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ABSTRACT 

 

The evolving field of nanomaterial synthesis needs adaptable techniques for the 

modification and construction of multifunctional components.  In this work, a unique 

layer-by-layer (LbL) method is demonstrated as a generic pathway for nanomaterial 

stabilization and bioconjugation, facilitating manipulation and handling for new 

applications.  In particular, nanomaterials have unique optical properties that can 

potentially improve the sensitivity and long-term performance in applications such as 

optical biosensors, particularly those based on energy transfer.  However, the 

reproducible integration of nanomaterials into stable assays remains a significant 

challenge.  Therefore, the generalized LbL technique was specifically applied towards 

the fabrication of a novel nanomaterial-enabled optical sensor. 

The broader implications of this LbL technique on nanoparticles were explored 

by characterizing the capabilities and performance of multiple nanoscale core materials 

and prospective polymer coatings.  The modified nanomaterials were characterized for 

their colloidal and optical stability under varying pH, buffer, and ionic strength 

conditions.  A single bilayer coating of weak and weak-strong polymers using the 

developed procedure was capable of imparting colloidal stability with a minimal 

hydrodynamic size increase; an essential feature for energy transfer sensors. 

The application of this LbL coating was demonstrated for the construction of a 

nanomaterial-enabled energy transfer sensor utilizing concanavalin A (ConA)-coated 

gold nanorods (energy acceptors) combined with fluorescent gold nanoclusters (NCs) 
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grown within ovalbumin (OVA) (energy donors).  The successful construction of the 

sensor components was verified and the concept demonstrated via reversible quenching 

in the presence of increasing glucose concentrations. 

Calcium carbonate was explored as a porous template for the encapsulation of 

affinity sensing chemistry.  The entire process was studied; synthesis of the carbonate 

template, capsule formation via LbL, and dissolution of carbonate to form a hollow 

capsule, along with the incorporation of assay components using co-precipitation.  The 

knowledge gained provides fundamental insight for improving the function of sensor 

schemes utilizing carbonate and to guide future considerations for encapsulation.  

These results demonstrate significant advances for the reliable fabrication of 

nanomaterial-enabled optical sensors.  The fundamental knowledge and experimental 

expertise developed shall guide the rational design of future sensor iterations for 

improved performance. 
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NOMENCLATURE 

 

AFM Atomic force microscope 

AgNP Silver nanoparticle 

AMP Adenosine 5'-monophosphate 

AuNC Gold nanocluster 

AuNP Gold nanoparticle 

AuNR Gold nanorod 

BSA Bovine serum albumin 

CaCO3 Calcium carbonate 

CCNP Calcium carbonate nanoparticles 

CGM Continuous glucose monitoring 

CGMS Continuous glucose monitoring system 

CHES N-Cyclohexyl-2-aminoethanesulfonic acid 

ConA Concanavalin A 

CTAB Cetyltrimethylammonium bromide 

DHLA Dihydrolipoic acid 

DI Deionized 

DLS Dynamic light scattering 

EA Ethanolamine 

EDC N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride 

EDTA Ethylenediaminetetraacetic acid 
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EE Encapsulation efficiency 

FAD Flavin adenine dinucleotide  

FBR Foreign body response 

FITC Fluorescein isothiocyanate 

FRET Förster resonance energy transfer 

GBP Glucose binding protein 

GDH Glucose dehydrogenase 

GDL Glucono delta-lactone 

GOx Glucose oxidase 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

LbL Layer-by-layer 

MA Maleic acid 

MAA Mercaptoacetic acid 

MEF Metal enhanced fluorescence 

MES 2-(N-morpholino) ethanesulfonic acid 

MPA Mercaptoproprionic acid 

MUA Mercaptoundecanoic acid 

NC  Nanocluster 

NHS N-Hydroxysulfosuccinimide 

NP Nanoparticle 

NSET Nanosurface energy transfer 

NTA Nanoparticle tracking analysis 
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OVA Ovalbumin 

PAA Poly (acrylic acid) 

PAH Poly (allylamine hydrochloride) 

PDADMAC Poly (diallyldimethylammonium chloride) 

PE Polyelectrolyte 

PEG Poly (ethylene glycol) 

PEI Poly (ethylenimine) 

PEM Polyelectrolyte multilayer 

PHOS Phosphate buffer 

PL Photoluminescence 

PSMA Poly (styrene-co-maleic anhydride) 

PSS Poly (sodium-4-styrenesulfonate) 

PSS-co-MA Poly (4-styrenesulfonic acid-co-maleic acid) 

PVSA Poly (vinylsulfonic acid) 

QD Quantum dot 

QY Quantum yield 

RCF Relative centrifugal force 

RET Resonance energy transfer 

SEM Scanning electron microscope 

SMBG Self-monitoring of blood glucose 

SNR Signal-to-noise 

SP Solvent precipitation 
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SS Styrene sulfonate 

TEM Transmission electron microscope 

TMAH Tetramethylammonium hydroxide pentahydrate  

TOPO Trioctylphosphine oxide 

TRIS Tris (hydroxymethyl) aminomethane  

TRITC Tetramethyl rhodamine isothiocyanate 

UCNP Upconverting nanoparticle 

UV Ultraviolet 
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1. INTRODUCTION 

 

Chronic diseases such as heart disease, diabetes, cancer, and arthritis are the 

leading cause of death and disability in the United States.1, 2  Nearly 50% of all adults are 

affected by chronic disease and 25% of those affected have two or more chronic 

conditions.1  Chronic diseases and the associated complications account for 86% of all 

health care spending;2 diabetes alone totals $245 billion annually.3  In many cases 

chronic disease can be prevented or controlled but usually is not curable.  The etiology 

of chronic disease is not completely understood because it involves a complex 

combination of genetic, environmental, and lifestyle factors.  The management, 

prevention, and understanding of chronic disease could be improved by utilizing 

implantable biosensors to continuously monitor disease related biomarkers.  The 

information gathered could then be coupled with therapeutic options to deliver adaptive 

treatment. 

The vision of a closed-loop system for real-time diagnosis and treatment is 

particularly suitable for the treatment of diabetes mellitus.  Diabetic patients manage 

their disease by monitoring blood glucose levels throughout the day typically using the 

finger-prick method.  However, while this method is accurate, the discreet testing does 

not provide a complete picture of the fluctuations and trends of blood glucose throughout 

the day.  Improper treatment with insulin based on a single inaccurate measurement may 

lead to potentially life threatening consequences.  More effective treatment requires 

continuous monitoring to provide more information on how blood glucose levels are 
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trending.  There are currently several FDA approved devices that utilize an indwelling 

percutaneous electrochemical electrode for continuous glucose monitoring (CGM).4, 5  

These devices provide continuous monitoring but have insufficient accuracy and a 

limited in vivo lifespan of 3 – 7 days due to complications that stem from the foreign 

body response (FBR).6  These devices become inaccurate without frequent calibration 

and performance diminishes as the FBR progresses.  Research to solve this problem has 

focused on alleviating the FBR, but little progress has been made for improving the 

accuracy or lifespan of these electrochemical sensors. 

Affinity sensors offer an alternative sensing method with the potential for long-

term, real-time sensing capabilities without reagent consumption or byproduct 

formation.  However, these systems are currently limited by component instability and 

their usage of organic dyes.  For energy transfer systems, the spectral overlap greatly 

affects sensitivity.  Due to the physiochemical properties of most available dyes, there is 

a trade-off between the overlap integral and background noise introduced due to direct 

excitation or spectral bleed-through.  Organic dyes also photobleach when they are 

repeatedly optically interrogated, leading to decreased accuracy and sensitivity.  

Replacement of dyes with spectrally tunable and large Stoke-shift nanomaterials, should 

vastly improve the sensitivity, accuracy, and long-term photo-stability of optical sensors. 

Quantum confined luminescent nanomaterials provide a superior alternative as 

fluorescence donors because of their size tunable properties, multiplexing capabilities, 

resistance to photobleaching, and large effective Stokes-shift.7-9  As acceptors, noble 

metal NPs have large extinctions and strong resonant interactions with light due to 
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surface plasmons.10  The size tunable optical properties and resistance to photobleaching 

make metallic NPs a superior alternative as acceptors in energy transfer schemes.11  

Additionally, energy transfer between some nanomaterials has been shown to follow the 

1/R4 distance dependence of nanosurface energy transfer (NSET) rather than the 1/R6 

dependence of Förster resonance energy transfer (FRET).  This increased energy transfer 

efficiency should significantly improve the sensitivity of competitive binding energy 

transfer sensors.12 

Integration of these and other nanomaterials into bioassays requires precise 

control over synthesis and modification in order to achieve the desired properties and 

effectively couple with biological components.13  The capabilities for nanomaterial 

synthesis are rapidly advancing; producing higher quality materials that improve optical 

performance, simplify synthesis, and mitigate toxicity.14  Nanomaterials such as 

quantum dots (QDs) are produced in organic solvents, requiring an additional procedure 

for surface modification and transfer to aqueous solvents.  These different methods 

having varying tradeoffs between complexity, stability (colloidal and optical), quantum 

yield (QY), and hydrodynamic size.13, 15-17  These different materials and surface 

coatings require individual optimization and specific chemical modification for further 

use; thus, a generic surface modification approach is highly desired. 

The sensing chemistry must be encapsulated in a hollow capsule for in vivo 

deployment.  The sensing components are packaged in hollow particles with a semi-

permeable polymer shell that acts as a barrier between the sensor and host environment.  

The membrane mesh size must be small enough to prevent the larger macromolecule 
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sensing components from being released into the host environment and to keep the larger 

bimolecular components of the host environment from disrupting the sensor chemistry.  

The mesh size must be large enough to allow the small analyte molecules (i.e. glucose) 

to diffuse into the capsule interior to be analyzed by the sensor.  The outside wall of the 

capsule can also be engineered for enhanced biocompatibility with the surrounding 

tissue when implanted.18  A major challenge for the encapsulation of material is the 

retention of the protein activity during the capsule formation process; requiring gentle 

processing and mild conditions for entrapment, shell deposition, and dissolution.  

Calcium carbonate (CaCO3) is a commonly used template for material encapsulation 

because of its high effective surface area, biocompatibility, high porosity, large pore 

size, ease of production under ambient conditions, and ability to be dissolved with mild 

treatment.19-23  The development of a fully encapsulated and nanomaterial-enabled 

competitive binding sensor would be a substantial step towards long-term implantable 

biosensors. 

The content of this dissertation has been organized to explain the development of 

the fundamental and applied knowledge required to construct a nanomaterial-enabled 

energy transfer biosensor.  Section 2 provides an overall background of glucose sensing 

with a focus on affinity based approaches and theory; more specific background is 

included in each subsequent section.  Section 3 describes the method development for 

pH dependent modification of high surface curvature nanomaterials with a focus on 

characterizing colloidal and optical properties after modification.  Portions of this 

section were published in ACS Nano.24  Section 4 describes the characterization of 
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polymer modified nanomaterials as low hydrodynamic size nanomaterials for 

bioconjugation, with a focus on colloidal stability and determining nanoparticle (NP) 

concentration in relation to changes in optical properties.  Section 5 describes the 

construction and testing of a reversible energy transfer sensor utilizing gold nanorods 

(AuNRs) and protein stabilized gold nanoclusters (AuNCs).  Section 6 describes the 

development of a new method to synthesize CaCO3 NPs and subsequently nanocapsules.  

The development of a new method to dissolve CaCO3 without chelation for the 

application of encapsulating ConA is also explored.  Portions of this section were 

published in the Journal of Colloid and Interface Science25 and Applied Materials and 

Interfaces.26  Finally, section 7 describes the future direction of this work for the 

development of new nanomaterial sensors and encapsulation schemes. 
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2. BACKGROUND 

 

2.1. Diabetes Mellitus 

As of 2014, an estimated 29.1 million people in the US have diabetes mellitus, 

with 8.1 million of them currently undiagnosed.27  Diabetes mellitus is characterized as 

the inability to maintain normal blood glucose levels due to either an inability to produce 

insulin (type 1) or correctly utilize insulin (type 2).  Type 1 diabetes is an autoimmune 

disorder where pancreas beta cells are no longer able produce insulin at concentrations 

required to effectively modulate blood glucose.  Type 2 diabetes is an acquired disorder 

that occurs due to a combination of genetic and lifestyle factors.  Type 1 patients require 

regular insulin injections in order to maintain healthy blood glucose levels, while type 2 

patients can typically manage their disease through proper diet and exercise.  In both 

cases, monitoring blood glucose levels is critical for disease management because 

sustained hyperglycemia leads to severe long-term tissue damage to the retina, kidney, 

and nerves, while acute hypoglycemia can result in coma or death.28, 29 

2.2. Continuous Glucose Monitoring 

Disease management requires monitoring of blood glucose levels throughout the 

day.  The growing prevalence of diabetes has led to significant research efforts towards 

more reliable and less invasive technologies; however, the self-monitoring of blood 

glucose (SMBG) by measuring whole blood using the finger-stick method still remains 

the current standard of care.  Disease management requires measurement of blood 

glucose a minimum of 5 – 8 times a day.  However, due to the inconvenience (i.e. 
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aversion to pain, cost of supplies) patients often forgo measurements, providing an 

incomplete history of the daily fluctuations in blood glucose levels.30  These non-

compliance issues can be averted by the use of implantable sensors that continuously 

monitor throughout the day and during activities which preclude manual measurement. 

 Commercial Glucose Sensing Technology 

There are currently several FDA approved continuous glucose monitoring 

systems (CGMSs) currently available from Medtronic and DexCom.4, 5, 31  These devices 

utilize an indwelling transcutaneous electrochemical electrode for amperometric 

detection of the hydrogen peroxide byproduct that is produced by the enzymatic 

consumption of glucose and oxygen.  CGM improves diabetes management by 

providing the patient with more comprehensive information of glycemic excursions and 

alerts the user before they reach predefined levels of hyper- or hypo- glycemia.  The 

CGMS trending information allows for better glycemic control compared to SMBG,32, 33 

which improves hemoglobin A1c levels34 and reduces incidence of nocturnal 

hypoglycemic events35 for both type 1 and type 2 patients.36, 37 

 Foreign Body Response of Implanted Sensors 

The main problem faced by these devices is their decreased effectiveness over 

time due to the foreign body response (FBR).6  The biological response to the initial 

tissue damage and the presence of the foreign element involves a complex cascade of 

protein infiltration, reactive oxygen release, and inflammatory cell recruitment.  These 

factors contribute to decreasing sensor performance due to biofouling of the implant 

surface, degradation of sensor components, and depletion of the local oxygen and 
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glucose.4, 38  The device requires frequent calibration to compensate for the transport 

changes and sensor lag that occurs as the FBR progresses;39 even with appropriate 

calibration the sensor performance degrades and eventually the device fails within 3 – 7 

days.  However, some of these sensors have been found to still be functional after 

explantation, indicating that the sensor chemistry is not completely failing but rather 

becomes ineffective due to diffusional restrictions from the tissue reorganization.40 

 Research Towards Improving Glucose Sensing 

A significant amount of research and development has been focused on 

improving the accuracy and long term function of these devices.4  The main approach 

has been to improve tissue integration of the implanted sensor by mediating the 

inflammation response and increasing vascularization.  This can be done by the release 

of drugs (i.e. dexamethasone, vascular endothelial growth factor, nitric oxide, etc…) or 

by improving the implant biocompatibility by engineering the chemical and mechanical 

properties.41, 42  The sensing chemistry can also contribute to the inflammation response 

due to the enzymatic consumption of substrates (i.e. glucose, oxygen) and formation of 

the harmful byproducts (i.e. hydrogen peroxide, acid).  Non-enzymatic affinity based 

sensing chemistries have been pursued as an alternative to mitigate this toxicity.  

Additionally, affinity systems to not require oxygen as a co-substrate so they are not 

affected by the oxygen depletion or the decreased oxygen transport.  Recent emerging 

technologies have demonstrated long term in vivo sensing based on affinity systems 

utilizing either diboronic acid (Senseonics)43 or a human based binding protein 

(Precisence).44 
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Regardless of the sensing chemistry used, the ultimate goal is to miniaturize the 

implanted system to be minimally invasive.  This should reduce the initial tissue damage 

and removes the risk of infection and prolonged motion induced irritation associated 

with indwelling probes.45  A highly active area of research has been focused on replacing 

the electrochemical approach with optical transduction techniques towards sensor 

miniaturization. 

2.3. Optical Glucose Sensing 

Optical detection methods have the potential for higher sensitivity, better 

accuracy and less interference compared to electrochemical sensors, with the capability 

of multiplexing for multianalyte detection in a single domain.46  Non-invasive optical 

detection methods have been extensively explored for detecting glucose using 

polarimetry, luminescence, NIR spectroscopy, optical coherence tomography, Raman 

spectroscopy, and photo-acoustic tomography.47  These methods have received 

significant attention but have failed to produce a commercially viable device for 

transdermal interrogation with the desired sensitivity and specificity.46, 47  The main 

problems faced by these systems are the complex tissue optical properties and the 

inhomogeneous distribution of biological artifacts that reduce the SNR.48  Overcoming 

these issues requires amplification of the glucose signal and/or utilizing more invasive 

measurement modalities (i.e. iontophoresis, microneedles, microdialyses, fiber optic 

probes, or implants).  To achieve the ultimate goal of a worry free CGMS, a 

miniaturized, minimally invasive, and subcutaneous implant that uses transdermal 

optical interrogation was envisioned as a “smart tattoo” sensor.49-51  The implanted 
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device acts to transduce and amplify glucose detection using biological or chemical 

recognition elements.  The transduction techniques for optical glucose biosensors can be 

broadly subdivided as either biocatalytic (enzymatic) or bioaffinity.52 

 Enzymatic Sensors 

Biocatalytic glucose sensors commonly utilize highly specific enzymes, such as 

glucose oxidase (GOx) or glucose dehydrogenase (GDH), which catalyze glucose using 

oxygen as a co-substrate.  GOx is preferred over GDH because it has a higher specificity 

for glucose.52  Glucose concentration can be measured directly by changes in the protein 

intrinsic fluorescence (usually tryptophan)53 or with the addition of a fluorescently 

labeled ligand as a competitive assay.54  Direct measurement techniques have not gained 

much interest because the intrinsic fluorescence is typically very weak.  Glucose can 

also be measured indirectly by monitoring the oxygen consumption, hydrogen peroxide 

production, or local pH change.46  The measurement of depleted oxygen has received the 

most attention because oxygen phosphors are highly sensitive and have long lifetimes 

that can be reliably determined without complex instrumentation.55-59  However, 

enzymatic optical sensors suffer from many of the same drawbacks as electrochemical 

sensors.  The consumption of oxygen and glucose while producing hydrogen peroxide 

and acid places stress on the surrounding in vivo environment.  Additionally, without 

compensation of local oxygen, pH, and temperature the sensor becomes highly 

inaccurate.60, 61  For these reasons, affinity based sensors have been pursued as more 

appealing alternatives because they allow real-time sensing capabilities without reagent 
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consumption or byproduct formation and are not dependent on local oxygen 

concentration. 

2.4. Affinity Binding Sensors 

Affinity based biosensors quantify the presence of specific analytes by 

incorporating receptor molecules capable of binding reversibly.  Affinity assays have the 

potential for long-term sensing because they are generally considered “reagentless” even 

though some proteins require bound co-factors such as calcium.  Affinity assays are not 

reaction rate dependent nor rate limited, therefore changes in analyte diffusion do not 

affect sensor range or sensitivity.  Affinity systems do not consume oxygen so they are 

not affected by the depletion of local oxygen that occurs during the FBR.  They also do 

not form byproducts that could further elicit an immune response.   

The receptor element is commonly comprised of a protein62, 63 (i.e. antibodies, 

binding proteins), DNA64 (i.e. aptamers, oligonucleotides), or synthetic materials (i.e. 

boronic acid, polymers).65 The binding event can be transduced by luminescence, 

electrochemical, calorimetric, mass sensitive, magnetic, or piezoelectric methods.62, 66 

For in vivo applications luminescence is the most commonly used modality and 

generally uses either a single dye that is environmentally sensitive or two dyes that are 

capable of energy transfer.  The energy transfer approach is frequently employed using a 

competitive binding method. 
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 Competitive Binding Affinity Sensors 

The competitive binding scheme for glucose sensing involves three components: 

the (1) saccharide receptor (R) (i.e. ConA, apo-GOx), (2) saccharide analogue or ligand 

(L) (i.e. dextran, ovalbumin, or beta cyclodextrin), and the (3) analyte (A) (i.e. glucose, 

mannose, galactose, etc...).  In the absence of the analyte glucose, the saccharide 

receptor and saccharide analogue are bound in an equilibrium state depending on their 

affinity.  As the analyte enters the system it “competes” for the receptor binding site, 

displacing the saccharide analogue if the analyte has a higher affinity for the binding site 

or is present in a greater concentration.  The association constants K1 for the ligand-

receptor (LR) system and K2 for the analyte-receptor (AR) complex are given by 

equations 2.1 & 2.2 respectively. 

(2.1)  𝐾1 =  
[𝐿𝑅]

[𝐿][𝑅]
 

(2.2)  𝐾2 =  
[𝐴𝑅]

[𝐴][𝑅]
 

If the binding assay is encapsulated then the total receptor (Rt) and ligand (Lt) 

concentrations are given by equations 2.3 and 2.4 respectively.  The system can be 

described in dimensionless terms by equation 2.5.67 

(2.3) [𝑅𝑡] = [𝑅] + [𝐴𝑅] + [𝐿𝑅] 

(2.4) [𝐿𝑡]  = [𝐿]  + [𝐿𝑅] 

(2.5) (
[L]

[Lt]
)

2

 + (
[𝐿]

[𝐿𝑡]
) ([

[𝑅𝑡]

[𝐿𝑡]
 –  1]  + 

[𝐴]𝐾2 + 1

[𝐿𝑡]𝐾1
)  – 

[A]K2 + 1

[Lt]K1
 = 0 

It is clear that several factors dramatically affect the sensor dynamics.  Using 

these equations the sensor response can be modeled if the association constants are 
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known.  Most importantly, the sensitivity and analytical range of competitive binding 

sensors can be optimized based on the on ligand and receptor relative and absolute 

concentrations.67-69 

 
Figure 2.1: Competitive binding glucose sensor using TRITC labeled ConA and 

FITC labeled dextran. 

The ConA/dextran competitive binding system is the most frequently studied and 

is considered a model competitive binding assay.68  An example of this competitive 

binding FRET assay is shown in Figure 2.1 where ConA is labeled with the acceptor dye 

(i.e. TRITC) and dextran is labeled with the donor dye (i.e. FITC).  In the absence of 

glucose, ConA binds to dextran and the fluorophores are brought in close proximity 

resulting in non-radiative energy transfer from the donor to acceptor dye (Figure 2.1A).  

When the analyte glucose is added to the system it displaces the dextran, reducing 

energy transfer (Figure 2.1B).  The ratiometric FRET changes in FITC/TRITC are then 
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used to determine glucose concentration.  Several donor/acceptor dye pairs have been 

studied using this approach. 

 Receptors for Glucose Affinity Sensors 

Several natural and synthetic approaches have been developed for creating 

affinity binding luminescence glucose sensors.  The advantages and limitations of 

sensors utilizing ConA, glucose binding protein (GBP), apo-GOx, and boronic acid are 

discussed. 

2.4.2.1. Concanavalin A 

ConA is a ≈104 kDa tetrameric plant lectin isolated from Jack beans.  ConA is an 

agglutinating protein containing 4 binding sites capable of binding to glycosylated 

molecules such as glycoproteins, glycolipids, and various sugars.70  The binding of 

ConA to sugars has been exploited to produce a variety of optical sensors using label 

free,71 single labeled,72 and dual labeled approaches with fluorophores,51, 73-80 

nanomaterials,81-86 or a combination of both.87-89  The most commonly used dual-labeled 

approach is the FRET based competitive binding assay using either dextran,51, 73-76, 79, 80, 

90-92 glycosylated dendrimers,77, 78 or β-cyclodextrin72, 86, 89 as the competing ligand.  

ConA based glucose assays have shown significant in vitro potential but are limited for 

in vivo applications due to their limited range, low sensitivity, and variable stability 

under physiological conditions.46 

The multiple binding sites of ConA often leads to aggregation in the presence of 

ligands presenting multiple carbohydrate moieties.  This behavior can be used to make 

highly sensitive aggregation based sensors using plasmonic NPs.81, 93-95  For luminescent 
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sensors the precipitation of ConA due to aggregation at higher temperature and low 

glucose concentrations prevents long term use.  Monovalent ligands are required to 

avoid aggregation due to intermolecular binding.96, 97 

The instability of ConA is a significant hurdle for long-term in vivo sensing.  

This has been mitigated by using ConA immobilized in a Sepharose matrix on the end of 

a fiber optic probe.73-76  The immobilization improves conformational stability and 

prevents self-agglutination98, but alters the receptor-ligand binding kinetics.  More 

recently, PEGylation of free-floating ConA has been shown to improve stability for up 

to 30 days at 37°C, without significantly compromising binding capability.99 

2.4.2.2. Apo-Glucose Oxidase 

Apo-GOx is produced by removal of the FAD co-factor from GOx to eliminate 

the catalytic activity of the enzyme, while still retaining the its binding capacity.100  Apo-

enzymes can be used as non-consuming affinity sensors for analyte detection using the 

intrinsic fluorescence of the tryptophan residue.100, 101  However, this method is not 

practical because the intrinsic fluorescence is typically weak.  Chinnayelka et al. 

addressed this problem by developing a competitive binding FRET approach analogous 

to the ConA-dextran assay.102  Apo-GOx is considered a beneficial alternative to ConA 

because it has a higher specificity for glucose, it is generally regarded as safe, and it has 

only a single binding site.103  The apo-GOx assay was still functional when entrapped in 

hollow microcapsules49, 69, 104 or dissolved core alginate spheres.105, 106  The encapsulated 

assays demonstrated glucose sensing across the physiologically relevant range but had 
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limited sensitivity.  The limited sensitivity and generally poor stability of apo-enzymes 

are major problems that have hindered progress towards use for CGM.46 

2.4.2.3. Glucose Binding Protein 

Glucose binding protein (GBP) is a highly specific binding protein that belongs 

to the family of transport mediating proteins found in the periplasmic space of gram 

negative bacteria.  GBP is a 33 kDa protein consisting of two globular domains 

connected by a flexible hinge that undergoes a large conformational change when 

binding to glucose.  Using site directed mutagenesis a single cysteine group can be 

introduced at position 26 of the C terminus near the binding site of the hinged region.  

This cysteine allowed for the site-specific covalent conjugation of an environmentally 

sensitive dye.107  When no glucose is present the environmentally sensitive fluorophore 

is confined within a hydrophobic pocket of GBP.  When GBP binds to glucose the 

conformational change exposes the dye to the aqueous environment, resulting in an 

increase in fluorescence intensity.  This mechanism has been exploited by several groups 

to produce intensity, intensity ratio, and lifetime based systems using a variety of 

dyes.107-116 

Several FRET based sensing mechanisms have also been developed either by 

labeling the globular domains with dyes or by introducing fused fluorescent proteins by 

genetically modifying the recombinant host.108, 117-119   The FRET based sensors are 

inherently ratiometric, which provides more reliable intensity measurements but have 

much lower sensitivity than the environmentally sensitive single dye systems.108 



 

17 

 

Wild type GBP is not suitable for use in glucose sensors due to its micromolar 

binding affinity that quickly saturates at the physiologically relevant millimolar 

concentrations.  Site directed mutagenesis rationally guided by X-ray crystallography 

was used to engineer mutants with a binding affinity for glucose an order of magnitude 

lower than the native protein.114, 120  Screening of these mutants produced several 

variants with binding constants in the millimolar range.114, 121 

GBP has received considerable attention as an in vitro platform because of its 

high specificity and sensitivity, but only limited work has addressed the in vivo 

capabilities.  When immobilized on an optical fiber GBP showed a response time of 10 

min110 but only  retained its binding capability for 3-5 days under physiological 

conditions.122  Improving the stability of GBP at physiological temperatures was recently 

explored by engineering a series semi-synthetic binding proteins with unnatural amino 

acids; however, the resulting mutants were not tested for their long-term stability.123 

2.4.2.4. Boronic Acid 

Boronic acid belongs to a broad class of synthetic compounds capable of 

reversibly binding a variety of diols.124  The binding capability has been exploited as a 

separation tool, a building block for “smart materials”, a chemosensor ligand, and for 

protein manipulation.125  Saccharide binding leads to a conformational change in the 

boronic acid structure that can be optically transduced via photoelectron transfer, 

internal charge transfer, or FRET.126  Boronic acid can be leverage for a multitude of 

optical sensing modalities,127-130 but the most popular class of sensors utilize the 

fluorescence change in the amine modified boronic acid derivative.131  For in vivo 
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glucose sensing applications, the boronic acid moiety must be engineered to improve its 

solubility, binding affinity, selectivity, sensitivity, and stability under physiological 

conditions.  Early in this development, a modular ligand scheme was developed 

consisting of a fluorophore, a spacer, and the receptor to allow for development of each 

portion independently and to provide a common reference platform for future 

development.132  The pKa of boronic acid was tuned to near neutral pH by combining 

the boronic acid moiety with electron donor or withdrawing groups to improve affinity 

and increase fluorescence intensity.133, 134  The synthesis of a diboronic acid was 

considered a key development because it increased the affinity and selectivity for 

glucose by 300-fold and 1400-fold respectively.135  It is now established that a two 

receptor unit is required to obtain this desired selectivity for saccharides.136  The recently 

developed system by Senseonics has demonstrated long-term in vivo sensing capabilities 

of an anthracene based diboronic acid sensor coupled with an implantable micro-

fluorometer encased in a biocompatible polymer.43, 137  This system demonstrated CGM 

for 90 days in human subjects with no significant decrease in glucose prediction 

accuracy over this time period.  A critical feature of this device was the inclusion of a 

platinum catalyst to prevent oxidation of the boronic acid molecule by the hydrogen 

peroxide or reactive oxygen produced during the initial inflammation response.138  Thus 

far, this is the most promising example of a fully implantable CGMS using an affinity 

based approach. 

 

 



 

19 

 

2.5. FRET Theory Overview 

The design rules and tradeoffs for choosing appropriate donor and acceptor 

fluorophores can be determined using the well described FRET phenomenon.  FRET is 

the non-radiative resonant energy transfer (RET) between complementary donor and 

acceptor fluorophores.  The FRET phenomenon involves RET through dipole-dipole 

interactions between a donor in its excited state to an acceptor in its ground state.  The 

RET efficiency (E) is a distance dependent function described by equation 2.6.  The 

Förster distance (R0) given by equation 2.7 is the distance at which the RET is 50% and 

depends on the refractive index (n) of the surrounding media, QY of the donor (QYD), 

dipole orientation factor, and the spectral overlap.  The orientation factor (κ2) is between 

0 and 4 but typically the value of the average of two randomly oriented dipoles (2/3) is 

used.  The overlap integral J(λ) is calculated by equation 2.8 where εA is the acceptor 

extinction coefficient and FD is the normalized donor emission. 

(2.6) 𝐸 =  1 [1 + (
𝑟

𝑅0 

)
6

]⁄  

(2.7) 𝑅0  = 0.211 × [ 𝑛−4  × 𝑄𝑌𝐷  × 𝜅2  × 𝐽(𝜆)]
1

6⁄  

(2.8) 𝐽(𝜆) = ∫ 𝜀𝐴 (𝜆) 𝐹𝐷(𝜆)𝜆4∞

0
 𝑑𝜆 

Typically the R0 value is between 20-80 Å, providing useful information on the 

proximity between the fluorophore labeled components.  This provides a method to 

determine biomolecule interaction below the optical threshold by transducing near-field 

nanoscale interactions into a far-field signal that can be optically resolved.  This 

nanoscale ruler has been exploited extensively in bioimaging for quantitative analysis of 
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molecular interactions for cellular dynamics and for investigating basic molecular 

biology principles such as the conformational changes of proteins and DNA.139, 140  The 

same idea can be applied to develop functional assays for analyte detection by exploiting 

protein-protein, antibody-antigen, or ligand-receptor binding interactions. 

The overlap between donor emission and acceptor absorption is a critical 

component that must be optimized for optimal RET efficiency by choosing appropriate 

fluorophores or FRET pairs.  The FRET pairs must have sufficient overlap to allow 

optical coupling, while the emission peaks still being visually distinguishable.  

Additionally, the required overlap between donor emission and acceptor absorbance 

often leads to donor emission overlap with acceptor emission and/or direct excitation of 

the acceptor.  This produces a tradeoff between sensitivity and noise when choosing an 

excitation wavelength.  One method to alleviate these concerns is to employ a non-

fluorescent quencher such as a black hole dye or metallic NP as the acceptor.  This 

allows for tuning the overlap integral to improve RET efficiency without introducing the 

noise of the acceptor emission.  However, this also removes the ratiometric aspect of the 

system, a desirable feature for accurate quantitation when using intensity based 

approaches.  Thus, incorporation of a reference emitter that does not partake in the 

energy transfer process is necessary to reintroduce the ratiometric property.  Another 

way to overcome the donor-acceptor overlap trade-off is to replace the donor with a 

large Stokes-shift component such as a UV excitable QD.  The QD tunable properties 

allow synthesis for optimum overlap between donor emission and acceptor absorption, 
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but the donor QD can be excited well below the acceptor absorption to prevent direct 

excitation. 

It is important to recognize that the limited distance over which dye-dye 

interactions occurs limits the energy transfer efficiency between larger components such 

as high molecular weight or multi-domain proteins.  For single-domain proteins efficient 

RET requires site-specific labeling to provide a minimum distance between the binding 

site and the bound component.  This requires having a unique target residue for labeling; 

this may be present naturally, or introduced through protein engineering.107  For multi-

domain proteins that contain multiple binding sites it is necessary to have each sub-unit 

labeled otherwise ligand-receptor distances become large and variable. 

2.6. Nanomaterial-Enabled Energy Transfer 

The large extinction cross-section and local electromagnetic field of plasmonic 

NPs such as gold or silver can be used to modulate the FRET response.141  For brevity 

only AuNPs will be discussed as it is the most thoroughly studied template, however, 

identical phenomena is observed for other noble metal NPs (i.e. silver) or different 

morphologies (i.e. nanorods, nanostars, nanocubes, etc..) with associated changes 

depending on their extinction spectra.142-144  

The energy transfer efficiency between a plasmon and fluorophore is guided by 

the FRET response but with a longer range energy transfer efficiency; capable of 

quenching over distances twice that of typical dye-dye FRET pairs (Figure 2.2).  The 

quenching process dominates below the R0 distance of ≈10 nm, while fluorescence 

enhancement is probable at R0 distances greater than ≈10 nm.  This enhancement, known 
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as metal enhanced fluorescence (MEF), can exist either as excitation or emission 

enhancement depending on the spectral overlap and donor-acceptor distance (RD-A).  

Excitation enhancement occurs when the plasmon resonance overlaps with the excitation 

wavelength and the RD-A < R0.  If the plasmon resonance overlaps with the emission 

spectra either an emission enhancement will occur when RD-A > R0 or emission 

quenching when RD-A < R0.  For designing plasmon-enabled sensors these basic design 

rules must be followed when choosing optical components to obtain pure quenching or 

enhancement regimes.  For quenching based assays it is important to control these 

distances by using low hydrodynamic size particles to maintain a RD-A<R0.  This 

interplay between enhancement and quenching can lead to decreased energy transfer 

efficiency and variable results when RD-A approaches R0. 

When AuNP size decreases below 2 – 3 nm to the nanocluster (NC) regime due 

to quantum size effects the SPR disappears and the energy transfer phenomena becomes 

electron hole dependent.  When AuNCs are used as the acceptor the energy transfer 

phenomenon is described by the nanosurface energy transfer (NSET) formalism which 

follows a 1/R4 distance dependence shown in equation 2.9.12  The distance at which 50% 

efficiency is achieved (d0) is given by equation 2.10, where c is the speed of light, Фdye is 

the QY of the donor dye, ωdye is the angular frequency of the dye, ωF and KF are the 

angular frequency and Fermi wavevector respectively of bulk gold.12 

(2.9) 𝐸 =  1 [1 + (
𝑑

𝑑0 

)
4

]⁄   

(2.10) 𝑑0 =  (0.225
𝑐3 Ф𝑑𝑦𝑒 

𝜔2
𝑑𝑦𝑒𝜔𝐹𝑘𝐹

)

1

4
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Figure 2.2: Energy transfer efficiency as a function of distance calculated using 

FRET and NSET formalism. 

Figure 2.2 shows an example of the distance dependent energy transfer efficiency 

calculated for energy transfer between the dye FAM and AuNC (1.4 nm) using both the 

FRET and NSET formalisms.12  This plot illustrates the importance of energy transfer 

efficiency when using larger bimolecular recognition elements (i.e. proteins) and larger 

optical components (i.e. QDs).  At a given distance of 7 nm, approximated for the 

distance when the two components are closest, the energy transfer using the FRET 

mechanism has a 26% efficiency while the NSET mechanism provides 77% efficiency; 

an overall 50% improvement in energy transfer efficiency and much better sensor 

sensitivity.  The majority of NSET research involves studying the interaction of 

plasmonic nanomaterials and organic dyes;12, 142, 145-154 the main considerations being NP 

size, distance dependent efficiency, and wavelength dependence.  Additional work found 

that the NSET phenomenon extends towards other nanomaterials such as QDs and 
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AuNPs.  However, the underlying mechanism is still not completely understood and 

some results are contradictory.  

Experimental validation of this theory has involved studying the interaction of 

donor and acceptor components at controlled distances using defined spacers. 

 
Figure 2.3:  Schematic diagram of experimental setups for studying distance 

dependent energy transfer using (A) thin film fabrication techniques or (B) 

colloidal fabrication techniques. 

The energy transfer phenomena has been studied on two-dimensional support 

structures using thin-film fabrication techniques.155-158  However, this involves multiple 

interactions between the QD and the thin-film like metallic layer and some interaction 

between neighboring QDs, (Figure 2.3A) both of which may prevent full understanding 

of the energy transfer theory.  More elegant solutions involve colloidal fabrication 

techniques (Figure 2.3B) typically using DNA oligonucleotides,159, 160, DNA origami,161 

silica,152 or protein162 to control the spacing distance.  The spacer provides defined 

lengths for controlled interactions between a single AuNP and a single QD.  These 
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results have shown that AuNP-QD interactions extend well beyond the 10 nm FRET 

barrier to distances greater than 20 nm161, 163 depending on AuNP size.160  The long 

range interaction between nanomaterials has motivated the development of 

nanomaterial-enabled sensors.  The sensitivity of existing glucose sensing assays could 

be significantly improved by replacing the organic dyes with nanomaterials.  However, 

the construction and analyses of these nanomaterial-enabled assays remains a significant 

challenge. 

2.7. Glucose Affinity Sensors Utilizing Nanomaterial Energy Transfer  

Energy transfer glucose sensors utilizing dye-dye interactions are the most 

commonly studied and have thus far displayed the most promise towards in vivo 

applications.  However, the limitations of organic dyes in terms of lower sensitivity and 

rapid photobleaching has sparked interest in replacing one or both organic dyes with 

nanomaterials.  The development of glucose sensors utilizing two nanomaterials for 

energy transfer has been limited; existing sensors are summarized in Table 2.1. 

Table 2.1: Overview of nanomaterial glucose sensors using nanomaterials for both 

donor and acceptor components. 

 

Author Donor Acceptor

Tang et al. 2008 QD-ConA β-CD-AuNP

Peng et al. 2011 UCNP-ConA β-CD-AuNP

Zhang et al. 2011 UCNP-ConA GO-Chitosan

Hu et al. 2012 QD557-ConA QD609-Glucose

Lim et al. 2013 QD-PEG-NH2 AuNP-Mannose
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Tang et al. reported a two nanomaterial FRET based system where QD-ConA 

conjugates were quenched by β-CD coated 13.8 nm AuNPs in the absence of glucose.86  

Wang et al. demonstrated a glucose sensing with only QD-ConA conjugates, where the 

glucose binding to the ConA resulted in a decrease in QD photoluminescence (PL);85 no 

explanation was given for this unusual quenching mechanism.  Lim et al developed an 

assay for ConA based on the attenuated quenching of amine poly (ethylene glycol) 

(PEG) terminated QDs by mannose stabilized 10 nm AuNPs.81  In this assay, the QD-

PEG-NH2 is initially quench by localized AuNPs-mannose that are attached through the 

hydrogen bond between the mannose and amine.  The PL is recovered when ConA binds 

to the AuNP-Mannose, disrupting the hydrogen bonds and releasing the QD-PEG-NH2.  

Hu et al. developed a glucose assay based on the inhibited energy transfer between a 

green QD-ConA and a red QD-glucose.82  Analogous assays have been developed by 

exchanging the donor QD with an upconverting NP (UCNP) or replacing the AuNP with 

graphene oxide (GO).83, 84  These papers exist as proof of concept studies but the 

characterization of the sensors is limited.  One obvious issue is the contradiction in 

mechanism of PL quenching for QD-ConA assays.  While Tang et al. showed QD-ConA 

PL quenched in the presence of AuNP-β-CD, Wang et al. showed QD-ConA PL 

quenching directly due to glucose.  Clearly there are multiple sources of quenching 

possible, but neither paper used negative controls to explore any of these possibilities.  

This incomplete experimental design renders the results inconclusive. 

Another significant issue that is not considered in these papers is the aggregation 

that occurs when mixing multivalent ConA with multivalent glycosylated NPs.  The 



 

27 

 

aggregation behavior of ConA with glycosylated NPs is commonly utilized method for 

the colorimetric detection of glucose based on the plasmonic coupling between the 

aggregated NPs.95  For energy transfer sensors this type of aggregation can lead to data 

misinterpretation.  For example, large aggregates of ConA and NPs can settle out of 

solution rapidly precluding them from measurement.  When glucose is added, the 

aggregates are broken up and the NPs are released back into solution.  This gives a 

change in PL intensity that appears as reversible energy transfer.  Aggregation of the 

optically active nanomaterials results in changes in their optical properties such a shift in 

absorbance spectra for AuNPs and self-quenching for QDs.  Large aggregates will also 

scatter light that can cause fluctuations in intensity depending on the measurement setup.  

None of these papers characterized the degree of aggregation during the synthesis of the 

sensor components or during the assay testing. 

In general, these works fail to identify the major hurdles that currently exist that 

are preventing the implementation of nanomaterial sensors.  This is a critical aspect of 

fundamental research that is required for the field to move forward.  By not exploring 

the system in detail they are misrepresenting the status of the technology making it more 

difficult for future researchers to navigate. 

2.8. Summary 

This work encompasses the development of a competitive binding glucose sensor 

utilizing nanomaterial energy transfer.  An essential design requirement was to produce 

colloidally and optical stable sensor components, while minimizing the hydrodynamic 

size in order to optimize energy transfer efficiency.  An emphasis was placed on 
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developing robust methods and chemistry for sensor component construction that could 

be easily adapted to integrate different nanomaterials and eventually even for sensing 

different analytes.  LbL was chosen as the primary surface modification technique as it 

has a demonstrated capability to modify a large cross section of macroscopic materials 

with nanometer precision.  However, the application of LbL on nanomaterial templates 

is not a well understood process, therefore, much of this work focuses on the method 

development and characterization of this procedure.  The following sections contain the 

nanomaterial fabrication, sensor construction, and the encapsulation process; exploring 

fundamental theory, while developing the required methodologies for practical 

implementation. 



 

29 

 

3. INVESTIGATION OF THE PH DEPENDENT LBL MODIFICATION OF HIGH 

SURFACE CURVATURE NANOPARTICLES* 

 

3.1. Introduction 

Nanomaterials exhibit unique size, shape, and surface dependent properties that 

can be tailored for the development of nanotherapeutic and diagnostic devices.164-168  A 

subset of such nanomaterials are inorganic in nature; these NP colloids are typically 

synthesized in organic solvents as a variety of core and core/shell nanomaterials that 

require further surface modification for stabilization, functionalization, and transfer to 

aqueous conditions.169  Facilitating nanomaterial interaction with biological media 

requires passivation of the inorganic core with an organic shell to prevent degradation 

and aggregation that would otherwise compromise the nanomaterial physiochemical 

properties leading to undesirable nanotoxicological effects.170  Numerous surface 

modification techniques currently exist with varying tradeoffs between method 

complexity, resulting colloidal stability, chemical reactivity, and coating thickness.15  

Modification with charged polymers is of particular interest due to the combination of a 

steric barrier and electrostatic repulsion that provides a superior electrosteric 

stabilization.171  LbL is recognized as a low cost and versatile nanofabrication technique 

                                                 

*Parts of this section are reprinted with permission from “Processing and Characterization of Stable, pH-

Sensitive Layer-by-Layer Modified Colloidal Quantum Dots” by Nagaraja, A. T.; Sooresh, A.; Meissner, 

K. E.; McShane, M. J., ACS Nano 2013 7 (7), 6194-6202.  Copyright 2013 by American Chemical Society 

Inc. 
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to modify a broad range of templates with a diverse array of materials to produce 

tunable, responsive, and multifunctional devices.172-175 

3.2. AuNPs a Model Template for LbL Method Development 

The deposition of weak and weak-strong PEs onto model AuNPs was 

investigated to understand how solution pH affects PE adsorption; assessing the PE 

modified AuNPs for aggregation, surface charge, and colloidal stability.  AuNPs are 

chosen as a model template because their modification and aggregation state can be 

rapidly monitored with UV-Vis. 

 Background 

3.2.1.1. LbL on Nanoparticle Templates 

The application of LbL has been thoroughly investigated on planar substrates for 

the hierarchal assembly of multifunctional films for an assortment of applications176-178 

and was easily adapted for microparticle templates by exchanging the rinsing steps with 

multiple centrifugation/dispersion cycles.179  However, translating this process to NP 

templates is significantly more challenging due to the added restrictions to prevent 

aggregation and becomes especially difficult for NPs smaller than 30 nm.180-192  For very 

small NPs, the high surface curvature resists wrapping by rigid polyelectrolytes (PEs).  

Both theoretical and empirical work demonstrated that PE chain length should be 

approximately equal to NP circumference to promote stable wrapping.180, 181, 193, 194  

Schneider and Decher contributed significantly to this area by finding the optimal 

conditions to prevent flocculation by mainly controlling stoichiometry between a dilute 

gold NP (AuNP) concentration and a large PE excess; demonstrating a correlation 
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between the aggregation state of AuNPs viewed by TEM and the plasmon peak location 

of the UV-Vis absorbance.182, 183  We adapted this technique for coating 5 nm AuNPs, 

but found that controlling stoichiometry alone was not sufficient to prevent aggregation. 

Solution pH is recognized as a critical parameter for controlling deposition 

thickness and morphology of the weak PEs poly (allylamine hydrochloride) (PAH) and 

poly (acrylic acid) (PAA) on planar,195-201 microparticle,202-206 and NP207-209 templates.  

To our knowledge, only two publications have explored the pH dependent coating of 

high surface curvature NPs less than 10 nm.181, 185, 192  Mayya et al. studied the coating of 

7 nm AuNPs with strong PEs, poly (diallyldimethylammonium chloride) (PDADMAC) 

and poly (sodium-4-styrenesulfonate) (PSS), maintaining solution at pH 9 throughout the 

LbL process to ensure the AuNP surface ligands remained fully ionized.185  Dorris and 

coworkers studied how pH affected the interaction of 5 nm cationic AuNPs with 

PDADMAC and PSS in terms of retention of the initial stabilizing ligand and subsequent 

PE layers.181  These works established the importance of choosing the correct solution 

pH in relation to the NP charge density, but did not address the impact of PE charge 

density on the coating process. 

Strong PEs maintain a high charge density over a broad pH range that enhances 

electrostatic stability and limits film reorganization.  However, coating of high surface 

curvature NPs with strong PEs requires an increase in NaCl concentration to reduce 

chain rigidity, which simultaneously reduces NP charge density, leading to flocculation 

if the concentration is not kept fairly low.  In contrast, the advantage of PEs containing 

weak acid/base moieties arises from the ability to manipulate their linear charge density 
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and conformation through solution pH.  NPs coated with weak PEs exhibit pH 

dependent properties that can be exploited as stimuli responsive triggers but this also 

renders them susceptible to aggregation under pH extremes. Poly (4-styrenesulfonic 

acid-co-maleic acid) (PSS-co-MA) is an inexpensive, low molecular weight, 

commercially available, and high charge density weak-strong random copolymer of 

styrene sulfonate (SS) and maleic acid (MA).  The deposition of this weak-strong 

copolymer can be tuned by controlling the MA ionization but shows more resistance to 

post exposure film reorganization because of the highly charged SS groups.210-214  Using 

this copolymer for NP templates is expected to impart enhanced colloidal stability for 

these same reasons but to our knowledge this has not been reported on 5 nm AuNPs. 

The small size of NPs (QDs and AuNPs) makes recovery and efficient separation 

of excess PE a significant challenge.181, 188 High speed centrifugation for long periods of 

time improves sedimentation, but under improper conditions leads to the formation of 

tightly-packed pellets of irreversibly aggregated NPs. Separation by any size-exclusion 

method (filtration, size exclusion chromatography, or dialysis) is virtually impossible, as 

particle circumference and PE chain length must be specifically chosen to be of similar 

size;185 resulting in either PE retention or NP loss.  Furthermore, a tradeoff in volume 

and concentration exists: processing a large amount of dilute NPs is both tedious and 

expensive, whereas high concentration of sample slows down the process and the excess 

PE clogs small pore-size filters. 
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3.2.1.2. Theory of pH Dependent LbL 

The LbL modification of small NPs with weak PEs requires careful control of 

solution pH throughout the process.  We found that the process had to be split into two 

phases: (1) the adsorption phase and (2) the centrifugation (or separation) phase.  

Prevent aggregation throughout this process requires maintaining a high surface charge 

density on the NPs.  Because of this stipulation the belief is that pH should be chosen so 

that the PE being used is fully ionized.  However, for small NPs this prevents adequate 

adsorption because the fully ionized PE is too rigid to completely wrap the NP.  Figure 

3.1A shows a generic example of pH dependent adsorption with an anionic NP and a 

cationic PE.  In the acidic (red) region the PE is fully ionized and rigid, prevents proper 

wrapping.  Additionally, the NP charge density is much lower, leading to a decrease in 

interparticle distance, which increases the chance for bridging and flocculation.  As pH 

is increased to a basic region (blue) the PE becomes more flexible and NP charge density 

increases.  We believe this is the ideal region for deposition because the more flexible 

PE should be able to wrap the NP, and the high NP charge density prevents interparticle 

bridging.  However, the PE coated NP in basic pH is now weakly charged and 

ultracentrifugation under basic conditions causes aggregation.  To overcome this the 

solution is exchanged from basic to acid pH to increase the surface before 

ultracentrifugation (Figure 3.1B). 
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Figure 3.1:  Diagram depicting the pH dependent charge density interplay for both 

the NP template and the PE during (A) PE adsorption and (B) condition for 

ultracentrifugation of the PE coated NP. 

This process can be generalized to coat any anionic NP with a cationic PE by 

considering the pH dependent charge density of both components (Figure 3.2A).  The 

adsorption should occur at least 1 pH unit above the pKa of the anionic NP in the region 

of saturated charge density, while adsorption should occur at least 1 pH unit below the 

pKa of the cationic PE used to coat the NP.  For the addition of the second layer of 

anionic PE onto the now cationic NP, the process can be done in reverse (Figure 3.2B); 

this also applies to an initial coating of a cationic NP with an anionic PE. 
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Figure 3.2:  A generic example of the charge density interplay between PEs and the 

template NP for the two-step deposition cycle of the (A) first cationic layer and (B) 

the second anionic layer.  The pH regions for optimum charge density interaction 

during adsorption is marked in green and for centrifugation marked in red. 

This technique is particularly suited for coating small NPs but we believe that 

consideration of this charge density interplay provides a fundamental method to coat any 

template material with a variety of other species to form multifunctional NPs. 

 Materials and Methods 

3.2.2.1. Chemicals 

Poly (allylamine hydrochloride) (Mw = 15000 kDa),  poly (acrylic acid) (PAA) 

(Mw = 15000 kDa), poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSS-co-

MA) (Mw = 20000 kDa), 11-mercaptoundecanoic acid (MUA) (98% or 95%), 3-

mercaptopropionic acid (MPA) (99%) , gold (III) chloride trihydrate (99.9%), 

tetraoctylammonium bromide (98%) and sodium borohydride (99%) were all obtained 

from Sigma Aldrich.  
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3.2.2.2. AuNP Synthesis 

The Brust-Schiffrin method was utilized to synthesize monodisperse gold NPs 

(AuNPs).185, 215, 216  3 mL of aqueous gold (III) chloride trihydrate (HAuCl4∙3H2O, 25.4 

mM) was transferred into 8 mL of toluene by adding 25 mM of tetraoctylammonium 

bromide followed by cleaning three times of deionized (DI) H2O.  The cleaned gold salt 

in toluene phase was reduced by adding 1 mL of sodium borohydride aqueous solution 

(793 mM) under vigorous stirring.  The reduced gold salt phase was washed with 0.1 M 

HCl, 0.1 M NaOH and DI-H2O.  1 mL of MUA in toluene (2.29 M) was prepared at 

60°C and then added slowly into the preheated AuNP solution (at 60°C) causing 

precipitation.  The black precipitated MUA modified AuNPs were gathered and cleaned 

with toluene to eliminate excessive MUA.  The final precipitates were suspended in 50 

mM TRIS buffer.  The same procedure was used for producing MPA modified AuNPs. 

3.2.2.3. PAH/PAA LbL 

PAH was dissolved in 50 mM TRIS buffer at pH 7.2 or pH 9 and PAA was 

dissolved in 50 mM sodium acetate buffer at pH 4.5 or 50 mM TRIS buffer at pH 7.2; 

some additional titration was required with NaOH/HCl.  The PE solutions were then 

sonicated for 1 h.  A 5 mL solution of 12 nM AuNPMUA in TRIS buffer was rapidly 

added to 5 mL of PAH in a 50 mL conical tube under sonication for 10 min and 

incubated with mild shaking for at least 1 h.  The solution was precipitated by the 

addition of isopropanol (2:1 V/V) and centrifuged at 10 000 RCF at room temperature 

for 10 min.  For PAH at pH 9, TRIS HCl was added at 60 mg/ml before the addition of 

isopropanol.  The supernatant was decanted, leaving a gelatinous pellet that was 
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resuspended in 1 mL of pH 7.2 50 mM TRIS buffer.  Excess PAH was removed by three 

rounds of ultracentrifugation at 180,000 RCF (2 h, 1 h, and 30 min respectively).  A 5 

mL, 12 nM solution of PAH coated AuNPs was added to the PAA solution under 

sonication for 10 min and incubated with mild shaking for 1 h.  The solution was 

precipitated by the addition of isopropanol (2:1 V/V) and centrifuged at 10,000 RCF at 

room temperature for 10 min.  Excess PAA is removed by three rounds of 

ultracentrifugation at 180,000 RCF (2 h, 1 h, and 30 min respectively). 

3.2.2.4. PAH/PSS-co-MA LbL 

PSS-co-MA was dissolved in DI-H2O, sonicated for 1 h, and was titrated to pH 2 

with HCl.  A 5 mL solution of 12 nM PAH coated AuNPs (produced using the buffer 

method mentioned previously) in DI-H2O was rapidly added to 5 mL of PSS-co-MA in a 

50 mL conical tube under sonication for 10 min and incubated with mild shaking for 1 h. 

The solution was titrated with NaOH to pH 9 and precipitated by the addition of 

isopropanol (2:1 V/V) and centrifuged at 10,000 RCF at room temperature for 30 min.  

The supernatant was decanted leaving a gelatinous pellet that was resuspended in 1 mL 

of pH 9, 50 mM TRIS buffer.  Excess PSS-co-MA is removed by three rounds of 

ultracentrifugation at 180,000 RCF (2 h, 1 h, and 30 min respectively). 

3.2.2.5. Microelectrophoresis 

The zeta potential of AuNPs were determined with a ZetaSizer Nano Series ZEN 

3600 spectrometer (Malvern).  AuNPs (6-10 nM) were dispersed in 1 mM TRIS in a 

DT1070 cuvette and measured 3 times.  For pH dependent measurements the MPT-2 

autotitrator accessory (Malvern) and pH probe (Malvern) were used.  A 10 mL, 10 nM 



 

38 

 

AuNP solution in DI-H2O was titrated with either 0.1 M NaOH or 0.1M HCl at 0.5 pH 

increments.  The 10ml AuNP solution was sampled 4 times for measurement at each pH 

increment. 

3.2.2.6. UV-Vis 

Absorbance spectra were obtained on a Cary 300 UV-Vis spectrophotometer 

(Agilent) with a 6x6 multi-cell Peltier block (Agilent).  Measurements were acquired at 

300 nm/min, 0.5 nm resolution, 0.1s integration time.  Samples were measured in a 

semi-micro PMMA cuvette and baseline corrected with a cuvette filled with buffer.  

Raw spectra were filtered with a 25 wide median filter to remove noise. 

3.2.2.7. TEM Analysis 

A 10 µL portion of the AuNP stock solution for analysis was dropped onto a 

commercially-available carbon film coated-300 square mesh copper grid (CF-300 Cu, 

Electron Microscopy Sciences, Hatfield, PA) followed by 24 h of atmosphere drying.  

The AuNPs were examined by TEM (HF3300, Hitachi Scientific Instruments, Tokyo, 

Japan) operated at 300 kV with a cold field emission gun (FEG). 
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 Results and Discussion 

3.2.3.1. LbL on AuNPs 

 
 

Figure 3.3:  (A) Mercaptocarboxylic acid stabilized AuNPs after the addition of a 

(B) cationic PE followed by an (C) anionic PE.  (D) Multilayer coated AuNP after 

repeating steps B and C several times. 

The basic process for LbL modifying AuNPs is depicted in Figure 3.3.  AuNPs 

are synthesized with a stabilizing ligand, which is commonly a mercaptocarboxylic acid 

(Figure 3.3A), followed by coating with a cationic PE (Figure 3.3B) and then an anionic 

PE (Figure 3.3C) with multiple centrifugation/redispersion cycles between each step.  

This process can theoretically be repeated indefinitely to yield a multilayer coated NP 

with a desired thickness and terminal coating (Figure 3.3D). 
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Figure 3.4: The LbL experimental process shown visually: (A) AuNPMUA are mixed 

with excess PE, (B) solvent precipitation by the addition of isopropanol, (C) 

sedimentation of PE and AuNPs by centrifugation, (D) resuspension in buffer, (E) 

ultracentrifugation, (F) decanting of supernatant and resuspension in buffer. 

The procedure we developed for NP LbL splits each layer deposition cycle into a 

multistep process.  Initially, the MUA stabilized AuNP template is mixed with the 

oppositely charged PE (Figure 3.4A) at the adsorption pH.  The adsorption pH is 

selected to maximize the surface charge density of template AuNP but can be varied 

around the PE pKa to tune the PE charge density.  The mixture is then precipitated by 

the addition of isopropanol (Figure 3.4B) and centrifuged to completely sediment both 

coated AuNPs and excess PE into a gelatinous pellet (Figure 3.4C).  The solvent 

precipitation (SP) step serves to make sample processing more amenable by 

concentrating the sample volume (≈10:1) and changing suspension media from the 

adsorption pH to the centrifugation pH before ultracentrifugation.  The sediment is 

resuspended in a small volume of buffer at the centrifugation pH (Figure 3.4D) and 

ultracentrifuged to sediment the coated AuNPs (Figure 3.4E).  Since the high speed of 

ultracentrifugation can often lead to complete aggregation of NPs that have a low surface 
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charge, it is imperative that the centrifugation pH be selected to maximize the charge 

density of the terminal PE.  The supernatant containing the excess PE is decanted and 

the AuNP sediment is resuspended in buffer (Figure 3.4F).  The ultracentrifugation and 

supernatant decanting is repeated twice more to ensure removal of excess PE.  NP 

stability can be visually assessed after centrifugation steps (Figure 3.4C and Figure 3.4E) 

as we found that stable NPs always form a sediment at the bottom of the tube that can be 

easily redispersed without sonication.  The sample can then be analyzed or used for 

deposition of the next layer following the same process, while exchanging the adsorption 

pH and centrifugation pH to correspond to the next PE layer.  For brevity, the adsorption 

pH and centrifugation pH for each PE layer is denoted by a superscript and subscript 

respectively (PECentrifugation pH
Adsorption pH

). 

3.2.3.2. Solvent Precipitation 

The solvent precipitation (SP) step serves to make sample processing more 

amenable by concentrating the sample volume (≈10:1) and changing suspension media 

from the adsorption pH to the centrifugation pH before ultracentrifugation.  SP was 

explored as an alternative to ultracentrifugation, but resulted in an inability to either 

remove excess PE or recover a substantial amount of NPs.  We use the term “SP 

efficiency” to describe the duration of centrifugation for complete particle recovery and 

the percentage yield of that recovery.  Through qualitative empirical observation we 

found that SP efficiency is a function of PE concentration, PE ionization, pH, and ionic 

strength.  SP efficiency is higher for samples containing buffer (requires less time for 

recovery) than for sample in titrated DI-H2O regardless of pH (Figure 3.5, Figure 3.6).  
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SP efficiency could be further improved by the addition of excess monovalent buffer salt 

(TRIS HCl for PAH or sodium acetate for PAA) immediately before the addition of 

isopropanol (Figure 3.5, Figure 3.6).  This additional buffer salt improves precipitation, 

without inducing the aggregation that occurs with the addition of NaCl.   

  
Figure 3.5: Solvent precipitation of PAH under different conditions after (A) 

solvent addition, (B) Centrifugation for 5 min at 10,000 RCF and (C) 60 min at 

10,000 RCF. 

Complete sedimentation of samples by SP in DI-H2O requires about 60 min at 

10,000 RCF, while the buffer system with added buffer salt takes about 5 mins at the 

same speed (Figure 3.5, Figure 3.6).  Figure 3.5 shows several different conditions that 

lead to different levels of solvent precipitation for poly (allylamine hydrochloride) 

(PAH) depending on solvent, buffer concentration, and pH when (Figure 3.5A) solvent 

is added to water/buffer at a ratio of 2:1, after (Figure 3.5B) centrifugation for 5 min at 

10,000 RCF and (Figure 3.5C) after centrifugation for 60 min at 10,000 RCF.  
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Comparison between isopropanol, acetone and ethanol (Figure 3.5A: 1, 2, 4) shows that 

under identical conditions isopropanol leads to precipitation and was consequently used 

for all experiments.  For samples in 50 mM TRIS buffer at pH 7.2 (Figure 3.5A:  5) we 

get better precipitation than at pH 9 (Figure 3.5A:  4) and for samples without buffer 

precipitation is less (Figure 3.5A:  7, 8, 9).  Due to the SP efficiency at pH 9 for buffered 

solutions excess TRIS HCl was added at 60 mg/ml, which reduces pH to around 7.2 and 

increases buffer strength to improve SP efficiency (sample 3).  After centrifugation for 5 

min the sample at pH 7.2 and at pH 9 with added buffer (Figure 3.5B: 3, 5) have formed 

a clear gelatinous sediment, while the other samples have minimal sediment and remain 

turbid (Figure 3.5B: 4, 6, 7).  After centrifugation for 1 h those samples form sediment 

(Figure 3.5C: 4, 6, 7).  Samples that did not become significantly turbid (Figure 3.5A: 1, 

2, 8) did not form any sediment regardless of centrifugation time tested. 

 
Figure 3.6: SP of PAA under different conditions after (A) solvent addition, (B) 

centrifugation for 5 min at 10,000 RCF and (C) 60 min at 10,000 RCF. 
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Figure 3.6 shows several different conditions lead to different levels of PAA 

precipitation depending on solvent, buffer concentration, and pH when (Figure 3.6A) 

solvent is added to water ratio of 2:1, after (Figure 3.6B) centrifugation for 5 min at 

10,000 RCF and (Figure 3.6C) after centrifugation for 60 min at 10,000 RCF. The SP 

efficiency of PAA is generally higher than for PAH as noted by the high turbidity in 

samples 1-6 and partial turbidity in sample 7 (Figure 3.6A).  It is even possible to 

precipitate a solution of PAA at pH 4.5 in 50mM sodium acetate buffer using either 

isopropanol, acetone, or ethanol (Figure 3.6A: 1, 2, 4), however the efficacy of the 

ethanol and acetone SP was not fully tested.  After centrifugation at 10,000 RCF for 5 

min samples 1-6 were all clear with a visible pellet, while both samples 7 & 8 showed 

incomplete sedimentation (Figure 3.6B).  After 60 min of centrifugation sample 7 

formed a pellet but sample 8 only showed partial pellet formation.  Overall, PAA could 

be more easily precipitated but still showed higher efficiency with added buffer 

compared to DI-H2O.  One way to overcome the low SP efficiency of pH 4.5 DI-H2O 

samples is by titration back to pH 7.2 before SP, which leads to greater SP efficiency as 

shown by sample 6. 
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3.2.3.3. PAH/PAA LbL on 5 nm AuNPMUA 

 
Figure 3.7: (A)(B) TEM images of AuNPMUA and (C) Histogram plot of AuNP 

diameter. 

The AuNPMUA was synthesized using procedures described in the literature.185, 

215, 216 The resulting average diameter was determined spectrally217 to be approximately 5 

nm and was confirmed by TEM (Figure 3.7). Adsorption of the first cationic PE layer 

onto the anionic AuNP must occur above the surface group’s pKa (≈4.5) and near or 

below the pKa of the cationic PE.  
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Figure 3.8: Two different scenarios for pH dependent LbL: (A) PE is fully ionized 

and rigid resulting in thin films of linear PE, (B) PE is partially/weakly ionized and 

randomly coiled leading to thicker films of coiled PE. 

Two cases for PE ionization shown in Figure 3.8 were tested to understand how 

the choice of pH affects PE adsorption.  Deposition at a pH where the PE is expected to 

be more strongly ionized and rigid, leading to thinner film growth (Figure 3.8A), and at 

a pH where the PE is weakly ionized and coiled, resulting in thicker film growth (Figure 

3.8B).200  Experimentally, the weakly ionized case involved deposition of PAH (pKa ≈ 8-

9)197 at pH 9 and PAA (pKa ≈ 4.5-6.5)197, 199 at pH 4.5, while the strongly ionized case 

used pH 7.2 for both PAH and PAA; in both the weakly and strongly ionized cases the 

centrifugation was at pH 7.2. 
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Figure 3.9: LbL on AuNPMUA with PAH and PAA in buffer.  (A) Plasmon peak 

absorbance location, (B) plasmon peak absorbance increase relative to the 

absorbance at 450 nm and (C) microelectrophoresis measurements after each layer 

deposition cycle for AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟕.𝟐/𝐏𝐀𝐀𝟕.𝟐

𝟕.𝟐) multilayers (blue □) and AuNPMUA-

(𝐏𝐀𝐇𝟕.𝟐
𝟗 /𝐏𝐀𝐀𝟕.𝟐

𝟒.𝟓) multilayers (red ○).  (D) Percent recovery of AuNPs per layer 

(blue bars) and cumulative (blue --□--) for AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟕.𝟐/𝐏𝐀𝐀𝟕.𝟐

𝟕.𝟐) and per 

layer (red bars) and cumulative (red --○--) for AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /𝐏𝐀𝐀𝟕.𝟐

𝟒.𝟓). For 

AuNPMUA the percent recovery represents three rounds of ultracentrifugation only 

and no SP.  Error bars represent standard deviations of three different samples (n 

= 3). 

AuNPs are used as a model template because their aggregation state can be 

determined by monitoring changes in the plasmon peak location, which correlates to 

aggregation state observed by TEM.182, 183  When AuNPs aggregate, interparticle 

coupling produces larger redshifts in the plasmon peak location, while polymer 

adsorption without aggregation produces dielectric changes manifested as smaller 

redshifts.182, 183  The magnitude of these redshifts can vary depending on AuNP 

properties (size, concentration, stabilizing ligand, etc…) limiting direct comparison of 
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our results to those of others.  However, by measuring the relative change in plasmon 

peak absorption location after each layer deposition cycle, the conditions for preventing 

aggregation during this pH dependent LbL can be explored.  For the weakly ionized case 

an approximate 4 nm redshift occurs in the plasmon peak absorbance location after the 

deposition of the first PAH layer, followed by redshifts of less than 1 nm for subsequent 

layers (Figure 3.9A).  For the strongly ionized PE case slightly smaller redshifts are 

observed for the first bilayer but deposition of the third layer causes a larger redshift in 

plasmon peak absorbance location followed by a sharp blueshift (Figure 3.9A).  For the 

weakly ionized conditions plasmon peak absorbance intensity follows the same trend as 

plasmon peak absorbance location but for the strongly ionized case a sharp decrease in 

plasmon peak intensity after deposition of the 4th layer (Figure 3.9B).  It is not 

completely clear why this sharp decrease occurs, but this likely represents the onset of 

significant AuNP aggregation.  For both the weakly and strongly ionized cases there are 

no secondary peaks observed in the absorbance spectra to indicate any substantial 

aggregation (Figure 3.10).  The microelectrophoresis measurements for the weakly 

ionized case show a large magnitude of charge reversal greater than 40 mV after the 

addition of both PAH and PAA, but a decrease in magnitude of 5 mV between the first 

and last layer of PAH (Figure 3.9C).  For the strongly ionized charge reversal is 4-12 

mV less than the weakly ionized case for PAH and PAA layers (Figure 3.9C).  The high 

charge reversal in all cases is indicative of high colloidally stability. 
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Figure 3.10: (A)(B) UV-Vis spectra for weakly ionized LbL AUNPMUA-

(𝐏𝐀𝐇𝟕.𝟐
𝟗 /𝐏𝐀𝐀𝟕.𝟐

𝟒.𝟓)  and (C),(D) strongly ionized LbL AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟕.𝟐/𝐏𝐀𝐀𝟕.𝟐

𝟕.𝟐). 

AuNP concentration and percent recovery was determined after each layer 

deposition cycle by the absorbance at 450 nm.217  The cumulative percent recovery 

represents the accumulating loss of the multilayer process.  Overall, the percent recovery 

for each layer and the cumulative percent recovery are lower for the strongly ionized 

case compared to the weakly ionized case (Figure 3.9D).  After the deposition of 4 layers 

only 13.5% of AuNPs remained for the strongly ionized case compared to 35% recovery 

for the weakly ionized case (Figure 3.9D).  We did not continue past layer 4 for the 

strongly ionized case due to this low recovery.  For the weakly-ionized case, an average 

recovery of 78% per layer is achieved, which is lower than the reported 94%182 recovery 

for 13.5 nm AuNPs; however, it is much higher than the 30%181 reported for similarly-

sized 5 nm AuNPs. 
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The loss of AuNPs can be attributed to the combination of several factors: (1) 

transfer loss between the adsorption, solvent precipitation and ultracentrifugation steps; 

(2) accidental discarding during supernatant removal after each ultracentrifugation cycle; 

(3) unstable particles that cannot be recovered after ultracentrifugation.  The first two 

factors can be mitigated by careful handling and represent only a small percentage of the 

lost AuNPs (≈2.2% for AuNPMUA) (Figure 3.9D).  The third factor represents AuNPs 

that become unstable because of inadequate PE coating or are ultracentrifuged under 

improper pH conditions.  These unstable AuNPs become strongly immobilized on the 

tube wall or form a tightly packed pellet that is not redispersible by vortexing or 

sonication.  In contrast, when properly coated AuNPs are ultracentrifuged they form 

sediment on the bottom of the tube (Figure 3.4E) that is easily redispersed by pipette 

aspiration.  For these reasons, ultracentrifugation can be used to qualitatively assess 

AuNP stability, while also serving to purify the sample of poorly coated AuNPs.  The 

much higher loss in the strongly ionized case indicates that the pH conditions used are 

leading to a higher percentage of unstable AuNPs that are being excluded during 

ultracentrifugation.  The weakly ionized case is able to provide very high stability even 

after only a single layer for two possible reasons: (1) charge overcompensation by a 

more weakly ionized PE on the AuNP template requires more PE chains to adsorb, 

leading to a more homogenous coating of the particle surface208 and/or (2) the coiled 

conformation of the weak PE provides a more effective steric barrier.190 
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Figure 3.11: Zeta potential measured as a function of pH for (A) AuNPMUA (red ○), 

AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /𝐏𝐀𝐀𝟕.𝟐

𝟒.𝟓)1 (black ◊) and (B) AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 ) (grey □), 

AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /𝐏𝐀𝐀𝟕.𝟐

𝟒.𝟓)1.5 (blue Δ).  Error bars represent standard deviations (n 

= 4). 

To understand the pH dependent charge density and electrostatic stability the zeta 

potential as a function of pH was measured starting from pH 9 (where surface charge 

and particle stability is expected to be highest) to pH 3 (Figure 3.11A).  The AuNPMUA 

and AuNPMUA-(PAH7.2
9 /PAA7.2

4.5)1 show an expected profile of a carboxylic acid terminal 

coating with surface charge decreasing as pH decreases near the carboxylic acid pKa.  

From pH 7-9 both MUA and PAA terminated AuNPs maintain a strong negative charge 

between -45 mV and -55 mV, suggesting that the difference in pH adsorption from pH 

7.2 to pH 9 was only affecting the PAH ionization and not the anionic AuNP charge 

density.  The pH dependent microelectrophoresis for AuNPMUA-(PAH7.2
9 ) and AuNPMUA-

(PAH7.2
9 /PAA7.2

4.5)1.5 reveals an interesting apparent dynamic instability when the sample is 

titrated from pH 4-5 to pH 9 (Figure 3.11B).  The zeta potential for all PAH terminated 

particles at pH 7.2 was initially measured greater than 40 mV, however after pH was 

decreased to pH 4-5 before titration and then increased again, the particle charge became 

neutral when returning to pH 7.2, leading to aggregation.  We suspect that exposure to a 
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lower pH is causing multilayer rearrangement or multilayer interpenetration similar to 

what is observed for planar films.199  This dynamic instability is an interesting 

observation considering our previous work found that PAH coated QDs stored at pH 8 

were stable for several months,24 while under these dynamic conditions the AuNPs 

rapidly aggregate.  The AuNPMUA-(PAH7.2
9 /PAA7.2

4.5)1.5 profile also shows an apparent 

shift in the surface pKa towards basic pH, which is consistent with reports of PAH/PAA 

multilayers on larger NPs.207  It is worth noting that LbL can also be done successfully in 

pH titrated PE solutions without buffer.  Since PE adsorption is done close to the PE 

pKa, the PE itself can used as a buffer. 
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Figure 3.12: (A) Plasmon peak absorbance location and (B) microelectrophoresis 

measurements after each layer deposition cycle for AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟕.𝟐/𝐏𝐀𝐀𝟕.𝟐

𝟕.𝟐) 

multilayers in buffer (red □) and AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /𝐏𝐀𝐀𝟕.𝟐

𝟒.𝟓) multilayers in water 

(black ○).  (C) Percent recovery of AuNPs per layer (red bars) and cumulative (red 

--□--) for AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟕.𝟐/𝐏𝐀𝐀𝟕.𝟐

𝟕.𝟐) in buffer and per layer (black bars) and 

cumulative (black --○--) for AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /𝐏𝐀𝐀𝟕.𝟐

𝟒.𝟓) in water.  For AuNPMUA the 

percent recovery represents three rounds of ultracentrifugation only and no SP. 

Error bars represent standard deviations of three different samples (n = 3). 

The results shown in Figure 3.12A and Figure 3.12 below show that very similar 

results can be achieved in non-buffer solutions for plasmon peak absorbance and percent 

recovery respectively.  However, AuNPs coated in buffered solutions showed higher 

charge reversal for PAA layers (Figure 3.12B).  LbL in buffered solutions also have 

much less processing time because the SP is more efficient and less titration is required.  

However, if the case does arise where the buffers are found to negatively interact with 

the template material, non-buffer solutions can be used instead. 
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3.2.3.4. PAH/PSS-co-MA LbL on 5 nm AuNPMUA 

 
Figure 3.13: (A) Plasmon peak absorbance location and (B) microelectrophoresis 

measurements after each layer deposition cycle for AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /PSS-co-𝐌𝐀𝟗

𝟐  

1:1) (black □) and AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /PSS-co-𝐌𝐀𝟗

𝟐  3:1) (red ○) multilayers.  (C)  

Percent recovery of AuNPs per layer (black) and cumulative (black --□--) for 

AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /PSS-co-𝐌𝐀𝟗

𝟐  1:1) and per layer (red) and cumulative (red --○--) 

for AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /PSS-co-𝐌𝐀𝟗

𝟐  3:1).  For AuNPMUA the percent recovery is 

after three rounds of ultracentrifugation only and no SP. Error bars represent 

standard deviations of three different samples (n = 3). 

PSS-co-MA is commercially available as two copolymer ratios of 1:1 and 3:1 

(SS:MA), each having two pKa values of 2.9/8.8 and 2.7/8.3 respectively.212  

Multilayers of AuNPMUA-(PAH7.2
9 /PSS-co-MA9

2 1:1) and AuNPMUA-(PAH7.2
9 /PSS-co-

MA9
2 3:1) were constructed in TRIS for PAH and in titrated DI-H2O for both PSS-co-

MA copolymer ratios.  Assembly of both copolymers at pH 2 represents two different 

cases of PE rigidity where the 1:1 copolymer is expected to be less charged and more 
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coiled than the 3:1, leading to thicker and thinner coatings respectively.  The plasmon 

peak absorbance location extracted from UV-Vis absorbance measurements shows that 

after the addition of one layer of PSS-co-MA 1:1 the plasmon peak redshifts 2 nm, but 

no further is shift is observed with additional coating (Figure 3.13A).  The first layer of 

the PSS-co-MA 3:1 formed an apparently stable coating and resulting in a 1 nm redshift 

in the plasmon peak absorbance location, but the addition of another PAH layer causes 

complete particle flocculation that cannot be recovered after ultracentrifugation for 

further analyses (Figure 3.13A).  We postulate that the higher ratio of SS:MA of PSS-co-

MA 3:1 makes the PE too rigid to completely wrap the AuNP as effectively as the 1:1 

copolymer.  The subsequent addition of the third PAH layer removes some PSS-co-MA 

3:1 chains resulting in charge neutralization and complete particle flocculation.  

Microelectrophoresis shows high charge reversal after coating with both 3:1 and 1:1 

PSS-co-MA for all layers, but for PAH terminated layers the zeta potential decreases 

from about +49 mV to +35 mV from the first to third PAH layer respectively (Figure 

3.13B).  The percent recovery after the first PSS-co-MA 1:1 layer was very high (97%) 

but subsequent layers show a decreased recovery (70-80%) with a cumulative recovery 

of only 25% after 6 layers (Figure 3.13C). 
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Figure 3.14: Zeta potential measured as a function of pH for (A) AuNPMUA-

(𝐏𝐀𝐇𝟕.𝟐
𝟗 /PSS-co-𝐌𝐀𝟗

𝟐  1:1)1 (green Δ), AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /PSS-co-𝐌𝐀𝟗

𝟐  3:1)1 (purple 

□) and (B) AuNPMUA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /PSS-co-𝐌𝐀𝟗

𝟐  1:1)1.5 (orange ◊).  Arrows indicate 

direction of titration.  Error bars represent standard deviations (n = 4). 

The charge density profiles of both 1:1 and 3:1 copolymer ratios of AuNPMUA-

(PAH7.2
9 /PSS-co-MA9

2 1:1)1 show a strong negative charge of -55 mV at pH 9 and 

maintain a strong net negative charge of -40 mV even when pH is lowered to pH 3.5 

(Figure 3.14A).  This shows the ability of PSS-co-MA to enhance the electrostatic 

stability of AuNPs, especially below pH 5.  Interestingly, the PSS-co-MA 1:1 terminated 

AuNPs could even be recovered at the end of the titration cycle by centrifugation; 

however the PSS-co-MA 3:1 aggregated upon centrifugation after the end of titration (at 

pH 3.5).  Analysis of AuNPMUA-(PAH7.2
9 /PSS-co-MA9

2 1:1)1.5 shows the full hysteresis 

that occurs when the AuNPs are titrated from pH 7.2 to pH 4 and back to pH 7.2 again 

(Figure 3.14B); the profile is nearly identical to AuNPMUA-(PAH7.2
9 ).  The PSS-co-

MA/PAH multilayer system is expected to be more stable when exposed to low pH 

compared to PAA/PAH due to SS groups.  However, the similar instability when PAH is 

deposited on either PAA or PSS-co-MA suggests that the source of the dynamic 

instability may be the increasing charge of the terminal PAH, leading to surface 
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rearrangement and possibly unwrapping of the AuNP, rather than the loss in charge of 

the underlying anionic layer.  Unfortunately, that cannot be proven from the current data, 

but it serves as our current working hypothesis to be tested in future studies. 

3.2.3.5. PAH/PSS-co-MA on MPA AuNPs 

 
Figure 3.15: (A) Plasmon peak absorbance location and (B) Microelectrophoresis 

measurements for AuNPMPA, AuNPMPA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 ), and AuNPMPA-(𝐏𝐀𝐇𝟕.𝟐

𝟗 /PSS-co-

𝐌𝐀𝟗
𝟐  1:1)1 at PE:AuNP ratios of 60,000:1 (black), 30,000:1 (red ○) and 15,000:1 

(green Δ).  Error bars present standard deviations of three different samples (n = 

3).  (C) Representative TEM micrograph of AuNPMPA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /PSS-co-𝐌𝐀𝟗

𝟐  1:1)1 

produced at the 30,000:1 ratio. Scale bar is 20nm. 

The smaller capping ligand mercaptoproprionic acid (MPA) was used to stabilize 

AuNPs (AuNPMPA) using the same procedure as AuNPMUA.  The resulting AuNPMPA 

MPA stabilized NPs are expected to have a much smaller hydrodynamic size, about 5 

nm less than MUA stabilized NPs.218  This allows us to test the effect of ligand type and 

hydrodynamic size on this LbL process.  Additionally, several different PE:AuNP ratios 

of 60,000:1, 30,000:1 and 15,000:1 were tested by increasing AuNP concentration, while 

keeping PE concentration constant.  Under weakly ionized conditions the coiled PE’s 

decreased linear size should reduce the probability of interparticle bridging, which could 

potentially allow increasing the scale of production without compromising the AuNP 

aggregation state.  The PAH/PSS-co-MA 1:1 PE combination was used because 
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previous data indicated this to be a stable combination with the highest percent recovery 

for the first bilayer.  The plasmon peak absorbance location for AuNPMPA-(PAH7.2
9 ) is 

about 524 nm for all PE:AuNP ratios tested (Figure 3.15A).  The added layer of PSS-co-

MA 1:1 has a much larger shift to 529.3 nm for the 60,000:1 case and to 531.5 nm and 

531.7 nm for the 30,000:1 and 15,000:1 respectively (Figure 3.15A).  There are no 

observed secondary peaks in the spectra associated with high levels of interparticle 

bridging or aggregation for all ratios tested (Figure 3.16). 

 
Figure 3.16: (A) UV-Vis spectra for weakly ionized LbL for AuNPMPA (sold line), 

AuNPMPA-𝐏𝐀𝐇𝟕.𝟐 
𝟗 (dashed lines), AuNPMPA-(𝐏𝐀𝐇𝟕.𝟐

𝟗 /PSS-co-𝐌𝐀𝟗
𝟐  1:1)1 (dotted 

lines).  (B) Zoomed in graph of same data. 

The zeta potential of the initial ligand capped AuNPMPA (-14 mV) is much lower 

than AuNPMUA (-39.7 mV) and after PAH coating only a modest charge reversal (+20 

mV) is achieved for all PE:AuNP ratios (Figure 3.15B).  However, the addition of PSS-

co-MA 1:1 resulted in very high charge reversal (-55 mV) for every case, showing that 

with only a single bilayer, electrostatic colloidal stability can be greatly enhanced.  
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Figure 3.17: (A-H) TEM images of AuNPMPA-(𝐏𝐀𝐇𝟕.𝟐

𝟗 /PSS-co-𝐌𝐀𝟗
𝟐  1:1)1 

To further assess the aggregation state after LbL modification, TEM images were 

acquired for the AuNPMPA-(PAH7.2
9 /PSS-co-MA9

2 1:1)1 produced at the 30000:1 ratio 

(Figure 3.15C).  The image clearly shows that particle monodispersity has been 

maintained after coating with one bilayer.  The PE films cannot be resolved in these 

images; consequently, for statistical analysis all contacting AuNPs were considered 

aggregates.  Analysis of ~1400 NPs revealed that 95.4% of the AuNPMPA-(PAH7.2
9 /PSS-

co-MA9
2 1:1)1 clearly exist as single particles and less than 1% exists as aggregates of 4 

or more (Figure 3.17, Table 3.1). 
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Table 3.1: Statistical analyses of AuNPMPA-(𝐏𝐀𝐇𝟕.𝟐
𝟗 /PSS-co-𝐌𝐀𝟗

𝟐  1:1)1 aggregation 

state from TEM images. 

 

The electrosteric stability of the AuNPs was assessed by exposure to varying 

concentrations of NaCl in 0.1 phosphate buffer at pH 7.2.  The AuNPMPA are stable in 

DI-H2O but immediately aggregate when exposed to phosphate buffer with and without 

NaCl, as noted by the substantial redshift and presence of secondary peaks in the 

absorbance spectra (Figure 3.18A).  In contrast, the AuNPMPA-(PAH7.2
9 /PSS-co-MA9

2 

1:1)1 remain stable immediately after mixing with 0.1 M phosphate buffer with up to 1 

M NaCl (Figure 3.18B) and only a small shift in the plasmon peak is observed even at 5 

M NaCl (Figure 3.18B).  After a 48 h incubation at room temperature AuNPMPA-

(PAH7.2
9 /PSS-co-MA9

2 1:1)1 settling is observed in 500 mM and 1 M NaCl samples, but 

no decrease in absorbance is observed for 0 - 100 mM NaCl (Figure 3.18C).  The 5 M 

NaCl sample completely precipitated after 48 h and had to be redispersed for 

measurement and contained substantial aggregation, as noted by the peak shift and peak 

broadening.  After 7 days of storage undisturbed at room temperature, a more notable 

decrease in absorbance intensity occurs due to AuNPs settling out of solution.  However, 

there is no substantial shift in plasmon peak absorbance location from 0 - 500 mM NaCl.  
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This clearly shows how just one bilayer of LbL coating can exert such a powerful 

influence to enhance the AuNP electrosteric stability and to preserve the AuNP optical 

properties. 

 
Figure 3.18: (A) AuNPMPA in DI-H2O (black −) and 0.1 M phosphate buffer pH 7.2 

with 0mM (red −−), 50mM (green •) and 100 mM (blue •) NaCl.  (B) AuNPMPA-

(PAH/PSS-co-MA 1:1)1 in 0.1 M phosphate buffer with 0 mM (black −), 50 mM 

(orange •), 100 mM (green •), 500 mM (blue •), 1 M (red •), or 5 M (purple •) NaCl 

immediately after mixing, and (C) after 48 h and (D) 7 days at room temperature. 

 Conclusions 

The work has shown the capability for LbL modification of high surface 

curvature AuNPs with weak and weak-strong PEs using a SP assisted multistep layer 

deposition process.  The choice of solution pH during PE adsorption plays an important 

role to enhance AuNP surface coverage to increase surface charge and improve recovery 

throughout the LbL process.  In most cases a percent recovery greater than 60% per 
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layer could be achieved; however, this compounding loss resulted in only 20-30% of 

AuNPs remaining after 6 layer deposition cycles regardless of the deposition conditions 

used.  It is important to recognize that this compounding loss places limitations on the 

application of this process for LbL on very small NPs as a multilayer tool; however, this 

technique was found to be useful as a stabilization method if just a few layers are 

deposited.  The PAH/PSS-co-MA 1:1 coated AuNPs could be produced with a very high 

recovery of 84% and displayed enhanced stability over a broad pH range and in high 

NaCl concentration.  This presents a simple and high yield approach to apply a single 

bilayer to greatly enhance the electrosteric stability of the AuNP core to preserve the 

optical properties under adverse conditions.  Future work will focus on using this 

technique on other nanomaterials with an emphasis on the PAH/PSS-co-MA 

formulation, towards functionalization through covalent attachment as multifunctional 

components for biomedical applications. 

3.3. LbL on QD Templates 

 Background 

Nanocrystalline QDs with narrow size distributions and desired optical properties 

are typically synthesized in non-polar organic solvents and stabilized with hydrophobic 

ligands.219  To ready QDs for use in biomedical applications, some modification and 

engineering of the QD surface is typically necessary.  There are many routes to water 

solubilize QDs, with different methods having various tradeoffs between complexity, 

conditional stability, hydrodynamic size, and optical properties.15-17, 169  

Mercaptocarboxylic ligands are commonly used because of the simple exchange process 
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and resulting exposed carboxylic acid groups that provide for further functionalization.  

Short chain mercaptocarboxylic acid ligands offer the additional benefit of a resulting 

small hydrodynamic radius, which greatly improves efficiency for distance dependent 

energy transfer.  Commonly used short chain species include monothiolated molecules 

such as mercaptoproprionic acid (MPA), mercaptoacetic acid (MAA), or 

mercaptoundecanoic acid (MUA) but more recently the bidentate dihydrolipoic acid 

(DHLA)220, 221 has emerged as a more stable alternative because of the higher affinity of 

the dithiol compared to a monothiol.  The high affinity of thiol ligands for metallic 

surfaces allows the hydrophilic molecule to spontaneously exchange with the more 

weakly bound hydrophobic trioctylphosphine oxide (TOPO) ligands often used during 

synthesis.222  However, the transfer to water is accompanied by a severe and variable 

decrease in QY220, 223 with a colloidal stability that is susceptible to photo-oxidation 

mediated aggregation.224 

LbL electrostatic self-assembly was explored as a versatile method for surface 

modification of colloidal DHLA-stabilized QDs (DHLA-QDs).  It appears that the work 

on individual PE coated QDs is limited to two publications.  Jaffar et al. used one bilayer 

of poly (allylamine hydrochloride) (PAH) and poly (vinylsulfonic acid) (PVSA) to invert 

the charge of MAA modified QDs for surface patterning.189  This work showed the 

practicality of LbL on QDs but preceded the understanding provided by Schneider to 

provide the largest quantity of monodisperse LbL-coated QDs.  Additionally, 

characterization of the effects of the PE on the optical properties was not an emphasis.  

Jin et al. used a lipid-PEG-COOH-stabilized QD followed by two bilayers of PAH and 
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PSS as spacers for dual imaging modality plasmonic QDs.  However, the method used 

for LbL was limited by the low recovery after each wash step even when 

ultracentrifugation was used.188  It is also noteworthy that long-chain PEs have been 

used to produce controlled aggregates as nanocapsules to mitigate QD toxicity225 and to 

reverse the surface charge and adsorb negatively charged species for sensing 

applications.226-228  However, the intent of these studies was not to produce 

monodisperse coated QDs, since the conditions used are known to induce flocculation.  

The resulting QDs were not characterized as monodisperse and were likely unusable as 

stable suspensions.  Based on this limited knowledge, the focus of this work was 

developing methods to coat and retain large quantities of monodisperse QDs by 

following the techniques outlined for gold NPs.  Preventing aggregation was a major 

consideration, as availability of individual modified QDs is important for many 

applications; however, preservation of the QD optical properties was the primary goal.  

The key to this is understanding how the optical properties, specifically the QY and 

lifetime, are affected by the interaction of different PEs with the mercaptocarboxylic 

acid modified QD surface. 

 Materials and Methods 

3.3.2.1. QD Synthesis  

CdSe/ZnS core/shell QDs were synthesized according to previously reported 

procedures.219, 229, 230  The synthesis was carried out in a single mode CEM Discover 

microwave reactor operating at 300 W, 2.45 GHz.  In a typical experiment, Cadmium 

oxide (CdO, 99.99%, Alfa Aesar, 0.0514 g, 0.4 mM), tetradecylphosphonic acid 
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(TDPA,98%, Alfa Aesar, 0.2232 g, 0.8 mM) and TOPO (3.7768, 9 mM) were heated 

with continuous stirring in a 50 mL glass flask.  The mixture was heated to ∼300 °C 

under argon  (Ar) flow (~ 1 ml/sec) for 35 min.  To this mixture, a selenium stock 

solution (0.0411 g, 0.5 mM, Aldrich, 99%) dissolved in 2.4 mL (2 g) of tri-n-

octylphosphine (TOP, 99%, Aldrich) TOP) was injected at 270 °C and the reaction was 

continued for 4 min to allow the growth of the CdSe QD cores.  This was followed by 

the addition of Zn and S precursors: 1.6 mL (12 mM) of dimethylzinc (DMZ, 1 M in 

heptane, Aldrich), 0.42 mL (2 mM) of hexamethyldisilathiane (HMDS, Aldrich), and 6.3 

mL (14 mM) of TOP, for the ZnS shell formation.  The reaction mixture was heated at 

200 °C for 30 min. 

3.3.2.2. DHLA Synthesis 

DHLA was freshly prepared according to previously reported methods231.  In a 

typical experiment, 4 g of (±)-α-lipoic acid (98%, Sigma) was reduced with a fresh stock 

of excess (3 g) sodium borohydride (NaBH4, 98%, Sigma).  The reaction mixture is 

chilled to 4°C and allowed to stir for 2 h under a constant argon blanket.  It is then 

acidified with 15 mL of 12 M hydrochloric acid followed by the addition of ~100 mLs 

of toluene.  Pure DHLA is extracted from this mixture by evaporation using a rotovap 

leaving behind ~4 mL of DHLA.  About 0.5 mL of pure DHLA was added to few 

hundred milligrams of QDs and heated at ∼90 C on a hot plate with continuous stirring 

for 12 h.  The resulting mixture is suspended in 3 mL of methanol followed by the 

addition of excess (approximately 1 g) of potassium tert-butoxide (K-tBuO).  The 

solution is centrifuged and the resulting DHLA-QDs were then suspended in TRIS 
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buffer pH 8-8.5.  DHLA-QDs were filtered using a 0.2 μm syringe filter (Nalgene, PES 

0.2 μm) and then a 30 kDa centrifuge filter in order to remove any excess K-tBuO in 

solution. 

3.3.2.3. QD Characterization Techniques 

Absorption spectra were recorded on a Hitachi U-4100 UV-Vis-NIR 

spectrophotometer.  Steady-state photoluminescence spectra were collected on a 

QuantaMaster 40 system by Photon Technology International (Ontario, Canada) with a 

75 watt continuous xenon arc lamp and digital PMT detection system using 1 nm 

excitation and emission slit widths, 1 second integration time.  Fluorescence lifetime was 

collected using a TimeMaster LED system by Photon Technology International (Ontario, 

Canada) using a 405 nm LED (1.5 ns pulse width) for excitation and stroboscopic 

detection with 25 nm emission slit width, a 495 long pass filter, and sequential scanning 

with a logarithmic collection interval.  Lifetime modeling was performed using the 

algorithm included in PTI’s Felix32 software using a 3 exponential terms to fit the decay 

traces.  The quality of fitting was determined by the reduced chi-squared method.  QD 

samples were imaged using Transmission Electron Microscopy (TEM).  TEM grids were 

glow discharged using PELCO easiGlow (Ted Pella, Inc., Redding,CA) in order to make 

the grid surface hydrophilic.  Two µL of solution was dropped on a 200 lines/inch square 

mesh copper grids (Electron Microscopy Sciences, Hartfield, PA).  Grids were analyzed 

on a FEI Tecnai G2 F20 at an accelerating voltage of 200 kV.  Images were recorded 

using a Gatan CCD camera.  Zeta potential was measured using a ZetaSizer Nano Series 

ZEN 3600 Spectrometer (Malvern Instruments Ltd, Malvern, Worcestershire, United 
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Kingdom).  The measurement was carried out with a concentration of 100 nmol/L of 

QDs in 5 mM TRIS buffer. 

3.3.2.4. Layer-by-Layer 

Poly(allylamine hydrochloride) (PAH) (MW = 15 kDa) (Sigma-Aldrich) , linear 

poly(ethylenimine) (PEI) MW = 1.8 kDa (Sigma-Aldrich), 

poly(diallyldimethylammonium chloride)  (PDADMAC)  (MW = 8.5 kDa) 

(Polysciences) poly(sodium-4-styrenesulfonate) (PSS)  (Mw = 8.5 kDa) (Polysciences), 

poly(acrylic acid) (PAA) (Mw = 15 kDa) (Sigma-Aldrich), poly(vinylsulfonic acid) 

(PVSA) Mw = 4-6 kDa (Sigma-Aldrich).  All PEs were suspended in desired pH buffer 

and sonicated for 1 h prior to use in an ultrasonic bath.  DHLA-QDs are added to a final 

concentration of 10 nm to the PAH solution under sonication for 5-7 min with 

intermittent mixing and vortexing, and then left under mild shaking for 1 h in the dark.  

Both the QDs and PEs are precipitated by the addition of excess isopropyl alcohol and 

collected by centrifugation at 10,000 RCF for 15 min at RT in a Beckman Coulter 

Allegra 64 centrifuge and F0685 rotor.  The sediment is dissolved in in a small amount 

of pH 7.2-8 TRIS and ultracentrifuged overnight (12 h) at 210,000 RCF in a Beckman 

Coulter Optima Max XP ultracentrifuge and either the MLA-50 rotor with Optiseal tubes 

or the TLA-50 rotor with polyallomer microfuge tubes.  The supernatant is carefully 

removed, using minimal UV illumination to ensure QD retention.  The sediment is re-

suspended by pipette aspiration in the same pH buffer and the process is repeated for 3 

total wash cycles, the second and third centrifuge cycles are 6 h and 4 h respectively.  
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This process is repeated to add the second layer of PAA except the adsorption pH is 6-

7.2 and the centrifugation pH is 8-8.5. 

 Results and Discussion 

3.3.3.1. Layer by Layer on DHLA-QDs 

 
Figure 3.19: (A) TOPO-QDs in chloroform (B) Anionic water soluble DHLA-QDs 

(A) Cationic PE coated QDs (D) Anionic PE coated QDs. 

The basic LbL process is depicted in Figure 3.19 where (A) QDs in chloroform 

are transferred into water by the addition of (B) DHLA, followed by adsorption of a (C) 

cationic PE and then an (D) anionic PE with wash cycles between each step.  

Polyelectrolytes were chosen based on the following criteria: low molecular weight, 

broad commercial availability, and previous success in coating NPs of similar size and 

surface coating.  It is well understood that PEs should be low molecular weight in order 

to prevent interparticle bridging.  The lower limit is less well defined; theoretical 

modeling and experimental work has shown that PE chain length should be 

approximately equivalent to particle circumference,193, 194 but this choice is greatly 
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limited by commercial availability.  For cationic PEs we chose to study 15 kDa poly 

(allylamine hydrochloride) (PAH), 1.8 kDa linear poly (ethylenimine) (PEI), and 8.5kDa 

poly (diallyldimethylammonium chloride) (PDADMAC).  For anionic PEs we chose 

15kDa poly (acrylic acid) (PAA), 8.5kDa poly (sodium-4-styrenesulfonate) (PSS) and 4-

6kDa poly (vinylsulfonic acid) (PVSA). 

When using either linear PEI or PVSA initial adsorption produced colloidally 

stable QDs; however, irreversible aggregation was observed after several wash steps.  

We believe that the NPs are temporarily stabilized by the very low molecular PE acting 

similar to a surfactant, but the inability of the PE to effectively wrap the particle results 

in a weak electrostatic interaction that is disrupted after several wash steps.  In contrast, 

strong PEs such as PSS or PDADMAC result in particle flocculation due to incomplete 

surface coverage because of their inability to wrap the highly curved QD without 

increasing ionic strength (DHLA-QDs aggregate in the presence of even very low salt 

concentrations) or the PE acting as mortar to form bridges between neighboring QDs.  

Under all conditions studied we were only able to produce colloidally stable and 

monodisperse QDs with one bilayer using the weak PE pair of PAH and PAA. 

The DHLA ligand used to make QDs water soluble imparts colloidal stability 

resulting from electrostatic repulsion of the acid groups; however, this only holds at a pH 

above the pI of the surface groups and under low ionic strength conditions, requiring 

storage and use in a buffer above pH 7.221  Therefore, to effectively coat these anionic 

QDs with cationic PAH, the first adsorption step must occur above pH 7 and near or 

below the pKa of PAH (8.5-9).  We found that adsorption of the first layer of PAH at pH 
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8 or below resulted in substantial loss of QDs (sticking to the container surface) as well 

as complete aggregation during centrifugation.  Increasing the adsorption pH to 8.1 or 

above increases the QD surface charge density while simultaneously decreasing the PE 

backbone charge density; producing coated QDs that no longer adhere to the container 

surface.  The interplay of charge density between the QD and PE allows for (1) a higher 

grafting density or better surface coverage of the QD because of more effective 

wrapping by the weaker charged PE and/or (2) formation of a thicker coating by an 

increased the number of PE chains required to overcompensate for the highly charged 

QD.  The resulting QDs are colloidally stable; however, subsequent centrifugation to 

remove excess PE causes formation of an irreversibly-aggregated pellet.  To overcome 

this problem, a two-step method was developed wherein PAH is first adsorbed to the QD 

at a pH between 8.1 and 9 to form a stable coating and then the pH is decreased below 

pH 8 before centrifugation.  Increasing the surface charge density of the PAH coated 

QDs (PAH-DHLA-QDs) before centrifugation prevents pellet formation and 

aggregation.  The strong electrostatic stability imparted by the PE coating as well as the 

small size and low density of the QD necessitates extended periods of high speed 

ultracentrifugation to efficiently remove the excess PE, while minimizing the number of 

wash steps and retaining the maximum amount of sample.  Using this procedure, the 

coated QDs can be ultracentrifuged at 210,000 RCF for more than 12 h without visible 

pellet formation.  Instead, the particles form loose sediment that is easily resuspended by 

a single pipette aspiration. 
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The dilute mixing conditions and large PE excess required to inhibit particle 

crosslinking and aggregation creates a tedious bottleneck for multiple wash steps.  This 

was overcome by introducing a solvent precipitation and concentration step that 

precipitates both the QD and PE by lowering the solution dielectric constant with the 

addition of excess isopropyl alcohol.  After centrifugation at 10,000 RCF, the sediment 

mix can then be resuspended in a small amount of buffer, decreasing the volume 25:1 

before ultracentrifugation.  This first ultracentrifugation step needs to be longer in order 

to improve QD retention because the concentrated PAH becomes very viscous.  The 

second and third wash cycles were shorter but varied depending on QD and PE 

concentrations. 

3.3.3.2. Percent Recovery 

Using this procedure with an adsorption pH of 8.1 or pH 8.25 – 9 and a 

centrifugation pH of 7.2 in both cases, an average recovery rate of 76% and 86-90% was 

achieved, respectively, after the three wash steps were completed.  This recovery rate is 

similar to what was found with 13.5nm AuNPs182 and much higher than the 30% 

recovery reported for similarly-sized (5 nm) gold NPs.181  The process is repeated to add 

a layer of PAA but using a pH of 6-7.2 for adsorption and pH 8-8.5 for centrifugation. 

3.3.3.3. Zeta Potential 

Zeta potential measurements are reported in Figure 3.20 for DHLA-QDs (-38.6 ± 

1.6 mV) in 5 mM pH 8 TRIS buffer and full charge reversal for PAH-DHLA-QDs (+67 

± 7.08 mV) and PAA-PAH-DHLA-QDs (-51.5 ± 2.21 mV) in 5 mM pH 7.2 TRIS 

buffer.  The large magnitude of charge reversal of the PAH layer is higher than observed 
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with MAA-QDs189 or iron oxide coated with PAH186 but similar to that found with gold 

NPs.182  One benefit of PAH-DHLA-QDs is the added stability at lower pH conditions.  

PAH is expected to be fully ionized below pH 7.5, and particles coated with PAH are 

both highly charged and stable; in contrast, DHLA-QDs aggregate as the solution 

becomes acidic. 

 
Figure 3.20: Zeta potential of the DHLA-QD in 5 mM TRIS buffer pH 8, PAH-

DHLA-QDs and PAA-PAH-DHLA-QDs in 5 mM TRIS pH 7.2 (n = 3). 
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3.3.3.4. Aggregation Analysis by TEM 

TEM was employed to assess aggregation states and morphology of the DHLA-

QDs before and after coating with PEs.  TEM micrographs in Figure 3.21 show the (A) 

DHLA-QDs, (B) PAH-DHLA-QDs and (C) PAA-PAH-DHLA-QDs.  It is clear from 

these micrographs that after coating with two PE layers the QDs are still well-defined 

with little to no visible aggregation. 

 
Figure 3.21: TEM images of (A) DHLA-QDs, (B) PAH-DHLA-QDs and (C) PAA-

PAH-DHLA-QDs.  
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3.3.3.5. Optical Properties of LbL Modified QDs 

 
Figure 3.22: (A) Typical emission and absorbance spectra normalized to peak 

intensity and first exciton peak absorbance respectively (B) QY relative to 

Rhodamine 6G in water (one batch of DHLA-QD stock suspension, and n = 3 

separate, parallel batches of coated QDs prepared from the same DHLA-QD stock) 

(C) Normalized raw luminescence lifetime (D) Slow and fast lifetime component 

values (n = 3).  

Typical emission and absorption spectra are shown in Figure 3.22A and QY 

relative to Rhodamine 6G in Figure 3.22B for DHLA-QDs (10.12%), PAH-DHLA-QDs 

(9.8 ± 0.6%) and PAA-PAH-DHLA-QDs (0.73 ± 0.1%).232  There appears to be some 

increased scattering after the addition of PE, but there is no clear shift in the first exciton 

or emission peak.  The adsorption of PAH has an insignificant effect on the QY, while 

the addition of PAA is accompanied by a substantial decrease in QY.  We found the 
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change in QY after the addition of PAH was variable depending on the initial DHLA 

coating and the ZnS shell thickness.  With a thinner ZnS shell the QY would initially 

increase, but the addition of an anionic PE layer still resulted in a substantial decrease in 

QY below that of the original DHLA-QDs (Figure 3.23). 

  
Figure 3.23: Luminescence intensity measurements in counts of DHLA Modified 

557 QDs with a thin ZnS shell.  After the addition of PAH a large increase is 

observed, but further modification results in decrease below that of the original 

DHLA modified QD. 

The QY could not be recovered by the addition of more PAH.  The strong 

quenching of QD PL observed in the presence of PAA was also observed for PVSA 

(Figure 3.23) and PSS (Figure 3.24); both of the latter also triggered aggregation (Figure 

3.25). 



 

76 

 

 
Figure 3.24: Luminescence intensity normalized to QD concentration for DHLA 

modified 650 QDs (layer 0) after the addition of alternating layers of PAH (Layers 

1, 3, 5, 7, 9) and PSS (Layers 2, 4, 6, 8, 10). 

 

 

 

 
Figure 3.25: DLS measurements and TEM micrographs for DHLA-QD650 (layer 0) 

after the addition of alternating layers of PAH (Layers 1, 3, 5, 7, 9) and PSS 

(Layers 2, 4, 6, 8, 10). 
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The quenching is attributed to a localized acidic environment created by the 

anionic PEs causing quenching by the same mechanism that renders the DHLA-QDs pH 

sensitive.  To gain further insight into the processes involved, we studied the change in 

the long and short luminescence lifetime components after the addition of each PE.  The 

mean long lifetime component was 7.66 ± 0.47 ns for DHLA-QDs, 8.11 ± 0.49 ns for 

PAH-DHLA-QDs and 3.21 ± 0.36 ns for PAA-PAH-DHLA-QDs. (Figure 3.22C & 

Figure 3.22D).  The small lifetime component decreased after the addition of each layer, 

from 0.92 ± 0.02 ns for DHLA-QDs to 0.71 ± 0.22 ns and 0.47 ± 0.16 ns for PAH-

DHLA-QDs and PAA-PAH-DHLA-QDs respectively.  The slow lifetime component 

showed no significant change after the addition of PAH but decreased extensively after 

the addition of PAA, indicating that PAA might be affecting the surface properties of the 

QD.233  This is partially consistent with the findings of Rama et al, when the effect of 

long-chain PEs absorbed on MPA-QDs was studied a minimal effect on QD lifetime was 

observed for addition of both PAH and PSS.228  Our results confirm their observations 

for PAH, but we observe a large decrease with the addition of the anionic PE.  This 

could be attributed to our use of PAA instead of PSS or our LbL method providing more 

complete surface coverage of the second layer because we are maintaining monodisperse 

QDs.  Based on the conditions used in their study we speculate that their methods 

produce agglomerates of QDs buried in the PAH, such that many of the QDs 

contributing to the optical measurements were unable to interact with the second layer of 

anionic PE. 
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3.3.3.6. PL Sensitivity to pH 

 

 
Figure 3.26: (A) Visual colloidal stability and luminescence intensity of PAH-

DHLA-QDs in pH 3-9 TRIS buffer under UV illumination (B) Intensity 

measurements for different pH values normalized to the first exciton peak 

absorbance for DHLA-QDs (◊), PAH-DHLA-QDs (□), and PAA-PAH-DHLA-QDs 

(○). 
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Figure 3.27: Intensity measurements for different pH values normalized to the first 

exciton peak absorbance for PAA-PAH-DHLA-QDs (○). 

Figure 3.26A illustrates the pH-dependent luminescence and stability of the 

PAH-DHLA-QDs in 50mM TRIS buffer between pH 3-9.  As expected, above pH 8 we 

observe particle settling as the charge density of the PAH-DHLA-QD decreases.  Below 

pH 8, the PAH-DHLA-QDs are colloidally stable.  However, below pH 6 there was an 

irreversible blue shift in the emission (>20 nm), a change also observed with DHLA-

QDs that we attribute to the stronger acidic conditions etching the QD surface or 

reducing the affinity of the ZnS overcoat.  The pH dependent intensity measurements of 

PAA-PAH-DHLA-QDs, PAH-DHLA-QDs and DHLA-QDs are shown in Figure 3.26B.  

Error bars for the intensity measurements represent triplicate measurements of the same 

sample taken 5 min apart, showing the stability of PAH-DHLA-QDs for repeated optical 

interrogation.  The intensity of PAH-DHLA-QDs has a linear relationship with pH 

between pH 6.5 and 8 with a 15.9% change in luminescence for each 0.1 pH units.  At 

pH 8.5 and above the QDs settle out of solution, precluding accurate measurements.  QD 
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surface modification with mercaptocarboxylic acid ligands results in a reduction in 

overall QY as well as a pH-dependent sensitivity based on protonation of the carboxylic 

acid group causing changes in trap states and electron-hole recombination.234, 235  This 

mechanism has been previously exploited several times to produce both 

photoluminescence intensity235-237 and lifetime decay based pH sensors.234  The PAH-

DHLA-QDs retain this sensitivity to the surrounding environment although they exhibit 

a shift of the linear range towards higher pH.  The PAA-PAH-DHLA-QDs are 

colloidally stable over the pH range of 6 - 9; exhibiting a minimal increase in 

luminescence intensity with increasing pH that is not significant compared to 

measurement error (Figure 3.27). 

3.3.3.7. Optical and Colloidal Stability of LbL Modified QDs 

 
Figure 3.28: (A) Emission peak of DHLA-QDs and PAH-DHLA-QDs after 30 min 

and 3 h of UV exposure respectively.  (B) Visualization of colloidal stability of 

DHLA-QDs and PAH-DHLA-QDs after 8 months of storage under refrigeration in 

50 mM pH 8 TRIS buffer. 
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Although it has been reported that DHLA-QDs are stable for 6-24 months,231 we 

found that irreversible aggregation could be observed as quickly as a few days to weeks 

after production.  It was observed that any exposure to light, including measurements of 

fluorescence or absorption, may initiate an avalanche of aggregation.  This makes 

DHLA-QDs highly unsuitable for sensor applications, as each attempt to interrogate the 

system with light induces changes in optical properties and stability.  When exposed to 

UV irradiation (100 watt, 365 nm) for 30 min the DHLA-QD emission shifted towards 

the red and subsequently aggregated, whereas PAH-DHLA-QDs exhibited no shift in 

emission spectrum or aggregation even after 3 h of UV irradiation (Figure 3.28A).  

Furthermore, even when refrigerated and protected from light, DHLA-QDs still 

eventually aggregate; in contrast, PAH-DHLA-QDs remain stable for at least an 

additional 8 months compared to the very same source batch of uncoated DHLA-QDs 

(Figure 3.28B).  This implies that the PAH coating may ameliorate concerns over batch-

to-batch variability and unknown long-term stability of DHLA-QDs by preventing 

pathways to aggregation. 

 Conclusions 

This work expands on the applicable knowledge for colloidal LbL by taking into 

account solution pH as a crucial aspect when dealing with electrostatically-stabilized 

NPs and weak PEs.  Separation of the LbL process into two distinct phases provides 

more effective control of the charge density interplay between the QD and weak PE 

garnering a high recovery of monodisperse particles.  The generality of the LbL process 

permits the use of these methods to coat a variety of other materials, which is especially 
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important for low density NPs of similar size which require ultracentrifugation for 

separation. 

An interesting finding is that once the PE is adsorbed in a lower charge density 

state, a change in the pH to increase charge density does not induce complete desorption.  

Further study is necessary in order to precisely understand how variable solution pH 

affects PE grafting density and thickness during and after the adsorption phase.  The 

PAH layer remains on the surface and provides a protective coating that overcomes 

batch-to-batch variability, affording superior long-term stability for storage.  The ability 

to respond to changes in the local environment while withstanding repeated optical 

interrogation, makes PAH-DHLA-QDs a suitable alternative to DHLA-QDs for long-

term sensing applications. 

The low QY of PAA-PAH-DHLA-QDs represents severe limitations for practical 

applications.  Additionally, the PAA coating procedure could not be optimized since the 

QDs could not be incubated near the pKa of PAA (~4.5) without degradation of the QD.  

We believe that the anionic PE quenching of QD luminescence would occur for any QD 

surface coating that imparts pH sensitivity.  Future work will focus on alternative 

methods for water solubilizing QDs that provide surface passivation to prevent pH 

sensitivity and resistance to acidic degradation.  Achieving this protective effect with 

sufficiently thin layers to preserve nanoscale energy transfer is a key challenge for 

advancing these materials. 
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3.4. Investigation of Alternative QD Synthesis and Surface Passivation Methods 

 Background 

The LbL work on both AuNPs and QDs showed that a single bilayer could be 

used to colloidally stabilize the NP and preserve long-term photo-stability.  However, 

the multilayer growth on DHLA-QDs lead to a substantial decrease in the QY for the 

second layer.  We speculated this could occur for two possible reasons: (1) aggregation 

is causing self-quenching or (2) the LbL multilayers are introducing defects into the 

surface states by creating a low pH environment around the QD.  The first situation can 

be ruled out as TEM showed that LbL on AuNPs and QDs was achieved without 

substantial aggregation.  To address the second issue alternative methods for QD water 

solubilization were explored that could potentially provide better surface passivation 

during LbL modification. 

The techniques for phase transfer of QDs from organic solvent to aqueous 

solution can be broadly subdivided as either ligand exchange or over-coating methods.  

Ligand exchange involves replacing the native hydrophobic ligands with hydrophilic 

ligands.  The over-coating method involves coating the QD with amphiphilic polymers 

through hydrophobic interactions.  From the literature two potential candidates were 

identified; one ligand exchange process and one over-coating method.  These methods 

were chosen because they were reported to produce low hydrodynamic QDs that 

maintained a high QY when transferred to water; neither method was shown to have pH 

dependent intensity.238-242 
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Figure 3.29: Simplified cartoon showing the difference between (A) core shell QD 

fabrication and (B) gradient alloy.  

Another route pursued for reducing QD surface defects was to substitute the 

previously used core-shell QD fabrication technique with the newer gradient allow (GA) 

method (Figure 3.29).  Core-shell QD fabrication is a two-step hot injection method, 

where first the CdSe core in synthesized and then the ZnS shell is grown around the 

core.  In contrast, the GA method produces a CdSe core with a radially alloyed ZnS shell 

that can be grown in a single reaction.240  GA QDs exhibit less surface defects, which 

translates to a higher QY and eliminates blinking in both organic solvents and aqueous 

solution.243  The overall size of a GA QD is only 5-7 nm regardless of emission 

wavelength, while core-shell QDs are generally larger with a size dependent on emission 

wavelength.244  Additionally, GA QDs are expected to be more resistant to chemical 

etching according to the manufacturer. 

 Materials and Methods 

CdSe/ZnS GA-QDs with 560 nm and 620 nm emission were purchased from 

Mesolight.  Poly (styrene-co-maleic anhydride) (PSMA), ethanolamine (EA), 

Tetramethylammonium hydroxide pentahydrate (TMAH) and adenosine 5’ 

monophosphate (AMP) were purchased from Sigma. 
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3.4.2.1. PSMA QD Over-Coating 

The PSMA coating of QDs was achieved using the method developed by Lees et 

al. 2009 and modified by Chen et al. 2011.239, 242  A 5 mM solution of PSMA in CHCl3 

(5 mg and 10 mL) was prepared in a glass scintillation vial and sonicated for 1 h and 

mixed for 1 h prior to use to ensure PSMA was completely dissolved.  A 0.2 M EA 

solution was prepared in DI-H2O.  A 1 μM solution of QDs were suspended in 5 mL of 

CHCL3 were added to 5 mL of PSMA stock under rapid stirring.  After 1 h, 10 mL of 

EA stock was added and the solution was kept stirring for 3 h.  The QDs spontaneously 

transfer to the water phase as the EA ring-opens the anhydride group.  Excess PSMA 

and EA are removed by three rounds of ultracentrifugation at 180,000 RCF, 

resuspending in DI-H2O each time. 

3.4.2.2. AMP Ligand Exchange 

The AMP method used was initially reported by Liu et al. with minor 

modification.241  The AMP stock solutions was prepared by dissolving 1 g of AMP in 3 

mL of ethanol.  The pH of the solution was adjusted to pH 10 by the addition of 

concentrated TMAH, the AMP does not completely dissolve until pH 10 is reached.  A 5 

mL CHCl3 solution containing 1 μM of QDs was prepared in a glass scintillation vial and 

stirred vigorously.  Then 300 μL of the AMP solution was added dropwise and allowed 

to stir for 30 min, after which the QDs spontaneously transferred to the upper water 

phase.  Excess AMP was removed by three rounds of ultracentrifugation at 180,000 

RCF, resuspending in DI-H2O each time. 
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 Results and Discussion 

The AMP and PSMA protocols were very easy to follow and required very few 

reagents that were all commercially available.  The methods could be completed in one 

day with a high yield and were very reproducible. 

3.4.3.1. DLS and Zeta Potential 

 
Figure 3.30: DLS size by number histogram for QD560PSMA and QD620AMP.  

Histogram analysis is the average of three separate measurements. 

After purification the QDs were initially characterized for quality by DLS and 

zeta potential measurements.  DLS gave a hydrodynamic size of 13.97 ± 2.93 nm for the 

QD560PSMA compared to the 13.4 nm reported by Lees et al. 2009 and a size of 9.1 ± 

1.07 nm for QD620AMP compared to 7.1 nm reported by Mu et al (Figure 3.30).  Both of 

these methods yielded low hydrodynamic QDs with a size consistent with their reported 

values.  The QD560PSMA had a zeta potential of -25 mV while the QD620AMP had a zeta 

potential of -31 mV when measured in DI-H2O. 
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3.4.3.2. PL Sensitivity to pH 

 
Figure 3.31: (A) Photograph under UV irradiation and (B) PL spectra of 

QD560PSMA after being stored for 1 day in several different buffers from pH 4.5-10. 

The pH sensitivity was investigated for QD560PSMA after storage in different 

buffer solutions from pH 4.5 - 10.  The pH response the QD560PSMA under UV 

irradiation is clearly seen in Figure 3.31, but no settling is observed.  PSMA coated QDs 

were reported to only be stable between pH 4 - 6, but we found they followed the 

stability typical of a carboxylic acid coated QD as no settling was observed for pH 6 and 

above; at pH 4.5 the QDs aggregated and eventually dissolved.  Figure 3.31B shows the 

PL spectra and the large change in PL intensity for pH varying between pH 6 - 9. 

 
Figure 3.32: (A) Photograph of QD620AMP under UV light stored at pH 2 - 9 after 1 

day of incubation.  (B)  PL spectra of QD620AMP after storage for 1 day. 
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The pH sensitivity of QD620AMP was investigated by storing the QDs in a 

various buffers from pH 2 - 9.  No aggregation or settling is observed for the QD620AMP 

from pH 5 - 9 (Figure 3.32A) but they exhibit a strong pH dependent intensity (Figure 

3.32B).  At pH 4 and below the QD620AMP were degraded as shown by the spectral shift 

(Figure 3.32B).  The pH dependent response of QD560PSMA and QD620AMP had not been 

previously reported.  It also appears that both ligand exchange and over-coating methods 

are susceptible to acidic degradation even when using GA instead of core-shell QDs. 

3.4.3.3. LbL with Amino-Dextran 

The QD560PSMA and QD620AMP were coated with amino-dextran to introduce 

saccharide groups on the QD surface that could later be used to bind ConA.  The amino-

dextran was coated using the optimized pH dependent LbL process developed for PAH.  

The QY was monitored throughout this process by measuring the absorbance and PL 

after each step. 
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Figure 3.33: QY of QD560PSMA (left, green) and QD620AMP (right, red_ in CHCl3, 

after suspending in 50mM pH 9 TRIS buffer and after coating with 10 kDa amino-

dextran. 

The QD QY in CHCl3 was the value reported by the manufacturer.  The water 

soluble QD560PSMA and QD620AMP were suspended in pH 9 TRIS before mixing with 

amino-dextran.  This is also the pH that yields the highest PL intensity.  The QD560PSMA 

QY was 60% in CHCL3 but after phase transfer the QY dropped to 32%, a large 

decrease but is consistent with previous reports.  After dextran modification the QY fell 

to 8% (Figure 3.33).  The QD620AMP had an initial QY of 80% in CHCl3 and only 

decreased by 8% after transfer to water.  After modification with dextran another small 

decrease occurred to give a QY of 65% (Figure 3.33).  The QY of AMP QDs is 

significantly higher than PSMA QDs and is the highest reported to date for any low 

hydrodynamic QD and is consistent with previous reports from the original authors. 
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3.4.3.4. PL Sensitivity to Glucose 

 
Figure 3.34: PL intensity for (A) QD620AMP and (B) QD560PSMA exposed to varying 

concentration of glucose.  (C) Comparison of intensity change for QD560PSMA 

(green ○) and QD620AMP (red □) when exposed to glucose. 

The glucose sensitivity of QD560PSMA and QD620AMP was checked as a quick 

negative control as no glucose sensitivity has been reported nor was expected.  

Unfortunately, the QD620AMP exhibited a large decrease in PL intensity when exposed to 

glucose (Figure 3.34A), with a 35% decrease at 50 mM.  QD560PSMA had a 9% decrease 

in PL intensity at 50 mM glucose (Figure 3.34B).  In both cases, the PL intensity at 100 

mM was higher than 50 mM.  The QD620AMP also exhibited quenching to mannose and 

the sensitivity still occurred after coating with dextran (data not shown).  While 

QD620AMP has a better QY when transferred to water and after coating with dextran, it is 

susceptible to very strong quenching by glucose.  In contrast, QD560PSMA had a large 
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decrease in QY after water solubilization and dextran coating but were less sensitive to 

glucose.  The glucose response of QD560PSMA and QD620AMP has some potential for 

creating a crude ratiometric glucose sensor by combining the two QDs in a single assay 

and could potentially be optimized by varying the two different QD concentrations. 

 Conclusion 

The ligand exchange with AMP and over-coating with PSMA were explored as 

alternative QD solubilization techniques.  These methods were easy to perform and were 

highly reproducible.  The AMP ligand exchange procedure proved to be the superior 

method for maintaining QY after phase transfer and amino-dextran modification 

compared to PSMA.  The core-shell QDs used previously for DHLA-QDs were replaced 

with the higher quality, commercially synthesized, GA alloy QDs.  However, both AMP 

and PSMA coated QDs exhibited a pH dependent PL intensity with similar response to 

DHLA-QDs and a degradation at pH 4 or below.  Unfortunately, both AMP and PSMA 

modified QDs showed an unsuspected quenching in the presence of glucose that was not 

entirely predictable.  This prohibits the use of these QDs in energy transfer based 

glucose assays because the non-specific quenching would act inversely with a quenching 

assay that should “turn on” in the presence of glucose.  Clearly, the current state of 

research on low hydrodynamic semiconductor QDs for biomedical applications is still 

lacking.  Unfortunately, many of these papers fail to either investigate or report on 

critical deficiencies, even rudimentary aspects such as pH dependent PL.  Moving 

forward requires identifying alternative photoluminescent materials with clearly reported 

optical stability against non-specific interference. 
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4. LOW HYDRODYNAMIC LBL MODIFICATION OF NANOMATERIALS FOR 

STABLE BIOCONJUGATION  

 

4.1. Introduction 

LbL can play a critical role in the development of nanomaterial-enabled energy 

transfer sensors by providing a generic route for the stabilization and bioconjugation of 

nanomaterials.  The main goals of this section were to investigate LbL modification as a 

(1) low hydrodynamic size coating for improving colloidal stability and as a (2) 

transitional coating to provide a stable pathway for bioconjugation. 

We wanted to demonstrate the ability of LbL to impart electrosteric stability with 

a minimally sized hydrodynamic coating.  For energy transfer sensors, a thin coating is 

necessary to minimize the donor/acceptor distance and to maximize energy transfer 

efficiency.  The nanometer precision of LbL has been thoroughly studied on macro- and 

micro-scale substrates but it has not been fully characterized for NP templates, 

particularly in the hydrated state.  It has been shown that particle stability can be 

increased by the addition of 5 - 10 PE layers but this also introduces a much thicker 

coating.190  However, based on the results the previous section for LbL on AuNPs we 

believe that a single bilayer is capable of imparting significantly improved stability 

while still maintaining a thin coating. 

The bioconjugation of NPs remains a significant hurdle due to the aggregation 

that occurs under conditions necessary for chemical reaction and biomolecule stability.  

One of the problems with current techniques is that they require significant re-

optimization as the core material and surface chemistry changes.  Additionally, even on 
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the same material types using the same procedures the modification is not always 

consistent (i.e. QDs).  In contrast, LbL can be used to modify any charged substrate 

regardless of the core material composition or of the initial surface chemistry.  

Therefore, the process does not become redundant as nanomaterial synthesis continues 

to evolve and it is less susceptible to variations in the core synthesis or ligand exchange 

process.  Additionally, the LbL coating imparts some steric stability to prevent 

aggregation under conditions that reduce electrostatic repulsion.  This is an important 

feature when using carbodiimide chemistry because EDC activation reduces surface 

charge and increase hydrophobicity.  The steric stability of the polymer coating should 

prevent aggregation even under these conditions. 

The LbL modification of AgNPs and bioconjugation to proteins with 

carbodiimide chemistry was investigated by characterizing the NPs throughout the 

process to monitor their hydrodynamic size, aggregation state, and optical properties.  

The hydrodynamic sizing of modified NPs is a serious challenge that can potentially be 

addressed using particle tracking analysis.  Thus, much of this section focuses on the 

broader implications of this NP sizing technique and the development of a robust 

methodology for obtaining accurate NP size and concentration. 

4.2. Background 

The effect of nanotechnology in biological systems has gained interest both from 

medical treatment and environmental contamination perspectives.  Colloidal 

characterization is of vital importance as it is well understood that particle size is a key 

property that determines biomolecule interaction, cellular uptake, and toxicity.245  
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Particle sizing involves a broad variety of direct and indirect characterization techniques 

that have varying tradeoffs based on their sample preparation requirements and 

principles of operation.246  In these cases, the sample preparation or analysis can be 

destructive or alter the apparent structural properties.  For instance, electron microscopy 

(TEM and SEM) provides direct visualization of particle size, size distribution, 

morphology, crystal structure, and elemental composition.  However, sample preparation 

requires sample dehydration, sputter coating, and analysis under high vacuum; all of 

these conditions alter the sample properties.  This is particularly important when dealing 

with colloids that are hydrated or contain biologically active components (i.e. polymers, 

proteins).  Additionally, surface ligands or polymer shells often cannot be resolved due 

to having poor electron density.  AFM provides direct measurement to provide high 

resolution images and samples can even be measured in hydrated conditions.  However, 

sample analysis is slow, has a limited scanning area, and requires immobilization of the 

particle to a solid support. 

Light scattering techniques such as Dynamic Light Scattering (DLS) and 

Nanoparticle Tracking Analysis (NTA) have gained popularity for being rapid and 

accurate methods for particle sizing in environmental and biological media.247  These 

techniques both indirectly determine the hydrodynamic size be measuring particle 

motion in solution.  DLS has long been the gold standard for determining particle size 

and size distribution in liquid media.  DLS uses an ensemble measurement of the NP 

solution that is based on scattering intensity fluctuations.  This method is very accurate 

for low polydispersity samples but becomes inaccurate if the size distribution increases 
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or if aggregation is present.  Since larger particles scatter more light, the size distribution 

becomes heavily weighted towards larger particles.248  Additionally, knowledge of the 

particle refractive index and absorption is required for accurate particle size calculation.  

This adds variability when sizing particles of unknown optical properties, fluorescent 

particles, highly absorbing particles, or for core-shell particles that contain multiple 

layers of different refractive indices.  DLS cannot provide concentration information. 

NTA has become exceedingly popular as a new technique for particle sizing of 

nanomaterials and biological materials because it overcomes many of the problems 

associated with DLS.249, 250  NTA tracks individual NPs that scatter light within a 

focused laser beam using a conventional optical microscope.248, 251  If the viscosity and 

temperature of the sample are known, then NP velocity can be translated to 

hydrodynamic diameter using by use of the Stokes-Einstein equation.  The method is 

capable of determining particle hydrodynamic size with nanometer resolution252 and 

under the right conditions the results are comparable to TEM and AFM.251, 253  The 

individual particle tracking method provides more accurate size distribution data 

compared to DLS, but does show a higher sensitivity to larger particles.  Additionally, 

the measurement sensitivity and limit of detection depends on particle refractive 

index,254 but this can also be leveraged as a route to distinguish between mixed particle 

populations or for determining the unknown refractive index of particles.255  It should 

also be noted that NTA provides hydrodynamic size, which is affected by particle 

geometry, concentration, and surface charge;256 all of these factors need to be considered 

when interpreting the results. 
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An added advantage of NTA is the capability of rapidly determining NP 

concentration.  Although, the conditions used for measurement and the analysis settings 

can affect the accuracy of this measurement.257  For instance, increased scattering due to 

large particles or very high concentrations can lead to increased noise artifacts that can 

be misinterpreted as particle counts.258  The increased scattering can also hide smaller 

particles or lower refractive index particles which scatter less light.254, 258  Therefore, 

obtaining accurate concentration measurement requires carefully selecting measurement 

and analysis conditions, while keeping in mind that the results are only accurate across a 

limited sample concentration range. 

The concentration of metallic NPs is most commonly determined by absorbance 

spectroscopy using equations developed through a combination of experimental analysis 

and Mie scattering models to relate absorbance spectra to particle size and 

concentration.217, 259  However, the accuracy of these methods is affected when the SPR 

is changed due to modification with different stabilizing ligands or macromolecules like 

polymers, drugs, or proteins.  Additionally, any change in absorbance spectra due to 

aggregation induced plasmonic coupling will also considerably affect the accuracy of 

these calculations.  This coupling is useful for determining the qualitative presence of 

aggregation but it cannot be used to determine aggregate size or concentration. 

In this work, the hydrodynamic size changes and aggregation of PE coated 

AgNPs is investigated using NTA and UV-Vis.  The LbL coating is investigated as a 

transitional layer to impart improved colloidal stability and chemical functionality for 

bioconjugation.  The stability of the AgNPs before and after modification is investigated 
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under various buffers, pH, and ionic strength conditions with a focus on conditions 

necessary for the stability and function of ConA.  The bioconjugation of NPs itself is a 

significant challenge due to the propensity for aggregation during both conjugation and 

purification.  Using both NTA and UV-Vis we can investigate the methodology required 

for successful NP modification and bioconjugation, while also providing insight into the 

relationship between UV-Vis and NTA for characterizing NP size and concentration. 

4.3. Materials and Methods 

 Chemicals 

Poly (allylamine hydrochloride) (PAH) (MW = 15 kDa), poly (4-styrenesulfonic 

acid-co-maleic acid) sodium salt with a ratio of maleic acid to styrene sulfonate of 1:1 

(PSS-co-MA 1:1) (MW = 20 kDa), and N-(3-Dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride (EDC) were obtained from Sigma Aldrich.  N-

Hydroxysulfosuccinimide (NHS) was purchased from G-Biosciences. 

 AgNP Synthesis 

AgNPs were produced by the reduction of silver nitrate with hydroxylamine 

following the procedure described by Leopold et al.260 

 AgNP LbL 

PAH and PSS-co-MA 1:1 were dissolved in DI-H2O at a concentration of 10 

mg/mL and sonicated for 1 h. PAH was titrated to pH 9 with 2 M NaOH.  A 5 mL 

aliquot of diluted AgNPOH solution (0.1 - 0.4 nM) was rapidly added to 5 mL of PAH 

stock under sonication for 10 min. TRIS HCl was added at 60 mg/mL and the solution 

was precipitated by the addition of isopropanol (2:1 V/V).  The solution turns milky 
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white to indicate precipitation and is then centrifuged at 10000 RCF at room temperature 

for 10 min.  The supernatant was decanted, leaving a gelatinous pellet that was 

resuspended in 1 mL of 50 mM TRIS pH 7.2.  Excess PAH was then removed by three 

rounds of centrifugation at 12000 RCF for 20 min, resuspending in 50 mM TRIS pH 7.2 

each time.  A 5 mL 0.1 nM solution of AgNPOH-PAH was added to a 5 mL PSS-co-MA 

1:1 solution under sonication for 10 min and incubated with mild shaking for 1 h.  The 

solution was precipitated by the addition of isopropanol (2:1 V/V) and centrifuged at 

10000 RCF at room temperature for 10 min.  The supernatant was decanted, leaving a 

gelatinous pellet that was resuspended in 1 mL of 50 mM CHES pH 9.  Excess PSS-co-

MA 1:1 was then removed by three rounds of centrifugation at 12000 RCF for 20 min, 

resuspending in 50 mM TRIS pH 7.2 each time. 

 NTA 

AgNP and distributions were obtained with the NanoSight LM10HS with a 65 

mW 405 nm source.  Video was acquired with a Hamamatsu C11440 digital camera and 

analysis was completed with included NanoSight 2.3 software with automatic settings.   

 Microelectrophoresis 

The zeta potential of AuNPs were determined with a ZetaSizer Nano Series ZEN 

3600 spectrometer (Malvern).  A 10 mL, 0.1 nM AgNP solution in DI-H2O was titrated 

with either 0.1 M NaOH or 0.1 M HCl at 0.5 pH increments using the MPT-2 

autotitrator accessory (Malvern) and pH probe (Malvern).  The 10 mL AgNP solution 

was sampled 4 times for measurement at each pH increment.  
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 UV-Vis 

Absorbance spectra were obtained on a Cary 300 UV-Vis spectrophotometer 

(Agilent) with a 6x6 multi-cell Peltier block (Agilent).  Measurements were acquired at 

300 nm/min, 0.5 nm resolution, 0.1s integration time.  Samples were measured in a 

semi-micro UV-cuvette and baseline corrected using a cuvette filled with buffer. 

 Bioconjugation 

AgNPOH-PAH/PSS-co-MA 1:1 was mixed with EDC/NHS in pH 7 HEPES for 

20 min at a molar ratio of 25000:10000:1 (NHS:EDC:AgNP).  Excess EDC/NHS was 

removed by three rounds of centrifugation at 7500 RCF for 5 min, resuspending in 50 

mM pH 7 HEPES the first two times and 50 mM pH 8 NaHCO3 after the final wash.  

ConA was prepared in 1 mL of 50 mM pH 8 NaHCO3 with 0.1 M NaCl by nutating for 

10 min followed by filtering through a 0.2 μM syringe filter.  The ConA solution was 

transferred to a plastic vial and stirred at 800 RPM.  The activated AgNPOH-PAH/PSS-

co-MA 1:1 were added dropwise  under stirring, after 5 min stir speed was reduced to 

400 RPM and the solution was incubated for 2 h protected from light at room 

temperature.  Excess ConA was removed by dialysis for 48 h against 50 mM pH 7.2 

TRIS with 0.15 M NaCl. 
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4.4. Results and Discussion 

 LbL Method Development 

 
Figure 4.1: UV-Vis absorbance of AgNPOH stock suspended in HEPES pH 7.2 

(black −) followed by centrifugation three times and resuspension HEPES pH 7.2 

(orange − −).  A pellet that can only be redispersed with sonication contains 

unstable NPs (red −). 

The stock of AgNPOH is suspended in HEPES buffer at pH 7.2.  To remove 

aggregated NPs and unreacted components the AgNPOH are subjected to three rounds of 

centrifugation at 10000 RCF for 30 min then resuspended in 50 mM HEPES pH 7.2 each 

time.  After three rounds of ultracentrifugation the spectra looks nearly identical but the 

peak shifts from 397 nm for the stock to 394 nm after purification (Figure 4.1).  A 

portion of the stock centrifuges to form a pellet that can only be redispersed by 

sonication; this portion is discarded as it contains the unstable AgNPs as shown by the 

large scattering component in the UV-Vis spectra (Figure 4.1).  The total recovery after 
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three rounds of centrifugation is 47% by absorbance intensity.  This is initial purification 

is critical to ensure consistent results for downstream LbL modification. 

 
Figure 4.2: UV-Vis absorbance of PAH coating of AgNPOH at 0.1 nM (orange − −), 

0.2 nM (blue − −), 0.3 nM (purple − −), and 0.4 nM (red − −). 

The concentration of AgNPOH used for PAH coating was varied between 0.1 - 

0.4 nM to determine how much the process could be scaled up.  From UV-Vis there was 

little change in spectra and no change in peak location observed when increasing 

concentration over this range (Figure 4.2A, Figure 4.2B). 

 LbL on AgNPs 

 
Figure 4.3: (A) UV-Vis absorbance and (B) NTA for AgNPOH (black −) AgNPOH-

PAH (orange − −) and AgNPOH-(PAH/PSS-co-MA 1:1) (blue ••).  (A) Inset shows 

the peak location after normalizing to maximum intensity.  (B) Inset is photograph 

of AgNPOH and after coating with PAH and PSS-co-MA 1:1 showing the visual 

color change. 



 

102 

 

Table 4.1: AgNP size by mode and mean, stdev is the standard deviation of the NP 

size distribution, from NTA.  The standard deviation of the mode, mean and stdev 

represents 95% confidence interval for n = 3 samples. 

 

The UV-Vis spectra shows a shift in peak location from 394 nm for the AgNPOH 

to 400.8 nm after coating with PAH (Figure 4.3A).  The peak intensity also increases 

after PAH coating when normalized to the absorbance at 320 nm, indicating some 

enhancement of the plasmon resonance.  There are no secondary peaks associated with 

aggregation present (Figure 4.3A).  After adding the next layer of PSS-co-MA 1:1 the 

peak location shifts to 406.5 nm and a broad secondary peak appears around 550 nm 

indicating some plasmon coupling of aggregated AgNPs (Figure 4.3A).  Additionally, 

the peak intensity decreases to nearly half of the AgNPOH stock intensity indicating a 

decrease in plasmon resonance (Figure 4.3A). 

NTA analysis was used to determine AgNP size before and after modification 

and to further assess the degree of aggregation.  The initial AgNPOH peak size is 41.67 

nm (Table 4.1).  After coating with PAH the size increases to 44.67 nm and then after 

coating with PSS-co-MA 1:1 it increases to 47.25 nm; an approximate 3 nm increase for 

each step (Table 4.1).  Since NTA measures hydrodynamic diameter, the size increase 

measured represents a 1.5 nm thickness increase for each layer.  There is very little 

aggregation after PAH coating, indicated by the single peak in the size distribution with 

only a small secondary peak at 110 nm (Figure 4.3B).  Additionally, the mean size and 
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the standard deviation of the size distribution do not show a large increase (Table 4.1).  

After coating with PSS-co-MA 1:1 the size distribution still exists primarily as a single 

peak but slightly more aggregation is observed as a secondary peak (Figure 4.3B).  This 

increase in aggregation can also be observed from the larger increase in the mean size 

and in the standard deviation of the size distribution (Table 4.1).  It is interesting to 

observe that this small degree of aggregation viewed by NTA translates into a large 

increase in the secondary peak of the plasmon resonance in the UV-Vis spectra. 

 Determining Concentration of AgNPs with NTA 

The determination of concentration was compared using UV-Vis and NTA.  

Figure 4.4 shows the NTA data obtained by measuring 3 dilutions of the same sample to 

show that the concentration measurement was linear in that range. 

  



 

104 

 

 
Figure 4.4: Determination of concentration using NTA by measuring the 

concentration of three dilutions of the same sample (A) AgNPOH, (B) AgNPOH-PAH, 

and (C) AgNPOH-(PAH/PSS-co-MA 1:1).  Inset shows linearity of concentration 

with dilution over this range. 

The extinction corresponding to a 40 nm AgNP (the size determine from NTA 

for L0) 40 nm was used to calculate the concentration from UV-Vis.  For AgNPOH the 

concentration from NTA was 1.6 times higher than concentration determined by UV-

Vis.  After coating with PAH, the NTA concentration is 1.4 times larger than UV-Vis.  

However, after coating with PSS-co-MA 1:1 the concentration from NTA is 6 times 

larger than that determined by UV-Vis.  The NTA and UV-Vis show agreeable data for 

AgNPOH and PAH, but the PSS-co-MA 1:1 is changing the optical properties enough 

that the concentration calculation is no longer accurate.  The PSS-co-MA 1:1 layer has a 

concentration that is closer to an extinction corresponding to a 20 nm NP. 
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 Colloidal and Optical Stability in Different Buffer Types  

The stability of AgNPOH and AgNPOH-PAH/PSS-co-MA 1:1 was investigated 

when exposed to HEPES, TRIS and phosphate buffer (PHOS) all at pH 7.2.  The 

AgNPOH were initially stored in HEPES buffer because the HEPES buffer does not 

contain metal chelating ions.  When the AgNPOH are transferred to either TRIS of PHOS 

buffer aggregation is immediately observed by NTA as a large increase in peak size and 

broadening of the size distribution (Figure 4.5A and Table 4.2).  In contrast, when 

AgNPOH-PAH/PSS-co-MA 1:1 are exposed to TRIS and PHOS no change is observed in 

the size or size distribution (Figure 4.5B).  The AgNPOH increase in peak size by 120% 

while the AgNPOH-PAH/PSS-co-MA 1:1 size only changed by 2% (Table 4.2).  This 

clearly shows that LbL dramatically enhances stability of the AgNP in different buffers, 

possible because it is protecting the surface from being exposed to chelating species. 

 
Figure 4.5: (A) NTA for AgNPOH and (B) AgNPOH-(PAH/PSS-co-MA 1:1) in 50 mM 

HEPES pH 7.2 (black −) 50 mM phosphate pH 7.2 (red −−) and 50 mM TRIS pH 

7.2 (blue ••). 
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Table 4.2: AgNP size by mode and mean, stdev is the standard deviation of the NP 

size distribution, from NTA.  Percent difference is compared to the AgNPs in 

HEPES.  The standard deviation of the mode, mean and stdev represents a 95% 

confidence interval for n = 3 samples. 

  

 Colloidal and Optical Stability in Binding Buffer 

 
Figure 4.6: (A) UV-Vis absorbance and (B) NTA for AgNPOH in HEPES pH 7.2 

(black −) and HEPES binding buffer (orange − −) and AgNPOH-(PAH/PSS-co-MA 

1:1) in HEPES pH 7.2 (black −) and HEPES binding buffer (red − −). 

  

AgNP−OH HEPES PHOS TRIS PHOS TRIS

Mode (nm) 45.66 ± 1.52 182.3 ± 35.9 149.6 ± 28.7 120 106

Mean (nm) 53.37 ± 1.42 193.3 ± 20.4 167.3 ± 25.4 113 103

Stdev (nm) 17.08 ± 0.73 69.59 ± 0.51 65.99 ± 5.74 121 36

AgNP−PAH/PSS-co -MA HEPES PHOS TRIS PHOS TRIS

Mode (nm) 49.66 ± 2.08 50.66  ± 1.52 49.33 ± 1.15 2.0 0.7

Mean (nm) 65.99 ± 2.23 69.14  ± 4.84 67.92 ± 4.06 4.7 2.9

Stdev (nm) 30.36 ± 6.97 28.94  ± 4.59 30.05 ± 4.14 4.8 1.0

% Diff.
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Table 4.3: AgNP size by mode and mean, stdev is the standard deviation of the NP 

size distribution, from NTA.  The standard deviation of the mode, mean and stdev 

represents 95% confidence interval for n = 3 samples. 

 

The stability of the AgNPs was further studied under conditions relevant for 

optical biosensor applications, specifically in the binding buffer required for ConA 

binding.  ConA requires the divalent cations calcium and magnesium as cofactors to 

bind saccharides and requires at least 20 mM - 150 mM NaCl to ensure protein stability.  

When AgNPOH are exposed to HEPES binding buffer significant aggregation occurs as 

shown by the multimodal peak presence and broadening in the UV-Vis spectra (Figure 

4.6A).  Aggregation is also observed by NTA with a 113.8% increase in mean size and 

98.5% increase in the standard deviation of the size distribution (Figure 4.6A Table 4.3).  

This presents two main problems: (1) aggregation causes a change in the spectral 

properties which will affect sensor performance and (2) aggregation of NPs coated in 

sensing components (ConA or saccharide analogue) will affect binding kinetics.  In 

contrast, when AgNPOH-PAH/PSS-co-MA 1:1 are exposed to binding buffer there is 

minimal change in the UV-Vis spectra; with no secondary peaks or substantial peak 

broadening (Figure 4.6C).  Additionally, from NTA there is less than a 1% change in 

peak size and 6.3% change in the standard deviation of the size distribution (Figure 4.6D 

AgNP-OH HEPES HEPES Binding Buffer % Diff

Mode (nm) 44.75 ± 0.96 163.0 ± 3.61 114

Mean (nm) 55.75 ± 5.51 184.3 ± 3.83 107

Stdev (nm) 23.47 ± 4.82 69.06 ± 2.69 98.5

AgNP-PAH/PSS-co -MA HEPES HEPES Binding Buffer % Diff

Mode (nm) 50.67 ± 4.73 50.33 ± 0.77 0.66

Mean (nm) 69.69 ± 3.69 72.48 ± 0.74 3.93

Stdev (nm) 31.48 ± 3.54 33.53 ± 2.10 6.30
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and Table 4.3).  The LbL coating stabilizes the AgNPs against aggregation in the 

binding buffer to preserve the core NP optical properties. 

 Colloidal and Optical Stability at Different pH 

 
Figure 4.7: (A) UV-Vis and (B) NTA for AgNPOH after incubation in buffer for 1 h 

in pH 2 sodium acetate (red − • −), pH 5 sodium acetate (blue •), pH 7 HEPES 

(orange − −) and pH 9 CHES (black −) 

The stability of AgNPOH, AgNPOH-PAH, and AgNPOH-PAH/PSS-co-MA 1:1 was 

investigated by UV-Vis and NTA when stored for 1 h at pH 2, pH 5, pH 7, or pH 9.  The 

AgNPOH shows a small increase in aggregation as pH goes from pH 9 to pH 7.2 that can 

be seen as an introduction of a small secondary peak indicating some plasmonic 

coupling (Figure 4.7A).  At pH 5 and below, a substantial decrease in absorbance is 

observed, indicating AgNPs were being dissolved.  Visually, there were no aggregates 

present on the bottom of the cuvette to indicate aggregation mediated precipitation.  For 

AgNPOH the NP size at pH 9 is 41.67 nm and increases to 44.3 nm at pH 7.2, for pH 5 

and below size could not be measured due to insufficient NP tracking events (Figure 

4.7B and Table 4.4). 
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Figure 4.8: (A) UV-Vis and (B) NTA for AgNPOH-PAH after incubation in buffer 

for 1 h in pH 2 sodium acetate (red − • −), pH 5 sodium acetate (blue •), pH 7 

HEPES (orange −−) and pH 9 CHES (black −). 

For AgNPOH-PAH the UV-Vis shows a single peak around 400 nm for pH 2, pH 

5, and pH 7.2, with the peak intensity decreasing slightly as pH increases (Figure 4.8A).  

At pH 9 there is a large increase in peak intensity and the introduction of a secondary 

peak indicating aggregation.  From NTA we see no aggregation for pH 2, pH 5, or pH 

7.2 but a small amount of aggregation at pH 9 (Figure 4.8B).  This behavior is expected 

from a PAH terminated NPs because the pKa of PAH is ≈ 8.5, as the surface charge 

decreases the NPs will aggregate.  Interestingly, the peak size of the PAH terminated 

NPs decreases with increasing pH by about 0.5 nm per pH unit (Table 4.4).  This 

indicates that as the PAH increases in charge density there is a change in the degree of 

surface PE swelling or conformation change that is causing a change to the apparent 

AgNP size. 
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Figure 4.9: (A) UV-Vis and (B) NTA for AgNPOH-(PAH/PSS-co-MA 1:1) after 

incubation in buffer for 1 h in pH 2 sodium acetate (red −•−), pH 5 sodium acetate 

(blue •), pH 7 HEPES (orange −−) and pH 9 CHES (black −). 

For the AgNPOH-PAH/PSS-co-MA 1:1 the UV-Vis shows no difference between 

pH 9 and pH 7.2 and only a slight broadening is observed at pH 5 or pH 2 (Figure 4.9A).  

This shows the ability of AgNPOH-PAH/PSS-co-MA 1:1 to stabilize the optical 

properties of the NP core over a broad pH range.  NTA shows a similar story of minimal 

change in peak size between pH 2 and pH 9 (Figure 4.9B).  Just like PAH terminated 

AgNPs, the peak size of PSS-co-MA 1:1 terminated AgNPs increases by approximately 

1 nm per pH unit as the terminal layer becomes more ionized with the exception of pH 5 

(Table 4.4). 
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Table 4.4: AgNP size by mode and mean, stdev is the standard deviation of the NP 

size distribution from NTA.  The standard deviation of the mode, mean and stdev 

represents 95% confidence interval for n = 3 samples. 

 

 

 

 The pH Dependence of Microelectrophoresis  

 
Figure 4.10: Zeta potential as a function of pH for AgNPOH (black ○) AgNPOH-PAH 

(orange ∆) and AgNPOH-PAH/PSS-co-MA 1:1 (blue ◊).  Error bars represent 

standard deviation (n = 4). 

AgNP−OH pH 2 pH 5 pH 7.2 pH 9

Mode (nm) N/A N/A 44.33 ± 0.65 41.67 ± 0.65

Mean (nm) N/A N/A 53.13 ± 2.41 50.39 ± 3.32

Stdev (nm) N/A N/A 21.49 ± 3.83 18.03 ± 4.10

AgNP−PAH pH 2 pH 5 pH 7.2 pH 9

Mode (nm) 42.67 ± 1.31 43.00 ± 2.99 44.67 ± 1.73 46.00 ± 2.99

Mean (nm) 50.83 ± 2.61 56.39 ± 4.25 51.39 ± 2.55 78.49 ± 4.47

Stdev (nm) 17.64 ± 1.95 24.29 ± 12.1 14.65 ± 1.92 58.45 ± 7.57

AgNP−PAH/PSS-co -MA pH 2 pH 5 pH 7.2 pH 9

Mode (nm) 53.33 ± 1.73 57.00 ± 1.13 49.67 ± 2.36 47.00 ± 1.13

Mean (nm) 66.87 ± 4.62 80.97 ± 4.02 66.00 ± 2.53 68.41 ± 2.10

Stdev (nm) 23.63 ± 3.10 34.05 ± 3.51 30.36 ± 7.89 35.27 ± 6.71
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Zeta potential was measured as a function of pH for AgNPOH, AgNPOH-PAH, and 

AgNPOH-PAH/PSS-co-MA 1:1 (Figure 4.10).  As AgNPOH were titrated from pH 9 to 

pH 4 the zeta potential magnitude decreased by 9 mV.  Below pH 4 the data could not be 

collected due to insufficient intensity due to either AgNPs being aggregated or dissolved.  

After coating with PAH the charge reversed to 40 mV, maintaining this zeta potential 

when the pH was titrated from pH 3.6 and pH 7.4, then at pH 8.75 the zeta potential 

reached zero (Figure 4.10).  This is the expected behavior of a PAH coated NP.  Adding 

a layer of PSS-co-MA 1:1 causes a charge reversal to -48 mV.  The zeta potential 

magnitude decreased by 16 mV when titrated from pH 9 to pH 2 (Figure 4.10).  This 

shows how a single bilayer is protecting the AgNPs from dissolution and/or aggregation. 

 Bioconjugation of ConA 

4.4.8.1. Overview 

The electrosteric stability mentioned previously is also beneficial during the 

bioconjugation process, specifically when using EDC/NHS chemistry.  The general 

method for bioconjugation and the relevant parameters for each step are shown in Figure 

4.11. 
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Figure 4.11: Generic flow-chart for the bioconjugation of nanomaterials via EDC 

and NHS chemistry. 

The initial NPs are produced with some initial surface chemistry or polymer 

modification that imparts carboxylic acid functionality.  The carboxylic acids are then 

activated by the addition of EDC and NHS.  If the activated NP solution is added 

directly to the protein solution then interprotein conjugation is likely to occur due to the 

presence of residual EDC/NHS.  Therefore, the excess EDC/NHS must be removed first 

without introducing aggregation.  The purified activated NPs can then be mixed with the 

protein for conjugation.  The protein is added in excess compared to the NP to prevent 

interparticle conjugation (two NPs conjugating to the same protein).  The NP-protein 

conjugate must then be purified from the excess non-conjugated protein using some 

process. 
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4.4.8.2. Purification 

 
Figure 4.12:  (A) UV-Vis absorbance to show change in concentration of ConA 

stock solution (black −) and after being filtered with a 2 μm Nanosep (orange − −), 

and 300kDa Nanosep (blue • •).  (B) ConA filtered with a 300 kDa Nanosep (blue • 

•) and then dialyzed with a Floatalyzer G2 after 24 h (green − • −) and 48 h (red − 

−). 

The UV-Vis of ConA dissolved in 0.1 M NaHCO3 pH 8 with 0.1 M NaCl shows 

the primary peak absorbance at 280 nm but also the presence of scattering that indicates 

some aggregation is present (Figure 4.12A).  After filtering the ConA with a 2 μm 

syringe filter the absorbance intensity decrease corresponds to a ≈ 22% decrease in 

ConA concentration.  The filtered ConA was then filtered again with a 300kDa Nanosep 

filter to remove any further aggregation, which corresponded to a ≈ 29% decrease in 

ConA concentration (Figure 4.12A).  This double filtered ConA was used then used for 

bioconjugation.  It is important to note that the 2 μm filtering is required before the 300 

kDa filtering to prevent clogging of the Nanosep.  The efficacy of removing excess 

ConA by dialyses was tested by placing the filtered ConA into a 300 kDa Floatalyzer G2 

for dialysis for 48 h.  It was found that 95% of the ConA passed through the membrane 
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after 24 h and 98% after 48 h.  This makes dialyses an effective method to remove 

excess ConA after NP conjugation. 

4.4.8.3. Bioconjugation 

 
Figure 4.13: (A) UV-Vis absorbance and (B) NTA of AgNPOH-PAH/PSS-co-MA 1:1 

(black −), AgNPOH-PAH/PSS-co-MA 1:1 after activation with EDC and NHS (red − 

−), and AgNPOH-PAH/PSS-co-MA 1:1-ConA (blue • •) after conjugation and 

dialyses for 48 h. 

ConA was conjugated to AgNPOH-PAH/PSS-co-MA 1:1 activated with 

EDC/NHS and then excess ConA was removed by dialysis for 48 h.  With UV-Vis we 

can follow the change in optical properties after activation with EDC and NHS and 

conjugation with ConA (Figure 4.13A).  The AgNPOH-PAH/PSS-co-MA 1:1 are 

activated with EDC/NHS at pH 7.2 and then excess EDC/NHS is removed by three 

rounds of centrifugation.  The removal of the NHS (and then most likely EDC) can be 

confirmed from the absence of the NHS absorbance peak at 260 nm (Figure 4.13A).  The 

activation of the AgNPOH-PAH/PSS-co-MA 1:1 does not cause any change in peak 

location but it does increase the broadening (Figure 4.13A).  The activated AgNPOH-

PAH/PSS-co-MA 1:1 are then added to the ConA and after incubation are transferred to 

a dialysis membrane for 48 h.  The absorbance of the sample after dialysis confirms that 
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the majority of excess ConA has been removed since there is no strong 280 nm peak 

present (Figure 4.13A).  The conjugation with ConA shifts the peak location to 412.5 nm 

and increases the broadening (Figure 4.13A).  The conjugation of ConA to the AgNPOH-

PAH/PSS-co-MA 1:1 causes a change in the refractive index around the AgNP which 

causes a shift in the plasmon peak location. 

Table 4.5: NTA of AgNPOH-PAH/PSS-co-MA 1:1, AgNPOH-PAH/PSS-co-MA 1:1 

after activation with EDC and NHS, and AgNPOH-PAH/PSS-co-MA 1:1-ConA 

(blue • •) after conjugation and dialyses for 48 h. 

 

 

NTA was used to evaluate aggregation during the bioconjugation process and 

confirm ConA conjugation.  NTA showed no change in NP size or size distribution to 

indicate interparticle aggregation after activation of AgNPOH-PAH/PSS-co-MA 1:1 with 

EDC/NHS (Figure 4.13B and Table 4.5).  This was an important finding because this 

shows that the PSS-co-MA 1:1 coating is providing a stable layer for conjugation even 

when the carboxylic acid groups are being consumed.  There was also concern that the 

underlying amine containing PAH layer could potentially allow for interparticle 

bridging; but this did not occur.  After conjugation with ConA, the size increases by 43 

nm to 90.67 nm, but only an 8 nm increase in size distribution (Figure 4.13B and Table 

4.5).  This increase in size was larger than expected but does not indicate aggregation 

because interparticle aggregation would show multiple peaks and a very large increase in 

broadening. 

AgNP−PAH/PSS-co -MA EDC/NHS Activated AgNP−PAH/PSS-co -MA-ConA

Mode (nm) 47.25 ± 0.96 47.33 ± 2.08 90.67 ± 4.16

Mean (nm) 69.11 ± 2.07 65.49 ± 6.07 104.8 ± 6.4

Stdev (nm) 34.77 ± 4.95 31.99 ± 5.59 39.36 ± 4.28
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4.5. Conclusions 

This work shows the successful LbL modification of AgNPs without significant 

aggregation.  NTA was used to show the increase in NP size after the addition of each 

layer.  This size change was shown to be pH dependent, following a trend of increasing 

size with decreasing ionization of the outer layer.  To the best of our knowledge, this is 

the first time the change in hydrodynamic size for multilayer modified NPs has been 

shown with NTA.  Using UV-Vis and NTA the colloidal and optical stability of the LbL 

modified AgNPs was assessed in different buffer types, in varying ionic strength, and at 

different pH.  In all cases, the LbL modified AgNPs showed superior stability against 

aggregation compared to the AgNPOH.  It also appears that a single bilayer prevents 

dissolution of the AgNP core at low pH.  The thin coating allows for efficient distance 

dependent energy transfer, while also providing optical and colloidal stability.  The 

bioconjugation of LbL modified AgNPs with ConA via EDC/NHS chemistry without 

aggregation was confirmed by NTA.  This shows that PAH/PSS-co-MA 1:1 can be used 

for the EDC/NHS procedure without inducing aggregation due to surface charge 

instability or interparticle bridging.  This shows the potential for using LbL as an 

intermediary coating to provide a generic route to bioconjugate any core nanomaterial 

with a desired biomolecule. 
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5. ENERGY TRANSFER FROM OVALBUMIN GOLD NANOCLUSTERS TO 

CONCANAVALIN A DECORATED GOLD NANORODS 

 

5.1. Introduction 

Developing a nanomaterial-enabled sensor required replacing the initially 

planned semiconductor QDs with a more stable donor nanomaterial.  The problem with 

QDs was their environmental sensitivity and the difficulty of modification without 

compromising their optical properties.  In contrast, protein encapsulated fluorescent 

nanoclusters (NCs) have stable PL and high colloidal stability in varying environments 

due to the properties imparted by the protein shell.  Additionally, ovalbumin (OVA) 

contains a single glycosylation that can be used for binding; negating the need for any 

further modification.  This section explores OVA-AuNCs as photoluminescent probes in 

a competitive binding energy transfer sensor. 

5.2. Background 

Noble metal nanoclusters (NCs) are defined as particles less than 2 nm, 

consisting of a few to hundreds of atoms of Au, Ag, copper, platinum, molybdenum, or 

bismuth.261  In this size regime, metallic NPs no longer exhibit plasmonic resonance and 

instead exhibit molecular like properties that give rise to unique optical262 and 

catalytic263 properties. Due to quantum size effects, the band structure displays discrete 

energy levels, which give rise to size tunable luminescence from the visible to the NIR 

region.264 Luminescent NCs exhibit excellent photo-stability, long lifetimes (μs), a large 

stokes shift, and excellent biocompatibility.265-267  These properties make NCs strong 

candidates as luminescent probes for biosensor and bioimaging applications. 
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The synthesis of AuNCs involves the reduction of gold ions followed by 

protection of the NC by a stabilizing ligand.  AuNCs have been synthesized using a 

variety of different stabilizing agents: polymers/dendrimers, peptides/proteins, DNA, or 

thiol containing molecules.268, 269  A protein directed synthesis method utilizing bovine 

serum albumin (BSA) has been demonstrate as a simple and highly reproducible route to 

produce colloidally stable and highly luminescent AuNCs.270  This method was extended 

for the growth of AuNCs with similarly properties using human serum albumin271 and 

OVA.272-274  These protein-protected AuNCs do not exhibit variations in luminescent 

intensity across broad pH and ionic strength conditions since the AuNCs are imparted 

the high stability of serum albumin protein shell.  Protein stabilized AuNCs have found 

extensive use in endpoint assays for the  detection of heavy metals275 (mercury, copper, 

cadmium or lead),266 hydrogen peroxide,272 chloramphenicol,276 ascorbic acid,277 and 

folic acid.278  The detection of analyte in these sensors involves the quenching of the 

AuNC core either by attachment of the analyte to the Au or by destructions of the 

protein-AuNC interaction; in both cases the quenching is generally not reversible. 

The OVA-AuNCs have a unique property because OVA contains a single 

glycosylation site with a high affinity for ConA.279, 280  The use of fluorescently labeled 

OVA in a ConA based competitive binding assay was demonstrated by Cummins et al. 

279 Additionally, the OVA-AuNC attachment to ConA was used to develop an 

aggregation based precipitation assay for the detection of ConA.274  In this case, OVA is 

used not only to reduce and stabilize the AuNC, but to also introduce functionality 

without the need for additional modification. 
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In this section, OVA-AuNCs are utilized as a luminescent donor for the 

development of a competitive binding energy transfer sensor (Figure 5.1B).  ConA 

conjugated to a PSS-co-MA modified AuNR (Figure 5.1A) was used as the acceptor 

because AuNRs could be fabricated with an SPR absorption overlapping with the OVA-

AuNC emission.  The envisioned sensor could then be used to detect glucose based on 

the quenching and luminescence recovery of OVA-AuNCs in the absence and presence 

of glucose respectively (Figure 5.1C).  Additionally, the interaction of a fluorescent 

AuNC with another nanomaterial is a very unique situation of energy transfer that has 

not been thoroughly investigated.281, 282 283 
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Figure 5.1: (A) The AuNRCTAB-PSS-co-MA 1:1-ConA construct consisting of PSS-

co-MA 1:1 modified AuNRCTAB followed by conjugation to ConA.  (B) OVA-AuNC 

synthesized by the sequestration and grown of gold ions into the OVA protein by 

incubation at 37°C for 12h.  (C) The assay concept where OVA-AuNCs are bound 

by the AuNRCTAB-PSS-co-MA 1:1-ConA in the absence of glucose resulting in an 

increase in non-radiative energy transfer and decrease in PL intensity.  As glucose 

enters the system it displaces the OVA-AuNC, decreasing energy transfer and 

increasing PL intensity as a function of glucose concentration. 

5.3. Materials and Methods 

 Chemicals 

Ovalbumin (98%), MnCL2 (ACS, 98%), CaCL2 (ACS, 96%), methyl α-D-

mannopyranoside (99%), N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (EDC), Gold (III) chloride trihydrate (99.9%), poly (4-styrenesulfonic 

acid-co-maleic acid) sodium salt (PSS-co-MA) (Mw = 20000 g · mol-1) with a ratio of 

maleic acid to styrene sulfonate of 1:1, were all purchased from Sigma-Aldrich.  

Anhydrous D-glucose (ACS) purchased from Macron.  N-Hydroxysulfosuccinimide 

(NHS) was purchased from G-Biosciences.  High Trap ConA 4B 1 mL column was 
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obtained from GE Life Sciences.  AuNR solution A12-25-650 stabilized with 3 mM 

CTAB in DI-H2O was purchased from Nanopartz.  The AuNRCTAB were 25 nm in 

diameter and 64nm in length based on TEM reported by the manufacturer with a 

reported extinction of 7.11E9 M-1cm-1 at 650 nm. 

 Synthesis of OVA-AuNCs 

50 mg of OVA was dissolved in 1 mL of ultrapure water on the nutating mixer 

for 10 min.  The OVA solution was combined with 1 mL of 10 mM HAuCl in ultrapure 

water in a glass vial and stirred for 2 min. 100 μL of 1 M NaOH was added dropwise to 

increase solution to pH 12.  The solution was incubated at 37°C for 12 h under moderate 

stirring. 

 Purification of OVA-AuNC 

Several buffers were used during the purification process: (1) binding buffer - 50 

mM TRIS pH 7.4, 1 mM CaCl2, 1 mM MnCl2, 0.5 M NaCl, (2) storage buffer - 50 mM 

HEPES pH 7.4, 1 mM CaCl2, 1 mM MnCl2, 0.15 M NaCl, (3) elution buffer - 50 mM 

TRIS pH 7.4 , 0.2 M methyl-mannose, 0.5 M NaCl (4) assay buffer - 50 mM HEPES pH 

7.4, 1 mM CaCl2, 1 mM MnCl2, 20 mM NaCl. 

The OVA-AuNC solution was diluted to 10mL in binding buffer and filtered 

through a 0.2 µm syringe filter to remove any large protein aggregates.  A HiTrap ConA 

4B 1 mL column was prepared by flowing 10mL of binding buffer at 0.5 mL/min.  It is 

important to prevent air bubbles from entering the column.  Approximately 10 mg of 

OVA-AuNC diluted to a 5 mL volume was flowed through the column at 0.2 mL/min. 

10 mL of binding buffer was pumped through at 0.2 mL/min to remove any unbound 
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OVA-AuNCs.  The bound OVA-AuNCs were eluted by flowing 5 mL of elution buffer 

at 0.2 mL/min while collecting the eluent.  An additional 5 mL of binding buffer was 

flowed through to ensure complete OVA-AuNC removal.  The purified OVA-AuNC 

solution was centrifuged 5 times to remove excess methyl-mannose with a 3 kDa 

Microsep for 1 h at 3000 RCF at 14°C, resuspending in storage buffer each time.  The 

final product was stored protected from light at 4°C. 

 AuNR LbL 

AuNRCTAB stock solution was diluted 1/3 in in ultrapure water to reduce CTAB 

concentration to 1 mM and sonicated for 5 min.  A 10 mg/mL stock of PSS-co-MA 1:1 

was dissolved in DI-H2O and sonicated for 45 min prior to use.  A 5 mL aliquot of 

diluted AuNRCTAB solution (0.05 nM) was rapidly added to 5 mL of PSS-co-MA 1:1 

under sonication and incubated under sonication for 10 min. Excess PSS-co-MA 1:1 was 

removed by three rounds of centrifugation at 12000 RCF for 20 min, resuspending in 50 

mM CHES pH 9 each time.  After the final cleaning step the AuNRs-PSS-co-MA 1:1 

were suspended in 50 mM HEPES pH 7.  The solution was filtered using a 0.2 μm 

Nanosep to remove any large aggregates. 

 AuNR Bioconjugation 

AuNRCTAB-PSS-co-MA 1:1 was mixed with EDC/NHS at a molar ratio of 

25000:10000:1 (NHS:EDC:AuNR).  The AuNRs are suspended in 50 mM pH 7 HEPES 

and placed to stir at 600 RPM in a 1 mL plastic cryovial with a rounded bottom.  An 

NHS stock was made by dissolving at a high concentration (≈1-5 mg/mL) in a small 

volume (≈100 – 200 µL) in pH 7 HEPES, the required amount was then transferred to 
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the AuNR solution.  An EDC stock solution was made at a high concentration (≈1-5 

mg/mL) in small volume (≈100 – 200 µL) in pH 6 MES, the required amount is then 

transferred to the AuNR solution.  The AuNR and EDC/NHS mixture is protected from 

light and allowed to react for 20 min at room temperature.  Excess EDC/NHS was 

removed by three rounds of centrifugation at 7500 RCF for 5 min, resuspending in 50 

mM pH 7 HEPES the first two times and 500 µL of 50 mM pH 8 NaHCO3 after the final 

wash; sonication should not be required for resuspension.  ConA was prepared in 1 mL 

of 50 mM pH 8 NaHCO3 with 0.15 M NaCl by nutating for 10 min followed by filtering 

through a 0.2 μM syringe filter or 300 kDa Nanosep (3000 RCF x 5 min).  The 

concentration of the filtered ConA was determined by UV-Vis, the amount required 

transferred to a plastic cryovial, the volume was increased to 1 mL, and the solution was 

stirred at 600 RPM.  The activated AuNRCTAB-PSS-co-MA 1:1 were added dropwise  

under stirring, after 5 min stir speed was reduced to 400 RPM and the solution was 

incubated for 2 h protected from light at room temperature.  A typical reaction involved 

a 0.1 - 0.2 nM of AuNRs and 1 μM of ConA.  The pH was increased to pH 9 by the 

addition of 300 µL of 0.5 M CHES pH 9 and incubated for 10 min to ensure that 

unreacted groups were regenerated back to carboxylic acids and that PSS-co-MA was 

fully ionized to provide a maximum charge density before centrifugation.  Excess ConA 

was removed by centrifugation twice in a swinging bucket centrifuge at 1000 RCF for 

30 min, resuspending in 50 mM pH 8 NaHCO3 the first time and assay buffer the second 

time. 
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 NTA 

NP size and size distribution was obtained with the NanoSight LM10HS with a 

65 mW 405 nm source.  Video was acquired with a Hamamatsu C11440 digital camera 

and analysis was completed with included NanoSight 2.3 software with automatic 

settings.  AuNRCTAB samples were sized in 1mM CTAB in DI-H2O.  AuNRCTAB-PSS-

co-MA 1:1 and AuNRCTAB-PSS-co-MA 1:1-ConA were sized in 50 mM HEPES pH 7.4. 

 DLS and Microelectrophoresis 

Dynamic light scattering (DLS) and zeta potential were measured using a 

ZetaSizer Nano Series ZEN 3600 spectrometer (Malvern).  For zeta potential 

measurements AuNRs (0.1 nM) were dispersed in ultrapure water in a DT1070 cuvette 

and measured 5 times.  DLS measurements of OVA and OVA-AuNCs were measured at 

1 mg/mL in a 1 cm x 1 cm plastic cuvette (Malvern). 

 PL Characterization of OVA-AuNCs 

Excitation and emission curves were collected on an ISS PC1 spectrophotometer 

with a xenon arc lamp with 1 mm entrance slits, 1 mm exit slits and a 550 nm long-pass 

filter.  Photo-stability was measured every 60 s on a sample under constant illumination 

while being stirred in a cuvette with 2 mm entrance slits and 0.5 mm exit slits.  For 

OVA-AuNC the excitation was 400 nm or 550nm, and emission was 650 nm, with a 550 

nm long pass filter.  For OVA-FITC the excitation was 460 nm and the emission was 

518 nm. 
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 Glucose Assay 

A stock solution of AuNR-ConA with OVA-AuNC was prepared at a 2x 

concentration in assay buffer and 100 μL was dispensed into each well of a black flat 

bottom 96-well microplate.  Glucose solutions were prepared at a 2x concentration in 

assay buffer at least 24 h in advance.  The final concentration of 0.1 nM AuNRCTAB-

PSS-co-MA 1:1-ConA (determined by NTA) and 5.575 μM OVA-AuNCs (determined 

by absorbance) was mixed with 100 µL of glucose solution (200 μL final volume).  The 

reaction was incubated for 20 min in the dark before interrogation. 

Fluorescence measurements were made with a Tecan Infinite M200 PRO with i-

Control 1.8 software.  Samples were placed in a black 96-well flat bottom plate and data 

was collected with excitation at 340 nm or 400 nm (bandwidth of 9 nm) and emission 

from 500 – 850 nm (bandwidth of 20 nm) at 5 nm increments, integration time was 100 

μs with 0 s lag time, 25 flashes with 0 s settling time. 

 UV-Vis 

Absorbance spectra were obtained on a Cary 300 UV-Vis spectrophotometer 

(Agilent) with a 6x6 multi-cell Peltier block (Agilent).  Measurements were acquired at 

300 nm/min, 0.5 nm resolution, and 0.1 s integration time.  Samples were measured in a 

BrandTech semi-micro UV-cuvette baseline corrected with a cuvette filled with the same 

buffer that the sample was prepared with. 

 TEM 

A 10 µL portion of the AuNR stock solution for analysis was dropped onto a 

commercially-available carbon film coated-300 square mesh copper grid (CF-300 Cu, 
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Electron Microscopy Sciences, Hatfield, PA) followed by 24 h of atmosphere drying.  

The AuNRs and OVA-AuNCs were examined by TEM (HF3300, Hitachi Scientific 

Instruments, Tokyo, Japan) operated at 300 kV with a cold field emission gun (FEG). 

5.4. Results and Discussion  

 Synthesis and Characterization of AuNRCTAB-PSS-co-MA 1:1-ConA 

 
Figure 5.2: (A) NTA of PSS-co-MA coated AuNRs when using AuNRCTAB (black −) 

as a source containing 3 mM excess CTAB (red − −) and 1 mM CTAB (black −).  

(B) NTA of AuNRCTAB (black −) AuNRCTAB-PSS-co-MA 1:1 (red ••) and 

AuNRCTAB-PSS-co-MA 1:1-ConA (blue − −). 

The AuNR was modified with PSS-co-MA to introduce carboxyl groups that 

could be used for bioconjugation.  The size increase of the AuNR after modification with 

PSS-co-MA 1:1 and conjugation with ConA was studied using NTA.  The CTAB 

modified AuNRs suspended in 1 mM CTAB had a peak size of 57.55 nm, without any 

notable aggregation (Figure 5.2A).  The positively charged AuNRCTAB in 1 mM were  

mixed with negatively charged PSS-co-MA 1:1 which resulted in a 3.7 nm size increase 

in the peak size to 61.22 nm, with no aggregation (Figure 5.2A).  The AuNRCTAB stock 

contains 3 mM CTAB that was diluted to 1 mM CTAB before adding the PSS-co-MA 

1:1.  If the PSS-co-MA 1:1 was added to the AuNRCTAB containing 3 mM CTAB a size 
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increase of 8.45 nm occurs and a secondary peak indicating minor aggregation appears 

(Figure 5.2A).  The application of the final product for an energy transfer sensor requires 

a minimum hydrodynamic size to minimize donor and acceptor distances.  It should also 

be noted that decreasing the CTAB concentration below 1 mM leads to aggregation of 

the AuNRCTAB before modification can be attempted (data now shown). 

The PSS-co-MA coated AuNRs now contain surface carboxylic acid groups that 

can be used for bioconjugation to ConA.  The ConA was conjugated to the AuNRCTAB-

PSS-co-MA 1:1 using EDC/NHS in a two-step procedure.  The carboxylic acid groups 

on AuNRCTAB-PSS-co-MA 1:1 were activated with EDC/NHS for 20 min and followed 

by removal of excess EDC/NHS by centrifugation.  The excess EDC/NHS was removed 

before adding the ConA to prevent any interprotein cross-linking since ConA contains 

both carboxylic acid and amine groups.  The activated AuNRs were then added to ConA 

solution that had been filtered with a 0.2 μm syringe filter.  After an incubation period 

under stirring to allow for conjugation, the excess ConA was removed by low speed 

centrifugation. 
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Figure 5.3: NTA images of raw video captured during measurement for AuNRCTAB-

PSS-co-MA 1:1-ConA conjugated with ConA filtered through a 0.2 μm filter (B) at 

time 0, (A) after 3 min with the laser off, and (C) after 3 min with the laser 

constantly on.  AuNRCTAB-PSS-co-MA 1:1-ConA conjugated with ConA filtered 

through a 300 kDa filter (D) at time 0 and (E) after 3 min with the laser constantly 

on.  AuNRCTAB-PSS-co-MA 1:1 (A) at time 0 and (B) after 3 min of the laser 

constantly on. 

NTA analysis of the AuNRCTAB-PSS-co-MA 1:1-ConA conjugate showed a 

substantial size increase to 102.7 nm (Figure 5.2B).  The quality of this data was 

questioned because the video of the analysis showed an increase in NP concentration and 

an increase in NP size over time.  Snapshots of the video were taken immediately after 

the laser was turned on and then after 3 min of laser exposure.  These images showed a 

very large visual increase in apparent NP concentration (Figure 5.3A-C).  If the sample 

was kept in the NTA testing chamber for 3 min without laser exposure, no increase in 

NP concentration was observed (Figure 5.3A-C).  This indicates that the aggregation that 
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was occurring over this time frame was a result of laser exposure.  Additionally, this 

phenomenon was not observed for AuNRCTAB-PSS-co-MA 1:1 (Figure 5.3F, Figure 

5.3G).  We postulated that this may have been occurring due to the presence of ConA 

aggregates either conjugated to the AuNR or still in free solution.  The low speed 

centrifugation used to remove excess unconjugated ConA would remove stable non-

aggregated ConA, but may still retain the less colloidally stable, aggregated clumps of 

ConA.  Using a 0.2 μm filter removes the very large aggregates but would be less 

effective in removing smaller aggregates.  To remedy this, an additional filtering step 

using a 300 kDa filter was introduced to remove anything larger than a single ConA (104 

kDa).  Using 300 kDa filtered ConA for conjugation yielded a AuNRCTAB-PSS-co-MA 

1:1-ConA with a more reasonable 72.33 nm peak size, without the presence of any 

higher order aggregation (Figure 5.2B).  Additionally, the increasing concentration and 

size with time was no longer observed (Figure 5.3D, Figure 5.3E), allowing for more 

accurate quantitation of AuNRCTAB-PSS-co-MA 1:1-ConA concentration. 

The effect of the EDC/NHS on NP size was investigated using NTA.  The 

activation of surface carboxylic acid moieties by the addition of EDC reduces the surface 

charge and increases the hydrophobicity.  Adding sulfo-NHS improves the 

hydrophilicity of the NP and increases the surface charge to enhance the stability.  The 

sulfo-NHS also extends the half-life of the ester at higher pH to improve amine coupling 

efficiency.  However, the activation of the NP even with sulfo-NHS introduces some 

instability to the NP.  This becomes especially apparent when centrifuging the NPs to 

remove the excess EDC/NHS before adding the biomolecule to be conjugated.  The use 
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of PSS-co-MA 1:1 was expected to improve the stability after EDC/NHS activation 

because even though the carboxylic acid groups were activated, the sulfonate groups 

remain fully charged to enhance electrostatic stability. 

 
Figure 5.4: (A) NTA and for AuNRCTAB-PSS-co-MA 1:1(red − −) after activation at 

pH 6 with EDC/NHS (green −) or after activation at pH 7 with EDC/NHS (orange 

••).  ConA only mixed with EDC/NHS at pH 7 (blue − • −).  (B) The non-specific 

adsorption determined from NTA for AuNRCTAB-PSS-co-MA 1:1 (red − −) after 

mixing with ConA (blue ••) or OVA-AuNC (orange −) without any EDC/NHS 

activation. 

To test this stability, the AuNRCTAB-PSS-co-MA 1:1 were activated with 

EDC/NHS, the excess EDC/NHS was removed by centrifugation, but no ConA was 

added to allow the activated carboxylic acid groups to regenerate.  NTA analysis of the 

AuNRCTAB-PSS-co-MA 1:1 activated at either pH 6 or pH 7 does not cause any 

appreciable change in peak size or increase in aggregation (Figure 5.4A).  This shows 

that the PSS-co-MA 1:1 coating was providing a stable coating against aggregation 

using the two-step EDC/NHS activation and conjugation.  The importance of being able 

to use the two-step method was observed when EDC/NHS was directly added to ConA 

resulting in strong inter-protein aggregation (Figure 5.4A). 
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The non-specific adsorption of ConA onto AuNRCTAB-PSS-co-MA 1:1 was 

investigated with NTA to determine if non-specific adsorption contributes to a NP size 

increase.  From NTA it was apparent that excess ConA does not adsorb to the 

AuNRCTAB-PSS-co-MA 1:1 that has not been treated with EDC/NHS since no size 

change was observed and no aggregation occurred (Figure 5.4B).  This shows that the 

size increase observed when ConA was conjugated to AuNRCTAB-PSS-co-MA 1:1 was 

mostly like due to conjugation, and not aggregation or non-specific adsorption.  The 

non-specific adsorption of OVA-AuNC onto AuNRCTAB-PSS-co-MA 1:1 was also tested 

and showed no size increase or substantial aggregation (Figure 5.4B).  This was 

important to make sure that any quenching that occurred was due to conjugation between 

OVA-AuNC and AuNRCTAB-PSS-co-MA 1:1-ConA and was not the non-specific 

adsorption of OVA-AuNC directly to the AuNRCTAB-PSS-co-MA 1:1 surface. 

 
Figure 5.5: Comparison of AuNRCTAB concentration determined from (A) NTA 

three point calibration curve and (B) from UV-Vis spectra and extinction given by 

manufacturer. 

AuNRCTAB-PSS-co-MA 1:1 concentration obtained from NTA was compared to 

concentration obtained from UV-Vis.  To verify that NTA results were reliable, a three 
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point calibration of three dilutions of the same sample was obtained (Figure 5.5A).  The 

sample was diluted by a factor of ½ each time and size was measured at maximum 

camera gain and shutter speed until < 5 NPs were observed on screen.  The three point 

calibration was then taken at the three dilutions above this.  This was done to ensure that 

there were no hidden NPs not being counted.  If concentration of the sample becomes 

too high, then NPs become hidden in the scattered light leading to inaccurate 

concentration measurements and non-linear calibration curves.  This inaccuracies are 

magnified due to the large initial dilution factor required for measurement (≈ 1/1000 - 

1/5000 for AuNRs).  The calibration curve was very accurate for these three points (R2 = 

0.99), giving a stock concentration of 0.34 ± 0.02 nM; the standard deviation was 

calculated from the variation in the three different dilutions.  UV-Vis is the standard 

method used for determining the concentration of metallic NPs, but the accuracy 

depends on the estimation of extinction based either on the size (from spectra or TEM) 

or in this case the value provided by the manufacturer.  From the UV-Vis spectra (Figure 

5.5B) a concentration of 0.2 nM was calculated from the SPR peak absorbance; this 

gives a 1.71 factor of difference between UV-Vis and NTA.  This difference may be due 

to the fact that the PSS-co-MA 1:1 modification of the AuNRs was affecting the optical 

properties of the AuNRs enough to skew the concentration calculation that was based off 

the extinction provided for the bare AuNRCTAB. 
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Figure 5.6: (A) Raw data and (B) scatter corrected UV-Vis for AuNRCTAB (black −) 

AuNRCTAB-PSS-co-MA 1:1 (red ••) and AuNRCTAB-PSS-co-MA 1:1-ConA (blue − 

−). 

UV-Vis absorbance of the AuNRCTAB, AuNRCTAB-PSS-co-MA 1:1, and 

AuNRCTAB-PSS-co-MA 1:1-ConA shows the spectral change at each step.  Figure 5.6A 

shows the raw absorbance data normalized to the absorbance at 400 nm while Figure 

5.6B shows the scatter corrected absorbance normalized at 400 nm.  The scatter 

correction was obtained by a power fit from 340 – 440 nm, the portion of the spectra that 

should have minimal contribution from the SPR, LSPR, PSS-co-MA 1:1 or ConA 

absorbance.  The scatter corrected data was used for further analysis.  

For AuNRCTAB the LSPR peak was located at 516nm and the SPR peak was 

located at 655.7 nm.  After modification with PSS-co-MA the LSPR peak moves to 515 

nm and the SPR peak moves to 649 nm.  After conjugation to ConA, the LSPR peak 

shifts to 518.5 nm and the SPR peak shifts to 659 nm.  These peak shifts in both the SPR 

and LSPR are caused by the small changes in the local refractive index, indicative of 

modification without aggregation.  Additionally, the FWHM of the SPR peak increases 

by 3 nm after PSS-co-MA 1:1 modification and 24 nm after ConA conjugation.  This 

broadening is a typical feature of modified NPs.  There are no secondary peaks observed 
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in the spectra measured to indicate the presence of any aggregation.  The absorbance 

spectra provides an additional confirmation of the AuNR modification without 

aggregation and also shows how optical properties of the AuNR are affected by this 

modification. 

 Buffer Stability of AuNRCTAB-PSS-co-MA 1:1 

 
Figure 5.7: UV-Vis for AuNRCTAB-PSS-co-MA 1:1 when incubated in 50 mM TRIS 

pH 7.2 (green −−), 50 mM phosphate buffer pH 7.2 (blue − −), 50 mM HEPES pH 

7.2 (red − −) and 50 mM CHES pH 9 (black −) after for (A) 4 h and (B) 24 h. 

The stability of AuNRCTAB-PSS-co-MA 1:1 was investigated by suspending in 

HEPES, TRIS or PHOS buffer at pH 7.2 or CHES buffer at pH 9.  After 4 h of 

incubation, no change in UV-Vis spectra was observed (Figure 5.7A).  After 24 h, 

aggregation was observed for TRIS and PHOS buffer samples indicated by the growth of 

the secondary peak, while the HEPES and CHES buffer samples remained unchanged 

(Figure 5.7B).  This suggests that the TRIS and PHOS buffers contain ions that are 

inducing aggregation through some sort of interaction with the gold surface.  This was 

not expected as typically LbL modified nanomaterials exhibit a high degree of stability 

in different buffers.  However, the LbL on AuNRs may only be coating the longitudinal 
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side of the AuNR, leaving the transverse side unprotected.  This may leave the AuNR 

susceptible to ionic interaction that leads to aggregation. 

 
Figure 5.8: UV-Vis for AuNRCTAB-PSS-co-MA 1:1 when incubated in 50 mM TRIS 

buffer with 10 mM NaCl (black −), 20 mM NaCl (red − −), 50 mM (green − −), 100 

mM NaCl (blue − −) for (A) 4 h and (B) 24 h. 

Protein stability is improved by including NaCl in the buffer, typically a TRIS or 

PHOS based saline solution.  Accordingly, the stability of the AuNRCTAB-PSS-co-MA 

1:1 was investigated under varying ionic strength conditions in TRIS buffer.  After 4 h 

the 10 mM and 20 mM samples remain stable while the 50 mM and 100 mM shows 

signs of aggregation (Figure 5.8A).  After 24 h, all samples had completely aggregated 

(Figure 5.8B). 
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Figure 5.9: UV-Vis for AuNRCTAB-PSS-co-MA 1:1 when incubated in 50 mM 

HEPES buffer pH 7.2 with 0 mM NaCl (black −), 10 mM NaCl (red − −), 20 mM 

(green − −), 50 mM NaCl (blue − −), and 100 mM NaCl (orange − −) for (A) 4 h, (B) 

24 h, and (C) 48 h. 

The aggregation effect of TRIS on the AuNRs was possibly due to the affinity of 

the amines for the metal ions of the unprotected AuNR surface.  Therefore, HEPES was 

investigated as an alternative buffer since it does not contain metal chelating ions.  After 

4 h (Figure 5.9A) and 24 h (Figure 5.9B) there was no aggregation present even up to 

100 mM NaCl and after 48 h (Figure 5.9C) aggregation was observed for the 100 mM 

NaCl only.  Using HEPES buffer instead of TRIS allows using up to 50 mM NaCl for 48 

h, without inducing aggregation. 
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Figure 5.10: UV-Vis for AuNRCTAB-PSS-co-MA 1:1 when incubated in 50 mM 

HEPES buffer pH 7.2 only (black −) and with added 1 mM CaCl2 (red − −) or 1 

mM MnCl2 (green − −) for (A) 4 h and (B) 24 h. 

ConA requires calcium and manganese as cofactors in order to bind 

carbohydrates.  Therefore, the stability of AuNRCTAB-PSS-co-MA 1:1 was tested in the 

presence of the typical concentrations used for ConA binding (1 mM CaCl2 and 1 mM 

MnCl2).  After 4 h (Figure 5.10A) and 24 h (Figure 5.10B) no change in the absorbance 

spectra indicating aggregation was observed.  Based on these results, HEPES was used 

for AuNR buffer solutions. 
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 OVA-AuNC Synthesis and Characterization 

 
Figure 5.11: (A) Photographs under visible and UV light of OVA with HAuCL4 in 

water initially and after incubation at 37°C 12 h to grow the AuNCs.  (B) 

Normalized absorption of OVA (green ••) and OVA-AuNC (blue −) and PL 

emission of OVA-AuNC (green − −) excited at 400 nm.  (C) PL lifetime decay of 

OVA-AuNC (orange ●) excited at 405 nm with an emission gathered at 650 nm.  

(D) PL intensity decay while stirring under constant xenon arc lamp exposure at 

Exc/Emi of 400/650 nm for OVA-AuNC (red ●), 500/650 nm for OVA-AuNC (black 

−), and 460/514 nm for OVB-FITC (blue − −). 

The OVA-AuNC growth can be confirmed both visually (Figure 5.11B) and 

spectroscopically (Figure 5.11A).  Initially, the OVA and HAuCL4 mixture is a hazy 

yellow and no red emission observed under UV (Figure 5.11A).  After incubation at 

37°C for 12 h, the solution turned an orange-brown color and a under UV a red emission 

was observed (Figure 5.11A).  UV-Vis shows the color change as an increase in 

scattering but no distinct absorbance peaks are observed.  When excited at 400 nm, the 

OVA-AuNC exhibit a maximum intensity at about 650 nm, within the range of emission 
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reported by others (640 – 720 nm).272-274, 277  The PL lifetime decay was measured as 1.4 

μs, which was consistent with that reported by Yoshimoto et al (Figure 5.11C).272  

However, obtaining sufficient intensity for lifetime regression analysis required using a 

10 mg/mL OVA-AuNC solution, ruling out lifetime as a potential measurement 

technique for studying energy transfer.  The photobleaching rate of the OVA-AuNC 

excited at 400 nm was compared to the commonly used FITC dye (conjugated to OVA) 

excited at 460 nm (Figure 5.11D).  Under constant exposure of a xenon arc lamp with 

constant stirring the OVA-AuNC PL decayed 21% and 33% after 3 h when excited at 

400 nm and 550 nm respectively.  For comparison, OVA-FITC decays in intensity by 

29% over the same time period when excited at 460 nm.  This rapid photobleaching of 

OVA-AuNCs was a surprising finding considering that AuNCs are considered 

photostable materials.  To our knowledge, the photo-stability of protein encapsulated 

AuNCs has not been reported for OVA or BSA and therefore it is not clear whether this 

instability is due to our synthesis technique or if it is applicable to the whole class of 

NCs. 
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Figure 5.12: (A) OVA-AuNCs absorbance (black −), power fit of scattering (orange 

•), corrected absorbance of OVA-AuNCs after removing the scattering component 

(blue − −).  (B) Comparison between the absorbance spectra of OVA-AuNC after 

scattering correction and the absorbance spectra of OVA. 

The growth of the AuNC in the OVA introduces scattering into the absorbance 

spectra that prevents accurate determination of concentration from UV-Vis (Figure 

5.12A).  The concentration of OVA-AuNCs immediately after synthesis should be close 

to 25 mg/mL, but from absorbance the concentration was 69.55 mg/mL.  To obtain a 

more accurate measurement of concentration the scattering component of the OVA-

AuNC absorbance was removed by subtraction of a power fit (Figure 5.12A).  The 

obtained corrected spectra of the OVA-AuNC looks nearly identical to that of OVA and 

the concentration obtained from this corrected spectra gives a concentration of 24.63 

mg/mL (Figure 5.12B).  Accurate quantitation of OVA-AuNC is critical for rational 

design of a competitive binding assay. 
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 OVA-AuNC Purification 

 
Figure 5.13: Setup of OVA-AuNC purification using a HiTrap ConA column and a 

syringe pump.  

Not all of OVA contains glycosylation sites are capable of binding to ConA and 

the AuNC may further denature or interfere with ConA binding to these sites.  OVA-

AuNCs that are not capable of binding to ConA will increase the background 

luminescence signal present and will introduce batch to batch variation.  OVA-AuNCs 

still capable of binding to ConA were retained by purification with a HiTrap ConA 

column.  Using a syringe pump the OVA-AuNCs were flowed slowly through the 

HiTrap ConA column (Figure 5.13A).  It was important to avoid the introduction of 

bubbles into the column and the column was kept vertical to prevent bubbles from 

collecting in the column (Figure 5.13A).  The OVA-AuNC fraction that did not bind to 

the column was discarded.  The OVA-AuNCs that were bound to the column were then 

eluted with excess mannose and collected.  The excess mannose was then removed by 

five rounds of filtration using a 3 kDa filter. 
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Table 5.1: DLS measurements of size by number for OVA before and after 

purification and OVA-AuNC before and after purification.  Percent recovery of 

OVA and OVA-AuNC through purification process.  Error represents 95% 

confidence interval (n = 3). 

 

The size of OVA and OVA-AuNC throughout this process was investigated by 

DLS to determine how AuNC growth, purification, and filtration affected the protein 

size (Table 5.1).  OVA that was initially dissolved in binding buffer and filtered with a 

0.2 μm syringe filter was found to be 5.22 nm by number.  After purification and 

filtration steps, OVA now suspended in storage buffer maintained a similar size of 5 nm 

by number.  The percent recovery of OVA throughout the purification and filtration 

steps was 49.12%.  We suspect that the lost OVA was either unable to bind to the 

column because they did not contain glycosylation sites or the column binding sites 

became saturated.  The growth of the AuNC increased the size of the OVA-AuNC to 

7.68 nm initially and after purification the size increased slightly to 8.08 nm.  This 

showed that the growth of the AuNC and purification of the OVA-AuNC complex can 

be achieved with only a small size increase and no significant aggregation.  However, 

the percent recovery of the OVA-AuNC was found to be only 14.63% indicating that the 

growth of the AuNC or the conditions for growth have somehow compromised some of 

the OVA-AuNCs ability to bind to the column.  Without this purification step ≈85% of 

the OVA-AuNC population would not be capable of binding ConA and would only 
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increase the background signal of the sensor.  Therefore, the purification is a critical step 

for preparing the OVA-AuNCs as photoluminescent probes based on their binding 

capability. 

 TEM 

 
Figure 5.14: (A1-A3) TEM images of AuNRCTAB-PSS-co-MA 1:1.  Inset is digitally 

zoomed images of the AuNR indicated by black arrow.  Scale bars are 50 nm. 

TEM micrographs were obtained for AuNRCTAB-PSS-co-MA 1:1, AuNRCTAB-

PSS-co-MA 1:1-ConA, and AuNRCTAB-PSS-co-MA 1:1 with added OVA-AuNC.  The 

AuNRCTAB-PSS-co-MA 1:1 images (Figure 5.14) showed that the majority of the NPs 

viewed had a rod like shape, with no evidence of significant aggregation. 
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Figure 5.15: (B1-B3) TEM images of AuNRCTAB-PSS-co-MA 1:1-ConA.  Inset is 

digitally zoomed images of the AuNR indicated by black arrow.  Scale bars are 50 

nm. 

TEM of the AuNRCTAB-PSS-co-MA 1:1-ConA showed some agglomeration but 

this commonly occurs during the sample preparation (Figure 5.15).  It was not possible 

to visualize the ConA on the AuNR surface. 

 
Figure 5.16: (C1-C3) TEM images of AuNRCTAB-PSS-co-MA 1:1-ConA with OVA-

AuNCs.  Inset is digitally zoomed images of AuNR indicated by black arrow.  Scale 

bars are 50 nm. 

TEM of AuNRCTAB-PSS-co-MA 1:1 after mixing with OVA-AuNCs is shown in 

Figure 5.16.  The presence of OVA-AuNCs can easily visualized on the surface of the 

AuNRs.  The majority of the OVA-AuNCs are attached to the longitudinal side of the 
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AuNR but there are a few OVA-AuNCs that appear to be on the transverse side (Figure 

5.16C2 inset, Figure 5.16C3 inset). 

 
Figure 5.17: High resolution TEM images of AuNRCTAB-PSS-co-MA 1:1-ConA with 

OVA-AuNCs.  Scale bars are 10 nm. 

High resolution TEM images show the OVA-AuNC attached to the AuNR 

surface more clearly (Figure 5.17) The diameter of the NCs attached to the AuNR range 

from 5 – 13 nm, which is larger than the 2 – 5 nm size reported for these protein 

encapsulated NCs.271, 273  The larger apparent size of the NCs could be attributed to 

multiple OVA-AuNCs being bound to the same to a single ConA attached to the AuNR 

surface.  The average distance between the edge of the AuNR and the end of the OVA-
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AuNC is 8.5 ± 2.5 nm (n = 27).  This close distance between the acceptor AuNR and the 

AuNC donor is essential for the quenching process to occur. 

 
Figure 5.18: High resolution TEM and EDS images of AuNRCTAB-PSS-co-MA 1:1-

ConA with OVA-AuNCs. 

 

 

 

 
Figure 5.19: High resolution TEM and EDS images of AuNRCTAB-PSS-co-MA 1:1-

ConA with OVA-AuNCs. 

EDS was used to show the presence of Au to confirm that the spots attached to 

the AuNR surface were in fact AuNCs (Figure 5.18, Figure 5.19). 
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 Glucose Response of AuNRCTAB-PSS-co-MA 1:1-ConA and OVA-AuNC 

Assay 

 
Figure 5.20: Spectral overlap between sensor components.  (A) Absorbance of 

AuNRCTAB-PSS-co-MA 1:1-ConA (black −), excitation (red ••) and emission (red − 

−) spectra of OVA-AuNC.  The grey diagonal lines indicate the overlap integral.  

(B) Glucose response of OVA-AuNCs mixed with AuNRCTAB-PSS-co-MA 1:1-ConA 

(○) and for OVA-AuNC only (□) when excited at 340 nm (red ○ or □) or 400 nm 

(blue ○ or □).  Data is normalized to the intensity of OVA-AuNCs only at the same 

concentration.  (C) Inner filter effect for increasing concentrations of AuNRCTAB-

PSS-co-MA 1:1 added to OVA-AuNCs when excited at 340 nm (red ○) or 400 nm 

(blue ○).  (D) Percent change in quenching as glucose increases after correcting for 

static quenching of AuNRCTAB-PSS-co-MA 1:1 and the effect of glucose directly on 

OVA-AuNCs.  Linear fit (black −) between 1 mM and 200 mM with an R2 value of 

0.97. 

The excitation and emission spectra of OVA-AuNC was shown in Figure 5.20A 

with a view peak excitation at 340nm and peak emission at 650 nm.  The excitation 

maximum in the UV region is attributed to the direct excitation of the OVA tryptophan 

residue acting as an energy transfer donor for the AuNC emission.284  The overlap 
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integral of the OVA-AuNC emission with the AuNRCTAB-PSS-co-MA 1:1-ConA 

absorbance is shown by the grey lines (Figure 5.20A).  The overlap integral between the 

AuNR-ConA and OVA-AuNCs was calculated to be 7.62 * 1020
 M

-1cm-1nm4 using the 

reported AuNR extinction of 7.11 * 109 m-1cm-1.  The overlap integral value was then 

used to calculate the Forster distance to be 30.8 nm.  This large Forster distance means 

that energy transfer should be very efficient because the expected distance between 

AuNR-ConA bound OVA-AuNC is approximately 10 - 15 nm. 

The glucose assay response was tested using 0.1 nM AuNRCTAB-PSS-co-MA 1:1-

ConA and 5.5 μM OVA-AuNC.  The glucose response was collected for excitation at 

340 nm and 400 nm but the data was nearly identical; for brevity, only 340 nm data will 

be discussed.  Mixing of the OVA-AuNC with AuNRCTAB-PSS-co-MA 1:1-ConA in the 

absence of glucose resulted in an initial OVA-AuNC quenching of 39.5%.  As glucose 

concentration was increased, the luminescence was recovered with a response up to 1 M 

glucose (Figure 5.20B).  Surprisingly, full reversibility (return to 1) was never achieved 

(Figure 5.20B). 

As a negative control, the effect of glucose directly on the OVA-AuNC was 

investigated.  When glucose was added to OVA-AuNCs, less than a 1% change in PL 

intensity was observed up to 0.5 M glucose; at 1 M glucose a 7.4% enhancement of PL 

intensity occurs (Figure 5.20B).  This may be due to changes in viscosity affecting the 

OVA structure, similar to the intensity enhancement observed for BSA-AuNCs 

subjected to high pressure.285 
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The static quenching of the AuNR complex was studied by the addition of 

varying concentrations of AuNRCTAB-PSS-co-MA 1:1 to OVA-AuNCs; the x-axis AuNR 

concentration was based off NTA (Figure 5.20C).  As AuNRCTAB-PSS-co-MA 1:1 

concentration was increased, the OVA-AuNC PL intensity decreases, with a 23.4% 

quenching at 0.29 nM AuNRCTAB-PSS-co-MA 1:1.  This represents the quenching due to 

absorption of the excitation light by the AuNR.  It was shown previously that the 

AuNRCTAB-PSS-co-MA 1:1 and OVA-AuNCs do not associate in solution (Figure 

5.20B), which suggests that the quenching observed is not due to energy transfer of the 

OVA-AuNC attaching directly to the AuNR.  The static quenching for increase AuNR 

concentration was interpolated to find a static quenching of 8% at 0.1 nM AuNRCTAB-

PSS-co-MA 1:1, the concentration of AuNRs used for the glucose assay.  This static 

quenching represents a static baseline of quenching for all glucose concentrations; a 

contributing factor for why full reversibility was never achieved.  The large amount of 

static quenching also illustrates the tradeoff when increasing the AuNRCTAB-PSS-co-MA 

1:1-ConA concentration.  The sensor response range can be tuned by increasing ConA 

concentration, but this will also increase the baseline static quenching. 
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Table 5.2: Quenching reversibility as a function of glucose.  Corrected quenching 

was calculated by taking the measured assay quenching and subtracting the OVA-

AuNC only quenching and the AuNR static quenching. 

 

 

The corrected quenching percent was calculated by removing the contribution of 

static quenching and the OVA-AuNC quenching only in the presence of glucose (Figure 

5.20D and Table 5.2).  After removing these other contributions we can see that the 

actual initial quenching was 31.5% and full reversibility was nearly achieved at 0.5 M.  

At 1 M glucose the trend is no longer seen.  The response in linear between 1 mM and 

200 mM with an R² value of 0.97, however, the sensitivity is higher in the 10 mM to 500 

mM range (Figure 5.20). 
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 Optimization of Assay Conditions and Data Analysis 

 
Figure 5.21: Optimizing plate reader gain for different concentration of OVA-

AuNCs when the excitation was (A) 340 nm or (B) 400 nm. 

 

 

 

Table 5.3: Gain values for excitation at 340nm or 400nm for different OVA-AuNC 

concentrations. 

 

 

Serial dilutions of OVA-AuNCs were measured to determine the lower limit of 

detection for the plate reader at an excitation of 340 nm or 400 nm.  The gain was set to 

auto adjust for optimal dynamic range at each concentration yielding a value between 0 

and 255.  For an excitation of 340 nm and OVA-AuNC concentration below 0.35 μM, 

decreasing PL intensity and large SNR was observed (Figure 5.21A).  Even at 0.35 μM 

the amount of noise was becoming apparent.  When the excitation was 400 nm the 

spectra deteriorates in quality and intensity when OVA-AuNC concentration was below 

OVB Conc (uM) 11.15 5.58 2.79 1.39 0.70 0.35 0.17 0.09 0.04 0.02 0.01 0.01

Gain for 400nm Exc. 167 180 195 211 225 240 250 255 255 255 255 255

Gain for 340nm Exc. 162 176 189 204 219 234 248 255 255 255 255 255
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1.39 μM (Figure 5.21B).  A gain larger than 235 generally did not provide good quality 

data (Table 5.3).  This shows there is some room lowering OVA-AuNC concentration to 

optimize the assay, but further optimization will require increasing the OVA-AuNC QY.  

 
Figure 5.22: Optimization of glucose response data analysis by normalizing PL 

intensity to the (A) max value of the entire assay or (B) max value in that row for 

excitation at 340 nm (red ○) or 400 nm (blue ○).  Error bars represent 95% 

confidence intervals (n = 3). 

The glucose response of the OVA-AuNC and AuNRCTAB-PSS-co-MA 1:1-ConA 

assay when the luminescence intensity was normalized to the max intensity of all 

samples (Figure 5.22A) and when the luminescence intensity was normalized to the max 

intensity in that row (Figure 5.22B).  There was about a 3.4% difference in one of the 

replicate wells for the sample of OVA-AuNC only and this error can be seen in this 

entire row compared to the other two rows.  However, normalizing the PL intensity of 

each row to the OVA-AuNC only sample removes most of this error, reducing the 

standard deviation between replicates was reduced by an average of 66%, in many cases 

the error was reduced by more than 80% (Table 5.4). 
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Table 5.4: Plate setup for glucose response when luminescence intensity was 

normalized to the max value in the entire assay or to the max value in that row for 

excitation at 340 nm (left) and 400 nm (right).  The percent difference represent the 

difference between the standard deviation of the two methods of normalization. 

 

 
  

Using the plate reader was necessary in order to reduce the reaction volume and 

assay reagents.  However, getting consistent data, especially when protein was being 

used, requires ensuring a consistent meniscus and no bubbles in each well.  To get a 

consistent meniscus the plate was orbitally shaken for 10-30 s before the measurement 

cycle.  Bubbles are removed by popping them with a metallic syringe needle. 

5.5. Conclusion 

This work demonstrated the nanomaterial energy transfer between donor 

fluorescent OVA-AuNCs and ConA decorated AuNRs.  A major challenge was the 

conjugation and separation of the AuNR-ConA conjugate without inducing aggregation 

and while maintaining ConA binding capability.  NTA played a crucial role in this 

method development process to determine size distribution and concentration.  The 

photo-luminescent OVA-AuNCs were synthesized using established methods but a 
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purification step was introduced in order to remove the denatured and non-binding 

portion.  This process could be achieved without a significant size increase or 

aggregation, but with only a 14% recovery.  The binding of the OVA-AuNCs with the 

AuNR-ConA was confirmed visually by TEM and spectroscopically by monitoring the 

photoluminescence quenching.  The OVA-AuNCs were initially quenched by 31.5% 

when mixed with AuNRs but the luminescence could be almost fully recovered by the 

addition of glucose.  As a sensor, the response was linear from 1 – 200 mM but the 

sensitivity was higher in the 10 mM – 500 mM range.  For glucose sensing applications 

this range and sensitivity will need to be optimized by tuning the relative and absolute 

concentrations of the OVA and ConA.  However, this presents some challenges that may 

require additional redesign and optimization.  Increasing the AuNR-ConA concentration 

using the present formulation will result in a large increase in static quenching by the 

AuNR, which will decrease the SNR.  Decreasing the OVA-AuNCs concentration 

without first increasing the QY will also decrease the SNR.  Future work will need to 

redesign this sensor carefully by taking all of these variables into consideration.  

However, because the techniques for modification and conjugation developed in this 

work are generic, they can be adapted for inclusion of different nanomaterial 

formulations with minimal optimization. 
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6. CALCIUM CARBONATE AS A TEMPLATE FOR THE FABRICATION OF

MICRO- AND NANO- CAPSULE SENSORS* 

6.1. Introduction 

For in vivo deployment, the sensing chemistry must be packaged in hollow 

capsule with a semi-permeable polymer shell.  The membrane acts as a barrier between 

the sensor interior and the host environment.  The membrane mesh size must be small 

enough to keep the sensor chemistry localized and keep the components from leaching 

out of capsule and interacting with the host environment.  This keeps the potentially 

hazardous components (i.e. ConA, nanomaterials) compartmentalized to mitigate their 

potential toxicity.  This also keeps the larger biomolecule components of the host 

environment from interfering or damaging the sensor components.  The mesh size 

should be large enough to allow the diffusion of analytes like glucose into the capsule 

interior to be analyzed by the sensor.  The capsule shell can be further modified to 

impart additional functionality by the incorporation of dyes, NPs, or responsive 

polymers and can be engineered to enhance biocompatibility.  A major challenge for the 

encapsulation of proteins is the ability to encapsulate a large amount of material while 

* Parts of this section are reprinted with permission from “Poly (vinylsulfonic acid) Assisted Synthesis of 
Aqueous Solution Stable Vaterite Calcium Carbonate Nanoparticles” by Nagaraja, A. T., Pradhan, S., 

McShane, M.J. J Colloid Interface Sci 2014, 418, 366-72.  Copyright 2014 by Elsevier Inc. 

* Parts of this section are reprinted with permission from “Fabrication of Nanocapsule Carriers from 
Multilayer-Coated Vaterite Calcium Carbonate Nanoparticles” by Biswas, A.; Nagaraja, A. T.; McShane, 

M. J. ACS Appl Mater Interfaces 2014, 6 (23), 21193-201.  Copyright 2014 by American Chemical 

Society Inc. 
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retaining binding capability.  This requires gentle processing and mild conditions for 

entrapment, shell deposition, and dissolution. 

Calcium carbonate (CaCO3) is an important material for fundamental and applied 

study, with implications in industrial,286 household,287 and biological processes.288  

CaCO3 exists as three different anhydrous polymorphs: calcite, aragonite and vaterite in 

order of decreasing thermodynamic stability.  Nanoporous CaCO3 particles have 

attracted much attention because of their biocompatibility, high effective surface area, 

ability to protect encapsulated components, larger pore size than mesoporous silica, 

inexpensive production under ambient conditions, and ease of dissolution with mild 

treatment of EDTA at neutral pH.289  There is significant interest in producing the 

vaterite polymorph of CaCO3 because it has better water solubility, higher porosity, and 

is more easily dissolved than calcite or aragonite. 

 
Figure 6.1: Flow chart of the process development for encapsulation using CaCO3 

as a template. 
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This section investigates the encapsulation of ConA based sensing chemistry into 

CaCO3 nano- and microparticle templates.  The overall process development and major 

considerations are shown in Figure 6.1.  This section is divided into three subsections to 

address the major areas of the process development: (1) synthesis and characterization of 

the novel regime of nanoparticle CaCO3 templates (CCNPs), (2) investigation and 

redesign of the LbL on CaCO3 process using CCNPs as the model template, and (3) 

retention of ConA activity during the encapsulation and carbonate dissolution using 

buffered dissolution instead of chelation.  Each subsection contains more detailed topic 

specific background. 

6.2. Synthesis of PVSA Stabilized CCNPs 

 Background 

The thermodynamic instability of vaterite makes its natural occurrence rare, 

requiring kinetic stabilization even for laboratory production.  Investigation into 

different crystal growth modifiers for vaterite formation is encompassed by the vast 

literature studying additive-directed crystallization,290, 291 for its importance in 

understanding mesocrystal formation for biomineralization.292, 293  It is difficult to 

predict the outcome of different additives from theory; hence, most understanding is 

gained through empirical observations.  Additional factors such as concentration and 

ratio of Ca2+ to CO3
2-, temperature, pH, reaction duration, and mixing speed influence 

the outcome and further complicate understanding the process.  Polymers act to inhibit 

or stabilize specific crystal structures, reshaping and directing crystal formation 

depending on chemical composition, charge density, and concentration.294  A wide 
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variety of structures and crystal polymorphs can be produced, with even a small amount 

of additive having a significant influence on the outcome.  Copolymers containing both 

interacting and stabilizing components reshape crystallization based on the affinity of the 

chemical structure for the mineral salt ions and crystal faces.295  In recent work, the 

commercial random copolymer poly (4-styrenesulfonate-co-maleic acid) (PSS-co-MA) 

was found to direct crystallization to produce a variety of superstructures depending on 

its relative concentration to calcium in the reaction.293, 296  A PEI assisted ultrasonic 

method was developed for the synthesis of vaterite microparticles that were stable for at 

least 8 months.297  Other commonly used PEs include carboxylic or sulfate containing 

synthetic and biopolymers.298, 299 

For biosensor or drug delivery applications the production of spherical vaterite is 

desired because the highly porous structure can serve as a template for biomolecule 

incorporation.  Encapsulation into these particles is achieved either by adsorption to the 

highly porous structure after particle formation22 or by addition during nucleation to 

coprecipitate during particle formation.300  In many cases, the biomolecule-encapsulating 

CaCO3 microparticle is used as a template to create hollow capsules by the sequential 

deposition of oppositely charged PEs using electrostatic layer-by-layer, followed by core 

dissolution.301  Applications of CaCO3 NPs (CCNPs) would have vast implications for 

both drug delivery and sensor applications.  In order for a drug-carrying NP to passively 

enter a subcutaneous tumor cell it must be less than the 200-1200 nm pore size cutoff.302  

For competitive binding glucose biosensors, compartmentalization of macromolecules 

into nanocapsules should improve response times by decreasing diffusion distances.303 
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Production of CCNPs requires decreasing the particle growth rate and stabilizing 

the NPs before they agglomerate to form microparticles or recrystallize to calcite.  

Alginate chains have been used to reduce the nucleation growth rate by sequestering 

calcium, resulting in the formation of CCNPs.304  However the resulting CCNPs showed 

an increase in size and loss of negative surface charge after 4 hours in aqueous solution, 

indicating surface recrystallization.  Ethylene glycol was used to reduce the solubility 

and crystal growth rate of CaCO3 to produce vaterite NPs down to 430 nm in size.305  

These particles remained as vaterite in ethanol, but recrystallized to calcite in a few 

hours when transferred to aqueous solutions.  Thus, while a few examples of efforts to 

produce CCNPs have been reported, we have not identified any that yield long-term 

stable vaterite NPs. 

The focus of this work was to study the effect of poly (vinyl sulfonic acid) 

(PVSA) on CCNP formation and production of vaterite NPs.  It has been shown that the 

presence of sulfonic groups on polymers stabilizes the vaterite structure.287  We 

hypothesized that incorporation of commercially available PVSA, a low-molecular-

weight and high-charge-density PE, would limit interparticle bridging and aggregation of 

primary nuclei to prevent microparticle formation.  This idea was based on a previous 

report of the copolymer of PVSA and chitosan which found that the sulfonic acid groups 

strongly interacted with and attached to the CaCO3 surface.306 Here we describe a 

method to obtain vaterite CCNPs and report how PVSA concentration, reaction 

temperature, and order of reagent addition affect particle size, morphology, surface 

charge, and crystalline structure. 
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 Materials and Methods 

6.2.2.1. Chemicals 

PVSA (Sigma) was filtered through a 0.2 μm syringe filter prior to use.  Na2CO3 

and CaCl2 (Sigma) was used as received.  PVSA molecular weight of 4000 – 6000 kDa 

according to manufacturer’s specifications, 5000 kDa was used for calculations. 

6.2.2.2. CCNP Synthesis  

10 mL of 20 mM Na2CO3 and PVSA were added to a 100 mL beaker and stirred 

at 800 RPM with a spinning wedge stir bar (VWR).  After 1 min, 10 mL of 20 mM 

CaCl2 was rapidly injected.  The beaker was covered and the solution was allowed to 

react at RT for 1-14 h depending on the PVSA concentration (Table S1).  The mixture 

was transferred to 50 mL conical tube and centrifuged at 10000 RCF for 5 min to 

recover the formed particles and remove unreacted components.  The particles were 

washed 3 times with 50 mM pH 9 TRIS buffer and finally resuspended as a 1 mL stock 

solution in 50 mM pH 9 TRIS buffer.  This process was also done in reverse where 

CaCl2 was added first followed by PVSA and then Na2CO3 (Table S2). 

6.2.2.3. SEM 

Images were obtained with a JEOL FE-SEM 7500.  2 μL of a 1/10 diluted stock 

dilution was placed on a cleaned silica support and dried in a vacuum chamber overnight 

followed by gold sputtering for 45 s. 

6.2.2.4. XRD 

The X-ray source was a 2.2 kW Cu X-ray tube, maintained at an operating 

current of 40 kV and 40 mA.  The standard Bragg-Brentano para-focusing mode with the 
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X-ray diverging from a DS slit (1 mm) at the tube to strike the sample and then 

converging at a position sensitive X-ray Detector (Lynx-Eye, Bruker-AXS).   

6.2.2.5. DLS & Microelectrophoresis 

Dynamic Light Scattering (DLS) and ζ-potential was measured using a Zeta 

Sizer Nano Series ZEN 3600 Spectrometer (Malvern Instruments Ltd, Malvern, 

Worcestershire, United Kingdom).  A 1 mL, 1/20 diluted stock solution in 5 mM pH 9.0 

TRIS buffer was used for measurement. 

6.2.2.6. NTA 

Particle size and distributions were obtained with the NanoSight LM10HS with a 

65 mW 405 nm source.  A 300 μL sample of a 1/100 dilution of the sample stock 

solution in 0.1 M NaHCO3 was used for analysis.  Video was acquired with a 

Hamamatsu C11440 digital camera for 3 min in order to obtain at least 1000 particle 

tracking events.  Analysis was completed with included NanoSight 2.3 software with 

automatic settings. 

6.2.2.7. UV-Vis 

UV-Vis absorbance was obtained on a Cary 300 UV-Vis spectrophotometer with 

a 6x6 multi-cell Peltier block and temperature controller.  For the time dependent studies 

a scaled down reaction in a 3 mL total volume (1.5 mL CaCl2, 1.5 mL Na2CO3, and 

PVSA) was monitored at 500 nm at 20-30 s intervals under constant stirring. 
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6.2.2.8. Brunauer-Emmett-Teller Method  

The surface area and pore size of the CCNPs was determined using the Brunauer-

Emmett-Teller (BET) method with nitrogen adsorption and desorption at 77 K using a 

Micromeritics ASAP 2000. 

 Results and Discussion  

6.2.3.1. Experimental Setup 

The simple experimental setup is depicted in Figure 6.2 where equal volumes of 

equimolar of CaCl2 and Na2CO3 are combined under agitation in the presence of PVSA.  

In the first set of experiments, 10 mL of 0.02 M Na2CO3 was combined with PVSA in a 

beaker and stirred at 800 RPM (stirred solution) for two minutes.  Then 10 mL of 0.02 M 

CaCl2 was rapidly injected (solution added) and the reaction was incubated under 

constant stirring at room temperature. 

  

Figure 6.2: Schematic of experimental setup where PVSA, Na2CO3 and CaCl2 are 

combined in a beaker under stirring with a spinning wedge stir bar  
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The concentration of PVSA in the stirred solution was varied in order to 

understand how particle size and morphology would be affected.  The mixing of CaCl2 

and Na2CO3 without any additive results in immediate particle formation apparent from 

the increased turbidity, but the incorporation of PVSA into the reaction significantly 

delays the onset of the nucleation. 

6.2.3.2. Na2CO3 as the Stirred Solution 

 
Figure 6.3: Time dependent absorbance at 500 nm for the reaction maintained at 

25°C under constant stirring for different PVSA concentrations (a) 0.16 μM (b) 

0.31 μM, (c) 0.625 μM, (d) 1.24 μM, (e) 1.84 μM, (f) 2.43 μM, and (g) 3.01 μM. 

To understand the process, a scaled-down reaction was performed in a cuvette 

and monitored with UV-Vis absorbance spectroscopy.  The results reported in Figure 6.3 

show the time dependent absorption at 500 nm, which is a measure of turbidity and, 

hence, particle formation or growth.  At PVSA concentrations from 0.16 -1.24 μM there 



 

165 

 

is no apparent particle formation for ≈ 5 - 6 minutes (indicated by the sharp increase in 

absorbance) and at 1.84 μM it takes ≈ 150 minutes for notable particle formation.  With 

increasing PVSA concentrations from 0.16 - 1.84 μM we also observe a decrease in the 

peak steady-state absorbance reached, indicating the production of either smaller sized 

or fewer particles.  At 2.43 μM and 3.01 μM PVSA the growth pattern changes: instead 

of a delay followed by a sharp inflection, a continuous slow growth was observed.  A 

higher reaction slope was observed for the higher PVSA concentration, a trend which 

continues to at least 4.14 µM.  The minimum incubation time required for each PVSA 

concentration before recovery of the particles by centrifugation was determined by 

finding the time when the absorbance increase reached steady-state (first derivative 

equal to 0).  After centrifugation at 10000 RCF for 5 minutes, the particles were washed 

3 times and suspended in a concentrated 1 mL stock solution for further analysis.  The 

particles were stored in an alkaline buffered solution to prevent acidic dissolution of 

particles.  
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Figure 6.4: SEM images of sputter coated CCNPs produced when Na2CO3 was the 

stirred solution for different PVSA concentrations (a) 0.31 μM, (b) 0.625 μM, (c) 

1.24 μM, (d) 1.84μM, (e) 2.43 μM, and (f) 3.01 μM.  Scale bars correspond to 500 

nm. 

Particle morphology was determined by SEM imaging of CCNPs suspended on a 

silica wafer and gold sputter coated.  For the lower PVSA concentrations (Figure 6.4) 

the particles exhibit spherical morphology associated with vaterite.  The surface appears 

porous and looks very similar to other reports of CaCO3 microparticles.  At higher 

PVSA concentrations (Figure 6.4e, Figure 6.4f) particles cannot be distinctly observed; 

therefore, size and morphology are not distinguishable because the small particles 

aggregate during sample drying.  For all PVSA concentrations, no calcite rhombohedra 

were found in the populations observed. 
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Figure 6.5: (A) DLS results represent average size by intensity (□) and size peak by 

number (●) for CCNPs at different PVSA concentrations when Na2CO3 was the 

stirred solution.  Error bars represent 95% confidence intervals for three separate 

batches of particles.  (B) NTA plots showing changes in size distribution at 0.15 μM 

(blue - -), 0.62 μM (red ●), 2.43 μM (green  ̶ ), and 4.13 μM (black - -) PVSA when 

CaCl2 was the stirred solution. 

Dynamic light scattering (DLS) was used as a rapid method to determine the size 

of the CCNPs for different PVSA concentrations.  The results reported in Figure 6.5A 

show the change in average size by intensity and size peak by number of the resulting 

particles formed.  As concentration of PVSA was increased from 0.16 – 1.84 μM, peak 

size by number shows a slight downward trend but no significant differences were 

observed.  Particles were all above 300 nm average diameter.  At a concentration 

between 1.84 μM and 2.43 μM, an apparent threshold is crossed and peak size by 

number decreases to less than 150 nm.  No significant change in size was found with 

further increase in PVSA concentration.  Characterization of CCNPs with NP tracking 

analysis (NTA) was obtained (Figure 6.5B) to gain further understanding of 

hydrodynamic particle size.  A limitation of DLS is the intensity based measurement 

which is weighted towards the higher scattering cross section of larger particles.254  By 

tracking individual particle movement NTA provides additional understanding of 

particle size and size distribution.  From these data we observe that increasing PVSA 
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concentration decreases peak particle size but there are some larger particles present 

even at higher PVSA concentrations.  The size by DLS and NTA is summarized in Table 

6.1. 

Table 6.1: Summary of CCNP hydrodynamic size and zeta potential produced for 

given PVSA concentration and incubation time when Na2CO3 was the stirred 

solution (n = 3).  
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6.2.3.3. CaCl2 as the Stirred Solution 

 
Figure 6.6: SEM images of sputter coated CCNPs produced when CaCl2 was the 

stirred solution for different PVSA concentrations (a) 0.31 μM, (b) 0.625 μM, (c) 

1.24 μM, (d) 1.84 μM, (e) 2.43 μM, and (f) 3.01 μM.  Scale bars correspond to 500 

nm. 

To understand how order of addition affects the reaction dynamics the 

experiments were repeated for each PVSA concentration using the same setup in 

Scheme 1 but instead with CaCl2 and PVSA as the stirred solution and Na2CO3 as the 

solution added.  The SEM images (Figure 6.6) of the resulting CCNPs reveal the 

spherical morphology, but again at higher PVSA concentrations (Figure 4e, 4f) a clear 

distinction between particles was not observed. 
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Figure 6.7: (A) DLS results represent average size by intensity (□) and size peak by 

number (●) for CCNPs at different PVSA concentrations when CaCl2 was the 

stirred solution.  Error bars represent 95% confidence intervals for three separate 

batches of particles.  (B) NTA plots showing changes in size distribution at 0.15 μM 

(blue - -), 0.62 μM (red ●), 2.43 μM (green  ̶ ), and 4.13 μM (black - -) PVSA when 

CaCl2 was the stirred solution. 

The DLS results for particles produced when CaCl2 was the stirred solution 

(Figure 6.7A) show a similar trend and threshold transition to what was observed 

previously when Na2CO3 was the stirred solution.  However, as PVSA concentration 

increases we observe smaller particle size by number and intensity and less error 

between triplicates compared to when Na2CO3 was the stirred solution.  There is also 

less divergence between intensity and number distribution measurements, indicating less 

aggregation and greater monodispersity.  From NTA (Figure 6.7B) we observe that at 

lower PVSA concentrations (0.15 μM and 0.62 μM) a broad multimodal distribution is 

present, but at higher PVSA concentrations (2.43 μM and 4.13 μM) average particle size 

decreases and becomes more monodisperse.  The size by DLS and NTA are summarized 

in Table 6.2. 
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Table 6.2: Summary of CCNP hydrodynamic size and zeta potential produced for 

given PVSA concentration and incubation time when CaCl2 was the stirred solution 

(n = 3). 

 

 

6.2.3.4. XRD 

XRD data were obtained for particles produced with 0.62 μM PVSA when 

Na2CO3 or CaCl2 (Figure 6.8) was the stirred solution.  All peaks on the diffraction 

spectra were associated with vaterite, indicating that the NPs produced are of the desired 

vaterite polymorph.  It is also noteworthy that the data shown were obtained from 

samples after storage for 5 months in pH 9 TRIS buffer at room temperature.  This 

indicates that the PVSA has stabilized the particles to prevent calcification for an 

extended period of time. 
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Figure 6.8: XRD of CCNPs formed when (a) Na2CO3 or (b) CaCl2 was the stirred 

solution for 3.01 μM PVSA.  Peaks associated with the vaterite polymorph are 

marked with a (V). 

6.2.3.5. BET 

BET analysis of CCNPs produced with 0.62 μM PVSA and CaCl2 as the stirred 

solution revealed a surface area of 33.88 m²/g, a single point pore volume of 0.065 

cm³/g, and an average pore size of 10 nm (Figure 6.9).  PVSA stabilized CCNPs have a 

surface area higher than reported values for CaCO3 microparticles307, 308 and other 

vaterite CCNPs,309 but have a smaller average pore size than both.  The high surface area 

and porous nature of these CCNPs make then a suitable reservoir for material 

encapsulation. 
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Figure 6.9: BET nitrogen adsorption/desorption isotherm plot for CCNPs with 

CaCl2 as the stirred solution and 0.62 μM PVSA. 

6.2.3.6. Zeta Potential 

Zeta potential measurements for particles made in both CaCl2 and Na2CO3 as the 

stirred solutions are reported in Figure 6.10.  When Na2CO3 was the stirred solution we 

observe an increasing magnitude of a negative zeta potential with increasing PVSA 

concentration, indicating more surface coverage by PVSA.  In contrast, when CaCl2 is 

the stirred solution the zeta potential remains at ≈ 20 mV until the highest PVSA 

concentration.  The sequestration of calcium by PVSA is either preventing complete 

adsorption of polymer on the CCNP surface or is neutralizing some of the surface 

charge.  The particles had a negative surface charge for all PVSA concentrations and 

maintained this charge even after 5 months of storage in TRIS buffer (time of this 

measurement), indicating the PVSA has stabilized the surface to prevent calcification. 
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Figure 6.10: Zeta potential measurements for CaCl2 (black □) or Na2CO3 (red ●) as 

the stirred solution.  Error bars represent 95% confidence intervals for three 

separate batches of particles. 

6.2.3.7. Temperature Dependent Nucleation 

The influence of temperature on the reaction rate kinetics and resulting particle 

size and size distribution were studied using both UV-Vis spectroscopy and NTA.  The 

time dependent nucleation when Na2CO3 was the stirred solution (Figure 6.11A) at three 

different temperatures shows that by decreasing temperature from 25°C to 5°C the onset 

of nucleation is delayed and the peak steady-state absorbance reached is less.  The first 

derivative of the time dependent reaction (inset of Figure 6.11A) shows that the peak 

reaction rate reached is also decreasing with decreasing temperature.  Sizing with NTA 

(Figure 6.11B) revealed that decreasing temperature decreased the CCNPs peak size to 

less than 200 nm at 5°C.  Decreasing temperature also greatly improves the 

monodispersity decreasing the coefficient of variance from 107.7% at 25°C to 24.5% at 

5°C.  When CaCl2 was the stirred solution (Figure 6.11C) there was a longer delay in the 

onset of peak nucleation compared to Na2CO3, but a similar trend with decreasing 
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temperature.  NTA again reveals the smaller peak size and decrease in the coefficient of 

variance with decreasing temperature from 42.5% at 25°C to 27% at 4°C (Figure 6.11D).  

The size by NTA and coefficient of variance for different temperatures are reported in 

Table 6.3. 

 
Figure 6.11:  Time dependent UV-Vis absorbance at 500nM monitoring the 

nucleation and (inset) first derivative when (A) Na2CO3 or (C) CaCl2was the stirred 

solution and NTA plots of CCNPs produced for 0.625 μM PVSA when (B) Na2CO3 

or (D) CaCl2 was the stirred solution at 5°C (blue - -), 10°C (red ●), and 25°C 

(black  ̶ ). 
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Table 6.3: Temperature dependent (25°C, 10°C, 5°C) peak size achieved as 

determined by NTA and coefficient of variance (%CV) when either Na2CO3 or 

CaCl2 was the stirred solution. 

 

 Conclusions 

We have demonstrated an easy and rapid method to synthesize CCNPs requiring 

no specialized chemicals, equipment, or setup.  We have shown that size of particles 

produced can by selected by controlling PVSA concentration.  The PVSA is stabilizing 

the particles in solution as the vaterite polymorph with a strong negative surface charge 

and maintains this crystal structure and surface charge even when stored in a buffered 

solution for up to 5 months.  This is an important distinction primarily because other 

methods that produced vaterite CCNPs were not stable in water.304, 305 The time 

dependent analysis revealed the kinetics of particle formation and growth, including the 

influence of different concentrations of PVSA as well as different temperatures.  

Increasing the PVSA concentration or decreasing the temperature both delayed the onset 

of the peak nucleation rate as well as decreased the reaction rate.  Decreasing reaction 

temperature provides an easy method to further decrease size and greatly improve 

monodispersity.  The difference in result when either CaCl2 or Na2CO3 was the stirred 

solution is interesting because when no additive is present it should not matter.  

However, when an additive is involved it is important to consider its interaction with the 
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two components.  The interaction of PVSA with calcium causes dependence on order of 

addition that affects the outcome of particle size, monodispersity, and surface charge.  

While better control on size is achieved when CaCl2 is the stirred solution, a more 

negative surface charge was attained when Na2CO3 was the stirred solution.  

Interestingly, at 5°C the difference in particle size and distribution when Na2CO3 or 

CaCl2 was the stirred solution was much less than at 25°C.  Hence, the difference in 

order of addition can be mitigated by decreasing reaction temperature. 

 
Figure 6.12: Proposed mechanism of PVSA assisted growth wherein PVSA plays a 

dual role to: (1) sequester calcium through ionic interactions to slow down 

nucleation rate and (2) stabilize the resulting NPs to prevent agglomeration into 

microparticles or recalcification into calcite. 

From the results reported in this paper we suspect that PVSA is playing a dual 

role in (1) slowing the nucleation growth rate by sequestering excess calcium and (2) 

stabilizing the resulting CCNPs to prevent surface calcification or aggregation to form 

microparticles (Figure 6.12).  As free calcium complexes with carbonate to form 

particles the concentration gradient causes more sequestered calcium to be released.  



 

178 

 

This results in a feeding process, which acts to control growth.  Eventually the PVSA is 

no longer charge shielded by the free calcium and it then binds to the particle surface.  

The polymer imparts a high surface charge density and electrostatic repulsion between 

NPs to prevent aggregation into microparticles.  

6.3. LbL on CCNPs for Fabrication of Capsules 

 Background 

The vaterite form of CaCO3 has received significant attention for sensor and drug 

release application because of its high porosity, easy synthesis, and mild dissolution 

conditions.  However, the thermodynamic instability of the vaterite polymorph poses a 

problem of premature dissolution or recrystallization to calcite during the LbL process 

for capsule formation. 

This problem became especially apparent when using CCNPs as the template for 

LbL and under commonly used conditions the CCNPs completely dissolved.  A redesign 

of the typical microparticle LbL process was required in order to achieve similar results 

for NP templates.  The additional problems associated with coating NPs was initially 

discovered when trying to analyze particle size with NTA, which requires a very high 

dilution of particles.  NaHCO3 buffer was required when diluting these particle to obtain 

accurate particle size and size distributions.  When the particles were diluted in TRIS, 

CHES, or water they particles dissolved or aggregated.  Therefore, LbL had to use 

NaHCO3 buffer in order to prevent dissolution.  Our work with LbL on NPs (AuNPs, 

AgNPs, and QDs) also showed that much higher PE concentrations were required to 

prevent interparticle bridging and obtain high charge reversal.  When using CCNPs the 
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concentration was increased to at least 10 mg/mL to compensate for the increase in 

surface area of the smaller NPs compared to microparticles and the higher surface area 

of highly porous vaterite. 

This work aimed to redesign the typical LbL procedure by investigating the 

process in more detail.  Optimal conditions for CCNP stability such as suspension 

media, pH, PE type, and PE concentration were either studied or rationally chosen to 

improve particle stability.  CCNPs require these optimized conditions because the 

instability results in complete dissolution.  However, we suspect that a similar 

dissolution is occurring with microparticle templates but rather than complete 

dissolution, a recrystallization of the surface to calcite is occurring.  These mixed 

morphology microparticles could still form spherical capsules, but they would be more 

difficult to dissolve and may contain holes in the capsule shell due to the calcite 

rhombohedra or aragonite spike formation.  Therefore, we believe that the process 

development for CCNPs could also be extended for improving the LbL process for 

microparticle templates. 

 Materials and Methods 

6.3.2.1. Chemicals 

Poly (vinylsulfonic acid) (PVSA), sodium carbonate (Na2CO3), calcium chloride 

(CaCl2), poly (sodium 4-styrenesulfonate) (PSS, average Mw 70 kDa), poly 

(diallyldimethylammonium chloride) (PDADMAC, average Mw 100-200 kDa), 

ethylenediaminetetraacetic acid (EDTA) and buffer salts (NaHCO3, CHES and TRIS) 

were obtained from Sigma and used as received.  
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6.3.2.2. LbL Deposition of PEMs on CCNPs 

PEMs were deposited on the CCNPs using LbL. CCNPs suspended in 1 mL of 

0.1 M NaHCO3 buffer pH 9 were added dropwise to PE solutions subjected to constant 

sonication for 10 min.  The PEs employed were PDADMAC and PSS, each prepared at 

20 mg/mL in 0.1 M NaHCO3.  The CCNPs were rinsed with 0.1 M NaHCO3 pH 9 buffer 

between each deposition step to remove excess PE.  PDADMAC was deposited initially 

followed by PSS/PDADAMAC until 10 bilayers were achieved.  Hollow capsules were 

produced from the final PEM-coated CCNPs by exposing them to excess EDTA at pH 

7.2. 

6.3.2.3. SEM 

CCNP and NC images were captured using a JEOL 7500 SEM with a field 

emission source.  Stock solutions of CCNPs/NCs were diluted to 1/20 and 2µl of the 

diluted solution was placed on a clean silica support and dried in a vacuum chamber 

overnight.  All samples were sputter coated with 4 nm of palladium/platinum prior to 

taking the images.  All EDS spectrum were obtained using an Oxford Energy Dispersive 

X-ray Spectrometry system attached to the SEM system. 

 Results and Discussion 

6.3.3.1. Buffer Stability 

The LbL process entails repeated cycles of washing and resuspension of the 

CCNPs. Determining the optimal buffer (both type and pH) to use when coating CaCO3 

without dissolving the core and releasing the encapsulated material is critical.  

Therefore, the first step in developing this process was to understand the influence of 
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buffer on particle stability.  It has been reported that vaterite CCNPs are more stable in 

alkaline conditions,310 but we observed that the type of buffer used has an effect on 

CCNP stability as well.  The CCNPs were not stable in all buffer systems at alkaline pH; 

for example, the CCNPs formed aggregates when suspended in alkaline phosphate 

buffer.  The stability of the particles was analyzed for three different buffer systems 

(CHES, TRIS and NaHCO3) keeping the pH constant at 9.  For these studies, the 

fabrication process of the CCNPS was scaled down by adding 1.5 mL of 20 mM Na2CO3 

to a stirred solution of 1.5 mL of 20 mM CaCl2 containing 0.16 µM PVSA.  The formed 

CCNPs were suspended in 5mL of buffer and washed under sonication.  This process 

was repeated six times.  The CCNPs were washed repeatedly in buffer solutions to 

imitate the repeated cycles of washing and resuspension characteristic of the LbL 

process.  The size distribution and concentration of the CCNPs were measured before 

and after washing (under sonication) in the three buffer systems (Figure 6.13).  It was 

evident that CCNPs (mean dia. 170 nm) suspended in 0.1 M NaHCO3 buffer pH 9.0 had 

greater concentration both before and after repeated washing compared to CCNPs 

suspended in 0.1 M CHES buffer (pH 9.0) and 0.1 M TRIS buffer (pH 9.0).  Cumulative 

concentration of CCNPs suspended in NaHCO3 before repeated washing was 637% and 

249% greater than the cumulative concentration of CCNPs suspended in CHES and 

TRIS respectively.  No significant decrease in particle concentration after washing the 

particles repeatedly in NaHCO3 was observed (Figure 6.13 inset).  This established that 

the CCNPs are most stable in 0.1 M NaHCO3 pH 9.0 buffer.  Therefore, the PEs 
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PDADMAC and PSS were suspended in 0.1 M NaHCO3 pH 9.0 buffer and 0.1 M 

NaHCO3 pH 9.0 buffer was used in all the rinsing steps of the LbL process. 

 
Figure 6.13: NTA plots showing the change in concentration of CCNPs before 

washing in NaHCO3 (red — • • —), CHES (maroon —), TRIS (blue • •) and after 

washing in NaHCO3 (black — • —), CHES (orange - - -), TRIS (green — —).  Inset: 

Data representing cumulative concentration of CCNPs before and after washing in 

NaHCO3, CHES and TRIS buffer.  Error bars represent 95% confidence intervals 

for three separate batches. 

6.3.3.2. LbL Deposition 

Using LbL assembly, PE multilayers (PEMs) were deposited on the CCNPs. 

Briefly, CCNPs suspended in 1mL of 0.1 M NaHCO3 buffer (pH 9) were added 

dropwise to PE solutions subjected to constant sonication for 10 min.  The PEs 

employed were PDADMAC and PSS, each prepared at 20 mg/mL in 0.1 M NaHCO3.  

The PEs PDADMAC and PSS were chosen because they remain sufficiently charged at 
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alkaline pH.  The CCNPs were rinsed with 0.1 M NaHCO3pH 9 buffer between each 

deposition step to remove excess PE.  PDADMAC was deposited initially followed by 

PSS/PDADAMAC until 10 bilayers were achieved.  Hollow capsules were produced 

from the final PEM-coated CCNPs by exposing them to excess EDTA at pH 7.2. 

The zeta potential for the CCNPs was measured after each PE deposition step to 

confirm surface charge reversal.  The results reported in Figure 6.14 shows the zeta 

potential reversal after each deposition step of the cationic/anionic PE.  The magnitude 

of the surface charge for the cationic and anionic PE-coated CCNPs is large (36.15 ± 

4.70 mV; -43.31 ± 5.01 mV), suggesting colloidal stability of the suspended PE coated 

CCNPs.  The zeta potential progressively increases in magnitude, revealing the more 

complete PE coating with the increase in the number of PE layers that is commonly seen 

in PEM systems applied to small particulates.  After the deposition of 10 bilayers, the 

PEM-coated CCNPs were well dispersed when suspended in 0.1 M NaHCO3 pH 9.0 

buffer. 
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Figure 6.14: Zeta potential change with increase in the number of polymer layers 

coated on CCNPs.Δ = CCNP, ○ = PDADMAC and □ = PSS.  Error bars represent 

95% confidence intervals for three separate batches. 

6.3.3.3. Capsule Formation 

Hollow nanocapsules were made using the process described earlier.  The 

morphology of the CCNPs and the nanocapsules was visualized by SEM imaging 

(Figure 6.15).  The images of the CCNPs show a spherical morphology, which is typical 

for vaterite CaCO3 particles.  The SEM images of the nanocapsules are similar to SEM 

images of microspheres consisting of a mixed population of spherical nanocapsules and 

collapsed nanocapsules.308  This is expected, as dried capsules collapse revealing folds 

and crevices because of their hollow interior.  The average increase in diameter of 

colloidal particles coated with PDADMAC/PSS has been reported to be 5 nm per 

bilayer.311  Comparing the diameters of the nanocapsules and the CCNPs we found an 

average increase of 33.6 nm with each bilayer of PDADMAC/PSS added.  The unusual 
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increase in the nanocapsule wall thickness may be attributed to the highly porous 

structure of the CCNPs which favors the formation of thicker capsule walls, which has 

been observed in case of micro capsules fabricated from CaCO3 micro particles 

templates as well.312 

 
Figure 6.15: SEM images of sputter-coated CCNPs (a) 20,000 X magnification (b) 

50,000 X magnification and NCs (c) 20,000 X magnification (d) 50,000 X 

magnification.  Scale bars correspond to 500 nm. 

Elemental analysis under higher magnification was carried out using an EDS 

system attached to the SEM to confirm that CaCO3 was no longer present in the 

nanocapsules.  The EDS spectrum (Figure 6.16A) of the CCNPs shows a distinct 

calcium peak that is absent in the EDS spectrum of the nanocapsules (Figure 
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6.16B).Both of the EDS spectra indicate the presence of platinum, palladium and silicon 

resulting from the silicon substrate and the sputter-coated film. 

 
Figure 6.16: Energy Dispersive X-ray Spectroscopy spectra for sputter coated (A) 

CCNPs and (B) nanocapsules. 

 Conclusion 

This section showed the redevelopment of the LbL process for coating CCNPs 

followed by complete dissolution of the CCNP core to form a capsule.  This LbL 

technique shown in this sections represents a significant redesign of the commonly used 

procedures for LbL on CaCO3 templates.  Typically, PEs were used at a concentration of 

2 mg/mL and were suspended in DI-H2O without any control on pH and wash steps also 

used DI-H2O.20, 22, 313  The LbL method is quite robust, so even under non-ideal 

conditions capsule formation can still be achieved.  However, this will lead to overall 

poorer quality capsules, more aggregation, more batch to batch variation, and more 

operator to operator variation.  This is particularly important when the LbL is used as a 

diffusion limiting membrane for drug release or sensor applications.  Even small changes 

in the PEM properties will prevent proper operation.  We believe that more consistent 
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results can be achieved for all CaCO3 based LbL by using the optimized conditions 

reported in this section. 

6.4. Encapsulation of ConA into CaCO3 

 Background 

The encapsulation of ConA via CaCO3 coprecipitation requires 2 major 

considerations: (1) the stability of ConA during the coprecipitation process and (2) the 

binding capability of ConA after dissolution of the CaCO3 core.  Successful 

implementation of an encapsulated ConA assay requires addressing both of these issues.  

To the best of our knowledge, the encapsulation of ConA into carbonate templates has 

not been studied. 

ConA is notably unstable in free solution.46  The coprecipitation process has a 

high loading capability but requires rapid stirring for 1 – 10 min, which leads to bubble 

formation and interfacial forces that can denature protein.  To mitigate this stability 

issue, PEGylated ConA was used because it was shown to have better stability in free 

solution.99  Alternative methods to coprecipitation include pre-loading by adsorption 

onto preformed CaCO3 and post-loading by diffusing into preformed capsules.  Post-

loading and adsorption approaches have been shown to maintain the stability of  

enzymes better than coprecipitation, but only a significantly lower amount of material 

could be encapsulated.314  Additionally, the post-loading or adsorption of sterically 

stabilized, high charge density, and larger materials such as NPs and PEGylated ConA 

would be even less efficient.315 
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After the coprecipitation and LbL shell formation, a hollow capsule is produced 

by dissolving the carbonate core.  EDTA, citric acid, and GDL are widely accepted as 

gentle approaches to achieve carbonate dissolution by the chelation of calcium ions.23, 

314, 316-318  This is acceptable for most application (i.e. enzymes, antibodies), however 

both calcium and a transition metal are required as cofactors for ConA to bind sugars 

and chelation of these cofactors deactivates ConA.319  The reintroduction of these 

divalent metals to reactivate ConA is possible but the results are concentration 

dependent and inconsistent.320  This is further complicated when the ConA is inside a 

capsule, where the introduction of Ca2+ and Mn2+ across the membrane is not trivial.321  

To avoid these problems a method for complete carbonate dissolution without the use of 

chelation was developed. 

 Materials and Methods 

6.4.2.1. Chemicals 

MnCL2 (ACS, 98%), CaCL2 (ACS, 96%), Poly (vinylsulfonic acid) (PVSA), 

sodium carbonate (Na2CO3), calcium chloride (CaCl2), poly (sodium 4-styrenesulfonate) 

(PSS, average Mw 70 kDa), poly (diallyldimethylammonium chloride) (PDADMAC, 

average Mw 100-200 kDa), and MES sodium salt were all obtained from Sigma Aldrich. 

6.4.2.2. Buffers 

Buffer 1 - 5 mM NaHCO3 pH 9, Buffer 2 - 5 mM TRIS pH 7.2, Dissolution 

buffer - MES buffer 0.5 M pH 6.1 stock, 0.2 M pH 6.1 used for dissolution, PDADMAC 

solution - 20 mg/mL PDADMAC in buffer 1, PSS solution 1 - 20 mg/mL PSS in buffer 
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1, PAH solution - 10 mg/mL PAH in buffer 2, PSS solution 2 - 10 mg/mL PSS in buffer 

2, TRIS binding buffer - 50 mM TRIS pH 7.4, 1 mM CaCl2, 1 mM MnCl2, 0.5 M NaCl. 

6.4.2.3. Synthesis of PEGylated ConA 

ConA was PEGylated with 5 kDa PEG using the procedure reported by Locke et 

al. with minor modification.99  ConA was prepared at a concentration of 10 mg/mL in 

0.1 M NaHCO3 pH 8.5 with 0.15 M NaCl with 1.9 mg of methyl-mannose.  Under mild 

stirring 8 mg of PEG-SVA was added.  The solution of incubated under stirring for 6 h 

at RT and then left for 12 h at 4°C.  Excess PEG and mannose was removed by filtering 

with a 30 kDa microsep 5 times at 4000 RCF for 15 min. 

6.4.2.4. Encapsulation of PEGylated ConA  

PEG-ConA was buffer exchanged twice with 0.2 M Na2CO3 with 30 kDa 

Nanosep at 5000 RCF for 15 min immediately before encapsulation.  PEG-ConA was 

mixed with fluorescently labeled competing ligand in a 500 μL total volume of 0.2 M 

Na2CO3 incubating for 5 min while stirring at 400 RPM.  Stirring was increased to 800 

RPM and 500 µL of 0.2 M CaCl2 was rapidly added and kept stirring for 5 min.  A 40 μL 

amount of PVSA was added, the speed was reduced to 600 RPM, and the solution was 

stirred for another 5 min. Particles were collected by centrifugation at 1000 RCF for 1 

min and the supernatant was discarded.  The particles were washed once more and then 

used for LbL modification. 

6.4.2.5. Binding Capability of ConA after Encapsulation and Dissolution with MES 

PEGylated ConA was encapsulated in to CaCO3 spheres via coprecipitation.  The 

particles were washed twice with 5 mM NaHCO3 pH 8 buffer to remove non-
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encapsulated ConA.  The CaCO3 particles containing ConA were then dissolved by 

exposing to 5 mL of 0.1 M MES for 5 mins.  The solution was then filtered with a 10 

kDa microsep to retain ConA while removing dissolved CaCO3.  This process was 

repeated 2 more times, and the ConA was finally resuspended in TRIS binding buffer.  

Fluorescence anisotropy was used to determine the binding affinity of ConA using a 

procedure described elsewhere.96 

6.4.2.6. LbL on CaCO3 Microparticles with PDADMAC and PSS 

The particles were resuspended in 1000 μL of buffer 1 and mixed thoroughly by 

pipette to redisperse the particles.  1000 μL of PDADMAC solution was added and 

mixed by pipette for 1 min.  The particles were collected at 1000 RCF for 1 min, 

discarding the supernatant containing excess PE and washed once with 1000 μL of 

buffer 1.  The sample was resuspended in 500 μL of buffer 1 and mix thoroughly by 

pipette.  1000 μL of PSS solution 1 was added and the solution was mixed by pipette for 

1 min.  The particles were collected at 1000 RCF for 1 min, discarding the supernatant 

containing excess PE and washed once with 1000 μL of buffer 1.  This completes 1 

bilayer, the process was repeated to add the desired number of bilayers. 

6.4.2.7. LbL on CaCO3 Microparticles with PAH and PSS 

The particles were resuspended in 1000 μL of buffer 2 and mixed thoroughly by 

pipette to redisperse the particles.  1000 μL of PAH solution was added and mixed by 

pipette for 1 min.  The particles were collected at 1000 RCF for 1 min, discarding the 

supernatant containing excess PE and washed once with 1000 μL of buffer 2.  The 

sample was resuspended in 500 μL of buffer 2 and mix thoroughly by pipette.  1000 μL 
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of PSS solution 2 was added and the solution was mixed by pipette for 1 min.  The 

particles were collected at 1000 RCF for 1 min, discarding the supernatant containing 

excess PE and washed once with 1000 μL of buffer 2.  This completed 1 bilayer, the 

process was repeated to add the desired number of bilayers. 

6.4.2.8. Carbonate Dissolution for Capsule Formation 

The CaCO3 core was dissolved by washing 4 times with 5 mL of dissolution 

buffer, incubating for 5 min and then centrifuging at 1000 RCF for 5 min.  The capsules 

were then washed twice with TRIS binding buffer by centrifuging at 1000 RCF for 5 

min. 

6.4.2.9. SEM 

Microcapsule images were captured using a JEOL 7500 SEM with a field 

emission source.  Microcapsule containing sample was placed on a clean silica support 

and dried in a vacuum chamber overnight.  Samples were sputter coated with 4 nm of 

palladium/platinum prior to taking the images.  All EDS spectrum were obtained using 

an Oxford Energy Dispersive X-ray Spectrometry system attached to the SEM system.  

 Results and Discussion 

6.4.3.1. Dissolution of CaCO3 Without Chelation 

CaCO3 can be dissolved using calcium chelating chemicals or by lowering the 

pH to increase the solubility.  For the dissolution of ConA containing carbonate particles 

the acidic dissolution process is preferred in order to preserve the divalent cation 

cofactors.  Acidic dissolution can be achieved by titration with acid or by incubation in a 

buffer.  Titration with acid is not suitable for dissolving protein containing capsules 
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because if the pH gets too low then the protein will be denatured.  Additionally, ConA 

forms a dimer below pH 5.7 which should be avoided with PEGylated ConA since the 

outcome is unknown.  Therefore, the best way to achieve dissolution is by controlling 

the pH to be low enough to induce carbonate solubility (pH < 7) but high enough to 

prevent denaturation and dimerization (pH > 5.7).  By exposing the carbonate particles 

to a buffer in this pH region, dissolution could be achieved without affecting the protein.  

The buffer used must be chosen carefully because most will complex with metal ions to 

some degree.  Buffer that contains amines, carboxylic acids, phosphates, hydroxymethyl, 

or hydroxyl ethyl groups are all known to complex with cationic metals.322  A buffer that 

does not interact with metals was discovered when using commonly used assays for 

protein quantification (i.e. bicinchoninic, Lowry) that rely on a Cu2+ catalyst to 

determine protein concentration.  The presence of metal complexing ions in these assays 

prevents accurate protein quantification.  Out of all of Good’s buffers, only MES, 

MOPS, and PIPES were found to not interfere with the assay.323  Of these buffers, MES 

is the most suitable for carbonate dissolution because its pKa of 6.1 allows dissolution at 

a pH that does not denature or induce dimerization of ConA. 
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Figure 6.17:  Photographs of sodium alginate with CaCO3 after dissolution of the 

CaCO3 with (A) EDTA or (B) MES. 

The dissolution capability of MES without chelating calcium was demonstrated 

visually by dissolving CaCO3 mixed with sodium alginate.  When EDTA was used the 

solutions turns clear to indicate that the CaCO3 is dissolved, but the alginate does not 

form a gel (Figure 6.17).  The EDTA chelates the calcium which prevents it from cross-

linking the alginate strands.  In contrast, when MES is used to dissolve CaCO3, the 

liberated calcium is capable of cross-linking the alginate to form a solid gel (Figure 

6.17).  This shows that MES is capable of dissolving CaCO3 without chelation of the 

calcium.  However, gel formed by MES still appeared cloudy, this is possibly due to 

incomplete dissolution of CaCO3 (Figure 6.17).  For this reason, further investigation of 

the dissolving capability of MES was needed. 
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6.4.3.2. MES Dissolution of CaCO3 Templates for Capsule Formation 

 
Figure 6.18: SEM images of capsules produced by dissolving the carbonate core 

with MES buffer.  Scale bars correspond to 1 µm. 
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Figure 6.19: SEM images and EDX spectra of microcapsules produced by 

dissolution of the carbonate core with MES buffer.  Scale bars correspond to 1 µm. 

 

The ability of MES to dissolve CaCO3 was tested using PEM coated 

microparticles.  The complete dissolution of the CaCO3 core to produce a microcapsule 

using MES buffer was confirmed by SEM.  Figure 6.18A and Figure 6.18B show two 

capsules produced using MES buffer to dissolve the core.  Figure 6.19B and Figure 

6.19D show the EDX spectra of two portions of one of the capsules confirming the 

absence of any measurable calcium. 
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Table 6.4: Dissolution of CCNPs and CCMPs Synthesized with PVSA using MES 

 

 

A series of qualitative screening experiments were used to determine the 

effectiveness of MES dissolution of CaCO3 particles synthesized with PVSA (Table 

6.4).  Effectiveness of dissolution was determined by visual inspection.  The PVSA is 

used to produce CCNPs but also servers to maintain the vaterite polymorph.  Decreasing 

PVSA concentration increases the amount of MES wash steps required to completely 

dissolve the CaCO3.  When no PVSA was present the particles could not be completely 

dissolved even with 7 washes.  This may be due to the formation of calcite without 

PVSA present.  It was found that PVSA could even be added up to 600 seconds after the 

nucleation began and still provided the particle stability needed for dissolution in two 

washes.  The PVSA stabilization was even effective under conditions that produced 

microparticle templates. 

  

Trial
CaCl₂

(M)

Na₂CO₃

(M)

Total Vol. 

(mL)

PVSA 

(uL)

Time of  PVSA

Addition (s)

MES 

Washes (#)
Add. Notes

1 20 1

2 10 2

3 5 3

4 2 4

5 0 7 Did not completely dissolve

6 1 1

7 30 2

8 60 2

9 180 2

10 600 2

11 0.2 0.2 1 50 600 2

ResultsConditions

0

40

40.020.02
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6.4.3.3. Encapsulation of PEGylated ConA 

Table 6.5: Encapsulation of PEGylated ConA into carbonate particles under 

various conditions. 

 

The encapsulation efficiency (EE) of PEGylated ConA under various conditions 

was tested, focusing on conditions that produced the easily dissolvable particles (Table 

6.5).  When PVSA was added during the particle formation process an EE of 2.29% was 

achieved.  If the PVSA was added immediately after nucleation EE was 1.8% but if 

PVSA was added 10 minutes after nucleation then EE was 7.3%.  This large increase in 

EE is likely due to the fact that a large portion of material encapsulation is expected to 

be due to adsorption so the particle surface.  When PVSA is added during synthesis 

quickly afterwards, it assembles on the surface and prevents protein adsorption through 

electrostatic repulsion.  When using conditions for microparticle formation the EE is 

14.2%, but under the same conditions with higher PEGylated ConA the EE goes down to 

12%.  There is a maximum amount of ConA that can be encapsulated, so increasing the 

Trial
CaCl₂

(M)

Na₂CO₃

(M)

Total Vol.

 (mL)

PVSA 

(uL)

Time of  PVSA

Addition (s)

ConA 

Added (mg)

ConA 

Encapsulated (mg)
EE%

1 20 4.8 0.11 2.29

2 10

3 5

4 2

5 0

6 1 2 0.036 1.80

7 30

8 60

9 180

10 600 1 0.073 7.30

11 1 0.142 14.20

12 5 0.578 11.56
10.20.2

40

0

60050

Conditions Results

0.02 0.02 4
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initial amount to be encapsulated will produce depreciating returns.  This shows that 

PEGylated ConA can be successfully encapsulated, with much higher EE in 

microparticles. 

6.4.3.4. Binding Affinity of ConA After MES Dissolution 

 
Figure 6.20: Fluorescence anisotropy of fluorescently labeled competing ligand with 

PEGylated ConA that had been encapsulated in CaCO3 and released by MES 

dissolution. 

The binding capability of PEGylated ConA was tested after encapsulation and 

dissolution with MES using fluorescence anisotropy (Figure 6.20).  These results 

showed that PEGylated ConA was still capable to of binding sugars after encapsulation 

and dissolution, with a KA = 2.8 x 106 M-1.  This is only a slight decrease compared to 

the initial binding affinity PEGylated ConA in free solution, which has a KA of 5 x 106 

M-1. 
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6.4.3.5. Encapsulation of a ConA Assay into CaCO3 Microcapsules 

PEGylated ConA-TRITC and fluorescently labeled competing ligand were 

encapsulated using the process described earlier in this section.  The encapsulation of the 

assay was confirmed by fluorescence microscopy after particle synthesis (Figure 6.21) 

and capsule formation after dissolution with MES (Figure 6.22).  The presence of 

PEGylated ConA-TRITC and fluorescently labeled competing ligand was confirmed by 

the highly fluorescent signal localized inside the particles.  Glucose exposure of the 

encapsulated sensor showed some function; unfortunately, these results were initially 

poor and could not be consistently replicated (data not shown). 

 
Figure 6.21: Encapsulation of PEGylated ConA-TRITC and a fluorescently labeled 

competing ligand into CaCO3 particles.  (A) excitation/emission for TRITC and (B) 

excitation/emission for FITC. 
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Figure 6.22: PEGylated ConA-TRITC and fluorescently labeled competing ligand 

in microcapsules made by dissolution with MES.  (A) excitation/emission for 

TRITC and (B) excitation/emission for FITC. 

 Conclusions 

In this section, the dissolution of PVSA stabilized CaCO3 with MES was shown 

as an effective method for complete particle dissolution for capsule formation without 

chelating calcium.  This process was shown as an alternative method for the commonly 

used EDTA method when encapsulating materials sensitive to chelation.  The 

encapsulation of PEGylated ConA and release with MES was performed and the 

PEGylated ConA was found to retain most of its binding affinity.  However, the capsule 

containing the PEGylated ConA-TRITC and fluorescently labeled competing ligand 

assay was found not to consistently respond to glucose; it was not completely clear why 

this did not work.  One major limitation faced was the low EE and encapsulation amount 

of PEGylated ConA-TRITC.  The assay production and encapsulation is both expensive 

and time consuming.  The poor encapsulation results in a large amount of wasted sample 

and time, making the entire process extremely inefficient.  Additionally, we were unable 

to accurately determine the concentration of the encapsulated components due to 
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interference from spectral overlap and scattering.  This makes it difficult to tune the 

absolute concentration and relative ratios of the encapsulated components, which is 

required for optimizing a competitive binding assay.  The encapsulation of a 

nanomaterial assay was not attempted because the problems would only be further 

magnified.  We believe that overcoming the encapsulation problems will require 

utilizing an entirely different encapsulation methodology. 
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7. CONCLUSIONS AND FUTURE DIRECTION 

 

7.1. LbL on Nanomaterials 

A novel method was developed for the pH-dependent LbL modification of 

nanomaterials using solvent precipitation, providing a new capability to modify a variety 

of nanoscale particles with different core material, surface ligand, surface charge, size, 

and morphology with both weak and weak-strong PEs (Table 7.1).  The efficient 

modification without aggregation was confirmed by UV-Vis, TEM, and NTA.  The pH 

dependent process was particularly critical for the coating of high surface curvature NPs 

with high recovery.  A generalized process was developed by considering the surface 

charge density of the NP template in relation to the charge density of the PE.  This 

provides a framework for rationalizing the choice of deposition conditions when coating 

any core materials with any PE.  Because of the time consuming nature of LbL on NPs, 

minimizing the processing steps and increasing the yield was seen as critical advance to 

make the method practical. 

A solvent precipitation step was introduced for buffer exchange and 

concentration the NPs before ultracentrifugation.  This allows for PE adsorption under 

the dilute conditions necessary for minimizing aggregation, while still allowing for 

processing a large amount of sample in a reasonable amount of time.  Without this step it 

would take 10 – 25 times longer to process the same amount of sample. Again, these are 

practical advances with solid scientific foundation that enable more efficient processing 

for practical application of LbL to modify a broad spectrum of nanomaterials. 
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Table 7.1: Summary of materials and PEs studied for LbL modification. 

 

The LbL coating imparted enhanced electrosteric stability by increasing the 

magnitude of the surface charge and providing a steric barrier.  This can be observed as 

enhanced colloidal stability and consistent optical properties across varying pH and ionic 

strength conditions (Table 7.2).  The colloidal stability of the NP can generally be 

predicted by the terminal PE coating, with some variation depending on particle size and 

material type.  Interestingly, this enhanced stability was found even with only a single 

bilayer of PE coating of PAH and PSS-co-MA 1:1.  This formulation was found to have 

the highest stability in varying pH and ionic strength (Table 7.2).  The hydrodynamic 

size of the coated nanomaterials was investigated by NTA and revealed a 1 - 3 nm 

increase per layer of added polyelectrolyte.  This makes LbL modification a useful tool 

for the stabilization of nanomaterials with a minimal hydrodynamic size; an important 

feature for the development of energy transfer sensors. 

The major drawback of LbL was the inconsistent effect on the optical properties 

of the different nanomaterials.  This was found for both metal NPs and semiconductor 

QDs, but the change varied depending on the PE used and the material type.  For 
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instance, the quantum yield of QDs was unaffected by the addition of PAH, but 

decreased dramatically after being coated with PAA.  However, AuNPs showed 

enhancement of the plasmon resonance for PAH, PAA, and PSS-co-MA.  AgNPs were 

unaffected by PAH, but showed a decreased plasmon resonance for PSS-co-MA.  The 

inconsistent nature of these changes makes determining the root cause difficult, but we 

suspect two factors may be contributing: (1) the change in refractive index after each 

layer and/or (2) the chemical interaction the PE with the NP surface is changing the 

electronic properties.  Future work to explore these potential causes would require 

experimental design guided by modeling of the PE wrapping and associated changes in 

optical properties. 
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Table 7.2: Summary of colloidal properties for different materials, surface ligands, 

and polymer coatings.  Zeta potential is reported at a pH where the particles is 

expected to be fully ionized.¹ pH stability is the range over which the zeta potential 

magnitude remains above 30 mV.² Ionic strength stability was determined by 

change in UV-Vis plasmon peak location or NTA peak size changes.³ 

  

The utilization of the weak-strong copolymer for bioconjugation was an 

important feature for maintaining stability during bioconjugation with carbodiimide 

chemistry.  The dual character of the copolymer allows for bioconjugation with the weak 

groups (maleic acid), while the strong groups (styrene sulfonate) remain charged to 

improve colloidal stability during the bioconjugation.  This stability is critical for 

successfully implementing the two-step method required to prevent interprotein 

crosslinking when using carbodiimide chemistry.  This effectiveness of this process was 

demonstrated with AgNPs but was also easily extended to AuNR bioconjugation.  Both 

materials were conjugated to ConA using nearly identical procedures even though they 
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are different core materials that initially had different surface charge and chemistry.  

This demonstrated LbL as a general coating procedure and transitional coating for 

bioconjugation. 

7.2. Nanomaterial-Enabled Affinity Sensors 

The reversible energy transfer between donor OVA-AuNCs and acceptor AuNR-

ConA was demonstrated for the application of glucose sensing.  The sensor 

demonstrated a linear response to glucose between 1 – 200 mM glucose but the 

sensitivity was highest from 10 – 500 mM.  Blood glucose levels of a diabetic patient 

typically fluctuates between 2 – 40 mM,324 therefore further optimization of the sensor is 

necessary to optimize the sensitivity within this range.  This can be achieved by 

increasing the ratio of receptor to ligand by decreasing the concentration of OVA-

AuNCs or increasing the concentration of GNR-ConA.  Decreasing the OVA-AuNC 

concentration would require first increasing the quantum yield.  This could be achieved 

by alternative synthesis techniques such as microwave assisted synthesis or alloying with 

other noble metals.272  The effect of these different synthesis methods on the binding 

capability will need to be studied.  Increasing AuNR-ConA concentration also increases 

the static quenching, which would decrease SNR.  Plasmonic nanomaterials have a 

broad extinction spectra that would cause static quenching of excitation light.  Therefore, 

overcoming this problem would require using alternative acceptor nanomaterials such as 

non-fluorescent and non-plasmonic NCs or alternative donor nanomaterials such as 

upconverting NPs (UCNPs).  These two potential sensor schemes using either UCNPs or 

NCs are shown in Figure 7.1. 



 

207 

 

 
Figure 7.1: Alternative energy transfer schemes utilizing ConA and OVA with (A) 

UCNPs as a donor material or (B) AuNCs as an acceptor. 

NCs are potentially ideal acceptor nanomaterials because they quench at higher 

efficiencies by following the NSET formalism and their quenching is not based on 

spectral overlap.  Therefore, a single NC – protein complex would have higher 

quenching efficiency and would be capable of quenching a broad spectrum of donor 

materials.  Additionally, the small size of the NCs would allow the attachment of 

multiple clusters per protein, further increasing quenching efficiency.  The challenge of 

fabricating such a sensor is the construction of the NC-protein complex.  NCs are 

challenging to manipulate without aggregating and are very close to the size of proteins, 

making separation by size exclusion methods extremely ineffective.  Also, since NCs do 

not have a plasmon resonance it is difficult to determine their concentration; their size is 

well below the threshold for NTA. 
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UCNPs could be used as alternative donor nanomaterials because they are 

excited at lower energy where plasmonic NPs do not have absorption.  For instance, 

UCNPs are commercially available with a 980 nm excitation and a 650 nm emission.  

The same process of coating AuNRs could be used to make UCNPs coated with ConA.  

This could be coupled with an OVA-dye acceptor to create a sensor (Figure 7.1).  

UCNPs have several advantages for in vivo applications: (1) longer (µs) lifetimes, (2) 

excitation in NIR (better tissue penetration), (3) photobleaching resistance, and (4) no 

toxicity.325  Unfortunately, reliable methods for synthesis and coating of UCNPs is still 

lacking.325  If these techniques could be improved, potentially using LbL, this material 

would present the most promise as a donor nanomaterial for moving forward in 

developing an in vivo nanomaterial-enabled glucose sensor. 

7.3. Encapsulation of Competitive Binding Assays 

This work investigated the encapsulation of ConA based competitive binding 

sensing chemistry using CaCO3 templates.  Because this has never been demonstrated 

before, the entire process was investigated systematically.  The major concern was the 

stability of the ConA during the encapsulation and dissolution process.  However, the 

use of PEGylated ConA and non-chelating dissolution with MES proved to be a 

successful method to maintain ConA affinity.  Unfortunately, a consistent sensor could 

not be fabricated but it was not clear what the source of the error was.  The main 

difficulties that prevented this from moving forward were (1) low EE of ConA and (2) 

the inability to accurately quantify or control the amount of encapsulated material.  For a 

competitive binding sensor the optimization of the receptor and ligand concentrations is 
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critical.  However, the CaCO3 coprecipitation did not allow for good control over the 

amount of material that could be encapsulated.  Additionally, the overall low EE meant a 

large amount of the sensing chemistry that was not encapsulated had to be discarded.  

This made the optimization process slow as new material needed to be constantly 

produced.  This is a critical issues when dealing with nanomaterial modified sensing 

chemistry which is significantly more difficult to synthesize and scale up.  We believe 

that moving forward with encapsulation will require using an alternative encapsulation 

scheme that allows for better EE efficiency and control of the concentration of 

encapsulated components. 

An alternative approach could utilize the immobilization of ConA into a matrix 

rather than encapsulation.  Such a matrix would need to be highly porous and provide 

chemical groups capable of conjugation to proteins.  A strong candidate for this is the 

commercially available cross-linked agarose microparticles produced by GE Healthcare 

under the trade name Sepharose.  The Sepharose beads can also be purchased with ConA 

already conjugated; this is the same material used for producing the High Trap ConA 

column used for the purification of OVA-AuNCs in section 5.  The immobilization of 

ConA onto Sepharose provides steric stability and prevents self-agglutination to make 

the ConA extremely stable over time without PEGylation.  Additionally, the 

microparticle form factor makes labeling the ConA with dye or NCs much easier 

because separation can be achieved at low speed centrifugation or under low flow rates 

in a chromatography setup.  The main question is whether the Sepharose bead can be 

used as a template for capsule formation.  This so far has not been investigated and may 
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present many challenges that may require further chemical modification of the 

Sepharose frame.  If successful, this could provide a new format for the capsule 

formation of competitive binding sensors and could easily be extended for other affinity 

and even enzymatic systems. 
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