as a percentage, which means it is given by [(𝑅 − 𝑅0 𝑇) 𝑅0 𝑇⁄ ] ∗ 100.  As seen in 

the figure, as the temperature decreased, the total change in magnetoresistance increased.  
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The maximum change in magnetoresistance was 4.4 % at 1.8 K, 2.8 % at 3 K, 2.1 % at 4 

K, 1.2 % at 6 K and 0.5 % at 10 K. 
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Figure 65.   Normalized change in resistance versus magnetic field for Sample A.  The 

axis of the nanotube is parallel to the magnetic field.  Data were taken at 1.8 K, 3 K, 4 K, 

6 K, and 10 K. 

 

 

Figure 66 shows the magnetoresistance versus magnetic field results for Sample 

B.  Again, for this measurement the axis of the nanotube is parallel to the magnetic field.  

For Sample B the maximum change in magnetoresistance was 1.1 % at 1.8 K, 0.84 % at 

3 K, 0.59 % at 4 K, 0.48 % at 6 K and 0.32 % at 10 K.   
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Figure 66.   Normalized change in resistance versus magnetic field for Sample B.  The 

axis of the nanotube is parallel to the magnetic field.  Data were taken at 1.8 K, 3 K, 4 K, 

6 K, and 10 K. 

 

 

For Sample C, the same settings were used as in previous measurements, and the 

results are presented in Figure 67.  For Sample C, the maximum change in 

magnetoresistance was 0.63 % at 1.8 K, 0.45 % at 3 K, 0.41 % at 4 K, 0.29 % at 6 K and 

0.17 % at 10 K. 
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Figure 67.   Normalized change in resistance versus magnetic field for Sample C.  The 

axis of the nanotube is parallel to the magnetic field.  Data were taken at 1.8 K, 3 K, 4 K, 

6 K, and 10 K. 

 

  

4.6.2 Perpendicular Orientation 

For the next set of measurements, I rotated the nanotube so that the axis of the 

nanotube was perpendicular to the direction of the magnetic field.  All the other 

conditions remained unchanged.  Figure 68 shows the magnetoresistance versus 

magnetic field results for Sample A.  From this plot, we see that the results are similar to 

their parallel counterpart, but the change in magnetoresistance is just slightly larger.  For 

the perpendicular orientation, the maximum change in magnetoresistance was 5.2 % at 

1.8 K, 3.2 % at 3 K, 2.5 % at 4 K, 1.5 % at 6 K and 0.86 % at 10 K.   
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Figure 68.  Normalized change in resistance versus magnetic field for Sample A.  The 

axis of the nanotube is perpendicular to the magnetic field.  Data were taken at 1.8 K,      

3 K, 4 K, 6 K, and 10 K. 

 

 

The same measurements were carried out on Sample B, and those results are 

presented in Figure 69.  For Sample B the maximum change in magnetoresistance was 

1.5 % at 1.8 K, 0.95 % at 3 K, 0.83 % at 4 K, 0.53 % at 6 K and 0.33 % at 10 K. 

 



 

105 

 

-6 -4 -2 0 2 4 6

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 

 

(R
-R

0
 T
)/

R
0

 T
 (

%
)

Magnetic Field (T)

 1.8 K

 3 K

 4 K

 6 K

 10 K

 
Figure 69.   Normalized change in resistance versus magnetic field for Sample B.  The 

axis of the nanotube is perpendicular to the magnetic field.  Data were taken at 1.8 K,      

3 K, 4 K, 6 K, and 10 K. 

 

 

Sample C was measured using the same settings as Samples A and B.  Those 

results are shown in Figure 70.  For Sample C, the maximum change in 

magnetoresistance was 0.66 % at 1.8 K, 0.53 % at 3 K, 0.42 % at 4 K, 0.33 % at 6 K and 

0.18 % at 10 K.   
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Figure 70.   Normalized change in resistance versus magnetic field for Sample C.  The 

axis of the nanotube is perpendicular to the magnetic field.  Data were taken at 1.8 K,      

3 K, 4 K, 6 K, and 10 K. 

 

 

 There are several similarities in the magnetoresistances of the samples regardless 

of the nanotube orientation with respect to the direction of the magnetic field.  For all 

three samples, the magnetoresistance is positive in the range from -5 T to +5 T.  Also, in 

each case, the magnetoresistance decreases as the temperature increases.  Additionally, 

the sample with the highest amount of disorder seems to produce the largest 

magnetoresistance; while the sample with the lowest amount of disorder seems to 

produce the smallest magnetoresistance.  

 In the whole range of data, the magnetoresistance is positive, whereas weak 

localization would result in a negative magnetoresistance.  The magnetoresistance exists 

in both the parallel and perpendicular orientations and appears to have relatively close 
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values.  Both of these conditions rule out weak localization as an explanation for the 

results.  Since the magnetoresistance due to electron-electron interaction produces a 

positive, isotropic magnetoresistance,15,22 then electron-electron interaction seems to be a 

better explanation of the results.  The limitation to this conclusion is that it only applies 

to the small temperature range below 10 K, above which the magnetoresistance becomes 

nearly unmeasurable.   

In order for a sample to be considered two dimensional, one of its dimensions 

must be smaller than the electron-electron interaction length.  The electron-electron 

interaction length is approximately 𝐿𝑒𝑒~𝑣𝐹𝜏𝑒𝑒~ 𝑣𝐹ℏ 𝑘𝐵𝑇⁄ .  As an estimate for my 

samples, at 10 K, the interaction length is approximately 1 micron; while at 1.8 K, the 

interaction length is approximately 4 microns long.  Since the wall thickness of my 

nanotube is about 17 nm, my nanotube would be considered a two-dimensional sample, 

and the natural logarithm of temperature dependence for two-dimensional samples is 

appropriate.   

 

 

4.7. Scaled Magnetoresistance 

The scaled magnetoresistance is given by the ratio (𝑅 − 𝑅0 𝑇) (𝑅5 𝑇 − 𝑅0 𝑇)⁄ , and 

its purpose is to normalize the magnetoresistance to 1 at 5 T.  It is interesting to note that 

scaling the magnetoresistance, seems to result in all the curves collapsing into a single 

curve.   
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4.7.1 Parallel Orientation 

In Figures 71, 72, and 73, scaled magnetoresistances are shown for Samples A, 

B, and C, respectively, with the axis of the nanotube aligned parallel to the direction of 

the magnetic field.  At 10 K, the magnetoresistance is the smallest, and therefore the 

scaling results in an amplification of the noise.  As seen in the figures, all the curves 

seem to collapse into a single curve for each of the three samples. 
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Figure 71.   Scaled magnetoresistance versus magnetic field for Sample A.  The axis of 

the nanotube is parallel to the magnetic field.  Data were taken at 1.8 K, 3 K, 4 K, 6 K, 

and 10 K. 
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Figure 72.   Scaled magnetoresistance versus magnetic field for Sample B.  The axis of 

the nanotube is parallel to the magnetic field.  Data were taken at 1.8 K, 3 K, 4 K, 6 K, 

and 10 K. 
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Figure 73.   Scaled magnetoresistance versus magnetic field for Sample C.  The axis of 

the nanotube is parallel to the magnetic field.  Data were taken at 1.8 K, 3 K, 4 K, 6 K, 

and 10 K. 
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4.7.2 Perpendicular Orientation 

In Figures 74, 75, and 76, scaled magnetoresistances are shown for samples A, B, 

and C, respectively with the axis of the nanotube aligned perpendicular to the direction 

of the magnetic field. 
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Figure 74.   Scaled magnetoresistance versus magnetic field for Sample A.  The axis of 

the nanotube is perpendicular to the magnetic field.  Data were taken at 1.8 K, 3 K, 4 K,  

6 K, and 10 K. 
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Figure 75.   Scaled magnetoresistance versus magnetic field for Sample B.  The axis of 

the nanotube is perpendicular to the magnetic field.  Data were taken at 1.8 K, 3 K, 4 K,  

6 K, and 10 K. 
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Figure 76.   Scaled magnetoresistance versus magnetic field for Sample C.  The axis of 

the nanotube is perpendicular to the magnetic field.  Data were taken at 1.8 K, 3 K, 4 K,  

6 K, and 10 K. 
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The scaled magnetoresistance plots in the perpendicular orientation also show a 

trend in which below 10 K, all the curves appear to collapse into a single curve.  This 

seems to suggest that the magnetoresistance appears to have a contribution which is 

independent of the temperature.  In other words, the magnetoresistance can be expressed 

as R(𝑇, 𝐻) = 𝑓(𝑇) ∙ 𝑔(𝐻), where 𝑔(𝐻) is given by the scaled function.  This is the 

second significant feature observed in these nanotubes.   

Although one may be concerned with the limited number of samples measured in 

this work thus far, an identical magnetoresistance feature appears in all these samples in 

a robust manner.  The scaled magnetoresistance effect is also observable below 10 K, a 

temperature at which the natural logarithmic temperature dependence emerges, which 

may indicate a correlation between the magnetoresistance and the ln(T) resistance 

dependence.  The positive isotropic behavior of the magnetoresistance supports the 

interpretation of an alignment of the spins by the magnetic field, and not one caused by 

electrons traveling around a loop.  This in turn, supports two-dimensional electron-

electron interaction as the origin of the observed linear dependence in the resistance as a 

function of the natural logarithm of temperature plot.  The observation of the separation 

of the magnetoresistance into R(𝑇, 𝐻) = 𝑓(𝑇) ∙ 𝑔(𝐻) is particularly interesting, but not 

yet understood.  Is it possible that at higher temperatures 𝑔(𝐻) is due to the spin 

splitting, while the 𝑓(𝑇) part is due to the interference between the electrons since 

𝐿𝑒𝑒~√ℏ𝐷 𝑇⁄ = 𝑣𝐹√ℏ𝜏 𝑇⁄ , which is not apparently dependent on H? 
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5. CONCLUSIONS 

 

In conclusion, I have used two different types of porous membranes as templates 

for nanotube growth.  For one of those types of templates, anodized aluminum oxide 

membranes, I fabricated them myself in order to obtain uniform spacing between the 

pores and a more ordered structure.  I also fabricated insulating, magnetic, metallic and 

metal-insulator composite nanotubes.  Once I obtained silver-stannic oxide composite 

nanotubes that were long enough for measurement, I connected them for transport 

measurements using a four-point probe setup to eliminate the contact resistances of the 

leads. 

I have done transport and magnetoresistance measurements on silver-stannic 

oxide composite nanotubes of various lengths at low temperatures.  I measured the 

resistance as a function of temperature from 300 K down to 1.8 K.  At temperatures 

between 1.8 K and 10 K I found that the resistance had a linear dependence on the 

natural logarithm of temperature.   

At low temperatures I measured the current – voltage curves for each of the 

samples.  Only the sample with the highest level of disorder showed non-linear curves at 

temperatures below 4 K.  The non-linearity of the current – voltage curves was not very 

pronounced and disappeared at temperatures above 4 K.  The other samples with lower 

levels of disorder had linear current – voltage curves for all the temperatures measured. 

I also did magnetoresistance measurements on the nanotubes at 1.8 K, 3 K, 4 K, 

6 K and 10 K.  All of the samples had positive magnetoresistance which appeared to be 
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independent of the angle between the axis of the nanotube and the direction of the 

magnetic field.  At these low temperatures, scaling the magnetoresistance resulted in 

magnetoresistance values that seem to collapse into a single curve independent of 

temperature. 

Although the two-dimensional weak localization and two-dimensional electron-

electron interactions both produce a linear dependence on the natural logarithm of 

temperature for resistance measurements, I was able to rule out weak localization due to 

the positive and isotropic magnetoresistance results.   

I also tried Mott variable-range hopping fits for temperatures between 10 K and 

50 K, but those mechanisms were ultimately ruled out because the results lead to 

unrealistic physical parameters.  At temperatures above 50 K, the resistance as a function 

of temperature seems to vary depending on the amount of disorder in the sample. 

As far as future work is concerned, it would be useful to know the fraction of the 

total volume occupied by the silver grains in my nanotubes.  Also, other experiments 

could be done in order to confirm the existence of electron-electron interactions.  

Tunneling experiments could be carried out to analyze the density of states.  A density of 

states minimum would be found at the Fermi level if the effect of electron-electron 

interactions dominates conduction at low temperatures.  It would also be interesting to 

study a wide array of silver concentrations in the nanotubes, to see how the transport 

measurements are affected. 
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