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ABSTRACT

Large regional evacuations caused by severe weather such as hurricane’s and
tsunami’s are fraught with complexity, uncertainty and risk. During such events,
evacuees have to make decisions on route planning and point-of-destination while
emergency managers need to ensure that appropriate personnel and infrastructure are
available and capable of facilitating the evacuation. In parallel, the widespread usage of
social media and micro-blogs enabled by mobile technology is leading to more dynamic
decision-making and real-time communication by evacuees.

This research uses deterministic and simulation techniques to model regional
hurricane evacuation. A mixed integer formulation for telecommunication equipment
location is used to identify gaps or strains in mobile service and to locate mobile
telecommunications equipment to temporarily alleviate system stress. This problem
unifies location allocation and routing characteristics with signal interference processing
to maximize the number of served users through the evacuation. A Greedy Randomized
Adaptive Search Procedure (GRASP) metaheuristic and a Lagrangian Relaxation-based
heuristic are used to solve larger problem instances.

Agent-based simulation modeling is used to investigate the reliability, robustness
and effectiveness of telecommunications equipment location given the inherent diversity
and uncertainty of individual decision-making during evacuation. The agent-based
simulation adopts Fuzzy Cognitive Maps to model individual evacuation decision-

making that dynamically integrates external information (e.g., physical environment,



interpersonal communication) and internal data (e.g., historical empirical, demographic
trends). This research shows how social communication among evacuees positively
impacts travel patterns as well as overall evacuation time and the usage of mobile

telecommunications equipment.



NOMENCLATURE

ABM Agent-based Simulation Model

ABME Agent-based Simulation Model for Extreme Event Evacuation
CDMA Code Division Multiple Access

DEM Digital Elevation Model

FCM Fuzzy Cognitive Maps

GIS Geographic Information Systems

GRASP Greedy Randomized Adaptive Search Procedure

TELP Telecommunications Equipment Location Problem
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CHAPTER I

INTRODUCTION

I.1. Introduction to Evacuation Problems

In the past ten years, Hurricanes Katrina, Ike, Rita, and Sandy have caused
significant destruction among coastal cities and towns in the U.S. while simultaneously
leading to countless loss of life (either from the storms themselves or from the
challenging conditions that follow). Furthermore, additional extreme weather events
have occurred outside of the U.S., such as the tsunamis in Indonesia and the Philippines,
the earthquake in Haiti, and the tsunami (and subsequent nuclear catastrophe) in Japan.
Large populations and areas of the world have begun to experience stronger, more
inclement, more destructive, and more frequent severe weather.

A large population evacuation caused by natural disasters is intrinsically
complicated and full of uncertainty and dynamic risks. Evacuees must make important
decisions concerning both route-planning and their end destinations. At the same time,
emergency managers are responsible for facilitating evacuations by ensuring the
availability of necessary emergency personnel and infrastructure.

The ubiquity of mobile technology has led to dramatic shifts in the way people
communicate with one another. Text messages, social media, and micro-blogs all enable
(and favor) shorter content bursts with a higher frequency of messages than face-to-face
or phone conversations. The connectivity of these devices to the Internet further extends

their reach, enabling users of mobile technology to browse the web, download and



upload content, and obtain real-time information on a variety of topics from traffic and
the stock market to weather and celebrity sightings.

During an extreme event evacuation, mobile technology has enabled a new
decision making option for evacuees. The widespread use of social media and micro-
blogs has engendered a steady stream of real-time communication that can be used by
evacuees to make dynamic decisions.

In this research, we focus on the effect of mobile technology on regional
evacuation and how the changing behavioral landscape of evacuations can be better
captured through more realistic and representative modeling. Specifically, we note the
importance of models that not only capture realistic individual behaviors (e.g., texting
and social networking) but that simultaneously model the supportive physical
infrastructure (e.g., cell phone towers and internet access) to ensure maximal
connectivity and resilience of the communication systems that support and enable
evacuee decision-making. Through our modeling, we illustrate the criticality of
adaptation and flexibility within communication systems and show how integrated
models, while complex, can be solved efficiently and effectively. The scope of this
article is limited to hurricane evacuation, noting that the logic of the model can easily be
applied to many extreme events where advance notice through forecasting is possible.

An optimization formulation for telecommunication equipment location problem
with time component (TELP) is developed to locate mobile telecommunications
equipment to temporarily relieve cellular network system stress. TELP is defined as the

following: given potential microcell station locations, existing macrocell station



locations and users’ travel patterns on a road network, locate number of p mobile
microcell stations to maximize the total number of users served over multiple time
periods.

An agent-based simulation model for extreme event evacuation (ABME) is
proposed as well. ABME is used to investigate the information dispersion through
simulated social networks regarding evacuation effectiveness. ABME can also be used
as a tool to examine the availability or use of mobile telecommunication stations for
regional evacuations, considering the diverse and uncertain behavior of individuals and

the interactions between individuals.

I.2. Motivation of the Dissertation

For a regional evacuation, evacuation decisions such as where to go, how to get
there, and where to stop along the way are largely left to the individual to plan
themselves or to determine on-the-go during the evacuation itself. The inherent
uncertainty of a natural event necessitates that evacuees remain adaptive to changing
conditions and their decisions are largely affected by a combination of what they see and
what they hear. Mobile technology and social networking have recently begun to
dramatically influence these evacuation decisions.

Extensive study of historical evacuations has demonstrated that people rely on a
variety of information (both visual and auditory) to determine when to evacuate and
where to go. Friends, family, and peers are now better connected to one another through

social networks that can be accessed via mobile technology. Given the known
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importance of friends and family to evacuation decision-making, mobile technology can
increase the frequency of family and friend contact while improving the quality of
content (through links to blogs, streams, news sources, etc.). Additionally, the ability to
connect through mobile technology decreases an individual’s reliance on past hurricane
evacuation experiences, a historically important factor in evacuation decision-making.

During Hurricane Sandy and other recent extreme events, the use of mobile
technology to influence decision making has become more evident within the population
for the dissemination and collection of information for planning and in real-time on site
decision-making. A recent survey among residents of Monmouth County, NJ (one of the
counties that was most affected by Hurricane Sandy) showed that 65% of households
had access to at least one smartphone and 96% of all households had access to at least
one smartphone or one cellphone during the hurricane. Social media usage (specifically
Twitter and Instagram) increased 100%+ during the hurricane and respondents agreed
that they used their mobile devices to obtain information and to communicate during the
hurricane.

The preference to use and reliance of individuals on mobile technology during
evacuations necessitates that connectivity remains established and consistent. While
many research efforts have been focused on regional evacuation models, the vast
majority are focused on pre-planning strategies and the influence of dynamic and
uncertain behavior among evacuees. There is little to no emphasis on the corresponding
problem of maintaining connectivity between evacuees. In this case, connectivity is

critical to the creation of a more realistic model and is dictated by the changing
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paradigms of evacuation decision-making. Models that do not account for infrastructure
issues such as cell phone or 4G connectivity, call reliability, and infrastructure reliance,
are operating under “best case circumstances” that may lead to significant
underperformance during real-world event conditions in which cell towers go down or
local network capacity is exceeded due to demand. Most evacuees travel on major roads
and highways to maintain cellular and data service during an evacuation. This tendency
leads to extreme demand and potential network outages.

Communications systems (e.g., radio, cellular) regularly fail during extreme
weather events. The White House report, “The Federal Response to Hurricane Katrina:
Lessons Learned” (2006), showed that 1,477 cell towers were incapacitated during
Hurricane Katrina and nearly three million customers lost telephone service, preventing
them from calling emergency centers, connecting with emergency services, or reaching
out to families and friends.

However, there are low cost, easy set-up mobile telecommunications options
available such as Cell on Wheels (COW) that are compatible with existing radio and
cellular networks. Setting up these mobile devices at identified dynamic tele-service
demand areas can help strengthen existing radio and cellular systems during large-scale,
regional evacuations.

We motivate the need for the ABME model by noting the inability of existing
evacuation, which are often based on discrete events or other network flow variations, to
capture the behavior and uncertainty in interactions between individual vehicles during

an evacuation. Specifically, these deterministic models rarely take human and social



behaviors into consideration when modeling emergency scenarios. Agent-based
simulation models (ABM) are designed to model behavior at an individual level, which
enables them to replicate more realistic individual behaviors and the resulting group
dynamics that emerge. ABM is suitable for this research not only because it can model
individual behavior such as route choice and travel speed, but also because it has the
capability to simulate dynamic human decision-making based on multiple kinds of
external information and individual inherent demographic characteristics such as gender

and age.

1.3. Contributions of this Dissertation

A mathematical model is proposed to identify mobile telecommunication
infrastructure location strategies to support demand-stressed systems during emergency
events. This model considers temporally and spatially distributed users with a planning
horizon composed of discrete, non-overlapping time intervals. The model captures signal
interference constraints, which are a major restriction in determining the number of users
each cellular channel can carry in contemporary Code Division Multiple Access
(CDMA) systems. A routing sub-problem is also included in the model to improve the
usage of mobile telecommunication equipment due to its portable character.

This TELP model can consider all of these realistic factors and provide solutions
containing the decision variables of user assignment, installation locations of mobile
facilities, and routes corresponding to shipping these facilities over time intervals. We

focus specifically on the challenge of regional evacuation and use real-world data such



as road networks, demographics, DEM, and terrain to support our model. Heuristic
approaches are introduced and compared to solve the time-dependent location-allocation
problem for realistic instances.

This research has also resulted in the development of a spatial, behavioral
evacuation ABM that uses novel fuzzy cognitive maps (FCMs) as the driver for
establishing agent decision logic and that will integrate the physical environment,
interpersonal communication, and historical empirical data when determining agent
decisions. This is the first time that FCMs have been applied and implemented in the
domain of travel behavior under the complicated scenario of evacuation due to extreme
events. FCMs are suitable to represent more realistic behavior models compared with the
traditional IF/THEN behavior rules used in ABM: with the help of FCMs, evacuees are
able to make dynamic and adaptive decisions based on real-time and updated
information.

By integrating the TELP model with ABM, we are able to explore the use of
mobile telecommunication facilities and evacuees’ behavior simultaneously. The usage
of telecommunication facilities with widespread social communication is also revealed.
This is the first time that the facility planning problem considering the power of social
media is examined for emergency evacuation. Emphasizing the importance of social
media use during facility planning can help emergency managers or commercial
agencies improve facility use, enhance service quality, and reduce expenses.

In addition, integrating the TELP model with ABM can help TELP provide more

accurate, real-time facility planning strategies. If better solutions are acquired from



TELP, more evacuees’ tele-service demands can be satisfied in ABME, and the evacuees
will have fewer restrictions to their telecommunication access, resulting in a better

evacuation experience.

I.4. Organization of the Dissertation

This dissertation is organized as follows. In Chapter I, we review the relevant
literature on telecommunication systems planning and ABM models for evacuations. In
Chapter 111, we present the mathematical model for TELP and the heuristic algorithms
for solving TELP. In Chapter IV, an agent-based simulation model for evacuation in
extreme events is introduced. In Chapter V, we show the application results for Boston
and San Francisco. Lastly, Chapter VI will conclude this research and suggest directions

for future research.



CHAPTER II

LITERATURE REVIEW

I1.1. Telecommunication Infrastructure Location Problem

The optimal base station location problem was first addressed by the
telecommunication research society. Statamatelos and Ephremides (1996) introduced the
optimal placement strategies of fixed base-stations for indoor wireless networks. The
goal was to maximize coverage area while minimizing co-channel interference
considering spatial diversity. Calegari et al. (1997) provided a genetic approach for
finding the best possible sites for base-stations while maintaining service for a given
percentage of tele-traffic, with the goal of minimizing associated costs. For the Code
Division Multiple Access (CDMA) system, Tcha et al. (2000) presented a base-station
location model to minimize the cost of establishing base stations while controlling the
blocking probability. To solve this model, they proposed two heuristics: the construction
heuristic for choosing an initial feasible subset from all candidate sites, and an
improvement heuristic to reduce set-up costs.

To this point, few solution techniques in operations research had been applied to
address the base station location problem. Bose (2001) proposed a technique using
dynamic programming to determine optimal base-station locations in an urban
environment based on cell coverage. Lee and Kang (2000) offered a binary integer

programming model to minimize cost while considering base-station capacity and user



received signal power. A Tabu Search heuristic was applied by Lee and Kang for solving
base-station planning problem.

Akella et al. (2005) presented a mixed integer programming (MIP) model. The
model was designed to maximize the total number of user demands for multiple time
slots given base-station coverage radius and channel capacity and integrate the
emergency notification problem. Two greedy heuristics and their extended versions were
proposed to solve this MIP. To further improve solution quality, a Lagrangean heuristic
was developed that built on the solution obtained by the greedy heuristics. Although the
model considered multiple time slots, it assumed the demand nodes were fixed and did
not change over time. The MIP formulation was based on the maximum coverage
problem and only added one linear channel capacity constraint. These simplifications
and assumptions for telecommunication systems can cause over-estimates when applied
to real-world planning problems. However, the proposed heuristics and rich computation
study provide good insights regarding the nature of the problems and potential solution
techniques.

In a CDMA system, users are allowed to send information simultaneously over a
single communication channel with a capacity (the number of simultaneous users)
governed by a signal to interference ratio. Veeravalli and Sendonaris (1999) revealed a
nonlinear relationship for the coverage of a cell as a function of the number of its users.
This coverage-capacity relationship was provided under the assumption that user density
is uniformly distributed. In reality, user demands are often not balanced. In other words,

there are hotspots, or high-traffic density areas within small regions. The presence of

10



hotspots can result in smaller coverage areas. If a base-station serves a large number of
users from high-traffic regions, it will block access to users in other regions, resulting in
reduced coverage. Hence, in a CDMA system, coverage (i.e. the region where base
stations can provide quality call service), capacity, and user distribution must be
addressed concurrently. Therefore, base-station location models derived from coverage
problems with simple capacity constraints are no longer suitable and realistic.

Amaldi et al. (2003a, 2003b, 2003c) proposed MIP models for the location and
configuration of fixed base stations to maximize signal coverage and minimize
installation costs considering signal quality requirements. In a study performed by
Amaldi et al. (2003b), heuristic approaches of randomized greedy procedures and Tabu
Search were proposed to obtain solutions. Their studies showed the trade-off between
coverage and capacity in cellular systems. However, those models simplified intercell
interference as a constant fraction and assumed that traffic distribution among cells is
homogeneous.

Kishore et al. (2003) derived a non-linear inequality of signal interference
representation that examined user capacity in a Macrocell-Microcell CDMA system. In
this inequality, the geographic distribution of user traffic was considered and the
interference between cells was captured as well.

In our TELP model, in addition to considering the traditional coverage problem,
we adopted the inequality representation derived by Kishore et al. (2003) as the signal
interference requirement, which is a must-have condition in cellular systems. Signal

interference from both user and intercell sources were included. The user traffic is time-
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dependent and its geographic distribution is considered. These two characters reflect
real-world situations and are important to consider, especially for evacuation scenarios
in which user demands change spatially at different time stages. The evacuees (users)
always travel on evacuation routes that follow main roads; therefore, the user tele-
service demand is not homogenously distributed throughout the entire target evacuation
region. The routing constraints are integrated to utilize the mobile feature of
telecommunication facilities, reuse these facilities, and satisfy more tele-service
demands with a limited budget. The base-station location problem is an NP-hard
problem as described in the literature mentioned above. To obtain good solutions with
less computation effort, we propose two heuristic approaches: greedy randomized
adaptive search procedure (GRASP) and Lagrangean heuristics. Although the general
idea is similar to previous work at some level, the implementation is very different due

to the specific problem properties.

I1.2. Evacuation Simulation Models

Dynamic traffic simulation models investigate dynamic travel demand, dynamic
trip distribution, and dynamic traffic assignments — all of which influence decision-
making in evacuation participation, departure time choice, destination choice, and route
choice. Pel et al. (2012) and Alsnih and Stopher (2004) reviewed dynamic traffic
simulation models for evacuations and summarized macrosimulation and
microsimulation models for evacuation problems and travel behavioral models in the

literature. Many crowd evacuation simulation models attempt to incorporate more
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realistic human behaviors that may result from psychological responses to emergency
conditions. This can be accomplished by extending the dynamic traffic simulation
models to more sophisticated agent frameworks.

Bonabeau (2002) discussed methods and techniques to simulate human systems
in ABM. It is pointed out that modeling the diffusion of behaviors in social networks has
been the most common application for ABMs. These models require more
computational effort since sophisticated ABMs often incorporate neural networks or
evolutionary algorithms to allow realistic learning and adaptation. A framework for
using ABM to simulate human and social behaviors during emergency evacuations was
introduced by Pan et al. (2007).

Many agent-based emergency evacuation simulation models have been
developed regarding pedestrian behaviors. Christensen and Sasaki (2008) proposed a
bottom-up Modeling of Mass Pedestrian flows — implications for the Effective Egress of
individuals with disabilities to explore emergency evacuation with individual with
disabilities in the population. Bo et al. (2009) developed an ABM for park emergency
evacuations integrated with geographic information systems (GIS). Although geographic
information about obstacles, stairs, and roads was imported into the model, the agent
behavior was grid-cell-based. Tsai et al. (2011) presented an airport evacuation
simulation model that included four key features: (1) different agent types (individual
travelers, family agents, and authority agents); (2) emotional interactions; (3)
informational interactions; and (4) behavioral interactions. Few ABMs had previously

captured emotional and informational intersections. It is important to represent these two
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aspects of human behavior, especially for emergency scenarios. However, the behavior
rules in this ABM are based on a different cognitive category and all the agents who
belong to the same cognitive category would behave the same. The emotional and
informational interactions only occur between neighbors and family agents who are
assumed to move together.

Compared to ABM applied to the pedestrian domain, fewer examples of existing
literature can be found for evacuations of large geographic areas where traveling by
vehicles is necessary. Zhang et al. (2009) presented an ABM for hurricane evacuation
that considered two types of agents: normal and greedy. The normal agents always
choose the shortest routes and the greedy agents choose the least congested route based
on updated traffic information. The model assumed that the destinations were
preselected and would not change during the evacuation. Their results indicated that
greedy behavior makes the whole evacuation inefficient although it can sometimes
reduce individual evacuation times by detouring and avoiding congested roads. The
behavior rules used for this research are relatively simple: route changes only based on
congestion level and speedup and slowdown behaviors only dependent on whether there
are other vehicles blocking one’s path.

Chen and Zhan (2004) investigated the effectiveness of simultaneous and staged
evacuation strategies using agent-based simulations. They modeled traffic flows at the
individual vehicle level and tested three different network structures. Dynamic routing
procedures were adopted for route choice, that is, agents can change their routes

dynamically based on real-time traffic conditions and they always choose the fastest
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route. Agents’ destinations result from the route choice, which means that agents have
less flexibility to choose their evacuation location. While the agents travel on road
segments, car-following and lane-changing models were applied for the dynamics of
vehicular movement. The car-following model built into their simulation toolkit was

based on Fritzsche (1994) and Olistam and Tapani (2004).

11.3. Social Media Use in Travel Behavior and Emergency Event

With respect to the effects of an individual’s social network on travel behavior,
Arentze and Timmermans (2008) proposed a theoretical framework to incorporate the
dynamics of activity-travel choice and social networks in microsimulations of activity-
travel patterns. A utility function in this research derived from social interaction is a
function of dynamic social and information needs, and similarity between the relevant
characteristics of the persons involved. Hackney and Marchal (2009) introduced a
general spatial social interaction model based on the Multi-Agent Transportation
Simulation Toolbox. Their model constructed social networks for a geographically
distributed population of agents. This network was then used in a further step to modify
travel demand. Han et al. (2011) addressed the formation and adaptation of location
choice sets under the influence of social networks to investigate the dynamic traffic
generation caused by collective activity-travel choice behavior. Handford and Roger
(2012) extended the current state-of-the-art in driver route choice models and developed
a route choice forces model, in which decisions are influenced by a set of forces. Two

forces are incorporated: a driver’s desire to travel the quickest route and a driver’s desire
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to travel with others. The authors evaluated their model against two existing route choice
algorithms (shortest time and real-time re-routing) using three road networks.

The widespread use of social media plays a more and more important role in
daily lives, which draws attention to social media usage during extreme events.
Qualitative methods such as observation, interviews, questionnaires, and collection of
on-line texts have been used to examine the importance of social communication.
Eisenman et al. (2007) found that strong socially connected groups such as extended
family, friends, and community groups mediated evacuation behavior through access to
transportation, shelter, and the interpretation of official messages. The observations were
based on Hurricane Katrina in 2005. Based on a study of the Southern California
Wildfires, Sutton el al. (2008) pointed out that social media serves as backchannel
communication and supports peer-to-peer communication during a natural disaster;
Shklovski et al. (2008) provided evidence that information sharing can help communities
stay connected despite geographical dispersal post-disaster. Hughes et al. (2008)
described on-line behavior as socially convergent activity that parallels geographical
onsite behavior after examining several disaster events. Sutton et al. (2011) showed that
traditional news media, social media, and other pre-existing networks played different
roles in the 2010 tsunami in Hawaii. They suggested that multiple channels should be
used to ensure effective communication with the public.

A few ABMs have previously addressed the effect of social networks on
emergency evacuations. Hasan and Ukkusuri (2011) proposed a threshold model of

social contagion to characterize the social influence in the evacuation decision making
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process. The condition of a cascade decides to evacuate was examined. Simulation
models investigate the effects of community mixing patterns, the initial seed, and the
strength of ties on the average cascade size. Widener et al. (2012) revisited the influence
of social network effects on evacuation decisions due to the augmentation of information
diffusion through the new social media. They examined how real-time interpersonal
communication effects people’s hurricane evacuation participation and decision-making.
Three laboratorial social networks were examined regarding hurricane evacuation in Bay
County, Florida. Both Han and Widener’s works were examined using ABM.

Wang (2012, p.76 -- p.119) studied the influence of social media and broadcast
on individual travel behavior for regional emergency evacuation using the proposed
multi-agent simulation model. The simulation model imported the optimal
routes/shelters resulted from the proposed optimization model as individual’s guild line,
and used a real-time IF/THEN decision-making logic for individual’s route/shelter
choice. The experiments showed both types of information sharing can shorten overall
evacuation time and individual’s travel time, and reduced average transportation cost.
Compared to social media, information sharing on broadcast plays a more significant
role.

The structure of social networks should also be examined when investigating the
usage of social media. Mislove et al. (2007) presented a large-scale measurement study
and analysis of the structure of four popular online social networks. The high-degree
core structure property along with small-world phenomenon can allow information to

diffuse extremely fast compared with other dissemination systems. Butts et al. (2012)
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investigated whether geographical variability in population distribution would have an
effect on social network structure and how this geographic heterogeneity would affect
network structure. They found that local social network structure is highly dependent on
local population distribution. This insight attracts attention because a variety of recent
research projects have simulated social networks based upon population distribution and
ignored the socio-geographic relationship.

Lindell et al. (2011) also showed how demographic variables such as age,
gender, ethnicity, marital status, education, number of persons in the household, annual
household income, and household ownership influence evacuation logistics using
questionnaire data from Hurricane Lili. They examined these demographic variables in
terms of departure timing, vehicle use, evacuation routes, travel distance, shelter type,
evacuation duration, and evacuation cost. The report data showed that about 90% of the
evacuation population took their own vehicles and single households generally took
multiple cars. It was also shown that people tend to choose a familiar route based on
their own past experience. Their results indicated that higher income families were
particularly likely to rely on personal experience, while groups with little hurricane
experience, the elderly, females, households with children, and inland residents were

more likely to rely on recommendations from peers and media.

11.4. Fuzzy Cognitive Map Approach
Fuzzy Cognitive Maps (FCMs), introduced by Kosko (1986, 1992, 1994, 1997,

1998), are graph structures that represent causal relationship between concepts. The
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fuzziness allows hazy degrees of causality and the graph structure (forward and
backward chaining) allows knowledge to be developed by connecting concepts and
different FCMs. Kosko also proposed a fuzzy causal algebra to govern causal
propagation on FCMs. The vector-matrix operations allow FCMs to model dynamic
systems and to capture the dynamic aspect of system behavior (Bertolini and Bevilacqua,
2010; Miao et al., 2010). Aguilar (2005) pointed out that FCMs are hybrid methods that
lie in-between fuzzy systems and neural networks. Hence, FCMs possess the combined
robust properties of fuzzy logic and neural networks. On the other hand, it is easier to
use FCMs to represent knowledge and knowledge adaptive processes, and interference
can be calculated using numeric algebra operations instead of IF/THEN rules.

Recently, FCMs have drawn a significant amount of research attention and have
been applied to a variety of areas such as medicine, education, decision making and
support, the environment, and social and political science. In the medical domain,
Georgopoulos et al. (2003) and Papageorgiou et al. (2006, 2008) proposed an FCM
approach for medical diagnosis and decision support in language impairment and
radiotherapy, areas in which expert systems are usually applied. In the engineering
domain, Stylios and Groumpos (2004) applied FCM to model complex industrial
systems and supervisory control systems. Papageorgiou et al. (2006) implemented
extended FCMs, which used nonlinear Hebbian rules to model industrial process control
problems. They demonstrated that their proposed scheme outperformed other existing
schemes and resulted in very good maximum power operation under different

conditions, such as changing insulation and temperature.
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Due to its properties and features, FCM can be a very good tool to model social
and political situations and to support the decision-making process. Acampora et al.
(2009) introduced the FCM approach to Ambient Intelligence (Aml) system design. Aml
systems consider human beings who are placed in relatively small environments and
surrounded by computing devices. The dynamic computational-ecosystem seeks to
satisfy users’ requirements and optimize environmental parameters such as comfort or
energy reduction. FCM models the dynamic interactions between users and
environmental sensors such as temperature and lightning. The theory of timed automata
is integrated in the framework and FCM evolution (changes of FCM graph structure) is
considered in this research. Carvalho (2010) discussed the structure, the semantics, and
the possible use of FCMs as tools to model and simulate complex social, economic, and
political systems, while also clarifying some issues that have been recurrent in published
FCM papers.

Researchers have realized that the FCM approach is suitable for modeling human
behavior and simulating complex social systems, and the FCM framework has been
proposed at a very high level. However, very little implementation work has been done
to simulate relatively large groups of users in social systems. Up to this point, we have
not found FCM-related literature on human driving behavior and no FCM framework
has been proposed for emergency evacuations in which human beings interact with a
quickly-changing environment and knowledge development is necessary. Due to the
widespread use of social media, our FCMs also include information sharing on social

networks.
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CHAPTER IlI
TELECOMMUNICATION EQUIPMENT LOCATION PROBLEM WITH TIME

COMPONENT MODEL

In this chapter, we present the telecommunication equipment location problem
with time component model (TELP) for evacuation processes to satisfy the
telecommunication service demand. We focus on the impact of mobile technology in
regional evacuation and how the changing evacuation behavior can be better captured
through more realistic and representative modeling.  Specifically, we note the
importance of models that not only capture realistic individual behavior (e.g., voice
calling, social networking, etc.) but which simultaneously model the supportive physical
infrastructure (e.g., cell phone towers, internet access) to ensure maximal connectivity
and resilience of the communication systems that support and enable evacuee decision-
making. Through our modeling, we illustrate the criticality of adaptation and flexibility
within a communication system and show how integrated models, while complex, can be
solved efficiently and effectively. In particular, by solving our model, emergency
managers can obtain decision support concerning the number and configuration of
mobile telecommunication equipment; where and when to install mobile equipment and
corresponding routes. We limit the scope of this model to evacuation, noting that the
logic of the model can be easily applied to other extreme events that require population
movement through a large geographic region with some advance notice through

forecasting.
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Due to the complexity of our mathematical model, only small instances can be
solved by directly using optimization solver. Hence, we develop efficient heuristic
methods to solve relatively large problems. Later on this model is integrated in the ABM
model for offering real-time updated solutions to maintain robust communication

systems.

I11.1. Problem Setting

While more and more people use their mobile cell phone devices to communicate
with each other through voice calls, text messages, and social media, instead of face-to-
face conversation, the importance of the telecommunication infrastructure has become
self-evident. There is significant risk that the existing telecommunication infrastructure
is not sufficient to provide service during extreme events like a hurricane or earthquake.
In an extreme event, the existing cell towers may suffer destruction. Additionally, users’
service requests will increase significantly due to the large amount of information
following these events. Specifically, for the evacuation problem, users need to know the
traffic conditions on the evacuation routes and the shelter information as they select
destinations. We realize the availability of mobile cell station can assist to relieve the
communication stress. A mobile cell station consists of a cellular antenna tower and
electronic radio transceiver equipment on a truck or trailer. Now the questions are:
where and when to install the equipment; if there is a limited number of facilities, what
are the best routes to ship from one location to another so that we can serve as many

users as possible during the evacuation process.
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The telecommunication infrastructure that we are dealing with in this research is
made up of two components: Macro-Stations and Micro-Stations. A Macro-Station
(macrocell) is a traditional, high-power, high-cost cellular base station which provides a
coverage radius up to 10km. A Micro-Station (microcell) is a smaller, low-cost unit
which transmits at lower power levels and its coverage radius is less than 1km (Coombs
and Steels, 1999). We consider the existing fixed cellular base station as Macro-Station
and the mobile cell site on truck as Micro-Station. Since a Micro-Station is designed to
be part of a cellular network, it can be deployed inside and outside of Macro-Station
coverage. Figure 3-1 shows an example of a Macro-Station with overlay Micro-Stations.

In this problem, we assume the locations of effective Macro-Stations are known.

Figure 3-1 Example of a Macro-Station with overlay Micro-Stations

One characteristic of this problem is that all users will travel on the established road
network. Hence, their locations will be restricted to the geographic area of the roads. For
an evacuation, users’ travel routes are predictable because they have fixed destinations
already in mind. As evacuation time increases, users travel on the roads and their

physical locations in general will be closer to their destinations. These two
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characteristics indicate two points: 1. it will be beneficial to set up the Micro-Stations
along the road network for better the user coverage; 2. moving Micro-stations during an
evacuation can allow emergency managers to utilize the limited mobile Micro-Stations
as much as possible. Therefore we limit the candidate Micro-Station locations along the
road networks used during the evacuation. Micro-Stations can be shipped among these
candidate locations during the multiple time periods.

Our formal mathematical problem is defined as follow: locate P mobile Micro-
Stations to maximize the total number of users served over multiple time periods, given
candidate Micro-Station locations, existing fixed Macro-Stations locations and users’

anticipated travel patterns on a road network.

111.2. TELP Model

In the model that follows, we assume the configuration of all Macro-Stations are
the same, that is the coverage radius, transmission power and pole capacity are all set at
the same level. Specifically, the pole capacity refers to the maximum number of users a
cellular station can support if there is no noise and other station interference (Gilhousen
et al., 1991). The cellular station coverage is defined as the maximum distance that a
given user of interest can be from the station with reliable received signal (Veeravalli
and Sendonaris, 1999). The special relationship between coverage and capacity is
captured in this model as well. To simplify our problem, we assume the station

interference only happen between pair-wise stations.
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Similarly, we assume the configuration for all Micro-Stations are the same. We
also assume that Micro-Stations cannot operate while travelling. In other words Micro-
Stations can only provide service while they are installed at candidate Micro-Station
locations. We consider the installation and break-down time of Micro-Stations take a
predefined period of time and it’s included in the travel time from one candidate location
to another. We limit the usage of each candidate Micro-Station location for one Micro-
Station at a time.

We define the following notation:

Model Parameters

I set of users who need to connect to tele station, i € J
M setof existing Macro-Stations, m € M
J set of candidate Micro-Station locations, j € J

T setoftime periods, t € T
Km  single-cell pole capacity of Macro-Station
Kj single-cell pole capacity of Micro-Station

dimt  distance from user i to Macro-Station m at time ¢t

dijt  distance from user i to candidate Micro-Station location j at time t

Rwm Macro-Station coverage radius

Ry Micro-Station coverage radius

P total number of Micro-Station can be used

Tjj'  Shipping time from candidate Micro-Station j to j’
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Decision Variables

xi;  lifuseriisassigned to Micro-Station located at j at time ¢

Zime Lifuseriisassigned to Macro-Station m at time t

Vit 1 if Micro-Station located at j operating at time ¢

Vjejiee 11T Micro-Station is shipped from location j at time t to location j' at time t’
Objective

Max YictXic1XjejXije + ZeeT Lie1 Lme M Zimt (3.1)

Constraints

Yie)Xije * XmeMZime < 1 vielLLvte T (3.2)
Zije < Vit Viel,Vje JJVte T (3.3)
Yie1%ije <K vieJvte T (3.4)
Yic1Zime < KM VvmeMvVte T (3.5)
YieYie <P vte T (3.6)
xije dijt < Ry Viel,Vje JJVteT (3.7)
Zime dimt < Rum VieELVmeMVte T (3.8)

(Ki-Xie1xijt) (KM= Xic1Zime) > Xic1%ijt Qijme Dic 1 Zimt Dijme
ViEJVmeMvVte T (3.9)
(KM - Zie I Zimt) (KM - Zie I Zimlt) > Zie 1Zimt bimlmt Zie 1Zimt bimmlt

Vvmm eMm #m' ,Vte T (3.10)

(Ki-Xierxije) (Ki- Xie1Xijie) = Xie1%ijt Qijjre Die 1 Xijie Fijrje
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VijeJj#j . VteT (3.11)

Vit < DwetXje) Ve <1 ViEJVteT (3.12)
YeeT Djie) Vije = DweT Ljre] Vjtjitr VieJVteT (3.13)
(1 -XoerXje) Vitjier) = Vje vijeJj#j . vteT (3.14)
Vi (1= (' =t =Tjj")) =0 vt e T t<t Vjj €T (3.15)
Zijt) Zime, Vjt € B VieLVjeJ,VmeEMVte T (3.16)
Vjtjir € B vijeJvtteT t<t (3.17)

The objective (3.1) is to serve as many users as possible through evacuation
periods. Constraints (3.2) - (3.8) are location-allocation constraints. Constraints (3.2)
limit each user covered by at most one tele station. Constraints (3.3) ensure that if a user
is covered by a Micro-Station located at j there must be a Micro-Station operating at
location j. Constraints (3.4) - (3.5) make sure user assignments do not exceed the base
station pole capacity. Constraints (3.6) indicate the total number of P Micro-Station
available for installation each time period. Constraints (3.7) and (3.8) ensure the user’s
distance from the tele station is less than or equal to the effective radius of the

corresponding tele station.

Constraints (3.9) — (3.11) are the interference constraints. In CDMA radio
network, capacity and coverage of tele station have to be considered simultaneously and
both are restricted by the signal quality constraints. Signal quality is restricted by signal

interference within the tele station and from other stations. The interference considered
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here is from voice users. a.

imt = [P (dimt/dm0)~* /[ h;(dijt/djo)*] and b;jp, =
[h; (dijt/dj0)~*)/[hy, (dimt/dm0)~*], these two terms become constant once a user’s
location is known. h is a constant that depends on wavelength, antenna heights, antenna

gains, etc. Useh_ and h;to represent this constant value for Macro-Station and Micro-
Station respectively. d is the distance from user to station, d,is the close-in reference
distance. Use d ,and d,, to represent the close-in reference distance for Macro-Station
and Micro-Station respectively. yis a zero-mean normal random variable with standard
deviation o,, and o, for Macro-Station and Micro-Station respectively. « is path loss

exponents. (3.9) — (3.11) shows the relationship between base station capacity and signal
interference.

Constraints (3.12) - (3.15) are the routing constraints. Specifically, constraints
(3.12) ensure Micro-Station j can only be turned on when it is at locationj at time ¢.
Constraints (3.13) are flow balance constraints. Constraints (3.14) indicate Micro-Station
can be shipped from location j at time ¢ if it’s not operating. Constraints (3.15) are the

shipment availability constraints.

111.3. Computational Setup
In the following numerical studies, we conduct computational experiments on a
computer with an Intel Core2 Quad 3.0 GHz processor, and 8GB RAM. The algorithms

are implemented in Python 2.5 and Concert Technology when CPLEX (ILOG CPLEX
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12.1) was used. Although the latest Python version is 3.4, we have to use Python 2.5 in

order to use the Python API for CPLEX 12.1.

I11.4. Preliminary Result Using CPLEX Only
I11.4.1 Linearization Model

To solve the TELP model directly in CPLEX, we convert nonlinear constraints
(3.9) — (3.11) to linear constraints. The linearization technique which transforms the
integer quadratic program into an equivalent zero-one binary linear program is presented
here. Consider constraints (3.9) as an example.
(Ks 'Zielxijt) (KM-Xic1Zime) = Diet Xijt Aijmt Yie 1 Zime bijmt

ViEJVYmeMVte T (3.9)

Moving all quadratic forms to one side gives us:

KJ * KM - KM *injt - KJ *Z Ly > injtaijmtz Zi'mtbi’jmt _injtzzi’mt

iel i'el iel i'el iel i'el

=2 X Zime (B —1), Vi €3, VMe M, Vt T

iel i'el

Following the idea of the standard 0-1 linearization (Fortet, 1960), we substitute the
binary quadratic terms by adding a set of new variables and a family of inequalities. We

replace x;j; Zim. by set of T;;;,m, binary variables. Add the following inequalities:
Tiji,mtixijt ViELVi,EI,VmEM,VjEIVtET (318)
Tijirme < Zinme VieILVielLVvmeMVje JVte T (3.19)

Tiji,thxijt+Zi,mt—1 ViELVi,E],VmEM,VjEJ,VtET (320)
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Inequalities (3.18) and (3.19) guarantee that T;j;,,m,, Will be zero if either x;;, or z;,,, are
zero. Inequality (3.20) will make sure that T;j;,,, Will equal to 1 if both x;;, and z;,,;
are set to 1.

Using Fortet’s linearization approach, we transform our nonlinear problem to
binary linear program. As mentioned in many articles (Sherali et al., 1986; Billionnet et
al., 2008), the main drawback of this approach is that it increases problem size
significantly. It becomes less and less practical as we increase the number of users and
Micro-Station candidate locations.

We can improve this general linearization method by adding more valid
inequalities based on the assignment properties: each individual is served by at most one
base station. Therefore, our problem is very sparse, meaning that many of the decision
variables are populated by zero values. We replace inequalities (3.18) and (3.19) by

(3.21) and (3.22) which leads to an integer linear program of significantly smaller size.

YmemXje) Tijime < Xjey%ije vielvieli+ i'"VteT (3.21)

YmemZje) Tijimt < YmemZime Vi€LVi€eli=# i','VteT (3.22)

111.4.2 Computational Results for Linearized TELP Model
To see the performance of the CPLEX optimization solver on our model and

better understand the impact of different parameters, we generated 9 small problem sets.

For each problem, we fixed the value of Km and K3 at 5 and 3 respectively, and set 7T at

4. Each problem set included 3 instances which have different user movement patterns:
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single direction (SD), small degree of randomness (SR), complete randomness (CR).

Other parameter settings are summarized in Table 3-1.

Table 3-1: Parameter values for the data sets

Set| M| | [J| P | []]
1 5
2 1 4 2
3
4 10
5 2 8 4 12
6 14
7 20
8 4 16 8 24
9 28

We tested all the instances in CPLEX12.1 with default settings. The
computational results can be found in Table 3-2. We found that even small problems are
hard to solve to optimality. For these hard instances, we use “Gap 3% RT”, i.e., the
running time when the gap between the given solution and optimal solution reach 3%.
For instances which the solver cannot give good solutions after 3 hours, we use “Opt.
Gap” to show the gap between current solution and optimal solution. The running time is
in seconds.

Here are observations from testing 9 problem sets: 1. the linearized TELP model
is very hard to solve to optimality. The largest instances we tested were 28 users with 4

Macro-Stations and 16 candidate Micro-Station locations. After running 3 hours, we
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could only obtain 90% optimal solution gap. It seems impossible to solve this model
within  reasonable time for real-world problem since the number of constraints and
decision variables increases exponentially as the problem size increases. 2. The user
movement pattern is an important factor that effects how difficult it is to solve in terms
of running time and solution quality. From Table 3-2, we can see user movement
followings a single direction usually leads to a longer running time or a bigger Opt Gap.
During a real evacuation, instead of randomness, user movement patterns will follow
evacuation routes. Therefore, it is not realistic to solve real-world problem by simply

using CPLEX.

Table 3-2: Computational results of linearization TELP model

Set | Instance (I)QEIE Gap3%RT gg:) 32{
SD 3.45 19
1 SR 0.695 20
CR 0.764 20
SD 3.54 20
2 SR 1.097 20
CR 0.655 24
SD 5.1 21
3 SR 1.365 21
CR 1.263 28
SD 397.63 36
4 SR 1322 37
CR 2.995 39
SD 3282.7 38
5 SR 2156 39
CR 21.06 47
SD 5.13% | 39
6 SR 4587 42
CR 155.57 55
SD 21617 8.11% | 74
7 SR 3.90% | 77
CR 209.5 80
SD 31.51% | 73
8 SR 88.24% | 51
CR 13170 94
SD 100% | 56
9 SR 87.72% | 57
CR 89.83% | 59
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111.4.3 Solution Illustration

To better understand the features of optimal solutions and develop efficient
algorithms, we illustrate solution characteristics in this section. Here we use problem set
4 SD instance which has 1Macro-Station, 4 candidate Micro-Station locations (CML), 2
Micro-Stations and 5 users with a single direction movement pattern. The coordinates of
CML and the shipping time between any two locations can be found in Table 3-3 and

Table 3-4 respectively.

Table 3-3: Coordinates of candidate micro-station locations

StationID X Coordinate | Y Coordinate
Macro-Station (M) 2000 2000
Micro-Stationl (j1) 1000 3000
Micro-Station2 (j2) 1000 1000
Micro-Station3 (j3) 4000 1000
Micro-Station4 (j4) 4000 3000

Table 3-4: Shipping time from CML j to j’

1 J2 13 4
j1 0 1 2 1
j2 1 0 1 2
i3 2 1 0 1
j4 1 2 1 0

Figure 3-2 shows the assignment of users to cellular stations at each time period.
Red dash lines indicate the assignment of Micro-Station users to the corresponding

Micro-Stations. And the green dash lines indicate the assignment of Macro-Station users.
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Figure 3-2: Assignment of users to cellular stations

We use a space-time network to demonstrate installation and routing solutions.
Figure 3-3 shows the location solution where Micro-Stations should be installed and
routing strategy detailing how Micro-Stations can be shipped from one candidate
location to another between time periods. All Micro-Stations initially leave the pseudo
node SO and arrive at the pseudo node S1 at the end. No shipping cost between any
candidate locations and pseudo nodes. At time period 1, Micro-Stationl and Micro-

Station2 are located at j1 and j4 respectively. Micro-Stationl remains at j1 at time period
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2 while Micro-Station2 travels from j4 to j3. At time period 3, Micro-Station2 arrives at
j3 and Micro-Stationl travels from j1 to j2. Both Micro-Stations operate at time period 4
at location j2 and location j3 respectively. Note that a better installment solution which
gives a higher objective value is to install a Micro-Station at j2 at time period 3.
However, due to routing constraints, Micro-Stationl cannot arrive at j2 at time period 3
which may cause unfulfilled user demand. Routing constraints actually reduced the
feasible candidate location set. This solution feature can be utilized when we develop

our heuristic solution in the next section.
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Figure 3-3: Micro-Station installation and routing solution

I11.5. Heuristics

Although linearization technique helps in problem simplification and enable us to
use CPLEX to solve TELP model, it is not efficient in terms of runtime and memory
required when we apply our model to relatively large-scale instances for extreme event
evacuation. Therefore, it is necessary for us to develop heuristic solution approaches

which take advantage of the well-understood explicit model formulation and solution
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characteristics we found in last section. In this section, we present a greedy randomized
adaptive search procedure (GRASP) metaheuristic and Lagrangian relaxation heuristic
and the implementation of these two heuristics.
111.5.1 Metaheuristic -- GRASP

Recall that routing constraints limit the Micro-Station locations. Instead of
considering the best installation and assignment strategy at the first stage and checking if
routing constraints are satisfied at the second stage, this heuristic approach generates
feasible routes and decides Micro-Station installation locations at the same time.

GRASP is a multi-start procedure where each iteration consists of two major
parts: 1. Construction of a greedy randomized feasible solution; 2. Local search: find a
locally optimal solution, starting from the constructed solution. The pseudocode of

GRASP approach is found in Algorithm 1.

Algorithm 1 Procedure GRASP

1 BestSolutionFound = @; F (BestSolutionFound) = —oo;

2 fori=1... Maxlter:

3 x = HybridGreedyRandomizedConstruction (Random Seed);
4 x’ = LocalSearch (x);

5 If F (x’) > F (BestSolutionFound):

6 BestSolutionFound = x’;

7 End if;

8 End for;

9 Return BestSolutionFound
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Procedure HybridGreedyRandomizedConstruction

1

2

10

11

12

13

14

15

16

17

18

19

SolutionFound = @;
While solution is not complete:
Generate reachable candidate Micro-Station locations as set Sp;
List all possible Micro-Station installation strategies based on Sp as set K;
For each k € K:
CPLEX solve assignment problem
While interference constraints is violated:
Change corresponding x;; or z;, status
CPLEX solve updated assignment problem
End while;
f(k)= Max Yic1Xjejxij + Xic1 XmeM Zim
End for
U =max {f (k): k € K}
L =min {f (k): k € K}
Build the Restricted Candidate List (RCL):
RCL={keK: f(k)>L+a(U-L)};
Select element s from RCL at random;
SolutionFound = SolutionFound U{s};
End while;

Return SolutionFound
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We demonstrate the greedy randomized solution construction procedure in
Figure 3-4. This solution construction procedure builds up a sub-solution at each time
period and produces the complete solution at the end of last time period. By breaking

down multiple time periods into single time period, we can simplify the sub-problem.
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Figure 3-4: Flow chart of GRASP solution construction

At each time period Ti, we generate a set of reachable candidate Micro-Station
locations J. Based on the information from previous time periods such as the Micro-
Station’s location, whether it’s operating or not and shipping time, we can get a set of

feasible locations where a Micro-Station can be shipped to at time period Ti. These

locations are referred to as the reachable candidate Micro-Station locations. At the first
time period, we consider all CML as J. Obviously, J is a subset of CML and by
creating such a set of locations we can reduce the model parameter [J/ and ensure the

routes are feasible. Furthermore, at each time period Ti we generate a set of all possible
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Micro-Station installation strategies called K. For P given Micro-Station facilities, K =
{0, 1, 2... P}. It is necessary to examine all elements in K, because it may not be
beneficial to operate all available Micro-Stations at each time period.

After completing the previous steps, what remains is a relatively simple

assignment problem. The objective function and constraints are given as following:

Max Yic1Xjej%ij + Lie1 Xime M Zim (3.23)
S.t.

S 61 %+ Some m Zim < 1 viel (3.24)
xi; < Y VvielLvje]J (3.25)
Die1 % <K vVieJ (3.26)
Yie1Zim < Km vmeM (3.27)
2jejyi =P (3.28)
% dij < Ry VielLvje]J (3.29)
Zim dim < Rm viel,vmeM (3.30)

Note that constraints (3.26) — (3.20) are very easy constraints and we use CPLEX
to solve this assignment problem for each k € K. The last set of constraints we need to
consider is interference constraints which can effect decision variables x;; and z;,,, and
objective value. Here we exhaust all pairs of cellular stations which have interference
impact and check if all constraints are satisfied. If the current assignment violates any
interference constraint, we delete the assignment causing violation and set the

corresponding x;; or z;, equal to 0. We then add corresponding x;; = 0 or z;,, = 0 as
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new constraints and resolve the updated assignment problem until all the interference
constraints are valid. Then we calculate the objective value of the assignment problem
namely f (K).

After examining all k € K, we have a list of feasible solutions and objective
values for single time period Ti. Let the largest and smallest f (k) be U and L
respectively and build the Restricted Candidate List (RCL): RCL ={k € K: f (k) > L+ «a
(U-L)}. Randomly pick an element s from RCL and update SolutionFound to
SolutionFound U{s}. Repeat process (step 3-17) until the end of the last time period
which terminates the solution construction phase.

RCL is actually where the greedy randomization takes place. Instead of always
take the local best solution, RCL gives the opportunity to take a look at the solution that
may be good but not the best. Parameter o controls the tradeoff between greediness and
randomness, where o = 0 is purely greedy and a = 1 is purely random. We use a = 0.5
for testing our problems. For an individual time period the best solution is to operate all
available Micro-Stations. However, it may be beneficial for whole time horizon to stop
operating selected Micro-Stations at some point in time and ship them to another
locations that can fulfill larger demand at a later time.

To start local search, we need to first define the “neighborhood” for our problem.
Consider the constructed solution as the initial solution and construct adjacent solutions
that have the same routing strategy but different installation solutions. Basically,
adjacent solutions have different y;, values but maintain the same route solution as the
initial solution. Notice that we may miss better installation strategies when we randomly
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pick an element from RCL. If these installation strategies also satisfy the current routing
solution, then we can improve our initial solution. For any adjacent solution we limit the
number of different y;, from the initial solution to 1. The collection of adjacent solutions
is defined as the neighborhood. Local search is to find the best solution in the
neighborhood and replace the current solution if there is a better solution.
111.5.2 Lagrangian Relaxation-based Heuristic

The second heuristic we apply to the TELP model is a Lagrangian relaxation
with local search technique. Fig.3-5 is flowchart for a Lagrangian relaxation heuristic

approach. The Lagrangian relaxation formulation LR (X) of TELP is given as follows.
Max YictXic1Xje)Xije + LeeT Dic1 ome M Zime + Dte T Die1 Dje) Aye Ve — Zije) +
YeeTA (P — YiesVit) t Xter Xjey Ajzt (Zj’e] Xtrer Vjrelje — yjt) + Xter Xjeg /113t (1 -
JESET )t Jt+LETJE/AJtd) €/t €T L) t jt—) €/t €TVt t +LETJE/AJt51—) €/t €TV

JU =yt ESLET <t ) €/’ ETAIt) t 617t/ t (1—(t"—t—T7)"))

(3.31)
s.t.
Yie) Xije * XmeM Zime < 1 vielLLvte T (3.32)
Yie1%ije <Ki VieEJVte T (3.33)
Yie1Zime < K VvmeMvteT (3.34)
xije dijt < Ry VielLVje JJVteT (3.35)
Zime dimt < Rum Vie,VmeMVte T (3.36)
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Vitji € B vVijelvtt e Tt<t (3.38)
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Figure 3-5: Flow chart of Lagrangian relaxation heuristic

First, we use CPLEX to solve LR () and get the Upper Bound. To construct feasible

solution S of original problem from LR (), we need:

(1) yje: We have (1-ZtETZiEIZje]/1?jt)xijt in the objective of LR (A). For each t €

T, find P largest coefficient of x;;, from term (1-Y;c 1 X jej Afje)#:jc @nd let these

x;j¢ and the corresponding y;; equal to 1.

(2) Feasible vj;,.,: Construct a directed spatial temporal graph G, and each vertex V]-t

in G corresponding to a location j and time t. Add pseudo node s and t as source

node and sink node. Add edges between Vand V/** for t >0, t +1 < T. For
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vertices whose y;. equal 0, add edges between Vjt and ij’ if transportation time
between j and j" equals (t' —t —1). Add edges from s to V;' and V;"to t. For
incoming edges of vertices whose y;, equal 1, assign unit weight on these edges
and assign O weight to the other edges. In this DAG graph we can find the
longest path from s to t to get a route for each mobile cell station. In particular,
after obtain a longest path from s to t, remove the vertices and edges comprised
in the path and construct another longest path from the new graph until we obtain
P routes.

(3) Adjust y;; and x;;, : If vertices whose y;. equal to lare not covered by any of
the P routes, then make y;, equal to 0 and adjust corresponding x;;;

(4) Check the interference constraints: For each cell station (mobile station or fixed
station), sort the user distance to the station in decreasing order. If the
interference constraints are not satisfied, then remove the furthest user until
interference constraints are satisfied.

The lower bound of the problem can be calculated once we find the feasible solution.
Then we use the local search starting from the feasible solution constructed above. The
local search algorithm we apply here followed the same idea as the GRASP
metaheuristic. Again, in the adjacent solution we change y;. for those such that status
changing does not impact on routing constraints i.e., keep variable v;.j,;, the same. Find
the best solution S’ in neighborhood. Check if we can get a better lower bound and

update the lower bound and the best feasible solution as necessary. If the gap between
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the upper bound and lower bound is smaller than threshold €, then we output the best
feasible solution and corresponding objective value. If the current best feasible solution
is far away from the upper bound, we update each set of lagrangian multiplier A by using
following equations.

A?jt, = A(i)jt - V(}’jt - xijt)

M =2-yvP-Zjv)

2! 2
)ljt /1jt - V(Zj’e] Zt’ET Vjrerje — J’jt)
B= B -yA -2 Y

it = A~V j'ej Lt'er vj’t'jt)

4" _ 94
)ljt = Ajt - V(Zj'EJ Dt'er Vjrerje — Zj’e] Dt'er vjtj’t’)

Ne = 4=y = Zjre Eeer Viejre' — Yje)

6 — 16 ..
AejrerVieste = Ay Vigre — YL = (¢ =t = Tjj"))

UB—-LB
SQ

wherey = u *

SQ =

YeT2ie1Lje]Vie — Xije)? + Dret(P — Xjey yjr)* +
2 2
Yter Zje](Zj’e] Xtler Vjrelje — yjt) + Yter Zje](l - Zj’e] Xtler vj’t'jt) +
2
ter Zje](Zj’e] Xtler Vire'je — Zj’e] Xtler Vjtj’t’) + Xter Zje](l -

Yjre) Le'er Vjtj'e! — Vit)? + Xjes Dtert<tr Djrey 2erer(1 — (' =t = Tjj"))?

u is the parameter that decides how big is the step from A to A’
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111.5.3 Computational Results

The computational results of implementing GRASP metaheuristic and
Lagrangian relaxation heuristic are presented in this section. To test and compare the
heuristic approaches to the linearized model solved in CPLEX, we use the same
parameter settings as shown in Table 3-1.

Table 3-5: Computational results of GRASP and Lagrangian relaxation

Lagrangian
GRASP Relaxation
RT | Opbj Obj
Set Instance | Avg. RT Std. RT  reach ' RT '
Val. Val.
best sol.
SD 6.599 2.153 0.314 18 1.49 16
1 SR 9.415 1.073 0.448 16 0.1247 14
CR 6.545 1.867 0.311 20 0.4785 16
SD 7.961 0.946 0.571 18 2.39 17
2 SR 10.18 1.488 0.484 16 0.2826 12
CR 8.406 1.481 1.705 24 2.5427 17
SD 14.014 1.067 1.005 19 10.23316 18
3 SR 12.162 2.269 0.966 16 0.351 13

CR 12.095 3.165 2.951 24 18.1158 21
SD 38.881 4.566 5.218 34 7.0785 23

4 SR 64571 22328  9.296 32 0.2714 23
CR 54385 16.254  14.369 40 3.1918 24
SD 53.375 8.371 4.181 34 11.34 29
5 SR 95.797  28.272  29.73 33 0.83235 34

CR 87.952  28.126  28.923 43 16.5217 31
SD 206.917 79.284  48.804 37 103.2878 31
6 SR 231.874 130.215 75.554 34 19.725 30
CR 146.446  37.763  47.16 48 34.9366 32
SD 605.172 237.45 164.156 71 15.432 45

7 SR 560.961 198.421 148.826 64 1.0623 45
CR 490.819 143.953 124.536 79 12.5131 43
SD 657.433 178.577 251.61 70 124 52
8 SR 564.867 207.951 176.791 63 6.79 50

CR 503.566 105.239 162.166 86 93.189 67
SD 480.46  131.595 204,786 73 566.2434 57
9 SR 793.292 243976 277.329 60 38.54191 58
CR 704.317 227.95 246.224 94 274.3103 60
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Note that GRASP is multi-start algorithm, we run 10 replications for each
instance. Stopping criteria we used here is if no better solution is found for 20 iterations
then we consider the current solution to be the best solution. To measure the running
time for GRASP, we use the average running time, standard deviation of running time
and the running time when the best solution is first found.

Figure 3-6 and Figure 3-7 show the running time and objective value comparison
of the linearized model, GRASP heuristic and Lagrangian relaxation heuristic for SD,
SR and CR instances respectively. For the smallest problem set 1-3 (1 Macro-Station, 5-
7 users), all three approaches can give solutions within 20 seconds. Using CPLEX to
solve the linearized model can give us the optimal solution quickly. When we increase
the problem size to 2 Macro-Stations and 10-14 users, the linearized model starts to slow
down and took at least 1 hour to solve for some test instances. By contrast, the two
heuristic approaches can solve these instances within 200 seconds and most instances are
solved within 100 seconds. Compared to GRASP, the Lagrangian relaxation heuristic is
faster which can finish solving within 30 seconds for many instances from problem sets
4-6. However, GRASP provides better solutions than Lagrangian relaxation for almost
all instances. Solution quality from GRASP can compete with the linearized model for
many instances. The best solutions for the largest test instances are indeed from GRASP
although it took longer running time compared to Lagrangian relaxation.

Solutions from Lagrangian relaxation are slightly better than the linearized model

for larger problems, and it only takes a little computational effort. For all instances from
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problem 9, Lagrangian relaxation can solve for a better solution in 10 minutes than the

linearized model can solve for in 3 hours.
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Figure 3-6: Running time comparison for three approaches
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Figure 3-7: Objective value comparison for three approaches
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111.6. Summary and Conclusion

In this chapter, we introduce telecommunication equipment location problem and
provide the mathematical model TELP. This model considers where to locate mobile
Micro-Stations and best routes to ship them based on existing cellular network to better
serve cell-phone users for the extreme event evacuation process. Because of the
nonlinear interference constraints, we cannot solve TELP simply using optimization
solver. To obtain a linearization model, we have to add more variables and constraints
by apply the linearization technique. Then we test the linearization model with small size
problems. We found even for the small size problems, it is very hard to find optimal
solutions. After study solution characters, we develop two heuristic approaches: GRASP
metaheuristic and Lagrangian relaxation heuristic. Both heuristic approaches can solve
test problems quickly compared to solve the linearization model. GRASP can yield very
competitive solutions but need to have more computational effort. Lagrangian relaxation

heuristic, by contrast, can obtain solutions very quickly but sacrifice the solution quality.
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CHAPTER IV
AGENT-BASED EVACUATION PROCESS SIMULATION USING FUZZY

COGNITIVE MAPS AS BEHAVIOR MODELS

This chapter presents an agent-based evacuation process simulation model for
implementing the novel fuzzy cognitive maps (FCMs) as agent behavior models. Each
component of the simulation and its relation with other components are described in
detail. These components include the physical environment, general property of agents,
agent information sharing and collection, and agent behavior models. Agent behavior
models consist of genetic and FCM-supported types. Genetic behavior models simulate
subconscious behaviors, such as lane change, whereas FCM-supported behavior models
simulate more complicated behaviors involving analytical reasoning and a time-adaptive
procedure. In this simulation, each agent has its own FCMs, which are used to make
decisions on speeding up, slowing down, route changes, destination changes, and

resulting corresponding behaviors.

IV.1. Agent-based Model Methodology

An agent-based simulation model (ABM) has been developed to explore
individual travel behavior and collective group behavior during an extreme event
evacuation process, considering human and social behaviors. Using ABM as a tool can
help us understand better how social networking and the availability/use of mobile

telecommunication stations impact regional evacuations, considering the uncertainty of
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individuals and the interaction among individuals. Specifically, with this ABM, we are
able to explore how social media use can improve evacuation efficiency and to
investigate how mobile telecommunication infrastructure planning impacts evacuation
efficiency.

The utility function approach is commonly used in ABM (see Chen and Zhan,
2004; Han et al., 2007; Widener et al., 2012). It is a linear or nonlinear function of
concerned factors, and the calculated value compared to the defined threshold would
decide an agent’s behavior. However, instead of using the utility function to simulate
decision-making, we use FCMs to mimic the causal decision-making process. The FCMs
define the causal relationships among concepts, and they enable agents to evaluate
temporal environment information and the fuzzy activation level for each concept.
Agents will choose several possible actions after dynamically integrating external
information and the evolution process. Compared to the utility function approach, FCMs
can represent sophisticated relationships among different concepts, handle temporal
information dynamically, and allow an adaptive learning process. Most importantly,
FCMs provide realistic decision-making processes for this evacuation model, especially
when the agents represent humans who operate vehicles. The adoption of FCMs
distinguishes this ABM model from its peers and enables the integration of a variety of
information; it also handles incomplete, unreliable, conflicting information and models
the decision-making evolution.

First, the ABM environment in which agents can operate is defined. In this

simulation model, it is assumed that agents travel via vehicles. Hence, the road network
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defines the physical domain of all agent activities. The digital elevation model (DEM) is
integrated as the physical environment so that agents can have third-dimensional
geographic knowledge to assist their decision-making. Besides the physical
environment, the information system is introduced and enabled by the
telecommunication system. The information system allows agents to share and receive
information,; the collective information can encourage or inhibit agent decision-making.

The information system environment enabled by the telecommunication system
exists only when the agent has cellular service. This environment is essential in utilizing
social media, especially for emergency evacuation. The use of social networks without
considering cellular support is insufficient. By introducing this virtual environment,
agents can access and analyze information from other geographic regions, which
actually extends agents’ “vision.”

Different from the discrete event simulation model, the ABM decomposes a
complicated system into a number of basic artificial agents. In this model, each agent
represents a small group of evacuees who travel together using one vehicle. The agents
are so-called “artificial agents” because they have their own “brain” to decide how to
interact with the surrounding environment and other agents. Section 1V.3 presents a
detailed description of agent properties.

The agent’s “brain” defines a series of behavior rules that guide the agent in
taking specific actions at specific times. In this model, these behavior rules include the
genetic and FCM-supported behavior models. The genetic behavior model supports

agents taking actions on lane changing and sending out traffic information while
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traveling on road segments. The FCM-supported behavior model can analyze the causal
relationship between related factors and previous historical data to support more

complicated decision-making, such as route change and destination change.
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Figure 4-1: Framework of ABME

Figure 4-1 shows the framework of the ABM model. In its execution, a diverse
population is randomly generated and distributed artificially within the region to be
evacuated. The social networks are constructed among the generated population,
considering both random networks and networks that have real-world, social network
characteristics. A physical geometry engine (GeoMASON) imports geographic
information system (GIS) data, the base station locations (obtained from the TELP

model in Chapter Ill), and the United States Geological Survey (USGS) DEMs
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(generated from satellite images) to the simulation model. Each agent will have its own
behavior models. After integrating external information (e.g., the physical data, social
communication, and broadcast information) and inherent data, individuals make adaptive
dynamic decisions on the route and destination choices resulting from their own
decision-making models.

In this simulation model, information passes among the agents through general
broadcast information and the agents’ social connections (i.e., agents send information to
their “friends™ as specified by their social network). It is assumed that every agent can
receive the broadcast information whenever the agent is served by a teleservice. Again,
only when the agent has teleservice can it successfully send or receive information via a

social network.

IVV.2. The Environment
IV.2.1 Physical Environment

Since the scope of this research includes the evacuees who travel in their
vehicles, agent movement is restricted to the road network of the target region. The road
network consists of a set of network intersections (nodes) and a set of road segments
(arcs). It is assumed that each road segment is a bidirectional road, with multiple lanes
for each direction. Intersections (forming a subset) are pre-chosen as evacuation origins
where all agents are randomly placed in the initial step. Next, intersections comprising a
different subset are identified as evacuation destinations representing the shelters where

agents travel to after leaving their origins. There are no common nodes between the
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origin and destination subsets. Additionally, there must be at least one path from the
agent’s origin to its destination node. It is assumed that the capacity of each destination
shelter is limited to an assigned number.

For each agent, an evacuation route is computed once its destination node is
selected. Instead of restricting the agents’ travel to the shortest route, they are allowed to
change their routes at intersections. In other words, agents can choose from the available
multiple routes, based on their external information analysis. To generate more realistic
alternative routes, the k-shortest paths were computed from each intersection to each
destination node. The k-shortest paths comprise a sequence from the shortest path to the
kth-shortest path between a pair of nodes. These paths are pre-loaded into the system
before the simulation starts. It is assumed that each agent has full knowledge of these k-
shortest paths and that all paths are loopless. Yen’s (1971) k-shortest path algorithm was
adopted for implementation in this model because (among other reasons) the time
complexity O(kn(m + nlogn)) has remained unbeaten for so many years.

Considering that the geospatial information on the third dimension (the z-
coordinate) may influence an individual’s behavior, the DEM of the target region is
imported. Specifically, different slopes of road segments can result in different vision
ranges for agents, and the vision range can further influence agents’ travel speed.

IVV.2.2 Virtual Environment

Besides the physical environment, the information environment is the other

important environment with which the agents interact. This virtual environment offers

two types of information sharing: global broadcast and social media. The global

55



broadcast maintains the updated shelter capacity information. Every agent can access the
global broadcast information as long as it has telecommunication service. Information
sharing on social media only happens among agents with social connections. A
simulated social network is constructed to represent the social connectivity among the
agents. Again, information sharing on a social network can only be allowed when agents
have access to telecommunication.

Scale-free networks are constructed as simulated social networks. The degree
distribution of a scale-free network follows a power law distribution: the probability of a
node having k connections to other nodes is k=Y for large values of k, where y is a
parameter 2 < y < 3. Since social networks are claimed to be scale-free, some
phenomena, such as “small world,” are expected to be observed from the constructed
scale-free networks. In comparison, random networks are also constructed as another set
of simulated social networks. The simulated social network is stored in the system and
kept the same during the entire simulation. An adjacency matrix is used to represent
social connectivity. Although Butts et al. (2012) point out that the geographic
heterogeneity would influence the social network structure, it is assumed that there is no
geographic correlation on the simulated social networks. This assumption is made to
have observations under a more general social network structure.

Finally, the locations of cell stations are considered part of the environment, which
determines whether or not an agent can be served. We export the output from the TELP
model to determine when and where the mobile telecommunication facilities would be

located during the evacuation process. The parameters associated with cell stations, such
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as service range and pole capacity, are consistent with the parameters in the
deterministic TELP model. Section 1V.5 gives the implementation details of how the
TELP model and ABM work together. Table 4-1 lists the parameters and variables

associated with the above discussion.

Table 4-1: Environment parameters and variables

Environment Parameters

0 A set of origin nodes

D A set of destination nodes

qu Kth shortest path from intersection node p to destination node g
vR;  Vision range for an agent at location [

ASN  Adjacency matrix of social connectivity

a;) 1 when agent i has social connection to agent j
Ly Locations of Macro-Stations

Environment Variables

L,,  Locations of Micro-Stations

GIP  Global broadcast destination capacity information

SI®  Congested road segment information shared on social media
SIP  Destination information shared on social media

IVV.2.3 Environment Variables

For every simulation iteration, the model updates the locations of mobile micro-
stations and the destination capability information. Social media shares the information
about destinations and congested road segments. At each iteration, if an agent’s travel
speed is lower than a threshold, then the agent is considered in traffic, and it will inform
its social connections about the congestion of the road segment. The model maintains all
congested road segment information shared among all agents, using variable SI%. Since
the congested road information is time sensitive, our model keeps this information,
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lasting for t iterations; after that, this information is discarded unless the same road
segment is still in traffic. Variable SI” represents the updated destination information

sharing on social media, such as the current and alternative destinations for each agent.

IV.3. Agents
IVV.3.1 Agent Parameters

Each agent possesses several genetic properties that can be identified from other
agents but always remain the same during the simulation. These genetic properties can
be considered “agent parameters.” The “top speed” is one of the genetic properties,
which defines the highest speed the agent can reach. The agents’ top speed values can
vary from one another since each individual has its own comfortable driving speed.
Another genetic property is “acceleration/deceleration.” Similar to the top speed, each
agent has its unique acceleration/deceleration rate. On one hand, the diversity of the
travel speed can reflect the variation in individual driving behavior in the real world; on
the other hand, it can provide a more interesting, collective travel pattern other than
uniform travel behavior. Agent genetic properties can be expanded to different vehicle
types, demographic trends, socioeconomic classes, and so on.
IVV.3.2 Travel on Road Segments

Besides agent parameters, Table 4-2 also lists all the agent variables in our
simulation model. At each simulation iteration, we track each agent’s location and speed.
In the initial step, agents are located at their assigned origins. As the simulation starts,

we use the FCM-speedUp model to adjust the speed of agent i from O to the proper
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speed. The FCM-speedUp model is one of the FCMs that is used for agent acceleration
while agents travel on the road segments. On the other hand, the FCM-slowDown model
is used for agent deceleration when agents reach congested road segments. The two
models are explained in detail in Section IV.4.3 when we present all the FCM models.
As an agent travels on the road segment, it needs the distance and speed information
about the agent in front to adjust its own speed or decide whether or not it needs to
change lanes. Besides the information about the agent in front, the elevation of the

agents can impact their physical vision range and further affect agent speed.

Table 4-6: Agent parameters and variables

Agent Parameters
vi Topspeed of agent i

a’  Acceleration of agent i
a; Deceleration of agent i

Agent Variables

I[; Location of agent i

v;  Speed of agent i

h;  Elevation of agent i

df  Distance from agent i to the front agent

Speed of the front agent from agent i

D} Current destination for agent i

D" Alternative destination for agent i

R?  The current route for agent i (43,49, ..., 42, .. A%},

R}  The alternative route with same destination for agent i {A},43,..., AL, ... AL},
R?  The route with alternative destination for agenti  {4%,43, ..., 4%, ... A2},
T®  The travel time on R’ for agent i

T!  The travel time on R} for agent i

T?  The travel time on R? for agent i

The level of familiarity of R? for agent i

el  Thelevel of familiarity of R} for agent i

The level of familiarity of R? for agent i

SIF  Information about congested road segments from agent i’s social connections
SIP  Information about destination shelters from agent i’s social connections
Whether an agent i has tele-service or not

S7  Whether an agent i speed up or not

S. Whether an agent i slow down or not

LC; Whether an agent i change lane or not

RC; Whether an agent i makes route change decision or not

DC; Whether an agent i makes destination change decision or not
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IV.3.3 At Road Intersections

When an agent reaches a road intersection, it can choose from the following
options: (1) stay on the current route, (2) continue toward the current destination but take
an alternative route, and (3) change to an alternative destination and its corresponding
route. To have these options available, we maintain three routes for each agent: R} is the
current route for agent i, R} is the alternative route with the same destination, and R? is
the route with an alternative destination for agent i. At the initial iteration, the shortest
path from the agent’s origin to the current destination is chosen as R}. R} is the second
shortest path from the agent’s origin to the current destination. R? is the shortest path
from the agent’s origin to the alternative destination. These three routes are updated
whenever agent i arrives at a road intersection. Although we use the shortest distance to
select these three routes, different methods, such as the least travel time or the level of
familiarity, can be applied to route selection.

The agents use the FCM-routeDest model (described in Section 1V.4.4) to decide
which route to take among the above three routes. The travel time and the level of
familiarity associated with each route are the factors to be considered in this model. For
agent i, T, T}, T? and e?, e}, e? are used to represent the travel time for and level of

familiarity with route R}, R}, R?, respectively. The travel time is calculated, based on

l

the length of the route and the average speed of the agents who travel on each road

where A2 is the road

Length of A?
segment of the route. For example, T = ¥ jo o aver;’;’f Sp;fd T
i r

segment of route R? for agent i, and R? consists of a number of road segments
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(49,49, ...,4°, ... A%},. For each agent, the level of familiarity with each route is set as a
constant with the range [0, 1]. Whenever any of the three routes is updated, the level of
familiarity corresponding to that route is also updated.

For each agent, among all available destination nodes, the one taking the least
travel time from the agent’s location is selected as the current destination, and the one
taking the second least travel time is considered the alternative destination. The agent’s
current and alternative destinations are updated at road intersections. Whenever the
number of agents at a destination shelter exceeds its capacity, that destination node is
removed from the set of available destination nodes. Moreover, other agents cannot
choose the overfilled destination as their current or alternative destination.

IVV.3.4 Sharing/Collecting Information

Besides the travel time and route familiarity, agents also need information from
the global broadcast and social media to help them make decisions on route and
destination changes. If agent i is in traffic and has telecommunication service, it will
send the congested road information about its current road segment to its social
connections. Then all agents who connect to agent i can receive this information once
they have telecommunication service. This information sharing can help the socially
connected agents obtain better knowledge about congested roads so that they can try to
avoid these roads when they make route or destination decisions. SIf represents the
congested road information that agent i collects from its social network. Here we assume
that the information sharing on the simulated social networks is symmetrical, that is, an
agent can both send information to and receive information from its connected agents.
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For an extreme event evacuation scenario, a group of socially connected agents
tends to evacuate to the same destination shelter. Otherwise, the agents need to know the
locations of other connected agents. While each agent travels to its destination, it will
also send out its current destination information to the social network. The destination
information received from agent i ’s social connections, SI? , can influence the
destination decision of agent i.

To enable the road and destination information sharing, agents need to have
telecommunication service. Variable T'S; is used to indicate whether or not agent i has
teleservice, and T'S; is updated at every simulation iteration.

IV.3.5 Other Agent Variables Associated with Behaviors

While agent i travels on the road segments, it can have the following behaviors:
speed up, slow down, and change lanes. Variable S;" indicates whether agent i speeds up
or not, S;” represents whether it slows down or not, and LC; signifies whether it changes
lanes or not. Route and destination changes happen when agents reach road
intersections. Variables RC; and DC; represent agent i’s route change and destination
change decisions, respectively. These five variables are updated at every simulation

iteration.

IVV.3.6 Framework for an Agent
Figure 4-2 shows the framework for an agent and how agent parameters and

variables connect. At each simulation iteration, agents collect the information from their
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surrounding environment and from social media and global broadcast. Based on this
information and their own property data, agents apply decision-making models under
different scenarios to make decisions on whether they need to speed up, slow down,

change lanes, change routes, or change destinations.

Collected Information Agent Properties Output Behaviors
Surrounding Speed Top speed
. o Accelerate Decelerate
environment info. h
. Location  Routes
Front agent info .
Elevation info Destinations Speed up
Slow down
Decision making models: Change lane
Info from social media Lane change and car Change route
and global broadcast: following model Change destination
Congested road info FCM-speedUp
Destination info FCM-slowDown
FCM-routeDest

Figure 4-2: Framework of an agent

IV.4. Decision-making Models
IV.4.1 Following-car Model and Lane-change Model

We first present the following-car model (Fritzsche, 1994; Olstam and Tapani,
2004) that is adopted in our agent decision-making models of lane change, speedup, and
slowdown. In Olstam and Tapani’s following-car model, the risky distance (AR), desired
distance (AD), speed of the leading vehicle (v;), and speed of the following vehicle (v¢)

are the parameters that decide whether the following vehicle needs to slow down, speed
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up, or keep the current speed. The distance within which collision will happenis the AR,
whereas AD expresses the distance that drivers try to maintain from the vehicle in front.

The three cases in this following-car model are “closing,” “free driving,” and
“following.” In the “closing” case, the speed of the following vehicle exceeds that of the
leading vehicle at a certain threshold, and the distance between the two vehicles is less
than AD but greater than AR. To avoid collision, the following vehicle should slow
down till it has the same speed as that of the leading vehicle. In the “free driving” case,
the distance between the two vehicles is greater than AD, or the speed of the leading
vehicle is faster than that of the following vehicle. In this case, the following vehicle can
speed up till it attains its desired speed. In the “following” case, the distance between the
two vehicles is less than AD and greater than AR, and the value of [y, — v| is less than a
threshold with a small number. The “following” case can also happen in the scenario
where the distance between two vehicles is greater than AD, but the following vehicle’s
speed is faster than that of the leading vehicle. The following vehicle should keep its
current speed in the “following” case.

The lane-change behavior is considered subconscious, which means that an agent
will automatically change lanes when the required conditions are satisfied. Two lane-
change conditions are used in this simulation model: (1) there are multiple lanes on the
road segment where the agent travels, and (2) no other agent travels in the same
direction within the desired distance. Once these two conditions are met, the agent will

move to the same position on the next lane.
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I1VV.4.2 Formal Definition of FCM

We focus on Glykas’ (2010) definition of FCMs as fuzzy graph structures
consisting of concept nodes C and signed weighted directed edges I representing the
causal relationship between the concepts. Each node C; represents a concept, of which
there are two types: factor-concept nodes (inputs) and decision-concept nodes, which are

used in decision-making. Each edge /;; represents the influence of concept C; on concept
C;. A positive value of I;; corresponds to an excitation of concept C; caused by C;,
whereas a negative value corresponds to an inhibition relationship. If the value of I;; is
0, this means that there is no influence between C; and C;. For concept C;, activation

level a; is also associated with it, and a;(t) is its activation level at time t. The
activation level of factor-concept nodes is computed from the environment by using the
fuzzification function. The fuzzification function maps a real number from the
environment to a number with the range [0, 1]. The activation level of decision-concept
nodes can be used to determine whether a corresponding action is taken. Finally, the
recursive relation defines the relation between a;(t) and a;(t + 1) for each concept. The
recursive relation actually describes the dynamics of the map.

To build FCMs, we can follow the procedure below:
(1) Identify relative concepts and classify factor concepts and decision concepts.
(2) Construct causal relationship links between concepts and assign signed weights to
links.
(3) Define a recursive relation for the activation level of each concept between time t and

time (t + 1).
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(4) Iterate the FCM over time, and update the activation level for each concept.
(5) The activations of decision-concept nodes yield the corresponding decision-making.
1V.4.3 FCM-speedUp and FCM-slowDown

This section explains the FCM-speedUp and FCM-slowDown decision-making
models. In these two FCMs, the following-car model is integrated with other factors to
determine whether the agent should speed up, slow down, or maintain the current speed
while it travels on road segments. Besides the information associated with the vehicle in
front, the geographic environment can also impact an agent’s travel speed. When an
agent is climbing to a higher region, its vision range decreases, which can inhibit the
action of speeding up. On the other hand, the lane-change behavior can encourage the

action of speeding up. Figure 4-3 illustrates the FCM-speedUp.

Climbing

Distance to front
vehicle is far

C2

C3

Figure 4-3: FCM-speedUp
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In the FCM-speedUp, the concepts of “climbing up,” “the vehicle in front slows
down,” “the distance from the vehicle in front is far,” and “lane change” are the four
factor-concept nodes, while the concept of “speedup” is the decision-concept node.
There are five influence edges: the slowdown of the vehicle in front inhibits speedup, the
far distance from the vehicle in front stimulates speedup, a lane change encourages
speedup, and climbing up causes the vehicle in front to slow down and inhibit speedup at
the same time. Figure 4-3 shows the weights of influence edges.

Activations of “the vehicle in front slows down” and “the distance from the vehicle
in front is far” are computed by the fuzzification functions of the real value of speed and
distance. Figures 4-4 and 4-5 display these two fuzzification functions. When the speed
difference value (vy — v;) is less than 5 mph, the activation of “the vehicle in front slows
down” is set at 0.3; when the speed difference value (v, — v;) is greater than 5 mph, the
activation of “the vehicle in front slows down” is set at 0.8.

The activation of “the distance from the vehicle in front is far” is calculated by
comparing the real distance to the distance concepts defined by the following-car model.
If the distance between two cars is less than AR, then the activation value is set at 0. If
the distance is greater than AD, then the activation value is set at 0.9. The safe distance
defines the smallest headway where positive acceleration is accepted. Hence, the safe
distance is larger than AR and smaller than AD. For the distance between the safe
distance and AD, the activation of “the distance from the vehicle in front is far” is set at

0.2.
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The activation of “climbing up” is set at 1 if the slope of the travel direction is
greater than six degrees within AD. The activation of “lane change” is equal to 1 if the

action of changing lanes is based on the lane-change model.

Front \ehicle Slows Down

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Level of Activation

0 2 4 6 8 10
Speed Difference(mph): Vf-VI

b

Figure 4-4: Fuzzification function for concept of “vehicle in front slows down’
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Figure 4-5: Fuzzification function for concept of “distance from vehicle in front is far”
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The recursive relation for FCM-speedUp is defined as follows: a;(t + 1) = a;(t) +
Y1<je<s lji * aj(t). Figure 4-6 illustrates how this FCM yields the “speedup” decision for
each agent. First, the activation for each concept c; is calculated; a;(t) equals 0 when the
agent is at a road intersection. Then the recursive relation is used to update the
activations from the previous simulation iteration to the current iteration. If the
activation of the “speedup” concept (CO0) is greater than a threshold, then the agent will
take the “speedup” action according to its acceleration. If not, then the current

activations are carried to the next iteration, and the agent keeps its current speed.

If the agent at
intersection

Initialize activation for
each concept ¢;: ¢;(t) =0

M t=t+1 |e=

) 4

Update activation a,(t)

Keep current
no speed
lyes

Speed Up

Figure 4-6: FCM-speedUp decision-making illustration
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Following the same idea, FCM-slowDown is developed in a similar way, as shown
in Figure 4-7. In FCM-slowDown, the concept nodes of “climbing up,” “the vehicle in
front slows down,” and “short distance from the vehicle in front” stimulate “slowdown,”
whereas “lane change” inhibits “slowdown.” The activations of factor-concept nodes are
computed in the same way as in FCM-speedUp, except for the concept of “short distance
from the vehicle in front.” Figure 4-8 shows the fuzzification function for calculating
“short distance from the vehicle in front.” The same recursive relation is defined for

FCM-slowDown as in FCM-speedUp.

Front vehicle

lows do
+1 hort distance
to front vehicl

C2

Climbing

Slow down
Co

C3

Figure 4-7: FCM-slowDown
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Figure 4-8: Fuzzification function for concept of “short distance from vehicle in front”

1V.4.4 FCM-routeDest

We have introduced the agent behavior models of FCM-speedUp and FCM-
slowDown, which are operated when agents travel on road segments. This section
presents the behavior models of decision-making on route and destination choices. When
the agent reaches a road intersection, the actions of changing the route and destination
may occur, based on the output of the FCM-routeDest model.

Figure 4-9 illustrates the FCM corresponding to the route and destination
decision-making. In this FCM-routeDest model, “change route” and “change

destination” are the two decision-concept nodes. The factor-concept nodes of “familiar
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with alternative route” and “gridlock on upcoming road segments” can excite “change
route.” “Longer travel time on alternative route (R}')” and “gridlock on current road
segment” make the route change take more time; therefore, these two factor concepts
inhibit “change route.” For “change destination,” “familiar with alternative route (R?)”
and “social connections go to the alternative destination” encourage destination change.
Once the current destination overflows, the agent has to change to its alternative
destination. Hence, the influence edge of “current destination overflows” on “change
destination” has a large, positive weight. Moreover, “longer travel time on alternative

route (R?)” discourages destination change.

C2
Current destination
is overflowed
9 C3
: +1 . .
onger travel time Social connections go t
on alternative route 0.5 0 +0 alternative destination
2
R; Change
destinatio
C7 C4
L ¢ 1ti +0.5 Familiar with
onger raye me +0.3 |1 Iternative route(Ri2
on alternative route
1 -0.7 C
' Change
route +0.7 Familiar with

lternative route(R}

/ 0.7

Gridlock on Gridlock on
current road upcoming road
segment segments

Figure 4-9: FCM-routeDest
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Besides the factor-concept nodes discussed above, note that “change destination”
can result in “change route.” “Change route” may also motivate “change destination.”
Therefore, two influence edges with positive weights are constructed for the two
decision-concept nodes.

This FCM-routeDest model reveals the advantages of using the FCM as a
decision-making model. The complexity of the decision-making process and the
dynamics and simultaneous impacts of multiple factors are able to be represented. It will
be very difficult to express all these factors and corresponding relationships by using the
utility function. Even if all the factors considered in this FCM can be written in multiple
utility functions, the dynamics and simultaneous characteristics are hardly shown.

In our ABM model, each agent executes the same FCM-speedUp, FCM-
slowDown, and FCM-routeDest. Here, we assume that each agent considers the same
factors and has the same causal relationship for the concepts. We also assume that the
weights on the influence edges are the same for all agents. These assumptions can be
improved and further extended to multiple FCMs for each decision-making, according to

different agent behavior groups.
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Table 4-7: Activations of concepts in FCM-routeDest

Activations for concepts C, -- Co in FCM-routeDest at time t

ag(t) 0.5*ag(t—1) + Xo<jcoljo * a;(t — 1)
a;(t) 0.5*a;(t—1)+ Yocjcoljs *a;j(t —1)
a,(t) 1if current destination is overflowed

a (t) # of social connections who go to the alternative destination
3 # of social connections

as(t) e?: The level of familiarity of R? for agent i

#of road segments in SIiR that are upcoming in current route

s (t) Ps * # of social connections
ae(t) 1ifspeed is lessthan 10 mph
-1
a;(t) ~7o—
ag(t) e}:The level of familiarity of R} for agent i
T?-T?
a9(t) 0

i

Table 4-3 presents the fuzzification functions used for calculating the activations
of the concepts in FCM-routeDest. The activation of “social connections go to the
alternative destination” (C3) for agent i is computed as follows: the number of social
connections going to the same alternative destination as that of agent i divided by the
total number of social connections. The knowledge of agent i about “gridlock on
upcoming road segments” (Cs) is based on the road information shared on the social
network. SIF represents all the information about congested road segments that agent i
can collect from its social connections. The number of congested road segments
contained in agent i’s current route divided by the total number of agent i’s social
connections determines the activation of Cs. ps in ag(t) is the parameter used to amplify
the ratio that is determined by the road network size and the social network size. Note

that the knowledge about C; and Cs is from social media supported by
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telecommunication; if agent i has no teleservice at time t, then the activations a5 (t) and
as(t) are equal to 0.
The activation of “longer travel time on alternative route (R}')” is computed by

comparing the travel time on alternative route R}, which is T}, to the travel time on the

.1_ .0 . .= - -
current route, which is T2. Thus, T‘T.Tl is used as the fuzzification function for a,(t).
-2— -0 - - -
Similarly, T‘T'OT‘ is used for aq(t). The activations of the rest of the factor concepts,

“current destination overflows,” “familiar with alternative route,” and “gridlock on
current road segment,” can be calculated easily from agent variables and environment
variables.

The activations of the decision concepts “change route” and “change destination”
(ao(t) and a,(t)) are determined by the activations of factor concepts (C,--Co) and the
information from previous iterations. The recursive relation for these two decision
concepts is defined as follows: ag(t + 1) = 0.5 xag(t — 1) + Xo<j<o ljo * aj(t — 1)
and a;(t +1) = 0.5*a,(t — 1) + Xo<jco Ij1 * a;(t — 1).

The flowchart in Figure 4-10 illustrates the decision-making process about route
and destination changes. For each agent, the activations of all concepts in FCM-
routeDest are initialized at the road intersection. Then the activations of factor-concept
nodes are updated by fuzzification functions, and the activations of decision-concept
nodes are updated by recursive relations. If a,(t) exceeds threshold ¢, then the “change
destination” decision is made, and a,(t) remains € . The reasons why a,(t) is set at €

after the “change destination” decision is made are as follows: (1) The “change
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destination” decision still impacts the route change decision. (2) Once the decision is
made, a,(t) can be considered a constant, and it does not change any more. The same
logic is applied to the “route change” decision-making. Note that the actions of route and
destination changes are taken at the next intersection although the decision-making

happens on the road segments.

no If the agent at
intersection

Initialize activation for
each concept ¢;:q;(t) =0

t=t+1

Update activation a;(t)

T

___________________ yes
Change destination

1 . .
L at next intersection

| Make destination change
decision; aq(t) =«

Change route at next

1. .
LllltEI’SECtl on

_| Make route change decision;
a,(t) =¢

Figure 4-10: FCM-routeDest decision-making illustration
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IVV.5. How ABME and TELP Work Together
IVV.5.1 The Logic

In general, we use ABME to generate predicted agent locations which are then
used as input for TELP. TELP generates an optimal Micro-cell station
location/installation solution over a finite time horizon based on the ABME predicted
locations. The generated TELP locations are then used as input to the ABME model,
which is run to identify agent locations for the TELP time horizon (note that this step is
actually finding the ‘exact’ agent locations which replace the predicted locations
previously obtained). At the end of the current time horizon, a new set of predicted
locations for the next time horizon is identified and the entire process iterates again. The
process stops when all agents have successfully reached a destination (i.e., evacuation is
complete). This idea is shown in Figure 4-11 and is more formally presented as follows:
For any n time slots Ty to Ty,,:

(1) Export agent’s location, route and travel speed from ABME respectively with base

station installation for Ty

(2) Predict agent locations based on (1) for Ty, t0 Ty,
(3) Using agent locations from (1) and (2) as input, solve TELP and obtain micro-cell

station installation solution for Ty, t0 Tx4n,

(4) Import solution (3) to ABME and continue running ABME from Ty t0 Ty,n,

(5) Iterate (1) -- (4) until all agents reach destination then stop
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Note: at step (Z/, if x = 0 then pre-run ABME without micro-cell station, else Ty uses

current micro-cell stations.

TELP Micro
Ageqt station
predicted locations
locations
ABME
(1) (Tx:1 - Txen) (D) (Tx)
ABME

Micro-statio

locations Agent
TELP predicted
locations

(3) (Tx -- Tx+n (2) (Tx+1 —- Tx+n)

Figure 4-11: The logic of how TELP integrated in ABME

Novelty in this approach to evacuation modeling stems directly from the
integrated TELP and ABME methodology. Instead of utilizing standard techniques
where TELP solves for the entire evacuation time horizon and then ABME evaluates the
outcomes/solutions, the integrated methodology here gives constant feedback to both

TELP and ABME while saving significant computational time through reduced problem
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complexity for TELP. In practice, the use of predicted agent locations is done at such a
small time scale (roughly 8 time units or 320 simulation iterations) that little accuracy in
agent positioning is lost. The methodology is also flexible enough to be adapted for sub-
iterations to further address any positional accuracy concerns (i.e., TELP and ABME
could iterate multiple times within each small time scale before moving forward). We
note that if the time scale equals the evacuation horizon, then implementation of this
methodology equates to the traditional single-form, non-integrated use typically
observed in current literature.
IVV.5.2 An lllustrated Example

A small example is presented here to demonstrate how the Agent-Based Model
Environment (ABME) model works together with the output from Telecommunications
Evacuation Location Problem (TELP) model.
IVV.5.2.1 Problem setting

In this example, we use a road network presented in Figure 4-12. This network is
composed of 5 bidirectional arcs and it defines the space where agents can interact with
each other and interact with the physical environment. Each arc (road segment) has two
lanes for moving traffic in each direction, representing a total of four lanes for each arc.
Each arc has a 1200 meter length. A DEM (Digital Elevation Model) is produced and
imported under the road network (shading in the figures indicates elevation with lighter
areas being lower. This is important both for transportation and for establishing

appropriate cell tower functionality). To simplify the problem, we only consider one
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origin and one destination in this example. The locations of this one O-D pair are shown

in Figure 3-1 as well.

(0] 1
® o '@
3 2
@ Macro-cell_Location =~ Road Network DEM
@ Destination — Road Network DEM Micro-cell Candidate Points Value
@® Origin Value High : 284.205
High : 284.205
Low:0 Low: 0
Figure 4-12: road network of small example Figure 4-13: base-station locations

The candidate locations of Macro-cell station and Micro-cell station as input of
TELP are displayed in Figure 4-13. These represent the possible locations for each
station type, with eight total potential locations for this small-scale example. Micro-cell
station locations are determined using the TELP model (recall that micro-cells assist
agents in sending and receiving messages during the evacuation process as they travel
from origin node to destination node. Information received by an agent may result in

route change, destination change, or both).
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In this example, we place 10 agents at the origin and assume that individual agent
speed is uniformly distributed within a range of 4.16 and 6.667 (Unit: meter/step). Each
agent has their own fuzzy cognitive decision map which dictates whether and when the
agent speeds up, slows down, changes to an alternate route or stays on the current route.
We assume that decisions to change route/destination are only made at road network
intersections (i.e., once an agent starts to travel down the road, they will not be able to
turn around or change their routing decisions until the next intersection is reached).
IV.5.2.2 Run ABME

We consider 40 simulation iterations as one time slot. Following the steps listed
above, we first pre-run ABME for one time unit under the assumption that no micro-
cells have been located use this initial run to export agent locations, travel speeds, and
current routes in order to predict agent locations for the first 8 time unit run of TELP.
Table 4-4 shows the agent predicted locations after performing this step. Once we have
predicted agent locations for the first eight time units, TELP is solved to obtain micro-
cell locations and any associated micro-cell routing (recall that located micro-cells can
be ‘shut down’ and moved to new locations by traveling along the road network) for first
8 time slots (320 simulation iterations). Table 4-5 gives the micro-cell travel matrix.
Table 4-6 shows important parameters in TELP: Radius of Macro-cell and Micro-cell;
Pole capacity of Macro-cell and Micro-cell.

By importing the optimal micro-cell locations and routing from TELP (locations

shown in Table 4-7), we can motivate the re-run of the ABME model for these initial
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eight time units. Figure 4-14 illustrates the evacuation through these eight time units

with TELP locations and routing in place.

Table 4-8: Predicted agent locations for time unit 1-8

Agent Location T1 Agent Location T2 Agent Location T3 Agent Location T4
Agent ID| X Coordinate |Y Coordinate| X Coordinate Y Coordinate| X Coordinate | Y Coordinate | X Coordinate |Y Coordinate| Speed | Current Route
0 976631.358 242134 976463.6568 242134 976295.9556 242134 976128.2544 242134 4.19253 2--3--0
1 976589.0076 242134 976375.17 242134 976161.3324 242134 975947.4948 242134 5.345941 2--3--0
2 976712.347 242134 976545.6804 242134 976379.0137 242134 976212.347 242134 4.166667 2--3--0
3 976646.5603 242134 976436.8953 242134 976227.2303 242134 976017.5653 242134 5.241625 2--3--0
4 976562.0833 242134 976340.4648 242134 976118.8462 242134 975897.2276 242134 5.540464] 2--3--0
5 976695.6111 242134 976573.8318 242134 976452.0525 242134 976330.2731 242134 3.044483] 2--3--0
6 976711.2892 242134 976577.9559 242134 976444.6225 242134 976311.2892 242134 3.333333] 2--3--0
7 976589.4509 242134 976374.0247 242134 976158.5986 242134 975943.1724 242134 5.385654] 2--3--0
8 976657.4286 242134 976448.9971 242134 976240.5656 242134 976032.1341 242134 5.210787| 2--3--0
9 976679.9423 242134 976502.1879 242134 976324.4336 242134 976146.6793 242134 4.443858 2--3--0
Agent Location T5 Agent Location T6 Agent Location T7 Agent Location T8
Agent ID| X Coordinate |Y Coordinate| X Coordinate Y Coordinate| X Coordinate | Y Coordinate | X Coordinate |Y Coordinate| Speed | Current Route
0 975960.5532 242134 975792.852 242134 975625.1508 242134 975520 242196.5504| 4.19253] 2--3--0
1 975733.6571 242134 975520 242134.1805 975520 242348.0181 975520 242561.8557| 5.345941 2--3--0
2 976045.6804 242134 975879.0137 242134 975712.347 242134 975545.6804 242134 4.166667 2--3--0
3 975807.9003 242134 975598.2353 242134 975520 242265.4297 975520 242475.0947| 5.241625, 2--3--0
4 975675.6091 242134 975453.9905 242134 975520 242421.6281 975520 242643.2466| 5.540464 2--3--0
5 976208.4938 242134 976086.7145 242134 975964.9351 242134 975843.1558 242134 3.044483] 2--3--0
6 976177.9559 242134 976044.6225 242134 975911.2892 242134 975777.9559 242134 3.333333] 2--3--0
7 975727.7462 242134 975520 242141.6799 975520 242357.1061 975520 242572.5323| 5.385654 2--3--0
8 975823.7026 242134 975615.2711 242134 975520 242247.1603 975520 242455.5918| 5.210787 2--3--0
9 975968.9249 242134 975791.1706 242134 975613.4163 242134 975520 242218.3381| 4.443858 2--3--0
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Table 4-9: Micro-cell candidate points travel matrix (unit: simulation time)

Point0 Pointl Point2 Point3 Point4 Point5 Point6 Point?7
Point 0 0 40 80 40 80 120 80 160
Point 1 40 0 40 80 40 80 120 120
Point 2 80 40 0 120 80 40 160 80
Point 3 40 80 120 0 40 80 40 120
Point 4 80 40 80 40 0 40 80 80
Point 5 120 80 40 80 40 0 120 40
Point 6 80 120 160 40 80 120 0 80
Point 7 160 120 80 120 80 40 80 0
Point Location
Point ID | X Coordinate | Y Coordinate

0 975520 243334

1 976120 243334

2 976720 243334

3 975520 242734

4 976120 242734

5 976720 242734

6 975520 242134

7 976720 242134
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Table 4-10: Parameter settings for a small example

Parameter Notation Value
Coverage Radius of Macro-cell Station Rm 650 Meter
Coverage Radius of Micro-cell Station Rj 350 Meter
Pole Capacity of Macro-cell Station Km 8
Pole Capacity of Micro-cell Station Kj 5
Total number of Micro-cell Station P 2

Table 4-11: Solution output of TELP for time unit 1-8

Time Unit | Micro-cell Candidate Point ID

T1 7

T2 7

T3 7

T4

T5 6

T6

T7 6

T8 6,3
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ABME Screen Shot at Time Slot T1 ABME Screen Shot at Time Slot T2
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Figure 4-14: ABME illustration example agent locations time slot T1-T8
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ABME Screen Shot at Time Slot T5 ABME Screen Shot at Time Slot T6
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Figure 4-14 continued
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To this point, we finish the first ABME - TELP - ABME iteration and begin
the second. At the end of 8th time unit, we export agent locations, current routes and
corresponding speeds to generate a prediction for time units 9-16 which will be used to
facilitate solving the TELP (predictions provided in Table 4-8). Solve TELP for time

unit 9-16. Micro-cell locations for each time unit can be found in Table 4-9.

Table 4-12: Predicted agent locations of time unit 9-16

Agent Location T9 Agent Location T10 Agent Location T11 Agent Location T12
Agent ID | X Coordinate | Y Coordinate | X Coordinate |Y Coordinate | X Coordinate | Y Coordinate | X Coordinate | Y Coordinate | Speed |Current Route)

0 975740.5516 | 242354.5516 | 975896.3207 | 242510.3207 | 976052.0898 | 242666.0898 | 976207.8589 | 242821.8589 | 5.50727 3--1--0
1 975520 242782.3533 975520 243031.72 975520 243281.0866 975520 243334 6.234166 3--0

2 976009.9468 | 242623.9468 | 976195.0157 | 242809.0157 | 976380.0846 | 242994.0846 | 976565.1535 | 243179.1535 | 6.543173) 3--1--0
3 975520 242273.4711 975520 242472.8367 975520 242672.2023 975520 242871.5679 4.98414 3--0

4 975663.1299 | 242277.1299 975806.3454 | 242420.3454 | 975949.5609 | 242563.5609 | 976092.7763 | 242706.7763 | 5.063432 3--1--0
5 975549.4071 | 242163.4071 975680.2997 | 242294.2997 | 975811.1924 | 242425.1924 | 975942.0851 | 242556.0851 | 4.627755 3--1--0
6 975595.6322 | 242209.6322 975716.6436 | 242330.6436 | 975837.655 242451.655 | 975958.6665 | 242572.6665 | 4.278401 3--1--0
7 975744.366 242358.366 975894.0975 | 242508.0975 | 976043.829 | 242657.829 | 976193.5605 | 242807.5605 | 5.293809 3--1--0
8 975757.6445 | 2423716445 | 975916.2533 | 242530.2533 | 976074.8621 | 242688.8621 | 976233.4709 | 242847.4709 | 5.607668 3--1--0
9 975979.09 242593.09 976151.2691 | 242765.2691 | 976323.4483 | 242937.4483 | 976495.6275 | 243109.6275 | 6.087453 3--1--0

Agent Location T13 Agent Location T14 Agent Location T15 Agent Location T16
Agent ID | X Coordinate | Y Coordinate | X Coordinate |Y Coordinate | X Coordinate | Y Coordinate | X Coordinate | Y Coordinate | Speed |Current Route)

0 976363.628 242977.628 976519.3971 | 243133.3971 | 976675.1663 | 243289.1663 | 976563.1137 243334 5.50727 3--1--0
1 975520 243334 975520 243334 975520 243334 975520 243334 6.234166 3--0

2 976750.2223 | 243364.2223 | 976550.3144 243334 976288.5875 243334 976026.8605 243334 6.543173 3--1--0
3 975520 243070.9334 975520 243270.299 975520 243334 975520 243334 4.98414 3--0

4 976235.9918 | 242849.9918 | 976379.2073 | 242993.2073 | 976522.4228 | 243136.4228 | 976665.6383 | 243279.6383 | 5.063432 3--1--0
5 976072.9777 | 242686.9777 976203.8704 | 242817.8704 | 976334.7631 | 242948.7631 | 976465.6558 | 243079.6558 | 4.627755) 3--1--0
6 976079.6779 | 242693.6779 976200.6894 | 242814.6894 | 976321.7008 | 242935.7008 | 976442.7123 | 243056.7123 | 4.278401 3--1--0
7 976343.2921 | 242957.2921 976493.0236 | 243107.0236 | 976642.7551 | 243256.7551 | 976617.4884 243334 5.293809 3--1--0
8 976392.0797 | 243006.0797 976550.6885 | 243164.6885 | 976709.2973 | 243323.2973 | 976510.8291 243334 5.607668| 3--1--0
9 976667.8067 | 243281.8067 976550.3144 243334 976306.8163 243334 976063.3181 243334 6.087453| 3--1--0

Table 4-13: Solution output of TELP for time unit 9-16

Time Unit Micro-cell Candidate Point ID
T9
T10 4
T11 4,2
T12 4,2
T13 2
Ti4 2
T15 0,2
Ti6 0,2
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Continue running ABME with updated micro-cell station locations and routing
for time unit 9-16. The screen shots of ABME for each time unit are shown in Figure 4-
15. At the end of time unit 16, all agents are on an arc which connects directly to the
destination. Given that no changes in agent decision making can be made from this
point onward (as per the FCM logic discussed previously), we conclude this example.
Outputs from the ABME to assess evacuation performance and policy will be discussed

in the next section.
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Figure 4-14: ABME illustration example agent locations time slot T9-T16
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ABME Screen Shot at Time Slot T13 ABME Screen Shot at Time Slot T14

e  Agents_Microcell e Agents_Microcell

e  Agents_Macrocell e  Agents_Macrocell

©o  Agents_Unserved ©  Agents_Unserved

A Micro-cell_Station A Micro-cell_Station

® Macro-cell_Location @ Macro-cell_Location

ABME Screen Shot at Time Slot T15 ABME Screen Shot at Time Slot T16

*  Agents_Microcell *  Agents_Microcell

©o  Agents_Unserved ©  Agents_Unserved

A Micro-cell_Station A Micro-cell_Station
@ Macro-cell_Location @® Macro-cell_Location

Figure 4-14: Continued.
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IVV.5.3 Output Data

We track and output ABME data at every simulation step level. The output data
can be measured into 3 catalogues: system performance, individual performance and
road segment performance. System performance data capture general information for all
the agents; individual performance data capture detail information for each agent; road
segments performance data provides the traffic load information. Specifically, we collect
following data for system performance and individual performance: agent’s travel data
(such as speed, lane change and route change), telecommunication service data (such as
number of agents served by macro-cell, number of agents served by micro-cell and

number of unserved agents), and evacuation process data (such as total evacuation time).

The complete list of output data is presented in Table 4-10.

Table 4-14: Output data from ABME

System Performance

Individual Performance

average speed
total # of agents reach desire speed

total # of change lane

total # of routes change
total # of destination change

speed
reach desire speed or not

# of lane change

# of routes change
# of destination change

total # of agents unserved by Telecom
total # of agents sending out message
total # of agents need to send out
message

total # of agents served by Micro-cell

total # of agents served by Macro-cell

agent is served by Telecom or not
# of receiving message

# of message that impact on agent's destination
decision

# of message that impact on agent's route decision

total evacuation time
time that destination capacity is
fulfilled

gvacuation time
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IV.6. Summary

We introduce the ABME model for explore travel behavior in emergency
evacuation. Each component of ABME, and variables and parameters from both
environment and individual agent are presented in detail. We develop the FCMs for
agent decision-making on travel behaviors such as speedup, slowdown, route change and
destination change. We illustrate the logic of FCMs and how it can develop adaptive
knowledge for each agent. Finally, we show how TELP can be integrated in ABME to

provide dynamic and accurate mobile telecommunication station location solutions.
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CHAPTER V

APPLICATIONS AND RESULTS

In this chapter, we use the cities of Boston and San Francisco as study areas to show
the implementation of our ABME model for a large-scale evacuation scenario. We
examine how social networks impact the evacuation process in terms of evacuation time
and travel behavior from the system and agent perspectives. Meanwhile, we explore how
mobile Micro-Stations assist existing cellular networks to satisfy the surging user

demand during the evacuation process.

V.1. Working Environment

We performed simulations in MASON, a fast, easily extensible, multi-agent
simulation toolkit in Java (Luke et al., 2004) and its extension package GeoMASON
(Sullivan et al., 2010). Among other simulation tools, we choose MASON because the
system’s flexibility allows us to build up the novel, FCM decision-making model.
Besides, GeoMASON integrates into the GIS, which can support spatial data (both raster
and vector data) very well. In our ABM, agents interact with the environment that
consists of a road network, which is in vector format, and the Digital Elevation Model
(DEM), which is in raster format. Because of the embedded GIS feature, our ABM
agents can make decisions based on updated geographic information, which makes our
ABM more realistic. Our TELP model can benefit from this feature as well by having

accurate user locations exported from ABM as input. Moreover, the visualization in
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MASON can help us observe the aggregated agents’ travel behavior while running the

simulations.

V.2. Data Preparation

In this section, we describe the data used for the simulation tests. It includes the
road network, DEM, the fixed simulation parameters, and the assumptions associated
with each component.

V.2.1 Road Network and DEM

The road networks imported to ABME are from the US Census website. The
Boston main road network consists of 297 main roads projected in the
NAD_ 1983 StatePlane coordinate system. The San Francisco main road network
consists of 484 main roads projected in NAD_1983 UTM_Zone_10N. The visualization
of these main roads can be found in Figures 5-1 and 5-2, respectively.

In MASON, a road network is represented as nodes and arcs. Nodes represent
intersections where agents can take actions of route changes and destination changes.
Arcs represent road segments where agents perform behaviors, such as speed up, slow
down, change lanes, and make decisions on route changes or destination changes.

Figures 5-1 and 5-2 also display the corresponding DEM layers. The DEM file of
Boston is from the Massachusetts state government. The cell size of this DEM file is 5
meters by 5 meters. The DEM file of San Francisco is obtained from California’s

Department of Water Resources, and the raster cell is 10 meters by 10 meters. The value
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of each cell, in meters, represents its elevation above (positive value) or below (negative
value) sea level.

We assume the same speed limitation for each road segment; each road segment
has four lanes, with two lanes for each direction. In our simulations, we do not use traffic
lights. When agents reach intersections, the FCM-slowDown model can adjust their

speed spontaneously by detecting the speed and distance of the vehicles in front.

—— MainRoads [Jo-s318
B -11.450--3285 [ 6.318.000001 - 12,815
[ -3,284.999999 - o [ 12.815.00001 - 28.278

0 075 15 3 Miles mm High : 107 —— BostonMainRoad
[ N ——
B Low: 16

Figure 5-1: Boston main roads & Figure 5-2: San Francisco main roads
DEM & DEM
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V.2.2 Simulation Settings

At the initial step, all agents were randomly located in a set of origin nodes. All
agents took evacuation actions within a short time window. Hence, we could consider
that they made evacuation decisions almost simultaneously. For the specific experiments
we performed, the agents left their points of origin during the first 30 units of the
simulation time (one unit is equivalent to 4 seconds of real time in our tests). Then the
agents traveled toward their selected destination nodes. We tested our model under the
single-destination and multiple-destination scenarios. For the multiple-destination case,
we had the following assumptions: 1. The capacity of each destination would be set at
the same value. 2. At the initial time, the majority of the agents would decide to go to the
closest destination, and a small number of agents (seed agents) would be informed to go
to a specific destination (Note that this would just be the initial setting, and all agents
could make destination changes during the evacuation process, according to their
FCMs). 3. Within a short time period, each agent would be allowed to make a limited
number of destination change decisions. We also assumed that initially, each agent
would choose the shortest path to one’s destination.

Concerning the computational time for solving TELP inside ABME, we used the
Lagrangian relaxation heuristic approach to solve TELP for the two study cases. The
TELP model was executed in our ABM model after all agents left their points of origin.
For specific experiments, the TELP model starts at 40 units of the simulation time. Why
did we not trigger the TELP model at the initial time? It would take time for the agents

to leave their congested points of origin and accelerate to the normal speed that would be
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used for predicting their future locations. Since the TELP model uses the predicted agent

locations as the input, using their normal travel speed and current locations could

provide better predicted agent locations. We set the multiple time period parameter |7 |

to 8 in the TELP model, with each time period consisting of 40 units of the simulation
time.

Finally, the top travel speed for each agent was randomly selected from a range
of 40-70 mph. An agent could not exceed its top travel speed while taking the speed-up

action.

V.3. Examining Social Media’s Impact on Evacuation

We conducted 36 experiments for both the Boston and San Francisco cases to
explore how social media would impact the evacuation efficiency for the entire
population and the individual’s travel behavior. We aimed to answer the following
research questions: 1. In terms of evacuation efficiency, is it beneficial to utilize social
networks during evacuation? 2. To what extent do social networks influence evacuation
travel behavior?
V.3.1 Agents and Simulated Social Networks

Three population sizes were tested: 100, 200, and 300 agents. Then the social
networks were constructed among the generated population.

We considered two types of simulated social networks: scale-free network (SF-
NW) and random network (RND-NW). The SF-NW has degree distributions following

the power law, and it reflects real-world social network properties, such as the small-
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world phenomenon. In the RND-NW, each agent is randomly connected to n other
agents. The random network is easily built and has been widely adopted in laboratory
tests.

For each population size, we constructed an SF-NW, an RND-NW with 5
degrees for each agent (RND-NWS5), and an RND-NW with 20 degrees for each agent
(RND-NW?20). To fairly compare SF-NWs and RND-NWs, we chose the SF-NWs with
the same total number of connections as those of RND-NW5. Together with the no
social connectivity scenario, we had a total of 4 levels of social connectivity for each
population level. All simulated social networks were generated beforehand and kept the
same connection structure for the corresponding population sizes.

V.3.2 Origins and Destinations

For each study area, two sets of origin-destination (O-D) pairs were generated for
single-destination and multiple-destination tests. Figures 5-3 and 5-4 show the locations
of O-D1 and O-D2 for the two study areas. The two O-D sets share the same origins.
Recall that for the multiple-destination case, a small number of agents (called “seed
agents”) were informed to go to a specific destination, which might not be the closest
one. We tested different numbers of “seed agents,” measured by the percentage of the
population, to determine whether it would be helpful to notify more agents to save on the
evacuation time. We set the “seed agents” to 10% of the population and 16% in the

multiple-destination case.
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Figure 5-3-2: Boston O-D2
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Figure 5-4-2: San Francisco O-D2

Figure 5-4-1: San Francisco O-D1
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V.3.3 Fixed Factors

Social media could play a role in affecting agents’ behavior only when the
information could be shared among the social networks. To observe the influence of
social media, we had to ensure that relatively sufficient telecommunication power was
available to support information sharing. Hence, we set the parameters related to cellular
power at a high level.

For the experiments described below, the number and locations of the Macro-
Stations were artificially assigned. We set up 10 Macro-Stations for the Boston
experiments and 13 for the San Francisco experiments. Both cases had 15 micro-station
facilities available for installation. The capacity of each macro-station and micro-station
was fixed at different levels, based on the population size. Moreover, 70 candidate
micro-station locations were identified for both cases. Figure 5-5 shows the locations of
the macro-stations and the candidate micro-station locations.

Table 5-1 presents the complete list of experiments and corresponding
parameters. For each experiment, we set up 10 replications. The simulation stopped at

the time when all agents reached their destinations.
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Table 5-1: Experiments for examining social media impact

0-D1 0-D2
10%-seed-agent 16%-seed-agent
set | #Agents SocialNetwork Km Kj | set | #Agents SocialNetwork Km Kj | set | #Agents SocialNetwork Km Kj
1 100 KO0 l6 10|13 100 KO 16 10 25 100 KO0 16 10
2 100 SF-NW l6 10| 14 100 SF-NW 16 10| 26 100 SF-NW 16 10
3 100 RND-NW5 16 10| 15 100 RND-NW5 16 10| 27 100 RND-NW35 16 10
4 100 RND-NW20 16 10| 16 100 RND-NW20 16 10| 28 100 RND-NW20 16 10
5 200 Ko 32 20 17 200 Ko 32 20129 200 Ko 32 20
6 200 SF-NW 32 2018 200 SF-NW 32 201 30 200 SF-NW 3220
7 200 RND-NW5 32 2019 200 RND-NW5 32 20131 200 RND-NWS3 32 20
8 200 RND-NW20 32 20120 200 RND-NW20 32 20 32 200 RND-NW20 3220
9 300 KO 56 3521 300 KO 56 35|33 300 KO 56 35
10 300 SF-NW 56 35 22 300 SF-NW 56 35| 34 300 SF-NW 56 35
11 300 RND-NW5 56 35|23 300 RND-NW5 56 35|35 300 RND-NW35 56 35
12 300 RND-NW20 56 35|24 300 RND-NW20 56 351 36 300 RND-NW20 56 35
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V.3.4 Results and Analysis
V.3.4.1 Single Destination Case

We start our discussion with the single-destination case, where the agents could
make route change decisions but not destination changes.
Evacuation Efficiency

Table 5-2 presents the output details of the Boston case for evacuation efficiency
from the entire population perspective. In Table 5-2, “clear time” means the duration
from the time the first agent leaves its point of origin till the last agent reaches its
destination. This concept represents the overall evacuation time. While it is important to
use “clear time” to measure the evacuation efficiency, it is also essential to know the
time when the majority of the population reach the shelters. In Table 5-2, “95 reach
time” and “90 reach time” refer to the times when 95% and 90% of the population,
respectively, arrive at their destinations. To observe the pattern of how agents reach their
destinations, we use the average and standard deviation of the time it takes them to do
SO.

We use “total traffic over time” to measure the degree of congestion on the road
network. It counts the number of agents whose travel speed is less than 25 mph over the
evacuation “clear time.” Figure 5-6 demonstrates this measurement. The blue area in the
figure is calculated as the “total traffic over time.” By dividing “total traffic over time”
by “clear time,” we can obtain the average number of agents in traffic. The same

measurements are examined for the San Francisco case in Table 5-3.
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Table 5-2: Boston: social media impact output of single destination — evacuation efficiency

Total

Set Experiment Ave prfgwr%ed C.lear Re?asch Rgfch R%:th Riflccl:h inTraff I%EI%] inTraff
Spd Vg | ™ Time  Time  Time  Time E‘r;eg inTraff | COMPAre

1 | 100Agents Kj10 Kml6 OD1 KO 3992 54471483590 47200 45890 35802 76.23 6520.8 142 1
2 | 100Agents Kjl10 Kml6 OD1 SF-NW 40.49 5482149410 476.00 46160 35565 79.11 6219.7 135 | -4.62%
3 | 100Agents Kjl0 Kml6 OD1 RND-NW5 [ 3992 54.60 | 49020 47960 46530 35750 7851 65994 142 1.21%
4 | 100Agents_Kjl10_Kml16_OD1 RND-NW20 | 39 50 5442150120 48970 47620 36431 8261 | 7057.30 14.8 8.23%
5 | 200Agents Kj20 Km32 OD1 KO0 30.69 54.60 | 702.67 67933 65589 471.06 136.29 | 39687.8 60.5 1
6 | 200Agents Kj20 Km32 OD1 SF-NW 30.73 5437171870 68940 661.10 47047 13792 | 391489 592 | -136%
7 | 200Agents Kj20 Km32 OD1 RND-NWS5 | 30.89 548071640 68550 66050 47228 136.85| 392249 594 -1.17%
8 | 200Agents Kj20 Km32 OD1 RND-NW20 | 30.83 5447172090 69180 664.00 47422 14021 | 392823 592 -1.02%
9 [ 300Agents_Kj35 Km56 OD1 KO 25.76 54 .88 | 93400 898.80 861.50 587.21 200.50 | 9465140 109.9 1
10 | 300Agents Kj35 Km56 OD1 SF-NW 26.12 5487194320 89920 857.00 578770 197.79| 9261620 108.1 | -2.15%
11 | 300Agents Kj35 Km56 OD1 RND-NWS5 | 26.53 545993030 886.50 846.60 57438 19568 | 9081430 107.3 -4.05%
12 | 300Agents Kj35 Km56 OD1 RND-NW20 | 26.14 54.64 |1 937.10 894.80 854.10 57839 197.34| 9170590 1074 | -3.11%

Notes: Clear Time: duration from the time first agent leaves his or her point of origin until last agent reaches his or her destination
95 Reach Time: time when 95% of population reach their destinations
90 Reach Time: time when 90% of population reach their destinations
Avg Reach Time: average time agents take to reach their destinations
Std Reach Time: standard deviation in agents’ time to reach their destinations
Dest Duration: time window from when first agent enters the destination to the time the destination is filled/last agent reaches it
Total inTraff over time: cumulative number of agents in traffic over the whole evacuation time
Avg Num inTraff: Total inTraff over time/Clear Time
inTraff Compare: comparison of total inTraff over time

104



Table 5-3: San Francisco: social media impact output of single destination — evacuation efficiency

Avg 95 90 Avg Std Total Avg .

Set Experiment %}% preferred %lear Reach Reach  Reach Reach | inTraff Num CM
2PC Spd 1me Time Time Time Time | overtime inTraff | ~O Poc

1| 100Agents Kjl0 Kmlé OD1 KO 33.12 5456 [ 476.00  465.00 451.63 35370 7532 7062.0 15.6 1
2 | 100Agents Kjl0 Kml6 ODI SF-NW 33.75 54.74 | 483.67 462.11 44922 34971 7480 | 6338333 14.1 | -10.25%
3 | 100Agents Kj10 Kml6 ODI RND-NW5 | 33.94 55.19 151040 474,60 45990 35276  79.96 6669.6 145 -5.56%
4 | 100Agents Kjl10 Km16 OD1 RND-NW20 | 3339 54.72 [ 498.80  480.70  466.50 356.54 81.35 7181.70 15.4 1.69%
5| 200Agents Kj20 Km32 OD1 K0 25.88 5496 [ 693.38 667.38 642.88 46237 131.52 35082.6 54.6 1
6 | 200Agents Kj20 Km32 ODI SF-NW 26.20 54.63 | 709.86  677.57 653.14 46281 135.70 34604.1 530 -1.36%
7 | 200Agents Kj20 Km32 ODI RND-NW5 | 25.94 5452172510 691.10 661.10 468.64 138.79 355573 53.8 1.35%
8 | 200Agents Kj20 Km32 OD1 RND-NW20 | 25.92 5452 |1 71450  690.00 66450 47046 141.11 35924 .6 541 2.40%
9 | 300Agents Kj35 Km56 OD1_KO 21.98 5521 (901.17 868.00 831.17 3566.44 192.12| 84070.67 101.1 1
10 | 300Agents Kj35 Km36 OD1 SF-NW 21.94 54.69 | 917.50  885.17 850.00 571.65 197.81 | 83714.67 98.5 | -0.42%
11 | 300Agents Kj35 Km56 OD1 RND-NW5 [ 22.09 54.84 | 92988 893.25 857.13 57345 201.90| 84768.75 98.9 0.83%
12 | 300Agents Kj35 Km56 OD1 RND-NW20 [ 21.67 5472193240 89350 857.70 579.83 199.82 | 86825.80 101.2 3.28%
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Figure 5-6: Measuring total traffic over time

To answer the first research question (Is it beneficial to use social media for
evacuation?), we first performed hypothesis tests on whether or not there would be a
significant difference in terms of evacuation time between the absence and the presence
of social media usage. We compared “no social media usage” and “having social media”
on the SF-NW (KO vs SF-NW) for the following factors: clear time, 90 reach time, 95
reach time, average reach time, and standard deviation of reach time.

We tested the following hypotheses:

Ho: No social media usage and having social media on the scale-free network
have equal means.

Hi: The mean of no social media usage is not equal to the mean of having social
media on the scale-free network.

The calculated p-values are given in Tables 5-4 and 5-5. The a value of the

hypothesis test is set at 0.05, and the p-value smaller than 0.05 is highlighted, indicating
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that the corresponding factors are significantly different, and we can reject Howith 95%

confidence.

Table 5-4: Boston: P-values of KO vs SF-NW — Single-destination

100Agents 200Agents | 300Agents
Clear Time 0.037024142 | 0.009405932 | 0.02121405
90 Reach Time 0.457186381 | 0.268238839 | 0.28833885
95 Reach Time 0.327050583 [ 0.067572775 | 0.92586371
Avg. Reach Time | 0.336883442 | 0.87546527 | 0.00019301
Std. Reach Time | 0.034107865 | 0.204093952 | 0.01666112

Table 5-5: San Francisco: P-values of KO vs SF-NW — Single-destination

100Agents 200Agents 300Agents
Clear Time 0.350479676 | 0.093703372 | 0.006154589
90 Reach Time 0.641821059 | 0.069801825 | 0.001368944
95 Reach Time 0.609300346 | 0.06673333 | 0.008938625
Avg. Reach Time | 0.371638519 | 0.886547902 | 0.105060932
Std. Reach Time | 0.648759864 | 0.118293148 | 0.012051658

For the Boston case, “clear time” was significantly different for all population
sizes. In the “no social media” scenario, “clear time” was shorter than that of “having
social media”. Although in the San Francisco case, the small p-value of “clear time” was
only found in 300 agents, we could observe the same trend that “clear time” under the
“no social media” scenario was shorter than that of “having social media” for all
population sizes. During the simulations, we observed that some agents changed their
routes although they were very close to the destination. This behavior was probably

caused by social media; those agents tried to follow others’ routes instead of traveling on
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their shortest routes. A longer “clear time” might also be caused by changing routes.
“Having social media” would increase the number of route changes, as shown in Tables
5-6 and 5-7. Because the initial routes were the shortest ones, changing routes would
increase the travel distance, making it possible to take a longer travel time.

However, we observed that the majority of the population arrived at the
destination almost at the same time for “no social media” and “having social media” in
the single-destination case for both study areas. The “average reach (destination) time”
was very close between “no social media” and “having social media” in most instances,
except for 300-agent instances. There seemed to be little difference between “no social
media” and “having social media” in terms of the time the agents reached the destination
in the single-destination case.

We used the “total traffic over time” measurement to determine the congestion
level of the road segments. Considering “K0” as the baseline, we found that “having
social media” on the SF-NW could help reduce congestion a little for both study areas
although the decrease did not seem very significant. Notice that the social media on the
RND-NW could bring more traffic in some instances. This could be an example showing
that the RND-NW would be unsuitable for exploring social network activities

. Although more agents traveled on alternative routes to avoid traffic because of
the information they received through social media, alternative routes shared a lot of the
same road segments with the shortest routes in the single-destination case. If the road
segments in alternative routes were very different from those of the shortest routes, then

the congestion level might drop significantly. Hence, we would expect to observe a more
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significant reduction of congestion for ‘“having social media” under the multiple-
destination scenario.
Individual Travel Behavior

Tables 5-6 and 5-7 show the output details of individual travel behavior for a
similar set of experiments as those presented in Tables 5-2 and 5-3. For travel behavior,
we consider the agent’s travel speed, lane changes, and route changes. If an agent can
travel at his or her preferred speed most of the time and does not spend too much time on
congested roads, then the agent’s travel experience is considered good. To measure this

travel experience, we use “agent inTraff time” (T,;) and “preferred speed time” (Tyy),

and T,; represents the total time that an agent i is in traffic during his or her evacuation

YiTaji
total number of agents

process. Then T,, = can represent the average time that an

individual would be in traffic during evacuation. Similarly, T,,; represents the total time

YiTapi

that an agent i travels at his or her preferred speed. Then T, = total mimber of agents

represents the average time that an individual would drive at his or her preferred speed.
Generally, when the population size increases, an individual’s travel speed drops,
and more traffic happens. More lane changes and route changes occur in a larger
population size. When social connectivity increases, more route changes can be
observed. This phenomenon seems intuitive because when an agent is able to connect to
more agents, he or she can collect more information, which may lead to decision

changes.
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Table 5-6: Boston: social media impact output of single destination — travel behavior

Avg. Avg. Preferred
Avg Avg. Avg.  Agent
. Avg ~ Clear Agent preferred = = o Speed
Set Experiment eferred _, . Lane | Route inTraff .
Spd Time inTraff Speed Time
Spd . . Change Change Compare
Time Time Compare
1|100Agents_Kj10_Kmlé OD1_KO0O 39.92 5447 48590 60.05 12544 9.89 0.00 1.000 1.000|
2|100Agents Kj10_Kml6_OD1_SF-NW 40.49 54.82 49410 3681 12844 10.03 256 -0.034 0.024
3|100Agents Kjl0_Kmlé OD1_RND-NW3 39.92 54.60 49020 3961 12882 10.21 3.56  -0.007 0.027
4| 100Agents_Kj10_Kml6_ODI1_RND-NW20 | 39.50 5442 30120 6507 130.00 10.01 6.73 0.084 0.036)
5|200Agents Kj20 Km32 OD1_ KO 30.69 54.60 702.67 193.05 92.89 10.76 0.00 1.000 1.000|
6]200Agents Kj20 Km32 OD1_SF-NW 30.73 54.37 718.70 190.99 96.85 10.80 444 -0.011 0.043
7|200Agents Kj20 Km32 OD1 _RND-NW3 30.89 54.80 716.40 190.86 94.19 10.92 595 -0.011 0.014
8]200Agents Kj20 Km32 OD1 RND-NW20 | 30.83 54.47 720.90 192.34 96.62 10.75 11.05  -0.003 0.040]
9|300Agents_Kj35 Kms6 OD1_KO0 25.76 54.88 934.00 31093 §3.80 11.48 0.00 1.000 1.000]
10|300Agents_Kj35 KmS6 _OD1_SF-NW 26.12 54.87 94320 304.06 84.45 11.4% 4355 -0.022 -0.016
11|300Agents Kj35_Km36_OD1_RND-NW3 26.53 54.59 93030 297.54 86.33 11.45 713 -0.043 0009
12|300Agents Kj35 KmS6 OD1_END-NW20 | 26.14 54.64 937.10 301.21 §3.31 11.42 11.37 -0.031 -0.029

Table 5-7: San Francisco: social media impact output of single destination — travel behavior

Avg. Avg. Preferred
Avg Ve Ve Avg.  Avg. | Agent reterre
. Avg - Clear  Agent preferred = i Speed
Set Experiment preferred| . . ane Route | inTraff .
Spd Time  inTraff  Speed Time
Spd . . Change Change |Compare
Time Time Compare
1]100Agents_Kjl0 Kmlé OD1_KO0 33.12 54.56] 476.00 84.84 76.37 9.23 0.00| 1 1
2|100Agents Kjl0 Kmlé OD1_SF-NW 33.75 34.74] 483.67 77.71 78.37 9.26 2.05] -8B.40% 2.63%
3|100Agents_Kj10_Kml6_OD1_RND-NWS3 33.94 55.19] 510.40 80.80 80.32 9.47 326 -4.76% 5.18%
4|100Agents K310 Kml6 OD1 RND-NW20 | 33.39 54.72] 498.80 85 44 79.66 9.54 573 0.71% 4.32%
5|1200Agents_Kj20 Km32 0OD1_KO0 2588 54.96] 693.38 19950 58.29 9.92 0.00| 1 1
6|200Agents_Kj20_Km32_0OD1_SF-NW 26.20 54.63] 709.86 197 .49 6193 1023 324 -1.01% 6.26%
7|200Agents Kj20 Km32 OD1_RND-NW3 2594 54.52] 725.10 204.48 63.50 1040 518 2.30% 8.95%
8|200Agents Kj20_ Km32_0D1_RND-NW20 | 2592 54.52] 714.50 206.43 62.37 1043 §.11 3.47% 7.00%
9|300Agents Kj35_KmS6_0D1_KO0 21.98 55.21] 901.17 308.77 5152 1075 0.00| 1 1
10|300Agents Kj35 KmS6 OD1_SF-NW 21.54 54.69] 917.50 311.14 5311 1092 4121 0.77% 0.77%
11|300Agents Kj35_Km36_0OD1_RND-NWS3 22.09 34 84| 92988 31525 5435 11.13 6.24] 2.10% 2.10%
12]300Agents_Kj35_Km36 OD1_RND-NW20 | 21.67 34.72] 932.40 321.64 5412 11.16 961 417% 4.17%

Compared to “no social media” instances, agents spend less time on congested roads
for most SF-NW instances. Meanwhile, the SF-NW also increases the time allowed for
an individual to drive at his or her preferred speed. The results of agent travel behavior

presented in Tables 5-6 and 5-7 are consistent with those in Tables 5-2 and 5-3. For the
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same reason, the improvement in using social media from an individual’s point of view
is insignificant under the single-destination scenario.
V.3.4.2 Multiple-Destination Case

Although we can observe a certain degree of dissimilarity between different
social network structures from single-destination instances, the overlap of routes caused
by having the same destination makes it difficult to identify the differences. Therefore,
we would expect to find more significant variations in the multiple-destination case due
to more destination and route options.

Evacuation Efficiency

Tables 5-8 and 5-9 show the outputs of evacuation efficiency for 10% and 16%
seed agents, respectively, for the Boston area. The results from San Francisco are given
in Tables 5-10 and 5-11.

Again, we conducted the hypothesis tests to compare “no social media use” and
“having social media” on the SF-NW (KO vs SF-NW), considering the following factors:
clear time, 90 reach time, 95 reach time, average reach time, and standard deviation of
reach time. Tables 5-12, 5-13, 5-14, and 5-15 show the calculated p-values of 10% and
16% seed agents for Boston and San Francisco, highlighting the values smaller than 0.05
(a = 0.05). From these four tables, we found that “90 reach time” and “standard
deviation of reach time” were significantly different between KO and SF-NW for all test
instances. There were 10 SF-NW instances out of 12 that reduced “90 reach time” by at
least 10%, and it could be reduced by as much as 26% for some specific instances. This

shows that social media usage can assist the majority of evacuees in reaching their
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destinations faster although the overall clear time is relatively longer compared to not
using social media.

For most instances, the SF-NW results in a longer “clear time,” which is
consistent with the outcome in the single-destination case, especially for a larger
population size. From the above observations, we can conclude that most evacuees
benefit from social media since they can reach their destinations earlier. The
disadvantage of adopting social media only occurs for a few agents. Influenced by other
socially connected agents, certain agents tend to frequently change their destinations and
routes, resulting in longer travel distance and time to arrive at their destinations.

Observing these phenomena, governmental agencies can utilize the power of
social media to reassign the traffic flow that results from evacuees’ spontaneous
decision-making while traveling toward their destinations. At the later evacuation stage,
governmental agencies can use their own resources, focusing on the minority who are
behind. By doing so, the entire population can be evacuated quickly. Moreover,
governmental agencies can use their resources more effectively, which is crucial when

considering the high demand for resources during extreme events.
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Table 5-8: Boston: social media impact output of multiple destinations with 10%-seed-agent — evacuation efficiency

. Ave Clear 95 Reach 90 Reach AvE Std Reach| . Total Avg Num| inTraff - ]?each
Set Experiment Avg Spd  Preferred . . . Reach . mTraff Time
Time Time Time . Time . mTraff | Compare
Spd Time over time Compare
13]100Agents Kj10 Kml6 10%0D2 KO0 4275 5477 728.00 70320 687.80 438.27 176.59) 6321.10 919 1.0000 1.0000)
14]100Agents_Kjl0 _Kmlé 10%0D2_SF-NW 40.86 5438 792.90 647.30 37230 445.11 10028 4522.30 7.901 -D.2846 -0.1679
15]100Agents Kjl0 _Kmlé 10%0D2_RND-NWS3 43.40 54.64 726.30 655.50 55490 391.30 107.74 4708.90 §.49] -0.2551 -0.1932
16]100Agents Kj10 Kml6é 10%0D2 RND-NW20 4292 54 85 T48.67 653.67 599.00 400.55 113.91 5200.78 8.68 -0.1772 -0.1291
17]200Agents Kj20 Km32 10%0D2 K0 3479 54.54 880.20 853.00 §23.10 S518.04 20582 35146.00 41.20 1.0000 1.0000)
18]200Agents_Kj20 Km32 10%0D2_SF-NW 36.19 54.65 S81.40 754.80 684.30 478.74 14649 29385.10 39.20| -0.1582 -0.16806
19)200Agents_Kj20 Km32 10%0D2_RND-NWS5 3579 54.79) 907.70 758.50 728.10 505.98 16551 31796.40 41.92] -0.0953  -0.1154
20|1200Agents Kj20 Km32 10%0D2 RND-NW2{ 34.95 5444 103420 866.50 §32.40 511.73 19291 34233.80 39.51  -0.0260 0.0113
21|300Agents Kj35 KmS36 10%0D2_ KO 3039 54.56] 1031.80 987.70 954.70 588.88 244151 80451.00 §1.45 1.0000 1.0000)
22|1300Agents Kj35 KmS6_10%0D2_SF-NW 32.09 54.64] 112940 886.90 826.80 556.05 191.64| 6848%9.60 77221 -0.1487  -0.1340
23|300Agents Kj35 KmS6_10%0D2_RND-NW3 31.49 54,88 1146.20 837.90 §11.00 570.61 186.27| 72609.90 §4.04| -0.0975  -0.1305
24|300Agents Kj35 Km36 10%0D2_RND-NW2{) 30.88 5455 1209.10 881.20 §32.50 580.53 19717 76718.20 §7.06] -0.0464 -0.1280
Table 5-9: Boston: social media impact output of multiple destinations with 16%-seed-agent — evacuation efficiency
. Ave Clear 95 Reach 90 Reach Ave Std Reach| . Total Avg Num| inTraff 20 l?each
Set Experiment Avg Spd Preferred . . . Reach . mTraff =, Time
Time Time Time . ne . inTraff | Compare
Spd Time over time Compare
25|100Agents Kj10 Kml6 16%0D2_ K0 4309 55.04 709.90 685.70 667.20 419.57 165.74 5757.70 8.63 1.0000 1.0000]
26/100Agents Kjl10 Kml6 16%0D2_SF-NW 43.67 34.25 T14.30 369.30 491.20 382.74 §9.53 4033.90 8.211 -0.2994  -0.2638
27]100Agents Kjl0 Kml6 16%0D2 RND-NWS3 44.09 5491 T18.30 620.40 503.30 386.01 98.82 4051.40 8.051 -0.2%64  -0.2457
28|100Agents Kjl0 Kml6 16%0D2 RND-NW20 4331 534.10] 751.530 625530 562.80 388.04 100.98 431450 7.67] -02507  -0.2457
291200Agents Kj20 Km32 16%0D2_K0 3576 5464 §76.80 844.20 811.10 504.54 203.091 32101.80 39.58 1.0000 1.0000
30|200Agents Kj20 Km32 16%0D2_SF-NW 36.41 54.70] 92890 72830 681.20 472.23 144600 2810120 41251 -0.1246  -0.1602
31|200Agents Kj20 Km32 16%0D2_RND-NWS 36.66 54.80 952.60 769.80 693.60 484.06 159.13] 28382.40 4092 -0.115%  -0.1449
32|200Agents K320 Km32 16%0D2_RND-NW20| 3595 5451 102550 814.60 73530 50612 180.75] 31825.60 4305 -0.0086 -0.0885
33|300Agents Kj35 KmS6 16%0D2_K0 30.86 3495 102430 986.20 94910 579.82 24199 7794470 82.12 10000 1.0000
34|300Agents Kj35 KmS6 16%0D2_SF-NW 3224 54.88] 110720 827.50 775.90 544 86 179.56] 66612.90 8585 -0.1434 -0.1825
35|300Agents_Kj35 _Km36_16%0D2_RND-NWS5 31.60 34.79] 1158.80 883.40 816.60 366.16 198.73] 72638.20 88.95| -0.0681  -0.1394
36]300Agents Kj35 Km356 16%0D2 RND-NW20)| 31.24 54.75] 1185.80 876.60 84030 574.70 199.83] 75327.20 8964 -0.0336 -0.1144
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Table 5-10: SF: social media impact output of multiple destinations with 10%-seed-agent — evacuation efficiency

. Avg Clear 95 Reach 90 Reach Ave Std . Total Avg Num| iTraff 20 I?each

Set Experiment Avg Spd  preferred . . . Reach  Reach | mTraff ~, Time

Time Time Time . . . mTraff | Compare
Spd Tmme Tmme |over fime Compare
13| 100Agents_Kj10_Kmlé 10%0D2_K0 3591 5468 697.80 677.60 657.30 37221 177401 6627.80 9.5 1 1
14| 100Agents Kj10_Kmlé_10%0D2_SF-NW 3587 5460 656.90 58720 543 .00 36787 112.36] 6412.90 98| -324% -17.39%
15]100Agents Kj10 Kmil6 10%0D2 RND-NWS 36.07 5521 72830 642 90 58190 39033 12275 6905.5 93 4.19% -11.47%
16/ 100Agents Kj10 Kml6 10%0D2 RND-NW20 3589 5462 761 40 66590 62630 40996 132.66] 6373.40 84 -384%  -4.72%
17]1200Agents Kj20 Km32 10%0D2 K0 2830 5453 809.78 774 44 T46.44 44312 198.05] 3233738 399 1 1
18|200Agents Kj20 Km3i2 10%0D2 SF-NW 2912 5473 889.00 75550 67200 45213 158241 31406.6 353 -2.88% -9.97%
19]1200Agents Kj20 Km32 10%0D2 RND-NWS5 28.63 464 88550 739.90 66500 47347 147671 317792 359 -1.73% -10.91%
20|200Agents_Kj20 Km32 10%0D2_RND-NW20 28.32 55.09 846.40 70540 67310 48359 146.17] 32880.7 38.8 1.68%  -9.83%
21|300Agents Kj35 KmS6 10%0D2 KO0 2399 24 .69 974.10 937.70 903 20 527.7% 24800 7726220 793 1 1
22|300Agents_Kj35_KmS56 _10%0D2_SF-NW 2503 54.80] 1024.10 937.20 862.20 53051 205100 74199.50 125 -3.96% 4.54%|
23|300Agents_Kj35_Km36_10%0D2_RND-NW3 2488 34.80] 113620 1021.30 84580 5779% 21370 77122.50 67.9] -0.18% 6.36%|
24|300Agents_Kj35 Km36 10%0D2 RND-NW20 24 58 54.66] 107622 961 89 898.00 58040 198.63] 76391.11 710 -1.13% 0.58%|
Table 5-11: SF: social media impact output of multiple destinations with 16%-seed-agent — evacuation efficiency

. Ave Clear 95 Reach 90 Reach Ave s . Total Avg Num| inTraff 20 ]?each

Set Experiment Avg Spd  preferred . . . Reach  Reach | mTraff . Time

Time Time Time . . . mnTraff | Compare

Spd Tme Tme |over time Compare
25|100Agents Kjl0 Kml6 16%0D2_ K0 35.87 3475 685.00 65275 628.00 354 87 156.86] 661888 97 1 1
26|100Agents Kjl0 Kmlé 16%0D2 SF-NW 35.78 54 .96 636.00 575.00 503.89 363.77 102.47] 645722 102] -2.44% -15.76%|
27|100Agents_Kjl0_Kmlé_16%0D2_RND-NWS 3584 54.55 665.60 593.30 560.20 382.72 112.62 64593 97 -241% -10.80%
28|100Agents Kjl0 Kmil6 16%0D2 RND-NW20 36.26 5517 727.50 66980 62580 41371 135411 63%6.30 88| -336% 0.35%
29|200Agents Kj20 Km32 16%0D2_ K0 2872 5475 811.86 76929 742 43 437.89 195871 322504 397 1 1
30|200Agents_Kj20 Km32 16%0D2_SF-NW 2919 3509 §78.43 T16.14 630.43 448.42 145.64] 29986.3 34.1 7.02% -15.09%
31|200Agents Kj20 Km32 16%0D2 RND-NWS 2845 54.70] §72.00 717.20 656.80 473.03 144.76] 320393 36.7 0.65% -11.53%
32|200Agents Kj20 Km32 16%0D2 RND-NW20 28 64 54 81 §58.40 724 40 666.60 47137 14321 304282 354 5.65% -1021%
33|300Agents Kj35 KmS6 16%0D2 KO0 24723 5500 963.50 929 40 893.50 52063 244 47) 76525.30 794 1 1
34|300Agents_Kj35_Km36_16%0D2_SF-NW 2494 3457 1007.44 90833 840.00 34195 197.21] 7439489 7338 2.78% 5.99%
35|300Agents Kj35 KmS6 16%0D2 RND-NWS 2463 5429 998.50 87970 808.10 55858 178.64] 72797.10 729 4.87% 9.56%
36|300Agents Kj35 KmS56 16%0D2 RND-NW20 2486 5484 112750 1024.80 887.90 58380 21721] 7544370 669 1.41% 0.63%
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Table 5-12: Boston: P-values of KO vs SF-NW — multiple destinations 10%-seed-agent

100Agents | 200Agents | 300Agents
Clear Time 0.048650 | 0.963034 [ 0.019895
90 Reach Time 0.000187 | 0.000002 | 0.000250
95 Reach Time 0.127776 | 0.003431 [ 0.002295
Avg. Reach Time 0.211907 0.000074 | 0.000852
Std. Reach Time 0.000002 | 0.000001 | 0.000001

Table 5-13: Boston: P-values of KO vs SF-NW — multiple destinations 16%-seed-agent

100Agents 200Agents 300Agents
Clear Time 0.879034552 | 0.0719332 | 0.016488278
90 Reach Time 6.87904E-08 | 2.0747E-05 | 3.73293E-14
95 Reach Time 0.001133665 | 0.0002426 | 2.37105E-12
Avg. Reach Time | 4.11702E-06 | 6.168E-07 | 1.02978E-06
Std. Reach Time | 2,19047E-10 | 8.9248E-11 | 4.2195E-12

Table 5-14: SF: P-values of KO vs SF-NW — multiple destinations 10%-seed-agent

100Agents 200Agents 300Agents
Clear Time 0.283526641 | 0.060292234 | 0.035353739
90 Reach Time 0.00394143 | 0.048703959 | 0.036113881
95 Reach Time 0.023457693 | 0.653669843 [ 0.972252644
Avg. Reach Time | 0.516508989 | 0.294218745 | 0.001890463
Std. Reach Time 2.9824E-05 | 0.000916376 | 2.42001E-07

Table 5-15: SF: P-values of KO vs SF-NW — multiple destinations 16%-seed-agent

100Agents 200Agents 300Agents
Clear Time 0.175011879 | 0.161996265 | 0.03321079
90 Reach Time 4.03071E-05 | 4.63937E-08 | 0.003361667
95 Reach Time 0.026258001 | 0.137232711 | 0.244531998
Avg. Reach Time | 0.312784162 | 0.026090488 | 0.007271158
Std. Reach Time 5.71171E-06 | 1.0456E-05 | 3.62929E-08
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Next, we examine the time it takes to reach the destination, based on the
“average reach time” and “standard deviation of reach time.” As stated before, the
“standard deviation of reach time” is significantly different between KO and SF-NW for
all test instances. Compared to KO, SF-NW results in a significantly smaller standard
deviation in the arrival time at the destination for every instance pair. The “average reach
time” is very close for most KO and SF-NW instances. In the Boston case, most SF-NW
instances have a slightly shorter “average reach time” than those of KO; on the other
hand, in the San Francisco case, most KO instances have a shorter “average reach time.”
Hence, not enough evidence shows that “having social media” can help reduce the
“average reach time.” However, the two measurements together show that “having social
media” on the SF-NW can shorten the duration window of destination arrivals although
the “average reach time” is close compared to “no social media usage.” Reducing the
duration window of reaching destinations can further assist governmental agencies in
improving logistics and resource planning at the shelters.

Note that it is not always beneficial to increase the social connectivity degrees.
When an individual’s connectivity degree increases from 5 to 20, the clear time, 95
reach time, and 90 reach time increase in most instances. In other words, a strongly
connected RND-NW does not help the entire population evacuate fast, not even for the
majority of the population, which indicates that sharing too much information may result
in the same evacuation efficiency as no information sharing.

The last measurement factor we compare for different social network structures

1s “total traffic over time.” For the Boston case, we can observe the dramatic traffic
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reduction by “having social media” for a smaller population size, whereas the
improvement is less significant for a larger population size due to the population
overload on the evacuation routes. However, for the San Francisco case, the
improvement is below 5% for most instances. It requires further research to determine
whether or not the congestions on road segments that are related to other factors, such as
the road network structure, methods for generating alternative routes.

The next question is: Does the entire population take advantage of having more
agents informed to go to a specific destination? We find that increasing the percentage of
seed agents from 10% to 16% reduces the evacuation time in almost all instances. Tables
5-16 and 5-17 show the percentage of time reduced in the 16%-seed agent case
compared to the 10%-seed agent case for Boston and San Francisco, respectively.
Moreover, the evacuation time reduced is amplified in the SF-NW structure compared to

“no social media” in most instances.
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Table 5-16: Boston: evacuation time reduce in 16%-seed-agent case

Clear 95 90 Avg. Std.
Time Rgach Re_zach Rgach Rgach
Time Time Time Time
100Agents_KO -2.49% -249% -3.00% -4.27% -6.15%
100Agents_SF-NW -9.91% -12.05% -14.17% -14.01% -10.72%
200Agents_KO -0.39% -1.03% -1.46% -2.61% -1.33%
200Agents_SF-NW 5.39% -351% -0.45% -1.36% -1.29%
300Agents_KO -0.73% -0.15% -0.59% -1.54% -0.89%
300Agents_ SF-NW -197% -6.70% -6.16% -2.01% -6.30%
Table 5- 17: SF: evacuation time reduce in 16%-seed-agent case
Clear 95 90 Avg. Std.
Time Rgach Rgach Re_ach Rgach
Time Time Time Time
100Agents_KO -1.83%  -3.67% -4.46% -4.66% -11.58%
100Agents_SF-NW -3.18% -2.08% -7.20% -1.11% -9.21%
200Agents_KO 0.26% -0.67% -054% -1.18% -1.10%
200Agents_ SF-NW -1.19% -521% -6.19% -0.82% -7.97%
300Agents_KO -1.09% -0.89% -1.07% -1.36% -1.42%
300Agents SF-NW -163% -3.08% -257% -155% -3.85%

This insight can be very helpful for evacuation managers; by utilizing social
media, the entire population can complete the evacuation faster when emergency
managers make the same effort in notifying individuals as no social media usage. This is
another advantage taken from the small-world character of the SF-NW. Note that the
seed agents were randomly picked in our experiments. If we can smartly select the core

agents with dominant social connections as the seed agents, we can expect less notifying

efforts and better improvement in the evacuation time.

118




Individual Travel Behavior

Tables 5-18 and 5-19 provide the detailed outputs of individual travel behavior in
experiment sets 13-36 for the Boston case, while Tables 5-20 and 5-21 give the
corresponding information for the San Francisco case. Similarly, we calculate the
average agent in traffic time (T,U), average preferred speed time (T,lp), average number
of lane changes, average number of route changes, and average number of destination
changes. Consistent with the results of the evacuation efficiency analysis, the traffic on
the routes requires further examination. For most instances, having social media can
reduce the time spent by an individual on congested road segments. However, the
improvement in San Francisco is insignificant, and social media may bring more traffic

in some instances.
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Table 5-18: Boston: social media impact output of multiple destinations with 10%-seed-agent — travel behavior

Avg. Avg. Wavg  Wavg Preferred
Avg = = Avg. Avg. - - Agent DestInfo
. = StdReach| Agent preferred = = Avg. Dest| Route  Dest | Destlnfo| . = Speed .
Set Expermment Reach . . Lane Route . inTraff . DisSat
- Time inTraff  Speed Change |Change Change | DisSat Time
Time . . Change = Change = . . Compare Compare
Time Time b - Time Time Compare
13|100Agents Kj10 Kml6 10%0D2_KO0 438.27 176.59] 3742 193.63 11.45 1.00 1.00] 363.51 363.51] 1518.30) 1 1 1
14 100Agents Kjl0_Kml6_10%O0D2_SF-NW 44511 100.28 7041 209.82 9.50 2.50 1.5 200.2% 20061 18740 22.63%  8.35%  -87.66%)
15[100Agents Kjl10 Kml16 10%0D2 RNWND-NW3 391.30 107.74] 41.60 194.06 10.10 4.07 1.87] 197.36 191.20 188.50] -27.56%  0.21%  -87.58%]
16]100Agents Kj10 Kml6 10%0D2_RND-NW20|  400.53 113.91 46.40 193.22 10.1% 7.20 1.94] 203.03 196.04)  271.89 -19.18% -0.22%  -B2.09%
17[200Agents_Kj20 Km32 10%0D2_K0 518.04  205.82 170.81 149.77 11.70 0.57 0.97) 45025 45028 4228.80) 1 1 1
18[200Agents Kj20 Km32 10%0D2_SF-NW 478.74 146.49] 143.14 162.10 10.59 4.60 1.83] 268.26  264.28 550.401 -16.20%  8.23%  -86.98%
19]200Agents Kj20 Km32 10%0D2_RND-NW3 505.98 165.51 154.2% 162.76) 11.36 324 1.30] 283.03 305.64) 2837.10] -9.67%  8.67%  -32.91%
20[200Agents_Kj20_Km32_10%0D2_RND-NW20 511.73 192.91 166.08 160.66 11.45 10.86 2.28] 273.12 25548 398501 -2.77% 7.27%  -90.58%
21|300Agents Kj35 Km36 10%0D2_KO0 588.88 24415 263.01 130.96 11.76 1.05 1.05] 498.37 49837  6541.70] 1 1 1
22[300Agents_Kj35_KmS6_10%O0D2_SF-NW 556.05 191.64] 223.46 149.69 11.54 5.28 2.03] 312.32 321.22] 1831.30 -15.04% 14.30%  -72.01%,
23|300Agents_Kj35_Km36_10%0D2_RND-NW3 570.61 186.27 237.63 148.44 11.89 7.23 2.39] 325.33 315.10 867.70] -9.65% 13.34%  -86.74%
24|300Agents Kj35 Km56 10%0D2 RND-NW20) 580.53 197.17 250.97 148.07 11.92 12.43 2.49] 326.40 314.55 886.60] -458% 13.06%  -86.43%
Table 5-19: Boston: social media impact output of multiple destinations with 16%-seed-agent — travel behavior
Avg.  Avg Wavg  Wav Preferred
Avg Ve Ve Avg. Avg. e Ve Agent retere DestInfo
. Std Reach| Agent  preferred Avg Dest| Route  Dest | Destlnfo | | Speed .
Set Experiment Reach . . Lane Route . inTraff . DisSat
. Time inTraff = Speed Change |Change Change | DisSat Time
Time . . Change Change . . Compare Compare
Time Time b b Time Time Compare
25(100Agents Kjl0 Kmlé 16%0D2_ KO0 419.57 165.74 5242 188.36 11.01 0.98 0.98] 331.96 331.96] 1281.20 1 1 1
26/100Agents Kj10 Kml6_16%0D2_SF-NW 382.74 85.53 3525 193.40 0.67 2.88 1.61] 192.88 183.27 106.501 -32.75%  2.68%  -91.69%
27|100Agents Kj10 Kmlé 16%0D2_RND-NW3 386.01 98.82 3511 192.55 9.72 3.62 1.85| 189.98 174.66 122.30] -33.02%  2.22%  -50.45%
28| 100Agents Kj10 Kml6 16%0D2_REND-NW20 388.04 100.98 37.76 192.88 9.89 6.54 1.87| 197.06 187.13 139.00] -27.97%  2.40%  -89.15%]
29|200Agents_Kj20 Km32_16%0D2_KO0 304.54 203.09) 155.98 151.75 11.46 1.01 1.01| 42037 420371 3891.00 1 1 1
30|200Agents Kj20 Km32 16%0D2_SF-NW 472.23 144.60 135.49 160.54 10.52 4.41 1.82 253.04 252.77 518.00f -13.13%  5.79%  -86.69%
31|200Agents Kj20 Km32 16%0D2_RND-NW3 484.06 155.13 137.16 164.45 10.75 6.20 2.17] 262.43 249.68 43970 -12.07%  8.37%  -88.70%)
32{200Agents_Kj20 Km32 16%0D2_END-NW2() 506.12 180.75 134.15 167.97 11.26 10.86 2.34| 27522 258.32 55240 -1.17% 10.69%  -B5.80%
33[300Agents_Kj35 KmS56 16%0D2_K0 579.82 241.99) 255.11 129.86 11.64 1.08 1.08] 476.04  476.04 61%6.30 1 1
34|300Agents Kj35 KmS6 16%0D2_SF-NW 544.86 179.56 216.92 146.78 11.37 5.31 2.08] 306.35 303.43 872.70] -14.97% 13.03%  -85.92%
35[300Agents_Kj35_Km36_16%0D2_RND-NWS 360.16 198.73 237.55 144.62 11.87 841 2.54] 31942 302.77 969.80] -6.89% 1137%  -84.33%
36|300Agents Kj35 Km36 16%0D2_RND-NW2() 574.70 195.83 246.24 143.16 11.80 12.31 2.51] 32494 306.70 830.30] -348% 1024%  -86.60%
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Table 5-20: SF: social media impact output of multiple destinations with 10%-seed-agent — travel behavior

Avg.  Ave. Wavg ~ Wav Preferred

Avg Std Ve Ve Avg. Avg. Avg. Ve ave Agent TR Destinfo
. Agent preferred Route Dest |Destlnfo| . Speed .
Set Experiment Reach = Reach | . Lane Route Dest . nTraff . DisSat
. . mTraff  Speed Change Change | DisSat ime

Time Time . . Change Change Change . . Compare Compare

Time Tine Time Time Compare
13| 100Agents Kjl0_Kml6_10%0D2_KO0 37221 17740, 76.16 121.38 242 0.835 085 35281 352 81] 1703.30 1 1 1
14]100Agents Kjl0_Kml6 10%0D2_SF-NW 36787 112 86 T4.42 129 94 226 2.65 1.56| 16543 179.26) 167.90] -228% T.05%  -90.14%|
15(100Agents_Kjl0_Kml6_10%0D2_RND-NW3 390.33 12275 79.65 139.64 975 3.05 1.79 18785 20242 153.80 4.58% 15.04% -50.97%|
16{100Agents Kjl0 Kml6 10%0D2_RND-NW20 40996 132.66) 75.29 140.75 10.19 4.50 1.99] 180.01 20103 227001 -1.14% 15.96% -86.67%,
17[200Agents Kj20 Km32 10%0D2_K0 44312 198.05 179.73 93.48 975 0.81 0.81 42045 42045] 3348.7% 1 1 1
18[200Agents Kj20 Km32 10%0D2_SF-NW 452.13 158.24 174.95 113.99 993 2.59 1.59] 23587  239.18 Te4.30] -2.67% 21.93% -T77.17%|
19{200Agents Kj20 Km32 10%0D2_RND-NW3 47347 147.67 178.36 109.52 10.28 4.25 1.97 23077 246.72 594,601 -0.66% 17.16% -82.24%
20]200Agents Kj20 Km32 10%0D2 RND-NW20 483.59 146.17 184.98 104.71 10.44 592 2.06] 256.04 24536 43830 291% 12.01% -86.91%
21{300Agents_Kj35 Kms36_10%0D2_KO0 52799 248001 27799 79.49 293 0.88 088 51536 51536 714920 1 1 1
22|300Agents_Kj35 Kms6_10%0D2_SF-NW 55051 205100 26845 105 .66/ 10.43 359 194 29852 33587 2712350 -343%  3292% -62.06%|
23|300Azents_Kj35 Kms6 10%0D2_END-NWS3 57799 213701 278.54 111.89 10.85 494 229 29490 34069 334930 020% 40.76% -33.15%
24|300Agents Kj35 Kms6_10%0D2_END-NW20 580.40 19863 277.07 104.82 10.84 744 2400 297.02 32295 257244 -033% 31.87% -64.02%

Table 5-21: SF: social media impact output of multiple destinations with 16%-seed-agent — travel behavior
Avg Std Ave. Ave. Avg. Avg. Avg. Wave  Wave Agent Preferred DestInfo
. Agent preferred Route Dest | DestInfo| . Speed .
Set Experiment Reach  Reach | . Lane Route Dest . inTraff . DisSat
. . nTraff = Speed Change Change | DisSat Time

Time Time . . Change Change Change . . Compare Compare

Time Time Time Time Compare
25]100Agents Kjl10_Kml6 16%0D2_K0 35487 156.86 75.84 122.07 8.99 0.80 0.80| 309.18 309.18] 1288.75 1 1 1
26|100Agents Kjl0_Kml6_ 16%0D2_SF-NW 363.77 102.47 74.50 123.79 9.37 2.63 1.54 15926 164.60] 81.67| -124% 1.41% -93.66%)
27]100Agents Kjl0_Kmlé 16%0D2_RND-NWS3 38272 112.62 75.73 133.29 9.67 3.05 1.73 167.32 176.38 114.000 -0.13% 9.19% -91.15%|
28| 100Agents_ Kjl0_Kml6 16%0D2_RND-NW20 413.71 135.41 75.27 138.93 10.43 5.49 1.99 177.30 198.66| 185.70] -0.76% 13.82% -83.28%
29]200Agents Kj20 Km32 16%0D2_K0 437.89 19587 178.07 95.78 9.59 0.84 0.84 40337 403.37 3180.00f 1 1 1
30{200Agents_Kj20 Km32_16%0D2_SF-NW 448 .42 145.64 167.72 108.12 9.93 328 1.76] 22499 23131 464 86| -5.81% 12.8%% -83.38%
31|200Agents_Kj20_Km32_16%0D2_RND-NW3 473.03 144.76 179.63 107.93 10.31 4.03 2001 236.82 238.65 47180 0.88% 12.69% -85.16%
32|200Agents Kj20 Km32_16%0D2_END-NW20 471.37 14321 172.97 10256 10.40 6.50 207 2476 22953 505.40] -2.86% 7.08% -84.11%|
33|300Agents_Kj35_Kms36_16%0D2_K0 52063 244 47 27490 80.52 9.98 0.89 0.89] 48591 48591 644480 1 1 1
34|300Agents_Kj35 Km36 16%0D2_SF-NW 34 .95 197.21 268.05 104 37 10.35 3.26 1.85] 254351 311.84) 223833] -2.49% 2962% -64.96%
35|300Agents_Kj35_Km36_16%0D2_RND-NW3 55858 178.64] 265.82 99.42 10.74 5.08 222 280.58 28584 173290 -3.30% 23.47% -73.11%;
36|300Agents Kj35 Km36_ 16%0D2_END-NW20 5838% 217.21 274.64 104.15 11.15 7.59 2.48 313.65 319.78] 2418.50] -0.00% 2935% -62.47%)
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The “preferred speed time compare” column in these tables shows that having
social media can increase the time that individuals can travel at their desired speed.
Information sharing on social networks makes individuals perform more route and
destination changes. As individuals travel on the alternative, less congested routes, they
can drive at their desired speed.

In multiple-destination cases, route and destination changes become more
dynamic. As we track the individual’s decision-making time on the route and destination
changes, we find different patterns between “no social media use” and “having social
media.” Figure 5-7 shows a typical pattern of route and destination decision-making time
under the no social media, 200-agent scenario.

The x-axis represents the simulation time, and the y-axis indicates the number of agents
who have made route/destination change decisions. In this figure, we can see a lot of
destination change decisions made at a later stage (after 400 units of simulation time).
What happened during 400-450 unit simulation time? For this specific run, one
destination/shelter is overloaded around the 430™ unit of simulation time. Afterwards,
agents who are still going to that shelter will be notified by emergency managers if these
agents have telecommunication service. Once the agents receive this message, they will
make a decision on the destination change. Figure 5-8 shows the number of agents who
need to be notified and the number of agents who receive the messages when one shelter

is exceeding its capacity.
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Figure 5-7: Route/destination change pattern — no social media
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Figure 5-8: Overloaded destination notification — no social media

In contrast, under the “having social media” scenario, individuals tend to make
route/destination changes at an earlier stage. A typical route/destination decision change
pattern for a 200-agent scenario is displayed in Figure 5-9. The corresponding
destination notification record is shown in Figure 5-10. Compared to the “no social
media” scenario, we have the following observations for “having social media”: (1) The

time when one shelter is overloaded happens later. (2) A fewer number of individuals
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need to be notified. (3) The time duration for sending out a message till all agents turn to

the other shelter is shorter.
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Figure 5-9: Route/destination change pattern — having social media
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Figure 5-10: Overloaded destination notification — having social media

To capture the route and destination change pattern, we use the “weighted route

change time” (T,,,-) and “weighted destination change time” (T,,4), Where T, = Z—ZtNI;t*t,
tiVrt
Tya = % and N,.; refers to the number of agents who make route change decisions
tiNdt
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at time t. Similarly, Ny, indicates the number of agents who make destination change
decisions at time t. T,,, represents the most likely time that an agent makes a route
change decision, and T, represents the most likely time that an agent makes a
destination change decision.

From the travel behavior tables (Tables 5-18 to 5-21), by comparing T,,,- and T,,4
with the ‘“average reach time” and “standard deviation reach time,” different
route/destination change behaviors can be observed between “no social media” and
“having social media.” Agents from the “no social media” scenario tend to change
routes/destinations at a later stage when certain agents have already reached the
destination. On the contrary, agents from the “having social media” scenario tend to
have route/destination changes at an earlier stage, before any agent arrives at the
destination. This different travel behavior can be considered a different evacuation
experience. In the “no social media” scenario, the destination change decisions are not
made from the agents’ own will but from the fact that no other option is available. This
“no other choice” situation only happens to a few agents in the “having social media”
scenario.

Although we set up relatively sufficient telecommunication power, a number of
agents still cannot receive the destination information because they lack
telecommunication service. The grey regions in Figures 5-8 and 5-10 represent the
unsatisfied teleservice demand over the time it was requested. The grey areas can

measure the number of agents who need to receive the destination information and the
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time duration of sending out the destination information. We list this value in the
“DestInfoDisSat” column in the behavior tables.

“Having social media” can reduce destination information dissatisfaction by
80%-90% compared to the “no social media” scenario for almost all instances of both
study areas. This dramatic improvement from social media can relieve the burden of the
telecommunication system. By integrating TELP into ABME, we are able to find this
significant teleservice improvement resulting from social media usage. To our best
knowledge, this is the first time that the usage of social media is examined through the
usage of facilities and the service quality for an extreme-event evacuation. Because of
the power of social media, agents select their destinations according to their own
preferences, resulting in a balanced traffic flow to multiple destinations and further
reducing the telecommunication demands. At this point, we realize that the important
role played by social media does not only involve the evacuation time but also the

performance of micro-station facilities.

V.4, Examining the Usage of Micro-Stations in Evacuation

In this section, we examine how different telecommunication infrastructures
influence the service quality and evacuation efficiency. Concerning the limited budget,
we intend to find out how the usage of micro-stations impacts service satisfaction. Given
the simulated social networks, a set of candidate micro-station locations, and a set of
fixed macro-stations, we test different numbers of micro-stations on three population

levels and two O-D sets. The social network structure used for this section is the SF-
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NW. The locations of existing macro-stations and candidate micro-stations are the same
as those in experiment set 1-36 and shown in Figure 5-5. The two O-D sets are displayed
in Figures 5-3 and 5-4. The complete list of experiments for testing micro-station usage

can be found in Table 5-22.

Table 5-22: Experiments for examining Micro-Station usage

O-D1 0-D2
set | #Agents  #Micro-Stations | Km Kj | set | #Agents  #Micro-Stations | Km  Kj
37 100 0 16 10| 49 100 0 16 10
38 100 5 16 10| 50 100 5 16 10
39 100 10 16 10|51 100 10 16 10
40 100 15 16 10| 52 100 15 16 10
41 200 0 32 20 53 200 0 32 20
42 200 5 32 20|54 200 5 32 20
43 200 10 32 20| 55 200 10 32 20
44 200 15 32 20| 56 200 15 32 20
45 300 0 56 35|57 300 0 56 35
46 300 5 56 35| 58 300 5 56 35
47 300 10 56 35|59 300 10 56 35
48 300 15 56 35 60 300 15 56 35

V.4.1 Telecommunication Service Analysis

The detailed outputs of micro-station usage in the single-destination and
multiple-destination cases for Boston are presented in Tables 5-23 and 5-24,
respectively. The outputs for San Francisco are given in Tables 5-25 and 5-26. The
number of individuals served by macro-stations or micro-stations is collected at every

simulation time unit. This accumulated number on the service request time gives us the
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total number of users served by macro-stations/micro-stations. The corresponding total

number of dissatisfied users can be calculated as well.

Table 5-23: Boston: Micro-Station usage output of single destination — TeleService

. Total Tl_}tal Total Avg  Trafflnfo| unServe Tra.ffJ'_ﬂfo

Sef Expenment Macro Micro _ o . DisSat

UnServe UnServe DisSat | compare

Serve Serve compare
37|100Agents Kjl0 Kmlé OD1 PO 21180.90 0.00 1833970 3986 3233.00 1 1
38|100Agents Kjl0 Kmlé OD1 P3 183%3.80 6973.00 133%91.20 2887 271750 -27.85% -13.94%
39]100Agents Kjl0 Kmlé OD1_P10 15615.10 8861.00 1393940 2998  2766.60] -24.89% -14.43%
40[100Agents_Kj10_Kml6 _0OD1_P15 13717200 1231450 12354 40 26.85 253350] -33.22% -21.62%
41|200Agents Kj20 Km32 OD1_P0O 62126.60 0.00 4589780 6949 1715960 1 1
42|200Agents_Kj20_Km3i2 0OD1_P5 4980030 21967.00 3469580 51.74 14988.30| -24.41% -12.65%
43|200Agents K520 Km32 OD1_P10 3578450 38676.10 28020.00 42 50 12755.90] -38.95% -25.60%
44|200Agents Kj20 Km32 ODl1 P15 31747.33 47736.67 23206.67 35.07 1103022 -45.44% -35.72%]
45|300Agents Kj35 Km36 OD1_PO 139942 90 0.00 7199040 82.55 3585170 1 1
46|300Agents Kj33 KmS6 OD1 PS5 97037.50 4722010 30712.00 5951 31107.00] -29.56% -13.23%)
47|300Agents Kj35 Km36 OD1 P10 80124.10 713%0.60 44761.50 5247 23864.70) -37.82% -27.86%
48|300Agents Kj35 Km36 0OD1_P15 6852370 84561.90 4323500 5045 25957.20) -3994% -27.60%)

Table 5-24: Boston: Micro-Station usage output of multiple destinations — TeleService

. Lot Tt.}tal Total Avg. Traffinfo = Destlnfo |unServe Tra_ffhlfo D.est[nfo

Set Experiment Macro  Micro  __ _ . . DisSat DisSat

UnServe  UnServe DisSat DisSat  |compare

Serve Serve compare Ccompare
49]100Agents_Kj10 Kmlé OD2_P0 | 31158.40 0.00 16195.80 35471 2015.60 134.30] 1 1 1
50[100Agents_Kj10_Kmi16_OD2_P5 | 22004.10 1141640 1294%.10 28.03] 147440 109.20] -20.05% -26.85% -18.69%
51{100Agents Kj10 Km16 OD2_P10| 20783.57 1439486 1178443 23.70] 1714.43 132.57]-27.24% -14.94%  -1.29%
52| 100Agents Kj10 Kmi16 OD2 P15| 19264.10 1543550 1154230 23.50] 1621.10 106.50] -28.73% -19.57% -20.70%
53|200Agents Kj20 Km32_0OD2 PO | 82375.80 0.00 37028.90 54.62] 11381.40 806.00) 1 1 1
54|200Agents_Kj20_Km32_OD2_P5 | 63786.50 26760.50 31029.70 45701 942940 576.40{-16.20% -17.15% -28.49%
55[200Agents Kj20 Km32_OD2_P10| 4820930 42833.60 27085.30 40.28] 997330 425.70| -26.85% -12.37% -47.18%
56[200Agents_Kj20_Km32_0D2_P15| 4444400 51681.80 22756.60 3341 9203.40 518.00{-38.54% -19.14% -35.73%
57|300Agents_Kj35_KmS56_0D2_P0 |174259.80 0.00 51412.70 64.63] 20830.60  1685.70] 1 1 1
58|300Agents Kj35 KmS6 OD2 P35 [127011.40 47361.00 44900.60 56.06| 20504.20 1518.50{ -12.67%  -1.57% -9.92%
59|300Agents Kj35_KmS6 OD2_P10|114526.80 67941.60 36553.70 44.54] 1717690  1683.70(-28.90% -17.54%  -0.12%
60[300Agents_Kj35_KmS56_OD2_P15| 8§5743.70 99032.20 32398.80 41.76] 14884.90 87270 -36.98% -28.54% -43.23%
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Table 5-25: SF: Micro-Station usage output of single destination — TeleService

. Total I?tal Total Avg Traffinfo| unServe Tra.ffhlfo
Set Experiment Macro Micro - - . DisSat
UnServe UnServe IhsSat | compare
Serve Serve compare
37|100Agents_Kj10 Kmls_OD1_P0 15005.80 0.00 20085.50 4462  4332.10] 1 1
38|100Agents Kj10 Kml6 OD1_P5 1498090 2778.20 16819.40 37.61 288840 -16.26% -33.33%
39|100Agents K310 Kmlé OD1_P10 | 12420.10 7811.40 14976.00 3313 313940 -25.44% -27.07%
40 100Agents Kj10 Kmlé OD1 P15 | 14164.50 9322.40 13098.60 24120 2848.50] -34.79% -34.25%
41|200Agents K320 Km32_0OD1_P0 4362330 0.00 49130.50 7599 17833.00) 1 1
42|200Agents Kj20 Km32 ODI1_P3 38514.00 20428.60 3457480 5276 1338490 -29.63% -23.91%
43|200Agents K320 Km32 OD1_ P10 | 32446.80 30814.30 30374.10 46.13 11934.10] -38.18% -33.04%
44|200Agents K320 Km32 OD1 P15 | 32985.20 24777.50 3343140 54.05 13699.70] -27.88% -23.26%
45|300Agents Kj35_KmS6_0OD1_P0 8353030 0.00 8§7454.50 104.16 41780.50 1 1
46|300Agents Kj35 KmS6 OD1_P3 88208.50 247270 B80751.50 96.64 34348.50) 7.66% -17.31%
47|300Agents Kj35 KmS56 OD1_P10 | 85845.60 6299.40 78376.00 9437 35381.30) -10.13% -15.32%
48|300Agents Kj35 KmS56 OD1 P15 | 49128.10 70688.00 53016.00 62.21 26736.60] -39.38% -36.01%
Table 5-26: SF: Micro-Station usage output of multiple destinations — TeleService
. Total T?tal Total Avg.  Trafflnfo| unS Tra_ff]'.ﬂfo
Set Experiment Macro Micro - ~ . DisSat
UnServe UnServe DhsSat | compare
Serve Serve compare
49| 100A gents_Kjl0_Kmlé_0OD2_PO 17497 90 0.00 1835530 3592 164.60 1 1
50]100Agents Kj10_Kmlé OD2_P5 16231.10 491220 1389830 30.59 84.60] -13.39% -48.60%)
51|100Agents_Kj10_Kml6é_0OD2_P10 14867.00 6769.78 1416400 27.44 140 44] -22.83% -14.08%
52|100Agents_ Kj10_Kml6_0D2_P15 1398050 8631.20 13%07.10 27.42 101.60] -24.23% -38.27%
53|200Agents K20 Km32 OD2 PO 40261.00 0.00 48685.00 76.46 64557 1 1
54|200Agents K20 Km32 OD2 P53 41116.38 9242.13 40540.38 62.65 536.88] -16.73% -16.84%%
55]200Agents K20 Km32 OD2 P10 36126.80 1232380 39923.00 65.53 616.60] -18.00% -4 49%|
56]200Agents Kj20 Km32 OD2 P15 3074567 24282.00 3302922 55.57 438.00] -28.05% -32.135%|
37|300Agents Kj35 Kms36 0OD2_ PO 7853733 0.00 83486.67 101.76 2193.36 1 1
58|300Agents Kj35 Km36 OD2 P53 8477630 3102.40 7290220 9035 1832.80] -12.68% -16.45%)
39|300Agents Kj35 Kms6 OD2 P10 85013 40 301820 7240020 8947 204920| -13.28% -6_58%|
60]300Agents Kj35 Kms6 OD2 P15 61161.33 35688.89 66142 89 7859  2160.78] -20.77% -1_49%|
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Besides the total service number, we are also interested in examining the users’
dissatisfaction with service at a critical time, such as when an individual tries to send out
information about a congested road and when an individual needs information about an
overloaded destination. We use “traffic info dissatisfaction” to capture the number and
time duration of service requests for information about congested roads. The grey region
in Figure 5-11 illustrates this concept. Similarly, for the multiple-destination case, we
use “destination info dissatisfaction” to represent the number and time duration of

teleservice requests for information about overloaded destinations.
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Figure 5-11: lllustration of Traffic Info Dissatisfaction

For both the single-destination and multiple-destination cases, adding more
Micro-Stations relieves the burden on Macro-Stations and reduces the total number of
unserved agents. However, the improvement is not linear when we linearly increase the
number of micro-station facilities. One possible reason is the nonlinear signal-
interference constraints. Adding more micro-stations within a nearby region results in

interference noise to macro-stations and other micro-stations, which limits the increase
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in the number of served users. In the multiple-destination case, with a small number of
micro-stations, the increased number of served users is not as significant as in the single-
destination case, especially for a larger population size. Therefore, adding a larger
number of micro-stations may not result in significant improvement compared to a
relatively small number of micro-stations. This is important information for
governmental agencies to consider when they have limited budgets.

V.4.2 Evacuation Efficiency Analysis

With the knowledge that more agents can be served with additional micro-station
facilities during an evacuation, the next question is whether or not the improved
teleservice helps evacuation efficiency. The outputs of “evacuation reach time” are given
in Tables 5-27 and 5-28 for the Boston and San Francisco areas, respectively.

For each set of experiments, we barely observe differences in clear time,
destination reach time, and total traffic over time. For example, in the no micro-station
experiment set 41, about 35% of evacuees lack teleservice, but the evacuation time is
very close to that of experiment set 44 with 15 micro-stations, with only 17% of
evacuees not having teleservice.

Does this mean that telecommunication service has no impact on the evacuation
time? Note that all these experiments are conducted on an SF-NW. Although certain
agents cannot send or receive route/destination information because they lack teleservice
at some point in time, they can avail of information sharing on social networks once they
travel to a region where they are able to connect to a cell station. Moreover, the small-

world property of social networks makes the information reach every agent quickly,
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which helps guarantee that all agents can receive the information even when they cannot
have telecommunication service all the time. This is another proof that having social

media can improve the agent evacuation experience.

Table 5-27: Boston: Micro-Station usage output of single destination — evacuation efficiency

. Avg. Clear 95 Reach 30 Reach Ave std -Iotal
Set Experiment Avg. s . . . Reach  Reach |mTraff
Spd UnServe | Time Time Time Time Time |over time
37|100Agents Kj10 Kmi16 OD1 PO 40.26 35.86| 48990 478.70 465.60 35913 7948 644530
38| 100Agents Kj10 Kmil6 _OD1_P5 40.04 28.87 450.70 47480 463.90 358.13 77.91] 6445.60
39| 100Agents Kj10 Kmi6 OD1 P10 40.66 2998 491.60 479.10 464.90 35798 79.94| 6215.60
40]100Agents_Kj10 Kml6 OD1_P15 40.45 26.85 45410 476.00 461.60 355.65 79.111 6213.70
41]200Agents_Kj20 Km32 OD1_PO 31.16 69.49] 716.50 690.10 660.50 46528 139.39| 38340.80
42]1200Agents Kj20 Km32 OD1 P35 30.55 51.74 730.10 701.00 670.60 475.83 141.37| 40223.70
43]200Agents_Kj20 Km32 OD1_P10 31.31 42.50 713.70 686.50 659.30 46512 138.56| 38623.10
44]200Agents Kj20 Km32 OD1 P13 30.72 35.07 719.56 689.78 661.78 470.65 138.20] 39126.22
45]300Agents Kj35 KmS6 OD1 PO 25.73 82.55 962.30 913.80 §72.10 58494 202.94] 94507.70
46|300Agents K335 KmS6_OD1_PS 26.00 5951 94230 §96.50 85220 578.22 198.33| 92816.30
47]300Agents Kj35 Km36 OD1 P10 26.09 52.47 93230 §92.30 §53.10 57747 196.50] 92313.90
48|300Agents_Kj35_Km36_0D1_P13 26.12 50.45 943.20 §99.20 §57.00 578.70 197.79] 92615.70
49]100Agents Kj10 Kmi16 OD2 PO 43 81 35.47 709.00 539.60 456.60 37335 84 48| 4203.30
50| 100Agents Kj10 Kmi6 _OD2_P5 43.73 28.03 744 90 55490 461.90 375.64 91.29] 3%41.70
51|100Agents Kj10 Kmi6 OD2 P10 43 66 23704 744 .43 58214 49714 38335 93.62| 4280.14
52| 100Agents_Kj10 Kmil6 OD2_P15 43.67 23.50 714.30 569.30 451.20 382.74 89.53] 4033.30
53|200Agents K20 Km32 OD2_PO 36.80 54.62 §72.20 T48.20 677.90 464.86 140.51| 27318.00
34|200Agents K20 Km32 OD2 P35 36.63 45.70 976.80 75520 679.00 472.14 148 48| 27776.70
55|200AgentsKj20 Km32 OD2_P10 36.28 40.28 887.50 730.70 672.40 477.4% 142.41| 28705.80
56|200Agents Kj20 Km32 OD2 P13 36.41 3341 928.90 728.30 681.20 472.23 144,60 28101.20
57|300Agents Kj35 KmS6 OD2 PO 32.11 64.631 1036.70 §20.80 795.50 53925 181.96| 66404 80
58|300Agents K535 KmS6 _OD2_PS 32.10 56.06| 1073.40 897.50 800.90 541.66 186.48| 66701.20
39|300Agents Kj35 KmS6 OD2 P10 32.17 44.54] 1060.10 §93.60 §20.70 546.4% 18%.75| 66919.40
60]300Agents_Kj35_KmS6 OD2_P15 32.24 41.76] 1107.20 §27.50 775.90 544 86 179.56] 66612.90
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Table 5-28: SF: Micro-Station usage output of single destination — evacuation efficiency

. Avg. Clear 95 Reach 90 Reach Ave Sud .Total

Set Experiment o . . . Reach  Reach |inTraff

Avg Spd UnServe | Time Tme Time Time Time |over time
37|100Agents Kj10 Kmlé OD1_PO 33.35 44.62 477.30 462.10 450.10 35092 75.198] 6820.00]
38|100Agents Kj10 Kmils OD1 P3 3418 37.61 47310 46050 44720 34580 76.53] 6161.50]
39|100Agents_Kj10_Kmls OD1_P10 33.47 3313 48550 46550 45210 352.09 75.63] 669530
40]100Agents Kj10 Kml6 OD1 P15 33.75 2412 483.67 462.11 44522 34971 74.80] 633833
41|200Agents Kj20 Km32 OD1 PO 25.90 75.99] 710.80 670.60 646.50 463.77 132.85] 34932.20|
42]200Agents Kj20 Km32 OD1 PS5 26.00 52.76| 707.20 682.70 65530  467.59 137.30] 35345.30
43|200Agents_Kj20_Km32 OD1_P10 2592 46.13 720.40 685.10 65850  468.18 137.91] 35451.70
44|200Agents_Kj20 Km32_0OD1_P15 26.20 54.05 709.86 677.57 653.14 46281 135.70] 34604.14
45|300Agents Kj35 Km36 OD1_PO 21.81 104.16| 916.60 874.60 839.60 569.95 192.41] 84197.60
46]300Agents Kj35 KmS6 OD1 PS5 21.79 96.64 913.20 872.50 835.60 571.45 153.09] §4424.00
47]300Agents_Kj35_KmS6_OD1_P10 21.89 94 37 206.80 867.10 832.60 569.07 191.42] §4032.10
48|300Agents Kj35 Km36 0OD1_P15 21.94 62.21 917.50 885.17 §50.00 571.65 197.81] 83714.67
49]100Agents Kj10 Kmls OD2_P0 35.20 3592 659.60 562.30 511.00 358.54 99.29] 6689.90)
S0|100Agents Kj10 Kmilé OD2 P35 36.75 30.59] 63520 561.50 519.80 37043 102.77) 5842.10
51|100Agents Kj10 Kmls OD2 P10 35.66 27 .44 638.00 569.11 516.22 358.02 98.05] 6332.56
52|100Agents Kjl0 Kml6 OD2 P15 3578 27.42| 63600 57500 50389 36377 102.47] 645722
53|200Agents Kj20 Km32 OD2_PO 29.71 76.46] §43.57 695.57 636.71 44474 144.75] 29154.14
54|200Agents Kj20 Km32 OD2 P35 28.60 62.65 84313 716.63 647.13 454.50 144.41] 3170950
55|200Agents K520 Km32 OD2 P10 29.40 6533 209.60 694.00 60220 44187 142.05] 2971%9.00
36|200Agents_Ej20 Km32 OD2 P15 29.19 55.57 §78.43 716.14 630.43 448.42 145.64] 29986.25
37|300Agents_Kj35 Km36_OD2_ PO 25.38 101.76| 1052.89 878.22 820.44 540.08 197.26] 72078.56
58|300Agents Kj35 KmS6 OD2 P35 2518 50.35| 106030 867.50 806.50 53594 152.07) 72028.50
591300Agents Kj35 Kms6 OD2 P10 2545 §9.47] 106520 211.80 802.20 53478 196.32] 71338.10
60]300Agents_Ej35 Km36 OD2 P15 2494 78.59 100744 908.33 840.00 541.95 197.21] 74394.88

V.5. Summary and Conclusion

To sum up, in this chapter we have identified the importance of utilizing social
media for an emergency evacuation by examining the simulation outputs of the Boston
and San Francisco city areas. We have answered our research question—having social
media can improve evacuation efficiency. Specifically, having social media can save on

evacuation time for the majority of the population, and it can shorten the time duration
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of agents’ arrival at their destinations. It can also increase the time allowed for
individuals to travel at their desired speed by using alternative routes. Moreover,
information sharing on social networks can help balance the traffic flow and reduce
teleservice requests at a critical time. In other words, using social media not only

influences individual and group behaviors but also affects the system facility usage.
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CHAPTER VI
CONCLUSIONS AND FUTURE WORKS
VI1.1. Conclusions

In this research, we have studied the mobile telecommunication facilities’
location problem to generate a planning strategy for them during a regional evacuation to
ensure maximum connectivity and resilience of the communication systems. In our
TELP model, besides considering the traditional coverage problem, we have also
included the signal interference requirement, which is a necessary condition in cellular
systems. The user teleservice demand is time-dependent, and its geographic distribution
has been considered. These two characteristics reflect real-world situations and are
important to consider, especially for evacuation scenarios in which user demands change
spatially at different time stages. The routing constraints are integrated to utilize the
mobile feature of telecommunication facilities, reuse these facilities, and fulfill more
teleservice demands even with a limited budget.

Even for the small-sized problems, it is very hard to find optimal solutions by
using an optimization solver for the linearization model. Furthermore, the optimization
solver cannot provide solutions for medium-sized problems within several hours. To
obtain good solutions with less computation effort for this NP-hard problem, we propose
two heuristic approaches: the greedy randomized adaptive search procedure (GRASP)
and Lagrangean heuristics. Both heuristic approaches can solve test problems quickly

compared to solving the linearization model. The GRASP can yield very competitive
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solutions but needs more computational effort. In contrast, the Lagrangian relaxation
heuristics can obtain solutions very quickly but sacrifices the solution quality.

A spatial, behavioral evacuation, agent-based simulation model is proposed as
well. Our ABM uses novel FCMs as the agent decision logic that integrates the physical
environment, interpersonal communication, and historical empirical data when
determining agent decisions. This is the first time that FCMs have been applied and
implemented in the domain of travel behavior under the complicated scenario of an
extreme-event evacuation. The FCMs are suitable for representing more realistic
behavior models; with the help of FCMs, evacuees are able to make dynamic and
adaptive decisions based on real-time and updated information. By integrating the TELP
model with ABM, we are able to explore the use of mobile telecommunication facilities
and evacuees’ behaviors simultaneously.

We have utilized our ABM to examine whether or not the adoption of social
media can improve evacuation efficiency. How mobile micro-stations assist existing
cellular networks to satisfy the surging user demand during an evacuation process has
been investigated as well. The experiments were conducted on two citywide regions:
Boston and San Francisco. We have found that social media can help the majority of the
population reach their destinations faster although it may take longer to have the entire
population evacuated. Meanwhile, using social media can also shorten the time duration
of individual arrivals at the destinations. Moreover, we have shown that using social
media can improve the usage of mobile micro-stations and fulfill more teleservice

demands. Emphasizing the importance of social media use during facility planning can
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help emergency managers or commercial agencies improve facility use, enhance service

quality, and reduce expenses.

V1.2. Future Works

Although many interesting insights have been revealed in this research, it can be
further extended and improved in multiple directions.

Considering the TELP model, the proposed heuristic approaches can be
improved in terms of computational time. Different Lagrangian heuristics can be
developed by using different structures or solutions from other heuristics as a starting
point. More efficient preprocessing techniques can be developed to replace the
numeration in examining the signal-interference constraints in our heuristics. To extend
the TELP model for a more general and large problem, the demand aggregation is
needed and the probability associated with demand points may be introduced.

For the ABME model, computational effort is necessary for simulating a large-
sized realistic problem. For a more realistic and accurate model, the population
distribution can be generated at the level of the census block. A further study on using
FCMs to represent travel behavior will be beneficial for this research. The travel
behavior for different groups can be explored by using different structures of FCMs to
represent different groups of evacuees.

To gain further understanding of social media usage during evacuation, the social
network structure needs to be revisited. More attention should be paid to the correlation

of geographic parameters and social connectivity. Further research is needed to show the
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impact of social media on the road congestion level, considering different road network
structures.

The ABME model developed in this research can be used for the study of
different evacuation strategies and individual evacuation decisions (when to evacuate). It

can also be generalized for travel behavior studies, information dissemination, and so on.
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