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ABSTRACT 

 

Advances in production technology are increasing the availability of natural gas in the 

U.S.  Examining how these technological advancements influence the dynamics in the 

natural gas and energy sectors is the subject here.  Tests for parameters constancy in 

cointegrated vector autoregressive models are applied to investigate the possible 

existence of structural changes in pricing relationships among North America natural gas 

spot markets.  Results suggest that long-run pricing relationships among eight natural 

gas spot prices are not constant over the period of 1994 to 2014.  Two potential breaks 

are found, during 2000 and 2009.  Possible contributing factors to structural changes 

occurring during 2000 are expensive and volatile natural gas prices, the U.S. Federal 

Energy Regulatory Commission Order No. 637, and changes in imports.  The major 

contributing factor to the structural change during 2009 is likely the shale gas revolution.  

 Prequential analysis is applied to determine how the presence of these structural 

breaks affects probabilistic forecasts of out-of-sample data of natural gas returns.  

Models using longer periods as the based estimation period, forecast returns better.  

Threshold cointegration examines the effects of the structural breaks on transaction costs 

between natural gas markets.  Pairwise transaction costs differ between the 2009 pre- 

and post-break periods.  During the post-break period, five of seven pairwise transaction 

costs decrease, while the remaining two pair-wise transaction costs increase relative to 

the pre-break period.  Alterations in natural gas flows as the result of the shale gas 

revolution partially explain the transaction costs changes. 
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Finally, a data-rich methodology is used to investigate how the number of factors 

derived from a large number of time series influences inferences and probabilistic 

forecasting performance concerning natural gas production.  Factor-augmented vector 

autoregressive models and prequential analysis are applied to data series of the U.S. 

energy and macroeconomic variables.  The number of factors minimally affects 

inferences from factor-augmented vector autoregressive models, but considerably affects 

probabilistic forecasting performance.  Exploiting estimated factor improves the 

forecasting ability, but including too many factors tends to exacerbate probabilistic 

forecasts performance. 
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CHAPTER I  

INTRODUCTION  

 
Natural gas is one of major energy sources in the United States (U.S.), contributing to 

multiple sectors of the economy (National Energy Technology Laboratory 2013).  In 

2014, approximately 26.82 trillion cubic feet (Tcf) of natural gas were consumed in the 

U.S. (U.S. Energy Information Administration (U.S. EIA) 2015c).  Electric power, 

industrial, residential, and commercial sectors consumed approximately 30%, 29%, 

19%, and 13% of this total consumption amounts (U.S. EIA 2015c).  The majority of 

natural gas consumed in the U.S. is from the domestic production (U.S. EIA 2014d).  

Until 1986, U.S. natural gas production and consumption were nearly equal (U.S. EIA 

2014d).  After 1986, consumption has been greater than production; the U.S. has become 

a net importer of natural gas (U.S. EIA 2014d).   

Beginning about 2006, domestic natural gas production increased because of 

more efficient, cost-effective drilling and completion techniques, which are a 

combination of horizontal drilling and hydraulic fracturing, especially in the production 

of natural gas from shale formations (U.S. EIA 2014d, 2015d).  The growth in domestic 

production led to declining natural gas prices resulting in decreased imports, increased 

exports, and increased consumption, particularly in the electric power and industrial 

sectors (U.S. EIA 2013b, 2014c).    

Are these technological advances, which are causing natural gas production and 

consumption increases, altering the economic dynamics of the U.S. energy sector?  This 

is the general question addressed.  Specially, the overall objective is to investigate 
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whether and how the dynamics in the natural gas sector and the energy sector are 

influenced by the technological advancements in shale gas production.  To achieve this 

general objective, time series econometric methods are implemented to explore natural 

gas daily pricing relationships, changes in transaction costs between natural gas spot 

markets, and dynamic effects of natural gas gross withdrawals on the U.S. energy sector.  

Four almost self-contained essays, Chapters II though V, address these issues. 

Dynamics in Daily Natural Gas Pricing  

Starting with the natural gas sector, daily natural gas pricing relationships are explored 

in Chapters II and III.  The objective of the study presented in Chapter II is to investigate 

the possible existence and effects of structural changes with unknown break points 

among North America natural gas spot markets.  The questions not only whether 

structural changes exist among North America natural gas spot markets, but also what 

may be inducing such changes are addressed.  To achieve the objective, tests for 

parameter constancy in a cointegrated vector autoregressive model introduced by 

Hansen and Johansen (1999) are applied to investigate potential existence of structural 

changes in long-run pricing relationships among North America natural gas spot 

markets.  Evidence from the tests suggests two possible structural changes, one during 

2000 and another during 2009.  Possible contributing factors to the structural change 

during 2000 are expensive and volatile natural gas prices, the U.S. Federal Energy 

Regulatory Commission Order No. 637, and changes in imports.  The likely major 

contributing factor to the break occurring during 2009 is the shale gas revolution.  

Natural gas pricing dynamics are examined by dividing the data into three sub-periods 
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that correspond to the structural changes and performing innovation accounting analysis 

(impulse response functions and forecast error variance decompositions) for each sub-

period.  Dynamics in daily natural gas pricing differ across the three sub-periods. 

Because of the potential presence of structural breaks found in Chapter II, the 

objective in Chapter III is to determine whether and how the potential presence of 

structural breaks affects out-of-sample probability forecasting performance using the 

prequential forecasting approach introduced by Dawid (1984).  To achieve this 

objective, calibration measures (calibration plots and chi-squared goodness-of-fit test 

statistics), root mean-squared error, the Brier score and its decompositions, and the 

ranked probability score are applied for model assessments.  Different in-sample data 

periods provide different probability forecasts.  Models having better forecasting 

performance are the models which incorporate a larger time period.  Interestingly, the 

larger time period includes a period of potential structure changes. 

Transaction Costs 

The objective in Chapter IV is to examine the presence of threshold cointegration 

between market pairs before and after the potential break (associated with the shale gas 

revolution) in the long-term pricing relationship among the North America natural gas 

spot markets.  Threshold cointegration allows for non-linear long-run relationships 

(Balke and Fomby 1997).  Under the law of one price, this non-linear relationship is 

explained by transaction costs.  Including transportation costs, transaction costs are costs 

incurred when participating in a market or between markets.  Transaction costs between 

market pairs differ before and after the structural shift that occurred in 2009.  After 2009, 
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five of seven pairwise transaction costs decrease, while the remaining two increase. 

Changes in natural gas flows as the result of the shale gas revolution are most likely the 

cause of the differences in transaction costs. 

Dynamics in the U.S. Energy Sector 

Unlike the vector autoregressive model, a factor-augmented vector autoregressive 

(FAVAR) model allows for the incorporation of richer information data sets.  The 

objective in Chapter V is to investigate whether and how the number of unobservable 

components from a data-rich model influences inferences and probabilistic forecasting 

performance of various models.  Models include two FAVAR (varying number of 

factors), a traditional vector autoregressive (VAR), and a univariate autoregressive (AR) 

models.  The FAVAR approach, proposed by Bernanke, Boivin, and Eliasz (2005), is 

employed to characterize factors stimulating dynamics in the U.S. energy sector.  

Innovation accounting analysis (impulse response functions and forecast error variance 

decompositions) are applied to discover dynamic responses among estimated factors and 

natural gas gross withdrawals.  Then, the prequential forecasting approach introduced by 

Dawid (1984) is applied to evaluate predictive distributions for out-of-sample data.  It 

appears that the number of factors has only a minor impact on the inferences from 

dynamic responses, but has a considerable impact on the probabilistic forecasting 

performance.   
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CHAPTER II  

TESTS FOR LONG-RUN PARAMETER CONSTANCY IN COINTEGRATED VAR 

MODELS OF NATURAL GAS SPOT PRICES  

 

Since deregulation of natural gas wellhead prices and pipeline regulatory reform, the 

natural gas market has become more efficient (DeVany and Walls 1994a; Joskow 2013). 

Natural gas prices are driven by market supply and demand conditions, as illustrated by 

findings of market competitiveness and allocative efficiency (DeVany and Walls 1993, 

1994b; Walls 1994a, 1994b; Doane and Spulber 1994; King and Cuc 1996; Serletis and 

Rangel-Ruiz 2004; Cuddington and Wang 2006; Park, Mjelde, and Bessler 2008; 

Mohammadi 2011; U.S. Energy Information Administration (U.S. EIA) 2014c).  Supply 

side factors influencing natural gas prices consist of variations in domestic natural gas 

production, the volume of imported and exported gas, and the level of gas storage (U.S. 

EIA 2014c).  Demand side factors consist of weather variability, economic growth, and 

other energy prices (U.S. EIA 2014c).   

The majority of natural gas consumed in the U.S. is derived from domestic 

production (U.S. EIA 2014d).  U.S. dry natural gas1 production has noticeably increased 

in recent years with production in 2014 being approximately 39% higher than in 2006 

(U.S. EIA 2015d).  Horizontal drilling in conjunction with hydraulic fracturing2 are 

behind the increasing natural gas production (U.S. EIA 2011, 2014d).  The result of 

increasing domestic supply is declining prices.  Natural gas spot prices at Henry Hub 

                                                
1 Dry natural gas is also known as consumer-grade natural gas (U.S. EIA 2015b) 
2 Hydraulic fracturing is fracturing of rock at depth with fluid pressure (U.S. EIA 2015b). 
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were $5 to $8 per million British thermal units (MMBtu) during 2003 to 2008, but 

decreased to $2 to $4 per MMBtu during 2009 to 2013 (U.S. EIA 2014f).  Declining 

prices contribute to decreases in imported natural gas and increases in exports (U.S. EIA 

2013b, 2013d).   

In 2014, total U.S. natural gas consumption was four percent greater than total 

U.S. natural gas production (U.S. EIA 2015c, 2015d).  The U.S., however, is projected 

to become a net exporter (U.S. EIA 2014b).  Total domestic natural gas production is 

projected to outpace total domestic natural gas consumption by 2019; production is 

projected to be 18% larger than total domestic natural gas consumption by 2040 (U.S. 

EIA 2014b).  In response to the abundant domestic gas supplies and relatively low 

natural gas prices, U.S. industrial natural gas consumption has also been increasing since 

reaching a low in 2009.  Industrial natural gas consumption in 2014 was approximately 

24% higher than that in 2009 (U.S. EIA 2015c).  In the 1970s, 1980s, and early 1990s, 

the energy resources for the majority of U.S. electricity generation were primarily coal 

and nuclear power; economic, environmental, technological, and regulatory changes 

have caused natural gas to be the new fuel of choice for most of new power plants 

(National Energy Technology Laboratory 2013).  In 2014, approximately 27% of U.S. 

electricity was generated by natural gas; it was 76% higher than U.S. electricity 

generated by natural gas in 2001 (U.S. EIA 2015c).  

These developments in the natural gas industry may be altering the sector’s 

supply and demand relationships.  The objective of this study is to investigate the 

possible existence and effects of structural changes with unknown break points among 
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North America natural gas spot markets.  This study addresses the questions not only 

whether structural changes exist among North America natural gas spot markets but also 

what may be inducing such changes.  Associations between identified break points and 

actual events are identified.  The U.S. EIA (2011) notes, “Although the U.S. Energy 

Information Administration's (U.S. EIA) National Energy Modeling System (NEMS) 

and energy projections began representing shale3 gas resource development and 

production in the mid-1990s, only in the past 5 years has shale gas been recognized as a 

"game changer" for the U.S. natural gas market.”  This study aims to determine if the 

“game changer” has changed the pricing relationships among North America natural gas 

spot markets.  If so, changing dynamic pricing relationships may influence trading and 

natural gas policy, such as pipeline systems.  As such, the study is of interest not only to 

those interested in energy markets, but also researchers interested in modeling energy 

issues, market structural changes and time series analysis.  

Literature on Price Dynamics in Natural Gas Markets 

Many studies suggest that the deregulation of natural gas has improved natural gas 

market performance (DeVany and Walls 1993, 1994b; Walls 1994a, 1994b; Doane and 

Spulber 1994; King and Cuc 1996; Kleit 1998; Serletis and Rangel-Ruiz 2004; 

Cuddington and Wang 2006; Park, Mjelde, and Bessler 2008; Mohammadi 2011; 

Apergis, Bowden, and Payne 2015).  Market integration is one of fundamental issues 

that have been used in many studies to monitor market performances.  DeVany and 

                                                
3 Shale is a fine-grained, sedimentary rock composed of mud from flakes of clay minerals and tiny 
fragments (silt-sized particles) of other materials (U.S. EIA 2015b). 
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Walls (1993, p. 1) state, “The relationship between commodity prices at geographically 

dispersed locations is evidence of market performance.”  If spatially separated markets 

for a homogenous good are integrated into one market, their prices will be interrelated 

and the “law of one price” holds under the constraints of transaction costs (transportation 

and/or arbitrage costs).  Under the assumptions of no asymmetric information and no 

limitations on the transportable volume of the product, if transaction costs are zero, 

arbitrage will establish a single price in all spatially dispersed markets (King and Cuc 

1996).  If transaction costs are non-zero, arbitrage will guarantee that price differences 

will be equal to these costs (King and Cuc 1996).   

Many empirical techniques have been employed to investigate price dynamics 

through market integration.  DeVany and Walls (1993) and Walls (1994b), for example, 

employ the two-series cointegration model introduced by Engel and Granger (1987).  

DeVany and Walls (1993, p. 2) claim, “Cointegration provides a way to test for 

arbitrage-free pricing in time varying series.”  Two non-stationary series are cointegrated 

(move together in the long-run) if they have a linear combination that is stationary 

(Engel and Granger 1987).  This means that, if arbitrage is effective, prices, after 

considering transaction costs, converge to a single price (DeVany and Walls 1993).  

DeVany and Walls (1993) evaluate competition between natural gas spot markets 

located throughout the U.S using daily natural gas price data from 1987 to 1991.  They 

find that the natural gas markets had become more competitive as most of market-pairs 

were not cointegrated in 1987 but more than 65% of the markets had become 

cointegrated by 1991.  Walls (1994b) using daily natural gas price data from 1990 to 



 

 9 

1991 finds that natural gas markets are strongly integrated within the production field, 

but much less integrated between the field and city markets.  At some markets, Chicago 

and to a lesser extent California, natural gas prices closely follow field prices.  The 

equalization of marginal values of natural gas across all production and consumption 

locations is suggestive of allocative efficiency.   

Instead of using Engel and Granger’s cointegration model, Walls (1994a) uses 

cointegration techniques developed by Johansen (1988, 1991) to measure market 

linkages in the U.S. natural gas sector.  Walls (1994a, p. 189) argues, “The cointegration 

methodology developed by Johansen (1988, 1991) is the most fruitful way to test for 

spatial market linkages” as it overcomes the inference limitation of the Engel-Granger 

cointegration procedure.  Using daily natural gas spot prices at twenty nodes located 

within six regions of the U.S. for 1989-1990, Walls (1994a) finds that natural gas spot 

markets at dispersed locations are connected.  

Considering price correlation coefficients, DeVany and Wall (1994b) and Doane 

and Spulber (1994) find that the deregulation results increased competitiveness in natural 

gas markets.  Concerned that there is no unique criterion describing the suitable level of 

correspondence between two price series, Doane and Spulber (1994) also rely on 

Granger causality and cointegration tests in addition to employing price correlation tests.  

They find consistent results among the three tests.  

King and Cuc (1996) apply time-varying parameter (Kalman Filter) analysis, 

which allows for dynamic structure changes, to evaluate the level of price convergence 

in North America natural gas spot market.  Using bid-week prices of natural gas for 17 
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markets in the U.S. and Canada from January 1986 to September 1995, they find that 

price convergence in all North America natural gas spot markets has increased since 

deregulation; yet, there exist an east-west split in natural gas pricing.  Similarly, 

Cuddington and Wang’s (2006) empirical results from autoregressive models of pairwise 

price differentials suggest that markets in the East and Central regions are highly 

integrated, but these markets are separated from the more roughly integrated Western 

market.  In response to King and Cuc’s (1996) findings, Serletis (1997) employs both 

Engle and Granger’s (1987) approach and Johansen’s (1988) maximum likelihood 

approach to investigate whether there exist an east-west split in North American natural 

gas markets using monthly spot price data from June 1990 to January 1996.  They find 

the east-west separation does not exist.  

Citing potential limitations of using correlations/cointegration approaches, Kleit 

(1998) estimates transactions cost directly to measure the effects of deregulation.  Using 

monthly data from 1984 to 1993, he finds that transactions costs to and from the 

Louisiana, Oklahoma, and Texas regions have decreased, but transactions costs from the 

Rocky Mountain area have increased because of the deregulation. 

Vector autoregressive (VAR) models and vector error correction models 

(VECM) also have been used to analyze price dynamics in the natural gas pricing 

literature.  Using a VAR model, DeVany and Walls (1996) show that arbitrage-free 

prices and price dynamics depend on the market structure.  Their study suggests the law 

of one price holds over most of the natural gas markets.  Serletis and Rangel-Ruiz (2004) 

employ a VECM to investigate the strength of shared dynamics between West Texas 
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Intermediate crude oil prices, Henry Hub natural gas prices, and AECO Alberta natural 

gas markets using daily data from 1990 to 2001.  They find evidence of decoupling of 

crude oil and natural gas prices and a high degree of interconnectedness between U.S. 

Henry Hub and AECO Alberta natural gas prices since deregulation.  The study also 

indicates that natural gas prices in North America are largely defined by the U.S. Henry 

Hub price.  Considering more diverse natural gas spot markets, Park, Mjelde, and 

Bessler (2008) employ a VECM to study dynamic interactions among North America 

natural gas spot markets and each market’s role in price discovery for 1998-2007.  They 

find that natural gas spot markets in North America are highly integrated but the degree 

of integration varies among the markets.  Natural gas markets in Oregon, Illinois, and 

Louisiana are found to be the most significant markets for price discovery.  With 11 

natural gas markets, Olsen, Mjelde, and Bessler (2014) study interaction of natural gas 

prices in the U.S. and Canada using a VECM.  Their results support earlier studies’ 

findings that markets are integrated but the degree of integration varies among the 

markets; the closer markets are located, the higher degree of integration.  It appears that 

eastern markets provide relatively more information to western markets than western 

markets provide to eastern markets; there is no east-west split in the U.S.  Unlike 

previous studies, Olsen, Mjelde, and Bessler (2014)’s findings suggest that AECO, 

Alberta, is less important for price discovery than other Canadian markets. 

In the literature, changes/shifts in natural gas markets are found and assorted 

factors affecting changes/shifts are identified.  Mohammadi (2011) examines long-run 

relations and short-run dynamics of upstream-downstream pricing behavior in the U.S. 
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natural gas industry.  Using monthly data from January 1984 to August 2009, he finds 

that natural gas markets are integrated but subject to regime shifts and asymmetric 

adjustments, suggesting market imperfections.  Two regime shifts are found; one in the 

late 1990 regarding the implementation of regulatory reform and another during 2005-

2009, a period of high volatility in energy prices.  His results also indicate that shocks 

from both demand and supply sides play important roles in determining short-run price 

movements while demand shocks are the primary factor of natural gas prices in the long 

run.   

Considering weekly data from March 1994 to September 2011, Lin and Wesseh 

(2013) find the existence of regime-switching in the natural gas market.  They suggest 

that the shift in the early part of 1994 was because of oil shortages, whereas, the shift 

between 1998 and 2002 was related to Hurricane Mitch.  The largest shift, however, is 

attributed to hurricane-related gas shortages in North America and the financial crisis in 

2008.  Similarly, Apergis, Bowden, and Payne’s (2015) find a structural break occurred 

between 1994 and 1995; they identified the cause of this break as a response to the 

deregulation of natural gas industry.  Allowing endogenous structural breaks, Apergis, 

Bowden, and Payne (2015) consider cointegration between city-gate and residential 

retail natural gas prices in the 50 U.S. states and find that degree of market integration of 

the post-break period is relatively higher than that of the pre-break period.  Wakamatsu 

and Aruga (2013) examine whether U.S. shale gas production affects the structure of the 

U.S. and Japanese natural gas markets using monthly data from May 2002 to May 2012.  

They find a structural break of natural gas prices and consumption around 2005 
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suggesting that the shale gas production starting in 2005 led to a change in the 

relationships between the U.S. and Japanese natural gas markets.  The U.S. and Japanese 

markets had been connected before 2005; but the U.S. natural gas market has become 

more independent since the shale gas revolution.   

History of Tests for Parameter Constancy  

Regression analysis in time-series analyses generally assumes that that the regression 

relationship is constant over time.  The classical test for parameter constancy is the 

Chow test.  Chow (1960) splits the sample into two sub-periods and estimates 

parameters for each sub-period to test whether sets of coefficients in two linear 

regressions are equal.  Unfortunately to use the Chow test, the time of change point must 

be known.  To overcome this drawback, Quandt (1960) suggests calculating the 

likelihood ratio test statistics (Chow Statistics) at each date of the data to find an 

unknown change point; the date which maximum statistic is obtained is determined as 

the change point.  Using the cumulative sum (CUSUM) technique of residuals from 

recursively estimating the model, Brown, Durbin, and Evans (1975) proposed the 

CUSUM and CUSUM of square tests.  Unfortunately, a nuisance parameter exists in 

both Quandt’s (1960) and Brown, Durbin, and Evans’ (1975) tests.  An unknown break 

date is not identified under the null hypothesis (the parameter appears only under the 

alternative hypothesis).  Consequently, these tests, which treat an unknown change point 

as a parameter, do not follow standard large sample asymptotic distributions (Andrews 

1993).  With an unknown change point, Andrews (1993) proposes parameter instability 

tests based on generalized method of moment estimators.  He derives the asymptotic null 
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distributions of the supremum test statistics.  Andrews (1993) shows that his tests have 

nontrivial asymptotic local power against all alternatives of parameter instability, even 

though a one-time change is allowed.  Bai and Perron (1998, 2003) estimate multiple 

structural changes at unknown dates using ordinary least squares.  They present an 

algorithm to attain global minimizers of the sum of squared residuals based on dynamic 

programming.  

Tests for parameter constancy in cointegrated systems are presented in literature.  

Saikkonen and Lüthepohl (2000) propose tests for the cointegrating rank of a vector 

autoregressive process that allows for a simple shift in the mean of the data-generation 

process.  Johansen, Mosconi, and Nielsen (2000) provide a cointegration analysis in the 

presence of structural breaks in the deterministic trend.  Hansen (2003) generalizes the 

cointegrated vector autoregressive model of Johansen (1988) such that structural 

changes can be tested in any subset of parameters.  Saikkonen and Lüthepohl (2000), 

Johansen, Mosconi, and Nielsen (2000), and Hansen (2003) assume the break points are 

known a priori.  Tests for unknown break points include Hansen (1992), Seo (1998), 

Hansen and Johansen (1999), and Lüthepohl, Saikkonen, and Trenkler (2004). 

Based on the cointegration model proposed by Granger (1981) and developed by 

Engle and Granger (1987), Hansen (1992) introduces tests for parameter instability in 

regression with I(1) processes by making use of the fully modified estimation method of 

Philips and Hansen (1990).  Hansen (1992) suggests that it is required to know the 

stochastic process of regressors before applying the tests, as the asymptotic distributions 

of the test statistics are dependent on the stochastic process of regressors.  Seo (1998) 
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proposes tests for structural change of the cointegrating vector and the adjustment vector 

in the error correction model.  Normalization of the cointegration space is required in 

Seo’s (1998), otherwise the cointegrating vector cannot be identified even though the 

cointegration space is identified.  Considering tests for parameter constancy in the 

cointegrated vector autoregressive model, Hansen and Johansen (1999) suggest 

graphical analysis using recursive estimation to evaluate the constancy of the long-run 

parameters.  Unlike Seo’s (1998), Hansen and Johansen’s (1999) tests do not require an 

identification of the individual cointegration vectors.  Lüthepohl, Saikkonen, and 

Trenkler (2004) propose a cointegration rank test of a vector autoregressive process in 

which a simple shift in the mean is allowed.   

Methodology 

Literature on natural gas price dynamics usually imposes the assumption that the 

relationships among markets are constant over time.  Failure to consider the potential 

existence of structural changes may cause bias and unreliable inferences.   

Tests for Structural Changes in Cointegrated VAR models  

In most empirical cointegration studies examining parameter instability, the long-run 

parameters are assumed to be constant while the short-run dynamics and the adjustment 

parameters from the error correction models are tested for parameter instability (Hansen 

and Johansen 1999). Hansen and Johansen’s (1999) tests allow the long-run parameters 

to vary, but the short-term dynamics are constant over time.  Two different techniques 

involving recursive estimation are presented for testing parameter instability in 

cointegrated VAR models.  The first test assesses the time paths of the non-zero 
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eigenvalues instead of all parameters in the model.  The second test investigates the 

cointegration relations based on the Lagrange Multiplier (LM) type test.  Both tests’ 

results can be presented graphically.  

 A p-dimensional, kth order VAR model expressed as a k-1th order VECM is  

(2.1)  Δ)* += - + /01)*23 + Γ5Δ)*25623
573 + 8* 

                    = +/0∗1)*23∗ + Γ5Δ)*25623
573 + 8*,++++++++++; = 1,… , >,    

where )*∗ = 11, )*1  and 0∗ = (?1, 01) (Hansen and Johansen 1999).  - = /?′ is constant 

term, /, 0, ?, and Γ are parameters, 1 is a vector of one, )* is a p x 1 vector of variables, 

and p and k are integers.  The error terms 8* are assumed to be independent and Gaussian 

with mean zero and covariance matrix Ω, and the initial values )26B3, … , )C are fixed as 

the base sample (Hansen and Johansen 1999).  /01 is expected to have reduced rank 

such that / and 0 are (p x r) matrices of full rank where r (< E) is the number of 

cointegrating vectors (Hansen and Juselius 1995).  The long-run structure is identified by 

the cointegration space spanned by 0 while the short-run structure is identified through 

/ and Γ5 (Johansen 1995).  The constant term -+is restricted to satisfy the condition 

/F1 - = 0 such that no deterministic trend is allowed in the model (Hansen and Johansen 

1999).   

 Equation (2.1) can be rewritten as  

(2.2) HC* = +/0∗1H3* + ΓHI* + 8*,++++++++++; = 1,… , >,  

where HC* = Δ)*, +H3* = )*23∗ , HI* = Δ)′*23, … , Δ)1*26B3, and Γ = (Γ3, … , ΓJ23) 

(Hansen and Johansen 1999).  Maximum likelihood estimation using all the data 

involves a reduced rank regression of ZC" on Z3" and ZI" (Hansen and Johansen 1999).  
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Regression of HC* and H3* on HI* yields residuals LC*
(M) and L3*

(M), which are defined 

(Hansen and Johansen 1999) as 

(2.3)  LC*
(M) = HC* − OCI

M OII
M 23

HI*, 

(2.4)  L3*
(M) = H3* − O3I

M OII
M 23

HI*, and 

(2.5)  LP*
M = 8* − OPI

M OII
M 23

HI*, 

where  O5Q
* = H5*HQ*1*

R73  and OPQ
* = 8*HQ*1*

R73  for++S, T = 0, 1, 2. 

The analysis in which the parameter Γ has been eliminated is based on the following 

regression equation (Hansen and Johansen 1999) 

 (2.6) LC*
(M) = +/0∗1L3*

(M) + LP*
(M),++++++++++; = 1,… , >. 

The product moment matrices for i, j = 0, 1, 8 are defined as 

(2.7)  W5Q
M * +++= 3

*
L5*

M L5Q
M X*

R73  

           = 3
*
[O5Q

* − O5I
M OII

M 23
OIQ

* − O5I
* OII

M 23
OIQ

M  

+O5I
M OII

M 23
OII

* OII
M 23

OIQ
M ], 

and when t = T, W5Q = W5Q
M M (Hansen and Johansen 1999). 

 Solving the following problem,  

(2.8) [W33 − W3CWCC23WC3 = 0, 

yields eigenvalues 1 > [3 > ⋯ > [^ > 0 and [^B3 = 0 and eigenvectors _ =

(`3, … , `^B3) which are normalized as _1W33_ = a (Hansen and Johansen 1999).   
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The maximum likelihood estimators of 0∗ and / are given by 0∗ = `3, … , `b  

and / = WC30∗.  Note that unless additional restriction(s) on 0∗ is (are) imposed, 0∗ is 

unidentified; only the space spanned by the vectors in 0∗ is estimable; further, the last 

row of 0∗ contains ? such - = /?′ (Hansen and Johansen 1999).   

 Hansen and Johansen’s (1999) tests are based on recursively estimating the 

VECM adding one observation at time.  If the recursive estimation is based on equation 

(2.2), which is the Z-representation using W5Q = W5Q
M * , all parameters are estimated 

recursively given that all parameters can vary overtime (Hansen and Johansen 1999).  If 

the recursive estimation is based on equation (2.6), which is the R-representation using 

W5Q = W5Q
M M , the constancy of parameters 0 is analyzed given that the short-run dynamics 

are constant over time (Hansen and Johansen 1999).   

 As noted by Hansen and Johansen’s (1999), the estimated eigenvalues may not 

provide sufficient information to determine whether the long-run parameters are constant 

over time or not.  The test for parameter constancy by Nyblom (1989) may be preferred 

to the fluctuation test of the eigenvalues.  Hansen and Johansen (1999) show the Nyblom 

statistic for parameter instability has the same asymptotic distribution as that in Hansen’s 

(1992) when it is applied to the cointegrated VAR model.  In this study, the Lagrange 

Multiplier (LM) type test of Nyblom (1989) is applied to identify the potential existence 

of structural changes in pricing relationship among North America natural gas spot 

markets.  

 It is emphasized that the null hypothesis of the test is parameter constancy and a 

specific alternative is not stipulated (Hansen and Johansen 1999).  Hansen and Johansen 
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(1999, p. 307) note, “We regard the recursive analysis as a misspecification test where 

the purpose is to detect possible instabilities in the parameters when there is no prior 

knowledge of structural breaks or time dependencies in the parameters.” 

Cointegrating vectors such that r < E is required for testing for parameter 

constancy of 0∗ (Dennis 2006).  Cointegrating rank and lag length are determined 

simultaneously using Schwarz loss measure.  This method provides better large sample 

results in Monte Carlo simulations than the trace test, which determines the cointegrating 

rank given the lag order (Wang and Bessler 2005).  Schwarz loss (SL) measure is  

(2.9)  Wc = ln det Σ + (E+x+k)xln+(>)/>, 

where Σ is the estimated variance-covariance matrix of error term with p is number of 

series in a considered vector, k is lag order in each equation, T is the number of total 

observations in each series, det(Σ) is the determinant of the variance-covariant matrix 

and ln is the natural logarithm (Wang and Bessler 2005). 

 For the base sample ; ∈ 1,… , n , n = >C, … , >, let 0∗ be normalized on o such 

that 0p
∗ q = 0∗ q o10∗ q

23
 and define /p

q = /(q)0∗ q ′o , such that /p
q +0p

∗ q 1
=

/(q)+0∗ q
1
.  A maximum test for constancy of 0∗ (the difference between 0∗ q  and 

0∗ M ) is given by a sequence of test statistics (Dennis 2006),  

(2.10) rM
q = q

M

I
;sto8 _ M 23

Wq1 O M 23
Wq , 

where _,O, and W are given by  

(2.11) _ M = /p
M 1 Ω M 23

/p
M , 

(2.12) O M = >23oF1 W33oF, and 
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(2.13) W q = oF1 (WC3
q − /p

M 0p
∗ M 1W33

q )′ Ω M 23
/p

M  

         = oF1 (WC3
q − / M 0∗(M)′W33

q )′ Ω M 23
/ M . 

In Hansen and Johansen (1999), the test statistic rM
q +is based on a first order 

approximation of the score function W q = O q >oF1 0p
q − 0 M ′.  In this study, 

the score function as given in equation (2.13) is directly used following Bruggeman, 

Donati, and Warne (2003) because the first order approximation may lead to ill-behaved 

rM
q  in some situation, such as when the sample size is small (Dennis 2006).   

Innovation Accounting Techniques 

Based on the equivalent level VAR, innovation accounting techniques including impulse 

response functions and forecast error variance decompositions are used to analyze 

dynamic responses.  Impulse response functions illustrate how each series in the model 

responds to a one-time shock in every series while forecast error variance 

decompositions illustrate how the forecast error for each series at any horizon is 

decomposed into shocks in each series (Doan 2000).   

In equation (2.1), the innovation terms, 8*, are assumed to be independent but 

contemporaneous correlations among the elements are allowed.  If the elements of 

innovation term are contemporaneously uncorrelated, then innovation accounting 

procedures can be performed using the moving average representation of the estimated 

VAR (Hamilton 1994).  Nevertheless, contemporaneous correlations usually exist when 

considering economic data.  Following Bernanke (1986) to obtain contemporaneously 

uncorrelated innovations, the observed innovations, 8*, are modeled as a function of 
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more fundamental driving sources of variation,+u*, which are independent (orthogonal) to 

other sources of variation 

(2.14)  8* = v23u*,   

where v is a matrix representing how each non-orthogonal innovation is caused by the 

orthogonal variation in each equation (Bernanke 1986).  Usual innovation accounting 

procedure can be preformed by first re-expressing the estimated VECM as a VAR and 

then pre-multiplying the VAR by v.  To obtain an identified model, zero restrictions on 

v are investigated using directed acyclic graphs (DAGs) on innovations from the 

estimated VECM.  This procedure has been used by Swanson and Granger (1997), 

Hoover (2005), Park, Mjelde, and Bessler (2008), and Lai and Bessler (2015). 

Directed Acyclic Graphs (DAGs) 

Directed acyclic graphs (DAGs) help assigning contemporaneous causal flows to a set of 

observational variables.  In DAGs, )5 → )Q indicates that )5 causes )Q; )6 − )x indicates 

that )6 and )x are connected by information flows, but the algorithm cannot determine 

whether )6 causes )Q or vice versa4.  Several algorithms have been developed to create 

DAGs.  One of the most widely used algorithms is the PC algorithm named after the 

inventor, Peter and Clark (Spirtes and Glymour 1991).  The PC algorithm is based on the 

notion of conditional independence under the assumptions of causal sufficiency, Markov 

condition, faithfulness condition, and Gaussian data.  Causality sufficiency requires that 

there are no omitted variables causing two or more of the included variables.  Markov 

condition requires that probabilities of variables can be expressed by conditioning just 

                                                
4 For more information on DAGs, see Pearl (2000) and Spirtes, Glymour, and Scheines (2000). 
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on variables of direct cause.  Faithfulness condition is satisfied when correlation between 

two variables is zero because there is no edge between any two variables and no 

cancellation of structural parameters.  The PC algorithm searches for zero correlations 

and conditional correlations to remove edges between variables and finds v-structures, 

i.e. )5 → )Q ← )6, to identify causation among a set of variables (Spirtes, Glymour, and 

Scheines 2000).  Similar to the PC algorithm, the GES (greedy equivalency search) 

algorithm assumes the same conditions; however, the GES algorithm is a score-based 

algorithm, which searches over equivalent classes scoring each to find the best model 

(selected via loss metrics5).   

The linear-Gaussian approach usually generates a set of possible models, which 

are equivalent in their conditional probability structure, resulting in indistinguishable 

causal flows (Shimizu et al. 2006).  To over this problem, the assumption of Gaussian 

data must be relaxed such that the higher-order moments are used to identify the causal 

patterns (Shimizu et al. 2006).  Shimizu et al. (2006) introduce a linear non-Gaussian 

acyclic model (LiNGAM), which allows the full causal model to be estimated.  The 

LiNGAM algorithm is based on independent component analysis (Shimizu et al. 2006).  

In this study, the LiNGAM is applied to the residual series from the estimated VECM to 

create the orthogonal innovations for the estimation of impulse response functions and 

forecast error variance decompositions.   

                                                
5 For more information on the GES algorithm, see Chickering (2002, 2003). 
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Data 

Eight natural gas spot prices in Canada and United States are considered: AECO Hub, 

Alberta, Canada; Chicago City Gate, Illinois; Dominion South Point, Pennsylvania; 

Henry Hub, Louisiana; Malin, Oregon; Oneok, Oklahoma; Opal, Wyoming; and Waha 

Hub, Texas.  These markets allow for regional diffusion.  Further, the markets have been 

identified in previous studies as important pricing markets.  AECO Hub is included to 

represent Canada because in 2012, almost 99% of U.S. pipeline-imported natural gas 

came from Canada and 61% of pipeline natural gas exports went to Canada (U.S. EIA 

2013d).  Henry Hub is an important market for pricing of the North America natural gas 

spot and future markets (Serletis and Rangel-Ruiz 2004; U.S. EIA 2013a).  Natural gas 

futures prices (NYMEX) are based on delivery at the Henry Hub (U.S. EIA 2014f).  

Park, Mjelde, and Bessler (2008) find Chicago is a dominant market for price discovery 

in North America natural gas spot markets.  Texas, Pennsylvania, Louisiana, Oklahoma, 

and Wyoming were the top five national natural gas producing states in 2014 (U.S. EIA 

2014d).  Because of limited availability of historical prices at Ellisburg-Leidy Hub, 

prices at Dominion South Point are used to represent the Pennsylvania area.  Description 

of each price series is provided in Appendix A.  

Weekday nominal prices of natural gas from May 3, 1994 to October 31, 2014 

are obtained from Bloomberg L.P. (2015).  A missing value is replaced by a prior day’s 

price.  Each price is the closing price for a specific location for natural gas to be 
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delivered on the next day.  All prices are in U.S. dollars6 per MMBtu (a unit of heat 

equal to one million British thermal units).  Each price series contains 5,349 

observations.    

All price series are natural logarithm-transformed before any estimation.  

Summary statistics on the natural logarithms of each price series are presented in table 

2.1, whereas, the data are plotted in figure 2.1.  Each price series are non-Gaussian7 as 

the null hypothesis of Jarque-Berra normality test on each series is rejected.  

Testing for unit root (non-stationarity) in logarithm levels, Augmented Dickey-

Fuller (ADF) statistics (Said and Dickey 1984) of all eight natural gas spot prices but 

Opal are greater than -3.430, which is the test critical value at 1% level (table 2.2).  

Failure to reject the null hypothesis of unit root implies that natural gas spot prices at all 

markets except Opal are non-stationary at the 1% level (table 2.2).  Under the null 

hypothesis of unit root, the ADF test may have lower power against the alternative 

hypothesis of stationarity (DeJong et al. 1992).  Kwiatkowski-Philips-Schmidt-Shin 

(KPSS) test statistics (Kwiatkowski et al. 1992) under the null hypothesis of stationary 

are also presented in table 2.2.  KPSS test statistics of all prices in levels are greater than 

0.739, which is the test critical value at 1% level, implying that the null hypotheses of 

stationarity are rejected.  Based on KPSS tests, the eight prices in levels are 

                                                
6 A study considering potential effect of exchange rates and using Canadian currency is left for future 
research. 
7 The data used appears to be non-Gaussian but the tests for parameter constancy in the co-integrated VAR 
model are based on the assumption of Gaussianity.  The robustness of tests for parameter constancy in the 
co-integrated VAR model under the assumption of Gaussian data when applying non-Gaussian data is left 
for future research. 
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Table 2.1. Summary Statistics on the Natural Logarithms of Natural Gas Spot Price at Eight Markets 

Statistics 
AECO 
Hub Chicago Dominion South Henry Malin Oneok Opal 

Waha 
Hub 

 Mean 1.0833 1.3603 1.3832 1.3384 1.2475 1.2556 1.1002 1.2671 
 Maximum 2.7200 3.7153 3.2189 2.9642 4.0298 3.4592 3.3666 3.1987 
 Minimum -0.7134 0.2070 0.1398 0.0296 -0.0726 0.0583 -1.8971 0.0770 
 Std. Dev. 0.6664 0.5116 0.5152 0.5164 0.5884 0.5084 0.5872 0.5102 
 Skewness -0.3346 0.1607 0.2266 0.1181 -0.0919 0.0123 -0.2456 -0.0035 
 Kurtosis 2.2152 2.5735 2.3079 2.3510 2.5521 2.3205 2.5613 2.3505 
 Jarque-Bera 237.0803 63.5509 152.5372 106.3110 52.2469 103.0467 96.6488 94.0249 
 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Figure 2.1. Plots of eight natural gas spot prices in the natural logarithms (May 3, 1994 - October 31, 2014)
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Table 2.2. Augmented Dickey-Fuller (ADF) and Kwiatkowski-Philips-Schmidt-
Shin (KPSS) Testa Statistics of Eight Natural Gas Spot Prices in the Natural 
Logarithms 
  ADF KPSS 
Price Series t-Stat Lagb(k) LM-Stat Bandwidthc 

 Test in Level 
AECO Hub -2.5806 3 4.8239 56 
Chicago -2.9535 19 3.6618 56 
Dominion South -2.8588 19 2.9902 56 
Henry Hub -3.0193 2 3.7080 56 
Malin -2.7872 11 4.1550 56 
Oneok -3.1582 10 3.8187 56 
Opal -3.7137 7 4.2244 56 
Waha Hub -2.9942 15 3.9376 56 
  Test in First Differences 
AECO Hub -50.4972 2 0.0477 53 
Chicago -20.3818 18 0.0458 139 
Dominion South -18.1676 18 0.0640 33 
Henry Hub -59.9512 1 0.0418 24 
Malin -24.9024 10 0.0432 75 
Oneok -25.5139 9 0.0495 76 
Opal -36.2454 6 0.0243 63 
Waha Hub -21.0639 14 0.0513 82 
Note: Under the null hypothesis of non-stationarity (unit root), the ADF test critical 
value at 1% level is -3.430; the null is rejected when t-Stat is less than the critical 
value (Said and Dickey 1984).  Under the null hypothesis of stationarity, the KPSS 
test critical value at 1% level is 0.739; the null is rejected when LM-stat is greater 
than the critical value (Kwiatkowski et al. 1992). 
a Only constant term is included in equations. 
b Lag (k) is selected from 0 to 20 based on Schwarz information criteria. 
c Bandwidth is estimated using the Newey-West (1994) method. 

 

 

non-stationary at the 1% level. Both ADF and KPSS test statistics indicate that all price 

series are stationary after first differencing.  
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Empirical Results 

Before conducting parameter instability tests of the cointegrated VAR model, Schwarz 

loss measures are used to determine the cointegrating rank and lag length simultaneously 

(Wang and Bessler 2005).  The minimum Schwarz loss criterion suggests a rank of six 

cointegrating vectors with five lags8 (table 2.3).  Results suggest a potential weekday 

influences in the natural gas spot markets.  A VECM model with five lags implies a 

VAR model with six lags.  

Exclusion, Stationarity, and Weak Exogeneity in the Long-Run Relationship 

Given six cointegrating vectors, tests of exclusion, stationarity, and weak exogeneity are 

performed (table 2.4).  The null hypothesis of testing for variable exclusion is that an 

individual price series can be excluded from the long-run relationship.  LR test statistics 

and corresponding p-values leads to rejecting the hypothesis of long-run exclusion, 

implying that no price series can be excluded.   

Testing variable stationarity test is a multivariate version of the Dickey-Fuller 

test under the null hypothesis that each individual series is stationary given the 

cointegration rank.  In table 2.4, results from tests of stationarity infer that conditional on 

the rank of cointegrating vector being equal to six, no price series can be considered 

stationary by itself.   

 

 

 

                                                
8 Results are consistent with the traditional two-step procedure (number of co-integrating vector is 
determined by the trace test after lag length is determined). 
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Table 2.3. Schwarz Loss Measures on One to Eight Co-Integrating Ranks and One 
to Six Lags on VAR model 
Rank One Lag Two Lags Three Lags Four Lags Five Lags Six Lags 

1 -47.7094 -48.0428 -48.2271 -48.2917 -48.3287 -48.2949 
2 -47.8180 -48.1186 -48.2740 -48.3360 -48.3616 -48.3210 
3 -47.8734 -48.1416 -48.2858 -48.3415 -48.3623 -48.3221 
4 -47.9153 -48.1675 -48.2964 -48.3467 -48.3631 -48.3228 
5 -47.9447 -48.1857 -48.3074 -48.3528 -48.3643 -48.3252 
6 -47.9725 -48.2009 -48.3147 -48.3560  -48.3651* -48.3254 
7 -47.9785 -48.2039 -48.3158 -48.3543 -48.3620 -48.3221 
8 -47.9770 -48.2024 -48.3139 -48.3524 -48.3600 -48.3201 

Note: The asterisk '*' indicates minimum values of Schwarz loss measure. 
 
 
 
 
 
 
Table 2.4. Results from Tests of Exclusion, Stationarity, and Weak Exogeneity 
Using the Entire Data 

 
Exclusion Stationarity 

Weak 
Exogeneity 

  LR-Test p-Value LR-Test p-Value LR-Test p-Value 
AECO Hub 70.7613 0.0000 50.496 0.0000 26.3842 0.000 
Chicago 288.5096 0.0000 47.5830 0.0000 206.5310 0.000 
Dominion South 31.0892 0.0000 48.1002 0.0000 21.4525 0.002 
Henry Hub 232.97000 0.0000 47.1702 0.0000 24.2759 0.000 
Malin 93.9012 0.0000 53.6027 0.0000 40.1149 0.000 
Oneok 288.0352 0.0000 51.5380 0.0000 56.2269 0.000 
Opal 69.8603 0.0000 52.9183 0.0000 68.7302 0.000 
Waha Hub 316.9454 0.0000 51.6031 0.0000 111.2585 0.000 
Note: Likelihood Ratio (LR) tests are executed conditional on six cointegrating vectors 
and five lags. 
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Variable exogeneity tests if any of the prices can be regarded as weakly 

exogenous when the parameter of interest is the vector !∗.  Results from testing weak 

exogeneity for long-run parameters lead to rejecting the null hypothesis, implying that 

all eight prices respond to innovations in all six long-run equilibrium vectors. 

Structural Changes in the Cointegrated VAR model 

Tests for constancy of !∗ in the cointegrated VAR model with the rank of six and five 

lags are performed.  Test statistics (sup #$% ) based on equations (2.2) and (2.6) are 

consistent (figure 2.2).  Testing the differences between !∗ %  and !∗ $ , sup #$%  

approaches zero as n ! T and eventually equal zero when n = T.  The null hypothesis of 

parameter constancy is rejected when the test statistic is greater than the 5% critical 

value.  In figure 2.2, the test statistics starting from the beginning of 1996 to 

approximately the end of 2010 are greater than the 5% critical value, implying the null 

hypothesis is rejected.  The hypothesis of constancy of !∗, however, is only marginally 

rejected during the period 1996 to 2000; there appears to be a shift around the end of 

2000.  Instability of !∗ implies that the long-run pricing relationships are not constant 

over the period 1994 to 2014.   

Including exogenous variables, daily heating and cooling degree-days, in the 

cointegrating space, Park, Mjelde, and Bessler (2008) find seasonality in the long-run 

relationship among natural gas spot markets.  In this study, Schwarz loss measure 

suggests a rank of six cointegrating vectors with four lags for the model in which daily 

heating and cooling degree-days are included.  Test statistics for constancy of !∗ in the  
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Figure 2.2. Plots of sup !"#  for the entire data set (May 3, 1994 to October 31, 2014) 
Note: The first vertical dash line indicates October 2, 2000.  The second vertical dash line indicates January 1, 2010. 
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cointegrated system with exogenous variables (figure B.1. in Appendix B) have similar 

patterns to the model without exogenous variables.  Test statistics of the model with 

daily heating and cooling degree-days during 2010-2014, however, are above the critical 

value line while those of the model without daily degree-days during 2010-2014 are 

below the line.  In concern that the presence of parameter instability is due to 

seasonality, rather than the market structure changes, the model without daily degree-

days is the focus of this study. 

Structural Changes in the Cointegrated VAR model: Three Sub-Periods 

Because of the !∗ inconstancy, the data is divided into three sub-periods9: May 3, 1994 

to September 29, 2000; October 2, 2000 to December 31, 2009; and January 1, 2010 to 

October 31, 2014.  Each subsample10 is tested for constancy of !∗.  Schwarz loss 

measures indicate three lags are appropriate in each sub-period, but numbers of 

cointegrating vectors vary by subsamples.  The ranks are three, seven, and four for the 

three sub-periods (table 2.5).   

Conditional on the rank of cointegrating vectors from Schwarz loss criteria, tests 

of exclusion, stationarity, and weak exogeneity are executed.  It appears that Malin can 

be excluded from the long-run relationship in the first sub-period; Opal can be excluded 

in the second sub-period; and AECO Hub can be excluded in the third sub-period, as LR 

test statistics and the corresponding p-values lead to rejecting the null hypothesis at the  

 

                                                
9 Using beak point a little bit earlier and later than October 2, 2000 and January 1, 2010 did not 
considerably affect results of parameter constancy inferences for each sub-period. 
10 Results of unit root and stationarity tests for each subsample are illustrated in Appendix B (table B.1). 
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Table 2.5. Schwarz Loss Measures on One to Eight Cointegrating Vectors 
(Rank) and One to Five Lags on VECM Model of Each Sub-Period 
No. of Rank One Lag Two Lags Three Lags Four Lags Five Lags 
 First Sub-Period: May 3, 1994 - September 29, 2000 

1 -49.4419 -49.8651 -50.0501 -50.0061 -50.0002 
2 -49.6631 -49.9702 -50.1221 -50.0480 -50.0223 
3 -49.8090 -50.0581 -50.1754* -50.0943 -50.0441 
4 -49.8321 -50.0728 -50.1740 -50.0892 -50.0362 
5 -49.8432 -50.0710 -50.1602 -50.0750 -50.0162 
6 -49.8478 -50.0727 -50.1543 -50.0652 -50.0022 
7 -49.8429 -50.0618 -50.1418 -50.0531 -49.9902 
8 -49.8321 -50.0552 -50.1342 -50.0464 -49.9821 

 
Second Sub-Period: October 2, 2000 - December 31, 2009 

1 -49.9611 -50.2862 -50.3749 -50.3782 -50.3378 
2 -50.0552 -50.3403 -50.3991 -50.3931 -50.3423 
3 -50.1320 -50.3812 -50.4241 -50.3968 -50.3445 
4 -50.2031 -50.4064 -50.4323 -50.3956 -50.3389 
5 -50.2402 -50.4150 -50.4352 -50.3931 -50.3301 
6 -50.2540 -50.4250 -50.4372 -50.3912 -50.3262 
7 -50.2690 -50.4352 -50.4413* -50.3924 -50.3251 
8 -50.2657 -50.4321 -50.4371 -50.3878 -50.3213 

 
Third Sub-Period: January 1, 2010 - October 31, 2014 

1 -52.8178 -53.3655 -53.5012 -53.4867 -53.3622 
2 -53.0956 -53.4778 -53.6021 -53.5656 -53.4014 
3 -53.2156 -53.5282 -53.6089 -53.5663 -53.4003 
4 -53.3002 -53.5610 -53.6124* -53.5612 -53.3912 
5 -53.3367 -53.5592 -53.5967 -53.5390 -53.3667 
6 -53.3413 -53.5474 -53.5801 -53.5189 -53.3489 
7 -53.3312 -53.5342 -53.5643 -53.5021 -53.3324 
8 -53.3256 -53.5278 -53.5556 -53.4924 -53.3213 

Note: The asterisk '*' indicates minimum values of Schwarz loss measure. 
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Table 2.6. Results from Tests of Exclusion, Stationarity, and Weak Exogeneity for 
Each Subsample 

 
Exclusion Stationarity Weak Exogeneity 

  LR-Test p-Value LR-Test p-Value LR-Test p-Value 

 
First Sub-Perioda: May 3, 1994 - September 29, 2000 

AECO Hub 13.6442 0.0034 173.5226 0.0000 7.5179 0.0571 
Chicago 128.9945 0.0000 167.8125 0.0000 140.6442 0.0000 
Dominion South 104.9531 0.0000 168.6998 0.0000 76.8253 0.0000 
Henry Hub 141.4037 0.0000 170.7118 0.0000 17.5033 0.0006 
Malin 2.2811 0.5161 172.7745 0.0000 5.9383 0.1147 
Oneok 177.9637 0.0000 171.3246 0.0000 65.0674 0.0000 
Opal 13.5674 0.0036 172.4573 0.0000 6.8963 0.0753 
Waha Hub 161.1417 0.0000 171.6173 0.0000 62.0187 0.0000 

 
Second Sub-Periodb: October 2, 2000 - December 31, 2009 

AECO Hub 79.4776 0.0000 38.8047 0.0000 7.7581 0.3544 
Chicago 159.1988 0.0000 37.6941 0.0000 48.0765 0.0000 
Dominion South 155.6357 0.0000 37.3962 0.0000 52.2563 0.0000 
Henry Hub 135.5722 0.0000 36.9649 0.0000 22.9253 0.0018 
Malin 77.0185 0.0000 38.8899 0.0000 30.2344 0.0000 
Oneok 153.5586 0.0000 34.1045 0.0000 30.9838 0.0000 
Opal 88.6046 0.0179 31.5392 0.0000 89.7231 0.0000 
Waha Hub 180.2247 0.0000 37.3815 0.0000 65.0813 0.0000 

 
Third Sub-Periodc: January 1, 2010 - October 31, 2014 

AECO Hub 9.3700 0.0525 66.5524 0.0000 36.5036 0.0000 
Chicago 45.8918 0.0000 56.9517 0.0000 35.5045 0.0000 
Dominion South 23.4924 0.0000 66.4445 0.0000 16.6796 0.0022 
Henry Hub 221.7409 0.0000 68.1102 0.0000 26.8799 0.0000 
Malin 79.3343 0.0000 67.8710 0.0000 60.5215 0.0000 
Oneok 185.1969 0.0000 67.8716 0.0000 55.6605 0.0000 
Opal 64.3699 0.0000 67.2952 0.0000 45.5946 0.0000 
Waha Hub 266.4992 0.0000 67.8909 0.0000 138.4444 0.0000 
a Likelihood Ratio (LR) tests are executed conditional on three cointegrating vectors and 

three lags. 
b Likelihood Ratio (LR) tests are executed conditional on seven cointegrating vectors 

and three lags. 
c Likelihood Ratio (LR) tests are executed conditional on four cointegrating vectors and 

three lags. 
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1% level (table 2.6).  Regardless of the sub-period, no price series can be considered 

stationary by itself.  AECO Hub, Malin, and Opal are weakly exogenous to the long-run 

relationship in the first sub-period; only AECO Hub are considered weakly exogenous in 

the second sub-period; and no price series are regarded as weakly exogenous in the third 

sub-period.  For the sake of comparison and consistency, the eight prices are included in 

the VECM for every sub-period. 

The long-run relationships in the first sub-period appear to be generally constant 

as most test statistics of both Z- and R-representations are below the 5% critical line 

(figure 2.3).  The test statistics, however, spike during the period from the end of 1995 to 

the beginning of 1996.  This spike is consistent with the test statistics for the entire 

sample (figure 2.2).  The spike signals that something unusual might occur at the end of 

1995.  High natural gas prices because of cold weather that caused very rapid decline in 

natural gas stocks, which were already low because of irregularly cold weather in 

November and December 1995 (U.S. EIA 1996), may be a possible cause. 

Test statistics are generally less than the 5% critical value for the second 

subsample except begining at the end of 2005 extending into 2007 (figure 2.4).  Such 

inconsistency is also detected when testing constancy of  !∗ using the entire data set.  

Hurricanes Katrina and Rita in 2005 are possibly behind the instability.  These 

hurricanes caused damage to the U.S. natural gas and petroleum infrastructure; many 

Gulf of Mexico wells, processing plants, and pipelines were closed (U.S. EIA 2010).  In 

addition to the hurricane season, the increase in domestic production associated with 

shale gas are likely behind this inconstancy.   
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Figure 2.3. Plots of sup !"#  for the first sub-period (May 3, 1994 - September 29, 2000) 
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Figure 2.4. Plots of sup !"#  for the second sub-period (October 2, 2000 - December 31, 2009) 
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U.S. natural gas gross withdrawals have increased; horizontal drilling and 

hydraulic fracturing are behind the increase in natural gas production (U.S. EIA 2011, 

2014d).  These techniques have allowed access to large volume of both oil and natural 

gas that were previously unprofitable to produce (U.S. EIA 2011).  Large-scale natural 

gas production from shale started around 2000 as Mitchell Energy and Development 

Corporation developed a hydraulic fracturing technique that could economically produce 

commercial volumes of shale gas in the Barnett Shale (located in north-central Texas) 

(U.S. EIA 2011).  Because of the profitability of the Barnett shale, other companies 

started applying the technique to the shale formations; as such by 2005 the Barnett Shale 

was producing almost half a trillion cubic feet (Tcf) of natural gas per year (U.S. EIA 

2011).   

Both the Z- and R-representions test statistics using the third subsample are 

around the borderline during 2012 but spike at the beginning of 2014 (figure 2.5).  This 

spike is not seen when using the entire data set.  The spike is most likely associated with 

the North Polar Vortex, which led to unusual extremely cold weather affecting a large 

part of Canada and the U.S. during the winter of 2013-2014, resulting in increased 

natural gas spot prices (U.S. EIA 2014e).  

Transitory rejecting the null hypothesis of constancy of !∗ in each sub-period 

should not be considered structural changes.  When using the entire data set, the 

evidence of !∗ inconstancy suggests that the potential presence of structural changes in 

pricing relationships among North America natural gas spot markets might occur during  
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Figure 2.5. Plots of sup !"#  for the third sub-period (January 1, 2010 - October 31, 2014) 
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2000 and again during 2009.  The shift during 2000 to 2001 may be related to 

unexpectedly high and volatile natural gas prices (Alterman 2012; Joskow 2013).  Henry 

Hub and the NYMEX futures prices clearly show a period of increased prices and 

volatility around this time period.  In addition, the U.S. Federal Energy Regulatory 

Commission (FERC) Order No. 637, which involves removing some pipeline price 

ceilings, was enacted in 2000 (U.S. FERC 2000).  Alterman (2012) suggests natural gas 

price volatility at the end of 2000 was due to the second coldest November on record 

since 1895.  Joskow (2013, p. 340) notes, “…there had been a gas supply overhang 

during the 1990s and that as demand caught up with supply more expensive gas 

production sources would have to be relied upon to balance supply and demand, 

including more imports from Canada…” U.S. natural gas imports had been increasing 

(U.S. EIA 2015h).  Ratios of U.S. natural gas imports to U.S. dry natural gas production 

are high in 2000 relative to during the 1990s and peak during 2005-2007 (figure 2.6).  

The increases in imports might be a sign of market instability, as the U.S. natural gas 

industry become more critically dependent on imports.  In the entire sample (figure 2.2), 

the test statistics are a borderline case around 2009 and below the 5% critical value after 

2009.  Inference is that the long-run relationships changed after 2009.  The U.S. EIA 

(2011) claims that shale resource is a “game changer” for the U.S. natural gas market.  

Because of the increased domestic natural gas production, the U.S. becomes less import-

reliance and is expected to become a net exporter in natural gas.  Ratios of U.S. natural 

gas imports to U.S. dry natural gas production have been decreasing since 2009 (figure 

2.6).    
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Figure 2.6. U.S. annual dry natural gas production, natural gas total consumption, 
gross withdrawals from shale gas, imports, and percentages of natural gas imports 
to dry natural gas production ratio (1994-2014) (U.S. EIA 2015c, 2015d, 2015h) 
Note: The U.S. EIA started reporting U.S. natural gas gross withdrawals from shale gas 
in 2007  
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Evidences of Structural Changes from Other Tests 

Even though it may not be perfectly comparable, the estimation of structural break dates 

proposed by Lüthepohl, Saikkonen, and Trenkler (2004) yields similar results; the 

estimation suggests the potential break dates on August 26, 1998, August 26, 2009, and 

December 12, 2013.  The structural shift in 2009 may be a result of growing domestic 

natural gas production.  The North Polar Vortex seems to be behind the shift at the end 

2013.   

Applying structural break tests suggested by Bai and Perron (1998, 2003) on 

each price series reveals three sequentially determined breaks for all price series except 

Opal which has four breaks.  Possible break dates vary, but are similar across the eight 

series.  The first break dates of the eight price series are generally around the beginning 

of 2000; the second break dates are during 2003 to 2004; and the last break dates are 

around the beginning of 2009.  The first and the third break dates are roughly close to 

those found in the previous section.     

Contemporaneous Causal Flows 

Eight residual series from the estimated VECM are found to have non-Gaussian 

distribution, as the null hypothesis of Jarque-Berra normality test on each residual series 

is rejected and their histograms with overlaid Gaussian distributions in figure 2.7 reveal 

kurtosis.  Based on the LinGAM algorithm executed in Tetrad version five with one 

prune factor,11 DAGs are employed to identify restrictions for generating orthogonal 

innovations.  As there exist large deviations from the null of parameter constancy when 

                                                
11 Prune factor is the threshold of pruning edges. 
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using the entire data,12 innovation accounting analysis is performed for each sub-period. 

DAGs for the three subsamples are given in figures 2.8, 2.9, and 2.10.   

 

 

 

 
 
Figure 2.7. Histograms of eight residual series from the estimated VECM using the 
entire data 
 

 

 The eight markets are linked together by 11 or 12 contemporaneous causal flows 

regardless of the sub-period.  Of the twelve causal flows in the first and the last sub-

periods, seven are the same.  The third sub-period added causal flows between Malin 

and AECO Hub and Malin and Henry Hub but removed a causal flow between Chicago 

and Dominion South.  Causal flows in the middle sub-period are generally different than 

the other two sub-periods.  The only causal flow that is the same in all periods is from 

Henry Hub to Chicago.  

                                                
12 DAG using the entire data set are shown in Appendix B (figure B.2). 
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Figure 2.8. Contemporaneous casual flows for the first sub-period (May 3, 1994 - 
September 29, 2000) 
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Figure 2.9. Contemporaneous casual flows for the second sub-period (October 2, 
2000 - December 31, 2009) 
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Figure 2.10. Contemporaneous casual flows for the third sub-period (January 1, 
2010 - October 31, 2014) 
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Information flows from Henry Hub to Chicago in every sub-period.  Chicago 

contemporaneously responds to information from Oneok in the first and the third sub-

periods, but the information flow changes direction in the second sub-period.  In the 

second sub-period, information flow from Chicago influences not only Oneok but also 

AECO Hub and Waha Hub.  In the first sub-period, Chicago transmits information to 

Dominion South, whereas, in the second sub-period, Dominion South transmits 

information to Chicago.  Nonetheless, there is no information transmission between 

Chicago and Dominion South in the third sub-period.  Dominion South exchanges 

contemporaneous information with Henry Hub in every sub-period; Dominion South 

acts as a recipient in the first and the third sub-period, but becomes a contributor in the 

second sub-period.  

Henry Hub behaves as both receiver and provider of information in the first and 

the second sub-periods.  In the first sub-period, Henry Hub receives information from 

Oneok and Waha Hub and sends information to Chicago and Dominion South.  In the 

second sub-period, Henry Hub obtains information from only Dominion South and 

transmits it to Chicago and Waha Hub.  Henry Hub behaves solely as a sender, 

conveying information to Chicago, Dominion South, Malin, Oneok, and Waha Hub in 

the third sub-period.   

Malin gathers information from Oneok and Opal and transmits to Waha Hub in 

the first sub-period.  In the second sub-period, Malin, however, is influenced by 

information from Waha Hub as well as AECO Hub.  Malin receives information from 
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Henry Hub and Oneok and provides information to AECO Hub, Opal, and Waha Hub in 

the third sub-period.  

Oneok behaves solely as a sender of information in the first sub-period; 

information from Oneok influences Chicago, Henry Hub, Malin, Opal, and Waha Hub.  

Conversely, Oneok behaves solely as a receiver (endogenous) in the second sub-period; 

it receives information from Chicago and Waha Hub.  In the third sub-period, Oneok is 

both a sender and receiver; supplying information to Chicago, Malin, Opal, and Waha 

Hub and obtaining information from Henry Hub.   

Information flows from Oneok to Opal in the first and the third sub-periods; 

whereas, contemporaneous interaction between these two markets disappears in the 

second sub-period.  Similarly, Opal and Malin have connections in the first and third 

sub-periods; Opal acts as a sender in the first sub-period while becomes a receiver in the 

third sub-period.  Opal affects Waha Hub in the first sub-period but the information flow 

switches direction in the second sub-period; no communication between these two 

markets exists in the third sub-period.   

Waha Hub obtains information from Malin, Oneok, and Opal and provides 

information to Henry Hub in the first sub-period.  These information flows change 

direction in the second sub-period.  In the third sub-period, Waha Hub is influenced by 

innovations from Henry Hub, Malin, and Oneok. 

Impulse Response Functions  

Impulse response functions provide the dynamic responses of each series to a one-time 

shock in each series.  For comparision purposes, the responses are normalized such that 
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each response is divided by the standard error of its innovations.  Each sub-graph 

provides the response of the market given by the row heading to a one-time shock in the 

series listed in the column heading. 

 The dynamic price system is stable in each sub-period.  Irrespective of the sub-

period, the eight markets positively respond to a shock of its own price.  Innovations of 

Oneok appears to be the most important in the first sub-period; Dominion South appears 

to be the most significant market in the sub-period; and Henry Hub appear to be the most 

essential market in the third sub-period,13 as shocks in these markets create relatively 

large impacts on other markets.  

In the first sub-period (figure 2.11), AECO Hub responses to shocks in the other 

markets are small; similarly, other markets barely respond to a shock in AECO Hub. 

Responses of Malin, Oneok, Opal, and Waha Hub to a shock in Chicago are initially 

postitive and then go negative a few days after the shock.  A shock of Dominion South 

largely impacts itself, Chicago, and Henry Hub.  Chicago and Dominion South react 

positively to a shock in Henry Hub, while AECO Hub, Malin, and Opal responses to 

such a shock are small.  Except itself, other markets have almost no responses to a shock 

in Malin; this is consistent with results indicating that Malin can be excluded and 

considered weakly exogenous.  All markets except AECO Hub have relatively large 

responses to a shock in Oneok.  A shock in Opal positively affects other markets, 

especially Malin, Oneok, and Waha Hub.  Among others, Henry Hub responds to a  

  

                                                
13 Impulse response functions using the entire data set suggest Henry Hub is the most important market 
(figure B.3. in Appendix B). 
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Figure 2.11. Impulse response functions of eight natural gas spot prices for the first sub-period (May 3, 1994 - 
September 29, 2000) 
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Figure 2.12. Impulse response functions of eight natural gas spot prices for the second sub-period (October 2, 2000 - 
December 31, 2009) 
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Figure 2.13. Impulse response functions of eight natural gas spot prices for the third sub-period (January 1, 2010 - 
October 31, 2014) 
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shock in Waha Hub the most.  Chicago, Dominion South, and Oneok initially respond 

positively to a shock in Waha Hub. 

In the second sub-period (figure 2.12), after the first day of the shock, other 

markets slightly respond positively to a shock in AECO Hub.  Unlike the first sub-

period, all markets have positive responses to a shock in Chicago.  Relative to shocks in 

other markets, a shock in Dominion South causes the largest responses in all markets.  A 

shock in Henry Hub initially affects Dominion South negatively, but a couple days after 

the shock the response is positive while the effects on the other markets are always 

positive.  Similar to the first sub-period, all markets but itself responses to a shock in 

Malin are small.  Oneok, Opal, and Waha Hub importance seems to have decreased as 

market responses to shocks in these markets have decreased. 

In the third sub-period, all markets react to a shock in Henry Hub (figure 2.13).  

Responses to a shock in Henry Hub are larger than those to shocks in other markets.  

There appears to be an increasing importance of Malin as the market responses are 

generally larger in the third period than in either of the other periods.  Responses of other 

markets to shocks in Chicago, Dominion South, Opal, and Waha Hub are small.  In all 

markets, there appears to be non-lasting impact of a shock in Oneok.    

Forecast Error Variance Decompositions 

To determine how the forecast error variance of each price series depends on its own 

innovations and other price series’ innovations, forecast error variance decompositions at 

horizons of one, five, and 10 trading days ahead are provided.  Values in each row 
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indicate, at a specific time horizon, how much variation in each price series is due to 

itself and the other price series; the sum of the values in each row must be 100. 

Consistent with evidence from impulse response functions, Oneok appears to be 

the most important in the first sub-period; Dominion South appears to be the most 

significant market in the sub-period; and Henry Hub appears to be the most essential in 

the third sub-period14 as innovations from these markets are the main factor inducing 

price variation in other markets.  In the second sub-period, the importance of Oneok, 

Opal, and Waha Hub in explaining price uncertainty in other markets is generally small 

relative to the first sub-period; Oneok, Opal, and Waha Hub become more influential in 

the third sub-period relative to the second sub-period.   

In the first sub-period, at any time horizon, price variation in AECO Hub is 

predominantly due to itself (table 2.7).  At one day ahead, variation of prices in Chicago 

largely comes from its own shock (49%) and Oneok’s shock (47%).  Similarly, at five 

and 10 days ahead, variation in Chicago is primarily because of itself and Oneok; Oneok 

provides a larger influence than Chicago for five and 10 days ahead.  The uncertainty of 

prices in Dominion South at one day ahead is primarily due to the innovations of itself 

(64%), Oneok (19%), and Henry Hub (11%).  At five and 10 days ahead, the innovation 

of Henry Hub becomes primary source of price uncertainty in Dominion South.  Oneok 

is the main cause of the price uncertainty in Henry Hub at any time horizon.  For Malin, 

its own shock, Opal’s, and Oneok’s mostly explain the deviation in prices at any time 

horizon.  At one day ahead, variation of Oneok natural gas spot prices is dependent only  

                                                
14 Using the entire data set, it appears that Henry Hub is the most important market influencing price 
variation in other markets (table B.2 in Appendix B). 
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Table 2.7.  Forecast Error Variance Decompositions of Eight Natural Gas Spot 
Prices for the First Sub-Period (May 3, 1994 - September 29, 2000) 

Horizon 
AECO 

Hub Chicago 
Dominion 

South  
 Henry 

Hub Malin Oneok Opal  
Waha 

Hub 

 
AECO Hub 

1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 97.68 0.18 0.23 0.42 0.02 0.06 0.87 0.53 
10 97.02 0.37 0.25 0.62 0.02 0.06 0.99 0.68 

 
Chicago 

1 0.00 49.39 0.00 2.59 0.01 47.21 0.08 0.73 
5 0.45 27.20 3.15 13.61 0.02 45.63 5.70 4.25 
10 0.48 18.11 5.52 22.54 0.01 42.97 6.00 4.38 

 
Dominion South  

1 0.00 1.63 64.12 11.47 0.04 19.17 0.34 3.23 
5 0.37 2.10 33.26 29.49 0.01 25.36 4.66 4.76 
10 0.42 1.15 25.07 40.14 0.01 24.55 4.38 4.30 

 
Henry Hub 

1 0.00 0.00 0.00 42.76 0.16 43.79 1.27 12.04 
5 0.15 0.22 2.00 39.80 0.06 39.14 6.75 11.88 
10 0.11 0.35 3.76 37.63 0.04 41.84 6.45 9.82 

 
Malin 

1 0.00 0.00 0.00 0.00 57.50 15.57 26.93 0.00 
5 0.01 0.87 0.01 0.07 45.12 15.23 38.66 0.04 
10 0.01 1.43 0.04 0.04 44.15 14.97 39.25 0.11 

 
Oneok 

1 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 
5 0.20 1.71 1.11 1.42 0.14 76.77 12.87 5.78 
10 0.19 3.98 1.77 2.10 0.15 72.42 13.73 5.67 

 
Opal 

1 0.00 0.00 0.00 0.00 0.00 20.73 79.27 0.00 
5 0.01 0.74 0.03 0.03 0.19 19.42 79.47 0.12 
10 0.02 1.25 0.06 0.01 0.15 19.72 78.45 0.34 

 
 Waha Hub 

1 0.00 0.00 0.00 0.00 0.46 59.96 3.77 35.81 
5 0.14 1.49 0.78 1.33 0.59 56.96 16.14 22.58 
10 0.08 3.80 1.51 1.59 0.58 60.93 14.88 16.63 
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on its own innovation (100%).  At five and 10 days ahead, Oneok still explains the 

majority of its own variation, but Opal and Waha Hub increase in importance. The 

variation of prices in Opal is primarily explained by itself with Oneok explaining 

approximately 20% at any time horizon.  For Waha Hub, forecast error variance is 

explained by Oneok, Opal, and itself.  Oneok explains more variance in Waha Hub than 

any other market including Waha Hub itself. 

In the second sub-period, AECO price variance is explained by itself, Dominion 

South, Chicago, and Henry Hub at all time periods; Malin, Oneok, Opal, and Waha Hub 

explain very little (table 2.8).  At one day ahead, innovations in Chicago itself, 

Dominion South, and Henry Hub influence the uncertainty of prices in Chicago.  The 

most significant source of the uncertain of prices in Chicago at any time horizon is 

Dominion South.  In addition, at any time horizon, Dominion South is the leading source 

of the price variance in Henry Hub, Oneok, and Waha Hub.  Price variation in Dominion 

South is totally the result of its own innovation at one day ahead; at five and 10 days 

ahead Dominion South remains largely exogenous.  Price variation in Malin is primarily 

because of itself and Dominion South at any time horizon; innovations in Oneok and 

Opal cause very little on price variation in Malin.  Price uncertainty in Opal is largely 

due to itself, Dominion South, and Waha.  Other than Malin, all markets contribute to 

uncertainty in Oneok and Waha Hub price variations. 

In the third sub-period, at one day ahead, the uncertainty of AECO prices is due 

to its own innovation and innovations of Henry Hub, Malin, and Oneok; at five and 10 

days ahead, the uncertainty is also primarily affected by its own shock and shocks in 
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Table 2.8. Forecast Error Variance Decompositions of Eight Natural Gas Spot 
Prices for the Second Sub-Period (October 2, 2000 - December 31, 2009) 

Horizon 
AECO 

Hub Chicago 
Dominion 

South  
Henry 

Hub Malin Oneok Opal  
Waha 

Hub 

 
AECO Hub 

1 54.02 7.47 35.24 3.27 0.00 0.00 0.00 0.00 
5 47.25 10.29 37.43 3.68 0.88 0.45 0.02 0.01 
10 46.58 9.10 37.66 4.76 1.26 0.62 0.01 0.01 

 
Chicago 

1 0.00 16.26 76.64 7.10 0.00 0.00 0.00 0.00 
5 3.83 17.05 70.53 6.60 0.38 1.54 0.04 0.02 
10 6.41 13.45 69.09 8.59 0.46 1.90 0.07 0.03 

 
Dominion South  

1 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 
5 2.72 1.99 93.25 0.76 0.03 0.99 0.07 0.20 
10 4.77 2.15 88.74 2.71 0.04 1.33 0.09 0.17 

 
Henry Hub 

1 0.00 0.00 78.66 21.34 0.00 0.00 0.00 0.00 
5 2.69 1.41 80.26 14.22 0.03 1.23 0.08 0.08 
10 4.86 1.44 77.21 14.86 0.05 1.39 0.13 0.06 

 
Malin 

1 5.94 2.76 26.06 3.53 56.86 0.00 0.00 4.86 
5 12.58 5.08 23.24 3.37 52.17 0.09 0.06 3.41 
10 14.74 5.03 24.58 4.30 47.61 0.16 0.05 3.52 

 
Oneok 

1 0.00 4.80 51.31 7.30 0.00 24.03 0.00 12.55 
5 2.04 6.89 49.65 6.52 0.09 26.05 0.05 8.70 
10 3.81 6.26 48.93 7.54 0.21 25.47 0.05 7.73 

 
Opal 

1 0.00 0.31 5.30 0.88 0.00 0.00 90.89 2.62 
5 1.74 1.46 9.00 1.73 0.43 2.31 80.01 3.32 
10 4.35 1.45 9.97 2.30 0.64 3.73 75.01 2.55 

 
Waha Hub 

1 0.00 3.38 58.21 9.67 0.00 0.00 0.00 28.74 
5 2.41 7.00 60.77 7.67 0.09 4.57 0.10 17.40 
10 4.45 6.32 59.96 8.73 0.21 6.60 0.15 13.59 
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Table 2.9.  Forecast Error Variance Decompositions of Eight Natural Gas Spot 
Prices for the Third Sub-Period (January 1, 2010 - October 31, 2014) 

Horizon 
AECO 

Hub Chicago 
Dominion 

South  
Henry 

Hub Malin Oneok Opal  
Waha 

Hub 

 
AECO Hub 

1 44.44 0.00 0.00 24.54 13.57 17.45 0.00 0.00 
5 59.85 0.02 0.11 14.72 14.28 9.09 0.15 1.79 
10 62.15 0.02 0.14 14.73 15.43 5.24 0.26 2.04 

 
Chicago 

1 0.00 72.10 0.00 19.37 0.00 8.53 0.00 0.00 
5 5.68 60.49 0.49 18.40 3.98 9.51 0.55 0.92 
10 5.78 52.13 0.37 24.51 7.05 8.14 0.45 1.57 

 
Dominion South  

1 0.00 0.00 58.13 41.87 0.00 0.00 0.00 0.00 
5 1.76 0.39 47.11 46.27 0.43 0.80 1.27 1.96 
10 2.04 0.23 45.54 45.99 0.69 1.33 1.51 2.67 

 
Henry Hub 

1 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 
5 5.99 0.26 0.10 87.49 0.77 1.85 2.21 1.34 
10 6.92 0.18 0.06 83.90 1.39 2.78 2.93 1.85 

 
Malin 

1 0.00 0.00 0.00 44.17 24.42 31.40 0.00 0.00 
5 9.79 0.03 0.11 39.92 25.52 21.40 0.62 2.62 
10 10.19 0.17 0.09 45.52 25.42 14.23 1.16 3.22 

 
Oneok 

1 0.00 0.00 0.00 51.26 0.00 48.75 0.00 0.00 
5 6.66 0.08 0.17 54.11 1.22 35.28 0.20 2.30 
10 6.89 0.28 0.15 62.24 1.88 25.52 0.30 2.74 

 
Opal 

1 0.00 0.00 0.00 46.26 2.16 40.61 10.98 0.00 
5 7.05 0.16 0.16 45.72 6.20 29.80 8.41 2.50 
10 7.43 0.61 0.12 49.49 9.46 21.58 8.09 3.22 

 
Waha Hub 

1 0.00 0.00 0.00 51.02 1.42 23.48 0.00 24.08 
5 6.21 0.02 0.09 58.92 2.02 21.37 0.38 10.99 
10 6.61 0.11 0.06 66.01 2.63 15.84 0.51 8.23 
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these three markets (table 2.9).  The primary causes of price uncertainty in Chicago are 

its own innovations, Henry Hub, and Oneok at any time horizon.  Different than the 

second sub-period, at one, five, and 10 days ahead, innovations of Dominion South and 

Henry Hub explain price uncertainty in Dominion South.  Unlike the second sub-period, 

Henry Hub appears to primarily be exogenous to the system.  Price uncertainty in Malin 

is generated mostly by innovations in Henry Hub, Oneok, and Malin itself.  Uncertainty 

in Oneok prices is triggered by shocks in Henry Hub and itself.  Along with its own and 

Malin’s, innovations of Henry Hub and Oneok play an important role in explaining the 

uncertainty of Opal prices.  Price variation in Waha Hub is largely due to innovations in 

Henry Hub, Oneok, itself, and Malin.   

Discussion  

Tests for constancy of !∗, which are the long-run relationship parameters, are used to 

discover the possible existence of structural changes in pricing relationships among the 

eight North America natural gas spot markets during 1994 to 2014.  Instability of !∗ 

indicates that the long-run pricing relationships among natural gas spot markets in North 

America change around 2000 and 2009.  The data is split into three sub-periods to 

investigate price dynamics. 

 Regardless of the sub-period, consistent with findings in the literature, adjacent 

markets appear to provide more price information to each other than to markets that are 

located far apart.  AECO Hub has provided less information to other markets; including 

other markets in Canada may provide different inferences.  Evidence of information 

flows corresponding to trading hours beginning in the eastern markets and moving to the 
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western markets is found in the second sub-period.  Such casual flows are less 

pronounced in the first and third sub-periods.   

Termination of the wellhead natural gas price regulation occurred by the end of 

1992, therefore, the first sub-period (May 1994 – September 2000) is the phase that the 

natural gas industry was maturing and becoming competitive as a result of the 

development of natural gas trading hub and natural gas spot, term, and derivatives 

markets (Joskow 2013).  Innovations in Oneok, Oklahoma generally influence price 

dynamics in most of the eight markets in the first sub-period.  This may be because 

Oklahoma has been one of the largest natural gas producing states in the U.S. and 17 of 

the 100 largest natural gas reserves in the U.S. are located in Oklahoma (U.S. EIA 

2014i).  Moreover, among other natural gas producing states, in the first sub-period, 

Oklahoma was nearest to Illinois, which is a key transportation hub for natural gas with 

more than 12 interstate natural gas pipelines and two natural gas market centers (U.S. 

EIA 2015f). 

Natural gas prices were expensive and volatile during 2000.  The U.S. natural gas 

market was more import-intensive in the second sub-period (October 2000 – December 

2009), as ratios of U.S. natural gas imports to U.S. dry natural gas production were high 

relative to other period.  The study of price dynamics indicates that Dominion South 

plays an important role in the second sub-period and becomes more independent in the 

third sub-period.  Pennsylvania is mostly likely an excess demand area in the second 

sub-period, but is an excess supply in the third sub-period.  This switch is because 

natural gas production in Pennsylvania has dramatically increased with the development 
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of the Marcellus shale formation.  The growth in Marcellus shale gas production has 

changed U.S. natural gas transportation patterns east of the Mississippi River, where 

great volumes of natural gas produced in Texas, Louisiana, and Oklahoma were 

historically transported to (U.S. EIA 2014b).  The change, furthermore, is resulting in 

the bidirectional natural gas pipeline project in the Northeast; the plan is to expand 

existing systems and construct new systems to transport natural gas produced in the 

Northeast to consuming markets outside the region (U.S. EIA 2014a).   

Tests for parameter constancy reveals the constancy of !∗ after 2009.  Shale gas 

production is possibly behind this change as technological advancement are leading to 

accessing large-scale natural gas which has augmented domestic natural gas production.  

Larger stable supplies encourage market stability, as the natural gas industry becomes 

less import-reliance.  Henry Hub is a dominant market as its innovation causes the price 

dynamics in most natural gas spot prices in the third sub-period (January 2010 – October 

2014).  This is not surprising because Henry Hub is noted in the literature as an 

important market for pricing of the North America natural gas spot and futures 

markets15.  Malin comes to be more dependent in the third sub-period.  This may be 

because natural gas is delivered to California, which is one of the top five natural gas 

consuming states, through Malin (U.S. EIA 2014g).  Most electric power generating 

plants in California are natural gas-fired while California’s natural gas production has 

gradually declined (U.S. EIA 2014g). 

 

                                                
15 The first natural gas futures contract was issued by the New York Mercantile Exchange Market 
(NYMEX) in 1990 (U.S. EIA 2010). 
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CHAPTER III  

PREQUENTIAL FORECASTING ANALYSIS OF RETURNS IN NORTH AMERICA 

NATURAL GAS SPOT MARKETS 

 

Prequential data analysis introduced by Dawid (1984) is applied to evaluate predictive 

distributions for out-of-sample data of returns in North America natural gas spot 

markets.  Because of the potential presence of structural changes in pricing relationships 

among North America natural gas spot markets found in Chapter II, vector 

autoregressive (VAR) models are estimated for three in-sample periods: (1) May 4, 1994 

to October 31, 2014; (2) October 2, 2000 to October 31, 2014; and (3) January 1, 2010 to 

October 31, 2014.  The objective is to determine whether and how the potential presence 

of structural breaks affects out-of-sample probability forecasting performance.  To 

address the objective, calibration measures (calibration plots and chi-squared goodness-

of-fit test statistics), root mean-squared error, the Brier score and its decompositions, and 

the ranked probability score are applied for model assessments. 

Prequential Analysis Studies 

Dawid (1984) introduced the prequential approach under the aims of generating 

forecasts, proposing appropriate measures of the uncertainty related to unknown events 

or quantities, and exploiting the sequential nature in forecasting.  Because the 

uncertainty of forecasts can be expressed as probabilities, forecasts are given as 

probability distributions over unknown or uncertain events (probability forecasting).  
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Dawid (1984) suggests that a forecast for the next value should be based on an analysis 

of earlier values and calls this prequential (predictive sequential) forecasting. 

 The adequacy of prequential probabilities can be assessed by using probability 

calibration (Dawid 1984).  Calibration is the ability of a model’s forecasted probability 

distribution to correspond to the ex post relative frequency of all events.  A forecasting 

model is said to be well calibrated when the ex post relative frequency of all events, 

whose probability is assigned a probability of P*, is P*.  Kling and Bessler (1989) 

employ probability forecasting to interest rates, money stock, consumer prices, and 

industrial production.  They test for calibration and develop a procedure for recalibrating 

distributions, based on the bias estimated in previous distributions.  Recalibration of the 

forecasts provides improved results.  Bessler and Kling (1990) investigate prequential 

relationships between cash prices and futures prices for cattle and find that daily futures 

prices help to forecast daily cash prices.  Estimating both univariate and multivariate 

(bivariate) models, they find that the multivariate model provides more information than 

the univariate model on the predictive distribution of cash prices; while the multivariate 

model does not provide additional information in forecasting futures prices.  Standard 

mean-squared error and probability calibration measures (calibration plots and chi-

squared goodness-of-fit test statistics) are used to measure performance of probability 

forecasts.   

 An alternative to the mean-squared error test for evaluating probabilistic 

forecasts is the mean probability score, known as the Brier score (Brier 1950).  The Brier 

score is a quadratic scoring measure, which can be partitioned into components that 
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indicate calibration and resolution (Bessler and Ruffley 2004).  Resolution is the ability 

of a model in sorting or partitioning uncertain events into disjointed subgroups that have 

probability measures differing from long-run relative frequencies.  Calibration measures 

cannot capture this sorting ability.  The Brier score, therefore, provides more information 

of predictive performance than do calibration metrics.   

Zellner, Hong, and Min (1991) use the Brier score to rank probability forecasts of 

turning points in the growth rates of 18 countries from various fixed and time-varying-

parameter models.  They find that time-varying parameter models perform marginally 

better than the fixed parameter models.  In Bessler and Ruffley (2004), an ordinary least 

squares model and a random walk model are used to forecast the U.S. stock market 

returns.  Results from calibration measures and the Brier score and its partition reveal 

that the OLS model tends to perform better than the random walk model.  Studying 

probability forecasts of inflation and GDP, Casillas-Olvera and Bessler (2006) evaluate 

the probability forecasts of the Monetary Policy Committee and those of the group of 

undisclosed external forecasters using the Brier score and its partition.  It appears that 

both the Monetary Policy Committee and the other forecasters respond to information 

not related to the forecasted variable. 

Methodology 

The VAR model is used to generate forecasts of natural gas returns.  The general VAR 

model is  

(3.1)  Φ$ % &' = )', 
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where Φ$ %  is the autoregressive parameter matrix, &' is a vector of considered series, 

and )' is a vector of innovations that are uncorrelated over time, but may be 

contemporaneously correlated (Hamilton 1994).   

 Equation (3.1) is first estimated for each in-sample data period using OLS.  Then 

one-step-ahead out-of-sample forecasts are generated.  At each time period, the model’s 

parameters are updated before generating the next forecasts.  Instead of point forecasts, 

probabilistic forecasts are generated because of the uncertainty associated with the 

parameters and error term.  To deal with uncertainty in Φ$ %  and )', the procedure 

suggested by Fair (1986) is implemented.  At each time t the elements of Φ$ %  are 

assumed to be normally distributed with mean Φ$ %  and variance-covariance matrix 

*' = ++′.  Updating equation (3.1) with the Kalman filter at each t after the initial 

in-sample estimation, which allows for a small degree of time variation in the 

parameters, yields the estimated parameter matrix Φ' % .  A particular draw Φ'
∗(%) is 

given as  

(3.2)  Φ'
∗(%) = Φ' % + +'1, 

where 1 is a vector of standard normal draws.  Uncertainty in innovations is modeled by 

drawing from the normal distribution with mean zero and variance-covariance matrix 

equal to the estimated variance-covariance matrix for one-step forecast errors.  A one-

step-ahead forecast vector is given as 

(3.3)  &'23 = Φ∗ % &' + )'23
∗ . 
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One thousand point forecasts of &'23 are obtained by drawing 1 and )'23∗  1000 times at 

each t.  At the next t, the model is updated using the Kalman filter estimator to generate 

a new set of probability forecasts. 

Probability Forecasting 

Let 45,', 7 = 1,… ,:, ; = 1,… , <, where T is the number of in-sample data be an 

observed element of the m x 1 vector of time series &'.  At time T, values for &', ; =

1,… , <, are known or observed.  A set of probability distributions +=2>?for the unknown 

values &=2>?can be generated.  A prequential forecasting system is defined by a rule 

which associates a choice of +@2A, B = < + 1,… , < + C, where K is the number of out-

of-sample data points, j indicates forecast horizon, for each n with any possible set of 

outcomes &@2A (Dawid 1984; Kling and Bessler 1989). 

 If the 45,@2A (time series i, forecast horizon j) are continuous random variables 

with continuous distribution function,?D5,@2A, the random fractiles, E5,@2A =

D5,@2A 45,@2A? , are independent uniform U[0, 1] random variables (Dawid 1984).  If the 

45,@2A are discrete with cumulative distribution functions, D5,@2A, then the random 

fractiles, E5,@2A, have distribution functions of the form F(E5,@2A) = E5,@2A, even though 

the functions are not continuous.  In either case, the assessment of the prequential 

forecasting system reduces to a test of the hypothesis that the observed sequence 

E5,@2A = D5,@2A(45,@2A) is from a probability distribution with the cumulative distribution 

F(E5,@2A) = E5,@2A.  The prequential forecasting system is considered well calibrated 

when this hypothesis cannot be rejected. 
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 An estimated cumulative distribution function, F(E5,@2A), for E5,@2A, is obtained 

by taking the observed sequence E5,@2A=D5,@2A 45,@2A , sorting the sequence of 

E5,@2A 1 , … , E5,@2A(C) in ascending order, and calculating 

(3.4)  F(E5,@2A(G)) = (G/C); ??????????G = 1,… , C, 

where K is the number of out-of-sample observations.  Equation (3.4) is referred to as 

the calibration function (Bunn 1984). 

Probability Forecasting Assessment  

Calibration measures (graphical representation and chi-squared goodness-of-fit), the 

quadratic loss measure, the Brier score and its partition, and the rank probability score 

are used to evaluate prequential forecasts in this study. 

Calibration Measures 

Testing the observed fractiles obtained from the sequence of estimated probability 

forecasts is a test of calibration (Dawid 1984).  Graphical representation and a goodness-

of-fit test statistic are commonly used. 

The plot of relative frequency (y-axis) against the realized fractiles (x-axis) 

illustrates calibration performance.  For a well-calibrated prequential forecasting system, 

the plot should approach a 45-degree line.  Whether a particular plot deviates from the 

45-degree line enough to reject calibration, however, is left to the analyst to decide.  

Graphical representations do not provide a statistic test. 

If there is a sequence of K such forecasts, under the null hypothesis of well 

calibration, the observed fractiles are expected to follow the uniform distribution, such 

that any subinterval of the line (0, 1) of length L (0 < L < 1) has L x K observed fractiles.  
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If there are Q mutually exclusive and exhaustive subintervals, a chi-squared goodness-

of-fit test statistic is 

(3.5) JK = [ MN − PNC
K
/PNC]

R
NS3 ??????~JK(U − 1), 

where MN is the actual number of observed fractiles in the interval q and PN is the length 

of interval q.  Under the hypothesis of well calibration and under the weak conditions 

that the independence of the distributions underlying the forecasts is not required, the 

test statistic is distributed as chi-squared with Q -1 degrees of freedom (Dawid 1984). 

Quadratic Loss and the Brier Score 

The quadratic loss function is the most popular criterion for evaluating predictive 

distributions.  Similar to point forecast, mean-squared error (MSE) criterion can also be 

applied to probability forecasts.  MSE for probability forecasts is  

(3.6)  VWX +; 45,@2A; B = < + 1,… , < + C = 1/C 45,@2A − +5,@2A
K=2Y

@S=23 , 

where +5,@2A represent the expected value from the distribution +5,@2A. 

An alternative test for assessing probability forecasts, which is similar to the 

quadratic loss function, was introduced by Brier (1950).  The Brier score is a probability 

score that encompasses both calibration and resolution.  As previously noted, the latter is 

an ability of a model in sorting or partitioning uncertain events into mutually exclusive 

and exhaustive subgroups/bins that have probability measures differing from long-run 

relative frequencies. 

The Brier score (PS) for a single event is 

(3.7)   +W Z, [ = Z − [ K, 
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where f is the probabilistic forecast for an event and d is outcome index.  If the event 

occurs, d = 1; otherwise, d = 0.  Over N occasions, the mean of PS is  

(3.8)   +W Z, [ = 1/\ Z5 − [5
K]

5S3 , 

where i = 1, …, N indicates each occasion.   

 Yates (1988) proposes a covariance decomposition to partition the Brier score 

into forecast components.  This partition is  

(3.9)  +W Z, [ = *M^ [ +V7B*M^ Z + W_M; Z + %7M`K − 2bcd(Z, [). 

The variance of the observed outcomes, Var(d), is 

(3.10)  *M^ [ = [ 1 − [ , 

where [ = (
3

]
) [5

]
5S3 .  Because Var(d) captures out-of-model factors affecting 

forecasts, Var(d) is out of a forecaster’s control.  The remaining components, however, 

are partially under a forecaster’s control.  The smaller the Brier score, the better 

predictive performance.  One, therefore, strives to obtain small values for MinVar(f), 

Scat(f), and Bias2 but a large value for Cov(f,d).   

Bias2 is 

(3.11)  %7M`K = Z − [
K
, 

where?Z = (
3

]
) Z5

]
5S3 .  Bias is referred to as the mean probability judgment because it 

indicates the overall miscalibration of the forecasts, i.e. how much the forecast is under- 

or overestimated.  %7M`K indicates the calibration error regardless of the direction 

(positive or negative) of the error.  
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 The covariance term, Cov(f,d), reveals the ability of a model in distinguishing 

between individual occurrence whether the event occurs or does not occur.  It is defined 

as  

(3.12)  bcd Z, [ = `ecf1 [*M^([)], 

where `ecf1 = Z3 − Zg and Z> =
3

]h
(Z>A)

]h
AS3  for k = 0, 1.  Z3 is the conditional mean 

of probability forecasts over N1 occasions that the event actually occurs.  In contrast, Zg 

is the conditional mean of probability forecasts over N0 occasions that the event does not 

occur. 

 The scatter term, Scat(f), is  

(3.13)  W_M; Z =
3

]
[\3*M^ Z3 + \g*M^(Zg)], 

where *M^ Z> =
3

]h
(Z>A −

]h
AS3 Z>)

K?for k = 0, 1.  Var(f1) is the conditional variance 

of the probability forecast for an event that actually occurs N1 times and Var(f0) is the 

conditional variance of the probability forecast for an event that does not occur N0 times.  

Scat(f) is the weighted average of the conditional variances Var(f1) and Var(f0).  It 

appears that the scatter captures the conditional dispersion of probability forecasts.   

 The MinVar(f) is the minimum forecast variance of the probability forecast 

defined as  

(3.14)  V7B*M^ Z = *M^ Z − W_M;(Z), 

where Var(f) is the overall variance of probability forecasts.  MinVar(f) measures the 

dispersion of probability forecasts, which cannot be explained by the conditional 

dispersion.  MinVar(f) is exactly Var(f) when Scat(f) = 0.  
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 In this study, the Brier score is calculated for the multiple event case.  For a K-

event (where K > 2) case, the multiple probability score for the kth event (Murphy 1970) 

is  

(3.15)  +WV i, j = (i − j)′(i − j), 

where i = (Z3, … , Z>)′ and?j = ([3, … , [>)′.  fk and dk are the probability forecast and the 

outcome index for an event k.  Over N occurrences, the mean PSM is 

(3.16)  +WV = +W>?
Y
>S3 , 

where  +W> = 1/\ Z>5 − [>5
K]

5S3 , the probability mean score for the kth event. 

 The covariance decomposition for the multiple event forecast is  

(3.17)???+WV i, j = *M^ [>
Y
>S3 +? V7B*M^ Z>

Y
>S3 + W_M; ZY

>S3  

                                   + %7M` K?Y
>S3 − 2 bcd Z>, [>

Y
>S3 . 

The interpretation of each term in the multiple event case is similar to that in the single 

event case.  

Rank Probability Score 

Unlike the Brier score, the ranked probability score proposed by Epstein (1969) involves 

using cumulative distribution functions instead of probability density functions.  The 

ranked probability score (k+W) is  

(3.18)  k+W = 3

Yl3
Z>

>
AS3 − [>

>
AS3

KY
>S3 =

3

Yl3
D> − m>

KY
>S3 , 

where Fk and Dk are the cumulative distribution of forecasts and outcomes 

(observations).  The RPS is equivalent to the Brier score when K= 2.  Over N occasions, 

the mean RPS is 
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(3.19)  k+W = 3

]
?k+W5

]
5S3 . 

Similar to the Brier score, the lower the RPS, the better performance of probability 

forecast.   

The RPS assesses how close the distribution is to the observed value (Murphy 

1970).  The idea of “closer” (distance) does not appear in the Brier score (Epstein 1969).  

To illustrate, consider two probability forecasts for four categories.  Let the two different 

probability forecasts be: P = (0.5, 0.3, 0.1, 0.1) and P’ = (0.1, 0.3, 0.5, 0.1).  Further, 

assume the observed event occurs in the last category.  The Brier score on P = 0.5 −

0 K + 0.3 − 0 K + 0.1 − 0 K + 0.1 − 1 K = 1.16.  Similarly, the Brier score on P’ = 

0.1 − 0 K + 0.3 − 0 K + 0.5 − 0 K + 0.1 − 1 K = 1.16. The RPS on P = 0.5 −

0 K + 0.8 − 0 K + 0.9 − 0 K + 1 − 1 K = 1.7.  Similarly, the RPS on P’ = 0.1 −

0 K + 0.4 − 0 K + 0.9 − 0 K + 1 − 1 K =0.98.  The Brier scores of the two 

forecasts are equal; whereas, the RPS of the latter is smaller.  The RPS penalizes 

forecasts less severely when probabilities are closer to the actual outcomes, and more 

severely when probabilities are further from the actual outcome (Murphy 1970). 

Data 

Data used in Chapter II are used for the in-sample data.  This data consists of eight 

natural gas spot prices in Canada and United States: AECO Hub, Alberta, Canada; 

Chicago City Gate, Illinois; Dominion South Point, Pennsylvania; Henry Hub, 

Louisiana; Malin, Oregon; Oneok, Oklahoma; Opal, Wyoming; and Waha Hub, Texas.  

Weekday nominal prices of natural gas from May 3, 1994 to April 30, 2015 are obtained 

from Bloomberg L.P. (2015).  A missing value is replaced by a prior day’s price.  Each 
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price is the closing price for a specific location for natural gas to be delivered on the next 

day.  All prices are in U.S. dollars per MMBtu (a unit of heat equal to one million British 

thermal units).   

ADF and KPSS tests (in Chapter II) indicate that all prices series in natural 

logarithms are stationary after first differencing.  All price series used in forecasting are 

first differences of natural logarithms.  This implies that returns of natural gas spot 

markets are forecasted.  The in-sample data (May 4, 1994 to October 31, 2014) is 

augmented with out-of-sample data (November 3, 2014 to April 30, 2015) for 

forecasting purposes.   

Empirical Results 

Because of the potential existence of structural breaks around 2000 and 2009 (Chapter 

II), unrestricted VAR models of the eight series are estimated for three periods with the 

Schwarz loss criteria used to determine the appropriate number of lags for each period.  

The full model is fitted over the period of May 4, 1994 to October 31, 2014 with five 

lags minimizing the Schwarz loss criteria.  The second model, two-period model, is 

fitted over the period of October 2, 2000 to October 31, 2014 with three lags found to be 

appropriate.  The recent model is fitted over the period of January 1, 2010 to October 31, 

2014 with three lags minimizing the Schwarz loss measures.  As previously discussed, 

all three models are used to estimate out-of-sample values for one step-ahead horizon 

covering the period of November 3, 2014 to April 30, 2015 using the Kalman filter to 

update the model parameters. 
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Calibration Measures 

A graphical representation and a goodness-of-fit test statistic are used to evaluate 

calibration performance.  In figures 3.1-3.8, all calibration plots between the relative 

frequency and realized fractiles of the forecasts for the eight markets from the three 

models are close to the 45-degree line, suggesting that the forecasts are well calibrated.  

Twenty non-overlapping subintervals of observed fractiles are used to compute 

chi-squared test statistics.  Consistent with the plots, chi-squared goodness-of-fit test 

statistics on all forecasts are less than the 5% critical value of JK(19), implying that the 

null hypothesis of well calibration cannot be rejected for any model and market (table 

3.1).  

 

 
Table 3.1. Chi-Squared Goodness-of-Fit Test Statistics on Probability Forecasts of 
Returns in Eight Natural Gas Spot Markets 
Markets Fulla Two-Periodb Recentc 
AECO Hub 21.1890 17.3622 18.7619 
Chicago 9.1951 29.4000 19.3968 
Dominion South 4.8110 15.2047 17.4094 
Henry Hub 13.0476 13.0476 18.7619 
Malin 11.1463 16.5397 19.4800 
Oneok 25.5984 16.7795 26.0635 
Opal 14.3175 18.7619 13.0476 
Waha Hub 13.9449 25.9134 13.9449 
Note: The null hypothesis of well calibration cannot be rejected if the chi-squared test 
statistic is less than the 5% critical value of χ^2(19)=30.144. 
a The full model is initially fitted over the period of May 4, 1994 to October 31, 2014.  
b The two-period model is initially fitted over the period of October 2, 2000 to October 

31, 2014.  
c The recent model is initially fitted over the period of January 1, 2010 to October 31, 

2014.   
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Figure 3.1. Calibration plots for the AECO forecasts from the three models 
 
 
 
 

 
 
Figure 3.2. Calibration plots for the Chicago forecasts from the three models 
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Figure 3.3. Calibration plots for the Dominion South forecasts from the three 
models 
 
 
 

 
 
Figure 3.4. Calibration plots for the Henry Hub forecasts from the three models 
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Figure 3.5. Calibration plots for the Malin forecasts from the three models 
 
 
 

 
 
Figure 3.6. Calibration plots for the Oneok forecasts from the three models 
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Figure 3.7. Calibration plots for the Opal forecasts from the three models 
 
 

 
 
Figure 3.8. Calibration plots for the Waha Hub forecasts from the three models 
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Table 3.2. Root Mean-Squared Error (RMSE), the Brier Score, and the Ranked 
Probability Score (RPS) on the Probabilistic Forecast of Returns in Eight Natural 
Gas Spot Markets  
Markets RMSE Brier Score RPS 

The Full Modela  
AECO Hub 0.0435 0.8241 0.0997 
Chicago 0.1364 0.8587 0.1378 
Dominion South 0.1451 0.8881 0.2003 
Henry Hub 0.0397 0.8061 0.0978 
Malin 0.0494 0.8330 0.1091 
Oneok 0.0501 0.8202 0.1091 
Opal 0.0609 0.8441 0.1232 
Waha Hub 0.0548 0.8368 0.1167 
System 0.0828 0.8389 0.1242 

The Two-Period Modelb  
AECO Hub 0.0435 0.8020 0.0961 
Chicago 0.1381 0.8547 0.1435 
Dominion South 0.1476 0.8950 0.1982 
Henry Hub 0.0407 0.8040 0.0987 
Malin 0.0489 0.8344 0.1098 
Oneok 0.0496 0.8348 0.1104 
Opal 0.0584 0.8381 0.1184 
Waha Hub 0.0540 0.8332 0.1164 
System 0.0834 0.8370 0.1239 

The Recent Modelc  
AECO Hub 0.0431 0.8120 0.0983 
Chicago 0.1455 0.9245 0.1693 
Dominion South 0.1451 0.8901 0.1969 
Henry Hub 0.0394 0.8088 0.0976 
Malin 0.0506 0.8536 0.1179 
Oneok 0.0526 0.8554 0.1208 
Opal 0.0582 0.8560 0.1245 
Waha Hub 0.0549 0.8471 0.1231 
System 0.0847 0.8559 0.1310 
a The full model is initially fitted over the period of May 4, 1994 to October 31, 2014.  
b The two-period model is initially fitted over the period of October 2, 2000 to October 

31, 2014.  
c The recent model is initially fitted over the period of January 1, 2010 to October 31, 

2014.   
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Root Mean-Squared Error (RMSE) 

To calculate the RMSE for probability forecast, the means of the probability 

distributions are used as point forecast.  Forecasts with lower RMSE are considered 

better. 

Relative to the other markets, the two markets that always have the smallest 

RMSE are Henry Hub and AECO Hub, with Malin a close third, regardless of the model 

(table 3.2).  The two markets with the largest RMSE are Dominion South and Chicago.  

The Dominion South forecasts have the largest RMSE in the full and two-period models, 

while the Chicago has the largest RMSE in the recent model. 

Plots of observed returns and means of forecasted values for each market from 

the three models are illustrated in figure 3.9.  Based on the plots, it is difficult to 

determine which model performs better in forecasting returns in each market.  Note, the 

vertical scales for each panel are different. 

The Brier Score  

Similar to RMSE, relative to the other markets, the Henry Hub and AECO Hub usually 

have the smaller Brier scores (table 3.2).  The Brier score for the Henry Hub forecast is 

the smallest in the full and recent models and is the second smallest in the two-period 

model.  The Brier score for the AECO forecast is the smallest in the two-period model, 

second smallest in the recent model, and the third smallest in the full model.  The second 

smallest of the Brier score in the full model belongs to the Oneok forecast. 

Irrespective the model, two markets that usually have the two largest Brier scores 

are Dominion South and Chicago.  Within a given sample, the Brier score for the  
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Figure 3.9. Plots of observed natural gas returns and means of forecasts for each 
market from the three models  
Note: vertical scales for each panel are different. 
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Dominion South forecast is the largest of the eight markets in the full and two-period 

models and the second largest in the recent model.  The Brier score for the Chicago 

forecast is the largest in the recent model and the second largest in the full and 

two-period models. 

Yates’ Covariance Decomposition 

Results of Yates’ composition are reported in table 3.3.  Var(d) reflects the underlying 

variance of observed outcome; Var(d) for each market are the same for each of the three 

models because they are calculated over the same out-of-sample data.  Two markets that 

have the lowest Var(d) are Henry Hub and AECO Hub and two markets that have the 

largest Var(d) are Dominion South and Chicago.  These size differences in Var(d) are 

one of the reasons why the forecasts of Henry Hub and AECO Hub have smaller Brier 

scores and the forecasts of Dominion South and Chicago have larger Brier scores.   

In the full and recent models, the MinVar of the AECO forecasts are smallest, 

relative to other forecasts; the MinVar of the Malin forecast is smallest in the two-period 

model.  Two markets that have largest MinVar in the full model are Dominion South and 

Chicago.  The Chicago and Henry Hub forecasts have the largest MinVar in the two-

period model; the Opal and Chicago forecasts have the largest MinVar in the recent 

model. 

Scatter reflects the amount of extra variability over and above the minimum 

variance and is, sometimes, called the overall noise of the forecasts.  As given earlier, 

scatter is given by Var(f) – MinVar(f).  The AECO forecast does not have as much of 

this additional noise as the other markets because its scatter value is always the smallest  
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Table 3.3. The Brier Score and Yates' Decomposition on the Probabilistic Forecast 
of Returns in Eight Natural Gas Spot Markets 
Markets Brier Score Var(d) MinVar Scat(f) Bias2 Cov(f, d) 

The Full Modela 
AECO Hub 0.8241 0.8001 0.0001 0.0168 0.0115 0.0022 
Chicago 0.8587 0.8199 0.0009 0.0594 0.0082 0.0148 
Dominion South 0.8881 0.8753 0.0021 0.0485 0.0108 0.0243 
Henry Hub 0.8061 0.7909 0.0006 0.0371 0.0041 0.0133 
Malin 0.8330 0.8100 0.0002 0.0225 0.0092 0.0045 
Oneok 0.8202 0.8075 0.0006 0.0439 0.0025 0.0171 
Opal 0.8441 0.8145 0.0004 0.0372 0.0142 0.0111 
Waha Hub 0.8368 0.8158 0.0004 0.0405 0.0063 0.0131 
System 0.8389 0.8298 0.0016 0.0523 0.0049 0.0249 

The Two-Period Modelb 
AECO Hub 0.8020 0.8001 0.0005 0.0199 0.0098 0.0142 
Chicago 0.8547 0.8199 0.0026 0.0850 0.0169 0.0349 
Dominion South 0.8950 0.8753 0.0004 0.0331 0.0067 0.0103 
Henry Hub 0.8040 0.7909 0.0013 0.0514 0.0056 0.0226 
Malin 0.8344 0.8100 0.0001 0.0291 0.0084 0.0066 
Oneok 0.8348 0.8075 0.0002 0.0419 0.0061 0.0104 
Opal 0.8381 0.8145 0.0005 0.0311 0.0153 0.0116 
Waha Hub 0.8332 0.8158 0.0007 0.0443 0.0102 0.0189 
System 0.8370 0.8298 0.0014 0.0540 0.0062 0.0272 

The Recent Modelc  
AECO Hub 0.8120 0.8001 0.0001 0.0136 0.0092 0.0055 
Chicago 0.9245 0.8199 0.0008 0.0724 0.0533 0.0109 
Dominion South 0.8901 0.8753 0.0005 0.0312 0.0059 0.0114 
Henry Hub 0.8088 0.7909 0.0003 0.0385 0.0019 0.0114 
Malin 0.8536 0.8100 0.0003 0.0364 0.0157 0.0044 
Oneok 0.8554 0.8075 0.0003 0.0389 0.0172 0.0042 
Opal 0.8560 0.8145 0.0010 0.0395 0.0202 0.0096 
Waha Hub 0.8471 0.8158 0.0007 0.0450 0.0136 0.0140 
System 0.8559 0.8298 0.0011 0.0526 0.0105 0.0190 
Note: Brier Score = Var(d) + MinVar(f) + Scat(f) + Bias2 – 2Cov(f, d).   
a The full model is initially fitted over the period of May 4, 1994 to October 31, 2014.  
b The two-period model is initially fitted over the period of October 2, 2000 to October 

31, 2014.  
c The recent model is initially fitted over the period of January 1, 2010 to October 31, 

2014.   
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regardless of the model.  Events that eventually occur have the same forecasted variance 

as events that eventually do not occur, suggesting that the AECO is not adjusting the 

variance of its forecasts in anticipation of occurrences and non-occurrences.  The 

Chicago forecast, however, has much additional noise because its scatter value is always 

the largest regardless of the model.  The forecast on Chicago does show this differential 

adjustment of variance on events that occur versus events that do not occur. 

Without considering direction, the Bias2 is a measure of miscalibration.  In the 

full model, two markets that have the smallest Bias2 are Oneok and Henry Hub; two 

markets that have the largest Bias2 are Opal and AECO Hub.  In the two-period and 

recent models, the Bias2 of the Henry Hub forecast is the smallest, while the Bias2 of the 

Chicago and Opal forecasts are the largest. 

The covariance term of the partition is the essence of the forecasting exercise 

(Yates 1988; Casillas-Olvera and Bessler 2006).  Larger covariances are associated with 

better forecasts.  Among the eight markets, Dominion South, Chicago, and Waha Hub 

are the markets that have the largest covariance between the forecasts and the observed 

outcomes in the full, two-period, and recent models. 

In the full model, even though the Dominion South forecast has the largest 

covariance, its Brier score is largest because it has the largest Var(d) and the largest 

MinVar.  Similarly, the Chicago forecast in the recent model has the largest covariance 

but still has a large Brier score as the Chicago’s Var(d) is large, as well as the MinVar, 

scatter, and the Bias2.  In the recent model, although the covariance on the Waha Hub 
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forecast is the highest, its Brier score is not the smallest as the Waha Hub forecast has 

quite large Var(d), MinVar, and scatter. 

Focusing on the overall Brier score is a bit misleading.  Of course, Var(d) is not 

under control of the modeler, but the random variable being forecasted (or the partition 

of outcomes into bins) is. Stated alternatively, given the bin width selection, the 

covariance between the forecasts and the observed outcomes is a helpful guide in 

indicating which markets the model is doing a better job of forecasting and which 

markets the model is doing less well in forecasting.  Markets having a high covariance, 

and thus which the full, two-period, and recent models are forecasting better, are 

Dominion South, Chicago, and Waha Hub.  The Malin forecast has a consistently low 

covariance term, indicating the three models are not discriminating well between events 

which occur and those that do not occur, ex ant.   

The Ranked Probability Score (RPS) 

In addition to the location concept, the (closer) distance concept is taken into account in 

the RPS.  The closer the forecast is to the actual outcome, the lower the RPS.  The lower 

the RPS, the better the probability forecast.   

The two market forecasts that always have small RPS are Henry Hub and AECO 

Hub, regardless of the model (table 3.3).  In the full and recent models, the RPS on the 

Henry Hub forecast is the smallest; in the two-period model, the RPS on the AECO Hub 

is the smallest.  Dominion South and Chicago forecasts usually have the largest RPS 

regardless the model.  
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Comparison of Each Series across Models 

To evaluate the predictive performance of each model, the RMSE, the Brier score and its 

Yates’ partitions, and the RPS on each forecast are compared across the three models. 

AECO, Dominion South, Henry Hub, and Opal forecasts have the smallest RMSE in the 

recent model, while Chicago, Malin, Oneok, and Waha Hub forecasts have the largest 

RMSE in the recent model.   

 Compared with the other two models, the recent model seems to provide poorer 

forecasts, as the forecasts of all markets except AECO and Henry Hub have the largest 

Brier score in the recent model.  Similarly, all forecasts except AECO, Dominion South, 

and Henry Hub have the largest RPS in the recent model.  

 The variance of the observed outcomes (Var(d)) on each series is the same for 

the three models because it is evaluated over the same out-of-sample data.  Compared 

across the three models, the AECO, Opal, and Waha Hub forecasts have the minimum 

MinVar in the full model; the Dominion South, Malin, and Oneok have the minimum 

MinVar in the two-period model; and the Chicago and Henry Hub forecasts have the 

minimum MinVar in the recent model.  Among the three models, the minimum scatter of 

Chicago, Henry Hub, Malin, and Waha Hub is found in the full model.  The minimum 

scatter of the Opal forecast is found in the two-period model; the minimum scatter of 

AECO Hub, Dominion South, and Oneok forecasts is found in the recent model.  Five of 

eight forecasts maximum Bias2 occurs in the recent model; the markets are Chicago, 

Malin, Oneok, Opal, and Waha Hub.  Similarly, five forecasts minimum covariance 
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occurs in the recent model; the markets are Chicago, Henry Hub, Malin, Onoke, and 

Opal. 

Comparison of the Three Systems 

RMSE, the Brier score and its Yates’ partitions, and the RPS of the system of eight 

series are estimated for the three models (table 3.2).  RMSE of each system is the square 

root of the average MSE of all forecasts or variables in the system. The Brier score and 

its partitions of each system are calculated by treating all variables in the system as a 

single variable. The RPS on each system is an average RPS for all forecasts in the 

system. 

RMSE for the system is minimized using the full sample, whereas, the Brier 

Score and RPS are minimized for the system using the two-period sample.  The recent 

sample always produces the largest RMSE, Brier Score, and RPS for the system between 

models.  This result is surprising given the potential structural breaks found in Chapter 

II.  

 The full system has the greatest minimum variance of forecasting, but the 

smallest scatter and the smallest Bias2.  The ordering of Bias2 of the three systems is 

consistent with the ordering of RMSE.  The maximum covariance term on the two-

period system is possibly behind the minimum Brier score, although the two-period 

system has the largest scatter compared to the other two systems.  The recent system has 

the smallest minimum variance, but with the highest Bias2 and the smallest covariance, 

the Brier score of the recent system is the largest.   
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 Encompassing tests (Harvey and Newbold 2000) on probability forecasts from 

the three systems are performed.  In encompassing regression, the forecast error (the 

difference between observed return and mean of forecasted value) from each system is 

regressed on the difference between itself and the other systems’ forecast errors16.  If one 

encompasses the others, it means that the others contain no useful information not 

present in the encompassing forecast.  Encompassing results suggest that the full system 

encompasses the two-period and recent systems; the two-period system encompasses the 

recent system; and the recent system encompasses the two-period system.  Based on 

these results, it appears that the full system is the best, and the two-period and recent 

systems are not statistically different. 

Discussion 

Regardless of the model (or the data used), Henry Hub and AECO Hub are either the 

first or second easiest market to forecast; whereas, Dominion South and Chicago are 

either the hardest or second hardest market to forecast in terms of RMSE and scoring 

rules.  Several different aspects may help in explain these results.   

First, Henry Hub may be easier to predict because it is the important market for 

pricing of the North American natural gas spot and futures markets (Serletis and Rangel-

Ruiz 2004; U.S. EIA 2014f), while AECO Hub may be simpler to predict because it may 

not play a significant role in price discovery (Working Group of Commercial Energy 

Firms 2009).  Along these lines, Olsen, Mjelde, and Bessler (2014) find that AECO, 

Alberta, is less important for price discovery than other Canadian markets.  Results from 

                                                
16 See Harvey and Newbold (2000) and Bessler and Wang (2012) for more details on encompassing tests. 
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the study of price dynamics in Chapter II suggest AECO is exogenous in 

contemporaneous time and AECO Hub provides less information to the other markets in 

the system.   

Second, there may exist the production and consumption differences in terms of 

forecasting.  Henry Hub and AECO Hub, which are located in the production zones, are 

easier to forecast than Chicago, Illinois, which has fewer producing natural gas wells in 

the area and Illinois is one of the top natural gas consuming states in the U.S. (U.S. EIA 

2015f).  Production is easier to control relative to consumption, as the latter is crucially 

dependent on a large unknown in weather.  Third, the difficulty in predicting Dominion 

South returns may be because of the alteration of the market’s role.  Depending on 

interstate pipelines to supply natural gas, Dominion South, Pennsylvania had been 

recognized as an excess demand zone until 2009 (U.S. EIA 2015g).  Because of the 

development of the Marcellus shale, natural gas production in Pennsylvania has 

increased considerably since 2010; this area has become the second largest U.S. natural 

gas producing area (U.S. EIA 2015g).   The Northeast region previously known as the 

excess demand area has become an excess supply area; pipelines are being reformed to 

transport natural gas from the Marcellus area to the Midwest and the Gulf Coast (U.S. 

EIA 2015g).  This alteration may also possibly affect Chicago.  

In term of the Brier score’s partition, the covariance between the forecasts and 

the observed outcomes is the best indicator of forecasting ability, given bin/subgroup 

assignment; Dominion South, Chicago, and Waha Hub returns appear to be easier to 
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predict when using the full, two-period, and recent models, respectively.  Returns in 

Malin appear to be more difficult to predict, irrespective the model. 

The objective of this study is to determine whether and how the presence of 

structural breaks affects performance of out-of-sample probability forecasting.  The 

difference among the three models is the in-sample data used.  Based on the findings in 

Chapter II, there appears to be two possible structural shifts (around 2000 and 2009) 

during the period of the full sample, one possible structural break (around 2009) during 

the period of data used in the two-period model, and no structural changes occurring 

during the period of the recent sample.  Different in-sample data yields different 

probability forecasts.  With the minimum probability scores and the maximum 

covariance term from Yates’ decomposition, it appears that the two-period model is 

more preferable to the other two models.  With no structural shifts during the period of 

data used, it was expected that the recent model would yield the best probability 

forecasts among the three models; both the RMSE and the scoring rules do not suggest 

this is true.  This may be partially because of the time-varying parameters associated 

with the use of the Kalman filter in the procedure to estimate the probability forecasts.  

Additionally, based on the RMSE and scoring rules on the system of eight series, it 

appears that number of observations somehow matters in forecasting performance; as 

they suggest that the recent model in which the smallest data set is consider has poorer 

performance relative to the other two models.  The RMSE is smallest in the full model, 

which has the largest number of in-sample observations, while both the Brier score and 
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the RPS suggest the two-period model in which the number of observations is between 

the full and recent models.  This issue is left for the further research.        
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CHAPTER IV  

EFFECTS OF THE STRUCTURAL CHANGE ON TRANSACTION COSTS 

BETWEEN NORTH AMERICA NATURAL GAS SPOT MARKETS 

 

The cointegration model, introduced by Granger (1981), has been employed to capture 

long-run equilibrium relationships among non-stationary economic variables.  The idea 

of cointegration is that two or more non-stationary (unit-root) economic variables have a 

propensity to move toward equilibrium in the long run; an error correction model (ECM) 

(Granger 1981; Engle and Granger 1987) can explain this movement.  Cointegration and 

the ECM implicitly assume that such movements occur every period (Balke and Fomby 

1997).  Concerned that fixed costs may prevent continuous correction toward the long-

run equilibrium, Balke and Fomby (1997) introduce threshold cointegration models.  In 

these models, two series are cointegrated when the series are far (outside the threshold) 

from the equilibrium, but are not cointegrated when they are close to the equilibrium 

(within the threshold).  Balke and Fomby (1997) employ a threshold autoregressive 

(TAR) model to describe this nonlinear adjustment process. 

Departures from equilibrium may be because of the presence of transaction costs; 

transaction costs including transportation costs and/or arbitrage costs may induce price 

differences between two markets in which returns are free to diverge and in which an 

arbitrage opportunity exists (Balke and Fomby 1997).  As long as the price difference is 

greater than transaction costs, traders profit from purchasing a commodity in the lower 

priced market and selling it in the higher priced market; trade continues until the price 
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gap is equal to the transaction costs.  This phenomenon is known as the law of one price; 

after considering transaction costs, prices of a given commodity in two markets converge 

to a single price (Ardeni 1989; Yang, Bessler, and Leatham 2000).  The existence of 

threshold cointegration implies that when the price difference is within the threshold 

bands, arbitrage opportunities do not exist; the prices in two markets are not 

cointegrated.  In contrast, when the price difference is outside the threshold bands, 

arbitrage will drive the price disparity towards the threshold bands (transaction costs); 

the prices in two markets are cointegrated. 

Under the law of one price, threshold cointegration models involve two 

components; one is the difference (or interval) between the upper and the lower 

threshold values at a point time and another is the average of the upper and the lower 

threshold values at a point time (Park, Mjelde, and Bessler 2007).  In most previous 

threshold cointegration studies (Tsay 1998; Goodwin and Piggott 2001; Lo and Zivot 

2001; O’Connell and Wei 2002), both components are constant over time (figure 4.1b).  

It is straightforward to show that the threshold cointegration model is the traditional 

cointegration if the difference of threshold values equals zero (figure 4.1a).  It, however, 

may not be realistic to assume invariant threshold values (Park, Mjelde, and Bessler 

2007).   

Threshold cointegration models can be developed into three additional alternative 

scenarios (Park, Mjelde, and Bessler 2007).  First, the intervals of the upper and lower 

threshold bands are allowed to vary over time, but the average of the threshold values is  
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Figure 4.1. Threshold cointegration models under the law of one price in diverse 
scenarios  
Note: Figures in panels (b) to (e) are adopted from Park, Mjelde, and Bessler (2007). 
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fixed (figure 4.1c).  Second, the interval is fixed, but the averages are variable over time 

(figure 4.1d).  Third, the two components are both time-dependent (figure 4.1e). 

Park, Mjelde, and Bessler (2007) model threshold cointegration for the scenario 

given in figure 4.1d using seasonality to generate time-varying threshold bands.  

Bekkerman, Goodwin, and Piggott (2013) propose the scenario given in figure 4.1e, in 

which time-dependent, conditional threshold bands are estimated to investigate market 

linkages.  Nonetheless, their model may be mis-specified, as the model is not consistent 

with either Balke and Fomby (1997) or Lo and Zivot (2001).  Market linkages, thereby, 

may not exist.  In this study, given the potential presence of structural breaks defined in 

Chapter II, the data are divided into two subsamples.  Threshold cointegration for each 

subsample is estimated and time-varying threshold values are obtained using daily 

degree-days; results are similar to scenario in figure 4.1f. 

The objective of this study is to examine the presence of threshold cointegration 

between market pairs before and after the potential break associated with the shale gas 

revolution in the long-term pricing relationship among North America natural gas spot 

markets presented in Chapter II.  Differences in transaction costs before and after the 

potential structure change are analyzed.  

Literature on Threshold Cointegration and the Law of One Price 

The law of one price notes that transaction costs (including transportation costs) can 

influence arbitrage in spatially separated markets.  As previously noted, this influence 

can be explained by the existence of threshold cointegration (Tsay 1998; Goodwin and 
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Piggott 2001; Lo and Zivot 2001; O’Connell and Wei 2002; Park, Mjelde, and Bessler 

2007; Bekkerman, Goodwin, and Piggott 2013).  

The existence of threshold cointegration is found in goods that are tradable and 

relatively homogenous (Lo and Zivot 2001).  Spatial market linkages with non-linear 

adjustment have been found in both commodity and financial markets (Goodwin and 

Piggott 2001; Tsay 1998; Park, Mjelde, and Bessler 2007).  With constant threshold 

values, such non-linear adjustment can be explained by transaction costs (Goodwin and 

Piggott 2001; Tsay 1998).  In some markets including financial markets, estimated 

threshold values are not solely determined by transaction costs but also interest rates, 

economic risks, and financial purpose of a trade, as it is impossible to identify if a trade 

is strictly for arbitrage purposes (Tsay 1998).  Even though the threshold remains fixed, 

time-varying threshold bands can be estimated to capture the effect of seasonality (Park, 

Mjelde, and Bessler 2007).  

Methodology 

The threshold cointegration model introduced by Balke and Fomby (1997) is a 

combination of cointegration and non-linearity (Hansen and Seo 2002).  Two non-

stationary series are cointegrated when a linear combination of the series is stationary 

(Granger 1981).  The essence of cointegration is that there exists a long run equilibrium 

relationship that causes the series to have a tendency to move together in the long run.   

The idea of cointegration is illustrated by 

(4.1) 43' + v4K' = w', 
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where  43' and 4K' are two nonstationary time series and v is a parameter (Balke and 

Fomby 1997).  If these two series are cointegrated, equation (4.1) represents the 

equilibrium relationship between 43' and 4K', where w' is the deviation from the 

equilibrium; the cointegrating vector is given by (1, v) (Balke and Fomby 1997).  Engle 

and Granger’s (1987) requirements for 43' and 4K' to be cointegrated are that the 

deviation, w', is stationary and follows a linear autoregressive model  

(4.2) w' = xw'ly + z',                        

where x is a parameter and z' is a random variable with zero mean and constant 

variance.   

In the threshold cointegration model, the long-run relationship is inactive inside 

an interval but becomes active once the deviations are outside the interval.  To describe 

such a nonlinear adjustment process, Balke and Fomby (1997) assume that the deviation, 

w', follows a threshold autoregressive (TAR) model in which x depends on the past 

realization of w'.  In particular, 

(4.3)  x = 1???????????????????????????????????????????????7Z w'ly ≤ |??????????               

                = x∗, }7;ℎ? x∗ < 1?????????????????7Z w'ly > |, 

where d is a positive integer, indicating the delay parameter in the error correction 

process, and | is a threshold value (Balke and Fomby 1997).  Deviations from 

equilibrium are described by 

(4.4) w' = w'ly + z'??????????????????????????????????????????7Z?? w'ly ≤ |???????????????????         

                 = 1 − x∗ | + x∗w'ly + z'????????????7Z?? w'ly > |. 
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w' is a random walk when w'ly ≤ |; w' is stationary when w'ly > | (Balke and 

Fomby 1997).  That is, 43' and 4K' are not cointegrated if w'ly is in the interval [−|, |]; 

43' and 4K' are cointegrated if w'ly is outside the interval (Balke and Fomby 1997). 

Exploiting the full structure of the model, multivariate techniques of testing 

threshold cointegration have higher power than the univariate techniques because the 

univariate techniques neglect the restrictions imposed by the multivariate structure (Lo 

and Zivot 2001).  The multivariate threshold cointegration model can be characterized 

by the threshold vector autoregressive (TVAR) model (Lo and Zivot 2001) 

(4.5) &' = Å A + Φ3
A
&'l3 + ΦK

A
&'lK + ⋯+Φ>

A
&'l> +∈'

A
?????? 

            7Z?_Al3 ≤ w'ly ≤ _A. 

Equation (4.5) represents a general J-regime bivariate TVAR model for &', where:  

&' is a vector of two series, &' = (43', 4K')′; 

t = 1, …, T indicates time;  

j = 1, …, J indicate regimes; 

k indicates lag length; 

w'ly represents a threshold variable where d (<k) is a positive integer indicating a 

delay parameter in the adjustment process; 

 _?represents threshold values, where −∞ = _ g < _ 3 < _ K … < _ Ö = ∞; and 

∈'
A  is a vector of residuals with mean zero and variance-covariance matrix Σ(A)    

which are assumed to be serially uncorrelated (Lo and Zivot 2001).  

The TVAR model can be rearranged as 

(4.6) ∆&' = Å(A) + Π(A)&'l3 + Ψ5
(A)
Δ&'l5

>l3
5S3 +∈'

A
?????????????7Z?_Al3 ≤ w'ly ≤ _A, 
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where Π(A) = Φ5
A
− ãK?

>
5S3 and ?Ψ5

A
= − Φå

(A)>
åS523  (Lo and Zivot 2001).  Within 

each regime, if &'?is I(1) and 43' and 4K' are cointegrated with a cointegrating vector 

!ç = (1,−!K), then the rank of Π(A) = 1 and Π(A) = é(A)!ç =
é3
A

éK
A

(1, −!K). 

The threshold vector error-correction model (TVECM) can be expressed as 

(4.7) ∆&' = Å(A) + γ(A)!′&'l3 + Ψ5
(A)
Δ&'l5

>l3
5S3 +∈'

A
?????????7Z?_Al3 ≤ w'ly ≤ _A, 

where ∆&' is the first difference of &', (&' − &'l3), and Å(A) is a vector of constant 

terms.  γ(A)!′ is a matrix of coefficients of lagged levels and Ψ5
(A) is a matrix of 

coefficients (Park, Mjelde, and Bessler 2007).  Superscript j indicates a regime-specific.   

!′&'l3 represents a nonlinear error correcting process (Lo and Zivot 2001).  The 

cointegrating vector ! is assumed to be identical in all regimes; this assumption, 

however, is not restrictive (Lo and Zivot 2001). 

To obtain time-varying threshold values, Park, Mjelde, and Bessler (2007) first 

estimate constant threshold values and then modify the time-invariant threshold values 

for the effect of seasonality using cooling and heating degree-days.  Even though 

threshold values are variable, the difference between the upper and lower threshold 

values (transaction costs) remain constant overtime.  In Bekkerman, Goodwin, and 

Piggott (2013), time-dependent transaction costs are estimated as functions of fuel costs 

and seasonality.  It, however, is likely that their model is mis-specified.  Let w' be the 

difference between two series markets, w' = 43' − 4K', in the TAR model, Bekkerman, 

Goodwin, and Piggott (2013) designate differentials of the series difference at time t and 

t-1, Δw'and Δw'l3, as dependent and independent variables.  Unfortunately, this 
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contradicts the TAR models, presented by Balke and Fomby (1997) and Lo and Zivot 

(2001).  Balke and Fomby (1997) assign the differences of two series at time t and t-1, w' 

and w'l3, as dependent and independent variables.  In Lo and Zivot’s (2001), the 

differential of the difference at time t, Δw', is on the left hand size of the equal sign; 

whereas, the difference of two series at time t-1, w'l3, is on the right hand size.  Using 

the differential of the differences, Δw'l3, which is a I(0) process, does not guarantee the 

difference, w'l3, is stationary.  Consequently, the two series may not be cointegrated.17   

Estimation 

Testing for threshold cointegration involves two steps18 (Balke and Fomby 1997; Park, 

Mjelde, and Bessler 2007).  The first step is to test whether cointegration exists.  If 

cointegration is found, one proceeds to the second step to test whether the transition of 

the cointegrating relationship is linear or nonlinear.  

Testing for Cointegration  

In line with Park, Mjelde, and Bessler (2007, 2008), cointegrating rank and lag length 

are determined simultaneously using Schwarz loss measure (the formula is given in 

Chapter II).  This method provides better large sample results in Monte Carlo 

simulations than the trace test, which determines the cointegrating rank given the lag 

order (Wang and Bessler 2005).   

                                                
17 See Lo and Zivot (2001) for more details. 
18 Balke and Fomby also propose two steps of the threshold cointegration test.  The difference between 
tests of Balke and Fomby (1997) and Park, Mjelde, and Bessler (2007) is that the first step of Balke and 
Fomby’s (1997) test is under the univariate setting while Park, Mjelde, and Bessler’s (2007) is under the 
multivariate setting.  
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Testing for Nonlinearity 

The nonlinearity test proposed by Balke and Fomby (1997) is employed to determine 

whether the univariate cointegrating residual (the threshold variable) is linear by testing 

for structural breaks in a rearranged autoregressive model.  In the rearranged model, the 

data is ordered based on the value of the threshold variable instead of time.  Data 

reordering does not change the dynamics of the cointegrating relationship but is 

beneficial for identifying nonlinearity as the presence of a threshold in the time-ordered 

data translates into a structural change in the rearranged data (Lo and Zivot 2001). 

Based on the supremum-Wald statistic, Hansen (1996, 1999) provides a method 

for testing nonlinearity under the null hypothesis of a TAR model with one regime 

against the alternative of a TAR model with m regimes, where m is a positive integer.  

Lo and Zivot (2001) extend Hansen’s method for testing nonlinearity in univariate TAR 

models to test nonlinearity in a multivariate TVECM.  Under the null hypothesis of a 

linear VECM against the alternative of a TVECM(m) for m > 1, the supremum-

Likelihood Ratio (sup-LR) statistic, which is equivalent to the sup-Wald, is used.  The 

sup-LR statistic is 

(4.8) `Ef − Pk = < ln det Σ − ln det Σï _(A), [ , 

where Σ, and Σï _(A), [  are the variance-covariance matrices of the estimated residual 

from the linear VECM and m-regime TVECM,  _(A) are the estimated threshold values, 

[ is the estimated delay parameter, and det is the matrix determinant operator (Lo and 

Zivot 2001).  Under the null hypothesis of linear cointegration, _(A)?are unknown and 
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unidentified; the bootstrap procedure proposed by Hansen (1999) and modified by Lo 

and Zivot (2001) is used to compute p-values for the test. 

Estimating Three-Regime TVECM 

Similar to Tsay (1998), Goodwin and Piggott (2001), Lo and Zivot (2001), Park, Mjelde, 

and Bessler (2007), and Bekkerman, Goodwin, and Piggott (2013), this study examines 

the existence of three-regime threshold cointegration.  An unrestricted bivariate three 

regimes TVECM (equation (4.7)) is  

(4.9) ñ&' =

ó3
ç D'l3 + )'

3
??????7Z − ∞ = _ g ≤ w'ly ≤ _ 3

óK
ç D'l3 + )'

K
?????7Z??_ 3 ≤ w'ly ≤ _ K ?????????????

óò
ç D'l3 + )'

ò
?????7Z??_ K ≤ w'ly ≤ _ ò = ??∞,

  

where  D'l3 = (1, w'ly, ñ&'l3, … , ñ&'l>23)′, óAç  is a matrix of coefficients, and  w'ly =

!′&'l3 is the threshold variable classifying observations into three regimes (Lo and 

Zivot 2001).  The cointegrating vector !ç is assumed to be a known vector of (1, −?1)′ 

and is common for all regimes; these assumptions are applicable under the law of one 

price (Balke and Fomby 1997; Lo and Zivot 2001).  The variance of the error term in 

each regime is assumed to be identical such that var()'
(3)) = var()'

(K)) = var()'
(ò)) (Enders 

2004). 

To estimate the multivariate TVECM, sequential conditional least squares are 

performed.  Equation (4.9) is expressed as 

(4.10)  ñ&' = ó3
ç D'l3ã'

3
_, [ + óK

ç D'l3ã'
K
_, [ + óò

ç D'l3ã'
ò
_, [ + )', 

where ã'
A
_, [ = ã'

(A)
_(Al3) ≤ w'ly ≤ _(A)  denotes an indicator function, taking on 

the value of 1 if _(Al3) ≤ w'ly ≤ _(A) and 0 otherwise (Lo and Zivot 2001).  When the 
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threshold values (_(3) and _(K)) are known, equation (4.10) is a multivariate regression 

model with dummy variables (Lo and Zivot 2001).  In general?_(3) and _(K)?are 

unknown.  _(3) and _(K)?are estimated along with the other parameters under the 

assumption that _(3) and _(K) are between the minimum and maximum values of the data 

series (Enders and Chumrusphonlert 2004).  To constrain the threshold values, at least 

10% of data are required to be contained to be in each regime; initial candidates for?_(3) 

and _(K) are selected from samples such that the initial middle interval contains 80% of 

data (Hansen 1999).   

The sequential conditional least squares regression involves two steps (Lo and 

Zivot 2001).  In the first step, potential candidates for the threshold values and delay 

parameter (_(3), _(K), [) are selected as starting values to estimate (ó3ç , óKç , óòç ) by 

multivariate least squares.  In this study, the delay parameter is assumed to be one, 

which is consistent with Balke and Fomby (1997), Lo and Zivot (2001), and Park, 

Mjelde, and Bessler (2008).  The estimation in the first step yields the residual sum of 

squares, kWWò(_(3), _(K), 1) for all possible combination of (_(3), _(K), 1).  In the second 

step, a three-dimensional grid search is used to find the threshold values that minimize 

the residual sum of square, kWWò _ 3 ∗
, _ K ∗

, 1 .  _ 3 ∗and?_ K ∗
are applied to reestimate 

the parameters (ó3ç , óKç , óòç ) of the TVECM.  Because of computational issues associated 

with the three-dimensional grid search method, Hansen (1999) suggest using the 

sequential estimation of multiple break points proposed by Bai (1997) to estimate the 

three-regime TVECM.   
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Obtaining Time-Varying Threshold Values 

Park, Mjelde, and Bessler’s (2007) procedure to obtain time-varying threshold values by 

using U.S. aggregate cooling and heating degree-days (CDD and HDD) is employed.  

“Heating degree-days are summations of negative differences between the mean daily 

temperature and the 65 degrees’ Fahrenheit base; cooling degree days are summations of 

positive differences from the same base” (National Oceanic and Atmospheric 

Administration 2014).  For example, if the average temperature for a given day is 85 

degrees then the CDD for that day equals 20 and HDD equals zero.  Similarly, if the 

average temperature for a given day is 50 degrees, then the HDD for that day equals 15 

and CDD equals zero. 

To filter the daily impact of seasonality from the data, the Frisch-Waugh theorem 

is used (Park, Mjelde, and Bessler 2007).  Under the Frisch-Waugh theorem, the partial 

regression coefficients are estimated by a simple regression (Baltagi 2011).  Following 

Park, Mjelde, and Bessler (2007), the ordinary least squares are applied to regress each 

data series (45') separately on lagged CDD and HDD. 

(4.11) 45' = ô5+ö5bmm'l3 + õ5úmm'l3 + 15', 

where ô5 is a constant term,?ö5?MB[?õ5 are coefficients of lagged CDD and HDD, and 

subscript i indicates each data series, t is time (day), and e is the error term.  In this study 

the residual, 15', from the filtering regressions are the filtered data for the ith series. 

The use of the filtered data, 13'and 1K' provides estimates of the constant lower 

and upper bound values, _(3) and _(K).  The relationship of the middle regime thereby 

follows 
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(4.12) _(3) ≤ 13' − 1K' ≤ _(K), 

where 15' = 45' − ô5 − ö5bmm'l3 − õ5úmm'l3, i = 1 and 2 (Park, Mjelde, and Bessler 

2007).  Following Park, Mjelde, and Bessler (2007), dynamic (daily) threshold values 

are  

(4.13) _'
3
= _(3) + (ô3 + ö3bmm'l3 + õ3úmm'l3−ôK − öKbmm'l3 − õKúmm'l3), 

and 

(4.14) _'
K
= _(K) + (ô3 + ö3bmm'l3 + õ3úmm'l3−ôK − öKbmm'l3 − õKúmm'l3). 

The time-varying thresholds are recovered from equations (4.13) and (4.14). 

Data 

Eight natural gas spot prices in Canada and United States are considered: AECO Hub, 

Alberta, Canada; Chicago City Gate, Illinois; Dominion South Point, Pennsylvania; 

Henry Hub, Louisiana; Malin, Oregon; Oneok, Oklahoma; Opal, Wyoming; and Waha 

Hub, Texas.  Weekday nominal prices of natural gas from October 2, 2000 to October 

31, 2014 are obtained from Bloomberg L.P. (2015).  A missing value is replaced by the 

prior day’s price.  Each price is the closing price for a specific location for natural gas to 

be delivered on the next day.  All prices are in U.S. dollars per MMBtu (a unit of heat 

equal to one million British thermal units).  U.S. daily degree-days are from the National 

Oceanic and Atmospheric Administration (2014). 

 Because of the possible existence of structural changes occurring around 2000 

and 2009 (see Chapter II), the data are divided into two subsamples.  The first subsample 

contains 2,414 observations from October 2, 2000 to December 31, 2009.  The second 

subsample contains 1,261 observations from January 1, 2010 to October 31, 2014.  
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Table 4.1. Augmented Dickey-Fuller (ADF) and Kwiatkowski-Philips-Schmidt-Shin 
(KPSS) Testa Statistics of Eight Natural Gas Spot Prices and Daily Degree-Days for 
Each Subsample 

Price Series 

ADF KPSS ADF KPSS 

t-Stat 
Lag 
(k) 

LM-
Stat 

Band
width t-Stat 

Lag
(k) 

LM-
Stat 

Band
width 

 

First Subsampleb: October 2, 2000 - 
December 31, 2009 

Second Subsamplec: January 
1, 2010 - October 31, 2014 

 
Test in Level Test in Level 

AECO Hub -2.8842 4 1.3685 39 -2.7746 15 0.5794 28 
Chicago -3.5625 3 1.2629 39 -3.8886 14 0.4074 27 
Dominion South -3.5713 6 1.2694 39 -2.9281 15 1.3039 29 
Henry Hub -3.1836 3 1.3229 39 -2.9068 16 0.6716 29 
Malin -4.9451 6 0.4972 38 -3.4403 11 0.5958 28 
Oneok -4.0686 2 0.9425 39 -5.7145 6 0.5859 27 
Opal -3.6516 5 0.8156 39 -5.3457 6 0.5200 28 
Waha Hub -3.7079 6 1.0696 39 -4.0220 8 0.6250 28 
HDD -3.3042 5 0.0425 39 -2.8720 6 0.0804 29 
CDD -3.4709 5 0.0257 39 -2.7993 4 0.0516 29 

 
Test in First Difference Test in First Difference 

AECO Hub -25.6692 3 0.0262 5 -13.6688 14 0.1287 85 
Chicago -44.9292 1 0.0297 40 -16.2620 13 0.0142 17 
Dominion South -21.5989 5 0.0226 26 -8.5709 14 0.0749 32 
Henry Hub -31.3169 2 0.0286 26 -9.8420 15 0.1366 51 
Malin -27.8001 5 0.0348 163 -17.3823 10 0.1415 174 
Oneok -42.0385 1 0.0293 49 -19.1227 7 0.0986 129 
Opal -22.1266 6 0.0304 56 -18.0357 8 0.0932 117 
Waha Hub -24.0828 5 0.0309 59 -19.0725 7 0.1194 114 
HDD -30.5740 4 0.0304 23 -19.7109 5 0.0517 92 
CDD -28.3909 4 0.0148 56 -24.2223 3 0.0355 70 
Note: Under the null hypothesis of non-stationarity (unit root), the ADF test critical value 
at 1%, and 5% levels are -3.430 and -2.860; the null is rejected when t-Stat < the critical 
value (Said and Dickey 1984).  Under the null hypothesis of stationarity, the KPSS test 
critical value at 1% and 5% levels are 0.739 and 0.463; the null is rejected when LM-stat 
> the critical value (Kwiatkowski et al. 1992). 
a Only constant term is included in equations. 
b Lag (k) is selected from 0 to 20 based on Schwarz information criteria. 
c Bandwidth is estimated using  the Newey-West (1994) method. 
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Empirical Results 

Augmented Dickey-Fuller (ADF) tests (Said and Dickey 1984) are employed under the 

null hypothesis that each price series has a unit root.  Under the null hypothesis of unit 

root, the ADF test may have lower power against the alternative hypothesis of 

stationarity (DeJong et al. 1992).  The Kwiatkowski-Philips-Schmidt-Shin (KPSS) test 

(Kwiatkowski et al. 1992) under the null hypothesis of stationarity is also employed.  

ADF and KPSS tests give somewhat contradicting results (table 4.1).   

In the first subsample, ADF test statistics reveal that all price series except 

AECO Hub and Henry Hub are stationary at the 1% level as the null hypothesis that 

price series has unit root is rejected at the 1% level.  KPSS test statistics, however, 

indicates that all prices but Malin have a unit root as the null hypothesis of stationarity is 

rejected at 1% level.  At the 5% level, it appears that all prices are stationary when based 

on the ADF test, but all prices are non-stationary when based on the KPSS test.  When 

based on the ADF test, HDD is stationary at the 5% level and CDD is stationary at the 

1% level; whereas, when based on the KPSS test, the null hypothesis of stationarity of 

both HDD and CDD cannot be rejected at either the 1% or 5% levels.  

In the second subsample, ADF test statistics of all price series except AECO 

Hub, Dominion South, and Henry Hub suggest the null hypothesis of unit root is rejected 

at the 1% level, implying Chicago, Malin, Oneok, Opal, and Waha Hub prices are 

stationary at the 1% level.  KPSS test statistics of all prices except Dominion South 

suggest the null hypothesis that price series are stationary cannot be rejected at the 1% 

level, implying all prices but Dominion South price are stationary at the 1% level.  At 
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the 5% level, ADF test statistics indicate that all prices are stationary.  In contrast, KPSS 

test statistics indicate that all prices but Chicago have a unit root at the 5% level.  ADF 

test statistics of HDD and CDD suggest that HDD and CDD are non-stationary at the 1% 

level because the null hypothesis of unit root cannot be reject at the 1% level.  

Nevertheless, KPSS test statistics of HDD and CDD suggest that HDD and CDD are 

stationary because the null hypothesis of stationarity cannot be rejected.  Regardless of 

the test and the subsample, all price series are stationary after first differencing.  

Obtaining Filtered Data 

The ordinary least squares regression of each price series on the lagged HDD and CDD 

is implemented to obtain filtered data.  Results of the filtering regression for each 

subsample are presented in table 4.2.  In the first subsample, all estimated coefficients of 

the lagged HDD are significant at the 1% level; coefficients of the lagged CDD are 

significant at the 1% level in explaining all prices but AECO Hub, Henry Hub, and 

Malin.  Coefficients of the lagged CDD in Henry Hub and Malin are significant at the 

5% and 10% levels.  In the second subsample, all estimated coefficients of the lagged 

HDD and CDD are significant at the 1% level.  The positivity of all parameter estimates 

reveals that an increase of either HDD or CDD leads to a rise in natural gas prices.  

Since HDD and CDD are different each day, the residuals from filtering regressions 

capture the seasonality in natural gas prices.  Filtered prices and original prices are 

plotted in figure 4.2.  As expected the filter prices are smaller than the original, but the 

general patterns of price movement are the same. 
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Table 4.2. Results of the Filtering Regression 
Price Series Constant HDD(t-1) CDD(t-1) 

 

First Subsample 
(October 2, 2000 - December 31, 2009) 

AECO Hub 4.8129 0.0309 -0.0038 

 
(0.0000) (0.0000) (0.8124) 

Chicago 5.2804 0.0439 0.0479 

 
(0.0000) (0.0000) (0.0074) 

Dominion South 5.6393 0.0474 0.0527 

 
(0.0000) (0.0000) (0.0074) 

Henry Hub 5.4836 0.0343 0.0380 

 
(0.0000) (0.0000) (0.0417) 

Malin 4.8425 0.0659 0.0410 

 
(0.0000) (0.0000) (0.0529) 

Oneok 4.5806 0.0455 0.0736 

 
(0.0000) (0.0000) (0.0000) 

Opal 3.8209 0.0572 0.0468 

 
(0.0000) (0.0000) (0.0038) 

Waha Hub 4.6817 0.0436 0.0752 

 
(0.0000) (0.0000) (0.0000) 

 

Second Subsample  
(January 1, 2010 - October 31, 2014) 

AECO Hub 2.9250 0.0343 0.0287 

 
(0.0000) (0.0000) (0.0008) 

Chicago 2.6645 0.0917 0.1210 

 
(0.0000) (0.0000) (0.0000) 

Dominion South 2.8604 0.0502 0.0697 

 
(0.0000) (0.0000) (0.0000) 

Henry Hub 3.1687 0.0368 0.0668 

 
(0.0000) (0.0000) (0.0000) 

Malin 3.1594 0.0406 0.0497 

 
(0.0000) (0.0000) (0.0000) 

Oneok 2.8472 0.0507 0.0806 

 
(0.0000) (0.0000) (0.0000) 

Opal 2.9468 0.0445 0.0577 

 
(0.0000) (0.0000) (0.0000) 

Waha Hub 2.9992 0.0428 0.0717 

 
(0.0000) (0.0000) (0.0000) 

Note: p-values are in parenthesis 
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Figure 4.2. Original daily natural gas spot prices (red solid line) and filtered data 
(black dotted line) (October 2, 2000 to October 31, 2014) 
Note: The vertical (dashed) line indicates January 1, 2010. 
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Table 4.3. Augmented Dickey-Fuller (ADF) and Kwiatkowski-Philips-Schmidt-Shin 
(KPSS) Testa Statistics of Filtered Data for Each Subsample 

 Price Series 

ADF KPSS ADF KPSS 

t-Stat 
Lag
(k) LM-Stat 

Band
width t-Stat 

Lag
(k) LM-Stat 

Band
width 

 

First Subsample: October 2, 2000 - 
December 31, 2009 

Second Subsample: January 1, 
2010 - October 31, 2014 

 
Test in Level Test in Level 

AECO Hub -2.7026 3 1.4532 39 -2.7096 11 0.6121 28 
Chicago -3.4521 2 1.3323 39 -4.1770 14 0.5245 26 
Dominion South -3.3446 6 1.3367 39 -2.8092 15 1.3546 29 
Henry Hub -2.9895 2 1.3703 39 -2.9858 5 0.6899 29 
Malin -5.0823 6 0.5586 38 -3.2580 11 0.6589 28 
Oneok -3.8805 3 1.0003 39 -4.6162 9 0.6355 27 
Opal -3.1772 7 0.9111 39 -5.6505 6 0.6296 27 
Waha Hub -3.7656 4 1.1269 39 -3.6905 9 0.6651 28 

 
Test in First Difference Test in First Difference 

AECO Hub -34.7748 2 0.0300 14 -17.4256 10 0.1294 123 
Chicago -46.2531 1 0.0369 49 -16.1962 13 0.0113 16 
Dominion South -22.7601 5 0.0281 29 -8.9452 14 0.0921 48 
Henry Hub -46.7860 1 0.0341 30 -23.4845 4 0.1475 62 
Malin -27.7416 5 0.0374 143 -18.5145 10 0.1789 283 
Oneok -35.1983 2 0.0347 58 -18.3075 9 0.1320 195 
Opal -23.5370 6 0.0405 70 -18.0875 9 0.1020 153 
Waha Hub -32.1484 3 0.0367 68 -18.9187 8 0.1571 188 
Note: Under the null hypothesis of non-stationarity (unit root), the ADF test critical value 
at 1%, and 5% levels are -3.430 and -2.860; the null is rejected when t-Stat < the critical 
value (Said and Dickey 1984).  Under the null hypothesis of stationarity, the KPSS test 
critical value at 1% and 5% levels are 0.739 and 0.463; the null is rejected when LM-stat > 
the critical value (Kwiatkowski et al. 1992). 
a Only constant term is included in equations. 
b Lag (k) is selected from 0 to 20 based on Schwarz information criteria. 
c Bandwidth is estimated using the Newey-West (1994) method. 
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ADF and KPSS test statistics of filtered data are shown in table 4.3.  ADF test 

statistics of Chicago, Malin, Oneok, and Waha Hub filtered prices in the first subsample 

suggest the unit root hypothesis is rejected at the 1% level, indicating that these filtered 

prices are stationary at the 1% level.  KPSS test statistics of all prices except Malin 

suggest the stationarity hypothesis is rejected at the 1% level, indicating that all filtered 

prices except Malin have a unit root at the 1% level.  At the 5% level, all filtered prices 

except AECO Hub are stationary based the ADF test but all filtered prices are non-

stationary based the KPSS test.  

In the second subsample, the ADF test indicates that filtered prices of Chicago, 

Oneok, Opal, and Waha Hub are stationary at the 1% level.  The KPSS test indicates that 

all filtered prices except Dominion South are stationary as test statistics of all filtered 

prices but Dominion South suggest the null hypothesis of stationarity cannot be rejected 

at the 1% level.  At the 5% level, the ADF test indicates that all filtered prices except 

AECO Hub are stationary whereas the KPSS test indicates that all filtered prices have 

unit root at the 5% level.  Regardless of the test and the subsample, all filtered prices are 

stationary after first differencing.  It appears that the KPSS test gives more consistent 

results between original prices and filtered prices than does the ADF test.  As the ADF 

and KPSS tests yield contradicting results, a test of variable stationarity, which is a 

multivariate version of the Dickey-Fuller test under the null hypothesis that each 

individual series is stationary given the cointegration space, is also executed. 
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Table 4.4. Schwarz Loss Measures on One to Two Cointegrating Vectors 
(Rank) and One to Five Lags on VECM Model of Seven Market-Pairs Using 
Filtered Data 

Market Pairs Rank 
One 
Lag 

Two 
Lags 

Three 
Lags 

Four 
Lags 

Five 
Lags 

 

First Subsample 
(October 2, 2000 - December 31, 2009) 

AECO- 
     Henry Hub 

1 -4.8801 -4.9801 -5.0401   -5.0455* -5.0345 
2 -4.8789 -4.9789 -5.0373 -5.0411 -5.0312 

Chicago- 
     Henry Hub 

1 -4.9082 -5.0112 -5.1023 -5.1378   -5.1463* 
2 -4.9081 -5.0110 -5.1001 -5.1356 -5.1434 

Dominion South-     
     Henry Hub 

1 -4.6378 -4.8823 -4.9454 -5.0571   -5.0744* 
2 -4.6390 -4.8789 -4.9423 -5.0552 -5.0712 

Malin- 
     Henry Hub 

1 -2.1602 -2.1788   -2.2591* -2.2510 -2.2445 
2 -2.1600 -2.1786 -2.2562 -2.2478 -2.2431 

Oneok- 
     Henry Hub 

1 -4.8234 -4.9302 -5.0039 -5.0156   -5.0202* 
2 -4.8253 -4.9287 -5.0001 -5.0143 -5.0178 

Opal- 
     Henry Hub 

1 -3.4045 -3.4342 -3.5314 -3.5390   -3.5485* 
2 -3.4051 -3.4343 -3.5278 -3.5372 -3.5454 

Waha- 
     Henry Hub 

1 -4.7682 -4.7788 -4.8582 -4.8610   -4.8741* 
2 -4.7660 -4.7783 -4.8554 -4.8582 -4.8713 

  Second Subsample 
(January 1, 2010 - October 31, 2014) 

AECO- 
     Henry Hub 

1 -5.8102 -5.9094 -6.0148 -6.0344   -6.0789* 
2 -5.8204 -5.9173 -6.0143 -6.0321 -6.0755 

Chicago- 
     Henry Hub 

1 -2.4578 -2.5664 -2.6834 -2.7019   -2.7071* 
2 -2.4664 -2.5751 -2.6830 -2.7010 -2.7042 

Dominion South-    
     Henry Hub 

1 -7.2632 -7.3032 -7.5401 -7.5878   -7.6524* 
2 -7.2634 -7.3012 -7.5342 -7.5789 -7.6421 

Malin- 
     Henry Hub 

1 -4.6521 -4.6850 -4.8478 -4.8445   -4.9113* 
2 -4.6589 -4.6932 -4.8490 -4.8421 -4.9067 

Oneok- 
     Henry Hub 

1 -4.1103 -4.1531 -4.3092 -4.3043   -4.3921* 
2 -4.1162 -4.1589 -4.3101 -4.3032 -4.3873 

Opal- 
     Henry Hub 

1 -4.2920 -4.3520 -4.5074 -4.4989   -4.5942* 
2 -4.2978 -4.3589 -4.5083 -4.4984 -4.5891 

Waha- 
     Henry Hub 

1 -5.0590 -5.1023 -5.2554 -5.2563   -5.3382* 
2 -5.0663 -5.1083 -5.2567 -5.2540 -5.3341 

Note: The asterisk '*' indicates minimum values of Schwarz loss measure. 
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Testing Threshold Cointegration 

As noted in Chapter II, Henry Hub is an important market for pricing of the North 

America natural gas spot and future markets; it is used as the benchmark market in both 

the linear VECM and the three-regime TVECM.  As such, seven market pairs of AECO 

Hub-Henry Hub, Chicago-Henry Hub, Dominion South-Henry Hub, Malin-Henry Hub, 

Oneok-Henry Hub, Opal-Henry Hub, and Waha Hub-Henry Hub are modeled.  

The first step of testing threshold cointegration is to test if there exist pair-wise 

cointegration.  Cointegrating vector and lag length are simultaneously determined by the 

Schwarz loss metric.  The minimum Schwarz loss measure suggests one cointegrating 

vector for all market pairs in the two filtered subsamples (table 4.4).  In the first 

subsample, the minimum Schwarz loss metric suggest three lags for Malin-Henry Hub, 

four lags for AECO Hub-Henry Hub, and five lags for the other five market-pairs.  The 

minimum SL is at five lags for all market pairs in the second subsample.  Five lags may 

indicate a day of the week effect.  

Conditional on one cointegrating vector, results from tests of exclusion, 

stationarity, and weak exogeneity are reported in table 4.5.  In the first subsample, 

likelihood ratio test statistics and corresponding p-values indicate that no price series can 

be excluded from the pair-wise long-run relationship, irrespective of the market pair, as 

the null hypothesis of exclusion is rejected at the 1% level.  Tests of variable stationarity 

reveal that in the pair-wise models no price series can be considered stationary by itself 

when the cointegration rank equals one.  Variable exogeneity is tested if any of prices in 

each market pair can be regarded as weakly exogenous when the parameter of interest is 
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!.  A price series does not respond to perturbations in the long-run equilibrium when it 

is considered weakly exogenous.  Henry Hub is considered weakly exogenous when it is 

paired with all other markets except AECO Hub.  Paired with Henry Hub, AECO Hub is 

observed weakly exogenous. 

 In the second subsample, the null hypotheses of exclusion and stationarity are 

rejected for all prices in every market pair except Dominion South-Henry Hub.  This 

means that Dominion South and Henry Hub prices can be excluded and considered 

stationary by themselves when the cointegration rank equals one.  Conditional on one 

cointegrating vector, Henry Hub is regarded as weakly exogenous when it is paired with 

AECO Hub, Chicago, Malin, Oneok, and Opal.  

 Even though Schwarz loss measures suggest one cointegrating vector for all 

market pairs, irrespective of the subsample, the Engle-Granger approach is also used to 

confirm whether pair-wise cointegration exists.  Estimated residuals from regressing 

individual price series on Henry Hub price are tested for stationarity.  Stationarity of 

estimated residual infers the pair-wise cointegration.  Following Balke and Fomby 

(1997), the ADF test is used.  In table 4.6, estimated residuals from all market-pair 

regressions are stationary in the first subsample, implying the presence of pair-wise 

cointegration.  In the second subsample, only estimated residuals obtained by regressing 

Dominion South on Henry Hub have unit root, implying that there exists pair-wise long-

run relationships in all market pairs except Dominion South-Henry Hub. 
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Table 4.5. Results from Tests of Exclusion, Stationarity, and Weak Exogeneity 
for Seven Market-Pairs Using Filtered Data 
Price Series in 
Each Market Pair 

Exclusion Stationarity Weak Exogeneity 
LR-Test p-Value LR-Test p-Value LR-Test p-Value 

 

First Subsample  
(October 2, 2000 - December 31, 2009) 

AECO Hub 111.0187 0.0000 112.9263 0.0000 3.4590 0.0629 
   Henry Hub 112.9263 0.0000 111.0187 0.0000 43.3190 0.0000 
Chicago 104.7309 0.0000 102.6047 0.0000 11.8626 0.0006 
   Henry Hub 102.6047 0.0000 104.7309 0.0000 2.6446 0.1039 
Dominion South 72.1203 0.0000 70.0889 0.0000 18.0742 0.0000 
   Henry Hub 70.0889 0.0000 72.1203 0.0000 0.0079 0.9291 
Malin 121.3449 0.0000 72.8529 0.0000 99.7822 0.0000 
   Henry Hub 72.8529 0.0000 121.3449 0.0000 3.1324 0.0768 
Oneok 33.4556 0.0000 28.7997 0.0000 6.0849 0.0136 
   Henry Hub 28.7997 0.0000 33.4556 0.0000 0.7918 0.3736 
Opal 28.9196 0.0000 25.8468 0.0000 12.4999 0.0004 
   Henry Hub 25.8468 0.0000 28.9196 0.0000 3.8624 0.0494 
Waha Hub 53.9987 0.0000 48.0298 0.0000 21.9198 0.0000 
   Henry Hub 48.0298 0.0000 53.9987 0.0000 2.0918 0.1481 

 

Second Subsample 
(January 1, 2010 - October 31, 2014) 

AECO Hub 58.9369 0.0000 49.1118 0.0000 34.7695 0.0000 
   Henry Hub 49.1118 0.0000 58.9369 0.0000 0.0750 0.7842 
Chicago 88.1067 0.0000 34.5516 0.0000 80.2483 0.0000 
   Henry Hub 34.5516 0.0000 88.1067 0.0000 0.3451 0.5569 
Dominion South 0.5344 0.4648 1.3851 0.2392 8.4986 0.0036 
   Henry Hub 1.3851 0.2392 0.5344 0.4648 8.8127 0.0030 
Malin 170.6979 0.0000 143.3857 0.0000 125.7307 0.0000 
   Henry Hub 143.3857 0.0000 170.6979 0.0000 1.4846 0.2231 
Oneok 208.6700 0.0000 166.4654 0.0000 167.6977 0.0000 
   Henry Hub 166.4654 0.0000 208.6700 0.0000 5.8819 0.0153 
Opal 162.6634 0.0000 124.8073 0.0000 127.4584 0.0000 
   Henry Hub 124.8073 0.0000 162.6634 0.0000 3.5216 0.0606 
Waha Hub 212.4244 0.0000 189.5004 0.0000 160.3772 0.0000 
   Henry Hub 189.5004 0.0000 212.4244 0.0000 9.0664 0.0026 
Note: All pair models are conditional on one cointegrating vector. 
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Table 4.6. Augmented Dickey-Fuller (ADF) Testa Statistics of Estimated 
Residuals Obtained by Regressing Price Series on Henry Hub  

  

First Subsample 
(October 2, 2000 - 

December 31, 2009) 

Second Subsample 
(January 1, 2010 - 
October 31, 2014) 

 
Test in Level Test in Level 

 Estimated Residual from t-Stat Lagb(k) t-Stat Lagb(k) 
AECO-Henry Hub -7.9011 6 -3.9891 18 
Chicago-Henry Hub -13.2329 1 -5.7469 14 
Dominion South-Henry Hub -8.9409 9 -0.9250 10 
Malin-Henry Hub -7.9004 6 -18.8784 1 
Oneok-Henry Hub -6.4350 4 -28.8135 0 
Opal-Henry Hub -6.1791 4 -19.0176 1 
Waha-Henry Hub -5.2752 15 -28.5193 0 
Note: The ADF critical value at 1 % level is -3.430. 
a Only constant term is included in equations. 
b Lag (k) is selected from 0 to 20 based on Schwarz information. 

 
 
 
 
 
Table 4.7. Bootstrap p-values for Testing VECM against Three-Regime 
TVECM Using Filtered Data 

Market Pairs 

Bootstrap p-Values 
First Subsample 

(October 2, 2000 - 
December 31, 2009) 

Second Subsample 
(January 1, 2010 - 
October 31, 2014) 

AECO-Henry Hub 0.0000 0.0000 
Chicago-Henry Hub 0.0000 0.0000 
Dominion South-Henry Hub 0.0000 0.0000 
Malin-Henry Hub 0.0000 0.0000 
Oneok-Henry Hub 0.0000 0.0300 
Opal- Henry Hub 0.0000 0.0200 
Waha-Henry Hub 0.0000 0.0100 
Note: Less than 0.05 p-values indicate that three-regime TVECM is 
significantly better than VECM at the 5% level. 
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The second step of testing threshold cointegration is to test whether the deviation 

process of the cointegrating relationship is linear or not.  Even though the existence of 

cointegration in some market pairs is ambiguous, the seven market-pairs are tested for 

non-linear cointegration with cautious interpretation.  Under the null hypothesis of a 

linear VECM against the alternative of a three-regime TVECM, the sup-LR test statistic 

is obtained by estimating VECM and three-regime TVECM assuming that a 

cointegrating vector is known as (1, -1).  Lag length in each model varies across pair-

wise models based on the results in the first step.  Bootstrap p-values are computed as 

the percentage of bootstrapped LR statistics, which are greater than the observed LR 

statistics (Hansen 1999).  In table 4.7, bootstrap p-values are less than 0.05, indicating 

that three-regime TVECM is significantly better than VECM at the 5% level in all seven 

market-pairs. 

 In table 4.8, _(3)?and _(K), the lower and upper threshold bounds, obtained from 

the sequential conditional least squares regression, are presented.  The difference 

between the upper and lower threshold values (_(K) − _ 3 ) and average of the threshold 

values are also presented (table 4.8).  When the price difference is less (greater) than the 

lower (upper) threshold value, the system is in regime one (three).  The system is in 

regime two, when the price difference is between the lower and upper bounds.  Regime 

two is the arbitrage-free range of price differences; one would not benefit from arbitrage 

trading between any two markets.  Numbers of observations and percentages of 

observations in each regime are given in table 4.9. 

 



 

 119 

Table 4.8. Estimated Threshold Values for Seven Market-Pairs 

Market Pairs 

Lower 
Bound 

c(1) 

Upper 
Bound 

c(2) c(2)-c(1) 
Average 
(c(1), c(2)) 

 

First Subsample 
(October 2, 2000 - December 31, 2009) 

AECO-Henry Hub -0.5016 0.5348 1.0364 0.0166 
Chicago-Henry Hub -0.1758 0.2344 0.4102 0.0293 
Dominion South-Henry Hub -0.1112 0.2488 0.3600 0.0688 
Malin-Henry Hub -0.8595 0.5705 1.4300 -0.1445 
Oneok-Henry Hub -0.3740 -0.0787 0.2953 -0.2264 
Opal- Henry Hub -1.4951 0.7859 2.2810 -0.3546 
Waha-Henry Hub 0.1390 0.5153 0.3763 0.3272 

 

Second Subsample 
(January 1, 2010 - October 31, 2014) 

AECO-Henry Hub -0.2826 0.2851 0.5677 0.0013 
Chicago-Henry Hub -0.5669 0.2030 0.7699 -0.1820 
Dominion South-Henry Hub -0.6673 -0.0056 0.6617 -0.3365 
Malin-Henry Hub -0.1721 0.1687 0.3408 -0.0017 
Oneok-Henry Hub -0.1366 0.1116 0.2482 -0.0125 
Opal- Henry Hub -0.1454 0.1925 0.3379 0.0236 
Waha-Henry Hub -0.1202 0.0894 0.2096 -0.0154 
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Table 4.9. Numbers of Observations and Percentages of Observations in 
Three Regimes 

 

Market Pairs 

No. of 
Obs in 
Regime 

One 

No. of 
Obs in 
Regime 

Two 

No. of 
Obs in 
Regime 
Three 

% of 
Obs  in 
Regime 

One 

% of 
Obs  in 
Regime 

Two 

% of Obs  
in 

Regime 
Three 

 First Subsample (October 2, 2000 - December 31, 2009) 
AECO-Henry Hub 262 1893 253 10.88 78.61 10.51 
Chicago-Henry Hub 385 1763 259 16.00 73.24 10.76 
Dominion South-
Henry Hub 808 1352 247 33.57 56.17 10.26 

Malin-Henry Hub 284 1881 244 11.79 78.08 10.13 
Oneok-Henry Hub 460 254 1693 19.11 10.55 70.34 
Opal- Henry Hub 259 1517 631 10.76 63.02 26.22 
Waha-Henry Hub 1114 1041 252 46.28 43.25 10.47 

 Second Subsample (January 1, 2010 - October 31, 2014) 
AECO-Henry Hub 154 968 132 12.28 77.19 10.53 
Chicago-Henry Hub 218 910 126 17.38 72.57 10.05 
Dominion South-
Henry Hub 154 206 894 12.28 16.43 71.29 

Malin-Henry Hub 162 966 126 12.92 77.03 10.05 
Oneok-Henry Hub 216 912 126 17.22 72.73 10.05 
Opal- Henry Hub 245 881 128 19.54 70.26 10.21 
Waha-Henry Hub 146 978 130 11.64 77.99 10.37 
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Obtaining Time-Varying Threshold Values 

Time-varying threshold values recovered using equations (4.13) and (4.14) are 

illustrated along with (original) price differences in figures 4.3-4.9.  How frequent price 

differences are in each regime appears to be consistent with results in table 4.9.  In the 

first subsample, price differences of all market-pairs except Oneok-Henry Hub and 

Waha Hub-Henry Hub are most often observed in regime two with the percentages being 

63% or larger.  Oneok-Henry Hub price differences are usually in regime three.  Price 

differences between Waha Hub-Henry Hub are almost evenly split between regimes one 

and two.  In the second subsample, over 70% of the time price differences of all market 

pairs except Dominion South-Henry Hub are in regime two; price differences between 

Dominion South and Henry Hub are most often observed in regime three.  

Between the two subsamples, percentages of AECO-Henry Hub, Chicago-Henry 

Hub, and Malin-Henry Hub price differences in the three regimes are approximately the 

same.  In the second subsample, percentages of Dominion South-Henry Hub price 

differences observed in regimes one and two are less than those in the first subsample.  

As previously noted, the percentage of observed Dominion South-Henry Hub price 

differences increases for regime three.  The percentage of Oneok-Henry Hub price 

differences in regime one is approximately the same in the two subsamples, while the 

percentage in regime two (three) increases (decreases) in the second subsample.  In the 

second subsample, percentages of Opal-Henry Hub price differences in regimes one and 

two are greater than those in the first subsample, while the percentage in regime three in 

the second subsample are lower than that in the first subsample.  Compared to the first 
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subsample, percentages of Waha Hub-Henry Hub observations in regimes one and three 

decrease in the second subsample relative to the first; regime two percentage increases in 

the second subsample. 

 

 
 
 
 

 
Figure 4.3. Time-varying upper and lower threshold values (red and blue solid line) 
and original daily price differences (black dotted lines) between AECO Hub and 
Henry Hub (October 2, 2000 to October 31, 2014) 
Note: The vertical (dashed) line indicates January 1, 2010. 
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Figure 4.4. Time-varying upper and lower threshold values (red and blue solid line) 
and original daily price differences (black dotted lines) between Chicago and Henry 
Hub (October 2, 2000 to October 31, 2014) 
Note: The vertical (dashed) line indicates January 1, 2010. 
 
 
 

  
Figure 4.5. Time-varying upper and lower threshold values (red and blue solid line) 
and original daily price differences (black dotted lines) between Dominion South 
and Henry Hub (October 2, 2000 to October 31, 2014) 
Note that the vertical (dashed) line separates the first and second subsamples. 
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Figure 4.6. Time-varying upper and lower threshold values (red and blue solid line) 
and original daily price differences (black dotted lines) between Malin and Henry 
Hub (October 2, 2000 to October 31, 2014) 
Note: The vertical (dashed) line indicates January 1, 2010. 
 
 
 

  
Figure 4.7. Time-varying upper and lower threshold values (red and blue solid line) 
and original daily price differences (black dotted lines) between Oneok and Henry 
Hub (October 2, 2000 to October 31, 2014) 
Note: The vertical (dashed) line indicates January 1, 2010. 
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Figure 4.8. Time-varying upper and lower threshold values (red and blue solid line) 
and original daily price differences (black dotted lines) between Opal and Henry 
Hub (October 2, 2000 to October 31, 2014) 
Note: The vertical (dashed) line indicates January 1, 2010. 
 
 
 

 
Figure 14. Figure 4.9. Time-varying upper and lower threshold values (red and 
blue solid line) and original daily price differences (black dotted lines) between 
Waha Hub and Henry Hub (October 2, 2000 to October 31, 2014) 
Note: The vertical (dashed) line indicates January 1, 2010. 
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Averages of recovered time-varying threshold values are presented in table 4.10.  

Gaps between the time-varying upper and lower bounds are equal to gaps between the 

constant threshold bounds.  Threshold gaps of each market-pair appear to be different 

between the two subsamples.  Threshold intervals of AECO Hub-Henry Hub, Malin-

Henry Hub, Oneok-Henry Hub, Opal-Henry Hub, and Waha Hub-Henry Hub become 

narrower in the second subsample while threshold intervals of Chicago-Henry Hub and 

Dominion South-Henry Hub become wider in the second subsample. 

 

 

 
 

 

Table 4.10. Averages of Recovered Time-Varying Threshold Values  
Market Pairs Average of _'

3  Average of _'
K  _'

K
− _'

3  
 

 

First Subsample  
(October 2, 2000 - December 31, 2009) 

AECO-Henry Hub -1.3599 -0.3235 1.0364 
 Chicago-Henry Hub -0.2299 0.1803 0.4102 
 Dominion South-Henry Hub 0.2516 0.6116 0.3600 
 Malin-Henry Hub -1.1140 0.3160 1.4300 
 Oneok-Henry Hub -1.0188 -0.7235 0.2953 
 Opal- Henry Hub -2.8544 -0.5734 2.2810 
 Waha-Henry Hub -0.4219 -0.0456 0.3763 
 

 

Second Subsample  
(January 1, 2010 - October 31, 2014) 

AECO-Henry Hub -0.7032 -0.1355 0.5677 
 Chicago-Henry Hub -0.2433 0.5266 0.7699 
 Dominion South-Henry Hub -0.8142 -0.1525 0.6617 
 Malin-Henry Hub -0.2051 0.1357 0.3408 
 Oneok-Henry Hub -0.2487 -0.0005 0.2482 
 Opal- Henry Hub -0.3165 0.0214 0.3379 
 Waha-Henry Hub -0.2031 0.0065 0.2096 
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Discussion 

Threshold values of each market-pair during the period of October 2, 2000 to December 

31, 2009 appear to be different from what is observed for the period of January 1, 2010 

to October 31, 2014.  Threshold bands of AECO Hub-Henry Hub, Malin-Henry Hub, 

Oneok-Henry Hub, Opal-Henry Hub, and Waha Hub-Henry Hub become narrower in 

the latter period; whereas, threshold bands of Chicago-Henry Hub and Dominion South-

Henry Hub become wider.  As threshold intervals may be induced by transaction costs 

including transportation costs, the narrower (wider) intervals likely suggest the lower 

(higher) transaction costs.  Lower (higher) transaction costs potentially lead to more 

(less) natural gas trading between hubs.   

As noted in literature, transaction costs may not solely cause price differences 

between markets but also monetary policies, policy interventions, the behavior of 

inventories, and other economic risk factors (Balke and Fomby 1997; Tsay 1998).  In 

natural gas spot markets, in additional to transaction costs, the location of each market, 

whether it is located in/near production/reserve area, each individual market’s role in 

price discovery, and/or pipeline/transportation constraints may be behind price 

differences between markets.  

Between January 2010 and October 2014, most observed price differences of all 

market-pairs except Dominion South-Henry Hub are in the arbitrage-free range (regime 

two).  It should be note that natural gas trading may occur for reasons other than 

arbitrage.  The major changes in the percentage of time spent in each regime for the 

three market-pairs, Oneok-Henry Hub, Waha Hub-Henry Hub, and Dominion South-
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Henry Hub, are noteworthy.  The percentages of Oneok-Henry Hub and Waha-Henry 

Hub (Dominion South-Henry Hub) observations in regime two noticeably increase 

(decrease) even though their threshold bands get narrower (wider).  Because of the shale 

gas revolution resulting in the potential presence of structural change during 2009, the 

amount of natural gas produced from these areas has increased.  In 2013, Texas, 

Louisiana, Pennsylvania, Arkansas, and Oklahoma were the top five largest shale gas 

producing states (U.S. EIA 2014h, 2014i, 2014j).  One potential difference between 

Oneok and Waha Hub and Dominion South, however, is the existing pipeline system; 

Oneok and Waha Hub are in the regions that pipelines have been built to transport 

natural gas while Dominion South is in a region that there are no sufficient pipelines to 

takeaway substantial volumes of natural gas. 

There is no incentive to trade natural gas between markets unless transaction 

costs are less than price differences.  Since the shale gas bloom, trading between markets 

that are located in/near the production areas and Henry Hub may be less active.  

Transaction costs of these market-pairs might be cut down to induce trading.  This may 

be behind lower transaction costs of AECO Hub-, Oneok-, Opal-, and Waha Hub-Henry 

Hub as these markets are located in/nearby major natural gas production areas.  Given 

the model only includes prices one can only speculate on trading, but, as production 

areas experienced an increase in production, these areas are able to supply their 

associated demand areas without as much natural gas from other regions.  Transaction 

costs must decrease in this case to induce trade.  This explanation is mostly likely what 

is occurring between Waha Hub-Henry Hub and Oneok-Henry Hub.  Both Waha Hub 
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and Oneok are experiencing shale gas increases; the Eagle Ford in Texas and the 

Woodford in Oklahoma (U.S. EIA 2014i, 2014j; American Petroleum Institute 2014) 

and have pipeline capacity to supply their demand areas. 

The higher transaction costs between Dominion South and Henry Hub are 

possibly the results of the lack of takeaway capacity.  Pennsylvania previously relied on 

natural gas from the Gulf Coast.  With the development in the Marcellus shale 

Pennsylvania now can fulfil its own demand becoming less dependent to no dependent 

on natural gas inflows from other states (U.S. EIA 2013c, 2015g).  Dry natural gas 

production in Pennsylvania has increased since 2010 (figure 4.10) and Pennsylvania has 

become one of the top five natural gas producing states (U.S. EIA 2015e, 2015g).  

Because of the massive production in the Marcellus area, pipelines are being 

transformed to supply natural gas to the Midwest and the Gulf Coast (U.S. EIA 2015g).  

The Dominion South area does not have the necessary pipeline capacity to efficiently 

transport increased natural gas causing bottlenecks (Grimes 2014; American Petroleum 

Institute 2014).  This increase in pipeline demand coupled with a relatively fixed 

pipeline supply is most likely the cause of the increase in transaction costs.  These 

changes likely result in less natural gas trading between Dominion South and Henry 

Hub.   

Physical trading between some natural gas hubs, for example, AECO Hub and 

Henry Hub, may not be feasible because of transportation constraints.  Examining 

transaction costs between natural gas market centers where only physical trading occurs 

is left for future studies.  It is recommended that future research should be undertaken 
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such that markets are paired based on the information of the major natural gas 

transportation corridors.  Moreover, the development of threshold models in which both 

threshold values and threshold intervals are time-variant would provide a contribution to 

the study of transaction costs. 

 

 

 
Figure 4.10. Annual Pennsylvania dry natural gas production (Tcf) (2000 – 2013) 
(U.S.  EIA  2015e) 
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CHAPTER V 

NUMBER OF FACTORS EFFECTS ON FACTOR-AUGMENTED VECTOR 

AUTOREGRESSIVE (FAVAR) PERFORMANCES 

 

Using a vector autoregressive (VAR) approach to study economic issues constrains the 

ability to understand structural information, because standard VARs usually limit the 

analysis to approximately eight or fewer variables (Stock and Watson 2002; Bernanke, 

Boivin, and Eliasz 2005).  As such, relevant information may not be reflected in a VAR 

analysis because of the small number of variables (Bernanke, Boivin, and Eliasz 2005).  

Incorporating richer information data sets has caught the attention of academics (Sargent 

and Sims 1997; Stock and Watson 2002; Bernanke and Boivin 2003; Bernanke, Boivin 

and Eliasz 2005; Moench 2008; Zagaglia 2010).  These studies usually assume that 

variation in economic time series can be captured by a small set of influencing variables; 

these variables are considered the set of common factors (Sargent and Sims 1997).  Bai 

and Ng (2002) propose several criteria to determine the appropriate number of common 

factors to include in factor models.  In empirical applications, Bai and Ng’s (2002) 

various criteria, however, may lead to differing number of factors; issues of parsimony 

and appropriateness may arise (Moench 2008; Zagaglia 2010). 

The objective is to investigate whether and how the number of unobservable 

components from a data-rich model influences inferences from and probabilistic 

forecasting performance of various models.  The factor-augmented vector autoregressive 

(FAVAR) approach, proposed by Bernanke, Boivin, and Eliasz (2005), is employed to 
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characterize unobservable components.  Innovation accounting analysis (impulse 

response functions and forecast error variance decompositions) are applied to discover 

dynamic effects.  Then, the prequential forecasting approach introduced by Dawid 

(1984) is applied to evaluate predictive distributions for out-of-sample data.  Two 

FAVAR models differing in their number of factors (five and ten factors) based on the 

rage of optimal number of factors derived from Bai and Ng’s (2002) criteria, along with 

a five variable VAR and a univariate autoregressive (AR) model, are compared. 

In keeping with the energy theme of this dissertation, shale gas gross withdrawals 

are the main variable of interest.  Shale gas has noticeably become a “game changer” for 

the U.S. natural gas market through the use of horizontal drilling and hydraulic 

fracturing, colloquially known as “fracking”.  These techniques have prominently 

increased the capability of producers to commercially recover natural gas and oil from 

low-permeability geologic formations, mainly shale formations (U.S. EIA 2011).  The 

advent of commercial viable shale gas production began in earnest the 1980s and 1990s 

when Mitchell Energy and Development Corporation started to produce deep shale gas 

economically in the Barnett Shale in North Central Texas (U.S. EIA 2011).  By 2005, 

the Barnett shale yielded nearly 0.5 trillion cubic feet of natural gas per year (U.S. EIA 

2011).  Mitchell Energy and Development achievement induced other companies to 

explore and produce from other shale sources (U.S. EIA 2011).  Increasing shale gas 

production leads to increased domestic natural gas supply.  The rapid growth of 

domestic natural gas supply resulted in lower natural gas prices.  Natural gas, 

consequently, has become an attractive energy source for electric power generating, 
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industrial, and exporting sectors.  Shale gas production may be the “game changer” in 

not only the U.S. natural gas market but also the entire energy sector of the U.S.  

Technologies fostering the proliferation of shale gas may affect other industries in the 

U.S. energy sector.  As shale gas production is claimed to be a “game changer,” 

examining its effects on energy dynamics is noteworthy.  Unfortunately, because of the 

limited availability of data on shale gas production, natural gas gross withdrawals are 

considered as a proxy for shale gas production.   

Literature on A Data-Rich Environment 

Studies using a data-rich environment suggest that the use of large data sets provides 

reasonable results and improves forecast precision (Stock and Watson 2002; Bernanke 

and Boivin 2003; Bernanke, Boivin, and Eliasz 2005; Moench 2008; Zagaglia 2010).  

Stock and Watson (2002) extract common factors from a large data set using principal 

components methods.  They show that forecasting models which include these common 

factors outperform univariate autoregressive, traditional vector autoregressive, and 

leading indicator models.  Bernanke and Boivin (2003) employ the factor-model 

approach developed by Stock and Watson (2002) to estimate and forecast the Fed’s 

policy reaction function.  Their findings are in line with Stock and Watson’s (2002) 

results that allowing the systematic information in large data sets to be summarized by a 

relatively few estimated indicators improve forecasting performance. 

Bernanke, Boivin, and Eliasz (2005) propose a FAVAR model in which both 

unobservable factors and observable economic variables (such as a policy indicator, 

measures of economic activities, and/or prices) characterize the common forces that 
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determine the dynamics of the macroeconomic economy.  They apply the model to 

measure the effects of monetary policy; exploiting information derived from the FAVAR 

model significantly increases the ability of identifying the monetary transmission 

mechanism.  Bernanke, Boivin, and Eliasz (2005, p. 406) claim, “The FAVAR approach 

is successful at extracting pertinent information from a large data set of macroeconomic 

indicators.” 

Employing the FAVAR approach in a data-rich environment helps improving 

forecasting performance (Moench 2008; Zagaglia 2010).  Moench (2008) uses the short-

term interest rates as policy instrument and factors from of a large number of 

macroeconomic variables to forecast the yield curve under a no-arbitrage restriction.  He 

finds that most of the variation in interest rates is explained by macroeconomic 

variables.  The no-arbitraging FAVAR model results in an improvement in predicting 

the yield curve for the out-of-sample over the Duffee (2002) model and the Nelson-

Seigel model modified by Diebold and Li (2006).  Zagaglia (2010) extracts common 

factors from a large data set including global macroeconomic indicators, financial 

market indices, and quantities and prices on energy products to study the dynamics of oil 

futures prices traded at NYMEX using a FAVAR model.  He finds that the estimated 

factors can be categorized into energy prices, energy quantities, and macroeconomic and 

financial data.  Combining these factors with oil returns improves the forecasting 

performance of oil futures prices over a VAR model of returns only, a factor-included 

VAR model, and a random walk model.   
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Studies using a FAVAR model to evaluate the response of macroeconomic 

variables to shocks in policy indicators and observable measures of economic activity 

and prices include Bernanke, Boivin, and Eliasz (2005), Lescaroux and Mignon (2009), 

and Lombardi, Osbat, and Schnatz (2012).  Bernanke, Boivin, and Eliasz (2005) 

construct the impulse responses for key macroeconomic variables to a monetary policy 

(federal fund rate) shock using the FAVAR approach.  Responding to a negative 

monetary policy shock, real activity measures decline, prices goes down, money 

aggregates decline, and the dollar appreciates.  Lescaroux and Mignon (2009) apply the 

FAVAR model to examine the impacts of oil prices on the Chinese economy.  They find 

that an oil price shock induces a contemporaneous increase in consumer and producer 

price indexes, leading to a rise in interest rates, a delayed negative effect on GDP, 

investment, and consumption, and a deferred increase in coal and power prices.  

Lombardi, Osbat, and Schnatz (2012) find that exchanges rates and industrial production 

influence individual non-energy commodity prices; whereas, robust spillovers from oil 

to non-oil commodity prices and an oil price impacts on the interest rate are not found. 

Methodology 

Let ù' be a (V×1) vector of observable variables at time t driving the dynamics of the 

system.  Bernanke, Boivin, and Eliasz (2005, p. 391) suggest, “ù' could contain a policy 

indicator and observable measures of real activity and prices.”  Let D' be a (C×1) vector 

of unobserved factors, which summarize additional information, not fully captured by ù', 

involved in explaining the dynamics of the series of interest (Bernanke, Boivin, and 

Eliasz 2005).  The joint dynamics of D' and ù' are 
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(5.1)  D'
ù'

= Φ P
D'l3
ù'l3

+ ü', 

where Φ P  is a lag polynomial of finite order d and ü' is ((C +V)×1) vector of error 

terms with zero mean and covariance matrix Q (Bernanke, Boivin, and Eliasz 2005).  

Equation (5.1) is the FAVAR model (Bernanke, Boivin, and Eliasz 2005). 

 Because the factors D' are unobservable, equation (5.1) cannot be directly 

estimated.  Assume that the factors can be inferred from &', a (\×1) vector of 

informational time series.  The number of informational time series N can be large; in 

particular, N can be greater than T (number of observations) and N is much greater than 

the number of factors plus observed variables in the FAVAR system, \ ≫?(C +V) 

(Bernanke, Boivin, and Eliasz 2005).  The informational time series, &', are assumed to 

be related to the unobservable factors, D', and the observed variables, ù', by the 

following equation 

(5.2) &' = Λ¢D' + Λ
£ù' + z', 

where Λ¢ is an (\×C) matrix of factor loadings, Λ£ is an (\×V) matrix of parameters, 

and z' is an (\×1) vector of error terms with mean zero (Bernanke, Boivin, and Eliasz 

2005).  Assumptions on the covariance matrix of z' dictate on the estimation approach.  

If z' is normal and uncorrelated then maximum likelihood methods are implemented; 

however, if z' is allowed a small level of cross-correlation then a two-step principal 

components approach is implemented (Bernanke, Boivin, and Eliasz 2005).  
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Estimation 

In line with Stock and Watson 2002; Bernanke and Boivin 2003; Bernanke, Boivin, and 

Eliasz 2005; Moench 2008; Lescaroux and Mignon 2009; Zagaglia 2010; Lombardi, 

Osbat, and Schnatz 2012, the two-step principal components approach is applied in 

estimating the FAVAR model because of its computational simplicity and implemental 

convenience.  In the first step, equation (5.2) is used to estimate the unobservable 

factors, D', by applying principal component approach.  In the second step, the FAVAR 

is estimated by using equation (5.1) with the estimated factors, D', in place of the 

unobservable factors, D'.   

Common Factors and Number of Common Factors 

Common factors in the large data set, &', are estimated by the nonparametric method of 

asymptotic principal components.  The number of factors estimated by this method is 

min{N, T}, which is, however, much larger than permitted by estimation of state space 

models (Bai and Ng 2002).  To determine which of these factors are statistically 

significant, all the common factors must first be consistently estimated when both N and 

T are large (Bai and Ng 2002).  Let b' be a (U×1) matrix of common factors extracted 

from &'.  Because &' contains dynamic information on both D' and ù', the common 

factors estimated from &'?are denoted as b(D', ù').  Estimates of  common factors, 

b D', ù' , and factor loading, Λ, are obtained by solving the following optimization 

problem  

(5.3) * U = min
¶,ß®

\< l3 (&5' − ©5
R™
b')

=
'S3

K
]
5S3 , 
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subject to the normalization of either ¶
´™¶´

]
= ãR or ¨≠

Æ™
¨≠
Æ

=
= ãR? where ΛØ is a (Q x N) 

matrix containing ©5
R, a (Q x 1) vector of factor loadings denoted individually by i and ãR 

is a (Q x Q) identity matrix (Bai and Ng 2002).   

 When all common factors are observed but the factor loadings are not, the 

problem becomes to choose Q common factors that capture the variations in &' and 

estimate the corresponding factor loadings (Bai and Ng 2002).  ©5 can be estimated by 

applying ordinary least squares to each equation as the model is linear and the factors are 

observed (Bai and Ng 2002).  Divided by NT, the sum of squared residuals from 

regressing  &5 on the Q common factors for all i becomes 

(5.4)  * U, b' = min
¶

\< l3 (&5' − ©5
R™
b')

=
'S3

K
]
5S3 . 

The appropriate number of common factors, Q, can be determined using a loss function 

* U, b' + Ug(\, <), where g(\, <) is the penalty for model over-fitting (Bai and Ng 

2002).  Let 

(5.5)  * U, b' = min
¶

\< l3 (&5' − ©5
R™
b')

=
'S3

K
]
5S3  

be the sum of square residuals (divided by NT) when Q common factors are estimated.   

 The following 12 criteria to determine the number of factors to include in factor 

models are proposed in Bai and Ng (2002) 

(5.6)  ?+b±3 U = * U, b' + U≤K(
]2=

]=
)ln?(

]=

]2=
),  

(5.7)  +b±K U = * U, b' + U≤K(
]2=

]=
)ln? b]=

K ,  

(5.8)  +b±ò U = * U, b' + U≤K(
≥¥ ¨µ∂

∑

¨µ∂
∑ )?, 
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(5.9)  ãb±3 U = ln* U, b' + U(
]2=

]=
)ln?(

]=

]2=
),  

(5.10)  ãb±K U = ln* U, b' + U(
]2=

]=
)ln? b]=

K ,  

(5.11)  ãb±ò U = ln* U, b' + U(
≥¥¨µ∂

∑

¨µ∂
∑ )?, 

(5.12)  ∏ãb3 U = * U, b' + U≤K(
K

=
), 

(5.13)  %ãb3 U = * U, b' + U≤K(
≥¥=

=
), 

(5.14)  ∏ãbK U = * U, b' + U≤K2(
K

]
), 

(5.15)  %ãbK U = * U, b' + U≤K(
≥¥]

]
), 

(5.16)  ∏ãbò U = * U, b' + U≤K2(
]2=lR

]=
), and  

(5.17)  %ãbò U = * U, b' + U≤K(
]2=lR

]=
)ln?(\<), 

where?* U, b' = \l3 ≤]
5S3 5

K
, ?≤5

K =
π∫
™π∫

=
, 1ª = &5 − Λ5

R
b', b]=

K = min \, < .  

PCp criteria refer to panel criteria, ICp criteria refer to information criteria, AIC refer to 

Akaike information criteria, and BIC refer to Bayesian information criteria (Bai and Ng 

2002).  The penalty term of PCp criteria includes ≤K which provides a proper scaling to 

the penalty term (Bai and Ng 2002).  ≤K is not required in the penalty term of ICp criteria 

because scaling by  ≤K is implicitly applied by the natural logarithm transformed 

* U, b'  (Bai and Ng 2002).  As such, ICp criteria may be desirable because they do not 

rely on the choice of maximum number of factors and  ≤K?(Bai and Ng 2002).   

 The PCp and ICp criteria differ from the information criteria used in cross-section 

and time-series analysis in that g(N, T) is a function of both N and T.  The penalty terms 
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in AIC1 and BIC1 are standard terms used in time-series applications.  Two conditions 

are required to get  a consistently estimated number of common factors; first,  g \, < →

0 and second, b]=K . g(\, <) → ∞ as N, < → ∞?(Bai and Ng 2002).  AIC1 fails to achieve 

the second condition for all N and T while BIC1 fails to meet the second condition when 

N?≪ T (Bai and Ng 2002).  Similarly, AIC2 fails in the second condition while BIC2 

works only if N ≪ T (Bai and Ng 2002).  The penalty term in AIC3 and BIC3 involves 

both N and T.  However, AIC3 violates the second condition while BIC3 violates the first 

condition for some N and T (Bai and Ng 2002).  Therefore, BIC3 may perform well 

under some data structures, for example data with the presence of cross-section 

correlations (Bai and Ng 2002).  PCp1, PCp2, ICp1, ICp2, AIC3, and BIC3 are considered in 

this study. 

Removing the Influence of  ù' 

Because b(D', ù') corresponds to an arbitrary linear combination of ù', obtaining 

D'?requires removing the dependency of b(D', ù') on ù'.  Following Bernanke, Boivin, 

and Eliasz’s (2005), b(D', ù') is regressed on D'æåø¿ and ù' to get the dependency of 

b(D', ù') on ù', where D'æåø¿ refers to K (=?U − V) factors estimated from slow-moving 

variables.  Slow-moving variables do not to respond contemporaneously to shocks in ù' 

while fast-moving variables are allowed to respond contemporaneously to ù'.  The 

regression to remove the influence of  ù' is 

(5.18)  b D', ù' = !æåø¿D'
æåø¿ + !¡ù' + ó', 
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where !æåø¿ is a (Q x K) matrix of coefficients of D'æåø¿, !¡is a (Q x M) matrix of 

coefficients indicating the dependency of b(D', ù') on ù', and ó' is a (Q x 1) vector of  

error terms.  Using !¡ estimated from equation (5.18), D' is derived by 

(5.19)  D' = b D', ù' − !¡ù'. 

The FAVAR model (equation 5.1) is estimated using D' derived from equation (5.19) 

and the observable variable, ù'.  

Data 

One hundred and seventy-nine monthly series of energy and macroeconomic data are 

used.  Natural gas gross withdrawals are treated as the observable variable, ù'.  The 

informational vector, &', includes the remaining 178 variables.  The natural logarithm 

transformation is applied to all series except those in percentages before any estimation.  

Based on Augmented Dickey Fuller test results, series that are non-stationary (have a 

unit root) are transformed such that they become stationary before estimating the 

FAVAR.   

Monthly series, the classification of variables into the slow- and fast- moving 

variables, their transformation (if necessary to make stationary), and data sources are 

presented in Appendix C.  The FAVAR model is fitted over the period of February 2001 

to December 2012.  Out-of-sample data period for one step-ahead forecasts is January 

2013 to December 2014. 

Empirical Results 

Because of the high variation in the variables, the data are demeaned and standardized to 

have zero mean and unit variance.  As such, a small number of factors can represent the 
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dynamics of the 178 informational time series (Bai and Ng 2002).  Common factors are 

estimated using principal component approach and the number of common factors are 

determined based on PCp1, PCp2, ICp1, ICp2, AIC3, and BIC3 criteria. 

Allowing the maximum number of common factors equals to 20, PCp1, PCp2, and 

AIC3 all suggest 20 common factors.  ICp1 suggests 13 common factors, ICp2 suggests 

10, and BIC3 suggests five common factors (table 5.1).  For parsimony and comparison 

purposes, FAVAR models with five and 10 factors are investigated in this study.  In 

addition, as noted earlier a five variable VAR model and a univariate AR model are also 

compared. 

 

 

Table 5.1. Test Results of Numbers of Factors Suggested by Several Criteria 
Criteria Number of Factors 

PCp1 20 
PCp2 20 
ICp1 13 
ICp2 10 
AIC3 20 
BIC3 5 
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Structural Break in Factors 

There appears to be potential structural changes in pricing relationship among North 

America natural gas spot market (see Chapter II).  As such, the possible presence of 

structural change in the U.S. energy dynamics, represented by the common factors 

obtained from the principal components, is tested for structural breaks in factor loadings 

using tests proposed by Han and Inoue (2015).  Han and Inoue’s (2015) tests are 

constructed under the joint null hypothesis that all factor loadings are constant over time 

against the alternative that at least one of the factor loadings is not constant over time.  

The tests utilize the second moment of estimated factors, rather than a simple regression-

based approach, to avoid dimensionality problems.  Han and Inoue’s (2015) tests use 

more information than other tests as they directly test for the differences between before 

and after the break in all elements of the covariance matrix of the estimated factors.  The 

idea of these tests is that a structural break in factor loading also appears in second 

moments of factors estimated from the full sample principal components.  Results of 

Han and Inoue’s (2015) tests indicate that there is no structural break in the common 

factors over the period of February 2001 to December 2012; the joint null hypothesis 

that all factor loadings are constant over time cannot be rejected.   

Several reasons are postulated why the potential existence of structural breaks is 

found in Chapter II but not in the common factors.  First, the frequency of the data may 

matter in detecting structural breaks.  The Potential breaks are found in Chapter II using 

the high frequency daily data, whereas no structural breaks are found in the common 

factors which use relatively low frequency monthly data.  Second, the relationships 
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among variables between the two studies are different.   The study in Chapter II focuses 

only on the pricing relationship in the natural gas sector, while the common factors 

examine broader relationships.  Not only are energy prices considered but also energy 

activities such as production and consumption.  Further, besides natural gas, other 

energy sources such as coal, crude oil and other petroleum products, electricity, 

renewable energy along with several macroeconomic variables are included.  Finally, the 

methodologies differ.  Tests applied in Chapter II are the tests for parameter instability in 

long-run relationship parameters, while tests applied in this chapter is the tests for 

parameter instability in estimated factors. 

Interpreting the Estimated Factors 

Five and 10 common factors, b(D', ù'), are used in equations (5.18) and (5.19) to obtain 

the estimated factors, D'.  To estimate equation (5.18), common factors extracted from 

slow-moving variables, D'
æåø¿, are required.  Because the dimension of ù'?equals one (M 

=1)  (only natural gas gross withdrawals is treated as an observable variable), to obtain 

five and 10 (Q = 5, 10) estimated factors, four and nine slow-moving factors (K = Q – M 

= 4, 9) are necessary.  After removing the influence of ù' from the common factors, 

b(D', ù'), the five estimated factors, D', from the system with five common factors are 

not the same as the first five estimated factors from the system with 10 common factors.  

They are not the same because of the difference in the number of slow-moving factors. 

To interpret the estimated factors, each factor is regressed individually on all the 

variables in &'.  R-squared values from regressing each of the five factors on the 178 

variables are illustrated in figures 5.1 – 5.5.  R-squared values for the 10 factors are 
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presented in figures 5.6 – 5.15.  To help in the interpretation, the variables are classified 

into 20 categories.  The variables in each category are presented in Appendix C.  

It appears that each estimated factor is better represented by a group/groups of 

variables than an individual variable.  For most of the factors, many of the 178 variables 

contribute to explaining that factor.  Factor 1 of the five factor model is a prime example 

of this issue (figure 5.1).  Over one-half of the categories have at least one variable with 

an R-squared greater than 0.30.  The following discussion is based strictly on 

observations of figures 5.1-5.15.  To be considered as representing a factor, the category 

as a group should have relatively high R-squared and not just one or two of the variables 

within that group having high R-squared.  Factor 1 of the five factors appears to 

represent a mixture of carbon dioxide emissions, crude oil and petroleum product 

consumption and production, electricity net generation, electricity prices, natural gas 

prices and storages, and renewable energy consumption.  The R-squared values from 

regressing factor 1 on most of the variables in these categories are relatively high.  

Factor 2 of the five factor system is apparently explained by crude oil and petroleum 

product prices.  Factor 3 from the system with the five factors seems to be the 

combination of crude oil and petroleum product prices, electricity consumption, 

electricity net generation, electricity prices, and natural gas consumption and prices.  

Electricity prices, natural gas consumption and prices, and renewable energy 

consumption and production appear to explain factor 4.  Factor 5 appears to be mostly 

explained by natural gas consumption and prices, renewable energy consumption and 

production, and weather. 
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Figure 5.1. R-squared values from regressing factor 1 of the five factors on each of 
178 variables 
 
 
 

 
Figure 5.2. R-squared values from regressing factor 2 of the five factors on each of 
178 variables 
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Figure 5.3. R-squared values from regressing factor 3 of the five factors on each of 
178 variables 
 
 
 

 
Figure 5.4. R-squared values from regressing factor 4 of the five factors on each of 
178 variables 
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Figure 5.5. R-squared values from regressing factor 5 of the five factors on each of 
178 variables 
 
 
 

 
Figure 5.6. R-squared values from regressing factor 1 of the 10 factors on each of 
178 variables 
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Figure 5.7. R-squared values from regressing factor 2 of the 10 factors on each of 
178 variables 
 
 
 

 
Figure 5.8. R-squared values from regressing factor 3 of the 10 factors on each of 
178 variables 
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Figure 5.9. R-squared values from regressing factor 4 of the 10 factors on each of 
178 variables 
 
 
 

 
Figure 5.10. R-squared values from regressing factor 5 of the 10 factors on each of 
178 variables 
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Figure 5.11. R-squared values from regressing factor 6 of the 10 factors on each of 
178 variables 
 
 
 

 
Figure 5.12. R-squared values from regressing factor 7 of the 10 factors on each of 
178 variables 
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Figure 5.13. R-squared values from regressing factor 8 of the 10 factors on each of 
178 variables 
 
 
 

 
Figure 5.14. R-squared values from regressing factor 9 of the 10 factors on each of 
178 variables 
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Figure 5.15. R-squared values from regressing factor 10!of the 10 factors on each of 
178 variables 

 

 

Even though they are derived from slightly different system of equations (5.18) 

and (5.19), the first five factors of the 10 factor system appear to represent the same 

energy categories as of the five factors of the five factor system.  Factor 6 of the 10 

factors likely represents coal stocks, electricity consumption, and electricity net 

generation.  Factor 7 appears to represent natural gas prices.  Most R-squared values 

from the regressions on the eighth factor are relatively low; relatively high R-squared 

values are from regressing factor 8 on some variables of electricity net generation, 

natural gas prices, and renewable energy consumption.  Similar to factor 8, most R-

squared values from each regression of factor 9 are relatively low.  Compared to other 

variables in other categories, R-squared values from regressing factor 9 on most 
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variables of natural consumption and renewable energy consumption and production are 

relatively high.  Factor 10 appears to be explained by macroeconomic variables.  

FAVAR Models vs VAR model 

Two FAVAR models are constructed; one includes five estimated factors and the 

another includes 10 estimated factors, with natural gas gross withdrawals as the 

observable variable (hereafter FAVAR(5F) and FAVAR(10F)).  To examine whether the 

data-rich FAVAR models are more advantageous than a VAR model, a VAR model with 

five variables VAR(5)) of natural gas gross withdrawals, natural gas consumption, 

Henry Hub natural gas spot price, West Texas Intermediate (WTI) crude oil spot price, 

and the S&P500 index  are constructed.  

Given its formula in Chapter II, Schwarz loss measure is used to determine lag 

length in each model.  The Schwarz loss criteria suggest two lags are appropriate for 

each model (table 5.2). 

Table 5.2. Schwarz Loss Measures on One to Five Lags on Each Model 
Lag Length FAVAR(5F)a FAVAR(10F)b VAR(5)c 

1 -33.5611 -63.4724 -0.8546 
2   -34.7067*   -63.7792*   -1.1147* 
3 -34.5484 -61.6724 -0.5862 
4 -34.3403 -59.3259 -0.2986 
5 -34.0043 -56.7813 0.0950 

Note: The asterisk '*' indicates minimum values of Schwarz loss measure. 
a The FAVAR(5F) model includes five estimated factors and natural gas gross 

withdrawals as the observable variable. 
b The FAVAR(10F) model includes 10 estimated factors and natural gas gross 

withdrawals as the observable variable. 
c The VAR(5) model includes natural gas gross withdrawals, Henry Hub natural gas spot 

price, natural gas consumption, WTI crude oil spot price, and S&P500. 
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Contemporaneous Causal Flows 

In equation (5.1), the innovation terms, ü', are assumed to be independent but 

contemporaneous correlations among the elements are allowed.  If the elements of 

innovation term are contemporaneously uncorrelated, then innovation accounting 

procedures can be performed using the moving average representation of the estimated 

FAVAR/VAR (Hamilton 1994).  Nevertheless, contemporaneous correlations usually 

exist in economic data.  Following Bernanke (1986) to obtain contemporaneously 

uncorrelated innovations, the observed innovations, ü', are modeled as a function of 

more fundamental driving sources of variation,?1', which are independent (orthogonal) to 

other sources of variation 

(5.8)  ü' = ∏l31',  

where ∏ is a matrix representing how each non-orthogonal innovation is caused by the 

orthogonal variation in each equation (Bernanke 1986).  Usual innovation accounting 

procedure can be preformed by pre-multiplying the FAVAR/VAR models by ∏.  To 

obtain an identified model, zero restrictions on ∏ are identified using directed acyclic 

graphs (DAGs) on innovations from the estimated models. 

Jarque-Berra normality tests on residual series from the three models’ estimation 

suggest that all residual series are normal.  The greedy equivalency search (GES) 

algorithm (Chickering 2002, 2003) executed in Tetrad version five is applied to the 

residual series from the estimated FAVAR/VAR models to create the orthogonal 

innovations for innovation accounting analysis (impulse response functions and forecast 
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error variance decompositions).  DAGs estimated from the FAVAR(5F), FAVAR(10F), 

and VAR(5) models are presented in figures 5.16 – 5.18.  

The FAVAR(5F) and FAVAR(10F) models have one common information flow; 

information flow from natural gas gross withdrawals to factor 4.  Factor 4 

contemporaneously responds to natural gas gross withdrawals in the FAVAR(5F) and 

FAVAR(10F) models.  In the FAVAR(5F), natural gas gross withdrawals are not only 

an information provider but also an information receiver; it receives information from 

factor 5.  In the FAVAR(10F) model, natural gas gross withdrawals behave only as an 

information sender; sending information to factors 4 and 9.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.16. Contemporaneous casual flows of the residual series estimated from 
the FAVAR(5F) model 
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Figure 5.17. Contemporaneous casual flows of the residual series estimated from 
the FAVAR(10F) model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Figure 5.18. Contemporaneous casual flows of the residual series 
estimated from the VAR(5) model 
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In the FAVAR(5F) model, factor 1 transmits information to factors 2 and 5.  In 

addition to receiving information from factor 1, factor 2 contemporaneously responds to 

information from factors 4 and 5.  As a transmitter, factor 3 passes information to factors 

4 and 5.   

In the FAVAR(10F) model, factor 1 gathers information from factors 2, 5, and 7 

and passes information to factors 4 and 8.  As an information supplier, factor 2 sends 

information to factors 1 and 3.  Factor 3 is an information sink; it takes information from 

factors 2, 4, and 5 but do not transmit any information.  Factor 5 receives information 

from factor 9 and passes information to factors 1 and 3.  Obtaining information from 

factor 6, factor 7 sends information to factors 1, 9, and 10.  

In the VAR(5) model, natural gas gross withdrawals do not receive any 

information from other variables, but provide information to natural gas consumption.  

Natural gas consumption contemporaneously responds to information from not only 

natural gas gross withdrawals but also Henry Hub natural gas spot price.  Information 

flows from WTI crude oil spot price to Henry Hub natural gas spot price.  S&P500 is 

exogenous in contemporaneous time, no information transferring between S&P500 and 

others. 

Impulse Response Functions 

Impulse response functions provide the dynamic responses of each series to a one-time 

shock in each series.  For comparision purposes, the responses are normalized such that 

each response is divided by the standard error of its innovations.  Impulse response 

functions are presented for 12 months.  Each sub-graph provides the response of the 
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market given by the row heading to a one-time shock in the series listed in the column 

heading. 

Impulse response functions of the FAVAR(5F) model are presented in figure 

5.19.  Of primary importance is not only how natural gas withdrawals respond to shocks 

in the other variables and how the other variables respond to a shock in withdrawals but 

also differences between the models.  Factors 1, 3, and 5 do not respond, while factor 2 

has a negative response and factor 4 has a positive response to a shock in natural gas 

gross withdrawals in the first month.  Factors 1, 2, and 5 positively respond to a shock in 

natural gas gross withdrawals in the second month, whereas factors 2 and 4 negatively 

respond.  All impulse response functions are stable tending toward zero as the number of 

months out increases. 

Natural gas gross withdrawals initially respond negatively to shocks in factors 1 

and 5, but the responses become positive in the second month.  The response to a shock 

in factor 1 is relatively larger than that to a shock in factor 5.  The response of natural 

gas gross withdrawals to a shock in factor 3 are similar to the response to a shock in 

factor 4, but the response to the shock in factor 3 are relatively larger.  Natural gas gross 

withdrawals barely respond to a shock in factor 2.  

 Dynamic responses of the first five factors to a shock in natural gas gross 

withdrawals in the FAVAR(10F) model (figure 5.20) generally have similar patterns to 

those of the FAVAR(5F) model.  Responses of factors 7, 8, and 10 to a shock in natural 

gas gross withdrawals are relatively small.  A month after the shock, a response of factor 

9 to a shock in natural gas gross withdrawals is negative, whereas two months after the  
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Figure 5.19. Impulse response functions of five factors and natural gas gross withdrawals from the FAVAR(5F) model 
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Figure 5.20. Impulse response functions of ten factors and natural gas gross withdrawals from the FAVAR(10F) model 
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Figure 5.21. Impulse response functions of natural gas gross withdrawals, Henry Hub natural gas spot price, natural 
gas consumption, WTI crude oil spot price, and S&P500 from the VAR(5) model
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shock, the response is positive.  Responses of natural gas gross withdrawals to shocks in 

the first five factors of the FAVAR(10F) model are inconsiderably different to those of 

the FAVAR(5F).  Natural gas gross withdrawals responses to shocks in factors 6 and 7 

have similar patterns to that of factor 4.  Natural gas gross withdrawals appear to have 

large responses to shocks in factors 4, 6, and 9, and itself. 

 Impulse response functions of the VAR(5) model are presented in figure 5.21.  

Natural gas gross withdrawals have small to no responses to shocks in the other four 

variables.  Other than itself, Henry Hub natural gas price responds to only a shock in 

WTI.  Natural gas consumption has relatively positive large responses to shocks in 

Henry Hub spot price and natural gas gross withdrawals.  Responses of natural gas 

consumption to a shock in WTI oscillate between positive and negative.  Natural gas 

consumption barely responds to a shock in S&P500.  Responses of WTI crude oil spot 

price to a shock in S&P500 are larger than to shocks in other variables.  S&P500 appears 

not to respond to shocks in the other variables.  

Forecast Error Variance Decompositions 

Forecast error variance decompositions at horizons of one, six, and 12 months ahead are 

presented to observe how each series depends on its own innovations and other series’ 

innovations.  Values in each row indicate, at each time horizon, how much variation in 

each series is due to itself and the other price series; the sum of the values in each row 

must be 100. 

 Forecast error variance decompositions from the FAVAR(5F) model are 

presented in table 5.3.  Innovations in natural gas gross withdrawals do not influence the 
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forecast error variances of the factors at one month ahead except for factor 4.  Natural 

gas gross withdrawals partially influence forecast error variances of all the factors at six 

and 12 months ahead, explaining between four and 20 percent of the variances.  At one 

month ahead, uncertainty in natural gas gross withdrawals is explained by itself and 

factors 1, 3, and 5.  At six and 12 months ahead, over 20% of the uncertainties in natural 

gas gross withdrawals are explained by factors 1 and 3 and itself with factors 4 and 5 

explaining about 10%. 

 Forecast error variance decompositions from the FAVAR(10F) model are 

presented in table 5.4.  Innovations in natural gas gross withdrawals explain 10% or less 

the forecast error variances in factors 1, 2, 5, 6, 7, 8, and 10 at any time horizon.  

Variance in factor 3 is explained by natural gas gross withdrawals, 9% at one month 

ahead, 12% at six and 12 months ahead.  Natural gas gross withdrawals are the major 

source of variation in factor 4 (43%) at one month ahead, but decrease to 17% at 12 

months ahead.  Natural gas gross withdrawals play an important role in explaining 

forecast error variance in factor 9 at one month ahead and become the most important 

explainer of variance in factor 9 at six and 12 months ahead other than itself.  Natural 

gas gross withdrawals are dependent on only itself at the one-month horizon; its 

uncertainty at six and 12 months ahead is primarily initiated by innovations of itself and 

factor 9.  Factors 4 and 6 explain variance in natural gas gross withdrawals over seven 

percent each at the 12 month ahead. 

 Forecast error variance decompositions from the VAR(5) model are presented in 

table 5.5.  Variation in natural gas gross withdrawals is 100% explained by itself at one  



 

 165 

 
Table 5.3. Forecast Error Variance Decompositions of Five Factors and Natural 
Gas Gross Withdrawals from the FAVAR(5F) Model 

Horizon Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
Natural Gas Gross 

Withdrawals 

 Factor 1 
1 100.00 0.00 0.00 0.00 0.00 0.00 
6 78.33 2.73 0.59 2.38 1.12 14.86 
12 74.44 5.30 0.57 2.36 3.58 13.75 

 Factor 2 
1 78.52 10.84 1.79 4.50 3.48 0.88 
6 60.23 14.61 2.32 4.11 12.15 6.58 
12 57.66 14.27 2.24 4.50 14.53 6.80 

 Factor 3 
1 0.00 0.00 100.00 0.00 0.00 0.00 
6 12.58 4.54 33.71 24.09 20.96 4.12 
12 19.87 3.83 27.62 20.95 19.05 8.67 

 Factor 4 
1 4.47 0.00 29.29 51.74 4.42 10.09 
6 21.61 3.73 21.32 32.05 8.51 12.78 
12 24.33 4.09 19.56 30.42 7.93 13.67 

 Factor 5 
1 29.72 0.00 40.90 0.00 29.39 0.00 
6 23.60 2.99 21.07 5.61 26.97 19.76 
12 19.38 6.99 16.50 8.72 32.38 16.04 

 Natural Gas Gross Withdrawals 
1 17.78 0.00 24.47 0.00 17.58 40.17 
6 27.97 0.54 27.23 9.31 11.38 23.57 
12 27.97 0.56 27.19 9.36 11.43 23.50 
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Table 5.4. Forecast Error Variance Decompositions of Ten Factors and Natural Gas Gross Withdrawals from the 
FAVAR(10F) Model 

Horizon 
Factor 

1 
Factor 

2 
Factor 

3 
Factor 

4 
Factor 

5 
Factor 

6 
Factor 

7 
Factor 

8 
Factor 

9 
Factor 

10 

Natural Gas 
Gross 

Withdrawals 
Factor 1 

1 10.27 78.31 0.00 0.00 3.10 0.53 6.55 0.00 0.77 0.00 0.47 
6 10.00 39.95 2.54 2.77 5.44 8.22 12.16 0.51 6.85 2.13 9.44 
12 11.74 31.97 4.79 4.23 5.24 10.16 12.06 1.52 8.20 2.03 8.06 

Factor 2 
1 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6 1.71 62.22 4.86 3.15 0.98 2.42 1.11 4.28 4.75 4.83 9.70 
12 1.90 59.67 4.84 3.15 1.35 3.43 1.65 4.22 5.59 4.83 9.39 

Factor 3 
1 0.12 40.36 30.98 2.03 13.40 0.03 0.42 0.00 3.32 0.00 9.33 
6 0.62 25.05 19.78 3.55 9.62 14.07 1.93 1.65 10.70 1.13 11.91 
12 0.88 22.93 16.94 3.42 13.45 13.51 4.58 1.67 9.69 1.46 11.47 

Factor 4 
1 2.17 16.55 0.00 36.15 0.66 0.11 1.38 0.00 0.16 0.00 42.82 
6 2.61 10.64 5.10 18.60 8.19 11.40 3.28 0.24 18.77 3.00 18.17 
12 2.40 11.75 5.13 16.85 9.11 12.90 3.36 0.49 17.63 3.05 17.35 

Factor 5 
1 0.00 0.00 0.00 0.00 68.35 0.32 3.98 0.00 16.96 0.00 10.39 
6 1.59 2.16 6.54 5.91 29.37 3.59 14.49 10.91 17.00 1.44 6.99 
12 1.49 8.66 13.02 4.13 19.43 6.61 11.27 11.75 12.10 1.39 10.15 
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Table 5.4. Continued 

Horizon 
Factor 

1 
Factor 

2 
Factor 

3 
Factor 

4 
Factor 

5 
Factor 

6 
Factor 

7 
Factor 

8 
Factor 

9 
Factor 

10 

Natural Gas 
Gross 

Withdrawals 
Factor 6 

1 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 
6 0.46 4.44 5.38 2.33 6.52 59.10 3.58 2.32 9.18 1.02 5.68 
12 0.55 3.50 8.35 1.94 4.99 60.87 3.29 1.84 7.69 1.04 5.93 

Factor 7 
1 0.00 0.00 0.00 0.00 0.00 7.46 92.54 0.00 0.00 0.00 0.00 
6 2.53 1.01 3.92 1.33 11.89 13.03 57.03 4.43 0.88 0.74 3.22 
12 2.17 3.06 7.66 1.21 10.75 14.55 47.84 5.45 1.72 0.91 4.67 

Factor 8 
1 2.59 19.71 0.00 0.00 0.78 0.13 1.65 74.83 0.19 0.00 0.12 
6 2.96 12.13 1.71 0.42 2.23 16.19 9.57 47.72 4.50 0.90 1.69 
12 2.70 12.03 2.71 0.51 4.03 17.02 9.98 42.81 5.65 0.90 1.66 

Factor 9 
1 0.00 0.00 0.00 0.00 0.00 1.01 12.57 0.00 53.60 0.00 32.82 
6 1.21 5.90 5.96 7.16 2.13 4.81 10.41 1.14 38.64 1.41 21.23 
12 1.47 5.81 6.41 6.79 3.89 6.19 10.05 1.26 35.72 2.22 20.19 

Factor 10 
1 0.00 0.00 0.00 0.00 0.00 0.62 7.67 0.00 0.00 91.72 0.00 
6 0.58 19.41 7.82 1.36 0.36 0.55 3.95 4.54 2.29 56.59 2.55 
12 0.63 18.70 8.91 1.45 1.08 0.92 3.73 6.51 2.63 52.53 2.93 
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Table 5.4. Continued 

Horizon 
Factor 

1 
Factor 

2 
Factor 

3 
Factor 

4 
Factor 

5 
Factor 

6 
Factor 

7 
Factor 

8 
Factor 

9 
Factor 

10 

Natural Gas 
Gross 

Withdrawals 
Natural Gas Gross Withdrawals 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 
6 2.75 1.08 2.51 8.40 3.24 6.76 4.88 1.05 26.88 2.97 39.48 
12 2.72 1.06 3.04 8.59 3.14 7.33 4.86 1.05 26.78 3.25 38.17 
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Table 5.5. Forecast Error Variance Decompositions of Five Variables from the 
VAR(5) Model 

Horizon 

Henry Hub 
Natural Gas 
Spot Price 

Natural Gas 
Consumption 

WTI 
Crude Oil 
Spot Price S&P500 

Natural Gas 
Gross 

Withdrawal 

 
Henry Hub Natural Gas Spot Price 

1 93.86 0.00 6.14 0.00 0.00 
6 89.44 0.11 9.34 0.93 0.18 

12 89.29 0.25 9.32 0.95 0.19 

 
Natural Gas Consumption 

1 9.09 69.42 0.59 0.00 20.91 
6 14.66 71.71 2.36 0.49 10.78 

12 15.13 71.04 2.87 0.53 10.44 

 
WTI Crude Oil Spot Price 

1 0.00 0.00 100.00 0.00 0.00 
6 1.42 3.49 82.10 11.20 1.79 

12 1.54 3.96 81.51 11.13 1.86 

 
S&P500 

1 0.00 0.00 0.00 100.00 0.00 
6 0.46 0.97 3.31 95.10 0.16 

12 0.53 1.14 3.31 94.83 0.19 

 
Natural Gas Gross Withdrawal 

1 0.00 0.00 0.00 0.00 100.00 
6 0.81 0.15 1.21 2.88 94.96 

12 0.82 0.17 1.24 2.91 94.86 
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month ahead and approximately 95% at six and 12 months ahead.  Similarly, at any time 

horizon, the key source of uncertainty in Henry Hub natural gas spot price is its own 

innovation (90 – 94%).  Natural gas consumption itself, natural gas gross withdrawals, 

and Henry Hub spot price play the most important roles in explaining variation in natural 

gas consumption.  WTI crude oil spot price is dependent on only itself (100%) at one 

month ahead; in addition to itself (82%), the S&P500 plays a role in explaining WTI’s 

variance (11%) at six and 12 months ahead.  Similar to WTI, S&P500 variance is 

completely self-dependent at one month ahead; at six and 12 months ahead, S&P 

variance is triggered by itself 95% and 3% by an innovation in WTI. 

In summarizing the above discussion, natural gas gross withdrawals appear to 

primarily influence and are influenced by the dynamics of electricity consumption, 

electricity net generation, electricity prices, natural gas consumption, and natural gas 

prices.  These are the categories which primarily characterize factors 1, 3, 4, 5, and 9.  

Results from the VAR(5) analysis agree with the above summary as natural gas gross 

withdrawals is one of the major sources of variation in natural gas consumption.  In the 

FAVAR(5F) model, natural gas gross withdrawals play a significant role in explaining 

dynamics in factors 1, 4, and 5.  Natural gas consumption and natural gas prices are the 

main categories describing these three factors.  In the FAVAR(10F) model, natural gas 

gross withdrawals play a significant role in explaining dynamics in factors 4 and 9, 

which are primarily represented by natural gas consumption and renewable energy 

consumption and production.  Dynamics in natural gas gross withdrawals are mainly 

caused by innovations in factors 1, 3, and itself in the FAVAR(5F) model, while the 
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dynamics are mainly caused by innovations in factors 9 and itself.  The key categories 

representing both factors 1 and 3 are electricity net generation, electricity prices, natural 

gas consumption, and natural gas prices.  Factor 9 is generally descripted by natural 

consumption and renewable energy consumption and production. 

Prequential Analysis19 

Calibration measures (calibration plots and chi-squared goodness-of-fit test statistics), 

root mean-squared error, the Brier score and its decompositions, and the ranked 

probability score are calculated to assess out-of-sample forecasting ability of the various 

models.  In addition to the FAVAR(5F), FAVAR(10F), and VAR(5) models, an 

univariate autoregressive (AR) model of natural gas gross withdrawals is fitted over in-

sample data (February 2001 to December 2012) to forecast out-of-sample values for one 

step-ahead horizon over the period of January 2013 to December 2014.  Schwarz criteria 

suggests that six lags are appropriate for the univariate AR model, hereafter AR(6). 

Calibration Measures 

A graphical representation and a goodness-of-fit test statistic are used to evaluate 

calibration performance.  Calibration plots between the relative frequency and realized 

fractiles of the natural gas gross withdrawals forecasts from the four models are 

illustrated in figure 5.22.  A forecast is well calibrated, when its calibration plot is close 

to the 45-degree line.  Comparing plots of natural gas gross withdrawals forecasts from 

the four models, it appears that the plot from the FAVAR(5F) model is closest to the 45-

degree line. 

19 See Chapter III for details on the prequential methodology. 
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Chi-squared test statistics are calculated based on 20 non-overlapping 

subintervals of the observed fractiles.  Chi-squared goodness-of-fit test statistics on the 

forecasts of natural gas gross withdrawals from the four models are less than the 5% 

critical value of !"(19) (table 5.6), implying that all models yield well calibrated 

probabilistic forecasts of natural gas gross withdrawals. 

 
 
 

 
Figure 5.22. Calibration Plots of the Natural Gas Gross Withdrawals Forecast from 
the Four Models 
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Root Mean-Squared Error (RMSE) 

To calculate the RMSE for the probability forecasts, the means of the probability 

distributions are used as point forecast.  Smaller RMSE indicates better forecasts.  The 

forecast of natural gas gross withdrawals from the VAR(5) model has the smallest 

RMSE, while the forecast from the FAVAR(10F) model has the largest RMSE (table 

5.6).  Based on RMSE, it appears that the probability forecasts of natural gas gross 

withdrawals from the VAR(5) model is more desirable than those from factor models, 

although the AR(6) and FAVAR(5F) models have RMSE that are closer to the VAR(5) 

model than the FAVAR(10F) model. 

Table 5.6. Test Statistics on the Probabilistic Forecast of Natural Gas Gross 
Withdrawals from the Four Models 

Models 
Chi-Squared 

Test Statistics 
Root Mean-

Squared Error 
Brier 
Score 

Ranked 
Probability 

Score 
FAVAR(5F)a 10.9130 0.7660 0.8237 0.1418 
FAVAR(10F)b 25.2727 1.0699 0.9105 0.1879 
VAR(5)c 17.6667 0.6956 0.8358 0.1237 
AR(6)d 16.1304 0.7426 0.8294 0.1364 
Note: The null hypothesis of well calibration cannot be rejected if the chi-squared test 
statistic is less than the 5% critical value of χ2(19) =30.144. 
a The FAVAR(5F) model includes five estimated factors and natural gas gross 

withdrawals as the observable variable. 
b The FAVAR(10F) model includes 10 estimated factors and natural gas gross 

withdrawals as the observable variable. 
c The VAR(5) model includes natural gas gross withdrawals, Henry Hub natural gas spot 

price, natural gas consumption, WTI crude oil spot price, and S&P500. 
d The AR(6) model is the univariate autoregressive model of natural gas gross 

withdrawals with six lags. 
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 The forecast error (the difference between observed withdrawals and mean of 

forecasted withdrawals) from each model is regressed on the difference between itself 

and the other models’ forecast errors.  This is called encompassing regression (Harvey 

and Newbold 2000).  The null hypothesis of encompassing cannot be rejected for all 

directions, implying that the withdrawals forecasts from the four models are not different 

in encompassing.  When a forecast encompasses the others, it means that the other 

forecasts contain no useful information not present in the encompassing forecast. 

The Brier Score and Yates’ Covariance Decomposition 

The Brier score is a probability score that involves both calibration and sorting ability.  

The smaller the Brier score, the better probability forecasting.  As with RMSE, the three 

models, AR(6), VAR(5), and FAVAR(5F) have Brier scores that are close (table 5.6).  

The FAVAR(5F) model yields the smallest Brier score on the natural gas gross 

withdrawals forecast, while the FAVAR(10F) model yields the largest Brier score.  The 

AR(6) model has a smaller Brier score than the VAR(5). 

 Yates (1988) suggests partitioning the Brier score, #$ %, ' , into five elements20 

such that #$ %, ' = )*+ ' +-./)*+ % + $0*1 % + 2.*3" − 2678 %, ' .  Ideally, 

in a good forecast, the three components, MinVar, scatter, and Bias2, should be small, 

while the last component, covariance term, should be large.  Var(d) reflects the 

underlying variance of observed data and does not depend on the forecasts.  As such, 

Var(d) of natural gas gross withdrawals in the four models are the same; they are 

calculated over the same out-of-sample data (table 5.7).  

                                                
20 See Chapter III for interpretation on each element. 
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 Even though the FAVAR(5F) model has the smallest Brier score on the natural 

gas gross withdrawals forecast, it has the largest Minvar and second largest scatter.  

With smallest Bias2 and the largest covariance term, the Brier score suggests the forecast 

of natural gas gross withdrawals from the FAVAR(5F) model are the most desirable 

among the four models.  Although the FAVAR(10F) model has second largest 

covariance term, its largest scatter and relatively large MinVar and Bias2 terms produce 

the largest Brier score on the natural gas gross withdrawals forecast. 

Table 5.7. The Brier Score and Yates' Decomposition on the Probabilistic Forecast 
of Natural Gas Gross Withdrawals from the Four Models 
Models Brier Score Var(d) MinVar Scat(f) Bias2 Cov(f, d) 
FAVAR(5F)a 0.8237 0.8819 0.0463 0.1211 0.0184 0.1220 
FAVAR(10F)b 0.9105 0.8819 0.0372 0.1795 0.0211 0.1046 
VAR(5)c 0.8358 0.8819 0.0265 0.0710 0.0279 0.0858 
AR(6)d 0.8294 0.8819 0.0206 0.0687 0.0255 0.0837 

Note: Brier Score = Var(d) + MinVar(f) + Scat(f) + Bias2 – 2Cov(f, d). 
a The FAVAR(5F) model includes five estimated factors and natural gas gross 

withdrawals as the observable variable. 
b The FAVAR(10F) model includes 10 estimated factors and natural gas gross 

withdrawals as the observable variable. 
c The VAR(5) model includes natural gas gross withdrawals, Henry Hub natural gas spot 

price, natural gas consumption, WTI crude oil spot price, and S&P500. 
d The AR(6) model is the univariate autoregressive model of natural gas gross 

withdrawals with six lags. 
 
 
 

 Even though the MinVar and scatter are relatively small, the Brier score on the 

natural gas gross withdrawals forecast from the VAR(5) model is ranked the third best.  

This is because it has the largest Bias2 and a relatively small covariance term. 
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The AR(6) model gives the smallest MinVar and scatter on the natural gas gross 

withdrawals forecast.  With a relatively large Bias2 and the smallest covariance, the 

AR(6) gives the second best of the Brier score on the natural gas gross withdrawals 

forecast. 

The Ranked Probability Score (RPS) 

Similar to the Brier score, the smaller the RPS score, the better the probabilistic 

forecasts.  The RPS suggests the forecast of natural gas gross withdrawals from the 

VAR(5) model is the most desirable (table 5.6).  The AR(6) model provides the second 

smallest RPS on the forecast of natural gas gross withdrawals.  Consistent with the other 

test statistics, the RPS on the natural gas gross withdrawals forecast from the 

FAVAR(10F) model is the largest.   

Comparison of the Four Systems 

Prequential analysis of the natural gas gross withdrawals forecasts from the four models 

are discussed in the previous subsections.   Results on the forecasts of the other variables 

in the FAVAR(5F), FAVAR(10F), and VAR(5) models are presented in Appendix D.  In 

this subsection, the forecasting performance of the entire system from the four models is 

explored.  Being a univariate model, results on the AR(6) system in table 5.8 are the 

same as those in tables 5.6 and 5.7. 

RMSE of each system is the square root of the average MSE of all forecasts or 

variables in the system.  The RMSE on the FAVAR(5) system is the smallest while the 

RMSE on the AR(6) system is the largest (table 5.8).  It appears that factor models 
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provide useful information in forecasting because the RMSE on the factor models are 

smaller than those of the models not involving estimated factors. 

The Brier score and its partitions of each system are calculated by treating all variables 

in the system as a single variable.  When considering the entire system, variances of the 

observed outcome (Var(d)) are different across the four systems as each system 

incorporates different series.  Unlike when considering only forecasts on natural gas 

gross withdrawals, the Brier score on the AR(6) system is the smallest with the Brier 

score on the FAVAR(5F) being the second smallest (table 5.8).  One likely reason for 

the previous results is that the two models consider fewer variables than the 

FAVAR(10F) model.  The FAVAR(10F) system has the largest Brier score with the 

largest Var(d) and the largest scatter.  This is probably because the FAVAR(10F) system 

comprises 11 variables.  Even though the FAVAR(5F) has relatively large Var(d) and 

scatter and has the largest MinVar, with the smallest Bias2 and the largest covariance 

term, the Brier score on the FAVAR(5F) system is the second best.  The VAR(5) system 

has the smallest Var(d) and smallest MinVar.  It, however, has the smallest covariance 

term; the Brier score on the VAR(5) system is ranked the third best.  Among the four 

systems, the AR(6) has the largest Bias2, although its Brier score is the smallest. 

The RPS on each system is an average RPS for all forecasts in the system.  

Consistent with the Brier score, the RPS suggests that the AR(6) system is the best 

among the four systems while the FAVAR(10) system is the worst (table 5.8).  The 

VAR(5) system is ranked the second best while the FAVAR(5) system is ranked the 

third best. 
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Table 5.8. Test Statistics on Probabilistic Forecasts  of the Four Systems 

Systems 

Root Mean-
Squared 

Error Brier Score Var(d) MinVar Scat(f) Bias2 Cov(f, d) 

Ranked 
Probability 

Score 
FAVAR(5F)a 0.3218 0.8398 0.8798 0.0321 0.1349 0.0067 0.1068 0.1576 
FAVAR(10F)b 0.3353 0.9160 0.8916 0.0140 0.1389 0.0076 0.0680 0.1865 
VAR(5)c 0.6758 0.8692 0.8790 0.0138 0.0734 0.0093 0.0532 0.1470 
AR(6)d 0.7426 0.8294 0.8819 0.0206 0.0687 0.0255 0.0837 0.1364 
Note: Brier Score = Var(d) + MinVar(f) + Scat(f) + Bias2 – 2Cov(f, d). 

a The FAVAR(5F) model includes five estimated factors and natural gas gross withdrawals as the observable variable. 
b The FAVAR(10F) model includes 10 estimated factors and natural gas gross withdrawals as the observable variable. 
c The VAR(5) model includes natural gas gross withdrawals, Henry Hub natural gas spot price, natural gas consumption, WTI crude 

oil spot price, and S&P500. 
d The AR(6) model is the univariate autoregressive model of natural gas gross withdrawals with six lags. 
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Discussion 

The objective involves addressing two major questions: (1) whether and how the number 

of unobservable components (estimated factors) from a data-rich model influence 

inferences; and (2) whether and how the number of unobservable components (estimated 

factors) from a data-rich model influence probabilistic forecasting performance.  To 

answer the first question, innovation accounting analysis is applied.  Results suggest the 

inferences are only minimally affected by the number of estimated factors.  Dynamic 

responses of the first five factors and natural gas gross withdrawals of the FAVAR(10F) 

model are slightly different from dynamic response of the FAVAR(5F) model.  These 

finding are in line with Bernanke, Boivin, and Eliasz’s (2005) finding that increasing the 

number of factors does not alter dynamic response results.   

Natural gas gross withdrawals influence the U.S. energy sector, particularly 

electricity net generation, electricity prices, natural gas consumption, and natural gas 

prices.  Natural gas gross withdrawals started to increase with increases in shale gas 

withdrawals.  At the same time, U.S. natural gas consumption also increased (figure 

5.23).  Increases in domestic natural gas production have led to decreasing natural gas 

prices.  Low natural gas prices induce increases in natural gas consumption, especially in 

the industrial and electric power generating sectors.  Electricity net generation from 

natural gas in 2014 is approximately 75% greater than that in 2001 and 25% greater than 

that in 2007, the year that the U.S. EIA started reporting data on natural gas withdrawals 

from shale gas (U.S. EIA 2015a). 
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Figure 5.23. U.S. annual natural gas consumption by sectors, natural gas gross 
withdrawals, and natural gas gross withdrawals from shale gas (U.S. EIA 2015c, 
2015d) 
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The second objective is addressed through the use of prequential forecasting 

(Dawid 1984) for four models, the FAVAR(5F), FAVAR(10F), VAR(5), and AR(6).  

The FAVAR(5F) model appears to be the most desirable forecasting model as it yields 

the smallest or the second-smallest Brier scores and RMSE when considering only 

natural gas withdrawals forecasts and when considering the entire forecasting system.  

Visually, the calibration plot for the natural gas gross withdrawals from the FAVAR(5F) 

model is the closest to a 45-degree line of the four systems.  Further, in terms of the 

Brier score’s partition, the FAVAR(5F) model has the minimum Bias2, which is a 

miscalibration measure, and the maximum covariance, which is the essential indicator of 

forecasting ability.   

Although the RMSE and the RPS suggest that forecasts of natural gas gross 

withdrawals from the VAR(5) is the best forecasting model among the four models, 

results for the entire system differ.  With only one variables considered, the AR(6) 

model is sometimes indicated having “best” forecasting performance.  Univariate 

models, however, generally do not provide sufficient information for policy 

implementation, as they cannot explicitly capture the relationships among variables 

(Bessler and Kling 1986).    

Consistent with literature (Stock and Watson 2002, 2009; Moench 2008; 

Zagaglia 2010; Breitung and Eickmeier 2011), it appears that factor models provide 

useful information for forecasting.  Two smallest Bias2 and two largest covariances 

belong to the natural gas gross withdrawals forecasts from the FAVAR(5F) and the 

FAVAR(10F) models.  Moreover, the RMSE on the FAVAR(5F) and FAVAR(10F) 
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systems are the smallest and the second smallest.  Nevertheless, including too many 

factors may lower forecasting performance.  The FAVAR(10F) always yields the largest 

RMSE, Brier score, and RPS on the forecast of natural gas gross withdrawals.  Including 

five factors appears to sufficiently explain the dynamics of the U.S. energy system.  This 

is most likely because the relationships contained in factors 6 to 10 are already captured 

in factors 1 to 5.  R-squared values from regressing factors 6 to 10 on each variable are 

generally smaller relative to R-squared values from regressing factors 1 to 5 on each 

variable.  Thus, probabilistic forecasting performance appears to be affected by the 

number of estimated factors; including estimated factor results in better probabilistic 

forecasts but including too many estimated factors tends to worsen probabilistic 

forecasts.   
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CHAPTER VI 

CONCLUSIONS AND DISCUSSION 

 

Natural gas, an essential energy source in the U.S., is increasing in importance.  

Technological advances have been transforming the natural gas sector by increasing 

economically feasible production.  Natural gas prices have been steadily decreasing 

since reaching their peak in 2003, leading to increased consumption.  Have the dynamics 

of this sector changed as a result?  

Issues generally ignored in literature are addressed in this dissertation.  Studies 

about energy price and/or energy activity relationships are commonly conducted 

assuming that the relationships are constant over time (Serletis and Rangel-Ruiz 2004; 

Park, Mjelde, and Bessler 2008; Olsen, Mjelde, and Bessler 2014).  There, however, are 

economic or energy events that may affect the economic dynamics and relationships.  

Economic viability of technological advances, for example, improvements in offshore 

drilling ability have increased well depth.  Furthermore, the development from 

traditional vertical drilling to horizontal drilling are continuously evolving.  A relatively 

recent technology in terms of economic viability is the fracking phenomenon that could 

possibly be inducing structural changes in the energy sector.  A few recent studies 

(Mohammadi 2011; Lin and Wesseh 2013; Wakamatsu and Aruga 2013; Apergis, 

Bowden, and Payne 2015) have found breaks induced by the implementation of 

regulatory reform, oil shortage, financial crisis, and shale gas revolution.  Moreover, 

because of limitations of empirical models in considering a large data set, the scopes of 
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time series energy studies are usually restricted such that either variables from only a 

specific sub-sector or a couple selected variables from assorted sub-sectors are 

considered.  In the time series literature, there exist few studies focusing on the entire 

energy system interacting with the economy. 

Failure to consider structural changes brought about by technology and 

regulatory changes may lead to misleading inferences from any modeling exercise 

(Breitung and Eickmeier 2011; Chen, Dolado, and Gonzalo 2014).  Tests for parameter 

constancy are implemented to investigate the potential existence of structural changes in 

long-run daily pricing relationships in the natural gas sector using the cointegrated 

(VAR) models introduced by Hansen and Johansen (1999).  The presence of structural 

changes sheds some light on why previous studies may have conflicting results in natural 

gas pricing relationships.  Altering pricing relationships (prices and transaction costs) as 

the results of structural changes may influence natural gas trading and transportation.  

Stakeholders in natural gas policy and infrastructure, such as pipeline systems, need to 

be aware of such changes.  As such, results of the studies presented here should be of 

interest not only to those interested in energy markets from traders to policy makers, but 

also researchers interested in modeling energy issues, market structural changes, and 

time series analysis.   

The potential presence of structural breaks in natural gas pricing relationships 

lead to the question how incorporating or ignoring the breaks affect the forecasting 

ability of a forecasting system.  Under many circumstances, ignoring structural breaks 

may worsen forecasting ability of a model (Stock and Watson 2002; Banerjee, 
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Marcellino, and Masten 2008).  Allowing for uncertainty and time-varying parameters, 

the prequential approach introduced by Dawid (1987) is applied to probabilistically 

forecast natural gas returns.  Unlike point forecasts, probabilistic forecasts can capture 

information related to uncertainty of unknown events.   

Besides influencing the natural gas sector, technological and regulatory changes 

in the natural gas sector may influence the entire U.S. energy system.  The factor-

augmented vector autoregressive (FAVAR) method is an attractive methodology to 

examine the U.S. energy sector because of the large amount of information in this sector 

and its interactions with the macro-economy (Zagaglia 2010).   Utilizing a data-rich 

environment, the FAVAR model is implemented to explore U.S. energy dynamics.  One 

issue that arises in FAVAR methodology is the number of factors to include; different 

criteria suggest different numbers of factors.  Besides the energy dynamics contributions, 

this study makes a methodology contribution by examining how the number of factors 

included affects the estimated U.S. energy dynamics and forecasting ability. 

Dynamics in Daily Natural Gas Pricing  

To investigate the possible existence of structural changes with unknown break points 

among North America natural gas spot markets, tests for parameter constancy in a 

cointegrated VAR model introduced by Hansen and Johansen (1999) are employed.  The 

idea of the tests is to compare if the long-run relationship parameters recursively 

estimated by day from a vector error correction model differ from the parameters 

estimated for the entire data period.  This methodology is applied to eight daily natural 
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gas markets located throughout the U.S. (Chicago, Dominion South Point, Henry Hub, 

Malin, Oneok, Opal, and Waha Hub) and Canada (AECO Hub). 

Test results suggest that long-run pricing relationships among the eight natural 

gas spot markets in the North America are not constant over the period of 1994 to 2014.  

Two potential points of structural changes are found, one during 2000 and the other in 

2009.  The structural change occurring around 2000 is probably induced by high natural 

gas prices and volatility in prices, the U.S. Federal Energy Regulatory Commission 

(FERC) Order No. 637 (which involves removing some pipeline price ceilings), and 

changes in imports.  The likely major contributing factor to the break occurring around 

2009 is the shale gas revolution.  

As expected, in general, regulatory agencies are able to alter markets.  

Specifically, it appears FERC with its policies can and does alter the natural gas sector.  

However, not only was there a major FERC order in 2000, but also there were a 

multitude of major events that impacted the natural gas sector around this time.  It is 

shown that more transitory events such as weather shocks can alter relationships but 

these alterations are short lived.  The break occurring around 2000 was longer lived than 

the breaks associated with a weather shock, implying that time is necessary for the 

markets to learn and respond to regulatory changes. !

Based on the possible existence of structural shifts, the data is divided into three 

sub-periods to investigate price dynamics.  The first sub-period (May 1994 – September 

2000) is the phase that the natural gas industry was maturing and becoming competitive 

as a result of the development of natural gas trading hubs and natural gas spot, term, and 
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derivatives markets (Joskow 2013).  The second sub-period (October 2000 – December 

2009) is the phase that the U.S. natural gas sector was more import-intensive; ratios of 

U.S. natural gas imports to U.S. dry natural gas production are high relative to other 

periods (Joskow 2013; U.S. EIA 2015d, 2015h).  Natural gas prices are relatively high 

and volatile during this period.  In the third sub-period (January 2010 – October 2014), 

the natural gas industry becomes less import-reliance as the result of shale gas bloom 

(U.S. EIA 2014b). !

Each individual market’s role in price discovery differs in the three sub-periods; 

markets that were important for price discovery may be less important as a result of 

changes in the industry.  Such information is helpful to energy traders.  Because of the 

shale gas revolution, excess demand regions become excess supply regions; in response 

to such conversions, adjusting and expanding existing pipeline systems and constructing 

new systems to be bidirectional may improve transportation in the natural gas industry.   

From an academic standpoint, inconsistent results in the literature, such as 

importance of markets in pricing relationships and whether there exists an east-west split 

in North America natural gas markets or not, are possibly the result of not only different 

methodologies employed and markets included, but also the time period of the data 

considered.  Rather than considering data with long periods of time, researchers should 

realize when a structural break occurs and use an appropriate time period of data set to 

obtain appropriate inferences.  

Because of the potential presence of structural breaks, the prequential forecasting 

approach introduced by Dawid (1984) is applied to determine whether and how the 
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presence of structural breaks affects the performance of out-of-sample probability 

forecasting of natural gas returns.  Vector autoregressive (VAR) models are estimated 

for three in-sample periods: (1) full model - May 4, 1994 to October 31, 2014; (2) two-

period model - October 2, 2000 to October 31, 2014; and (3) recent model - January 1, 

2010 to October 31, 2014.  Calibration measures, root mean-squared error, the Brier 

score and its decompositions, and the ranked probability score are applied to evaluate 

out-of-sample forecasts (November 3, 2014 to April 30, 2015).  Regardless of the model 

(or the data used), Henry Hub and AECO Hub are either the first or second easiest 

markets to forecast; whereas, Dominion South and Chicago are either the hardest or 

second hardest markets to forecast in terms of RMSE and the scoring rules.  In terms of 

the Brier score’s partition, the covariance between the forecast and the observed 

outcome is the best indicator of forecasting ability.  Individually, Dominion South, 

Chicago, and Waha Hub returns are easier to predict when using the full, two-period, 

and recent models.  Returns in Malin appear to be more difficult to predict, irrespective 

the model.   

Considering different in-sample data results in different probability forecasts.  

Prequential analysis indicates that models that produce better forecasts are the two-

period and full models, which incorporate a larger set of in-sample data, covering one 

and two break points.  It appears that the existence of the structural changes does not 

affect the prequential forecasts; this is probably because the application of the Kalman 

filter is applied to address the issue of time-varying parameters.  As a caution for future 
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prequential studies, probabilistic forecasting performance may be poor if the presence of 

structural breaks and the application of the Kalman filter are ignored.   

Transaction Costs 

The presence of threshold cointegration between market pairs before and after structural 

changes in the long-term pricing relationship among the North America natural gas spot 

markets are examined.  Based on the structural changes occurring around 2000 and 2009 

and the forecasting results, two subsamples of data are considered; the first subsample 

covers the period of October 2, 2000 to December 31, 2009 and the second subsample 

covers the period of January 1, 2010 to October 31, 2014.  Threshold values of each 

market-pair during the period of October 2, 2000 to December 31, 2009 differ from what 

is observed for the period of January 1, 2010 to October 31, 2014.  Threshold bands of 

AECO Hub-Henry Hub, Malin-Henry Hub, Oneok-Henry Hub, Opal-Henry Hub, and 

Waha Hub-Henry Hub become narrower in the latter period; whereas, threshold bands of 

Chicago-Henry Hub and Dominion South-Henry Hub become wider.   

As threshold intervals may be induced by transaction costs (including 

transportation costs), the narrower (wider) intervals likely suggest the smaller (larger) 

transaction costs.  Changes in transaction costs between market pairs are most likely the 

result of changes in natural gas flows, which are the consequence of the structural 

change associated with the shale gas bloom.  Changes in natural gas flows may be a 

signal that the industry needs to consider modifying and/or improving the pipeline 

system.  In addition, lower/ higher transaction costs probably influence natural gas 
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traders’ decisions.  Smaller (Larger) transaction costs potentially lead to more (less) 

natural gas trading between hubs. 

Dynamics in the U.S. Energy Sector 

To investigate whether and how the number of unobservable components from a data-

rich model influences inferences from and probabilistic forecasting performance of 

various models, a factor-augmented vector autoregressive (FAVAR) approach, proposed 

by Bernanke, Boivin, and Eliasz (2005), is employed to characterize unobservable 

components.  Innovation accounting analyses are applied to discover dynamic 

inferences.  Then, the prequential forecasting approach is applied to evaluate predictive 

distributions for out-of-sample data.  The structural breaks found in the daily natural gas 

pricing are not found in the monthly data rich factors using the methodology developed 

by Han and Inoue (2015).  Two FAVAR models differing in their number of factors 

(five and ten factors), based on the range of optimal number of factors derived from Bai 

and Ng’s (2002) criteria, are compared along with a five variable vector autoregressive 

(VAR) and a univariate model. 

Based on innovation accounting analysis, inferences appear to be minimally 

affected by the number of estimated factors.  Dynamic responses of the first five factors 

and natural gas gross withdrawals of the FAVAR model with 10 factors are slightly 

different from dynamic responses of the FAVAR model with five factors.  These finding 

are in line with Bernanke, Boivin, and Eliasz’s (2005) finding that increasing the number 

of factors does not substantially alter dynamic response results.   
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Consistent with literature (Stock and Watson 2002, 2009; Moench 2008; 

Zagaglia 2010; Breitung and Eickmeier 2011), it appears that factor models provide 

useful information in forecasting.  Two smallest Bias2 and two largest covariance terms 

on the natural gas gross withdrawals forecasts are from the FAVAR(5F) and 

FAVAR(10F) models.  Moreover, the RMSE on the two FAVAR systems are the 

smallest and the second smallest.  These imply that the probabilistic forecasting 

performance is affected by the number of estimated factors.  Using estimated factor 

results in better probabilistic forecasts but including too many estimated factors tends to 

worsen probabilistic forecasts.  When issues of parsimony and appropriateness arise, 

building a data-rich FAVAR model with parsimony factors tends to be more desirable.   

Limitations and Further Research 

It should be noted that inferences in this dissertation must be viewed in light of the 

studies’ limitations.  In Chapter II, the data used appears to be non-Gaussian but the tests 

for parameter constancy in the cointegrated VAR model are based on the assumption of 

Gaussian error terms.  The robustness of tests for parameter constancy in the co-

integrated VAR model under the assumption of Gaussian data when applying non-

Gaussian data is left for future research.  Moreover, any break dates is left at the 

direction of the analyst to decide when applying Hansen and Johansen’s (1999) tests to 

detect the structural changes.  The advent of formal tests for structural break dates in the 

cointegrated VAR model would be a contribution to the literature in long-run 

relationships and structural changes.  Besides, AECO Hub is considered in Chapter II to 

represent Canada; however, it provides limited information to the system of pricing 



 

 192 

dynamics.  Including other markets in Canada may provide a fuller picture of the natural 

gas market.  Inclusion of additional markets, however, comes at a large cost in time 

series methods. 

The issue of the number of in-sample observations arises in Chapter III.  It was 

expected that the model in which no structural shifts occurring during the period of in-

sample data used would yield the best probability forecasts among the three models.  

The model, which incorporates smallest data period, however, has a poorer forecasting 

performance than the other two models, which incorporate data sets that include periods 

of structural breaks.  Does the number of in-sample observations matter in forecasting 

performance?  Addressing this question is left for further studies.  

The AECO Canadian natural gas spot market is included but the price at this 

market is converted to U.S. dollars.  A study considering potential effect of exchange 

rates and using Canadian currency is left for future research. 

 Physical trading between some natural gas hubs, for example, AECO Hub, Henry 

Hub, and other markets located between these two hubs may not occur, because of 

transportation constraints.  Examining transaction costs between natural gas market 

centers where only physical trading occurs is left for future studies.  Further, it is 

recommended to pair markets based on the information of the major natural gas 

transportation corridors.  Consistent long periods of daily pipeline data are difficult to 

obtain.  Besides, the development of threshold cointegration models in which both 

threshold values and threshold intervals vary across time would provide a contribution in 

transaction costs’ studies. 
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Structural changes in the dynamics of the natural gas pricing system are found 

but these structural changes did not appear in dynamics of the U.S. energy system.  

Whether the frequency of data considered or methodologies used to inspect structural 

changes causes such inconsistency is left for further research.  Moreover, to broaden 

understandings of the U.S. energy dynamics, observable measures of economic activity 

and prices such as crude oil production, electricity net generation, Henry Hub natural gas 

spot price, NYMEX natural gas futures price, may be incorporated, along with or in 

place with natural gas gross withdrawals. 

All impulse response functions presented in this dissertation are point estimates.  

Confidence intervals for impulse responses could be reported to capture the uncertainty 

in the results.  In addition, test statistics on probability forecasts from different models 

are close; as such, it is difficult to determine which models provide better forecasts.  

Developing formal tests on whether these statistics are significantly different is left a 

suggestion for future studies.   
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The following descriptions are taken verbatim from the Bloomberg Professional Service 
(2014) 
 
Spot Natural Gas Price/AECO C Hub (NGCAAECO)   
Tickers such as this in {ALLX NGCA <GO>} represent Canadian spot natural gas 
prices in U.S. dollars per million Btu. Corresponding prices in Canadian dollars per 
gigajoule for many of these prices can be found at {ALLX NGCD <GO>}. Natural gas 
at EnCana Corp.'s AECO C Hub in Alberta where TransCanada Pipeline's Alberta 
system, also known as Nova Gas Transmission, connects to Foothills Pipeline and 
Alberta Natural Gas. Prices converted from Canadian to U.S. dollars. 
 
Mid-Continent Natural Gas Spot Price/Chicago City Gate (NAGANGPL) 
Natural gas delivered to Chicago utilities including Nicor, Peoples Gas Light & Coke, 
Northern Indiana Public Service (NIPSCO). Major pipelines providing deliveries include 
NGPL, Alliance and ANR. 
 
Dominion South Point Natural Gas Spot Price  (NGNECNGO) 
Natural gas at Dominion Transmission's South Point pool, which runs through parts of 
Ohio, Pennsylvania, and West Virginia on two separate lines. Major pricing locations in 
the pool are at the Lebanon, Ohio, interconnect with ANR Pipeline and the Oakford, 
Pennsylvania, storage facility. Bloomberg priced those two locations separately until 
Sept. 22, 2004 when the ticker for Lebanon was discontinued. The Oakford ticker was 
used for the consolidated South Point price. 
 
Henry Hub (NGUSHHUB) 
Please note that prices are no longer updated intraday.  Prices are end-of-day. Starts Jan. 
25, 1991 with weekly changes, moves to daily updates on March 10, 1994. Natural gas 
for next-day delivery at the Henry Hub, the benchmark U.S. pricing point and delivery 
point for New York Mercantile Exchange futures. The Henry Hub is operated by Sabine 
Pipe Line LLC and located in Erath, Louisiana. The hub has interconnects with Gulf 
South, Sonat, NGPL, Texas Eastern, Sabine, Columbia Gulf, Transco, Trunkline, 
Jefferson Island and Acadian Gas. To see older data please go to HP and change the 
Source to BGAP. 
 
Gas Transmission Northwest Malin Oregon Spot Natural Gas Price (NGWCPGSP)  
Natural gas delivered into PG&E's California Gas Transmission from TransCanada's Gas 
Transmission Northwest at their Malin, Oregon interconnect near the Oregon-California 
border. 
 
Oneok Gas Transportation OGT Natural Gas Spot Price (NTGSOKON) 
Natural gas delivered into Oneok Gas Transportation's intrastate pipeline in Oklahoma. 
Oneok, or OGT, was previously known as ONG Transmission and traders still often 
refer to the pipeline by that name. 
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Rocky Mountain Natural Gas Spot Price/Kern River Opal Wyoming 
(NGRMKERN) 
Natural gas at the Opal, Wyoming, processing plant and Muddy Creek compressor 
station in southwestern Wyoming where Kern River pipeline connects with Northwest 
Pipeline, Questar Pipeline, and Colorado Interstate Gas. 
 
Natural Gas Waha Hub Spot Price (NGTXOASI) 
Deliveries into intrastate and interstate pipelines near the Waha, Texas header system. 
Pipelines with interconnects near Waha include Oasis, Lone Star, Delhi, El Paso Natural 
Gas, Transwestern, NGPL and Northern Natural. 
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Table B.1. Augmented Dickey-Fuller (ADF) and Kwiatkowski-Philips-Schmidt-Shin (KPSS) Test Statistics of Eight 
Natural Gas Spot Prices in the Natural Logarithms for Each Sub-Period 

Price Series 
ADF KPSS ADF KPSS ADF KPSS 

t-Stat Lag LM-Stat Bandwidth t-Stat Lag LM-Stat Bandwidth t-Stat Lag LM-Stat Bandwidth 
First Sub-Period Second Sub-Period Third Sub-Period 

Test in Level Test in Level Test in Level 
AECO Hub -1.2691 4 3.5719 32 -2.5797 2 1.5425 39 -3.5097 0 0.5890 29 
Chicago -2.7112 6 1.3266 32 -2.8717 2 1.4469 39 -2.8474 17 0.5324 29 
Dominion South -3.0740 1 1.15097 32 -2.6529 3 1.4842 39 -2.6445 15 1.2519 29 
Henry Hub -2.4714 2 1.6783 32 -2.6032 2 1.5293 39 -2.8248 2 0.6706 29 
Malin -1.7557 2 3.1405 32 -3.1826 10 0.9357 39 -3.3492 3 0.6193 29 
Oneok -1.8692 5 2.3805 32 -3.0795 10 1.0429 39 -3.8175 2 0.6242 29 
Opal -2.3996 1 3.0527 32 -3.5530 7 0.8975 39 -3.4813 3 0.5560 29 
Waha Hub -2.3850 3 2.3978 32 -3.0890 10 1.2055 39 -3.6006 4 0.6431 29 

Test in First Difference Test in First Difference Test in First Difference 
AECO Hub -26.3915 3 0.1868 37 -43.2179 1 0.0336 21 -23.7516 2 0.1198 39 
Chicago -20.8860 7 0.1825 347 -40.6725 1 0.0385 35 -10.3670 16 0.0188 2 
Dominion South -22.8337 4 0.0716 38 -35.5044 2 0.0300 21 -8.1350 14 0.0637 30 
Henry Hub -31.9556 1 0.0750 15 -40.8216 1 0.0367 24 -31.3230 1 0.1320 29 
Malin -32.0032 1 0.1385 32 -15.8705 9 0.0344 39 -22.7060 3 0.1366 59 
Oneok -23.0913 4 0.1012 46 -16.0367 9 0.0385 45 -33.7464 1 0.0973 50 
Opal -28.9428 1 0.1029 18 -24.7092 6 0.0384 117 -27.2281 2 0.1017 48 
Waha Hub -29.8175 2 0.1091 56 -13.2521 14 0.0423 53 -24.0708 3 0.1159 60 
Note: Under the null hypothesis of non-stationarity (unit root), the ADF test critical value at 1% level is -3.430; the null is 
rejected when t-Stat is less than the critical value.  Under the null hypothesis of stationarity, the KPSS test critical value at 1% 
level is 0.739; the null is rejected when LM-stat is greater than the critical value.  Lag (k) is selected from 0 to 20 based on 
Schwarz information criteria.  Bandwidth is estimated using the Newey-West (1994) method. 
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Table B.2. Forecast Error Variance Decompositions of Eight Natural Gas Spot 
Prices Using the Entire Period (May 3, 1994 - October 31, 2014) 

Horizon AECO Chicago 
Dominion 

South 
Henry 

Hub Malin Oneok Opal 
Waha 

Hub 
AECO 

1 68.16 0.72 0.00 22.66 4.62 3.85 0.00 0.00 
5 61.01 0.72 0.37 25.60 8.08 3.97 0.06 0.19 
10 58.36 0.42 0.38 26.75 9.63 4.21 0.05 0.20 

Chicago 
1 0.00 62.16 0.00 37.84 0.00 0.00 0.00 0.00 
5 0.64 45.81 0.09 51.94 0.56 0.44 0.08 0.45 
10 1.21 34.95 0.07 61.59 0.84 0.53 0.11 0.70 

Dominion South 
1 0.00 1.85 43.83 54.32 0.00 0.00 0.00 0.00 
5 0.94 3.08 22.10 72.56 0.22 0.20 0.05 0.87 
10 1.47 1.90 19.14 75.68 0.34 0.34 0.03 1.09 

Henry Hub 
1 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 
5 1.74 0.19 0.22 96.61 0.44 0.40 0.04 0.37 
10 2.53 0.12 0.12 95.46 0.67 0.71 0.03 0.37 

Malin 
1 0.00 1.46 0.00 30.57 60.19 7.79 0.00 0.00 
5 1.92 1.01 0.27 31.07 58.55 6.93 0.05 0.21 
10 2.96 0.59 0.25 33.18 55.65 7.17 0.05 0.15 

Oneok 
1 0.00 7.73 0.00 51.02 0.00 41.25 0.00 0.00 
5 0.93 6.65 0.26 59.24 0.82 31.79 0.13 0.20 
10 1.58 4.68 0.20 61.99 1.21 30.01 0.13 0.20 

Opal 
1 0.00 0.20 0.00 4.10 8.07 1.04 86.59 0.00 
5 1.36 0.39 0.37 10.73 11.58 4.38 70.79 0.40 
10 2.00 0.28 0.42 12.33 12.96 4.85 66.37 0.80 

Waha Hub 
1 0.00 2.87 0.00 58.62 0.98 15.30 0.00 22.23 
5 1.42 3.57 0.35 67.63 2.01 16.35 0.08 8.59 
10 2.22 2.43 0.29 69.96 2.37 17.16 0.07 5.51 
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Figure B.1. Plots of sup !"#  for the entire period (May 3, 1994 to October 31, 2014) with exogenous variables (daily 
degree-days) 
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Figure B.2. Contemporaneous casual flows for the entire period (May 3, 1994 - 
October 31, 2014) 
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Figure B.3. Impulse response functions of eight natural gas spot prices for the entire period (May 3, 1994 - October 31, 
2014) 
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APPENDIX C  

LIST OF DATA CONSIDERED IN CHAPTER V 
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Table C.1.  List of Variables considered with Their Transformation and Source 

Name Transformation Source 
Observable Variable 

1. U.S. Natural Gas Gross Withdrawals (MMcf) dln U.S. EIA 
Carbon Dioxide Emissions

2. Petroleum Coke CO2 Emissions (Million Metric Tons of Carbon
Dioxide)*

ln U.S. EIA 

3. Residual Fuel Oil CO2 Emissions (Million Metric Tons of Carbon
Dioxide)*

ln U.S. EIA 

4. Other Petroleum Products CO2 Emissions (Million Metric Tons of
Carbon Dioxide)*

ln U.S. EIA 

5. Coal, Including Coal Coke Net Imports, CO2 Emissions (Million Metric
Tons of Carbon Dioxide)*

ln U.S. EIA 

6. Natural Gas, Excluding Supplemental Gaseous Fuels, CO2 Emissions
(Million Metric Tons of Carbon Dioxide)*

ln U.S. EIA 

7. Aviation Gasoline CO2 Emissions (Million Metric Tons of Carbon
Dioxide)*

ln U.S. EIA 

8. Distillate Fuel Oil, Excluding Biodiesel, CO2 Emissions (Million Metric
Tons of Carbon Dioxide)*

ln U.S. EIA 

9. Jet Fuel CO2 Emissions (Million Metric Tons of Carbon Dioxide)* ln U.S. EIA 
10. Kerosene CO2 Emissions (Million Metric Tons of Carbon Dioxide)* ln U.S. EIA 
11. LPG CO2 Emissions (Million Metric Tons of Carbon Dioxide)* ln U.S. EIA 
12. Lubricants CO2 Emissions (Million Metric Tons of Carbon Dioxide)* ln U.S. EIA 
13. Motor Gasoline, Excluding Ethanol, CO2 Emissions (Million Metric

Tons of Carbon Dioxide)*
ln U.S. EIA 
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Coal Consumption 
14. Coal Imports (Thousand Short Tons)* dln U.S. EIA 
15. Coal Consumption for Electricity Generation, All Sectors (Thousand

Short Tons)*
ln U.S. EIA 

16. Coal Consumption (Quadrillion Btu)* dln U.S. EIA 
Coal Prices

17. Bloomberg Mid Sulfur Illinois Basin Coal Spot Price Fob* dln Bloomberg L.P. 
18. Bloomberg Low Sulfur Compliance Coal Spot Price/Big Sandy Barge

Fob*
ln Bloomberg L.P. 

19. Bloomberg Pennsylvania Railcar Seam Coal Spot Price Fob* dln Bloomberg L.P. 
20. Bloomberg 1% Sulfur Coal Spot Price Fob/Utah Colorado* dln Bloomberg L.P. 
21. Bloomberg Powder River Basin 8800 Btu Coal Spot Price Fob/Gillette

Wyoming*
dln Bloomberg L.P. 

22. Cost of Coal Receipts at Electric Generating Plants (Dollars per Million
Btu, Including Taxes)*

dln U.S. EIA 

Coal Production
23. Coal Exports (Thousand Short Tons)* ln U.S. EIA 
24. Coal Production (Quadrillion Btu)* dln U.S. EIA 

Coal Stocks
25. Coal Stocks, Producers and Distributors (Thousand Short Tons)* dln U.S. EIA 
26. Coal Stocks, End-Use Sectors Total (Thousand Short Tons)* dln U.S. EIA 
27. Coal Stocks, Electric Power Sector (Thousand Short Tons)* dln U.S. EIA 

Crude Oil and Petroleum Product Consumption
28. Distillate Fuel Oil Consumption for Electricity Generation, All Sectors

(Thousand Barrels)*
ln U.S. EIA 



218 

29. Residual Fuel Oil Consumption for Electricity Generation, All Sectors
(Thousand Barrels)*

ln U.S. EIA 

30. Other Petroleum Liquids Consumption for Electricity Generation, All
Sectors (Thousand Barrels)*

ln U.S. EIA 

31. Petroleum Coke Consumption for Electricity Generation, All Sectors
(Thousand Short Tons)*

ln U.S. EIA 

32. Petroleum Consumption (Excluding Biofuels) (Quadrillion Btu)* dln U.S. EIA 
33. U.S. Imports of Crude Oil (Thousand Barrels)* ln U.S. EIA 
34. U.S. Imports of Gasoline Blending Components (Thousand Barrels)* ln U.S. EIA 
35. U.S. Imports of Finished Motor Gasoline (Thousand Barrels)* ln U.S. EIA 
36. U.S. Imports of Distillate Fuel Oil (Thousand Barrels)* dln U.S. EIA 
37. U.S. Imports of Residual Fuel Oil (Thousand Barrels)* dln U.S. EIA 
38. U.S. Imports of Petroleum Coke (Thousand Barrels)* dln U.S. EIA 

Crude Oil and Petroleum Product Prices
39. Europe Brent Spot Price FOB (Dollars per Barrel)* dln U.S. EIA 
40. New York Harbor Conventional Gasoline Regular Spot Price FOB

(Dollars per Gallon)*
dln U.S. EIA 

41. U.S. Gulf Coast Conventional Gasoline Regular Spot Price FOB
(Dollars per Gallon)*

dln U.S. EIA 

42. New York Harbor No. 2 Heating Oil Spot Price FOB (Dollars per
Gallon)*

dln U.S. EIA 

43. U.S. Gulf Coast Kerosene-Type Jet Fuel Spot Price FOB (Dollars per
Gallon)*

dln U.S. EIA 

44. Cushing, OK Crude Oil Future Contract 1 (Dollars per Barrel)* dln U.S. EIA 
45. Cushing, OK Crude Oil Future Contract 2 (Dollars per Barrel)* dln U.S. EIA 
46. Cushing, OK Crude Oil Future Contract 3 (Dollars per Barrel)* dln U.S. EIA 
47. Cushing, OK Crude Oil Future Contract 4 (Dollars per Barrel)* dln U.S. EIA 
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48. New York Harbor No. 2 Heating Oil Future Contract 1 (Dollars per 
Gallon)* 

dln U.S. EIA 

49. New York Harbor No. 2 Heating Oil Future Contract 2 (Dollars per 
Gallon)* 

dln U.S. EIA 

50. New York Harbor No. 2 Heating Oil Future Contract 3 (Dollars per 
Gallon)* 

dln U.S. EIA 

51. New York Harbor No. 2 Heating Oil Future Contract 4 (Dollars per 
Gallon)* 

dln U.S. EIA 

52. Cushing, OK WTI Spot Price FOB (Dollars per Barrel)* dln U.S. EIA 
53. Cost of Distillate Fuel Receipts at Electric Generating Plants (Dollars 

per Million Btu, Including Taxes)* 
dln U.S. EIA 

54. Cost of Residual Fuel Receipts at Electric Generating Plants (Dollars per 
Million Btu, Including Taxes)* 

dln U.S. EIA 

55. Costs of Petroleum Coke Receipts at Electric Generating Plants (Dollars 
per Million Btu, Including Taxes)* 

dln U.S. EIA 

 Crude Oil and Petroleum Product Production   
56. Crude Oil Production, Total OPEC (Thousand Barrels per Day)* dln U.S. EIA 
57. U.S. Exports of Crude Oil (Thousand Barrels)* ln U.S. EIA 
58. U.S. Exports of Gasoline Blending Components (Thousand Barrels)* dln U.S. EIA 
59. U.S. Exports of Finished Motor Gasoline (Thousand Barrels)* ln U.S. EIA 
60. U.S. Exports of Distillate Fuel Oil (Thousand Barrels)* ln U.S. EIA 
61. U.S. Exports of Residual Fuel Oil (Thousand Barrels)* ln U.S. EIA 
62. U.S. Exports of Petroleum Coke (Thousand Barrels)* ln U.S. EIA 
63. Active Well Service Rig Count (Number of Rigs)* ln U.S. EIA 
64. Crude Oil Rotary Rigs in Operation (Number of Rigs)* dln U.S. EIA 
65. Crude Oil Production (Quadrillion Btu)* dln U.S. EIA 
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Crude Oil and Petroleum Product Stocks 
66. U.S. Ending Stocks of Crude Oil (Thousand Barrels)* dln U.S. EIA 
67. U.S. Ending Stocks of Total Gasoline (Thousand Barrels)* ln U.S. EIA 
68. U.S. Ending Stocks of Gasoline Blending Components (Thousand

Barrels)*
ln U.S. EIA 

69. U.S. Ending Stocks of Fuel Ethanol (Thousand Barrels)* dln U.S. EIA 
70. U.S. Ending Stocks of Distillate Fuel Oil (Thousand Barrels)* dln U.S. EIA 
71. U.S. Ending Stocks of Residual Fuel Oil (Thousand Barrels)* ln U.S. EIA 

Electricity Consumption
72. Electricity Retail Sales to the Residential Sector (Million

Kilowatthours)*
ln U.S. EIA 

73. Electricity Retail Sales to the Commercial Sector (Million
Kilowatthours)*

ln U.S. EIA 

74. Electricity Retail Sales to the Industrial Sector (Million Kilowatthours)* ln U.S. EIA 
75. Electricity Retail Sales to the Transportation Sector (Million

Kilowatthours)*
dln U.S. EIA 

76. Electricity Direct Use (Million Kilowatthours)* dln U.S. EIA 
77. Nuclear Electric Power Consumption (Quadrillion Btu)* ln U.S. EIA 

Electricity Net generation
78. Electricity Net Generation From Geothermal, All Sectors (Million

Kilowatthours)*
ln U.S. EIA 

79. Electricity Net Generation From Solar/PV, All Sectors (Million
Kilowatthours)*

ln U.S. EIA 

80. Electricity Net Generation From Wind, All Sectors (Million
Kilowatthours)*

ln U.S. EIA 

81. Electricity Net Generation From Coal, All Sectors (Million
Kilowatthours)*

ln U.S. EIA 
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82. Electricity Net Generation From Petroleum, All Sectors (Million
Kilowatthours)*

ln U.S. EIA 

83. Electricity Net Generation From Natural Gas, All Sectors (Million
Kilowatthours)*

ln U.S. EIA 

84. Electricity Net Generation From Other Gases, All Sectors (Million
Kilowatthours)*

ln U.S. EIA 

85. Electricity Net Generation From Nuclear Electric Power, All Sectors
(Million Kilowatthours)*

ln U.S. EIA 

86. Electricity Net Generation From Conventional Hydroelectric Power, All
Sectors (Million Kilowatthours)*

ln U.S. EIA 

87. Electricity Net Generation From Wood, All Sectors (Million
Kilowatthours)*

ln U.S. EIA 

88. Electricity Net Generation From Waste, All Sectors (Million
Kilowatthours)*

ln U.S. EIA 

89. Other Consumption for Electricity Generation, All Sectors (Trillion
Btu)*

ln U.S. EIA 

90. Other Gases Consumption for Electricity Generation, All Sectors
(Trillion Btu)*

dln U.S. EIA 

91. Nuclear Electric Power Production (Quadrillion Btu)* ln U.S. EIA 
Electricity Prices

92. Wholesale electricity spot price- Mid-C ln Bloomberg L.P. 
93. Wholesale electricity spot price- Southwest- Pola Verde ln Bloomberg L.P. 
94. Wholesale electricity spot price- Northern California (NP15) ln Bloomberg L.P. 
95. Average Retail Price of Electricity, Commercial (Cents per

Kilowatthour,  Including Taxes)*
ln U.S. EIA 

96. Average Retail Price of Electricity, Industrial (Cents per Kilowatthour,
Including Taxes)*

ln U.S. EIA 
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97. Average Retail Price of Electricity, Residential (Cents per Kilowatthour,  
Including Taxes)* 

ln U.S. EIA 

98. Wholesale electricity spot price - New England Mass Hub ln U.S. EIA 
99. Wholesale electricity spot price - PJM West ln U.S. EIA 
100. Wholesale electricity spot price- Southern California (SP15) ln U.S. EIA 
101. Uranium, u3o8 restricted price, Nuexco exchange spot, US Dollars per 

Pound* 
dln www.indexmundi.co

m 
 Macroeconomic Variables   
102. 1-Year Treasury Constant Maturity Rate (GS1)* dln Federal Reserve 

Bank of St. Louis 
103. 3-Month Treasury Bill: Secondary Market Rate (TB3MS)* dln Federal Reserve 

Bank of St. Louis 
104. Moody's Seasoned Aaa Corporate Bond Yield©* dln Federal Reserve 

Bank of St. Louis 
105. Moody's Seasoned Baa Corporate Bond Yield©* dln Federal Reserve 

Bank of St. Louis 
106. Consumer Price Index for All Urban Consumers: All Items 

(CPIAUCSL)* 
dln Federal Reserve 

Bank of St. Louis 
107. Consumer Price Index for All Urban Consumers: Energy (CPIENGSL)* dln Federal Reserve 

Bank of St. Louis 
108. Consumer Price Index for All Urban Consumers: All Items Less Food & 

Energy (CPILFESL)* 
dln Federal Reserve 

Bank of St. Louis 
109. Canada / U.S. Foreign Exchange Rate (EXCAUS)* dln Federal Reserve 

Bank of St. Louis 
110. U.S. / Euro Foreign Exchange Rate* dln Federal Reserve 

Bank of St. Louis 
111. U.S. / U.K. Foreign Exchange Rate* dln Federal Reserve 

Bank of St. Louis 
112. Effective Federal Funds Rate (FEDFUNDS)* dln Federal Reserve 
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Bank of St. Louis 
113. Monthly Real GDP Index* dln Federal Reserve 

Bank of St. Louis 
114. Industrial Production Index (INDPRO)* dln Federal Reserve 

Bank of St. Louis 
115. New York Stock Exchange Composite Index* dln Federal Reserve 

Bank of St. Louis 
116. Real Disposable Personal Income: Per capita* dln Federal Reserve 

Bank of St. Louis 
117. S&P500 Index - Last Price* dln Federal Reserve 

Bank of St. Louis 
118. S&P500 index - Volumn* dln Federal Reserve 

Bank of St. Louis 
119. Civilian Unemployment Rate (UNRATE)* dln Federal Reserve 

Bank of St. Louis 
Natural Gas Consumption 

120. Natural Gas Consumption for Electricity Generation, All Sectors 
(Billion Cubic Feet)* 

ln U.S. EIA 

121. U.S. Natural Gas Lease and Plant Fuel Consumption (MMcf)* dln U.S. EIA 
122. U.S. Natural Gas Pipeline & Distribution Use (MMcf)* ln U.S. EIA 
123. U.S. Natural Gas Residential Consumption (MMcf)* ln U.S. EIA 
124. Natural Gas Deliveries to Commercial Consumers (Including Vehicle 

Fuel through 1996) in the U.S. (MMcf)* 
ln U.S. EIA 

125. U.S. Natural Gas Industrial Consumption (MMcf)* ln U.S. EIA 
126. U.S. Natural Gas Vehicle Fuel Consumption (MMcf)* dln U.S. EIA 
127. U.S. Natural Gas Deliveries to Electric Power Consumers (MMcf)* ln U.S. EIA 
128. U.S. Liquefied Natural Gas Imports (MMcf)* dln U.S. EIA 
129. U.S. Natural Gas Pipeline Imports (MMcf) dln U.S. EIA 
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130. Natural Gas Consumption (Excluding Supplemental Gaseous Fuels) 
(Quadrillion Btu)* 

ln U.S. EIA 

Natural Gas Prices 
131. Natural Gas Spot Market- Algonquin ln Bloomberg L.P. 
132. Natural Gas Spot Market- AECO ln Bloomberg L.P. 
133. Natural Gas Spot Market- Chicago ln Bloomberg L.P. 
134. Natural Gas Spot Market- Dominion South dln Bloomberg L.P. 
135. Natural Gas Spot Market- Oneok ln Bloomberg L.P. 
136. Natural Gas Spot Market- Waha ln Bloomberg L.P. 
137. Natural Gas Spot Market- Malin ln Bloomberg L.P. 
138. Natural Gas Spot Market- Opal ln Bloomberg L.P. 
139. Natural Gas Spot Market-TETCO M3 ln Bloomberg L.P. 
140. Cost of Natural Gas Receipts at Electric Generating Plants (Dollars per 

Million Btu, Including Taxes)* 
dln U.S. EIA 

141. Natural Gas Futures Contract 1 (Dollars per Million Btu) dln U.S. EIA 
142. Natural Gas Futures Contract 2 (Dollars per Million Btu) dln U.S. EIA 
143. Natural Gas Futures Contract 3 (Dollars per Million Btu) dln U.S. EIA 
144. Natural Gas Futures Contract 4 (Dollars per Million Btu) dln U.S. EIA 
145. U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars 

per Thousand Cubic Feet) 
dln U.S. EIA 

146. U.S. Price of Natural Gas Sold to Commercial Consumers (Dollars per 
Thousand Cubic Feet) 

dln U.S. EIA 

147. United States Natural Gas Industrial Price (Dollars per Thousand Cubic 
Feet) 

dln U.S. EIA 

148. U.S. Natural Gas Citygate Price (Dollars per Thousand Cubic Feet) dln U.S. EIA 
149. Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic 

Feet) 
dln U.S. EIA 
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150. U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand Cubic 
Feet) 

dln U.S. EIA 

151. Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand 
Cubic Feet) 

ln U.S. EIA 

152. Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic 
Feet) 

ln U.S. EIA 

153. Henry Hub Natural Gas Spot Price (Dollars per Million Btu) dln U.S. EIA 
Natural Gas Production 

154. Natural Gas Rotary Rigs in Operation (Number of Rigs)* dln U.S. EIA 
155. Liquefied U.S. Natural Gas Exports (MMcf)* dln U.S. EIA 
156. U.S. Natural Gas Pipeline Exports (MMcf) dln U.S. EIA 
157. Natural Gas Plant Liquids Production (Quadrillion Btu)* dln U.S. EIA 
158. Capacity Utilization % ANR Pipeline Co-Delivery none Velocity Suite 

Online 
159. Capacity Utilization % Columbia Gas Transmission Corp-Delivery none Velocity Suite 

Online 
160. Capacity Utilization % ANR Pipeline Co-Receipt dln Velocity Suite 

Online 
161. Capacity Utilization % Columbia Gas Transmission Corp-Receipt none Velocity Suite 

Online 
Natural Gas Storage 

162. AGA Producing Region Natural Gas Underground Storage Volume 
(MMcf) 

ln U.S. EIA 

163. AGA Eastern Consuming Region Natural Gas Underground Storage 
Volume (MMcf) 

ln U.S. EIA 

164. AGA Western Consuming Region Natural Gas Underground Storage 
Volume (MMcf) 

ln U.S. EIA 

165. Total Natural Gas Underground Storage Capacity (MMcf) dln U.S. EIA 
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Renewable Energy Consumption 
166. Wood Consumption for Electricity Generation, All Sectors (Trillion 

Btu)* 
dln U.S. EIA 

167. Hydroelectric Power Consumption (Quadrillion Btu)* ln U.S. EIA 
168. Geothermal Energy Consumption (Quadrillion Btu)* ln U.S. EIA 
169. Solar/PV Energy Consumption (Quadrillion Btu)* dln U.S. EIA 
170. Wind Energy Consumption (Quadrillion Btu)* ln U.S. EIA 
171. Biomass Energy Consumption (Quadrillion Btu)* ln U.S. EIA 

Renewable Energy Production 
172. Waste Consumption for Electricity Generation, All Sectors (Trillion 

Btu)* 
dln U.S. EIA 

173. Biomass Energy Production (Quadrillion Btu)* dln U.S. EIA 
174. Hydroelectric Power Production (Quadrillion Btu)* dln U.S. EIA 
175. Geothermal Energy Production (Quadrillion Btu)* dln U.S. EIA 
176. Solar/PV Energy Production (Quadrillion Btu)* dln U.S. EIA 
177. Wind Energy Production (Quadrillion Btu)* ln U.S. EIA 

Weather 
178. Cooling Degree Day* ln U.S. EIA 
179. Heating Degree Day* ln U.S. EIA 
Note: The asterisk '*' indicates slow-moving variables.  'ln' refers to natural logarithms.  'dln' refers to first difference 
of natural logarithms.  'none' refers to no transformation.   
Energy-related data are retrieved from the U.S. EIA data browser varying on energy sources and the Velocity Suite 
Online database.   
Data of macroeconomics variables are obtained from the Federal Reserve Bank of St. Louis. 
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APPENDIX D  

SUPPLEMENTARY RESULTS FOR CHAPTER V 
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Table D.1.  Test Statistics on Probability Forecasts from the FAVAR(5F) Model 

Series 
Chi-

Squared 

Root Mean-
Squared 

Error 
Brier 
Score Var(d) MinVar Scat(f) Bias2 Cov(f, d) 

Ranked 
Probability 

Score 
Factor 1 21.3478 0.0311 0.4722 0.5104 0.0364 0.1105 0.0197 0.1025 0.0540 
Factor 2 16.0000 0.0587 0.8912 0.8194 0.0018 0.0580 0.0585 0.0233 0.1447 
Factor 3 18.0000 0.1025 0.9100 0.8646 0.0165 0.1186 0.0215 0.0556 0.1883 
Factor 4 18.0000 0.1115 0.9333 0.8611 0.0015 0.0788 0.0246 0.0164 0.2026 
Factor 5 28.3043 0.0858 1.0086 0.8368 0.0080 0.1622 0.0619 0.0301 0.2140 
Natural Gas Gross 
Withdrawals 10.9130 0.7660 0.8237 0.8819 0.0463 0.1211 0.0184 0.1220 0.1418 
System 

 
0.3218 0.8398 0.8798 0.0321 0.1349 0.0067 0.1068 0.1576 

Note: The null hypothesis of well calibration cannot be rejected if the chi-squared test statistic is less than the 5% critical 
value of χ2(19) =30.144.   
Brier Score = Var(d) + MinVar(f) + Scat(f) + Bias2 – 2Cov(f, d). 
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Table D.2.  Test Statistics on Probability Forecasts from the FAVAR(10F) Model  

Series 
Chi-

Squared 

Root Mean-
Squared 

Error 
Brier 
Score Var(d) MinVar Scat(f) Bias2 Cov(f, d) 

Ranked 
Probability 

Score 
Factor 1 12.6522 0.0384 0.5510 0.5104 0.0102 0.1341 0.0174 0.0606 0.0669 
Factor 2 19.3333 0.0686 0.9526 0.8264 0.0010 0.0796 0.0524 0.0034 0.1623 
Factor 3 43.4545 0.1034 0.9155 0.8576 0.0091 0.1061 0.0270 0.0421 0.1814 
Factor 4 39.8182 0.1347 0.9402 0.8681 0.0080 0.1590 0.0212 0.0580 0.2450 
Factor 5 18.0000 0.0894 1.0478 0.8160 0.0054 0.1769 0.0855 0.0179 0.2288 
Factor 6 14.3913 0.0657 0.8384 0.8368 0.0226 0.1352 0.0604 0.1083 0.1217 
Factor 7 9.1739 0.0754 0.9642 0.8715 0.0007 0.0703 0.0311 0.0047 0.1844 
Factor 8 10.9130 0.0925 0.9552 0.8854 0.0029 0.0537 0.0193 0.0031 0.2168 
Factor 9 11.0000 0.1312 0.9789 0.8819 0.0104 0.1277 0.0386 0.0399 0.2099 
Factor 10 17.8696 0.1160 1.0216 0.8715 0.0040 0.0878 0.0458 -0.0062 0.2465 
Natural Gas Gross 
Withdrawals 25.2727 1.0699 0.9105 0.8819 0.0372 0.1795 0.0211 0.1046 0.1879 
System   0.3353 0.9160 0.8916 0.0140 0.1389 0.0076 0.0680 0.1865 
Note: The null hypothesis of well calibration cannot be rejected if the chi-squared test statistic is less than the 5% critical value of 
χ2(19) =30.144. 
Brier Score = Var(d) + MinVar(f) + Scat(f) + Bias2 – 2Cov(f, d). 
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Table D.3.  Test Statistics on Probability Forecasts from the VAR(5) Model 

Series 
Chi-

Squared 

Root Mean-
Squared 

Error 
Brier 
Score Var(d) MinVar Scat(f) Bias2 Cov(f, d) 

Ranked 
Probability 

Score 
Natural Gas Gross 
Withdrawals 17.6667 0.6956 0.8358 0.8819 0.0265 0.0710 0.0279 0.0858 0.1237 
Henry Hub Natural 
Gas Spot Prices 11.0000 0.7181 0.8893 0.8472 0.0001 0.0047 0.0243 -0.0064 0.1662 
Natural Gas 
Consumption 19.3333 0.4123 0.8423 0.7535 0.0419 0.1909 0.0599 0.1019 0.1754 
WTI Crude Oil  
Spot price 17.8696 0.8369 0.8830 0.8576 0.0023 0.0204 0.0298 0.0136 0.1424 
S&P500 19.3333 0.6431 0.8956 0.8368 0.0001 0.0156 0.0441 0.0006 0.1274 
System 

 
0.6758 0.8692 0.8790 0.0138 0.0734 0.0093 0.0532 0.1470 

Note: The null hypothesis of well calibration cannot be rejected if the chi-squared test statistic is less than the 5% critical value of 
χ2(19) =30.144.  
Brier Score = Var(d) + MinVar(f) + Scat(f) + Bias2 – 2Cov(f, d). 
 
 
 
 
 
 




