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ABSTRACT 

 

Large regional evacuations caused by severe weather such as hurricane’s and 

tsunami’s are fraught with complexity, uncertainty and risk. During such events, 

evacuees have to make decisions on route planning and point-of-destination while 

emergency managers need to ensure that appropriate personnel and infrastructure are 

available and capable of facilitating the evacuation. In parallel, the widespread usage of 

social media and micro-blogs enabled by mobile technology is leading to more dynamic 

decision-making and real-time communication by evacuees.  

This research uses deterministic and simulation techniques to model regional 

hurricane evacuation. A mixed integer formulation for telecommunication equipment 

location is used to identify gaps or strains in mobile service and to locate mobile 

telecommunications equipment to temporarily alleviate system stress. This problem 

unifies location allocation and routing characteristics with signal interference processing 

to maximize the number of served users through the evacuation. A Greedy Randomized 

Adaptive Search Procedure (GRASP) metaheuristic and a Lagrangian Relaxation-based 

heuristic are used to solve larger problem instances.  

Agent-based simulation modeling is used to investigate the reliability, robustness 

and effectiveness of telecommunications equipment location given the inherent diversity 

and uncertainty of individual decision-making during evacuation. The agent-based 

simulation adopts Fuzzy Cognitive Maps to model individual evacuation decision-

making that dynamically integrates external information (e.g., physical environment, 
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interpersonal communication) and internal data (e.g., historical empirical, demographic 

trends). This research shows how social communication among evacuees positively 

impacts travel patterns as well as overall evacuation time and the usage of mobile 

telecommunications equipment. 
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NOMENCLATURE 

 

ABM Agent-based Simulation Model 

ABME Agent-based Simulation Model for Extreme Event Evacuation 

CDMA Code Division Multiple Access 

DEM Digital Elevation Model 

FCM Fuzzy Cognitive Maps 

GIS Geographic Information Systems 

GRASP Greedy Randomized Adaptive Search Procedure 

TELP Telecommunications Equipment Location Problem 
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CHAPTER I  

INTRODUCTION  

 

I.1. Introduction to Evacuation Problems 

In the past ten years, Hurricanes Katrina, Ike, Rita, and Sandy have caused 

significant destruction among coastal cities and towns in the U.S. while simultaneously 

leading to countless loss of life (either from the storms themselves or from the 

challenging conditions that follow). Furthermore, additional extreme weather events 

have occurred outside of the U.S., such as the tsunamis in Indonesia and the Philippines, 

the earthquake in Haiti, and the tsunami (and subsequent nuclear catastrophe) in Japan. 

Large populations and areas of the world have begun to experience stronger, more 

inclement, more destructive, and more frequent severe weather.   

A large population evacuation caused by natural disasters is intrinsically 

complicated and full of uncertainty and dynamic risks. Evacuees must make important 

decisions concerning both route-planning and their end destinations. At the same time, 

emergency managers are responsible for facilitating evacuations by ensuring the 

availability of necessary emergency personnel and infrastructure.  

The ubiquity of mobile technology has led to dramatic shifts in the way people 

communicate with one another. Text messages, social media, and micro-blogs all enable 

(and favor) shorter content bursts with a higher frequency of messages than face-to-face 

or phone conversations. The connectivity of these devices to the Internet further extends 

their reach, enabling users of mobile technology to browse the web, download and 
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upload content, and obtain real-time information on a variety of topics from traffic and 

the stock market to weather and celebrity sightings. 

During an extreme event evacuation, mobile technology has enabled a new 

decision making option for evacuees. The widespread use of social media and micro-

blogs has engendered a steady stream of real-time communication that can be used by 

evacuees to make dynamic decisions. 

In this research, we focus on the effect of mobile technology on regional 

evacuation and how the changing behavioral landscape of evacuations can be better 

captured through more realistic and representative modeling. Specifically, we note the 

importance of models that not only capture realistic individual behaviors (e.g., texting 

and social networking) but that simultaneously model the supportive physical 

infrastructure (e.g., cell phone towers and internet access) to ensure maximal 

connectivity and resilience of the communication systems that support and enable 

evacuee decision-making. Through our modeling, we illustrate the criticality of 

adaptation and flexibility within communication systems and show how integrated 

models, while complex, can be solved efficiently and effectively. The scope of this 

article is limited to hurricane evacuation, noting that the logic of the model can easily be 

applied to many extreme events where advance notice through forecasting is possible. 

An optimization formulation for telecommunication equipment location problem 

with time component (TELP) is developed to locate mobile telecommunications 

equipment to temporarily relieve cellular network system stress. TELP is defined as the 

following: given potential microcell station locations, existing macrocell station 
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locations and users’ travel patterns on a road network, locate number of p mobile 

microcell stations to maximize the total number of users served over multiple time 

periods. 

An agent-based simulation model for extreme event evacuation (ABME) is 

proposed as well. ABME is used to investigate the information dispersion through 

simulated social networks regarding evacuation effectiveness. ABME can also be used 

as a tool to examine the availability or use of mobile telecommunication stations for 

regional evacuations, considering the diverse and uncertain behavior of individuals and 

the interactions between individuals. 

 

I.2. Motivation of the Dissertation 

For a regional evacuation, evacuation decisions such as where to go, how to get 

there, and where to stop along the way are largely left to the individual to plan 

themselves or to determine on-the-go during the evacuation itself. The inherent 

uncertainty of a natural event necessitates that evacuees remain adaptive to changing 

conditions and their decisions are largely affected by a combination of what they see and 

what they hear. Mobile technology and social networking have recently begun to 

dramatically influence these evacuation decisions.  

 Extensive study of historical evacuations has demonstrated that people rely on a 

variety of information (both visual and auditory) to determine when to evacuate and 

where to go. Friends, family, and peers are now better connected to one another through 

social networks that can be accessed via mobile technology. Given the known 
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importance of friends and family to evacuation decision-making, mobile technology can 

increase the frequency of family and friend contact while improving the quality of 

content (through links to blogs, streams, news sources, etc.). Additionally, the ability to 

connect through mobile technology decreases an individual’s reliance on past hurricane 

evacuation experiences, a historically important factor in evacuation decision-making. 

 During Hurricane Sandy and other recent extreme events, the use of mobile 

technology to influence decision making has become more evident within the population 

for the dissemination and collection of information for planning and in real-time on site 

decision-making.  A recent survey among residents of Monmouth County, NJ (one of the 

counties that was most affected by Hurricane Sandy) showed that 65% of households 

had access to at least one smartphone and 96% of all households had access to at least 

one smartphone or one cellphone during the hurricane. Social media usage (specifically 

Twitter and Instagram) increased 100%+ during the hurricane and respondents agreed 

that they used their mobile devices to obtain information and to communicate during the 

hurricane. 

 The preference to use and reliance of individuals on mobile technology during 

evacuations necessitates that connectivity remains established and consistent.  While 

many research efforts have been focused on regional evacuation models, the vast 

majority are focused on pre-planning strategies and the influence of dynamic and 

uncertain behavior among evacuees. There is little to no emphasis on the corresponding 

problem of maintaining connectivity between evacuees. In this case, connectivity is 

critical to the creation of a more realistic model and is dictated by the changing 
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paradigms of evacuation decision-making. Models that do not account for infrastructure 

issues such as cell phone or 4G connectivity, call reliability, and infrastructure reliance, 

are operating under “best case circumstances” that may lead to significant 

underperformance during real-world event conditions in which cell towers go down or 

local network capacity is exceeded due to demand. Most evacuees travel on major roads 

and highways to maintain cellular and data service during an evacuation. This tendency 

leads to extreme demand and potential network outages. 

Communications systems (e.g., radio, cellular) regularly fail during extreme 

weather events. The White House report, “The Federal Response to Hurricane Katrina: 

Lessons Learned” (2006), showed that 1,477 cell towers were incapacitated during 

Hurricane Katrina and nearly three million customers lost telephone service, preventing 

them from calling emergency centers, connecting with emergency services, or reaching 

out to families and friends.  

However, there are low cost, easy set-up mobile telecommunications options 

available such as Cell on Wheels (COW) that are compatible with existing radio and 

cellular networks. Setting up these mobile devices at identified dynamic tele-service 

demand areas can help strengthen existing radio and cellular systems during large-scale, 

regional evacuations. 

We motivate the need for the ABME model by noting the inability of existing 

evacuation, which are often based on discrete events or other network flow variations, to 

capture the behavior and uncertainty in interactions between individual vehicles during 

an evacuation. Specifically, these deterministic models rarely take human and social 
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behaviors into consideration when modeling emergency scenarios. Agent-based 

simulation models (ABM) are designed to model behavior at an individual level, which 

enables them to replicate more realistic individual behaviors and the resulting group 

dynamics that emerge. ABM is suitable for this research not only because it can model 

individual behavior such as route choice and travel speed, but also because it has the 

capability to simulate dynamic human decision-making based on multiple kinds of 

external information and individual inherent demographic characteristics such as gender 

and age. 

 

I.3. Contributions of this Dissertation 

A mathematical model is proposed to identify mobile telecommunication 

infrastructure location strategies to support demand-stressed systems during emergency 

events. This model considers temporally and spatially distributed users with a planning 

horizon composed of discrete, non-overlapping time intervals. The model captures signal 

interference constraints, which are a major restriction in determining the number of users 

each cellular channel can carry in contemporary Code Division Multiple Access 

(CDMA) systems. A routing sub-problem is also included in the model to improve the 

usage of mobile telecommunication equipment due to its portable character.   

This TELP model can consider all of these realistic factors and provide solutions 

containing the decision variables of user assignment, installation locations of mobile 

facilities, and routes corresponding to shipping these facilities over time intervals. We 

focus specifically on the challenge of regional evacuation and use real-world data such 
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as road networks, demographics, DEM, and terrain to support our model. Heuristic 

approaches are introduced and compared to solve the time-dependent location-allocation 

problem for realistic instances. 

This research has also resulted in the development of a spatial, behavioral 

evacuation ABM that uses novel fuzzy cognitive maps (FCMs) as the driver for 

establishing agent decision logic and that will integrate the physical environment, 

interpersonal communication, and historical empirical data when determining agent 

decisions. This is the first time that FCMs have been applied and implemented in the 

domain of travel behavior under the complicated scenario of evacuation due to extreme 

events. FCMs are suitable to represent more realistic behavior models compared with the 

traditional IF/THEN behavior rules used in ABM: with the help of FCMs, evacuees are 

able to make dynamic and adaptive decisions based on real-time and updated 

information. 

By integrating the TELP model with ABM, we are able to explore the use of 

mobile telecommunication facilities and evacuees’ behavior simultaneously. The usage 

of telecommunication facilities with widespread social communication is also revealed. 

This is the first time that the facility planning problem considering the power of social 

media is examined for emergency evacuation. Emphasizing the importance of social 

media use during facility planning can help emergency managers or commercial 

agencies improve facility use, enhance service quality, and reduce expenses. 

In addition, integrating the TELP model with ABM can help TELP provide more 

accurate, real-time facility planning strategies. If better solutions are acquired from 
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TELP, more evacuees’ tele-service demands can be satisfied in ABME, and the evacuees 

will have fewer restrictions to their telecommunication access, resulting in a better 

evacuation experience.    

 

I.4. Organization of the Dissertation  

This dissertation is organized as follows. In Chapter II, we review the relevant 

literature on telecommunication systems planning and ABM models for evacuations. In 

Chapter III, we present the mathematical model for TELP and the heuristic algorithms 

for solving TELP. In Chapter IV, an agent-based simulation model for evacuation in 

extreme events is introduced. In Chapter V, we show the application results for Boston 

and San Francisco. Lastly, Chapter VI will conclude this research and suggest directions 

for future research. 
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CHAPTER II  

LITERATURE REVIEW 

 

II.1. Telecommunication Infrastructure Location Problem 

The optimal base station location problem was first addressed by the 

telecommunication research society. Statamatelos and Ephremides (1996) introduced the 

optimal placement strategies of fixed base-stations for indoor wireless networks. The 

goal was to maximize coverage area while minimizing co-channel interference 

considering spatial diversity. Calegari et al. (1997) provided a genetic approach for 

finding the best possible sites for base-stations while maintaining service for a given 

percentage of tele-traffic, with the goal of minimizing associated costs. For the Code 

Division Multiple Access (CDMA) system, Tcha et al. (2000) presented a base-station 

location model to minimize the cost of establishing base stations while controlling the 

blocking probability. To solve this model, they proposed two heuristics: the construction 

heuristic for choosing an initial feasible subset from all candidate sites, and an 

improvement heuristic to reduce set-up costs.  

To this point, few solution techniques in operations research had been applied to 

address the base station location problem. Bose (2001) proposed a technique using 

dynamic programming to determine optimal base-station locations in an urban 

environment based on cell coverage. Lee and Kang (2000) offered a binary integer 

programming model to minimize cost while considering base-station capacity and user 
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received signal power. A Tabu Search heuristic was applied by Lee and Kang for solving 

base-station planning problem. 

Akella et al. (2005) presented a mixed integer programming (MIP) model. The 

model was designed to maximize the total number of user demands for multiple time 

slots given base-station coverage radius and channel capacity and integrate the 

emergency notification problem. Two greedy heuristics and their extended versions were 

proposed to solve this MIP. To further improve solution quality, a Lagrangean heuristic 

was developed that built on the solution obtained by the greedy heuristics. Although the 

model considered multiple time slots, it assumed the demand nodes were fixed and did 

not change over time. The MIP formulation was based on the maximum coverage 

problem and only added one linear channel capacity constraint. These simplifications 

and assumptions for telecommunication systems can cause over-estimates when applied 

to real-world planning problems. However, the proposed heuristics and rich computation 

study provide good insights regarding the nature of the problems and potential solution 

techniques. 

In a CDMA system, users are allowed to send information simultaneously over a 

single communication channel with a capacity (the number of simultaneous users) 

governed by a signal to interference ratio. Veeravalli and Sendonaris (1999) revealed a 

nonlinear relationship for the coverage of a cell as a function of the number of its users. 

This coverage-capacity relationship was provided under the assumption that user density 

is uniformly distributed. In reality, user demands are often not balanced. In other words, 

there are hotspots, or high-traffic density areas within small regions. The presence of 
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hotspots can result in smaller coverage areas. If a base-station serves a large number of 

users from high-traffic regions, it will block access to users in other regions, resulting in 

reduced coverage. Hence, in a CDMA system, coverage (i.e. the region where base 

stations can provide quality call service), capacity, and user distribution must be 

addressed concurrently. Therefore, base-station location models derived from coverage 

problems with simple capacity constraints are no longer suitable and realistic. 

Amaldi et al. (2003a, 2003b, 2003c) proposed MIP models for the location and 

configuration of fixed base stations to maximize signal coverage and minimize 

installation costs considering signal quality requirements. In a study performed by 

Amaldi et al. (2003b), heuristic approaches of randomized greedy procedures and Tabu 

Search were proposed to obtain solutions. Their studies showed the trade-off between 

coverage and capacity in cellular systems. However, those models simplified intercell 

interference as a constant fraction and assumed that traffic distribution among cells is 

homogeneous. 

Kishore et al. (2003) derived a non-linear inequality of signal interference 

representation that examined user capacity in a Macrocell-Microcell CDMA system. In 

this inequality, the geographic distribution of user traffic was considered and the 

interference between cells was captured as well.  

 In our TELP model, in addition to considering the traditional coverage problem, 

we adopted the inequality representation derived by Kishore et al. (2003) as the signal 

interference requirement, which is a must-have condition in cellular systems. Signal 

interference from both user and intercell sources were included. The user traffic is time-
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dependent and its geographic distribution is considered. These two characters reflect 

real-world situations and are important to consider, especially for evacuation scenarios 

in which user demands change spatially at different time stages. The evacuees (users) 

always travel on evacuation routes that follow main roads; therefore, the user tele-

service demand is not homogenously distributed throughout the entire target evacuation 

region. The routing constraints are integrated to utilize the mobile feature of 

telecommunication facilities, reuse these facilities, and satisfy more tele-service 

demands with a limited budget. The base-station location problem is an NP-hard 

problem as described in the literature mentioned above. To obtain good solutions with 

less computation effort, we propose two heuristic approaches: greedy randomized 

adaptive search procedure (GRASP) and Lagrangean heuristics. Although the general 

idea is similar to previous work at some level, the implementation is very different due 

to the specific problem properties. 

 

II.2. Evacuation Simulation Models 

Dynamic traffic simulation models investigate dynamic travel demand, dynamic 

trip distribution, and dynamic traffic assignments – all of which influence decision-

making in evacuation participation, departure time choice, destination choice, and route 

choice. Pel et al. (2012) and Alsnih and Stopher (2004) reviewed dynamic traffic 

simulation models for evacuations and summarized macrosimulation and 

microsimulation models for evacuation problems and travel behavioral models in the 

literature. Many crowd evacuation simulation models attempt to incorporate more 
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realistic human behaviors that may result from psychological responses to emergency 

conditions. This can be accomplished by extending the dynamic traffic simulation 

models to more sophisticated agent frameworks.  

Bonabeau (2002) discussed methods and techniques to simulate human systems 

in ABM. It is pointed out that modeling the diffusion of behaviors in social networks has 

been the most common application for ABMs. These models require more 

computational effort since sophisticated ABMs often incorporate neural networks or 

evolutionary algorithms to allow realistic learning and adaptation. A framework for 

using ABM to simulate human and social behaviors during emergency evacuations was 

introduced by Pan et al. (2007).  

Many agent-based emergency evacuation simulation models have been 

developed regarding pedestrian behaviors. Christensen and Sasaki (2008) proposed a 

bottom-up Modeling of Mass Pedestrian flows – implications for the Effective Egress of 

individuals with disabilities to explore emergency evacuation with individual with 

disabilities in the population. Bo et al. (2009) developed an ABM for park emergency 

evacuations integrated with geographic information systems (GIS). Although geographic 

information about obstacles, stairs, and roads was imported into the model, the agent 

behavior was grid-cell-based. Tsai et al. (2011) presented an airport evacuation 

simulation model that included four key features: (1) different agent types (individual 

travelers, family agents, and authority agents); (2) emotional interactions; (3) 

informational interactions; and (4) behavioral interactions. Few ABMs had previously 

captured emotional and informational intersections. It is important to represent these two 
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aspects of human behavior, especially for emergency scenarios. However, the behavior 

rules in this ABM are based on a different cognitive category and all the agents who 

belong to the same cognitive category would behave the same. The emotional and 

informational interactions only occur between neighbors and family agents who are 

assumed to move together.  

Compared to ABM applied to the pedestrian domain, fewer examples of existing 

literature can be found for evacuations of large geographic areas where traveling by 

vehicles is necessary. Zhang et al. (2009) presented an ABM for hurricane evacuation 

that considered two types of agents: normal and greedy. The normal agents always 

choose the shortest routes and the greedy agents choose the least congested route based 

on updated traffic information. The model assumed that the destinations were 

preselected and would not change during the evacuation. Their results indicated that 

greedy behavior makes the whole evacuation inefficient although it can sometimes 

reduce individual evacuation times by detouring and avoiding congested roads. The 

behavior rules used for this research are relatively simple: route changes only based on 

congestion level and speedup and slowdown behaviors only dependent on whether there 

are other vehicles blocking one’s path. 

Chen and Zhan (2004) investigated the effectiveness of simultaneous and staged 

evacuation strategies using agent-based simulations. They modeled traffic flows at the 

individual vehicle level and tested three different network structures. Dynamic routing 

procedures were adopted for route choice, that is, agents can change their routes 

dynamically based on real-time traffic conditions and they always choose the fastest 
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route. Agents’ destinations result from the route choice, which means that agents have 

less flexibility to choose their evacuation location. While the agents travel on road 

segments, car-following and lane-changing models were applied for the dynamics of 

vehicular movement. The car-following model built into their simulation toolkit was 

based on Fritzsche (1994) and Olistam and Tapani (2004). 

 

II.3. Social Media Use in Travel Behavior and Emergency Event 

With respect to the effects of an individual’s social network on travel behavior, 

Arentze and Timmermans (2008) proposed a theoretical framework to incorporate the 

dynamics of activity-travel choice and social networks in microsimulations of activity-

travel patterns. A utility function in this research derived from social interaction is a 

function of dynamic social and information needs, and similarity between the relevant 

characteristics of the persons involved. Hackney and Marchal (2009) introduced a 

general spatial social interaction model based on the Multi-Agent Transportation 

Simulation Toolbox. Their model constructed social networks for a geographically 

distributed population of agents. This network was then used in a further step to modify 

travel demand. Han et al. (2011) addressed the formation and adaptation of location 

choice sets under the influence of social networks to investigate the dynamic traffic 

generation caused by collective activity-travel choice behavior. Handford and Roger 

(2012) extended the current state-of-the-art in driver route choice models and developed 

a route choice forces model, in which decisions are influenced by a set of forces. Two 

forces are incorporated: a driver’s desire to travel the quickest route and a driver’s desire 
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to travel with others. The authors evaluated their model against two existing route choice 

algorithms (shortest time and real-time re-routing) using three road networks.  

The widespread use of social media plays a more and more important role in 

daily lives, which draws attention to social media usage during extreme events. 

Qualitative methods such as observation, interviews, questionnaires, and collection of 

on-line texts have been used to examine the importance of social communication. 

Eisenman et al. (2007) found that strong socially connected groups such as extended 

family, friends, and community groups mediated evacuation behavior through access to 

transportation, shelter, and the interpretation of official messages. The observations were 

based on Hurricane Katrina in 2005. Based on a study of the Southern California 

Wildfires, Sutton el al. (2008) pointed out that social media serves as backchannel 

communication and supports peer-to-peer communication during a natural disaster; 

Shklovski et al. (2008) provided evidence that information sharing can help communities 

stay connected despite geographical dispersal post-disaster. Hughes et al. (2008) 

described on-line behavior as socially convergent activity that parallels geographical 

onsite behavior after examining several disaster events. Sutton et al. (2011) showed that 

traditional news media, social media, and other pre-existing networks played different 

roles in the 2010 tsunami in Hawaii. They suggested that multiple channels should be 

used to ensure effective communication with the public. 

A few ABMs have previously addressed the effect of social networks on 

emergency evacuations. Hasan and Ukkusuri (2011) proposed a threshold model of 

social contagion to characterize the social influence in the evacuation decision making 
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process. The condition of a cascade decides to evacuate was examined. Simulation 

models investigate the effects of community mixing patterns, the initial seed, and the 

strength of ties on the average cascade size. Widener et al. (2012) revisited the influence 

of social network effects on evacuation decisions due to the augmentation of information 

diffusion through the new social media. They examined how real-time interpersonal 

communication effects people’s hurricane evacuation participation and decision-making. 

Three laboratorial social networks were examined regarding hurricane evacuation in Bay 

County, Florida. Both Han and Widener’s works were examined using ABM. 

Wang (2012, p.76 -- p.119) studied the influence of social media and broadcast 

on individual travel behavior for regional emergency evacuation using the proposed 

multi-agent simulation model. The simulation model imported the optimal 

routes/shelters resulted from the proposed optimization model as individual’s guild line, 

and used a real-time IF/THEN decision-making logic for individual’s route/shelter 

choice. The experiments showed both types of information sharing can shorten overall 

evacuation time and individual’s travel time, and reduced average transportation cost. 

Compared to social media, information sharing on broadcast plays a more significant 

role. 

The structure of social networks should also be examined when investigating the 

usage of social media. Mislove et al. (2007) presented a large-scale measurement study 

and analysis of the structure of four popular online social networks. The high-degree 

core structure property along with small-world phenomenon can allow information to 

diffuse extremely fast compared with other dissemination systems. Butts et al. (2012) 
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investigated whether geographical variability in population distribution would have an 

effect on social network structure and how this geographic heterogeneity would affect 

network structure. They found that local social network structure is highly dependent on 

local population distribution. This insight attracts attention because a variety of recent 

research projects have simulated social networks based upon population distribution and 

ignored the socio-geographic relationship. 

Lindell et al. (2011) also showed how demographic variables such as age, 

gender, ethnicity, marital status, education, number of persons in the household, annual 

household income, and household ownership influence evacuation logistics using 

questionnaire data from Hurricane Lili. They examined these demographic variables in 

terms of departure timing, vehicle use, evacuation routes, travel distance, shelter type, 

evacuation duration, and evacuation cost. The report data showed that about 90% of the 

evacuation population took their own vehicles and single households generally took 

multiple cars. It was also shown that people tend to choose a familiar route based on 

their own past experience. Their results indicated that higher income families were 

particularly likely to rely on personal experience, while groups with little hurricane 

experience, the elderly, females, households with children, and inland residents were 

more likely to rely on recommendations from peers and media. 

 

II.4. Fuzzy Cognitive Map Approach 

 Fuzzy Cognitive Maps (FCMs), introduced by Kosko (1986, 1992, 1994, 1997, 

1998), are graph structures that represent causal relationship between concepts. The 



 

19 

 

fuzziness allows hazy degrees of causality and the graph structure (forward and 

backward chaining) allows knowledge to be developed by connecting concepts and 

different FCMs. Kosko also proposed a fuzzy causal algebra to govern causal 

propagation on FCMs. The vector-matrix operations allow FCMs to model dynamic 

systems and to capture the dynamic aspect of system behavior (Bertolini and Bevilacqua, 

2010; Miao et al., 2010). Aguilar (2005) pointed out that FCMs are hybrid methods that 

lie in-between fuzzy systems and neural networks. Hence, FCMs possess the combined 

robust properties of fuzzy logic and neural networks. On the other hand, it is easier to 

use FCMs to represent knowledge and knowledge adaptive processes, and interference 

can be calculated using numeric algebra operations instead of IF/THEN rules. 

 Recently, FCMs have drawn a significant amount of research attention and have 

been applied to a variety of areas such as medicine, education, decision making and 

support, the environment, and social and political science. In the medical domain, 

Georgopoulos et al. (2003) and Papageorgiou et al. (2006, 2008) proposed an FCM 

approach for medical diagnosis and decision support in language impairment and 

radiotherapy, areas in which expert systems are usually applied. In the engineering 

domain, Stylios and Groumpos (2004) applied FCM to model complex industrial 

systems and supervisory control systems. Papageorgiou et al. (2006) implemented 

extended FCMs, which used nonlinear Hebbian rules to model industrial process control 

problems. They demonstrated that their proposed scheme outperformed other existing 

schemes and resulted in very good maximum power operation under different 

conditions, such as changing insulation and temperature.  
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 Due to its properties and features, FCM can be a very good tool to model social 

and political situations and to support the decision-making process. Acampora et al. 

(2009) introduced the FCM approach to Ambient Intelligence (AmI) system design. AmI 

systems consider human beings who are placed in relatively small environments and 

surrounded by computing devices. The dynamic computational-ecosystem seeks to 

satisfy users’ requirements and optimize environmental parameters such as comfort or 

energy reduction. FCM models the dynamic interactions between users and 

environmental sensors such as temperature and lightning. The theory of timed automata 

is integrated in the framework and FCM evolution (changes of FCM graph structure) is 

considered in this research. Carvalho (2010) discussed the structure, the semantics, and 

the possible use of FCMs as tools to model and simulate complex social, economic, and 

political systems, while also clarifying some issues that have been recurrent in published 

FCM papers. 

 Researchers have realized that the FCM approach is suitable for modeling human 

behavior and simulating complex social systems, and the FCM framework has been 

proposed at a very high level. However, very little implementation work has been done 

to simulate relatively large groups of users in social systems. Up to this point, we have 

not found FCM-related literature on human driving behavior and no FCM framework 

has been proposed for emergency evacuations in which human beings interact with a 

quickly-changing environment and knowledge development is necessary. Due to the 

widespread use of social media, our FCMs also include information sharing on social 

networks.  
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CHAPTER III  

TELECOMMUNICATION EQUIPMENT LOCATION PROBLEM WITH TIME 

COMPONENT MODEL 

 

In this chapter, we present the telecommunication equipment location problem 

with time component model (TELP) for evacuation processes to satisfy the 

telecommunication service demand.  We focus on the impact of mobile technology in 

regional evacuation and how the changing evacuation behavior can be better captured 

through more realistic and representative modeling.  Specifically, we note the 

importance of models that not only capture realistic individual behavior (e.g., voice 

calling, social networking, etc.) but which simultaneously model the supportive physical 

infrastructure (e.g., cell phone towers, internet access) to ensure maximal connectivity 

and resilience of the communication systems that support and enable evacuee decision-

making.  Through our modeling, we illustrate the criticality of adaptation and flexibility 

within a communication system and show how integrated models, while complex, can be 

solved efficiently and effectively.  In particular, by solving our model, emergency 

managers can obtain decision support concerning the number and configuration of 

mobile telecommunication equipment; where and when to install mobile equipment and 

corresponding routes. We limit the scope of this model to evacuation, noting that the 

logic of the model can be easily applied to other extreme events that require population 

movement through a large geographic region with some advance notice through 

forecasting. 
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Due to the complexity of our mathematical model, only small instances can be 

solved by directly using optimization solver. Hence, we develop efficient heuristic 

methods to solve relatively large problems. Later on this model is integrated in the ABM 

model for offering real-time updated solutions to maintain robust communication 

systems. 

III.1. Problem Setting 

While more and more people use their mobile cell phone devices to communicate 

with each other through voice calls, text messages, and social media, instead of face-to-

face conversation, the importance of the telecommunication infrastructure has become 

self-evident. There is significant risk that the existing telecommunication infrastructure 

is not sufficient to provide service during extreme events like a hurricane or earthquake. 

In an extreme event, the existing cell towers may suffer destruction. Additionally, users’ 

service requests will increase significantly due to the large amount of information 

following these events. Specifically, for the evacuation problem, users need to know the 

traffic conditions on the evacuation routes and the shelter information as they select 

destinations. We realize the availability of mobile cell station can assist to relieve the 

communication stress. A mobile cell station consists of a cellular antenna tower and 

electronic radio transceiver equipment on a truck or trailer. Now the questions are: 

where and when to install the equipment; if there is a limited number of facilities, what 

are the best routes to ship from one location to another so that we can serve as many 

users as possible during the evacuation process. 

https://en.wikipedia.org/wiki/Radio_antenna
https://en.wikipedia.org/wiki/Radio_masts_and_towers
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Radio
https://en.wikipedia.org/wiki/Transceiver
https://en.wikipedia.org/wiki/Truck
https://en.wikipedia.org/wiki/Mobile_home
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The telecommunication infrastructure that we are dealing with in this research is 

made up of two components: Macro-Stations and Micro-Stations. A Macro-Station 

(macrocell) is a traditional, high-power, high-cost cellular base station which provides a 

coverage radius up to 10km. A Micro-Station (microcell) is a smaller, low-cost unit 

which transmits at lower power levels and its coverage radius is less than 1km (Coombs 

and Steels, 1999). We consider the existing fixed cellular base station as Macro-Station 

and the mobile cell site on truck as Micro-Station. Since a Micro-Station is designed to 

be part of a cellular network, it can be deployed inside and outside of Macro-Station 

coverage. Figure 3-1 shows an example of a Macro-Station with overlay Micro-Stations. 

In this problem, we assume the locations of effective Macro-Stations are known. 

Figure 3-1 Example of a Macro-Station with overlay Micro-Stations 

One characteristic of this problem is that all users will travel on the established road 

network. Hence, their locations will be restricted to the geographic area of the roads. For 

an evacuation, users’ travel routes are predictable because they have fixed destinations 

already in mind. As evacuation time increases, users travel on the roads and their 

physical locations in general will be closer to their destinations. These two 
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characteristics indicate two points: 1. it will be beneficial to set up the Micro-Stations 

along the road network for better the user coverage; 2. moving Micro-stations during an 

evacuation can allow emergency managers to utilize the limited mobile Micro-Stations 

as much as possible. Therefore we limit the candidate Micro-Station locations along the 

road networks used during the evacuation. Micro-Stations can be shipped among these 

candidate locations during the multiple time periods. 

Our formal mathematical problem is defined as follow: locate P mobile Micro-

Stations to maximize the total number of users served over multiple time periods, given 

candidate Micro-Station locations, existing fixed Macro-Stations locations and users’ 

anticipated travel patterns on a road network. 

III.2. TELP Model 

In the model that follows, we assume the configuration of all Macro-Stations are 

the same, that is the coverage radius, transmission power and pole capacity are all set at 

the same level. Specifically, the pole capacity refers to the maximum number of users a 

cellular station can support if there is no noise and other station interference (Gilhousen 

et al., 1991). The cellular station coverage is defined as the maximum distance that a 

given user of interest can be from the station with reliable received signal (Veeravalli 

and Sendonaris, 1999). The special relationship between coverage and capacity is 

captured in this model as well. To simplify our problem, we assume the station 

interference only happen between pair-wise stations. 
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Similarly, we assume the configuration for all Micro-Stations are the same. We 

also assume that Micro-Stations cannot operate while travelling. In other words Micro-

Stations can only provide service while they are installed at candidate Micro-Station 

locations. We consider the installation and break-down time of Micro-Stations take a 

predefined period of time and it’s included in the travel time from one candidate location 

to another. We limit the usage of each candidate Micro-Station location for one Micro-

Station at a time. 

We define the following notation: 

Model Parameters 

I set of users who need to connect to tele station,    I

M set of existing Macro-Stations,    M 

J set of candidate Micro-Station locations,    J

T set of time periods,    T 

KM single-cell pole capacity of Macro-Station  

KJ single-cell pole capacity of Micro-Station 

dimt  distance from user   to Macro-Station   at time   

dijt distance from user   to candidate Micro-Station location   at time   

RM Macro-Station coverage radius 

RJ  Micro-Station coverage radius 

 P  total number of Micro-Station can be used 

     Shipping time from candidate Micro-Station   to    
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Decision Variables 

    1 if user   is assigned to Micro-Station located at   at time   

    1 if user   is assigned to Macro-Station   at time   

   1 if Micro-Station located at   operating at time   

       1 if Micro-Station is shipped from location   at time   to location    at time   

Objective 

                                              (3.1) 

Constraints 

          +            1      I,      T (3.2) 

              I,      J,      T (3.3) 

          < KJ      J,      T (3.4) 

          < KM      M,      T (3.5) 

         ≤ P      T (3.6) 

                I,      J,      T (3.7) 

                I,      M,      T (3.8) 

(KJ -         ) (KM -            ≥                             

     J,     M,      T (3.9) 

(KM -            (KM -             ≥                               

        M,      ,      T (3.10) 

(KJ -         ) (KJ -             ≥                                
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        J,      ,      T  (3.11) 

                                J,      T  (3.12) 

                    =                         J,      T  (3.13) 

(1 -                    ) ≥            J,      ,      T  (3.14) 

                       = 0         T,     ,         J  (3.15) 

    ,     ,            I,      J,      M,      T  (3.16) 

                  J,         T,      (3.17) 

The objective (3.1) is to serve as many users as possible through evacuation 

periods. Constraints (3.2) - (3.8) are location-allocation constraints. Constraints (3.2) 

limit each user covered by at most one tele station. Constraints (3.3) ensure that if a user 

is covered by a Micro-Station located at   there must be a Micro-Station operating at 

location  . Constraints (3.4) - (3.5) make sure user assignments do not exceed the base 

station pole capacity. Constraints (3.6) indicate the total number of P Micro-Station 

available for installation each time period. Constraints (3.7) and (3.8) ensure the user’s 

distance from the tele station is less than or equal to the effective radius of the 

corresponding tele station. 

Constraints (3.9) – (3.11) are the interference constraints. In CDMA radio 

network, capacity and coverage of tele station have to be considered simultaneously and 

both are restricted by the signal quality constraints. Signal quality is restricted by signal 

interference within the tele station and from other stations. The interference considered 
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here is from voice users. 
ijmta  = [              ]/[              ] and        

[              ]/[              ], these two terms become constant once a user’s 

location is known. h is a constant that depends on wavelength, antenna heights, antenna 

gains, etc. Use
mh and jh to represent this constant value for Macro-Station and Micro-

Station respectively. d is the distance from user to station, 
0d is the close-in reference 

distance. Use 
0md and 0jd  to represent the close-in reference distance for Macro-Station 

and Micro-Station respectively.  is a zero-mean normal random variable with standard 

deviation M and 
J for Macro-Station and Micro-Station respectively.  is path loss 

exponents. (3.9) – (3.11) shows the relationship between base station capacity and signal 

interference. 

Constraints (3.12) - (3.15) are the routing constraints. Specifically, constraints 

(3.12) ensure Micro-Station   can only be turned on when it is at location   at time  . 

Constraints (3.13) are flow balance constraints. Constraints (3.14) indicate Micro-Station 

can be shipped from location   at time   if it’s not operating. Constraints (3.15) are the 

shipment availability constraints. 

III.3. Computational Setup 

In the following numerical studies, we conduct computational experiments on a 

computer with an Intel Core2 Quad 3.0 GHz processor, and 8GB RAM. The algorithms 

are implemented in Python 2.5 and Concert Technology when CPLEX (ILOG CPLEX 
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12.1) was used. Although the latest Python version is 3.4, we have to use Python 2.5 in 

order to use the Python API for CPLEX 12.1. 

 

III.4. Preliminary Result Using CPLEX Only 

III.4.1 Linearization Model  

 To solve the TELP model directly in CPLEX, we convert nonlinear constraints 

(3.9) – (3.11) to linear constraints. The linearization technique which transforms the 

integer quadratic program into an equivalent zero-one binary linear program is presented 

here. Consider constraints (3.9) as an example.  

(KJ -         ) (KM -            ≥                                

     J,     M,      T    (3.9) 

Moving all quadratic forms to one side gives us: 

* * *

( 1), , ,

J M M ijt J i mt ijt ijmt i mt i jmt ijt i mt

i I i I i I i I i I i I

ijt i mt ijmt i jmt

i I i I

K K K x K z x a z b x z

x z a b j J m M t T

   

       

 

 

   

       

     



 

Following the idea of the standard 0-1 linearization (Fortet, 1960), we substitute the 

binary quadratic terms by adding a set of new variables and a family of inequalities. We 

replace           by set of         binary variables. Add the following inequalities: 

        ≤            I,       I,      M,      J,      T  (3.18) 

        ≤             I,       I,      M,      J,      T  (3.19) 

        ≥      +       – 1      I,       I,      M,      J,      T (3.20) 
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Inequalities (3.18) and (3.19) guarantee that          will be zero if either      or       are 

zero. Inequality (3.20) will make sure that         will equal to 1 if both      and       

are set to 1. 

Using Fortet’s linearization approach, we transform our nonlinear problem to 

binary linear program. As mentioned in many articles (Sherali et al., 1986; Billionnet et 

al., 2008), the main drawback of this approach is that it increases problem size 

significantly. It becomes less and less practical as we increase the number of users and 

Micro-Station candidate locations.  

We can improve this general linearization method by adding more valid 

inequalities based on the assignment properties: each individual is served by at most one 

base station. Therefore, our problem is very sparse, meaning that many of the decision 

variables are populated by zero values. We replace inequalities (3.18) and (3.19) by 

(3.21) and (3.22) which leads to an integer linear program of significantly smaller size.  

                   ≤                I,       I,              T  (3.21) 

                   ≤                 I,       I,              T  (3.22) 

 

III.4.2 Computational Results for Linearized TELP Model  

 To see the performance of the CPLEX optimization solver on our model and 

better understand the impact of different parameters, we generated 9 small problem sets. 

For each problem, we fixed the value of KM and KJ at 5 and 3 respectively, and set T at 

4. Each problem set included 3 instances which have different user movement patterns: 
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single direction (SD), small degree of randomness (SR), complete randomness (CR). 

Other parameter settings are summarized in Table 3-1.  

 

Table 3-1: Parameter values for the data sets 

 

Set |M| |J| P |I| 
1 

1 4 2 

5 

2 6 

3 7 

4 

2 8 4 

10 

5 12 

6 14 

7 

4 16 8 

20 

8 24 

9 28 

 

 

We tested all the instances in CPLEX12.1 with default settings. The 

computational results can be found in Table 3-2. We found that even small problems are 

hard to solve to optimality. For these hard instances, we use “Gap 3% RT”, i.e., the 

running time when the gap between the given solution and optimal solution reach 3%. 

For instances which the solver cannot give good solutions after 3 hours, we use “Opt. 

Gap” to show the gap between current solution and optimal solution. The running time is 

in seconds. 

Here are observations from testing 9 problem sets: 1. the linearized TELP model 

is very hard to solve to optimality. The largest instances we tested were 28 users with 4 

Macro-Stations and 16 candidate Micro-Station locations. After running 3 hours, we 



 

32 

 

could only obtain 90% optimal solution gap. It seems impossible to solve this model 

within   reasonable time for real-world problem since the number of constraints and 

decision variables increases exponentially as the problem size increases.  2. The user 

movement pattern is an important factor that effects how difficult it is to solve in terms 

of running time and solution quality. From Table 3-2, we can see user movement 

followings a single direction usually leads to a longer running time or a bigger Opt Gap. 

During a real evacuation, instead of randomness, user movement patterns will follow 

evacuation routes. Therefore, it is not realistic to solve real-world problem by simply 

using CPLEX. 

 

Table 3-2: Computational results of linearization TELP model 

 

 

Set Instance 
Opt. 

RT 
Gap3%RT 

Opt. 

Gap 

Obj. 

Val. 

1 

SD 3.45     19 

SR 0.695 
 

  20 

CR 0.764     20 

2 

SD 3.54     20 

SR 1.097 
 

  20 

CR 0.655     24 

3 

SD 5.1 
 

  21 

SR 1.365 
 

  21 

CR 1.263     28 

4 

SD   397.63   36 

SR 1322 
 

  37 

CR   2.995   39 

5 

SD   3282.7   38 

SR 2156 
 

  39 

CR   21.06   47 

6 

SD   
 

5.13% 39 

SR 4587 
 

  42 

CR   155.57   55 

7 

SD 21617   8.11% 74 

SR   
 

3.90% 77 

CR 209.5     80 

8 

SD     31.51% 73 

SR   
 

88.24% 51 

CR   13170   94 

9 

SD   
 

100% 56 

SR   
 

87.72% 57 

CR     89.83% 59 
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III.4.3 Solution Illustration 

 To better understand the features of optimal solutions and develop efficient 

algorithms, we illustrate solution characteristics in this section. Here we use problem set 

4 SD instance which has 1Macro-Station, 4 candidate Micro-Station locations (CML), 2 

Micro-Stations and 5 users with a single direction movement pattern. The coordinates of 

CML and the shipping time between any two locations can be found in Table 3-3 and 

Table 3-4 respectively. 

 

Table 3-3: Coordinates of candidate micro-station locations 

StationID X Coordinate Y Coordinate 

Macro-Station (M) 2000 2000 

Micro-Station1 (j1) 1000 3000 

Micro-Station2 (j2) 1000 1000 

Micro-Station3 (j3) 4000 1000 

Micro-Station4 (j4) 4000 3000 

 

Table 3-4: Shipping time from CML j to j’ 

  j1 j2 j3 j4 

j1 0 1 2 1 

j2 1 0 1 2 

j3 2 1 0 1 

j4 1 2 1 0 

 

 

Figure 3-2 shows the assignment of users to cellular stations at each time period. 

Red dash lines indicate the assignment of Micro-Station users to the corresponding 

Micro-Stations. And the green dash lines indicate the assignment of Macro-Station users. 

 



 

34 

 

 

                                  

 

 We use a space-time network to demonstrate installation and routing solutions. 

Figure 3-3 shows the location solution where Micro-Stations should be installed and 

routing strategy detailing how Micro-Stations can be shipped from one candidate 

location to another between time periods. All Micro-Stations initially leave the pseudo 

node S0 and arrive at the pseudo node S1 at the end. No shipping cost between any 

candidate locations and pseudo nodes. At time period 1, Micro-Station1 and Micro-

Station2 are located at j1 and j4 respectively. Micro-Station1 remains at j1 at time period 

Figure 3-2: Assignment of users to cellular stations 
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2 while Micro-Station2 travels from j4 to j3. At time period 3, Micro-Station2 arrives at 

j3 and Micro-Station1 travels from j1 to j2. Both Micro-Stations operate at time period 4 

at location j2 and location j3 respectively. Note that a better installment solution which 

gives a higher objective value is to install a Micro-Station at j2 at time period 3. 

However, due to routing constraints, Micro-Station1 cannot arrive at j2 at time period 3 

which may cause unfulfilled user demand. Routing constraints actually reduced the 

feasible candidate location set. This solution feature can be utilized when we develop 

our heuristic solution in the next section. 

 

 

Figure 3-3: Micro-Station installation and routing solution 

 

III.5. Heuristics 

 Although linearization technique helps in problem simplification and enable us to 

use CPLEX to solve TELP model, it is not efficient in terms of runtime and memory 

required when we apply our model to relatively large-scale instances for extreme event 

evacuation. Therefore, it is necessary for us to develop heuristic solution approaches 

which take advantage of the well-understood explicit model formulation and solution 
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characteristics we found in last section. In this section, we present a greedy randomized 

adaptive search procedure (GRASP) metaheuristic and Lagrangian relaxation heuristic 

and the implementation of these two heuristics.   

III.5.1 Metaheuristic -- GRASP 

 Recall that routing constraints limit the Micro-Station locations. Instead of 

considering the best installation and assignment strategy at the first stage and checking if 

routing constraints are satisfied at the second stage, this heuristic approach generates 

feasible routes and decides Micro-Station installation locations at the same time.  

GRASP is a multi-start procedure where each iteration consists of two major 

parts: 1. Construction of a greedy randomized feasible solution; 2. Local search: find a 

locally optimal solution, starting from the constructed solution. The pseudocode of 

GRASP approach is found in Algorithm 1. 

Algorithm 1 Procedure GRASP 

1 BestSolutionFound =  ; F (BestSolutionFound) =   ; 

2 for i = 1… MaxIter: 

3       x = HybridGreedyRandomizedConstruction (Random Seed); 

4       x’ = LocalSearch (x);   

5       If F (x’) > F (BestSolutionFound): 

6             BestSolutionFound = x’; 

7       End if; 

8 End for; 

9 Return BestSolutionFound 
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Procedure HybridGreedyRandomizedConstruction 

1 SolutionFound =  ; 

2 While solution is not complete: 

3       Generate reachable candidate Micro-Station locations as set Sp; 

4       List all possible Micro-Station installation strategies based on Sp as set K; 

5       For each k   K: 

6        CPLEX solve assignment problem 

7        While interference constraints is violated: 

8              Change corresponding     or     status 

9              CPLEX solve updated assignment problem 

10        End while; 

11        f (k) =                                   

12       End for 

13       U = max {f (k): k   K} 

14       L = min {f (k): k   K} 

15       Build the Restricted Candidate List (RCL):  

RCL = {k   K: f (k) ≥ L+ α (U-L)}; 

16       Select element s from RCL at random; 

17       SolutionFound = SolutionFound  {s}; 

18 End while; 

19 Return SolutionFound 
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We demonstrate the greedy randomized solution construction procedure in 

Figure 3-4. This solution construction procedure builds up a sub-solution at each time 

period and produces the complete solution at the end of last time period. By breaking 

down multiple time periods into single time period, we can simplify the sub-problem.  

 

 

Figure 3-4: Flow chart of GRASP solution construction 

 

At each time period Ti, we generate a set of reachable candidate Micro-Station 

locations J’. Based on the information from previous time periods such as the Micro-

Station’s location, whether it’s operating or not and shipping time, we can get a set of 

feasible locations where a Micro-Station can be shipped to at time period Ti. These 

locations are referred to as the reachable candidate Micro-Station locations. At the first 

time period, we consider all CML as J’. Obviously, J’ is a subset of CML and by 

creating such a set of locations we can reduce the model parameter |J| and ensure the 

routes are feasible. Furthermore, at each time period Ti we generate a set of all possible 
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Micro-Station installation strategies called K. For P given Micro-Station facilities, K = 

{0, 1, 2… P}. It is necessary to examine all elements in K, because it may not be 

beneficial to operate all available Micro-Stations at each time period.  

After completing the previous steps, what remains is a relatively simple 

assignment problem. The objective function and constraints are given as following: 

                                       (3.23) 

s.t. 

         +            1       I       (3.24) 

                 I,      J’     (3.25) 

         < KJ         J’      (3.26) 

         < KM         M      (3.27) 

        = P           (3.28) 

                    I,      J’     (3.29) 

                   I,      M     (3.30) 

Note that constraints (3.26) – (3.20) are very easy constraints and we use CPLEX 

to solve this assignment problem for each k   K. The last set of constraints we need to 

consider is interference constraints which can effect decision variables     and     and 

objective value. Here we exhaust all pairs of cellular stations which have interference 

impact and check if all constraints are satisfied. If the current assignment violates any 

interference constraint, we delete the assignment causing violation and set the 

corresponding     or     equal to 0. We then add corresponding      = 0 or     = 0 as 
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new constraints and resolve the updated assignment problem until all the interference 

constraints are valid. Then we calculate the objective value of the assignment problem 

namely f (k).  

After examining all k   K, we have a list of feasible solutions and objective 

values for single time period Ti. Let the largest and smallest f (k) be U and L 

respectively and build the Restricted Candidate List (RCL): RCL = {k   K: f (k) ≥ L+ α 

(U-L)}. Randomly pick an element s from RCL and update SolutionFound to 

SolutionFound  {s}. Repeat process (step 3-17) until the end of the last time period 

which terminates the solution construction phase. 

 RCL is actually where the greedy randomization takes place. Instead of always 

take the local best solution, RCL gives the opportunity to take a look at the solution that 

may be good but not the best. Parameter α controls the tradeoff between greediness and 

randomness, where α = 0 is purely greedy and α = 1 is purely random. We use α = 0.5 

for testing our problems. For an individual time period the best solution is to operate all 

available Micro-Stations. However, it may be beneficial for whole time horizon to stop 

operating selected Micro-Stations at some point in time and ship them to another 

locations that can fulfill larger demand at a later time.  

 To start local search, we need to first define the “neighborhood” for our problem. 

Consider the constructed solution as the initial solution and construct adjacent solutions 

that have the same routing strategy but different installation solutions. Basically, 

adjacent solutions have different     values but maintain the same route solution as the 

initial solution. Notice that we may miss better installation strategies when we randomly 
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pick an element from RCL. If these installation strategies also satisfy the current routing 

solution, then we can improve our initial solution. For any adjacent solution we limit the 

number of different     from the initial solution to 1. The collection of adjacent solutions 

is defined as the neighborhood. Local search is to find the best solution in the 

neighborhood and replace the current solution if there is a better solution. 

III.5.2 Lagrangian Relaxation-based Heuristic  

 The second heuristic we apply to the TELP model is a Lagrangian relaxation 

with local search technique. Fig.3-5 is flowchart for a Lagrangian relaxation heuristic 

approach. The Lagrangian relaxation formulation LR (λ) of TELP is given as follows.   

                                                    
                        

   
                      

 
                                    

 
         

               +         4                               +         5           

          +      : <                 6                         

 (3.31) 

s.t. 

          +             1        I,      T    (3.32) 

          < KJ          J,      T    (3.33) 

          < KM         M,      T    (3.34) 

                       I,      J,      T   (3.35) 

                      I,      M,      T   (3.36) 
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    ,     ,               I,      J,      M,      T   (3.37) 

                      J,         T,        (3.38) 

All λ ≥ 0           (3.39) 

 

 

Figure 3-5: Flow chart of Lagrangian relaxation heuristic 

 

First, we use CPLEX to solve LR (λ) and get the Upper Bound. To construct feasible 

solution    of original problem from LR (λ), we need: 

(1)    : We have (1-       
                   in the objective of LR (λ). For each    

T, find P largest coefficient of      from term (1-      
               and let these 

     and the corresponding      equal to 1. 

(2) Feasible        : Construct a directed spatial temporal graph G, and each vertex   
  

in G corresponding to a location   and time  . Add pseudo node s and t as source 

node and sink node. Add edges between   
 and   

    for   >0,   +1 ≤ T. For 
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vertices whose     equal 0, add edges between   
  and    

   if transportation time 

between   and    equals (      ). Add edges from s to   
  and   

 to t. For 

incoming edges of vertices whose     equal 1, assign unit weight on these edges 

and assign 0 weight to the other edges. In this DAG graph we can find the 

longest path from s to t to get a route for each mobile cell station. In particular, 

after obtain a longest path from s to t, remove the vertices and edges comprised 

in the path and construct another longest path from the new graph until we obtain 

P routes.   

(3)  Adjust      and      : If vertices whose     equal to 1are not covered by any of 

the P routes, then make     equal to 0 and adjust corresponding       

(4) Check the interference constraints: For each cell station (mobile station or fixed 

station), sort the user distance to the station in decreasing order. If the 

interference constraints are not satisfied, then remove the furthest user until 

interference constraints are satisfied. 

The lower bound of the problem can be calculated once we find the feasible solution. 

Then we use the local search starting from the feasible solution constructed above. The 

local search algorithm we apply here followed the same idea as the GRASP 

metaheuristic. Again, in the adjacent solution we change     for those such that status 

changing does not impact on routing constraints i.e., keep variable          the same. Find 

the best solution     in neighborhood. Check if we can get a better lower bound and 

update the lower bound and the best feasible solution as necessary. If the gap between 
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the upper bound and lower bound is smaller than threshold ε, then we output the best 

feasible solution and corresponding objective value. If the current best feasible solution 

is far away from the upper bound, we update each set of lagrangian multiplier λ by using 

following equations.  
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   is the parameter that decides how big is the step from λ to λ’ 

 

 



 

45 

 

III.5.3 Computational Results 

The computational results of implementing GRASP metaheuristic and 

Lagrangian relaxation heuristic are presented in this section. To test and compare the 

heuristic approaches to the linearized model solved in CPLEX, we use the same 

parameter settings as shown in Table 3-1.  

Table 3-5: Computational results of GRASP and Lagrangian relaxation 

    GRASP 

Lagrangian 

Relaxation 

Set Instance Avg. RT Std. RT 

RT 

reach 

best sol. 

Obj. 

Val. 
 RT 

Obj. 

Val. 

1 

SD 6.599 2.153 0.314 18 1.49 16 

SR 9.415 1.073 0.448 16 0.1247 14 

CR 6.545 1.867 0.311 20 0.4785 16 

2 

SD 7.961 0.946 0.571 18 2.39 17 

SR 10.18 1.488 0.484 16 0.2826 12 

CR 8.406 1.481 1.705 24 2.5427 17 

3 

SD 14.014 1.067 1.005 19 10.23316 18 

SR 12.162 2.269 0.966 16 0.351 13 

CR 12.095 3.165 2.951 24 18.1158 21 

4 

SD 38.881 4.566 5.218 34 7.0785 23 

SR 64.571 22.328 9.296 32 0.2714 23 

CR 54.385 16.254 14.369 40 3.1918 24 

5 

SD 53.375 8.371 4.181 34 11.34 29 

SR 95.797 28.272 29.73 33 0.83235 34 

CR 87.952 28.126 28.923 43 16.5217 31 

6 

SD 206.917 79.284 48.804 37 103.2878 31 

SR 231.874 130.215 75.554 34 19.725 30 

CR 146.446 37.763 47.16 48 34.9366 32 

7 

SD 605.172 237.45 164.156 71 15.432 45 

SR 560.961 198.421 148.826 64 1.0623 45 

CR 490.819 143.953 124.536 79 12.5131 43 

8 

SD 657.433 178.577 251.61 70 124 52 

SR 564.867 207.951 176.791 63 6.79 50 

CR 503.566 105.239 162.166 86 93.189 67 

9 

SD 480.46 131.595 204,786 73 566.2434 57 

SR 793.292 243.976 277.329 60 38.54191 58 

CR 704.317 227.95 246.224 94 274.3103 60 
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Note that GRASP is multi-start algorithm, we run 10 replications for each 

instance. Stopping criteria we used here is if no better solution is found for 20 iterations 

then we consider the current solution to be the best solution. To measure the running 

time for GRASP, we use the average running time, standard deviation of running time 

and the running time when the best solution is first found. 

Figure 3-6 and Figure 3-7 show the running time and objective value comparison 

of the linearized model, GRASP heuristic and Lagrangian relaxation heuristic for SD, 

SR and CR instances respectively. For the smallest problem set 1-3 (1 Macro-Station, 5-

7 users), all three approaches can give solutions within 20 seconds. Using CPLEX to 

solve the linearized model can give us the optimal solution quickly. When we increase 

the problem size to 2 Macro-Stations and 10-14 users, the linearized model starts to slow 

down and took at least 1 hour to solve for some test instances. By contrast, the two 

heuristic approaches can solve these instances within 200 seconds and most instances are 

solved within 100 seconds. Compared to GRASP, the Lagrangian relaxation heuristic is 

faster which can finish solving within 30 seconds for many instances from problem sets 

4-6. However, GRASP provides better solutions than Lagrangian relaxation for almost 

all instances. Solution quality from GRASP can compete with the linearized model for 

many instances. The best solutions for the largest test instances are indeed from GRASP 

although it took longer running time compared to Lagrangian relaxation.  

Solutions from Lagrangian relaxation are slightly better than the linearized model 

for larger problems, and it only takes a little computational effort. For all instances from 
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problem 9, Lagrangian relaxation can solve for a better solution in 10 minutes than the 

linearized model can solve for in 3 hours. 

 

 

 

 

Figure 3-6: Running time comparison for three approaches 
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Figure 3-7: Objective value comparison for three approaches  
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III.6. Summary and Conclusion 

In this chapter, we introduce telecommunication equipment location problem and 

provide the mathematical model TELP. This model considers where to locate mobile 

Micro-Stations and best routes to ship them based on existing cellular network to better 

serve cell-phone users for the extreme event evacuation process. Because of the 

nonlinear interference constraints, we cannot solve TELP simply using optimization 

solver. To obtain a linearization model, we have to add more variables and constraints 

by apply the linearization technique. Then we test the linearization model with small size 

problems. We found even for the small size problems, it is very hard to find optimal 

solutions. After study solution characters, we develop two heuristic approaches: GRASP 

metaheuristic and Lagrangian relaxation heuristic. Both heuristic approaches can solve 

test problems quickly compared to solve the linearization model. GRASP can yield very 

competitive solutions but need to have more computational effort. Lagrangian relaxation 

heuristic, by contrast, can obtain solutions very quickly but sacrifice the solution quality. 
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CHAPTER IV  

AGENT-BASED EVACUATION PROCESS SIMULATION USING FUZZY 

COGNITIVE MAPS AS BEHAVIOR MODELS 

 

This chapter presents an agent-based evacuation process simulation model for 

implementing the novel fuzzy cognitive maps (FCMs) as agent behavior models. Each 

component of the simulation and its relation with other components are described in 

detail. These components include the physical environment, general property of agents, 

agent information sharing and collection, and agent behavior models. Agent behavior 

models consist of genetic and FCM-supported types. Genetic behavior models simulate 

subconscious behaviors, such as lane change, whereas FCM-supported behavior models 

simulate more complicated behaviors involving analytical reasoning and a time-adaptive 

procedure. In this simulation, each agent has its own FCMs, which are used to make 

decisions on speeding up, slowing down, route changes, destination changes, and 

resulting corresponding behaviors. 

 

IV.1. Agent-based Model Methodology 

An agent-based simulation model (ABM) has been developed to explore 

individual travel behavior and collective group behavior during an extreme event 

evacuation process, considering human and social behaviors. Using ABM as a tool can 

help us understand better how social networking and the availability/use of mobile 

telecommunication stations impact regional evacuations, considering the uncertainty of 
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individuals and the interaction among individuals. Specifically, with this ABM, we are 

able to explore how social media use can improve evacuation efficiency and to 

investigate how mobile telecommunication infrastructure planning impacts evacuation 

efficiency. 

The utility function approach is commonly used in ABM (see Chen and Zhan, 

2004; Han et al., 2007; Widener et al., 2012). It is a linear or nonlinear function of 

concerned factors, and the calculated value compared to the defined threshold would 

decide an agent’s behavior. However, instead of using the utility function to simulate 

decision-making, we use FCMs to mimic the causal decision-making process. The FCMs 

define the causal relationships among concepts, and they enable agents to evaluate 

temporal environment information and the fuzzy activation level for each concept. 

Agents will choose several possible actions after dynamically integrating external 

information and the evolution process. Compared to the utility function approach, FCMs 

can represent sophisticated relationships among different concepts, handle temporal 

information dynamically, and allow an adaptive learning process. Most importantly, 

FCMs provide realistic decision-making processes for this evacuation model, especially 

when the agents represent humans who operate vehicles. The adoption of FCMs 

distinguishes this ABM model from its peers and enables the integration of a variety of 

information; it also handles incomplete, unreliable, conflicting information and models 

the decision-making evolution. 

First, the ABM environment in which agents can operate is defined. In this 

simulation model, it is assumed that agents travel via vehicles. Hence, the road network 
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defines the physical domain of all agent activities. The digital elevation model (DEM) is 

integrated as the physical environment so that agents can have third-dimensional 

geographic knowledge to assist their decision-making. Besides the physical 

environment, the information system is introduced and enabled by the 

telecommunication system. The information system allows agents to share and receive 

information; the collective information can encourage or inhibit agent decision-making. 

The information system environment enabled by the telecommunication system 

exists only when the agent has cellular service. This environment is essential in utilizing 

social media, especially for emergency evacuation. The use of social networks without 

considering cellular support is insufficient. By introducing this virtual environment, 

agents can access and analyze information from other geographic regions, which 

actually extends agents’ “vision.” 

Different from the discrete event simulation model, the ABM decomposes a 

complicated system into a number of basic artificial agents. In this model, each agent 

represents a small group of evacuees who travel together using one vehicle. The agents 

are so-called “artificial agents” because they have their own “brain” to decide how to 

interact with the surrounding environment and other agents. Section IV.3 presents a 

detailed description of agent properties. 

The agent’s “brain” defines a series of behavior rules that guide the agent in 

taking specific actions at specific times. In this model, these behavior rules include the 

genetic and FCM-supported behavior models. The genetic behavior model supports 

agents taking actions on lane changing and sending out traffic information while 
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traveling on road segments. The FCM-supported behavior model can analyze the causal 

relationship between related factors and previous historical data to support more 

complicated decision-making, such as route change and destination change. 

  

 

Figure 4-1: Framework of ABME 

 

Figure 4-1 shows the framework of the ABM model. In its execution, a diverse 

population is randomly generated and distributed artificially within the region to be 

evacuated. The social networks are constructed among the generated population, 

considering both random networks and networks that have real-world, social network 

characteristics. A physical geometry engine (GeoMASON) imports geographic 

information system (GIS) data, the base station locations (obtained from the TELP 

model in Chapter III), and the United States Geological Survey (USGS) DEMs 
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(generated from satellite images) to the simulation model. Each agent will have its own 

behavior models. After integrating external information (e.g., the physical data, social 

communication, and broadcast information) and inherent data, individuals make adaptive 

dynamic decisions on the route and destination choices resulting from their own 

decision-making models. 

In this simulation model, information passes among the agents through general 

broadcast information and the agents’ social connections (i.e., agents send information to 

their “friends” as specified by their social network). It is assumed that every agent can 

receive the broadcast information whenever the agent is served by a teleservice. Again, 

only when the agent has teleservice can it successfully send or receive information via a 

social network. 

   

IV.2. The Environment  

IV.2.1 Physical Environment  

 Since the scope of this research includes the evacuees who travel in their 

vehicles, agent movement is restricted to the road network of the target region. The road 

network consists of a set of network intersections (nodes) and a set of road segments 

(arcs). It is assumed that each road segment is a bidirectional road, with multiple lanes 

for each direction. Intersections (forming a subset) are pre-chosen as evacuation origins 

where all agents are randomly placed in the initial step. Next, intersections comprising a 

different subset are identified as evacuation destinations representing the shelters where 

agents travel to after leaving their origins. There are no common nodes between the 
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origin and destination subsets. Additionally, there must be at least one path from the 

agent’s origin to its destination node. It is assumed that the capacity of each destination 

shelter is limited to an assigned number.  

For each agent, an evacuation route is computed once its destination node is 

selected. Instead of restricting the agents’ travel to the shortest route, they are allowed to 

change their routes at intersections. In other words, agents can choose from the available 

multiple routes, based on their external information analysis. To generate more realistic 

alternative routes, the k-shortest paths were computed from each intersection to each 

destination node. The k-shortest paths comprise a sequence from the shortest path to the 

kth-shortest path between a pair of nodes. These paths are pre-loaded into the system 

before the simulation starts. It is assumed that each agent has full knowledge of these k-

shortest paths and that all paths are loopless. Yen’s (1971) k-shortest path algorithm was 

adopted for implementation in this model because (among other reasons) the time 

complexity                has remained unbeaten for so many years.  

Considering that the geospatial information on the third dimension (the z-

coordinate) may influence an individual’s behavior, the DEM of the target region is 

imported. Specifically, different slopes of road segments can result in different vision 

ranges for agents, and the vision range can further influence agents’ travel speed.  

IV.2.2 Virtual Environment  

 Besides the physical environment, the information environment is the other 

important environment with which the agents interact. This virtual environment offers 

two types of information sharing: global broadcast and social media. The global 
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broadcast maintains the updated shelter capacity information. Every agent can access the 

global broadcast information as long as it has telecommunication service. Information 

sharing on social media only happens among agents with social connections. A 

simulated social network is constructed to represent the social connectivity among the 

agents. Again, information sharing on a social network can only be allowed when agents 

have access to telecommunication.  

 Scale-free networks are constructed as simulated social networks. The degree 

distribution of a scale-free network follows a power law distribution: the probability of a 

node having k connections to other nodes is     for large values of k, where   is a 

parameter 2 <   < 3. Since social networks are claimed to be scale-free, some 

phenomena, such as “small world,” are expected to be observed from the constructed 

scale-free networks. In comparison, random networks are also constructed as another set 

of simulated social networks. The simulated social network is stored in the system and 

kept the same during the entire simulation. An adjacency matrix is used to represent 

social connectivity. Although Butts et al. (2012) point out that the geographic 

heterogeneity would influence the social network structure, it is assumed that there is no 

geographic correlation on the simulated social networks. This assumption is made to 

have observations under a more general social network structure.  

Finally, the locations of cell stations are considered part of the environment, which 

determines whether or not an agent can be served. We export the output from the TELP 

model to determine when and where the mobile telecommunication facilities would be 

located during the evacuation process. The parameters associated with cell stations, such 
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as service range and pole capacity, are consistent with the parameters in the 

deterministic TELP model. Section IV.5 gives the implementation details of how the 

TELP model and ABM work together. Table 4-1 lists the parameters and variables 

associated with the above discussion. 

 

Table 4-1: Environment parameters and variables 

Environment Parameters 

  A set of origin nodes 

  A set of destination nodes 

   
  Kth shortest path from intersection node   to destination node   

    Vision range for an agent at location   
    Adjacency matrix of social connectivity 

   
   1 when agent   has social connection to agent   

   Locations of Macro-Stations 

Environment Variables 

   Locations of Micro-Stations 

    Global broadcast destination capacity information 

    Congested road segment information shared on social media 

    Destination information shared on social media 

  

IV.2.3 Environment Variables 

For every simulation iteration, the model updates the locations of mobile micro-

stations and the destination capability information. Social media shares the information 

about destinations and congested road segments. At each iteration, if an agent’s travel 

speed is lower than a threshold, then the agent is considered in traffic, and it will inform 

its social connections about the congestion of the road segment. The model maintains all 

congested road segment information shared among all agents, using variable    . Since 

the congested road information is time sensitive, our model keeps this information, 
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lasting for t iterations; after that, this information is discarded unless the same road 

segment is still in traffic. Variable     represents the updated destination information 

sharing on social media, such as the current and alternative destinations for each agent. 

 

IV.3. Agents 

IV.3.1 Agent Parameters 

Each agent possesses several genetic properties that can be identified from other 

agents but always remain the same during the simulation. These genetic properties can 

be considered “agent parameters.” The “top speed” is one of the genetic properties, 

which defines the highest speed the agent can reach. The agents’ top speed values can 

vary from one another since each individual has its own comfortable driving speed. 

Another genetic property is “acceleration/deceleration.” Similar to the top speed, each 

agent has its unique acceleration/deceleration rate. On one hand, the diversity of the 

travel speed can reflect the variation in individual driving behavior in the real world; on 

the other hand, it can provide a more interesting, collective travel pattern other than 

uniform travel behavior. Agent genetic properties can be expanded to different vehicle 

types, demographic trends, socioeconomic classes, and so on. 

IV.3.2 Travel on Road Segments 

Besides agent parameters, Table 4-2 also lists all the agent variables in our 

simulation model. At each simulation iteration, we track each agent’s location and speed. 

In the initial step, agents are located at their assigned origins. As the simulation starts, 

we use the FCM-speedUp model to adjust the speed of agent   from 0 to the proper 
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speed. The FCM-speedUp model is one of the FCMs that is used for agent acceleration 

while agents travel on the road segments. On the other hand, the FCM-slowDown model 

is used for agent deceleration when agents reach congested road segments. The two 

models are explained in detail in Section IV.4.3 when we present all the FCM models. 

As an agent travels on the road segment, it needs the distance and speed information 

about the agent in front to adjust its own speed or decide whether or not it needs to 

change lanes. Besides the information about the agent in front, the elevation of the 

agents can impact their physical vision range and further affect agent speed. 

 

Table 4-6: Agent parameters and variables 
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IV.3.3 At Road Intersections 

When an agent reaches a road intersection, it can choose from the following 

options: (1) stay on the current route, (2) continue toward the current destination but take 

an alternative route, and (3) change to an alternative destination and its corresponding 

route. To have these options available, we maintain three routes for each agent:   
  is the 

current route for agent  ,   
  is the alternative route with the same destination, and   

  is 

the route with an alternative destination for agent  . At the initial iteration, the shortest 

path from the agent’s origin to the current destination is chosen as   
 .   

  is the second 

shortest path from the agent’s origin to the current destination.   
  is the shortest path 

from the agent’s origin to the alternative destination. These three routes are updated 

whenever agent   arrives at a road intersection. Although we use the shortest distance to 

select these three routes, different methods, such as the least travel time or the level of 

familiarity, can be applied to route selection. 

The agents use the FCM-routeDest model (described in Section IV.4.4) to decide 

which route to take among the above three routes. The travel time and the level of 

familiarity associated with each route are the factors to be considered in this model. For 

agent  ,   
 ,   

 ,   
  and   

 ,   
 ,   

  are used to represent the travel time for and level of 

familiarity with route   
 ,   

 ,   
 , respectively. The travel time is calculated, based on 

the length of the route and the average speed of the agents who travel on each road 

segment of the route. For example,   
    

            
 

                   
   

    
 , where   

  is the road 

segment of route   
  for agent  , and   

  consists of a number of road segments 
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   . For each agent, the level of familiarity with each route is set as a 

constant with the range [0, 1]. Whenever any of the three routes is updated, the level of 

familiarity corresponding to that route is also updated.  

For each agent, among all available destination nodes, the one taking the least 

travel time from the agent’s location is selected as the current destination, and the one 

taking the second least travel time is considered the alternative destination. The agent’s 

current and alternative destinations are updated at road intersections. Whenever the 

number of agents at a destination shelter exceeds its capacity, that destination node is 

removed from the set of available destination nodes. Moreover, other agents cannot 

choose the overfilled destination as their current or alternative destination. 

IV.3.4 Sharing/Collecting Information 

Besides the travel time and route familiarity, agents also need information from 

the global broadcast and social media to help them make decisions on route and 

destination changes. If agent   is in traffic and has telecommunication service, it will 

send the congested road information about its current road segment to its social 

connections. Then all agents who connect to agent   can receive this information once 

they have telecommunication service. This information sharing can help the socially 

connected agents obtain better knowledge about congested roads so that they can try to 

avoid these roads when they make route or destination decisions.    
  represents the 

congested road information that agent   collects from its social network. Here we assume 

that the information sharing on the simulated social networks is symmetrical, that is, an 

agent can both send information to and receive information from its connected agents.  
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For an extreme event evacuation scenario, a group of socially connected agents 

tends to evacuate to the same destination shelter. Otherwise, the agents need to know the 

locations of other connected agents. While each agent travels to its destination, it will 

also send out its current destination information to the social network. The destination 

information received from agent  ’s social connections,    
 , can influence the 

destination decision of agent  . 

To enable the road and destination information sharing, agents need to have 

telecommunication service. Variable     is used to indicate whether or not agent   has 

teleservice, and     is updated at every simulation iteration.  

IV.3.5 Other Agent Variables Associated with Behaviors 

 While agent   travels on the road segments, it can have the following behaviors: 

speed up, slow down, and change lanes. Variable   
  indicates whether agent   speeds up 

or not,   
  represents whether it slows down or not, and     signifies whether it changes 

lanes or not. Route and destination changes happen when agents reach road 

intersections. Variables     and     represent agent  ’s route change and destination 

change decisions, respectively. These five variables are updated at every simulation 

iteration. 

 

 

IV.3.6 Framework for an Agent 

 Figure 4-2 shows the framework for an agent and how agent parameters and 

variables connect. At each simulation iteration, agents collect the information from their 
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surrounding environment and from social media and global broadcast. Based on this 

information and their own property data, agents apply decision-making models under 

different scenarios to make decisions on whether they need to speed up, slow down, 

change lanes, change routes, or change destinations. 

 

 

Figure 4-2: Framework of an agent 

 

 

IV.4. Decision-making Models 

IV.4.1 Following-car Model and Lane-change Model 

 We first present the following-car model (Fritzsche, 1994; Olstam and Tapani, 

2004) that is adopted in our agent decision-making models of lane change, speedup, and 

slowdown. In Olstam and Tapani’s following-car model, the risky distance (AR), desired 

distance (AD), speed of the leading vehicle (  ), and speed of the following vehicle (  ) 

are the parameters that decide whether the following vehicle needs to slow down, speed 
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up, or keep the current speed. The distance within which collision will happen is the AR, 

whereas AD expresses the distance that drivers try to maintain from the vehicle in front.  

The three cases in this following-car model are “closing,” “free driving,” and 

“following.” In the “closing” case, the speed of the following vehicle exceeds that of the 

leading vehicle at a certain threshold, and the distance between the two vehicles is less 

than AD but greater than AR. To avoid collision, the following vehicle should slow 

down till it has the same speed as that of the leading vehicle. In the “free driving” case, 

the distance between the two vehicles is greater than AD, or the speed of the leading 

vehicle is faster than that of the following vehicle. In this case, the following vehicle can 

speed up till it attains its desired speed. In the “following” case, the distance between the 

two vehicles is less than AD and greater than AR, and the value of |     | is less than a 

threshold with a small number. The “following” case can also happen in the scenario 

where the distance between two vehicles is greater than AD, but the following vehicle’s 

speed is faster than that of the leading vehicle. The following vehicle should keep its 

current speed in the “following” case. 

The lane-change behavior is considered subconscious, which means that an agent 

will automatically change lanes when the required conditions are satisfied. Two lane-

change conditions are used in this simulation model: (1) there are multiple lanes on the 

road segment where the agent travels, and (2) no other agent travels in the same 

direction within the desired distance. Once these two conditions are met, the agent will 

move to the same position on the next lane.  
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IV.4.2 Formal Definition of FCM 

 We focus on Glykas’ (2010) definition of FCMs as fuzzy graph structures 

consisting of concept nodes   and signed weighted directed edges   representing the 

causal relationship between the concepts. Each node    represents a concept, of which 

there are two types: factor-concept nodes (inputs) and decision-concept nodes, which are 

used in decision-making. Each edge     represents the influence of concept    on concept 

  . A positive value of     corresponds to an excitation of concept    caused by   , 

whereas a negative value corresponds to an inhibition relationship. If the value of     is 

0, this means that there is no influence between    and   . For concept   , activation 

level    is also associated with it, and       is its activation level at time  . The 

activation level of factor-concept nodes is computed from the environment by using the 

fuzzification function. The fuzzification function maps a real number from the 

environment to a number with the range [0, 1]. The activation level of decision-concept 

nodes can be used to determine whether a corresponding action is taken. Finally, the 

recursive relation defines the relation between       and         for each concept. The 

recursive relation actually describes the dynamics of the map. 

To build FCMs, we can follow the procedure below: 

(1) Identify relative concepts and classify factor concepts and decision concepts. 

(2) Construct causal relationship links between concepts and assign signed weights to 

links. 

(3) Define a recursive relation for the activation level of each concept between time t and 

time (t + 1).  
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(4) Iterate the FCM over time, and update the activation level for each concept. 

(5) The activations of decision-concept nodes yield the corresponding decision-making. 

IV.4.3 FCM-speedUp and FCM-slowDown 

This section explains the FCM-speedUp and FCM-slowDown decision-making 

models. In these two FCMs, the following-car model is integrated with other factors to 

determine whether the agent should speed up, slow down, or maintain the current speed 

while it travels on road segments. Besides the information associated with the vehicle in 

front, the geographic environment can also impact an agent’s travel speed. When an 

agent is climbing to a higher region, its vision range decreases, which can inhibit the 

action of speeding up. On the other hand, the lane-change behavior can encourage the 

action of speeding up. Figure 4-3 illustrates the FCM-speedUp. 

 

 

Figure 4-3: FCM-speedUp 
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In the FCM-speedUp, the concepts of “climbing up,” “the vehicle in front slows 

down,” “the distance from the vehicle in front is far,” and “lane change” are the four 

factor-concept nodes, while the concept of “speedup” is the decision-concept node. 

There are five influence edges: the slowdown of the vehicle in front inhibits speedup, the 

far distance from the vehicle in front stimulates speedup, a lane change encourages 

speedup, and climbing up causes the vehicle in front to slow down and inhibit speedup at 

the same time. Figure 4-3 shows the weights of influence edges. 

Activations of “the vehicle in front slows down” and “the distance from the vehicle 

in front is far” are computed by the fuzzification functions of the real value of speed and 

distance. Figures 4-4 and 4-5 display these two fuzzification functions. When the speed 

difference value (     ) is less than 5 mph, the activation of “the vehicle in front slows 

down” is set at 0.3; when the speed difference value (     ) is greater than 5 mph, the 

activation of “the vehicle in front slows down” is set at 0.8.  

The activation of “the distance from the vehicle in front is far” is calculated by 

comparing the real distance to the distance concepts defined by the following-car model. 

If the distance between two cars is less than AR, then the activation value is set at 0. If 

the distance is greater than AD, then the activation value is set at 0.9. The safe distance 

defines the smallest headway where positive acceleration is accepted. Hence, the safe 

distance is larger than AR and smaller than AD. For the distance between the safe 

distance and AD, the activation of “the distance from the vehicle in front is far” is set at 

0.2. 
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The activation of “climbing up” is set at 1 if the slope of the travel direction is 

greater than six degrees within AD. The activation of “lane change” is equal to 1 if the 

action of changing lanes is based on the lane-change model. 

 

 

Figure 4-4: Fuzzification function for concept of “vehicle in front slows down” 

 

 

 

Figure 4-5: Fuzzification function for concept of “distance from vehicle in front is far” 
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The recursive relation for FCM-speedUp is defined as follows:                

               . Figure 4-6 illustrates how this FCM yields the “speedup” decision for 

each agent. First, the activation for each concept    is calculated;       equals 0 when the 

agent is at a road intersection. Then the recursive relation is used to update the 

activations from the previous simulation iteration to the current iteration. If the 

activation of the “speedup” concept (C0) is greater than a threshold, then the agent will 

take the “speedup” action according to its acceleration. If not, then the current 

activations are carried to the next iteration, and the agent keeps its current speed. 

 

 

Figure 4-6: FCM-speedUp decision-making illustration 
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Following the same idea, FCM-slowDown is developed in a similar way, as shown 

in Figure 4-7. In FCM-slowDown, the concept nodes of “climbing up,” “the vehicle in 

front slows down,” and “short distance from the vehicle in front” stimulate “slowdown,” 

whereas “lane change” inhibits “slowdown.” The activations of factor-concept nodes are 

computed in the same way as in FCM-speedUp, except for the concept of “short distance 

from the vehicle in front.” Figure 4-8 shows the fuzzification function for calculating 

“short distance from the vehicle in front.” The same recursive relation is defined for 

FCM-slowDown as in FCM-speedUp.  

 

Figure 4-7: FCM-slowDown 
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Figure 4-8: Fuzzification function for concept of “short distance from vehicle in front” 

 

 

 

 

IV.4.4 FCM-routeDest 

 We have introduced the agent behavior models of FCM-speedUp and FCM-

slowDown, which are operated when agents travel on road segments. This section 

presents the behavior models of decision-making on route and destination choices. When 

the agent reaches a road intersection, the actions of changing the route and destination 

may occur, based on the output of the FCM-routeDest model. 

Figure 4-9 illustrates the FCM corresponding to the route and destination 

decision-making. In this FCM-routeDest model, “change route” and “change 

destination” are the two decision-concept nodes. The factor-concept nodes of “familiar 
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with alternative route” and “gridlock on upcoming road segments” can excite “change 

route.” “Longer travel time on alternative route (  
 )” and “gridlock on current road 

segment” make the route change take more time; therefore, these two factor concepts 

inhibit “change route.” For “change destination,” “familiar with alternative route (  
 )” 

and “social connections go to the alternative destination” encourage destination change. 

Once the current destination overflows, the agent has to change to its alternative 

destination. Hence, the influence edge of “current destination overflows” on “change 

destination” has a large, positive weight. Moreover, “longer travel time on alternative 

route (  
 )” discourages destination change. 

 

Figure 4-9: FCM-routeDest 
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Besides the factor-concept nodes discussed above, note that “change destination” 

can result in “change route.” “Change route” may also motivate “change destination.” 

Therefore, two influence edges with positive weights are constructed for the two 

decision-concept nodes. 

This FCM-routeDest model reveals the advantages of using the FCM as a 

decision-making model. The complexity of the decision-making process and the 

dynamics and simultaneous impacts of multiple factors are able to be represented. It will 

be very difficult to express all these factors and corresponding relationships by using the 

utility function. Even if all the factors considered in this FCM can be written in multiple 

utility functions, the dynamics and simultaneous characteristics are hardly shown.   

In our ABM model, each agent executes the same FCM-speedUp, FCM-

slowDown, and FCM-routeDest. Here, we assume that each agent considers the same 

factors and has the same causal relationship for the concepts. We also assume that the 

weights on the influence edges are the same for all agents. These assumptions can be 

improved and further extended to multiple FCMs for each decision-making, according to 

different agent behavior groups.  
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Table 4-7: Activations of concepts in FCM-routeDest 

Activations for concepts    --    in FCM-routeDest at time   

                                    

                                    

      1 if current destination is overflowed 

       
                                                             

                       
 

        
   The level of familiarity of   

  for agent   

          
                         

                                    

                       
 

      1 if speed is less than 10 mph 

       
  

    
 

  
  

        
                                 

              

      
  

    
 

  
  

 

Table 4-3 presents the fuzzification functions used for calculating the activations 

of the concepts in FCM-routeDest. The activation of “social connections go to the 

alternative destination” (  ) for agent   is computed as follows: the number of social 

connections going to the same alternative destination as that of agent   divided by the 

total number of social connections. The knowledge of agent   about “gridlock on 

upcoming road segments” (  ) is based on the road information shared on the social 

network.    
  represents all the information about congested road segments that agent   

can collect from its social connections. The number of congested road segments 

contained in agent  ’s current route divided by the total number of agent  ’s social 

connections determines the activation of   .    in       is the parameter used to amplify 

the ratio that is determined by the road network size and the social network size. Note 

that the knowledge about    and    is from social media supported by 
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telecommunication; if agent   has no teleservice at time  , then the activations       and 

      are equal to 0. 

The activation of “longer travel time on alternative route (  
 )” is computed by 

comparing the travel time on alternative route   
 , which is   

 , to the travel time on the 

current route, which is   
 . Thus, 

  
    

 

  
  is used as the fuzzification function for      . 

Similarly, 
  

    
 

  
  is used for      . The activations of the rest of the factor concepts, 

“current destination overflows,” “familiar with alternative route,” and “gridlock on 

current road segment,” can be calculated easily from agent variables and environment 

variables.  

The activations of the decision concepts “change route” and “change destination” 

(      and      ) are determined by the activations of factor concepts (  --  ) and the 

information from previous iterations. The recursive relation for these two decision 

concepts is defined as follows:                                        

and                                       . 

The flowchart in Figure 4-10 illustrates the decision-making process about route 

and destination changes. For each agent, the activations of all concepts in FCM-

routeDest are initialized at the road intersection. Then the activations of factor-concept 

nodes are updated by fuzzification functions, and the activations of decision-concept 

nodes are updated by recursive relations. If       exceeds threshold  , then the “change 

destination” decision is made, and       remains   . The reasons why       is set at   

after the “change destination” decision is made are as follows: (1) The “change 
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destination” decision still impacts the route change decision. (2) Once the decision is 

made,       can be considered a constant, and it does not change any more. The same 

logic is applied to the “route change” decision-making. Note that the actions of route and 

destination changes are taken at the next intersection although the decision-making 

happens on the road segments. 

 

 

Figure 4-10: FCM-routeDest decision-making illustration 
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IV.5. How ABME and TELP Work Together 

IV.5.1 The Logic 

In general, we use ABME to generate predicted agent locations which are then 

used as input for TELP. TELP generates an optimal Micro-cell station 

location/installation solution over a finite time horizon based on the ABME predicted 

locations. The generated TELP locations are then used as input to the ABME model, 

which is run to identify agent locations for the TELP time horizon (note that this step is 

actually finding the ‘exact’ agent locations which replace the predicted locations 

previously obtained).  At the end of the current time horizon, a new set of predicted 

locations for the next time horizon is identified and the entire process iterates again.  The 

process stops when all agents have successfully reached a destination (i.e., evacuation is 

complete). This idea is shown in Figure 4-11 and is more formally presented as follows: 

For any n time slots    to     : 

⑴ Export agent’s location, route and travel speed from ABME respectively with base 

station installation for    

⑵ Predict agent locations based on ⑴ for      to      

⑶ Using agent locations from ⑴ and ⑵ as input, solve TELP and obtain micro-cell 

station installation solution for      to      

⑷ Import solution ⑶ to ABME and continue running ABME from      to      

⑸ Iterate ⑴ -- ⑷ until all agents reach destination then stop 
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Note: at step ⑴ , if x = 0 then pre-run ABME without micro-cell station, else TX uses 

current micro-cell stations. 

 

 

 

Figure 4-11: The logic of how TELP integrated in ABME 

 

 

 

Novelty in this approach to evacuation modeling stems directly from the 

integrated TELP and ABME methodology.  Instead of utilizing standard techniques 

where TELP solves for the entire evacuation time horizon and then ABME evaluates the 

outcomes/solutions, the integrated methodology here gives constant feedback to both 

TELP and ABME while saving significant computational time through reduced problem 
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complexity for TELP.  In practice, the use of predicted agent locations is done at such a 

small time scale (roughly 8 time units or 320 simulation iterations) that little accuracy in 

agent positioning is lost.  The methodology is also flexible enough to be adapted for sub-

iterations to further address any positional accuracy concerns (i.e., TELP and ABME 

could iterate multiple times within each small time scale before moving forward).  We 

note that if the time scale equals the evacuation horizon, then implementation of this 

methodology equates to the traditional single-form, non-integrated use typically 

observed in current literature. 

IV.5.2 An Illustrated Example 

A small example is presented here to demonstrate how the Agent-Based Model 

Environment (ABME) model works together with the output from Telecommunications 

Evacuation Location Problem (TELP) model.  

IV.5.2.1 Problem setting 

In this example, we use a road network presented in Figure 4-12. This network is 

composed of 5 bidirectional arcs and it defines the space where agents can interact with 

each other and interact with the physical environment. Each arc (road segment) has two 

lanes for moving traffic in each direction, representing a total of four lanes for each arc. 

Each arc has a 1200 meter length. A DEM (Digital Elevation Model) is produced and 

imported under the road network (shading in the figures indicates elevation with lighter 

areas being lower.  This is important both for transportation and for establishing 

appropriate cell tower functionality). To simplify the problem, we only consider one 
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origin and one destination in this example. The locations of this one O-D pair are shown 

in Figure 3-1 as well. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-12: road network of small example  Figure 4-13: base-station locations 

 

The candidate locations of Macro-cell station and Micro-cell station as input of 

TELP are displayed in Figure 4-13.  These represent the possible locations for each 

station type, with eight total potential locations for this small-scale example. Micro-cell 

station locations are determined using the TELP model (recall that micro-cells assist 

agents in sending and receiving messages during the evacuation process as they travel 

from origin node to destination node.  Information received by an agent may result in 

route change, destination change, or both). 
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In this example, we place 10 agents at the origin and assume that individual agent 

speed is uniformly distributed within a range of 4.16 and 6.667 (Unit: meter/step). Each 

agent has their own fuzzy cognitive decision map which dictates whether and when the 

agent speeds up, slows down, changes to an alternate route or stays on the current route.  

We assume that decisions to change route/destination are only made at road network 

intersections (i.e., once an agent starts to travel down the road, they will not be able to 

turn around or change their routing decisions until the next intersection is reached). 

IV.5.2.2 Run ABME 

We consider 40 simulation iterations as one time slot. Following the steps listed 

above, we first pre-run ABME for one time unit under the assumption that no micro-

cells have been located use this initial run to export agent locations, travel speeds, and 

current routes in order to predict agent locations for the first 8 time unit run of TELP. 

Table 4-4 shows the agent predicted locations after performing this step. Once we have 

predicted agent locations for the first eight time units, TELP is solved to obtain micro-

cell locations and any associated micro-cell routing (recall that located micro-cells can 

be ‘shut down’ and moved to new locations by traveling along the road network) for first 

8 time slots (320 simulation iterations). Table 4-5 gives the micro-cell travel matrix. 

Table 4-6 shows important parameters in TELP: Radius of Macro-cell and Micro-cell; 

Pole capacity of Macro-cell and Micro-cell. 

By importing the optimal micro-cell locations and routing from TELP (locations 

shown in Table 4-7), we can motivate the re-run of the ABME model for these initial 
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eight time units.  Figure 4-14 illustrates the evacuation through these eight time units 

with TELP locations and routing in place. 

 

Table 4-8: Predicted agent locations for time unit 1-8 

  

Agent ID X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate Speed Current Route

0 976631.358 242134 976463.6568 242134 976295.9556 242134 976128.2544 242134 4.19253 2--3--0

1 976589.0076 242134 976375.17 242134 976161.3324 242134 975947.4948 242134 5.345941 2--3--0

2 976712.347 242134 976545.6804 242134 976379.0137 242134 976212.347 242134 4.166667 2--3--0

3 976646.5603 242134 976436.8953 242134 976227.2303 242134 976017.5653 242134 5.241625 2--3--0

4 976562.0833 242134 976340.4648 242134 976118.8462 242134 975897.2276 242134 5.540464 2--3--0

5 976695.6111 242134 976573.8318 242134 976452.0525 242134 976330.2731 242134 3.044483 2--3--0

6 976711.2892 242134 976577.9559 242134 976444.6225 242134 976311.2892 242134 3.333333 2--3--0

7 976589.4509 242134 976374.0247 242134 976158.5986 242134 975943.1724 242134 5.385654 2--3--0

8 976657.4286 242134 976448.9971 242134 976240.5656 242134 976032.1341 242134 5.210787 2--3--0

9 976679.9423 242134 976502.1879 242134 976324.4336 242134 976146.6793 242134 4.443858 2--3--0

Agent ID X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate Speed Current Route

0 975960.5532 242134 975792.852 242134 975625.1508 242134 975520 242196.5504 4.19253 2--3--0

1 975733.6571 242134 975520 242134.1805 975520 242348.0181 975520 242561.8557 5.345941 2--3--0

2 976045.6804 242134 975879.0137 242134 975712.347 242134 975545.6804 242134 4.166667 2--3--0

3 975807.9003 242134 975598.2353 242134 975520 242265.4297 975520 242475.0947 5.241625 2--3--0

4 975675.6091 242134 975453.9905 242134 975520 242421.6281 975520 242643.2466 5.540464 2--3--0

5 976208.4938 242134 976086.7145 242134 975964.9351 242134 975843.1558 242134 3.044483 2--3--0

6 976177.9559 242134 976044.6225 242134 975911.2892 242134 975777.9559 242134 3.333333 2--3--0

7 975727.7462 242134 975520 242141.6799 975520 242357.1061 975520 242572.5323 5.385654 2--3--0

8 975823.7026 242134 975615.2711 242134 975520 242247.1603 975520 242455.5918 5.210787 2--3--0

9 975968.9249 242134 975791.1706 242134 975613.4163 242134 975520 242218.3381 4.443858 2--3--0

Agent Location T1 Agent Location T2 Agent Location T3 Agent Location T4

Agent Location T5 Agent Location T6 Agent Location T7 Agent Location T8
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Table 4-9: Micro-cell candidate points travel matrix (unit: simulation time) 

  Point 0 Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 

Point 0 0 40 80 40 80 120 80 160 
Point 1 40 0 40 80 40 80 120 120 
Point 2 80 40 0 120 80 40 160 80 
Point 3 40 80 120 0 40 80 40 120 
Point 4 80 40 80 40 0 40 80 80 
Point 5 120 80 40 80 40 0 120 40 
Point 6 80 120 160 40 80 120 0 80 
Point 7 160 120 80 120 80 40 80 0 

 

  Point Location 
Point ID X Coordinate Y Coordinate 

0 975520 243334 
1 976120 243334 
2 976720 243334 
3 975520 242734 
4 976120 242734 
5 976720 242734 
6 975520 242134 
7 976720 242134 
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Table 4-10: Parameter settings for a small example 

Parameter Notation Value 

Coverage Radius of Macro-cell Station Rm 650 Meter 

Coverage Radius of Micro-cell Station Rj 350 Meter 

Pole Capacity of Macro-cell Station Km 8 

Pole Capacity of Micro-cell Station Kj 5 

Total number of Micro-cell Station P 2 

 

Table 4-11: Solution output of TELP for time unit 1-8 

Time Unit Micro-cell Candidate Point ID 

T1 7 

T2 7 

T3 7 

T4   

T5 6 

T6   

T7 6 

T8 6, 3 
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Figure 4-14: ABME illustration example agent locations time slot T1-T8   
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Figure 4-14 continued  
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To this point, we finish the first ABME  TELP  ABME iteration and begin 

the second. At the end of 8th time unit, we export agent locations, current routes and 

corresponding speeds to generate a prediction for time units 9-16 which will be used to 

facilitate solving the TELP (predictions provided in Table 4-8). Solve TELP for time 

unit 9-16. Micro-cell locations for each time unit can be found in Table 4-9. 

 

Table 4-12: Predicted agent locations of time unit 9-16 

 

 

 

 

 

 

 

 

 

Table 4-13: Solution output of TELP for time unit 9-16 

Time Unit Micro-cell Candidate Point ID 

T9   

T10 4 

T11 4,2 

T12 4,2 

T13 2 

T14 2 

T15 0,2 

T16 0,2 

  

Agent ID X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate Speed Current Route

0 975740.5516 242354.5516 975896.3207 242510.3207 976052.0898 242666.0898 976207.8589 242821.8589 5.50727 3--1--0

1 975520 242782.3533 975520 243031.72 975520 243281.0866 975520 243334 6.234166 3--0

2 976009.9468 242623.9468 976195.0157 242809.0157 976380.0846 242994.0846 976565.1535 243179.1535 6.543173 3--1--0

3 975520 242273.4711 975520 242472.8367 975520 242672.2023 975520 242871.5679 4.98414 3--0

4 975663.1299 242277.1299 975806.3454 242420.3454 975949.5609 242563.5609 976092.7763 242706.7763 5.063432 3--1--0

5 975549.4071 242163.4071 975680.2997 242294.2997 975811.1924 242425.1924 975942.0851 242556.0851 4.627755 3--1--0

6 975595.6322 242209.6322 975716.6436 242330.6436 975837.655 242451.655 975958.6665 242572.6665 4.278401 3--1--0

7 975744.366 242358.366 975894.0975 242508.0975 976043.829 242657.829 976193.5605 242807.5605 5.293809 3--1--0

8 975757.6445 242371.6445 975916.2533 242530.2533 976074.8621 242688.8621 976233.4709 242847.4709 5.607668 3--1--0

9 975979.09 242593.09 976151.2691 242765.2691 976323.4483 242937.4483 976495.6275 243109.6275 6.087453 3--1--0

Agent ID X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate Speed Current Route

0 976363.628 242977.628 976519.3971 243133.3971 976675.1663 243289.1663 976563.1137 243334 5.50727 3--1--0

1 975520 243334 975520 243334 975520 243334 975520 243334 6.234166 3--0

2 976750.2223 243364.2223 976550.3144 243334 976288.5875 243334 976026.8605 243334 6.543173 3--1--0

3 975520 243070.9334 975520 243270.299 975520 243334 975520 243334 4.98414 3--0

4 976235.9918 242849.9918 976379.2073 242993.2073 976522.4228 243136.4228 976665.6383 243279.6383 5.063432 3--1--0

5 976072.9777 242686.9777 976203.8704 242817.8704 976334.7631 242948.7631 976465.6558 243079.6558 4.627755 3--1--0

6 976079.6779 242693.6779 976200.6894 242814.6894 976321.7008 242935.7008 976442.7123 243056.7123 4.278401 3--1--0

7 976343.2921 242957.2921 976493.0236 243107.0236 976642.7551 243256.7551 976617.4884 243334 5.293809 3--1--0

8 976392.0797 243006.0797 976550.6885 243164.6885 976709.2973 243323.2973 976510.8291 243334 5.607668 3--1--0

9 976667.8067 243281.8067 976550.3144 243334 976306.8163 243334 976063.3181 243334 6.087453 3--1--0

Agent Location T9 Agent Location T10 Agent Location T11 Agent Location T12

Agent Location T13 Agent Location T14 Agent Location T15 Agent Location T16
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Continue running ABME with updated micro-cell station locations and routing 

for time unit 9-16. The screen shots of ABME for each time unit are shown in Figure 4-

15.  At the end of time unit 16, all agents are on an arc which connects directly to the 

destination.  Given that no changes in agent decision making can be made from this 

point onward (as per the FCM logic discussed previously), we conclude this example.  

Outputs from the ABME to assess evacuation performance and policy will be discussed 

in the next section.  
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Figure 4-14: ABME illustration example agent locations time slot T9-T16   
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Figure 4-14: Continued. 
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IV.5.3 Output Data 

We track and output ABME data at every simulation step level.  The output data 

can be measured into 3 catalogues: system performance, individual performance and 

road segment performance.  System performance data capture general information for all 

the agents; individual performance data capture detail information for each agent; road 

segments performance data provides the traffic load information. Specifically, we collect 

following data for system performance and individual performance:  agent’s travel data 

(such as speed, lane change and route change), telecommunication service data (such as 

number of agents served by macro-cell, number of agents served by micro-cell and 

number of unserved agents), and evacuation process data (such as total evacuation time). 

The complete list of output data is presented in Table 4-10. 

 

Table 4-14: Output data from ABME 

System Performance Individual Performance 

average speed speed 

total # of agents reach desire speed  reach desire speed or not 

total # of change lane # of lane change 

total # of routes change # of routes change 

total # of destination change # of destination change 

total # of agents unserved by Telecom agent is served by Telecom or not 

total # of agents sending out message  # of receiving message 

total # of agents need to send out 

message   

total # of agents served by Micro-cell  
 # of message that impact on agent's destination 

decision 

total # of agents served by Macro-cell  # of message that impact on agent's route decision 

total evacuation time evacuation time 

time that destination capacity is 

fulfilled 
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IV.6. Summary 

We introduce the ABME model for explore travel behavior in emergency 

evacuation. Each component of ABME, and variables and parameters from both 

environment and individual agent are presented in detail.  We develop the FCMs for 

agent decision-making on travel behaviors such as speedup, slowdown, route change and 

destination change. We illustrate the logic of FCMs and how it can develop adaptive 

knowledge for each agent. Finally, we show how TELP can be integrated in ABME to 

provide dynamic and accurate mobile telecommunication station location solutions.  
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CHAPTER V  

APPLICATIONS AND RESULTS 

 

In this chapter, we use the cities of Boston and San Francisco as study areas to show 

the implementation of our ABME model for a large-scale evacuation scenario. We 

examine how social networks impact the evacuation process in terms of evacuation time 

and travel behavior from the system and agent perspectives. Meanwhile, we explore how 

mobile Micro-Stations assist existing cellular networks to satisfy the surging user 

demand during the evacuation process. 

 

V.1. Working Environment 

We performed simulations in MASON, a fast, easily extensible, multi-agent 

simulation toolkit in Java (Luke et al., 2004) and its extension package GeoMASON 

(Sullivan et al., 2010). Among other simulation tools, we choose MASON because the 

system’s flexibility allows us to build up the novel, FCM decision-making model. 

Besides, GeoMASON integrates into the GIS, which can support spatial data (both raster 

and vector data) very well. In our ABM, agents interact with the environment that 

consists of a road network, which is in vector format, and the Digital Elevation Model 

(DEM), which is in raster format. Because of the embedded GIS feature, our ABM 

agents can make decisions based on updated geographic information, which makes our 

ABM more realistic. Our TELP model can benefit from this feature as well by having 

accurate user locations exported from ABM as input. Moreover, the visualization in 
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MASON can help us observe the aggregated agents’ travel behavior while running the 

simulations. 

 

V.2. Data Preparation 

In this section, we describe the data used for the simulation tests. It includes the 

road network, DEM, the fixed simulation parameters, and the assumptions associated 

with each component. 

V.2.1 Road Network and DEM 

The road networks imported to ABME are from the US Census website. The 

Boston main road network consists of 297 main roads projected in the 

NAD_1983_StatePlane coordinate system. The San Francisco main road network 

consists of 484 main roads projected in NAD_1983_UTM_Zone_10N. The visualization 

of these main roads can be found in Figures 5-1 and 5-2, respectively. 

In MASON, a road network is represented as nodes and arcs. Nodes represent 

intersections where agents can take actions of route changes and destination changes. 

Arcs represent road segments where agents perform behaviors, such as speed up, slow 

down, change lanes, and make decisions on route changes or destination changes. 

Figures 5-1 and 5-2 also display the corresponding DEM layers. The DEM file of 

Boston is from the Massachusetts state government. The cell size of this DEM file is 5 

meters by 5 meters. The DEM file of San Francisco is obtained from California’s 

Department of Water Resources, and the raster cell is 10 meters by 10 meters. The value 
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of each cell, in meters, represents its elevation above (positive value) or below (negative 

value) sea level. 

We assume the same speed limitation for each road segment; each road segment 

has four lanes, with two lanes for each direction. In our simulations, we do not use traffic 

lights. When agents reach intersections, the FCM-slowDown model can adjust their 

speed spontaneously by detecting the speed and distance of the vehicles in front.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: Boston main roads & 

DEM 

Figure 5-2: San Francisco main roads 

& DEM 
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V.2.2 Simulation Settings 

At the initial step, all agents were randomly located in a set of origin nodes. All 

agents took evacuation actions within a short time window. Hence, we could consider 

that they made evacuation decisions almost simultaneously. For the specific experiments 

we performed, the agents left their points of origin during the first 30 units of the 

simulation time (one unit is equivalent to 4 seconds of real time in our tests). Then the 

agents traveled toward their selected destination nodes. We tested our model under the 

single-destination and multiple-destination scenarios. For the multiple-destination case, 

we had the following assumptions: 1. The capacity of each destination would be set at 

the same value. 2. At the initial time, the majority of the agents would decide to go to the 

closest destination, and a small number of agents (seed agents) would be informed to go 

to a specific destination (Note that this would just be the initial setting, and all agents 

could make destination changes during the evacuation process, according to their 

FCMs). 3. Within a short time period, each agent would be allowed to make a limited 

number of destination change decisions. We also assumed that initially, each agent 

would choose the shortest path to one’s destination. 

Concerning the computational time for solving TELP inside ABME, we used the 

Lagrangian relaxation heuristic approach to solve TELP for the two study cases. The 

TELP model was executed in our ABM model after all agents left their points of origin. 

For specific experiments, the TELP model starts at 40 units of the simulation time. Why 

did we not trigger the TELP model at the initial time? It would take time for the agents 

to leave their congested points of origin and accelerate to the normal speed that would be 
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used for predicting their future locations. Since the TELP model uses the predicted agent 

locations as the input, using their normal travel speed and current locations could 

provide better predicted agent locations. We set the multiple time period parameter |T | 

to 8 in the TELP model, with each time period consisting of 40 units of the simulation 

time.  

Finally, the top travel speed for each agent was randomly selected from a range 

of 40–70 mph. An agent could not exceed its top travel speed while taking the speed-up 

action.  

 

V.3. Examining Social Media’s Impact on Evacuation  

 We conducted 36 experiments for both the Boston and San Francisco cases to 

explore how social media would impact the evacuation efficiency for the entire 

population and the individual’s travel behavior. We aimed to answer the following 

research questions: 1. In terms of evacuation efficiency, is it beneficial to utilize social 

networks during evacuation? 2. To what extent do social networks influence evacuation 

travel behavior?  

V.3.1 Agents and Simulated Social Networks  

 Three population sizes were tested: 100, 200, and 300 agents. Then the social 

networks were constructed among the generated population.  

 We considered two types of simulated social networks: scale-free network (SF-

NW) and random network (RND-NW). The SF-NW has degree distributions following 

the power law, and it reflects real-world social network properties, such as the small-
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world phenomenon. In the RND-NW, each agent is randomly connected to n other 

agents. The random network is easily built and has been widely adopted in laboratory 

tests.  

For each population size, we constructed an SF-NW, an RND-NW with 5 

degrees for each agent (RND-NW5), and an RND-NW with 20 degrees for each agent 

(RND-NW20). To fairly compare SF-NWs and RND-NWs, we chose the SF-NWs with 

the same total number of connections as those of RND-NW5. Together with the no 

social connectivity scenario, we had a total of 4 levels of social connectivity for each 

population level. All simulated social networks were generated beforehand and kept the 

same connection structure for the corresponding population sizes. 

V.3.2 Origins and Destinations 

For each study area, two sets of origin-destination (O-D) pairs were generated for 

single-destination and multiple-destination tests. Figures 5-3 and 5-4 show the locations 

of O-D1 and O-D2 for the two study areas. The two O-D sets share the same origins. 

Recall that for the multiple-destination case, a small number of agents (called “seed 

agents”) were informed to go to a specific destination, which might not be the closest 

one. We tested different numbers of “seed agents,” measured by the percentage of the 

population, to determine whether it would be helpful to notify more agents to save on the 

evacuation time. We set the “seed agents” to 10% of the population and 16% in the 

multiple-destination case.  
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Figure 5-3-1: Boston O-D1 

Figure 5-4-1: San Francisco O-D1 Figure 5-4-2: San Francisco O-D2 

Figure 5-3-2: Boston O-D2 
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V.3.3 Fixed Factors 

Social media could play a role in affecting agents’ behavior only when the 

information could be shared among the social networks. To observe the influence of 

social media, we had to ensure that relatively sufficient telecommunication power was 

available to support information sharing. Hence, we set the parameters related to cellular 

power at a high level. 

For the experiments described below, the number and locations of the Macro-

Stations were artificially assigned. We set up 10 Macro-Stations for the Boston 

experiments and 13 for the San Francisco experiments. Both cases had 15 micro-station 

facilities available for installation. The capacity of each macro-station and micro-station 

was fixed at different levels, based on the population size. Moreover, 70 candidate 

micro-station locations were identified for both cases. Figure 5-5 shows the locations of 

the macro-stations and the candidate micro-station locations. 

Table 5-1 presents the complete list of experiments and corresponding 

parameters. For each experiment, we set up 10 replications. The simulation stopped at 

the time when all agents reached their destinations.  
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Figure 5-5-1: Boston Macro 

locations & CML 

Figure 5-5-2: SF Macro 

locations & CML 
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Table 5-1: Experiments for examining social media impact 
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V.3.4 Results and Analysis 

V.3.4.1 Single Destination Case 

We start our discussion with the single-destination case, where the agents could 

make route change decisions but not destination changes.  

Evacuation Efficiency 

Table 5-2 presents the output details of the Boston case for evacuation efficiency 

from the entire population perspective. In Table 5-2, “clear time” means the duration 

from the time the first agent leaves its point of origin till the last agent reaches its 

destination. This concept represents the overall evacuation time. While it is important to 

use “clear time” to measure the evacuation efficiency, it is also essential to know the 

time when the majority of the population reach the shelters. In Table 5-2, “95 reach 

time” and “90 reach time” refer to the times when 95% and 90% of the population, 

respectively, arrive at their destinations. To observe the pattern of how agents reach their 

destinations, we use the average and standard deviation of the time it takes them to do 

so.  

We use “total traffic over time” to measure the degree of congestion on the road 

network. It counts the number of agents whose travel speed is less than 25 mph over the 

evacuation “clear time.” Figure 5-6 demonstrates this measurement. The blue area in the 

figure is calculated as the “total traffic over time.” By dividing “total traffic over time” 

by “clear time,” we can obtain the average number of agents in traffic. The same 

measurements are examined for the San Francisco case in Table 5-3.



 

104 

 

Table 5-2: Boston: social media impact output of single destination – evacuation efficiency 

 

Notes: Clear Time: duration from the time first agent leaves his or her point of origin until last agent reaches his or her destination 

 95 Reach Time: time when 95% of population reach their destinations 

 90 Reach Time: time when 90% of population reach their destinations 

Avg Reach Time: average time agents take to reach their destinations 

Std Reach Time: standard deviation in agents’ time to reach their destinations  

Dest Duration: time window from when first agent enters the destination to the time the destination is filled/last agent reaches it 

Total inTraff over time: cumulative number of agents in traffic over the whole evacuation time 

Avg Num inTraff: Total inTraff over time/Clear Time 

inTraff Compare: comparison of total inTraff over time  
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Table 5-3: San Francisco: social media impact output of single destination – evacuation efficiency 
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Figure 5-6: Measuring total traffic over time 

 

To answer the first research question (Is it beneficial to use social media for 

evacuation?), we first performed hypothesis tests on whether or not there would be a 

significant difference in terms of evacuation time between the absence and the presence 

of social media usage. We compared “no social media usage” and “having social media” 

on the SF-NW (K0 vs SF-NW) for the following factors: clear time, 90 reach time, 95 

reach time, average reach time, and standard deviation of reach time. 

We tested the following hypotheses: 

H0: No social media usage and having social media on the scale-free network 

have equal means. 

H1: The mean of no social media usage is not equal to the mean of having social 

media on the scale-free network. 

 The calculated p-values are given in Tables 5-4 and 5-5. The   value of the 

hypothesis test is set at 0.05, and the p-value smaller than 0.05 is highlighted, indicating 
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that the corresponding factors are significantly different, and we can reject H0 with 95% 

confidence.  

 

Table 5-4: Boston: P-values of K0 vs SF-NW – Single-destination 

  100Agents 200Agents 300Agents 

Clear Time 0.037024142 0.009405932 0.02121405 

90 Reach Time 0.457186381 0.268238839 0.28833885 

95 Reach Time 0.327050583 0.067572775 0.92586371 

Avg. Reach Time 0.336883442 0.87546527 0.00019301 

Std. Reach Time 0.034107865 0.204093952 0.01666112 

 

Table 5-5: San Francisco: P-values of K0 vs SF-NW – Single-destination               

  100Agents 200Agents 300Agents 

Clear Time 0.350479676 0.093703372 0.006154589 

90 Reach Time 0.641821059 0.069801825 0.001368944 

95 Reach Time 0.609300346 0.06673333 0.008938625 

Avg. Reach Time 0.371638519 0.886547902 0.105060932 

Std. Reach Time 0.648759864 0.118293148 0.012051658 

 

 

For the Boston case, “clear time” was significantly different for all population 

sizes. In the “no social media” scenario, “clear time” was shorter than that of “having 

social media”. Although in the San Francisco case, the small p-value of “clear time” was 

only found in 300 agents, we could observe the same trend that “clear time” under the 

“no social media” scenario was shorter than that of “having social media” for all 

population sizes. During the simulations, we observed that some agents changed their 

routes although they were very close to the destination. This behavior was probably 

caused by social media; those agents tried to follow others’ routes instead of traveling on 
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their shortest routes. A longer “clear time” might also be caused by changing routes. 

“Having social media” would increase the number of route changes, as shown in Tables 

5-6 and 5-7. Because the initial routes were the shortest ones, changing routes would 

increase the travel distance, making it possible to take a longer travel time. 

However, we observed that the majority of the population arrived at the 

destination almost at the same time for “no social media” and “having social media” in 

the single-destination case for both study areas. The “average reach (destination) time” 

was very close between “no social media” and “having social media” in most instances, 

except for 300-agent instances. There seemed to be little difference between “no social 

media” and “having social media” in terms of the time the agents reached the destination 

in the single-destination case. 

We used the “total traffic over time” measurement to determine the congestion 

level of the road segments. Considering “K0” as the baseline, we found that “having 

social media” on the SF-NW could help reduce congestion a little for both study areas 

although the decrease did not seem very significant. Notice that the social media on the 

RND-NW could bring more traffic in some instances. This could be an example showing 

that the RND-NW would be unsuitable for exploring social network activities 

. Although more agents traveled on alternative routes to avoid traffic because of 

the information they received through social media, alternative routes shared a lot of the 

same road segments with the shortest routes in the single-destination case. If the road 

segments in alternative routes were very different from those of the shortest routes, then 

the congestion level might drop significantly. Hence, we would expect to observe a more 
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significant reduction of congestion for “having social media” under the multiple-

destination scenario. 

Individual Travel Behavior 

Tables 5-6 and 5-7 show the output details of individual travel behavior for a 

similar set of experiments as those presented in Tables 5-2 and 5-3. For travel behavior, 

we consider the agent’s travel speed, lane changes, and route changes. If an agent can 

travel at his or her preferred speed most of the time and does not spend too much time on 

congested roads, then the agent’s travel experience is considered good. To measure this 

travel experience, we use “agent inTraff time” (   ) and “preferred speed time” (   ), 

and      represents the total time that an agent   is in traffic during his or her evacuation 

process. Then       
      = 

      

                      
 can represent the average time that an 

individual would be in traffic during evacuation. Similarly,      represents the total time 

that an agent   travels at his or her preferred speed. Then      
       = 

      

                      
 

represents the average time that an individual would drive at his or her preferred speed. 

Generally, when the population size increases, an individual’s travel speed drops, 

and more traffic happens. More lane changes and route changes occur in a larger 

population size. When social connectivity increases, more route changes can be 

observed. This phenomenon seems intuitive because when an agent is able to connect to 

more agents, he or she can collect more information, which may lead to decision 

changes. 
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Table 5-6: Boston: social media impact output of single destination – travel behavior 

 

 

 

 

 

 

 

 

 

Table 5-7: San Francisco: social media impact output of single destination – travel behavior 

 

 

 

 

 

 

 

 

Compared to “no social media” instances, agents spend less time on congested roads 

for most SF-NW instances. Meanwhile, the SF-NW also increases the time allowed for 

an individual to drive at his or her preferred speed. The results of agent travel behavior 

presented in Tables 5-6 and 5-7 are consistent with those in Tables 5-2 and 5-3. For the 



 

111 

 

same reason, the improvement in using social media from an individual’s point of view 

is insignificant under the single-destination scenario. 

V.3.4.2 Multiple-Destination Case 

Although we can observe a certain degree of dissimilarity between different 

social network structures from single-destination instances, the overlap of routes caused 

by having the same destination makes it difficult to identify the differences. Therefore, 

we would expect to find more significant variations in the multiple-destination case due 

to more destination and route options.  

Evacuation Efficiency 

Tables 5-8 and 5-9 show the outputs of evacuation efficiency for 10% and 16% 

seed agents, respectively, for the Boston area. The results from San Francisco are given 

in Tables 5-10 and 5-11.  

Again, we conducted the hypothesis tests to compare “no social media use” and 

“having social media” on the SF-NW (K0 vs SF-NW), considering the following factors: 

clear time, 90 reach time, 95 reach time, average reach time, and standard deviation of 

reach time. Tables 5-12, 5-13, 5-14, and 5-15 show the calculated p-values of 10% and 

16% seed agents for Boston and San Francisco, highlighting the values smaller than 0.05 

(  = 0.05). From these four tables, we found that “90 reach time” and “standard 

deviation of reach time” were significantly different between K0 and SF-NW for all test 

instances. There were 10 SF-NW instances out of 12 that reduced “90 reach time” by at 

least 10%, and it could be reduced by as much as 26% for some specific instances. This 

shows that social media usage can assist the majority of evacuees in reaching their 
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destinations faster although the overall clear time is relatively longer compared to not 

using social media. 

For most instances, the SF-NW results in a longer “clear time,” which is 

consistent with the outcome in the single-destination case, especially for a larger 

population size. From the above observations, we can conclude that most evacuees 

benefit from social media since they can reach their destinations earlier. The 

disadvantage of adopting social media only occurs for a few agents. Influenced by other 

socially connected agents, certain agents tend to frequently change their destinations and 

routes, resulting in longer travel distance and time to arrive at their destinations.  

Observing these phenomena, governmental agencies can utilize the power of 

social media to reassign the traffic flow that results from evacuees’ spontaneous 

decision-making while traveling toward their destinations. At the later evacuation stage, 

governmental agencies can use their own resources, focusing on the minority who are 

behind. By doing so, the entire population can be evacuated quickly. Moreover, 

governmental agencies can use their resources more effectively, which is crucial when 

considering the high demand for resources during extreme events.   
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Table 5-8: Boston: social media impact output of multiple destinations with 10%-seed-agent – evacuation efficiency 

 

Table 5-9: Boston: social media impact output of multiple destinations with 16%-seed-agent – evacuation efficiency 
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Table 5-10: SF: social media impact output of multiple destinations with 10%-seed-agent – evacuation efficiency 

 

Table 5-11: SF: social media impact output of multiple destinations with 16%-seed-agent – evacuation efficiency 
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Table 5-12: Boston: P-values of K0 vs SF-NW – multiple destinations 10%-seed-agent 

  100Agents 200Agents 300Agents 

Clear Time 0.048650 0.963034 0.019895 

90 Reach Time 0.000187 0.000002 0.000250 

95 Reach Time 0.127776 0.003431 0.002295 

Avg. Reach Time 0.211907 0.000074 0.000852 

Std. Reach Time 0.000002 0.000001 0.000001 

 

Table 5-13: Boston: P-values of K0 vs SF-NW – multiple destinations 16%-seed-agent 

  100Agents 200Agents 300Agents 

Clear Time 0.879034552 0.0719332 0.016488278 

90 Reach Time 6.87904E-08 2.0747E-05 3.73293E-14 

95 Reach Time 0.001133665 0.0002426 2.37105E-12 

Avg. Reach Time 4.11702E-06 6.168E-07 1.02978E-06 

Std. Reach Time 2.19047E-10 8.9248E-11 4.2195E-12 

 

   Table 5-14: SF: P-values of K0 vs SF-NW – multiple destinations 10%-seed-agent 

  100Agents 200Agents 300Agents 

Clear Time 0.283526641 0.060292234 0.035353739 

90 Reach Time 0.00394143 0.048703959 0.036113881 

95 Reach Time 0.023457693 0.653669843 0.972252644 

Avg. Reach Time 0.516508989 0.294218745 0.001890463 

Std. Reach Time 2.9824E-05 0.000916376 2.42001E-07 

 

  Table 5-15: SF: P-values of K0 vs SF-NW – multiple destinations 16%-seed-agent 

  100Agents 200Agents 300Agents 

Clear Time 0.175011879 0.161996265 0.03321079 

90 Reach Time 4.03071E-05 4.63937E-08 0.003361667 

95 Reach Time 0.026258001 0.137232711 0.244531998 

Avg. Reach Time 0.312784162 0.026090488 0.007271158 

Std. Reach Time 5.71171E-06 1.0456E-05 3.62929E-08 
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Next, we examine the time it takes to reach the destination, based on the 

“average reach time” and “standard deviation of reach time.” As stated before, the 

“standard deviation of reach time” is significantly different between K0 and SF-NW for 

all test instances. Compared to K0, SF-NW results in a significantly smaller standard 

deviation in the arrival time at the destination for every instance pair. The “average reach 

time” is very close for most K0 and SF-NW instances. In the Boston case, most SF-NW 

instances have a slightly shorter “average reach time” than those of K0; on the other 

hand, in the San Francisco case, most K0 instances have a shorter “average reach time.” 

Hence, not enough evidence shows that “having social media” can help reduce the 

“average reach time.” However, the two measurements together show that “having social 

media” on the SF-NW can shorten the duration window of destination arrivals although 

the “average reach time” is close compared to “no social media usage.” Reducing the 

duration window of reaching destinations can further assist governmental agencies in 

improving logistics and resource planning at the shelters. 

Note that it is not always beneficial to increase the social connectivity degrees. 

When an individual’s connectivity degree increases from 5 to 20, the clear time, 95 

reach time, and 90 reach time increase in most instances. In other words, a strongly 

connected RND-NW does not help the entire population evacuate fast, not even for the 

majority of the population, which indicates that sharing too much information may result 

in the same evacuation efficiency as no information sharing.  

 The last measurement factor we compare for different social network structures 

is “total traffic over time.” For the Boston case, we can observe the dramatic traffic 
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reduction by “having social media” for a smaller population size, whereas the 

improvement is less significant for a larger population size due to the population 

overload on the evacuation routes. However, for the San Francisco case, the 

improvement is below 5% for most instances. It requires further research to determine 

whether or not the congestions on road segments that are related to other factors, such as 

the road network structure, methods for generating alternative routes. 

The next question is: Does the entire population take advantage of having more 

agents informed to go to a specific destination? We find that increasing the percentage of 

seed agents from 10% to 16% reduces the evacuation time in almost all instances. Tables 

5-16 and 5-17 show the percentage of time reduced in the 16%-seed agent case 

compared to the 10%-seed agent case for Boston and San Francisco, respectively. 

Moreover, the evacuation time reduced is amplified in the SF-NW structure compared to 

“no social media” in most instances.   
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Table 5-16: Boston: evacuation time reduce in 16%-seed-agent case 

   

Clear 

Time 

95 

Reach 

Time 

90 

Reach 

Time 

Avg. 

Reach 

Time 

Std. 

Reach 

Time 

100Agents_K0 -2.49% -2.49% -3.00% -4.27% -6.15% 

100Agents_SF-NW -9.91% -12.05% -14.17% -14.01% -10.72% 

200Agents_K0 -0.39% -1.03% -1.46% -2.61% -1.33% 

200Agents_SF-NW 5.39% -3.51% -0.45% -1.36% -1.29% 

300Agents_K0 -0.73% -0.15% -0.59% -1.54% -0.89% 

300Agents_SF-NW -1.97% -6.70% -6.16% -2.01% -6.30% 
 

Table 5- 17: SF: evacuation time reduce in 16%-seed-agent case 

   

Clear 

Time 

95 

Reach 

Time 

90 

Reach 

Time 

Avg. 

Reach 

Time 

Std. 

Reach 

Time 

100Agents_K0 -1.83% -3.67% -4.46% -4.66% -11.58% 

100Agents_SF-NW -3.18% -2.08% -7.20% -1.11% -9.21% 

200Agents_K0 0.26% -0.67% -0.54% -1.18% -1.10% 

200Agents_SF-NW -1.19% -5.21% -6.19% -0.82% -7.97% 

300Agents_K0 -1.09% -0.89% -1.07% -1.36% -1.42% 

300Agents_SF-NW -1.63% -3.08% -2.57% -1.55% -3.85% 

 

 

 

This insight can be very helpful for evacuation managers; by utilizing social 

media, the entire population can complete the evacuation faster when emergency 

managers make the same effort in notifying individuals as no social media usage. This is 

another advantage taken from the small-world character of the SF-NW. Note that the 

seed agents were randomly picked in our experiments. If we can smartly select the core 

agents with dominant social connections as the seed agents, we can expect less notifying 

efforts and better improvement in the evacuation time. 
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Individual Travel Behavior 

 Tables 5-18 and 5-19 provide the detailed outputs of individual travel behavior in 

experiment sets 13–36 for the Boston case, while Tables 5-20 and 5-21 give the 

corresponding information for the San Francisco case. Similarly, we calculate the 

average agent in traffic time (     
     ), average preferred speed time (     

      ), average number 

of lane changes, average number of route changes, and average number of destination 

changes. Consistent with the results of the evacuation efficiency analysis, the traffic on 

the routes requires further examination. For most instances, having social media can 

reduce the time spent by an individual on congested road segments. However, the 

improvement in San Francisco is insignificant, and social media may bring more traffic 

in some instances.  

  



 

120 

 

Table 5-18: Boston: social media impact output of multiple destinations with 10%-seed-agent – travel behavior 

 

Table 5-19: Boston: social media impact output of multiple destinations with 16%-seed-agent – travel behavior 
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Table 5-20: SF: social media impact output of multiple destinations with 10%-seed-agent – travel behavior 

 

Table 5-21: SF: social media impact output of multiple destinations with 16%-seed-agent – travel behavior 
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  The “preferred speed time compare” column in these tables shows that having 

social media can increase the time that individuals can travel at their desired speed. 

Information sharing on social networks makes individuals perform more route and 

destination changes. As individuals travel on the alternative, less congested routes, they 

can drive at their desired speed.   

In multiple-destination cases, route and destination changes become more 

dynamic. As we track the individual’s decision-making time on the route and destination 

changes, we find different patterns between “no social media use” and “having social 

media.” Figure 5-7 shows a typical pattern of route and destination decision-making time 

under the no social media, 200-agent scenario.  

The x-axis represents the simulation time, and the y-axis indicates the number of agents 

who have made route/destination change decisions. In this figure, we can see a lot of 

destination change decisions made at a later stage (after 400 units of simulation time). 

What happened during 400-450 unit simulation time? For this specific run, one 

destination/shelter is overloaded around the 430
th

 unit of simulation time. Afterwards, 

agents who are still going to that shelter will be notified by emergency managers if these 

agents have telecommunication service. Once the agents receive this message, they will 

make a decision on the destination change. Figure 5-8 shows the number of agents who 

need to be notified and the number of agents who receive the messages when one shelter 

is exceeding its capacity.  
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Figure 5-7: Route/destination change pattern – no social media 

 

 

Figure 5-8: Overloaded destination notification – no social media 

 

In contrast, under the “having social media” scenario, individuals tend to make 

route/destination changes at an earlier stage. A typical route/destination decision change 

pattern for a 200-agent scenario is displayed in Figure 5-9. The corresponding 

destination notification record is shown in Figure 5-10. Compared to the “no social 

media” scenario, we have the following observations for “having social media”: (1) The 

time when one shelter is overloaded happens later. (2) A fewer number of individuals 
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need to be notified. (3) The time duration for sending out a message till all agents turn to 

the other shelter is shorter. 

 

Figure 5-9: Route/destination change pattern – having social media 

 

 

Figure 5-10: Overloaded destination notification – having social media 

 

 

To capture the route and destination change pattern, we use the “weighted route 

change time” (   ) and “weighted destination change time” (   ), where     = 
       

     
, 

    = 
       

     
, and     refers to the number of agents who make route change decisions 
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at time  . Similarly,     indicates the number of agents who make destination change 

decisions at time        represents the most likely time that an agent makes a route 

change decision, and     represents the most likely time that an agent makes a 

destination change decision.  

From the travel behavior tables (Tables 5-18 to 5-21), by comparing     and     

with the “average reach time” and “standard deviation reach time,” different 

route/destination change behaviors can be observed between “no social media” and 

“having social media.” Agents from the “no social media” scenario tend to change 

routes/destinations at a later stage when certain agents have already reached the 

destination. On the contrary, agents from the “having social media” scenario tend to 

have route/destination changes at an earlier stage, before any agent arrives at the 

destination. This different travel behavior can be considered a different evacuation 

experience. In the “no social media” scenario, the destination change decisions are not 

made from the agents’ own will but from the fact that no other option is available. This 

“no other choice” situation only happens to a few agents in the “having social media” 

scenario. 

 Although we set up relatively sufficient telecommunication power, a number of 

agents still cannot receive the destination information because they lack 

telecommunication service. The grey regions in Figures 5-8 and 5-10 represent the 

unsatisfied teleservice demand over the time it was requested. The grey areas can 

measure the number of agents who need to receive the destination information and the 
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time duration of sending out the destination information. We list this value in the 

“DestInfoDisSat” column in the behavior tables. 

 “Having social media” can reduce destination information dissatisfaction by 

80%-90% compared to the “no social media” scenario for almost all instances of both 

study areas. This dramatic improvement from social media can relieve the burden of the 

telecommunication system. By integrating TELP into ABME, we are able to find this 

significant teleservice improvement resulting from social media usage. To our best 

knowledge, this is the first time that the usage of social media is examined through the 

usage of facilities and the service quality for an extreme-event evacuation. Because of 

the power of social media, agents select their destinations according to their own 

preferences, resulting in a balanced traffic flow to multiple destinations and further 

reducing the telecommunication demands. At this point, we realize that the important 

role played by social media does not only involve the evacuation time but also the 

performance of micro-station facilities. 

 

V.4. Examining the Usage of Micro-Stations in Evacuation  

 In this section, we examine how different telecommunication infrastructures 

influence the service quality and evacuation efficiency. Concerning the limited budget, 

we intend to find out how the usage of micro-stations impacts service satisfaction. Given 

the simulated social networks, a set of candidate micro-station locations, and a set of 

fixed macro-stations, we test different numbers of micro-stations on three population 

levels and two O-D sets. The social network structure used for this section is the SF-
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NW. The locations of existing macro-stations and candidate micro-stations are the same 

as those in experiment set 1-36 and shown in Figure 5-5. The two O-D sets are displayed 

in Figures 5-3 and 5-4. The complete list of experiments for testing micro-station usage 

can be found in Table 5-22. 

 

Table 5-22: Experiments for examining Micro-Station usage 

O-D1 O-D2 

                    

set #Agents #Micro-Stations Km Kj set #Agents #Micro-Stations Km Kj 

37 100 0 16 10 49 100 0 16 10 

38 100 5 16 10 50 100 5 16 10 

39 100 10 16 10 51 100 10 16 10 

40 100 15 16 10 52 100 15 16 10 

41 200 0 32 20 53 200 0 32 20 

42 200 5 32 20 54 200 5 32 20 

43 200 10 32 20 55 200 10 32 20 

44 200 15 32 20 56 200 15 32 20 

45 300 0 56 35 57 300 0 56 35 

46 300 5 56 35 58 300 5 56 35 

47 300 10 56 35 59 300 10 56 35 

48 300 15 56 35 60 300 15 56 35 

 

V.4.1 Telecommunication Service Analysis 

 The detailed outputs of micro-station usage in the single-destination and 

multiple-destination cases for Boston are presented in Tables 5-23 and 5-24, 

respectively. The outputs for San Francisco are given in Tables 5-25 and 5-26. The 

number of individuals served by macro-stations or micro-stations is collected at every 

simulation time unit. This accumulated number on the service request time gives us the 
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total number of users served by macro-stations/micro-stations. The corresponding total 

number of dissatisfied users can be calculated as well.  

 

Table 5-23: Boston: Micro-Station usage output of single destination – TeleService 

 

 

 

 

 

 

 

 

Table 5-24: Boston: Micro-Station usage output of multiple destinations – TeleService 
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Table 5-25: SF: Micro-Station usage output of single destination – TeleService 

 

 

 

 

 

 

 

 

Table 5-26: SF: Micro-Station usage output of multiple destinations – TeleService 
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Besides the total service number, we are also interested in examining the users’ 

dissatisfaction with service at a critical time, such as when an individual tries to send out 

information about a congested road and when an individual needs information about an 

overloaded destination. We use “traffic info dissatisfaction” to capture the number and 

time duration of service requests for information about congested roads. The grey region 

in Figure 5-11 illustrates this concept. Similarly, for the multiple-destination case, we 

use “destination info dissatisfaction” to represent the number and time duration of 

teleservice requests for information about overloaded destinations. 

 

Figure 5-11: Illustration of Traffic Info Dissatisfaction 

 

For both the single-destination and multiple-destination cases, adding more 

Micro-Stations relieves the burden on Macro-Stations and reduces the total number of 

unserved agents. However, the improvement is not linear when we linearly increase the 

number of micro-station facilities. One possible reason is the nonlinear signal-

interference constraints. Adding more micro-stations within a nearby region results in 

interference noise to macro-stations and other micro-stations, which limits the increase 



 

131 

 

in the number of served users. In the multiple-destination case, with a small number of 

micro-stations, the increased number of served users is not as significant as in the single-

destination case, especially for a larger population size. Therefore, adding a larger 

number of micro-stations may not result in significant improvement compared to a 

relatively small number of micro-stations. This is important information for 

governmental agencies to consider when they have limited budgets. 

V.4.2 Evacuation Efficiency Analysis 

 With the knowledge that more agents can be served with additional micro-station 

facilities during an evacuation, the next question is whether or not the improved 

teleservice helps evacuation efficiency. The outputs of “evacuation reach time” are given 

in Tables 5-27 and 5-28 for the Boston and San Francisco areas, respectively. 

For each set of experiments, we barely observe differences in clear time, 

destination reach time, and total traffic over time. For example, in the no micro-station 

experiment set 41, about 35% of evacuees lack teleservice, but the evacuation time is 

very close to that of experiment set 44 with 15 micro-stations, with only 17% of 

evacuees not having teleservice.  

 Does this mean that telecommunication service has no impact on the evacuation 

time? Note that all these experiments are conducted on an SF-NW. Although certain 

agents cannot send or receive route/destination information because they lack teleservice 

at some point in time, they can avail of information sharing on social networks once they 

travel to a region where they are able to connect to a cell station. Moreover, the small-

world property of social networks makes the information reach every agent quickly, 
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which helps guarantee that all agents can receive the information even when they cannot 

have telecommunication service all the time. This is another proof that having social 

media can improve the agent evacuation experience.  

 

Table 5-27: Boston: Micro-Station usage output of single destination – evacuation efficiency 
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Table 5-28: SF: Micro-Station usage output of single destination – evacuation efficiency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V.5. Summary and Conclusion 

 To sum up, in this chapter we have identified the importance of utilizing social 

media for an emergency evacuation by examining the simulation outputs of the Boston 

and San Francisco city areas. We have answered our research question—having social 

media can improve evacuation efficiency. Specifically, having social media can save on 

evacuation time for the majority of the population, and it can shorten the time duration 
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of agents’ arrival at their destinations. It can also increase the time allowed for 

individuals to travel at their desired speed by using alternative routes. Moreover, 

information sharing on social networks can help balance the traffic flow and reduce 

teleservice requests at a critical time. In other words, using social media not only 

influences individual and group behaviors but also affects the system facility usage. 
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CHAPTER VI  

CONCLUSIONS AND FUTURE WORKS 

VI.1. Conclusions 

In this research, we have studied the mobile telecommunication facilities’ 

location problem to generate a planning strategy for them during a regional evacuation to 

ensure maximum connectivity and resilience of the communication systems. In our 

TELP model, besides considering the traditional coverage problem, we have also 

included the signal interference requirement, which is a necessary condition in cellular 

systems. The user teleservice demand is time-dependent, and its geographic distribution 

has been considered. These two characteristics reflect real-world situations and are 

important to consider, especially for evacuation scenarios in which user demands change 

spatially at different time stages. The routing constraints are integrated to utilize the 

mobile feature of telecommunication facilities, reuse these facilities, and fulfill more 

teleservice demands even with a limited budget.  

Even for the small-sized problems, it is very hard to find optimal solutions by 

using an optimization solver for the linearization model. Furthermore, the optimization 

solver cannot provide solutions for medium-sized problems within several hours. To 

obtain good solutions with less computation effort for this NP-hard problem, we propose 

two heuristic approaches: the greedy randomized adaptive search procedure (GRASP) 

and Lagrangean heuristics. Both heuristic approaches can solve test problems quickly 

compared to solving the linearization model. The GRASP can yield very competitive 
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solutions but needs more computational effort. In contrast, the Lagrangian relaxation 

heuristics can obtain solutions very quickly but sacrifices the solution quality. 

 A spatial, behavioral evacuation, agent-based simulation model is proposed as 

well. Our ABM uses novel FCMs as the agent decision logic that integrates the physical 

environment, interpersonal communication, and historical empirical data when 

determining agent decisions. This is the first time that FCMs have been applied and 

implemented in the domain of travel behavior under the complicated scenario of an 

extreme-event evacuation. The FCMs are suitable for representing more realistic 

behavior models; with the help of FCMs, evacuees are able to make dynamic and 

adaptive decisions based on real-time and updated information. By integrating the TELP 

model with ABM, we are able to explore the use of mobile telecommunication facilities 

and evacuees’ behaviors simultaneously.  

We have utilized our ABM to examine whether or not the adoption of social 

media can improve evacuation efficiency. How mobile micro-stations assist existing 

cellular networks to satisfy the surging user demand during an evacuation process has 

been investigated as well. The experiments were conducted on two citywide regions: 

Boston and San Francisco. We have found that social media can help the majority of the 

population reach their destinations faster although it may take longer to have the entire 

population evacuated. Meanwhile, using social media can also shorten the time duration 

of individual arrivals at the destinations. Moreover, we have shown that using social 

media can improve the usage of mobile micro-stations and fulfill more teleservice 

demands. Emphasizing the importance of social media use during facility planning can 
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help emergency managers or commercial agencies improve facility use, enhance service 

quality, and reduce expenses. 

 

VI.2. Future Works 

Although many interesting insights have been revealed in this research, it can be 

further extended and improved in multiple directions.  

Considering the TELP model, the proposed heuristic approaches can be 

improved in terms of computational time. Different Lagrangian heuristics can be 

developed by using different structures or solutions from other heuristics as a starting 

point. More efficient preprocessing techniques can be developed to replace the 

numeration in examining the signal-interference constraints in our heuristics. To extend 

the TELP model for a more general and large problem, the demand aggregation is 

needed and the probability associated with demand points may be introduced. 

For the ABME model, computational effort is necessary for simulating a large-

sized realistic problem. For a more realistic and accurate model, the population 

distribution can be generated at the level of the census block. A further study on using 

FCMs to represent travel behavior will be beneficial for this research. The travel 

behavior for different groups can be explored by using different structures of FCMs to 

represent different groups of evacuees.  

To gain further understanding of social media usage during evacuation, the social 

network structure needs to be revisited. More attention should be paid to the correlation 

of geographic parameters and social connectivity. Further research is needed to show the 
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impact of social media on the road congestion level, considering different road network 

structures.  

The ABME model developed in this research can be used for the study of 

different evacuation strategies and individual evacuation decisions (when to evacuate). It 

can also be generalized for travel behavior studies, information dissemination, and so on.  
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