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ABSTRACT 

 

 The purpose of this study was to compare the efficacy of different antimicrobial 

interventions: lactic acid, lauric arginate ester, cetylpyridinium chloride or peracetic acid 

applied with either conventional spray or hand-held electrostatic spray to reduce 

populations of Shiga-toxin producing Escherichia coli (STEC).  

 Hot-boned beef outside rounds were inoculated within 1 hour after harvest with a 

cocktail of 8 serotypes of Shiga-toxigenic E. coli  (STEC8).  Outside rounds were chilled 

upon transport back to Texas A&M University, and then hung on flame-sterilized meat 

hooks at 4°C for 36 hours to simulate a contaminated full carcass side in the chiller.  

Then, outside rounds were treated with lactic acid, lauric arginate ester, cetylpyridinium 

chloride, peracetic acid, or water (control) using conventional spray or electrostatic 

spray.  Pre-treatment and post-treatment samples were excised from all rounds to 

evaluate the efficacy of all interventions and the mode with which they were applied. 

 Lactic acid applied with conventional spray achieved the greatest reduction of 

STEC8 populations compared to all other treatments.  In most cases, reductions obtained 

by conventional spray and electrostatic spray were not significantly different. The only 

treatment that differed significantly between conventional spray and electrostatic spray 

was lactic acid.  Among the treatments applied with electrostatic spray, lauric arginate 

ester produced the greatest  reduction of STEC8.  If carcass interventions have similar 

performance between conventional and electrostatic spray, the use of the electrostatic 
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spraying system would be advantageous by saving water and antimicrobial. Spray type 

and intervention must be paired appropriately for optimum beef safety. 
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INTRODUCTION 

 

Among the different virulence groups of Escherichia coli, Enterohemorrhagic E. 

coli (EHEC) has caused the greatest concern due to the severity of resulting disease, 

specifically in young children and the elderly.  This group is also known as Shiga-

toxigenic E. coli (STEC), as it produces Shiga toxins. 

The most commonly studied and recognized serotype of STEC is O157:H7, 

however recently 6 more serotypes have been declared adulterants in non-intact beef 

products.  While hemorrhagic colitis affects mostly adults, HUS is common in children 

infected with EHEC.  Although leafy greens are acquiring relevance as vehicles of 

STEC resulting in foodborne illness outbreaks, beef continues to be the leading food 

associated with STEC infection.  The danger associated with non-intact beef products is 

the inevitable comingling of potentially contaminated meat.  The beef industry has been 

developing and implementing interventions to reduce pathogen presence on carcasses, 

with STEC being the target pathogen.  Extensive work has been done to study the 

efficacy of carcass interventions, including the application of water washes and organic 

acids.  Many beef slaughter facilities traditionally use hot water as well as lactic acid, as 

it is an effective and inexpensive intervention.  Other interventions not frequently used 

in the beef industry include cetylpyridinium chloride, lauric arginate and peracetic acid. 

Traditional spray application methods include either automated spray cabinets or 

hand-held sprayers in smaller scale facilities. Electrostatic spray (ESS) is a novel spray 

application method, which uses less solution while achieving full coverage of the object 
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being sprayed.  This is due to the attraction of negatively charged particles emitted from 

the spray gun to the positively charged object.  Therefore, electrostatic spray is expected 

to reach pathogenic bacteria in hard to reach crevices of the beef surfaces so long as the 

charge permits.  This technology may be beneficial for conservation of resources in the 

beef industry. 

The objective of this study was to compare the efficacy of lactic acid, lauric 

arginate, cetylpyridinium chloride and peracetic acid applied both via conventional spray 

and electrostatic spray.  
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REVIEW OF LITERATURE 

 

Foodborne Illness 

In the United States between 1960 and 2000, the percentage of money spent on 

food outside the home has increased from 20% to over 40% (64).  According to Kant et 

al. (64) the percentage of adult Americans eating outside the home 3 or more times a 

week increased from 36% to 41% between 1987 and 1999.  Demand for fresh, less-

processed foods has also increased.  With factors such as these, foodborne illness 

prevalence has steadily increased over the years.  According to the Centers for Disease 

Control and Prevention (CDC), about 48 million people develop foodborne illness in the 

span of a year.  Of these people, 128,000 are hospitalized with 3,000 resulting in 

fatalities (32).   

There are 31 major pathogens which are known to cause foodborne illness, and 

the rest are identified as unspecified agents which cause 80% of foodborne illnesses 

annually, with 56% resulting in death (31).  The top 5 foodborne pathogens acquired in 

the home resulting in hospitalization are Salmonella, Norovirus, Campylobacter spp., 

Toxoplasma gondii, and Escherichia coli O157 (31).  According to Foodborne Diseases 

Active Surveillance Network (FoodNet) 2013 Annual Report, 19,162 laboratory-

confirmed cases of foodborne illness were identified with 4,276 hospitalizations and 88 

deaths resulting from these illnesses (33).  Two sources of contamination of a food of 

animal origin include primary and secondary contamination.  Primary contamination 

results when the food is contaminated directly from the animal itself, i.e. contamination 
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with fecal matter.  Secondary contamination occurs when some outside source, such as 

humans or other animals come into contact with the food (58).   

Generic and Pathogenic Escherichia coli 

Escherichia coli 

Escherichia coli was first described and isolated from human infant stools by 

Theodor Escherich in 1885 (15).  Although generally a harmless organism of the gut 

microflora, it can also be an opportunistic pathogen, causing neonatal meningitis, urinary 

tract infections, and gastroenteritis (1, 63).   

A member of the Enterobacteriaceae family (1), the minimum growth 

temperature of E. coli is 7-8°C and maximum 44-46°C with optimum temperatures 

ranging from 35-40°C (59).  E. coli is a gram-negative, non-sporulating rod that is 

catalase-positive and oxidase negative.  Members of the Enterobacteriaceae family can 

be differentiated based on a group of tests called IMViC.  E. coli is indole positive, 

methyl red positive, Voges-Proskauer negative and citrate negative (1).  Minimum 

growth pH of pathogenic E. coli is 4.4 and minimum aw is 0.95 (59).   

The human infant is said to acquire E. coli within days of birth from a 

combination of exposure to the mother by fecal to oral route as well as his or her 

environment (15).  Distinct serogroups of E. coli were able to be identified based on 

their somatic (O) antigen by the 1940s (68) and have been further divided into serotypes 

based on flagella (H) antigens and capsular (K) antigens.  Knowledge of E. coli 

serogroups and serotypes have enabled the recognition of those which are pathogenic to 

humans (15). 
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Pathogenic E. coli  

According to Jay et al. (61), there are five virulence groups of E. coli including 

enteroaggregative (EAggEC), enteroinvasive (EIEC), enteropathogenic (EPEC), 

enterotoxigenic (ETEC) and enterohemorrhagic (EHEC), also known as VTEC or 

STEC. 

Enteroaggregative E. coli (EAggEC) 

Characterized by “stacked brick” adhesion (14, 61), this virulence group is 

common in developing countries and causes persistent (more than 14 days) diarrhea in 

children and other immunocompromised patients.  Organisms in this group carry a 60-

MDa plasmid, which is responsible for adhesion.  Consisting of 40 different O-types, the 

EAggEC group produces two types of toxins.  The first is the Shiga-like toxin and the 

second is the hemolysin-like toxin, which unlike hemolysin, does not lyse red blood cells 

(14).  Symptoms of EAggEC infection include stool containing mucous, persistant 

diarrhea, and low-grade fever in immunocompromised patients.  Members of this 

virulence group have not shown a clear association with foodborne illness (61).  

Enteroinvasive E. coli (EIEC) 

Members of this group carry a 140-MDa plasmid, which is responsible for 

invasion of the epithelial cells (14, 61), and are very similar to Shigella spp.  Symptoms 

include watery diarrhea, fever, headache, chills, and dysentery, which is linked to the 

presence of a toxin of 63 kDa (14).  Infected patients will get better after 7 to 12 days but 

may be shedders of EIEC for the rest of their life.  Enteroinvasive E. coli was first 

recorded in a foodborne outbreak in 1947 with salmon (61).  
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Enteropathogenic E. coli (EPEC) 

The first virulence group of E. coli to be described, enteropathogenic E. coli 

mostly affects children and infants.  Though EPEC do not produce Shiga toxins (61), 

they are characterized by intimate attachment to epithelial cells, and the formation of 

“attaching and effacing” lesions or pedestal-like structures. Microvilli in the small 

intestine are worn down and unable to absorb nutrients, resulting in a potentially fatal 

condition (14).  The first recorded foodborne disease outbreak due to enteropathogenic 

E. coli (EPEC) infection occurred in 1961 in Romania, linked to coffee substitute (1, 

61).    

Enterotoxigenic E. coli (ETEC) 

Members of this virulence group are a common cause of Traveler’s Diarrhea in 

underdeveloped countries (61).  ETEC is frequently ingested by travelers via 

contaminated water or contaminated food.  While these organisms may not affect adult 

natives, ETEC is a major cause of infantile diarrhea in these developing countries.  

Enterotoxigenic E. coli attach via fimbrial colonization and then produce a heat-labile 

toxin or a heat-stabile toxin.  An infected individual generally exhibits watery diarrhea 

and vomiting for 3 to 4 days resulting in extreme dehydration (14).    Foodborne illness 

as a result of ETEC infection has occurred due to consumption of mold-ripened soft 

cheese (1). 

 

 

 



 

 7 

Shiga-Toxin Producing E. coli (STEC) 

According to the 2013 FoodNet Annual Report (33), Shiga-toxin producing E. 

coli (STEC) are known to cause approximately 265,000 foodborne infections in the 

United States annually with August being the highest month of incidence.  In 2013, 

O157 STEC caused 211 hospitalizations and 2 deaths with an incidence rate of 1.15 in 

100,000 (33). In contrast, non-O157 STEC caused 76 hospitalizations, 2 deaths, and had 

an incidence rate of 1.18 in 100,000 (33).  While the incidence rate of E. coli O157 

infections has generally gone down since 1996, non-O157 infections have made a steady 

increase resulting in similar incidence rates in the past few years.  Costs associated with 

STEC illnesses include medical care, decreased quality of life, and even death (97).  

According to Scharff et al. (96), O157 infections on average cost $10,446 per case 

whereas non- O157 infections cost $1,764.  

Enterohemorrhagic E. coli (EHEC) is known to produce Shiga-like toxins (Stxs), 

which are toxic against Vero cells (African green monkey kidney cells). This is why 

EHEC is also known as Shiga toxin-producing E. coli (STEC) or verotoxin-producing E. 

coli (VTEC) (14). Shiga toxin-producing E. coli are able to produce two different Shiga-

like toxins including Stx1 and Stx2.  Stx2 is much more toxic than Stx1 and poses a 

higher risk of the host developing hemolytic uremic syndrome (HUS) resulting in acute 

renal failure which affects 5-10% of infected persons (14).  For children under the age of 

5, HUS affects 3 in 100,000 children per year and frequently results in death or life-long 

kidney dialysis (75).  In 1994, the USDA Food Safety and Inspection Service (FSIS) 

declared E. coli O157:H7 as an adulterant in any non-intact, ground beef product (51).  
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Ground beef is a particular food safety concern due to comingling of potentially 

contaminated surface pieces with internal, essentially sterile, pieces.  Not until 2012 did 

USDA-FSIS declare six additional STEC (51) adulterants in ground beef, also known as 

non-O157 STEC or “The Big Six”.  These include serogroups O26, O103, O45, O111, 

O121, and O145 which cause illness similar to that caused by O157 (6).  Foodborne 

illness caused by STEC has most often been associated with undercooked ground beef 

products (1).  Ground beef hamburgers sold to the consumer should be 160°C in the 

center of the patty per USDA regulations.  Outbreaks associated with foods of animal 

origin such as ground beef or raw milk are generally caused by inadequate cooking or 

heating temperatures (1).   

STEC O157:H7 

First identified by the Centers for Disease Control and Prevention (CDC) as a 

human pathogen of a rare serotype in 1982 (93, 100), E. coli O157:H7 was implicated in 

a landmark outbreak in the United States in 1993 resulting from a national fast food 

chain serving undercooked ground beef hamburgers (14).  E. coli O157:H7 was also the 

cause of an outbreak resulting from contaminated spinach in 2006, resulting in 199 

illnesses, 102 hospitalizations, and 3 deaths (14, 30).  In 2013, an outbreak caused by 

contaminated ready-to-eat (RTE) salads resulted in 33 illnesses and 7 hospitalizations 

(34).  While E. coli O157:H7 is largely known to be found in meats and other foods of 

animal origin, it is important to note that other food products such as leafy greens can 

become contaminated with contaminated irrigation water, soil, fecal material from 

wildlife, or cross-contaminated with raw meat.  These food products exhibit a risk not 



 

 9 

seen in most meat products: they do not have a lethal cooking step, and are generally 

consumed fresh.  This pathogen is able to survive the high acidity of the human stomach 

due to its acid tolerance and colonizes the small intestine which occurs in 3 stages 

including localized adherence, signaling event, and intimate contact (14). 

Non-O157 STEC 

 Non-O157 STEC include serogroups O26, O45, O103, O111, O121, and O145, 

also known as “The Big Six”.  These serogroups are now considered adulterants in 

ground, non-intact beef products.  Beef is the primary vehicle of foodborne illness 

associated with non-O157 STEC (11).  After 1993, E. coli O157:H7 received the most 

attention as it was commonly known to cause foodborne illness in the United States.  

However, it can be seen from cattle hide prevalence data (10) that both O157 and non- 

O157 STEC are a threat to food and beef safety.  According to Hale et al. (55), 

domestically acquired non- O157 STEC infections account for 59.7% of all STEC 

infections whereas 40.3% are caused by O157 STEC.  Based on these percentages, it 

seems as though non- O157 serogroups are causing more STEC-related illnesses in the 

United States at present.  Non-O157 serogroups can cause hemolytic uremic syndrome, 

but more often O157-infected patients with HUS require life-long treatment such as 

kidney dialysis (97).   
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Secondary Sequelae of STEC Illness 

Hemolytic Uremic Syndrome (HUS) 

Enterohaemorrhagic E. coli (EHEC) is particularly dangerous very young 

children and the elderly.  The severity of EHEC infections is wide ranging from non-

bloody diarrhea to secondary sequalae such as hemolytic uremic syndrome (HUS).  HUS 

is known to cause acute renal failure, hemolytic anemia and thrombocytopaenia. Ten 

percent of children with EHEC infections will develop HUS.  Children with HUS either 

require lifelong kidney dialysis (50%) or will die as a result of this secondary sequelae 

(3-5%) (1).  

Thrombotic Thrombocytopenic Purpura (TTP) 

Thrombotic thrombocytopaenic purpura (TTP) is a much less common secondary 

sequelae that affects adults infected with STEC.  Instead of targeting the kidneys as does 

HUS, TTP causes neurological symptoms due to brain blood clots and fever, resulting in 

a fatal condition if left untreated due to damage to vital organs (1). 

 

Meat Safety 

Since the 1993 outbreak of E. coli O157:H7 linked to hamburgers served at a 

national fast food restaurant which caused 501 reported illnesses, 45 incidences of HUS, 

and 4 deaths, the beef industry has made huge strides to improve beef safety (13, 63).  

Shiga-toxigenic E. coli  (STEC) naturally reside in healthy cattle intestines, maintaining 

a symbiotic relationship with these animals; these organisms are not pathogenic to the 

animals like they are to humans.  Cattle are known to be a primary reservoir for STEC 
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(65), present in the intestinal tracts of 10-28% of North American cattle (66).  Bovine 

intestines do not have the Shiga-toxin binding receptor, allowing carriage of STEC 

without susceptibility to disease (100).   STEC is also found frequently in the 

environment as well as the intestines of many warm-blooded animals (100).   

Hides are contaminated with animal fecal material and these microorganisms can 

then be transferred to raw carcass surfaces as well as other areas in the processing 

environment (63).  Elder et al. (44) reported the prevalence of E. coli O157:H7 to be in 

28% of feces and 11% of hides in the late summer months of July and August.  The main 

source of carcass contamination is the hide (10); According to Arthur et al. (4), E. coli 

O157:H7 can survive on the hide for up to 9 days, suggesting pre-harvest interventions 

should occur within 9 days prior to slaughter.  Removal of the hide can occur in one of 

two ways: manual removal by personnel or an automatic hide puller, both of which 

introduce possible modes of cross-contamination of the carcass surface (100).  

 

Interventions For Reducing Pathogens in Beef and Beef Products 

Pre-Harvest Interventions in Beef 

Studies have shown some pre-harvest preventive methods to be useful in 

reducing the colonization and shedding of O157:H7 in harvest-ready cattle, thus 

reducing the potential for fecal contamination on the hide surface. 

Grain type and the method with which the grain is processed is thought to affect 

the colonization of E. coli O157:H7 in cattle.  According to Jacob et al. (60), there is a 

positive relationship between colonization and shedding of O157:H7 and a barley-based 
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diet.  Fox et al. (49) reported decreased prevalence of E. coli O157:H7 in fecal waste 

when cattle were fed dry-rolled grains as opposed to steam-flaked grains.   

According to Cray et al. (36) calves shed much higher numbers of O157:H7 than 

do adult cattle.  Reducing animal density or separating young cattle from adult cattle 

may be advantageous in reducing the colonization and ultimate shedding of the pathogen 

in adults (72).  

Direct-fed microbials, also known as competitive enhancement strategies (53, 

63), employs introduced bacteria to have an antagonistic effect on pathogens in the gut 

of the animal.  Lactobacillus and Bifidobacterium are the most commonly used 

probiotics (63).  An efficient, Lactobacillus –based direct-fed antimicrobial is known as 

NP51 has been shown to reduce the fecal shedding of O157:H7 by 49% (21).  NP51 is 

commercially available and approximately 10-15% of fed cattle are given this product in 

the United States (100).  Other direct-fed microbials, such as Bacillus subtilis strain 166, 

are not as effective at reducing E. coli O157:H7 shedding in cattle and should not be 

used as a pre-harvest intervention (3).  Callaway et al. (23) reported a 3 log reduction in 

fecal E. coli O157:H7 populations when cattle were exposed to a sodium chlorate 

supplement. 

Another pre-harvest intervention involves the use of vaccine technology.  Potter 

et al. (88) described a 58.7% lower risk of recovery of O157:H7 as compared to 

untreated controls.  The use of antibiotics, such as neomycin sulfate, has also been 

reported to be beneficial.  In a commercial feedlot study, E. coli O157 was recovered 

from treated cattle in 0.4% of feces and 2.5% of hides, as compared to the control cattle 
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in which E. coli O157 was present in 22.1% and 50% of feces and hides, respectively 

(73).  While bacteriophages have limited application in the food industry currently, these 

bacterial viruses have been suggested for use in the reduction of pathogenic bacterial 

shedding in cattle (63).   

It is important to note that these pre-harvest interventions are not all-

encompassing, but rather a step towards improving beef safety.  Food Safety and 

Inspection Service recommends 5 different practices to reduce the prevalence of 

O157:H7 in harvest-ready cattle: 1) Maintaining clean water, 2) Maintaining clean feed, 

3) Keeping living environments well-drained, 4) Separating calves and heifers in 

housing or reducing animal density, and 5) Keeping extraneous wildlife out of feed pens 

as they may carry pathogens (90). 

 

Post-Harvest Interventions on Beef 

Antimicrobial interventions include but are not limited to chemical dehairing, 

trimming, application of acids such as acetic or lactic acids, acidified sodium chlorite, 

water washing, steam-vacuuming, steam pasteurization, and irradiation.  Specific 

regulations regarding carcass interventions are explained in the Food Safety and 

Inspection Service Directive 7120.1: Safe and Suitable Ingredients Used in the 

Production of Meat, Poultry, and Egg Products (52).  

Due to the lethal effect shown against microorganisms, organic acids are popular 

antimicrobials used in carcass interventions. Commonly used organic acids in the beef 

industry are acetic and lactic acid.  Hardin et al. (56) reported reductions in E. coli 
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O157:H7 and Salmonella Typhimurium ranging from 2.4 to 3.7 log CFU/cm2 and 3.2 to 

5.1 log CFU/cm2 when treated with water wash followed by 2% acetic acid (pH 2.5, 

55°C, 11s), respectively.  In the case of both pathogens, reductions achieved on outside 

rounds were the greatest of all other cuts.  With regards to E. coli O157:H7, Hardin et al. 

(56) reported a greater reduction with 2% lactic acid as opposed to acetic acid.  Lactic 

acid, however, caused greater reductions in beef surface pH than acetic acid. 

The following sections describe some of the various chemical and physical 

agents that have been used in carcass interventions.  

 

Lactic acid 

Lactic acid is a commonly used organic acid in the beef industry (100), and its 

efficacy at different points in the beef harvesting process have long been investigated.  

Its mechanism of action is the degradation of cell membrane components and subsequent 

loss of cell membrane integrity (22). When a weak, undissociated acid permeates the 

bacterial membrane, it subsequently dissociates due to the markedly higher intercellular 

pH and acidifies the bacterial cytoplasm (16, 95).   It is recommended to be used in a 2% 

solution in order to avoid meat discoloration or other quality issues (99). With regards to 

preevisceration carcasses, Bosilevac et al. (19) reported a 1.6 log CFU/100 cm2 

reduction in aerobic plate counts and 1.0 log CFU/100 cm2 reduction in 

Enterobacteriaceae counts with a 2% lactic acid solution applied at approximately 42°C.  

After this study, Bosilevac et al. (19) actually recommended the use of hot water only on 

preevisceration carcasses instead of lactic acid.  However, reductions were still achieved 
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with 2% lactic acid.  Hardin et al. (56) reported lactic acid to be the most effective 

treatment applied to outside rounds and briskets contaminated with E. coli O157:H7 and 

Salmonella when compared to acetic acid, water wash alone, or trimming.  Castillo et al. 

(29) investigated the additional reduction potential in E. coli O157:H7 and Salmonella 

populations with a postchill application of lactic acid and reported an additional 

reduction of 2 to 2.4 log CFU/cm2 with E. coli O157:H7 and 1.6 to 1.9 log CFU/cm2 

with Salmonella Typhimurium.  Additionally, Castillo et al. (26) reported on the effects 

of combined carcass interventions which resulted in a 4.6, 4.9, and 4.4 log CFU/cm2 

reduction in E. coli O157:H7 with water wash (69 kPa, 90 s) followed by 2% lactic acid 

(55°C, 276 kPa, 11 s), water wash followed by hot water (95°C, 166 kPa, 5 s) and then 

lactic acid treatment, and water wash followed by lactic acid treatment then hot water, 

respectively.  Trimming followed by lactic acid and trimming followed by hot water 

treatment then lactic acid application both produced a 4.9 log CFU/cm2 reduction in E. 

coli O157:H7 (26).  The use of lactic acid dips have also been investigated in the poultry 

industry (39). 

 

Lauric arginate ester 

Lauric arginate ester (LAE), more commonly known as lauric arginate, is 

recognized as a safe food preservative in the food industry.  Derived from lauric acid, L-

arginine and ethanol, this compound was granted GRAS status under 21 

CFR  §170.30(b) (8).  Lauric arginate works as an antimicrobial by destabilizing the 

plasma membrane lipid bilayer of microorganisms (8).  Few studies have investigated 
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lauric arginate as a potential application in beef carcass interventions.  Dias-Morse et al. 

(41) reported a 1.4 log CFU/g reduction in Shiga toxin-producing E. coli (STEC) as 

compared to inoculated untreated controls when a 5% lauric arginate treatment was 

applied to inoculated beef trimmings.   

Many studies (74, 77, 87) have reported the bacteriocidal activity of lauric 

arginate against Listeria monocytogenes on ready-to-eat (RTE) meats and frankfurters.  

Luchansky et al. (74) studied the reduction of L. monocytogenes in cooked hams after 

application with a 5% LAE solution, reporting a 5 log CFU/ham reduction within 24 

hours at 4°C.  Additionally, when applied via the “Sprayed Lethality In Container” 

(SLIC) delivery method, which consists of delivering the antimicrobial into a vacuum 

bag immediately prior to placing the product in the bag and vacuum sealing the product, 

LAE successfully inhibited outgrowth of L. monocytogenes for up to 40 days under 

refrigerated storage (74).  Martin et al. (77) reported a 1 log CFU/cm2 reduction of L. 

monocytogenes on frankfurters upon initial application of 2.5% lauric arginate solution.  

Porto-Fett et al. (87) reported the initial reduction of L. monocytogenes achieved by 

lauric arginate using the SLIC delivery method to be about 1.8 log CFU/package within 

2 hours.  However, lauric arginate alone did not inhibit the outgrowth of L. 

monocytogenes over a period of 120 days.  When combined with potassium lactate or 

sodium diacetate, the initial reduction of L. monocytogenes was achieved and outgrowth 

of the pathogen was inhibited for up to 120 days (87).   
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Cetylpyridinium chloride 

Traditionally used as an oral antiseptic (85) cetylpyridinium chloride (CPC) has 

also been frequently utilized in the poultry industry to reduce populations of Salmonella 

and Campylobacter, two commonly found pathogens in poultry products (103).  CPC is 

a quaternary ammonium compound, a positively charged polyatomic ion with a long 

alkyl chain.  It is currently approved for use in poultry processing and functions as an 

antimicrobial due to the cations, chloride and cetylpyridinium it forms in solution (43, 

100).  These cations make the CPC solution amphiphilic which allows it to damage the 

bacterial cell membrane (100).  CPC has been frequently used in the poultry industry as 

a post-chill antimicrobial in drench cabinets on meat destined for grinding, and its 

efficacy in such applications has been compared with chlorine and peracetic acid (103).  

With regards to pre-chill applications, Xiong et al. (104) reported the capability of 0.5% 

CPC to reduce Salmonella Typhimurium populations on chicken skins by 1.9 log 

CFU/ml.    

The success of CPC in the poultry industry has led way to research in the beef 

industry.  As CPC has not yet been approved for use in a beef processing plant, much 

investigation on the antimicrobial has been done as a hide intervention immediately prior 

to stunning (17).  Studies with CPC applied to beef hides have shown up to 4 log 

CFU/100 cm2 reductions in aerobic plate counts and Enterobacteriaceae counts (18).  

Baird et al. (7) demonstrated that a 1% CPC hide wash prior to opening resulted in a 4.5 

log CFU/100 cm2 reduction in coliform counts on beef hides—the greatest among 2% L-

lactic acid and 3% hydrogen peroxide.  Although the most effective concentration of 
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CPC to reduce microbial populations is 1% (18), the FSIS Directive 7120.1 only allows 

0.8% CPC application.  Bosilevac et al. (18) recommend applying CPC immediately 

prior to or after stunning the animal in order to avoid recontamination of the hide before 

dehiding.    Application of CPC prior to dehiding could be a practical alternative to 

chemical dehairing (80).  Cutter et al. (38) also investigated the ability of 1% CPC at 

35°C to reduce Salmonella Typhimurium and E. coli O157:H7 on lean as well as adipose 

tissue beef surfaces. CPC immediately reduced E. coli O157:H7 by 5-6 log CFU/cm2 

and Salmonella Typhimurium to undetectable levels on lean surfaces and >2.5 log 

CFU/cm2 of both pathogens on adipose tissue surfaces.  Ransom et al. (91) reported a 

reduction of E. coli O157:H7 by 4.8 log CFU/cm2 on beef carcass surfaces when applied 

at 0.5%.  With regards to ground beef trimmings, Pohlman et al. (86) reported smaller 

reductions after CPC treatment.  In this case, CPC reduced E. coli and Salmonella 

Typhimurium in ground beef by 0.6 and 0.7 log CFU/g, respectively.   

 

Peracetic acid 

Peracetic acid (PAA) is a strong oxidizing agent with the ability to disrupt the 

bacterial cell membrane (39, 100) which is used frequently as a sanitizer for surfaces in a 

processing facility that will come into contact with food, as well as a microbiological 

intervention on meats and produce (67).  According to Cords et al. (39), PAA has three 

antimicrobial mechanisms: denaturation of cell proteins, inactivation of cell transport-

crucial enzymes, and disruption of the permeability of the cell membrane.  In solution, 

peracetic acid breaks down into water, oxygen and acetic acid, all non-toxic and safe for 
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use as a sanitizer in a food processing facility.  Antimicrobial activity increases with 

increased concentration, and is not negatively affected at lower temperatures making 

PAA an advantageous sanitizer.  Peracetic acid provides a better antimicrobial effect in 

an acidic environment (39).  The effectiveness of peracetic acid as a wastewater 

decontaminant with potentially less-harmful by-products than traditionally used chlorine 

has also been investigated (62).  Peracetic acid is the most commonly used antimicrobial 

with regards to postchill applications (103) and its efficacy of reducing microorganisms 

such as Salmonella and Campylobacter has been compared with other interventions such 

as chlorine, cetylpyridinium chloride, lysozyme, and even a mixture of peracetic acid 

and hydrogen peroxide (12, 79, 103).   

In contrast, the beef industry has investigated the efficacy of peracetic acid as an 

intervention against Escherichia coli O157:H7 and Salmonella.  While peracetic acid has 

proven successful in significantly reducing E. coli O157:H7 prior to chilling (82), post-

chill application of peracetic acid (200 ppm, 43°C) is not recommended in beef 

production (69).  It is important to note that according to the USDA FSIS directive 

7120.1, the concentration of peracetic acid used as an intervention must not exceed 200 

ppm.  King et al. (69) found that 1000 ppm peracetic acid, nearly 5 times the legal limit, 

still reduced E. coli O157:H7 and Salmonella Typhimurium less than 4% lactic acid.  

Ellebracht et al. (45) reported peracetic acid dips at 200, 500 and 1000 ppm applied to 

fresh beef trim to reduce E. coli O157:H7 by 0.7, 0.7 and 0.5 log CFU/cm2, respectively.  

 

 



 

 20 

Other Interventions 

Chemical dehairing is a three step process patented by Bowling and Clayton (20) 

in which hair is removed with a sodium sulfide solution, followed by a hydrogen 

peroxide rinse and water rinse.  This process is thought to minimize cross contamination 

from the hide to the carcass surface during dehiding.  Nou et al. (80) tested the 

hypothesis that chemical dehairing, prior to dehiding would result in a reduced amount 

of cross-contamination of carcasses.  Results obtained indicated that a chemical 

dehairing step effectively reduces the cross-contamination of beef carcasses, agreeing 

with previous research conducted by Castillo et al. (25), where it was determined that 

inoculated Salmonella Typhimurium and E. coli O157:H7 were significantly reduced by 

a chemical dehairing treatment consisting of 10% sodium sulfide solution on hide pieces.  

Interventions such as chemical dehairing and application of organic acids go hand in 

hand, as no single intervention will completely remove pathogenic bacteria (70). 

The USDA’s “zero-tolerance” rule (50) for fecal matter on carcass surfaces 

spurred research on various physical interventions.  Prasai et al. (89) suggested trimming 

of visible contamination followed by a subsequent water wash, because of the possibility 

of cross-contaminating with an unsanitized knife between carcasses.  Studies conducted 

by Gorman et al. (54) as well as Hardin et al. (56) have shown the beneficial effects of 

knife trimming in the reduction of microorganisms on beef carcass surfaces.  However, 

other research has shown greater reductions can be achieved by subsequent treatments 

such as water washing or organic acid treatments (26, 40, 56, 92). 
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Another antimicrobial intervention that has been investigated is acidified sodium 

chlorite (ASC).  Castillo et al. (28) reported a 4.5 log CFU/cm2 reduction of E. coli 

O157:H7 when treated with citric acid-activated acidified sodium chloride (140 ml, 10 s, 

69 kPa, 22.4-24.7°C), as opposed to the 3.8 log CFU/cm2 reduction achieved by 

phosphoric acid-activated acidified sodium chloride. 

Different factors such as pressure and temperature of water wash have been 

investigated over the years.  While some research has shown the beneficial effect of 

increased pressure applications (2, 56, 71), some studies have not (37, 105).  In fact, 

DeZuniga et al. (105) reported a detrimental effect of wash water pressures exceeding 

4.1 MPa, resulting in the potential bacterial penetration below the carcass surface.  

Increased temperatures have shown enhanced reductions in pathogenic bacteria.  Castillo 

et al. (26) reported a 3.7 log CFU/cm2 reduction in E. coli O157:H7 populations when 

treated with a hot (97°C, 166 kPa, 5 s) water wash.  Barkate et al. (9) reported a 1.3 log 

CFU/cm2 reduction in aerobic plate counts (APC) when treated (95°C sterile hot water, 

40 s) before the final carcass wash and a 0.8 log CFU/cm2 APC reduction when treated 

after the final carcass wash.  

 Steam- vacuuming can be used in lieu of knife trimming, and is approved by 

USDA-FSIS as such; its purpose is to remove visible fecal contamination (101).  Phebus 

et al. (84) reported steam pasteurization to be an effective post-harvest intervention, but 

recommended combining it with other interventions such as knife trimming followed by 

steam pasteurization to optimize bacterial reductions.  Another potential point of 

contamination is the evisceration step, where fecal matter may come into contact with 
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carcass surfaces.  Punctured or torn viscera can lead to contamination of the carcass with 

fecal matter.  Steam vacuuming at this point in the process can remove fecal material 

(100).  Castillo et al. (27) reported a 2.8 log CFU/cm2 reduction of E. coli after treatment 

with steam vacuum alone.  However, additional treatments including hot water and lactic 

acid resulted in greater reductions ranging from 4.4-5.2 log CFU/cm2, suggesting that a 

multi-hurdle intervention strategy is most effective.  However, steam vacuum is 

designed to treat small areas on the beef carcass surface, not the entire surface (27).  

Dickson (42) also reported that washing preevisceration carcasses may reduce further 

contamination in the slaughter process.  

Although not accepted by certain groups of consumers, irradiation has been 

shown to significantly reduce pathogenic bacteria in raw meats.  Three types of ionizing 

radiation that can be used for the treatment of food include gamma rays, X-rays, and e-

beam.  Gamma rays have the ability to penetrate several feet of material, whereas e-

beams are much less powerful and will only penetrate a few centimeters.  X-rays, 

introduced for use in foods in the mid 1990s, are as penetrative as gamma rays (57). The 

Food and Drug Administration (FDA) currently approves of the irradiation of raw 

refrigerated meat products up to 4.5 kGy and frozen raw meat products up to 7 kGy (48).  

Arthur et al. (5) investigated the efficacy of a 1 kGy dose on chilled beef carcass 

surfaces.  One kGy was sufficient to reduce E. coli O157:H7 populations by at least 4 

log CFU/cm2.  In 2011, USDA-FSIS denied the petition submitted by the American 

Meat Institute (AMI) for the use of e-beam on beef carcasses as a processing aid, which 

would have exempted such beef from labeling requirements.  It was denied on grounds 
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that carcass geometry may lead to uneven absorbed dose and the petition did not detail 

control of treated carcasses so as to not exceed maximum approved dose (46).  At this 

time, ionizing radiation may be used if following requirements of 9 CFR 424.21 for total 

absorbed dose and 9 CFR 424.22 (c) (4) for labeling are followed (46). 

 

Importance of the Method of Application of Carcass Interventions 

Conventional spray application, whether built into automated spray cabinets or hand-

held pump sprayers, are generally used for application to full carcasses.  However in the 

case of beef trim, it is possible to apply organic acids with dip or spray.  According to 

Wolf et al. (102), a lactic acid dip achieved significantly greater reductions of E. coli 

O157:H7, non-O157 STEC, and Salmonella when compared to lactic acid spray.  The 

benefits of dip application include greater washing action, and even coverage.  Spray 

application is easier to manage in a plant setting and further, avoids issues like excess 

water uptake or deterioration of sensory characteristics due to extended exposure time, 

which are both disadvantages of dip application (102).  Both conventional spray and dip 

application exhibit the disadvantage of excess water and antimicrobial usage. 

Electrostatic spray has the potential to combine the benefits of dip and spray application, 

i.e. even coverage and easily manageable process while using significantly less solution.   

Therefore, the method of application of the antimicrobials is a major factor in designing 

carcass interventions. 
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Electrostatic Spray System 

The electrostatic spray system (ESS) is a relatively new technology being 

investigated in the beef industry.  Pressurized air and solution meet at the spray nozzle 

where the solution is atomized into very small particles (30-60 microns in diameter).  An 

electrode at the nozzle tip charges the atomized droplets.  The negatively charged 

droplets are then attracted to the positively charged, grounded object which results in an 

even coverage of the object and less water and solution usage (47).  In the past, 

electrostatic spray systems (ESS) have been most commonly used in agricultural 

applications (76, 81).   This technology has been used in the application of pesticides and 

fungicides, delivering a much more even coverage than other spray technologies (35).  

The poultry industry has investigated electrostatic spray as a means of applying 

sanitizers to food contact surfaces in a processing environment, with results confirming 

electrostatic spray application effective and more efficient than conventional spray 

systems (94).  Although originally aimed at agricultural applications, ESS is now a 

popular way to apply sanitzers in public restrooms, nurseries, locker rooms, and schools.  

A new company formed as a result of the success of ESS called SPRAYWell.E.D.D. 

which uses electrostatic spray systems to sanitize public areas such as restrooms (98).  

The success of ESS in agricultural and sanitizer applications has spurred an interest in 

use of this technology in the beef industry.  Very little research has been published 

regarding beef applications of electrostatic spray systems.  Phebus et al. (83) has 

reported the potential for a multi-nozzle electrostatic spray cabinet to provide even 

coverage of beef products while using substantially less water and antimicrobial 
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solution.  However, more research must be completed in order to determine the 

applicability of a hand-held electrostatic spraying system with a single nozzle for smaller 

beef processing facilities. 
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MATERIALS AND METHODS 

 

General Procedures 

Bacterial Cultures and Inoculum Preparation 

Eight rifampicin-resistant isolates corresponding to a strain each of STEC 

serotypes O26:H11, O45:H2, O103:H2, O104:H4, O111:H-, O121:H19, O145:NM, and 

O157:H7, were obtained from the Texas A&M Center for Food Safety (TAMU CFS) 

culture collection in the form of CryoBeads™ at Texas A&M University, College 

Station, TX.  These strains were originally obtained from Dr. John Luchansky, USDA.  

Each of these microorganisms was grown twice in tryptic soy broth (TSB; Becton 

Dickinson & Co., Franklin Lakes, NJ) at 35°C for 18-24 h for revival and then streaked 

for isolation on tryptic soy agar (TSA; Becton Dickinson & Co., Franklin Lakes, NJ) and 

TSA supplemented with 100 mg/L rifampicin (Sigma-Aldrich & Co., St. Louis, MO; 

TSAR).  One colony from each strain streaked on TSA was confirmed as E. coli with 

API® strips (bioMérieux, Marcy-l'Étoile, France).  Colonies on TSAR were checked for 

uniform size, shape and appearance.  One colony from each strain on TSAR was 

transferred to TSA slants, where they were maintained at 5°C. Before use, working 

cultures were obtained by transferring a loopful of each strain from their respective TSA 

slant into separate 50 ml containers of TSB supplemented with 100 mg/L rifampicin, and 

incubated at 35°C for 18-24 hours. To prepare the inoculum, the entire contents of the 50 

ml bottles with each strain were transferred into a sanitized, plastic spray pump bottle 

and swirled to mix into a STEC8 cocktail.
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Inoculation Procedure 

For all subsequent experiments, the inoculation of beef was achieved according 

to the following procedure, which was developed and tested by Dr. Randall Phebus of 

Kansas State University, as part of the standardized procedures for the multi-institutional 

Coordinated Agricultural Project funding this study: 

A shoulder-length polyethylene glove was donned on the hand and arm that 

inoculated the beef surface.  Prior to inoculation, the spray bottle containing the STEC8 

cocktail was primed in a separate, empty biohazard bag inside a biosafety cabinet. The 

bottle was primed until an even mist of inoculum was emitted from the bottle.  Once 

primed, the inoculation arm was carefully removed from the priming bag and transferred 

into the bag containing the beef tissue to inoculate. The bottle was calibrated to emit a 

spray with a total volume of 2 ml in 3 sprays of inoculum. This inoculum was sprayed 

three times onto the fat surface of the beef from a distance of approximately 30 cm. This 

inoculation procedure was intended to simulate contamination of the outside of a beef 

carcass, and was expected to result in a STEC8 population of approximately 6-7 log 

CFU/cm2 on the beef surface. The inoculating arm was carefully removed from the bag 

and the shoulder-length glove was removed and placed in the biohazard trash.  Nitrile 

gloves were removed and hands were washed prior to the next inoculation.  Once clean 

gloves were donned, the bag containing the inoculated outside round was hand tumbled 

for 1 minute.  Once tumbled, the bag was zip tied and placed outside the biosafety 

cabinet in a designated area for 30 minutes in order to allow bacterial attachment.
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Preliminary Experiments 

Utilization and Comparison of Neutralizers on Lactic acid-Treated Samples 

The application of a neutralizer to a sample after treatment with an antimicrobial 

is thought to halt the effect of the antimicrobial during sample processing so as to 

eliminate the possibility of over estimation of antimicrobial efficacy.  The purposes of 

this preliminary experiment were to determine whether a neutralizer is necessary for 

correct enumeration of STEC8 after treatment with L-lactic acid, and to compare the 

performance of various neutralizers to recover STEC8.  

Preparation of Lactic acid Solution 

 A specified amount of water and stock L-lactic acid (Birko Corp., Henderson, 

CO, 88%) was measured out separately in order to obtain a final concentration of 2% L-

lactic acid.  Water was first heated to approximately 60°C prior to pouring the 88% 

lactic acid into the water.  After adequate mixing, the solution was poured into a hand-

pump sprayer  (Roundup; model no. 190260, 10 psi) and sealed.  The temperature of the 

solution being emitted from the nozzle was checked to be 55°C prior to spraying on the 

beef surface.  Brisket pieces were hung inside a model spray cabinet within a biosafety 

cabinet and sprayed with the 2% lactic acid solution approximately 30 cm from the beef 

surface.  

Product Procurement and Inoculation 

Untrimmed briskets were obtained from a local grocery store and held at 4°C 

prior to use.  To simulate the contamination of a carcass post-dehiding, the brisket pieces 

(approximately 6 X 8 inches in size) were warmed to an internal temperature of 37°C in
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 a water bath within 20 minutes prior to inoculation.  Once 37°C internal temperature 

was reached, pieces were spray inoculated according to the protocol described 

previously.  Pieces were left at room temperature for 30 minutes to allow for bacterial 

attachment.  

Application of lactic acid treatment 

After bacterial attachment, the inoculated briskets were hung in a model spray cabinet 

within a biosafety cabinet and treated by spraying with 2%, 55°C LA using the hand-

pump sprayer for 30 (200 ml) or 45 s (250 ml) from a distance of 30 cm.  Surface pH of 

the brisket was measured before and after treatment with a surface pH meter (ExStik®, 

model PH100).   

Comparison of Neutralizers and Sample Collection 

  Prior to and after LA treatment application, three core samples of 10 cm2 each 

were aseptically excised using a flame sterilized borer and scalpel.  Samples were placed 

in sterile stomacher bags with 99 ml 0.1% sterile peptone water (PW) and stomached for 

1 minute, serially diluted, and plated on TSAR. Samples were also collected from the 

brisket surface prior to inoculating to ensure that no rifampicin-resistant bacterial 

populations were present.  

Immediately following treatment, 30-cm2 surface samples were excised and 

placed in sealable bottles containing 100 ml of one of the following sterile neutralizing 

agents: peptone water (control), buffered peptone water (BPW), phosphate buffered 

saline (PBS) or Dey-Engley broth (D/E broth) for 2 minutes.  Immediately following 

neutralization, samples were transferred using flame-sterilized forceps into a sterile
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stomacher bag containing 99 ml peptone water to be stomached for 1 minute, serially 

diluted, and plated on TSAR. Because of the rifampicin resistance of the STEC8 

inoculum, all colonies growing on the TSAR plates were assumed to be from the STEC8 

cocktail and were therefore enumerated. Plate counts were converted into log values and 

compared between neutralizers and control. 

In a second phase of this preliminary experiment, the methods described above 

were repeated except half of the samples were treated with a neutralizing step in sterile 

PW prior to stomaching, serial dilution, and plating on TSAR. 

Fifty percent of samples treated with lactic acid were immediately placed in 100 

ml sterile PW for 2 minutes before transferring samples to a sterile stomacher bag, 

diluting with 99 ml sterile 0.01% PW, stomaching, serially diluting, and plating on 

TSAR.  The other half were treated with lactic acid and immediately placed in a sterile 

stomacher bag with 99 ml sterile 0.01% PW, stomached, serially diluted and plated on 

TSAR.  Enumeration of STEC8 after treatment with or without a neutralizing step were 

compared. 

 

Comparison of Lactic acid Brands in the Reduction of STEC8 on Beef Carcass Surfaces 

As there were several brands available on the market, it was important to 

compare the efficacies of different brands before choosing which brand would be used 

for the remainder of experiments.  The purpose of this preliminary experiment was to 

determine
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whether a specific brand of L-lactic acid was more effective at reducing populations of 

STEC8 on beef carcass surfaces. 

Inoculation 

Untrimmed briskets were obtained from the local grocery store and held at 4°C 

and warmed to an internal temperature of 37°C prior to inoculation.  Brisket pieces were 

inoculated according to an established spray inoculation protocol described in the 

following section, and then left at room temperature for 30 minutes to allow bacterial 

attachment.  

Treatment and Sampling 

 Preparation of lactic acid solution was completed as described previously.  All 

brisket pieces were sampled by aseptically excising three core samples of 10 cm2 each 

with a flame sterilized borer and scalpel after the attachment period and prior to 

treatment with one of three brands of L-lactic acid.  Samples were placed in sterile 

stomacher bags with 99 ml peptone water, pummeled for 1 minute, and serially diluted 

and plated on TSAR.  Pieces were treated with 2% LA solutions prepared with 3 

different brands of L-lactic acid (Sigma-Aldrich (85%, St. Louis, MO), Birko (88%, 

Henderson, CO), or Purac (88%, Lenexa, KS)).  Post treatment samples were then 

aseptically excised as described above, stomached in 99 ml sterile peptone water, 

serially diluted and plated on TSAR. Log counts were compared to determine 

differences between brands. 
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Comparison of Slaughter Scenarios 

Contamination of the carcass can occur at several points in the beef harvesting 

process.  Because of this, it is important to understand the efficacy of interventions 

applied to carcasses at different points in the slaughter process.  The purpose of this 

preliminary experiment was to determine if different points of contamination in the 

slaughter process affected the reduction of STEC8 by 2% lactic acid. 

Inoculation 

Untrimmed briskets were obtained from the local grocery store and held at 4°C 

prior to use.  Briskets were cut into pieces approximately 6 inches by 8 inches. Brisket 

pieces were spray inoculated as described in the following section according to three 

possible slaughter scenarios: A) Pieces were warmed to an internal temperature of 37°C, 

inoculated according to the spray inoculation protocol described above, and then left at 

room temperature for 30 minutes to allow bacterial attachment. B) Pieces were warmed 

to an internal temperature of 37°C, inoculated according to an established spray 

inoculation protocol, and were placed at 4°C overnight to be sampled and treated the 

following day.  C) Chilled pieces with an internal temperature of 5°C were inoculated 

according to an established spray inoculation protocol and then placed at 4°C for 30 

minutes to allow bacterial attachment. 

Treatment and Sampling 

 Prior to treatment, three core samples of 10 cm2 each were aseptically excised as 

described above from all briskets.  Samples were placed in 99 ml 0.1% sterile peptone 

water to be stomached for 1 minute, serially diluted, and plated on TSAR.  Pre-treatment



 

 33 

pH was recorded.  All brisket pieces were then treated with 2% lactic acid upon 

completion of bacterial attachment.  Immediately following treatment, three core 

samples of 10 cm2 each were aseptically excised as described above and placed in 99 ml 

0.1% sterile peptone water to be stomached for 1 minute, serially diluted, and plated on 

TSAR. Post treatment pH was recorded.  The log reduction of STEC8 populations 

between different scenarios were compared. 
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Core Research 

Comparison of Chemical Antimicrobials in the Reduction of STEC on Beef Carcass 

Surfaces 

Procurement of Outside Rounds 

Hot outside rounds (OR) were harvested at an FSIS-USDA inspected slaughter 

facility in Stephenville, TX immediately after slaughter. Then, these OR were placed in 

coolers containing instant hot packs (Dynarex, 5” X 9”) and Mylar thermal blankets 

(Ever Ready First Aid) to ensure they stay warm, and transported to a nearby Texas 

A&M Extension Facility with a biosafety level 2 laboratory for inoculation within 1 hour 

after fabrication. Once at the biosafety level 2 laboratory, the surface pH and 

temperature as well as internal temperature were recorded and rounds were transferred 

into a large biohazard bag for inoculation.  Prior to inoculation, three randomly selected 

outside rounds were sampled as described below to ensure that there were no naturally 

existing rifampicin-resistant organisms present. 

Inoculation Procedure 

Outside rounds ready for inoculation were moved into a biosafety cabinet and were 

inoculated following the standard protocol described above. Briefly, the STEC8 cocktail 

was sprayed on the fat side of the OR with a glove-protected hand and inside a large bag 

to prevent spills and aerosols. This inoculation procedure was expected to result in a 

STEC8 population of approximately 6-7 log CFU/cm2 on the beef surface. After 

inoculation, the bag containing the inoculated outside round was hand tumbled for 1 

minute.  Once tumbled, the bag was zip tied and placed outside the biosafety cabinet in a
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designated area for 30 minutes to allow bacterial attachment.  Following the attachment 

period, the OR was placed in coolers with refrigerant to begin the chilling process during 

transport to the Texas A&M cooler. The total time between inoculation and arrival to the 

Texas A&M cooler did not exceed 3.5 h.  Figure 1 depicts the steady temperature 

reduction during the chilling process between inoculation and upon arrival at Texas 

A&M University.     

Chilling Process 

To continue the chilling process begun during transport, the OR was hung on 

flame sterilized meat hooks inside a walk in cooler (4 m X 6 m) at 4 °C at the Texas 

A&M Food Microbiology Laboratory. A series of sanitized shelving units lined with 

aluminum foil to prevent dripping and cross-contamination between OR were set up in 

the walk in cooler and were used to hang the rounds to simulate the chilling process 

post-contamination.  Outside rounds were left in the chiller for 36 hours prior to 

application of carcass interventions.   

Application of Carcass Interventions 

Pre-Intervention Sampling and Hanging of Outside Rounds 

Following the chilling period, outside rounds were unhooked from the shelving 

unit (leaving the hook in the meat) and carefully placed in clean biohazard bags.  Bags 

were placed in coolers containing ice packs for transport to the TAMU CFS, located off-

campus. The transport time to the CFS did not exceed 30 min.  Following transport, the 

rounds were immediately placed in the refrigerators (4°C) at the TAMU CFS to maintain 

cold temperatures prior to application of interventions.  Surface temperature was
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measured (ExStik®, model PH100) before transport to the CFS and immediately upon 

receipt at the CFS.  The surface pH and temperature were measured and recorded using 

an ExStik®, model PH100 (ExTech Instruments, Nashua, NH) pH and temperature 

recorder.   In addition, the internal temperature was measured with a type K needle probe 

thermocouple attached to a Total-Range digital thermometer (VWR, Radnor, PA). After 

pH and temperature recording, a pre-intervention surface sample of 30 cm2 was 

aseptically excised as described above and placed in a sterile stomacher bag to be 

pummeled in a Stomacher at 230 RPM for 1 minute with 99 ml 0.1% sterile peptone 

water prior to serial dilutions and plating on TSAR.  Once this sample was taken, the 

outside round was hung inside a model spray cabinet (Birko Corp., Centennial, CO) in a 

bioBUBBLE (bioBUBBLE, Fort Collins, CO) which consists of a 46 m2 enclosure 

designed to contain biological hazards possibly present in the aerosols produced by 

application of treatments. The OR were hung in such an orientation to simulate a full 

carcass side hanging under commercial settings.  

Preparation of Solutions 

Each solution was prepared by calculating the amount of sterile tap water needed 

to be added to stock solutions in order to prepare a specified percentage solution to be 

applied.  Heated solutions including 4.5% lactic acid and 0.02% peracetic acid were 

prepared by first heating the sterile tap water to approximately 5° above the target 

temperature, followed by adding the calculated amount of stock solution.  Next, the 

temperature of solution being emitted from the conventional nozzle was measured to be 

55°C for lactic acid and 42°C for peracetic acid.  Due to the air-assisted nozzle present
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on the electrostatic spray system, solutions emitted from this system were significantly 

cooled to approximately 25°C.  All other solutions were not heated and therefore the 

stock solution could be mixed with the specified amount of water immediately prior to 

application of the treatment.  

Treatment of Outside Rounds 

The OR pieces were subjected to one of the following 5 treatments: sterile tap 

water, 4.5% (55°C) lactic acid (Purac, LA), 3% lauric arginate (A&B Ingredients: 

Cytoguard LA2X, 0.8% cetylpyridium chloride (Safe Foods: Cecure, CPC), and 0.02% 

(42°C) peroxyacetic acid (Birko: Birkocide, PAA).  Each of these treatments were 

applied using a conventional hand pump sprayer (CS; Roundup, Marvsville, OH, 7.6 L, 

10 psi (69 kPa)) or a hand-held electrostatic spraying system (ESS; Electrostatic 

Spraying Systems, Inc., Watkinsville, GA, 11.4 L, 30 psi (207 kPa)).  The charge of 

solution emitted from the ESS was validated with a digital multimeter (Amprobe, model 

15XP-B, ≤-10 amps).  Consulting with the manufacturers was conducted to ensure that 

our model cabinet was sufficient to ground the outside round to be charged positively.  

For all treatments, the spray time was 1 minute, which resulted in the emission of 500 ml 

from the conventional sprayer and 126 ml from the ESS. Following treatment, the OR 

was allowed to drip for approximately 20 seconds before being removed from the spray 

cabinet. The OR were placed on a tray with the treated surface face-up.  Post treatment 

surface samples of 30 cm2 were aseptically excised as described previously and 

stomached at 230 RPM for 1 minute in 99 ml 0.1% peptone water prior to serial 

dilutions and plating on TSAR.  Post treatment surface pH and temperature were
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measured with a ExStik®, model PH100 hand-held pH and surface temperature reader, 

and the internal temperature of the OR was measured with a type K needle probe 

thermocouple attached to a Total-Range digital thermometer. 



 

 

 

 Figure 1.  Beef surface temperature by chilling during transport after 
inoculation by hour 
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RESULTS AND DISCUSSION 

 

Preliminary Experiments 

Utilization and Comparison of Neutralizers on Lactic acid-Treated Samples 

Little research has been published on the need for neutralizers after antimicrobial 

application and as a result there is not a standard protocol for their use.  It is thought that 

some antimicrobials may have a residual effect, leading to an overestimation of 

antimicrobial efficacy.  Martinez-Gonzalez et al. (78) studied the impact of a 

neutralizing step on oranges after application of sodium chlorite spray or lactic acid dip 

and found that a neutralizing step did not affect enumeration of pathogenic bacteria as 

compared to samples not treated with a neutralizer.   

In this study, 4 neutralizers were compared, including buffered peptone water (BPW), 

Dey-Engley broth (D/E), phosphate buffered saline (PBS) and peptone water (PW) as a 

control after application of 2% lactic acid spray.  Log reductions in populations of 

STEC8 were observed by subtracting the pre-treatment counts from the post-treatment 

counts on the same piece of brisket. 

  As shown in Table 1, there was no significant difference (P > 0.05) in log 

CFU/cm2 reductions of STEC achieved between different neutralizers used.  Reductions 

for those samples treated with 2% lactic acid for 30 s followed by treatment with BPW, 

D/E, PBS, and PW were 1.2, 1.7, 1.6, and 1.3 log CFU/cm2.  Log reductions between 

samples treated with each neutralizer were not significantly different.  In addition, there 

was no significant difference (P > 0.05) between samples treated for 30 s and those
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treated with 45 s.  Samples treated with 2% lactic acid for 45 s followed by treatment 

with BPW, D/E, PBS, and PW showed reductions of 1.0, 1.3, 1.6, and 1.5 log CFU/cm2.  

Log reductions between samples treated with each neutralizer were not significantly 

different (P > 0.05).  Based on these results, PW, the cheapest and easiest alternative, 

was chosen as the neutralizer to be evaluated in the following preliminary study.  It was 

also made clear that under these circumstances, specifically treatment with 2% L-lactic 

acid, spraying for a longer amount of time (45 s versus 30 s) did not make a significant 

difference in log CFU/cm2 reduction of STEC8.  In fact, in the case of samples treated 

with BPW and D/E, samples treated with lactic acid for 45 s showed numerically smaller 

reductions than those samples treated for 30 s. 

The next phase of this preliminary experiment examined the necessity of a 

neutralizing step and its effect on the populations of STEC after treatment with lactic 

acid.  Those samples not treated with a neutralizing step were placed in diluent 

immediately to be serially diluted and plated.  As seen in Figure 2, there was no 

significant difference (P > 0.05) between samples treated with a neutralizing step and 

those not.  Samples treated with a neutralizing step showed a 1.5 log CFU/cm2 reduction 

of STEC whereas samples with no neutralizing step showed only a slightly greater 

reduction of 1.6 log CFU/cm2.  These values were not significantly different (P > 0.05).  

Based on these results, it was concluded that a neutralizing step was not necessary for 

the proper enumeration of STEC on beef carcass surfaces after treatment with L-lactic 

acid.



 

 

  

 

 

 Table 1. Least square mean of the reductionsa (log CFU/cm2) of Shiga toxin-producing E. coli by 
treatment with 2%, 55°C lactic acid followed by neutralizer treatment 

!
Spray Time 

Treatmentb 30 s 45 s 
Buffered peptone water (BPW)! 1.2 1.0 
D/E broth (D/E)! 1.7 1.3 
Phosphate buffered saline (PBS)! 1.6 1.6 
Peptone water (PW) 1.3 1.5 
aReduction = (log CFU/cm2 pre-treatment) - (log CFU/cm2 post-treatment)!
bImmersion of samples in 100 ml BPW, D/E, PBS, or PW for 120 s!
There was no significant difference (P > 0.05) between neutralizers or length of spray time; Root 
Mean Square Error = 0.3019.!
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 Figure 2. Log CFU/cm2 reductions in Shiga toxin-producing E. coli by 
2% lactic acid followed by a neutralizing step or no neutralizing step 
There was no significant difference (P > 0.05) between log reductions 
achieved with or without a neutralizer. 
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Comparison of Lactic acid Brands in the Reduction of STEC8 on Beef Carcass Surfaces 

Several brands of L-lactic acid were available on the market.  It was necessary to 

determine whether one had a higher antimicrobial capacity than the others when used for 

reducing STEC populations on beef carcass surfaces.  The three different 2% lactic acid 

solutions were prepared by mixing stock solutions (Sigma: 85%, Birko: 88%, and Purac: 

88%) with the necessary amount of water to create a 2% solution as described in the 

previous section.  As seen in Figure 3, brand 3 (Purac) achieved numerically greater 

reductions (1.5 log CFU/cm2) compared to brands 1 and 2 (Sigma: 1.3 log CFU/cm2 and 

Birko: 1.3 log CFU/cm2, respectively), but there was no significant difference (P > 0.05) 

in reductions achieved between the 3 brands.  For cost and availability reasons, Purac 

was determined to be the brand that would be used in all future experiments. 
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Figure 3.  Log CFU/cm2 reductions in Shiga toxin-producing E. coli  
by different brands of 2% lactic acid. There were no differences (P > 
0.05) in reductions obtained by all brands of lactic acid. 
!
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Comparison of Slaughter Scenarios 

The purpose of this preliminary experiment was to determine how different 

points of contamination, whether occurring prior to or after chilling, in the slaughter 

process affects the efficacy of a carcass intervention to reduce STEC on beef carcass 

surfaces. The intervention used was a lactic acid spray.  The three scenarios tested 

simulated potential points of carcass contamination during slaughter.  The first involved 

inoculating the brisket piece when it had an internal temperature of approximately 37°C, 

allowing STEC to attach to the surface of the meat for 30 minutes at room temperature 

before applying the intervention.  In the second scenario, brisket pieces were inoculated 

when they had an internal temperature of approximately 37°C, allowing STEC to then 

attach overnight at 4°C.  For the third scenario, brisket pieces with an internal 

temperature of approximately 4°C were inoculated and STEC was allowed to attach to 

the brisket surface for 30 minutes at 4°C.  As shown in Figure 4, reductions in STEC 

achieved by the three scenarios were 2.4, 2.7 and 1.3 log CFU/cm2, respectively.  

Scenarios 1 and 2 resulted in significantly greater (P < 0.05) log reductions than scenario 

3.  Scenario two represents the most common scenario for carcass contamination, 

whereas scenario 1 represents a less common but likely risk of cross contamination in 

the slaughter process.  The lower reduction associated with scenario 3 may have been 

due to the lower temperature of inoculation and attachment. 
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Figure 4.  Log CFU/cm2 reductions in Shiga toxin-producing 
E. coli with water wash followed by 2%, 55°C lactic acid 
spray. Scenario 1: Inoculate hot (37°C), attach at room temperature 
(25°C). Scenario 2: Inoculate hot (37°C), attach overnight in chiller 
(4°C). Scenario 3: Inoculate chilled (4°C), attach in chiller (4°C).  
Scenarios marked with different letters differ statistically (P < 0.05). 
 

a a b 
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Core Research 

Comparison of Chemical Antimicrobials in the Reduction of STEC on Beef Carcass 

Surfaces 

 The purpose of this research was to compare the efficacies of different 

antimicrobials in the reduction of STEC on chilled beef carcass surfaces, as well as to 

compare the efficacies of ESS and a conventional spray as application methods for these 

antimicrobials.   

According to data in Table 2, W, LA, LAE, CPC and PAA applied with CS 

achieved reductions in STEC populations of 0.2, 3.2, 2.3, 1.6 and 1.0 log CFU/cm2, 

respectively, whereas the same treatments applied with ESS reduced STEC populations 

by -0.1, 1.7, 2.2, 1.2, and 0.7 log CFU/cm2, respectively.  As shown in Figure 5, lactic 

acid applied with conventional spray yielded significantly greater reductions (P < 0.05) 

compared to lactic acid applied with electrostatic spray. This may have been due to the 

temperature differential between LA solution emitted by CS (55°C) and LA applied with 

ESS (55°C in tank, approximately 25°C coming out of the air assisted nozzle).  

 Table 3 shows the pre- and post-treatment surface pH readings resulting from 

application of various treatments W, LA, LAE, CPC and PAA. When using a 

conventional spray to apply LA, LAE and PAA, the pH was reduced from 6.2 to 2.8, 6.5 

to 3.8, and 6.2 to 4.7, respectively. When using an ESS to apply these antimicrobials, the 

pH was reduced from 6.2 to 3.0, 6.2 to 4.1, and 6.1 to 4.9, respectively. As expected, the 

pH was not reduced by the application of STW or CPC regardless of the method of 

application.  Lactic acid produced significantly greater pH reductions than all other
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treatments.  There were no significant differences (P> 0.05) in pH changes among 

treatments between CS and ESS.  This suggests that if there was a difference in efficacy 

among treatments between CS and ESS, the difference was the result of some other 

factor, not pH.  

 Table 4 shows the increase in temperature after application of all treatments.  As 

expected, the two heated treatments, LA and PAA, applied with CS achieved the 

significantly (P < 0.05) highest increase in beef surface temperature (14.4 and 12.7, 

respectively).  Heated treatments applied with ESS were not heated upon nozzle exit, as 

explained previously. This increase in surface temperature has been proved to be only 

momentary. In a previous study, Castillo et al. (24) reported that spraying of cold 

carcasses with warm LA resulted in an increase of carcass surface temperature of 1.6°C, 

and this temperature returned to chilling temperatures within 10 s.  This study was also 

completed under refrigerated conditions with full carcasses. This should eliminate 

potential concerns from the industry about carcass temperature increase due to LA spray. 

In the present study, the outside rounds were taken from refrigerated storage to a model 

cabinet inside a bioBUBBLE at room temperature. This could also have caused a 

relatively greater temperature increase.  This is consistent with the findings of King et al. 

(69), where a 12°C surface temperature increase was observed after application of 43°C 

PAA to carcass pieces when completed in a laboratory setting at room temperature.  

As shown in Table 2, lauric arginate ester produced the greatest reductions (2.2 

log CFU/cm2) in STEC8 counts among treatments applied via ESS, however reductions 

produced by applying LA with ESS (1.7 log CFU/cm2) were not significantly different.
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 Still, LAE applied with CS achieved reductions that were not significantly 

different than reductions produced by LAE applied with ESS.  Peracetic acid was the 

least effective antimicrobial in the reduction of STEC with reductions of 1.0 and 0.7 log 

CFU/cm2 for CS and ESS, respectively; Reductions produced by peracetic acid were not 

significantly different (P > 0.05) than those produced by water alone, in any case.  Lactic 

acid applied with CS achieved the numerically greatest reduction (3.2 log CFU/cm2) of 

STEC among all treatments, but reductions achieved by conventional application with 

LAE (2.3 log CFU/cm2) were not significantly different (P > 0.05) than LA applied with 

CS. 

 These results, specifically those obtained after CS application of LA, can be 

loosely compared to reductions obtained in previous studies.  Castillo et al. (29) 

described a post-chill reduction of 2.0-2.4 log CFU/cm2 E. coli O157:H7 with 4% lactic 

acid.  However, results obtained in the present study showed a greater reduction (3.2 log 

CFU/cm2) in STEC compared to reductions reported by Castillo et al. (29).  It is 

important to note the concentration of lactic acid solution prepared in the present study 

was slightly higher at 4.5%, which may have resulted in a greater reduction.  Other 

important differences between the previous study (26) and this study include the use of a 

cocktail of 8 strains of STEC as inoculum, as opposed to a cocktail of one strain each of 

E. coli O157:H7 and Salmonella in the previous study, and the method of inoculation. 

The previous study described inoculating the carcass surface using a pathogen-

inoculated fecal suspension with washed cells that was spread on the beef surface 

whereas the present study involved a spray inoculation method with unwashed cells.
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Finally, the present study included prechill interventions like the previous study, which 

resulted in reductions up to 5.2 log CFU/cm2 when treated with water and lactic acid.  

However, the prechill interventions applied to the beef in the present study were applied 

prior to inoculation.   Considering the differences in experimental design and pathogens 

used, the slightly greater postchill reduction by 4.5% lactic acid in the present study is 

still comparable to the results obtained in the previous study.   

 Lauric arginate ester has been studied less frequently with regards to beef and 

STEC.  One study conducted by Dias-Morse et al. (41) reported a 1.4 log CFU/g in 

STEC.  This study is not comparable to the present study, since Dias-Morse et al. (41) 

applied the intervention at a much higher concentration (5% as opposed to 3%), and the 

volume of solution applied by these authors (about 160 ml) to the beef trimmings was 

lower than the volume of lauric arginate ester applied in the present study (500 ml) 

applied to the beef outside round.  The volume and concentration applied in the present 

study was calculated based on the weights of the outside rounds and percentage pickup 

in the interest of following federal guidelines.  However, many studies have been 

completed regarding the use of lauric arginate ester in the reduction of Listeria 

monocytogenes in RTE meats (74, 87).  More work must be completed to understand the 

antimicrobial capacity of LAE against STEC on chilled beef carcass surfaces.  

Although cetylpyridinium chloride is not currently approved for use in beef 

processing, its success in postchill applications to poultry carcasses for the reduction of 

Salmonella has spurred interest in its application in the beef industry (103, 104).  Due to 

the fact that the majority of research with CPC on beef has been its application in poultry
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or as a beef hide intervention (18, 80, 103, 104), it is difficult to compare the present 

studies to any previous studies published in the literature.  The very low reductions (1.0 

log CFU/cm2) achieved by 0.02% PAA were expected based on the minimal reductions 

of E. coli O157:H7 and Salmonella in postchill application reported by King et al. (69).  

Although not directly comparable due to differences in experimental design, it was clear 

that peracetic acid may not be the most effective intervention tested in the present study. 

 Regarding the potential for use of ESS to apply interventions on carcasses, very 

little research has been published about benefits of this technology, especially using 

hand-held ESS in beef applications. Therefore, it was not possible to compare the 

present study to studies conducted in the industry and come to meaningful conclusions.  

The hand-held ESS used in the present study has the potential for success in a small 

scale beef processing facility, yielding less water and antimicrobial waste than 

conventional spray.  Phebus et al. (83) reported the success potential of large-scale 

cabinetry with ESS installed within.  More research within the industry is needed to 

optimize beef safety with this application method.  An advantage of the large-scale 

system described above is its multiple (8) nozzles, resulting in potentially greater 

coverage and thus higher efficacy than what the hand-held single nozzle is capable of. 



 

 

 

Table 2.  Least square mean reductionsa (log CFU/cm2) of Shiga toxin-producing E. coli by treatments applied with!
conventional or electrostatic spray!

!
Spray Type 

Treatmentb Conventional ESS 
W! 0.2EF

c -0.1F 

LA! 3.2A 1.7BCD 
LAE! 2.3AB 2.2BC 
CPC! 1.6BCD 1.2CDE 
PAA 1.0DEF 0.7DEF 
a Reduction = (log CFU/cm2 pre-treatment) - (log CFU/cm2 post-treatment)!
b W, 25°C sterile water spray; LA, 4.5%, 55°C lactic acid spray; LAE, 3%, 25°C lauric arginate ester spray; CPC, 
0.8%, 25°C, cetylpyridinium chloride spray; PAA, 0.02%, 43°C, peracetic acid spray!
c Numbers with the same letters are not significantly different (P > 0.05); Root Mean Square Error = 0.5613.!
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Table 3. Means of pre- and post-treatment pH taken from outside round surface regions treated with 
conventional or electrostatic spray 

! ! ! ! ! ! ! !
pH 

Treatmenta !! Spray typeb !! !! !! !! pree !! postf 
25°C Water 

!
CSc 

! ! ! !
6.0 

!
6.6 

 !
ESSd 

! ! ! !
5.9 

!
6.3 

4.5 %, 55°C LA 
!

CS 
! ! ! !

6.2 
!

2.8 

 !
ESS 

! ! ! !
6.2 

!
3.0 

3%, 25°C LAE 
!

CS 
! ! ! !

6.5 
!

3.8 

 !
ESS 

! ! ! !
6.2 

!
4.1 

0.8%, 25°C CPC 
!

CS 
! ! ! !

6.2 
!

6.5 

 !
ESS 

! ! ! !
6.3 

!
6.5 

0.02%, 42°C PAA 
!

CS 
! ! ! !

6.2 
!

4.7 
!! !! ESS !! !! !! !! 6.1 !! 4.9 
a60 s spray with CS or ESS 

! ! ! ! ! ! !bCS: Conventional spray, ESS: Electrostatic spray 
! ! ! ! ! ! !c10 psi (69 kPa), 500 ml 
! ! ! ! ! ! !d30 psi (207 kPa), 126 ml 
! ! ! ! ! ! !eMean of 3 surface pH readings pre-treatment 
! ! ! ! ! ! !fMean of 3 surface pH readings post-treatment 
! ! ! ! ! ! !
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Table 4. Means of pre- and post-treatment surface temperature from outside rounds treated with conventional 
or electrostatic spray 

        
Temperature 

Treatmenta   Spray typeb         pree   postf 
25°C Water 

 
CSc 

    
8.2 

 
18.3 

  
ESSd 

    
7.9 

 
17.9 

4.5 %, 55°C LA 
 

CS 
    

8.4 
 

22.7 

  
ESS 

    
8.1 

 
18.4 

3%, 25°C LAE 
 

CS 
    

7.7 
 

17.5 

  
ESS 

    
7.9 

 
16.4 

0.8%, 25°C CPC 
 

CS 
    

7.4 
 

17.5 

  
ESS 

    
8.5 

 
17.3 

0.02%, 42°C PAA 
 

CS 
    

8.2 
 

20.9 
    ESS         7.6 

 
17.8 

a60 s spray with CS or ESS 
! ! ! ! ! !bCS: Conventional spray, ESS: Electrostatic spray 
! ! ! ! ! !c10 psi (69 kPa), 500 ml 
! ! ! ! ! !d30 psi (207 kPa), 126 ml 
! ! ! ! ! !eMean of 3 surface temperature readings pre-treatment 
! ! ! ! ! !fMean of 3 surface temperature readings post-treatment 
! ! ! ! ! !
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CONCLUSIONS 

 

This work determined that chemical antimicrobials must be properly paired with spray 

technologies in order to optimize beef safety.  Lactic acid worked most effectively when 

applied with CS instead of ESS, and was the most effective chemical antimicrobial 

tested.  This antimicrobial was the only one of the treatments to cause statistically 

significant differences in STEC reduction between different spray technologies.  

Peracetic acid did not have any advantage over water alone, in any case.  Lauric arginate 

ester produced numerically similar reductions of STEC8 between conventional and 

electrostatic spray, indicating that this application method may be efficacious for only 

specific antimicrobials.  Although a novel and potentially efficacious technology, more 

research must be done with the hand-held ESS in order to optimize its use in small plants 

in the beef industry. 

 

 

 

 

 

 

 

 



 

 

58 

REFERENCES 

!1. Adams, M. R., and M. O. Moss. 2007. Food Microbiology. [electronic resource]. 
Cambridge : Royal Society of Chemistry, The Nov. 2007 Secaucus : Springer. 3rd ed. 
 
 
2. Anderson, M. E., H. D. Naumann, W. C. Stringer, and R. T. Marshall. 1981. 
Evaluation of a prototype beef carcass washer in a commercial plant. J. Food Prot. 
44:35-38. 
 
 
3. Arthur, T. M., J. M. Bosilevac, N. Kalchayanand, J. E. Wells, S. D. Shackelford, 
T. L. Wheeler, and M. Koohmaraie. 2010. Evaluation of a direct-fed microbial product 
effect on the prevalence and load of Escherichia coli O157:H7 in feedlot cattle. J. Food 
Prot. 73:366-371. 
 
 
4. Arthur, T. M., X. Nou, N. Kalchayanand, J. M. Bosilevac, T. Wheeler, and M. 
Koohmaraie. 2011. Survival of Escherichia coli O157:H7 on cattle hides. Appl. Environ. 
Microbiol. 77:3002-3008. 
 
 
5. Arthur, T. M., T. L. Wheeler, S. D. Shackelford, J. M. Bosilevac, X. W. Nou, and 
M. Koohmaraie. Effects of low-dose, low-penetration electron beam irradiation of 
chilled beef carcass surface cuts on Escherichia coli O157:H7 and meat quality. J. Food 
Prot. 68:666-672. 
 
 
6. Bagley, B. 2011. News Release on Public Meeting on Non-O157 E. coli. In, 
Washington, D.C. 
 
 
7. Baird, B. E., L. M. Lucia, G. R. Acuff, K. B. Harris, and J. W. Savell. 2006. Beef 
hide antimicrobial interventions as a means of reducing bacterial contamination. Meat 
Sci. 73:245-248. 
 
 
8. Bakal, G. 2005. The lowdown on lauric arginate. In, Food Quality & Safety. 
 
 
9. Barkate, M. L., G. R. Acuff, L. M. Lucia, and D. S. Hale. 1993. Hot water 
decontamination of beef carcasses for reduction of initial bacterial numbers. Meat Sci. 
35:397-401.



 

 

59 

10. Barkocy-Gallagher, G. A., T. M. Arthur, M. Rivera-Betancourt, X. W. Nou, S. 
D. Shackelford, T. L. Wheeler, and M. Koohmaraie. 2003. Seasonal prevalence of Shiga 
toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and 
Salmonella in commercial beef processing plants. J. Food Prot. 66:1978-1986. 
 
 
11. Batz, M. B., S. Hoffmann, and J. G. Morris Jr. 2012. Ranking the disease burden 
of 14 pathogens in food sources in the United States using attribution data from outbreak 
investigations and expert elicitation. J. Food Prot. 75:1278-1291. 
 
 
12. Bauermeister, L. J., J. W. J. Bowers, J. C. Townsend, and S. R. McKee. 2008. 
Validating the efficacy of peracetic acid mixture as an antimicrobial in poultry chillers. 
J. Food Prot. 71:1119-1122. 
 
 
13. Bell, B. P., M. Goldoft, P. M. Griffin, M. A. Davis, D. C. Gordon, P. I. Tarr, C. 
A. Bartleson, J. H. Lewis, T. J. Barrett, J. G. Wells, and a. et. 1994. A multistate 
outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic 
syndrome from hamburgers. The Washington experience. JAMA. 272:1349-1353. 
 
 
14. Bhunia, A. K. 2008. Foodborne Microbial Pathogens. [electronic resource] : 
Mechanisms and Pathogenesis. New York ; London : Springer, 2008. 
 
 
15. Blackburn, C. d. W., and P. J. McClure. 2002. Foodborne Pathogens. [electronic 
resource] : Hazards, Risk Analysis, and Control. Boca Raton, FL : CRC Press ; 
Cambridge, England : Woodhead, 2002. 
 
16. Booth, I. R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiological 
Reviews. 49:359-378. 
 
 
17. Bosilevac, J. M., M. Rossman, J. O. Reagan, M. Koohmaraie, T. M. Arthur, T. L. 
Wheeler, and S. D. Shackelford. 2004. Prevalence of Escherichia coli O157 and levels 
of aerobic bacteria and Enterobacteriaceae are reduced when hides are washed and 
treated with cetylpyridinium chloride at a commercial beef processing plant. J. Food 
Prot. 67:646-650. 
 
 
 
18.  Bosilevac, J. M., D. Jaroni, M. P. Kent, M. Rossman, M. S. Osborn, S. D. 
Shackelford, M. Rivera-Betancourt, T. L. Wheeler, T. M. Arthur, and X. Nou. 2004.



 

 

60 

Protocol for evaluating the efficacy of cetylpyridinium chloride as a beef hide 
intervention. J. Food Prot. 67:303-309. 
  
 
 
19. Bosilevac, J. M., N. Xiangwu, G. A. Barkocy-Gallagher, T. M. Arthur, and K. 
Mohammad. 2006. Treatments using hot water instead of lactic acid reduce levels of 
aerobic bacteria and Enterobacteriaceae and reduce the prevalence of Escherichia coli 
O157:H7 on preevisceration beef carcasses. J. Food Prot. 69:1808-1813. 
 
 
20. Bowling, R. A. and R.P. Clayton. September 1992. Method for dehairing 
animals. U.S. Patent 5,149,295. 
 
 
21. Brashears, M. M., M. L. Galyean, G. H. Loneragan, J. E. Mann, and K. 
Killinger-Mann. 2003. Prevalence of Escherichia coli O157:H7 and performance by 
beef feedlot cattle given Lactobacillus direct-fed microbials. J. Food Prot. 66:748-754. 
 
22. Calix-Lara, T. F., K. R. Kirsch, M. D. Hardin, A. Castillo, S. B. Smith, and T. M. 
Taylor. 2015.  Investigation into formation of lipid hydroperoxides from membrane 
lipids in Escherichia coli O157:H7 following exposure to hot water. J. Food Prot. 
78:1197-1202. 
 
 
23. Callaway, T. R., R. C. Anderson, K. J. Genovese, T. L. Poole, T. J. Anderson, J. 
A. Byrd, L. F. Kubena, and D. J. Nisbet. 2002. Sodium chlorate supplementation reduces 
E. coli O157:H7 populations in cattle. J. Anim. Sci. 80:1683-1689. 
 
 
24. Castillo, A., G. R. Acuff, I. Mercado, and L. M. Lucia. 2001. In-plant evaluation 
of a lactic acid treatment for reduction of bacteria on chilled beef carcasses. J. Food 
Prot. 64:738-740. 
 
 
25. Castillo, A., J. S. Dickson, R. P. Clayton, L. M. Lucia, and G. R. Acuff. 1998. 
Chemical dehairing of bovine skin to reduce pathogenic bacteria and bacteria of fecal 
origin. J. Food Prot. 61:623-625. 
 
 
26. Castillo, A., L. M. Lucia, K. J. Goodson, J. W. Savell, and G. R. Acuff. 1998. 
Comparison of water wash, trimming, and combined hot water and lactic acid treatments 
for reducing bacteria of fecal origin on beef carcasses. J. Food Prot. 61:823-828.



 

 

61 

 27. Castillo, A., L. M. Lucia, K. J. Goodson, J. W. Savell, and G. R. Acuff. 1999. 
Decontamination of beef carcass surface tissue by steam vacuuming alone and combined 
with hot water and lactic acid sprays. J. Food Prot. 62: 146-151.  
 
 
28. Castillo, A., L. M. Lucia, G. K. Kemp, and G. R. Acuff. 1999. Reduction of 
Escherichia coli O157:H7 and Salmonella Typhimurium on beef carcass surfaces using 
acidified sodium chlorite. J. Food Prot. 62:580-584. 
 
 
29. Castillo, A., L. M. Lucia, D. B. Roberson, T. H. Stevenson, I. Mercado, and G. 
R. Acuff. 2001. Lactic acid sprays reduce bacterial pathogens on cold beef carcass 
surfaces and in subsequently produced ground beef. J. Food Prot. 64: 58-62. 
 
30. Centers for Disease Control and Prevention. 2006, Multistate Outbreak of E. coli 
O157:H7 Infections Linked to Fresh Spinach. Available at: 
http://www.cdc.gov/ecoli/2006/spinach-10-2006.html. Accessed 28 July 2015. 
 
 
31. Centers for Disease Control and Prevention. 2011, CDC 2011 Estimates: 
Findings. Available at: http://www.cdc.gov/foodborneburden/2011-foodborne-
estimates.html. Accessed 26 July 2015. 
 
 
32. Centers for Disease Control and Prevention. 2011, Estimating Foodborne Illness: 
An Overview. Available at: http://www.cdc.gov/foodborneburden/estimates-
overview.html - burden. Accessed 26 July 2015. 
 
 
33. Centers for Disease Control and Prevention. 2013, FoodNet 2013 Annual Report. 
Available at: http://www.cdc.gov/foodnet/reports/annual-reports-2013.html. Accessed 
26 July 2015. 
 
 
34. Centers for Disease Control and Prevention. 2013, Multistate Outbreak of Shiga 
toxin-producing Escherichia coli O157:H7 Infections Linked to Ready-to-Eat Salads. 
Available at: http://www.cdc.gov/ecoli/2013/O157H7-11-13/index.html. Accessed 28 
July 2015. 
 
 
35. Comis, D. 2000. Using space-age technology to open a new window into the 
world of horticulture. Agricultural Research. 48:4-7. 



 

 

62 

36. Cray, W. C., and H. W. Moon. 1995. Experimental infection of calves and adult 
cattle with Escherichia coli O157:H7. Appl. Environ. Microbiol. 61: 1586-1590. 
 
 
37. Crouse, J. D., M. E. Anderson, and H. D. Naumann. 1988. Microbial 
decontamination and weight of carcass beef as affected by automated washing pressure 
and length of time of spray. J. Food Prot. 51:471-474. 
 
 
38. Cutter, C. N., W. J. Dorsa, A. Handie, S. Rodriguez-Morales, X. Zhou, P. J. 
Breen, and C. M. Compadre. 2000. Antimicrobial activity of cetylpyridinium chloride 
washes against pathogenic bacteria on beef surfaces. J. Food Prot. 63:593-600. 
 
 
39. Davidson, P. M., and A. L. Branen. 1993. Antimicrobials in foods. New York : 
M. Dekker, c1993. 2nd ed., rev. and expanded. 
 
 
40. Delmore, L. R. G., and J. N. Sofos. 1997. Hot-water rinsing and 
trimming/washing of beef carcasses to reduce physical and microbiological 
contamination. J. Food Sci. 62:373-376. 
 
 
41. Dias-Morse, P., F. W. Pohlman, J. Williams, and A. H. Brown. 2014. Single or 
multiple decontamination interventions involving lauric arginate on beef trimmings to 
enhance microbial safety of ground beef. The Professional Animal Scientist. 30:477-484. 
 
 
42. Dickson, J. S. 1995. Susceptibility of preevisceration washed beef carcasses to 
contamination by Escherichia coli O157:H7 and Salmonellae. J. Food Prot. 58:1065-
1068. 
 
 
43. Edwards, J. R., and D. Y. C. Fung. 2006. Prevention and decontamination of 
Escherichia coli O157 : H7 on raw beef carcasses in commercial beef abattoirs. J. Rapid 
Meth. Aut. Microbiol. 14: 1-95. 
 
 
44. Elder, R. O., J. E. Keen, G. R. Siragusa, G. A. Barkocy-Gallagher, M. 
Koohmaraie, and W. W. Laegreid. 2000. Correlation of enterohemorrhagic Escherichia 
coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. p. 
2999. In,  National Academy of Sciences of the United States of America.



 

 

63 

45. Ellebracht, J. W., D. A. King, A. Castillo, L. M. Lucia, G. R. Acuff, K. B. Harris, 
and J. W. Savell. 2005. Evaluation of peroxyacetic acid as a potential pre-grinding 
treatment for control of Escherichia coli O157:H7 and Salmonella Typhimurium on beef 
trimmings. Meat Sci. 70:197-203. 
 
 
46. Engeljohn, D. L. 2011. Response to submission: citizens petition to recognize the 
use of e-beam on carcasses as a processing aid, Washington, D.C. 
 
 
47. ESS. 2015. Electrostatic Spraying Systems: The Technology. Available at: 
http://maxcharge.com/technology/. Accessed 27 July 2015. 
 
 
48. FDA. 1997. Irradiation in the production, processing and handling of food. Fed. 
Reg. 79:20779. 
 
49. Fox, J. T., T. G. Nagaraja, J. S. Drouillard, and B. E. Depenbusch. 2007. Dry-
rolled or steam-flaked grain-based diets and fecal shedding of Escherichia coli O157 in 
feedlot cattle. J. Animal Sci. 85:1207-1212. 
 
 
50. FSIS. 1996. Federal Register Volume 61, Issue 66. 
 
 
51. FSIS. 2013, Ground Beef and Food Safety. Available at: 
http://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-
safety-fact-sheets/meat-preparation/ground-beef-and-food-safety/ct_index. Accessed 28 
July 2015. 
 
 
52. FSIS. 2015. Safe and Suitable Ingredients Used in the Production of Meat, 
Poultry, and Egg Products. In, 7120.1. 
 
 
 
53. Goktepe, I., V. K. Juneja, and M. Ahmedna. 2006. Probiotics in food safety and 
human health. Boca Raton, FL : CRC Press/Taylor & Francis, 2006. 
 
 
54. Gorman, B. M., J. B. Morgan, J. N. Sofos, and G. C. Smith. 1995. 
Microbiological and visual effects of trimming and/or spray washing for removal of 
fecal material for beef. J. Food Prot. 58:984-989.



 

 

64 

55. Hale, C. R., E. Scallan, A. B. Cronquist, J. Dunn, K. Smith, T. Robinson, S. 
Lathrop, M. Tobin-D'Angelo, and P. Clogher. 2012. Estimates of enteric illness 
attributable to contact with animals and their environments in the United States. Clin. 
Infect. Dis.  54:472-479. 
 
 
56. Hardin, M. D., G. R. Acuff, L. M. Lucia, J. S. Oman, and J. W. Savell. 1995. 
Comparison of methods for decontamination from beef carcass surfaces. J. Food Prot. 
58:368-374. 
 
 
57. Hoyle, B. 2004. Gale Encyclopedia of Science. Farmington Hills, MI : Gale, 
[2004]. 
 
 
 
58. Hubbert, W. T., H. V. Hagstad, and E. Spangler. 1991. Food safety & quality 
assurance : foods of animal origin. Ames : Iowa State University Press, 1991. 
First edition. 
 
 
59. ICMSF. 1996. Micro-organisms in foods 5 : Microbiological Specifications of 
Food Pathogens. London ; New York : Blackie Academic & Professional, 1996. 
 
 
60. Jacob, M. E., T. R. Callaway, and T. G. Nagaraja. 2009. Dietary interactions and 
interventions affecting Escherichia coli O157 colonization and shedding in cattle. Food. 
Path. Dis. 7:785-792. 
 
 
61. Jay, J. M., M. J. Loessner, and D. A. Golden. 2005. Modern Food Microbiology. 
New York : Springer, [2005] Seventh edition. 
 
 
62. Julio, F. R., T.-P. Hilario, V. M. Mabel, L. C. Raymundo, L.-R. Arturo, and R.-
V. Ma Neftalí. 2015. Disinfection of an advanced primary effluent using peracetic acid 
or ultraviolet radiation for its reuse in public services. J. Water Health 13:118-124. 
 
 
63. Juneja, V. K., and J. N. Sofos. 2010. Pathogens and Toxins in Foods : Challenges 
and Interventions. Washington, DC : ASM Press, [2010].



 

 

65 

64. Kant, A. K., and B. I. Graubard. 2004. Eating out in America, 1987–2000: trends 
and nutritional correlates. Prevent. Med. 38:243-249. 
 
 
 
65. Karmali, M. A. 1989. Infection by verocytotoxin-producing Escherichia coli. 
Clin Microbiol Rev. 2:15-38. 
 
 
66. Karmali, M. A., V. Gannon, and J. M. Sargeant. 2010. Verocytotoxin-producing 
Escherichia coli (VTEC). Vet. Microbiol. 140:360-370. 
 
 
67. Kašková, A., O. Ondrašovičová, M. Vargov, M. Ondrašovič, and J. Venglovský. 
2007. Application of peracetic acid and quarternary ammonium disinfectants as a part of 
sanitary treatment in a poultry house and poultry processing plant. Zoonoses & Public 
Health. 54:125-130. 
 
 
68. Kauffmann, F. 1947. The serology of the coli group. J. Immunol. 57:71-100. 
 
 
69. King, D. A., L. M. Lucia, A. Castillo, G. R. Acuff, K. B. Harris, and J. W. Savell. 
2005. Evaluation of peroxyacetic acid as a post-chilling intervention for control of 
Escherichia coli O157:H7 and Salmonella Typhimurium on beef carcass surfaces. Meat 
Sci. 69:401-407. 
 
 
70. Koohmaraie, M., T. M. Arthur, J. M. Bosilevac, M. Guerini, S. D. Shackelford, 
and T. L. Wheeler. 2005. Post-harvest interventions to reduce/eliminate pathogens in 
beef. Meat Sci. 71: 79-91. 
 
 
71. Kotula, A. W., W. R. Lusby, J. D. Crouse, and B. De Vries. 1974. Beef carcass 
washing to reduce bacterial contamination. J. Anim. Sci. 39: 674-679. 
72. LeJeune, J. T., and A. N. Wetzel. 2007. Preharvest control of Escherichia coli 
O157 in cattle. J. Anim. Sci. 85: 73-80. 
 
 
73. Loneragan, G. H., and M. M. Brashears. 2005. Review: Pre-harvest interventions 
to reduce carriage of E. coli O157 by harvest-ready feedlot cattle. Meat Sci. 71:72-78.



 

 

66 

74. Luchansky, J. B., J. E. Call, B. Hristova, L. Rumery, L. Yoder, and A. Oser. 
2005. Viability of Listeria monocytogenes on commercially-prepared hams surface 
treated with acidic calcium sulfate and lauric arginate and stored at 4 °C. Meat Sci. 
71:92-99. 
 
 
75. Mahon, B. E., P. M. Griffin, P. S. Mead, and R. V. Tauxe. 1997. Hemolytic 
uremic syndrome surveillance to monitor trends in infection with Escherichia coli 
O157:H7 and other Shiga toxin-producing E. coli. Emerg. Infect. Dis. 3:409-412. 
 
 
76. Mamidi, V. R., C. Ghanshyam, P. Manoj Kumar, and P. Kapur. 2013. 
Electrostatic hand pressure knapsack spray system with enhanced performance for small 
scale farms. J. Electrostatics. 71:785-790. 
 
 
77. Martin, E. M., C. L. Griffis, K. L. S. Vaughn, C. A. O'Bryan, E. C. Friedly, J. A. 
Marcy, S. C. Ricke, P. G. Crandall, and R. Y. Lary Jr. 2009. Control of Listeria 
monocytogenes by lauric arginate on frankfurters formulated with or without 
lactate/diacetate. J. Food Sci. 74:M237-M241. 
 
 
78. Martinez-Gonzales, N. E., C. Martinez-Cardenas, L. Martinez-Chavez, N. E. 
Ramos-Perez, T. M. Taylor, C. C. Ulloa-Franco, and A. Castillo. 2013. Effect of the use 
of a neutralizing step after antimicrobial application on microbial counts during 
challenge studies for orange disinfection. J. Food Prot. 76:328-332. 
 
 
 
79. Nagel, G. M., L. J. Bauermeister, C. L. Bratcher, M. Singh, and S. R. McKee. 
2013. Salmonella and Campylobacter reduction and quality characteristics of poultry 
carcasses treated with various antimicrobials in a post-chill immersion tank. Int. J. Food 
Microbiol. 165:281-286. 
 
 
80. Nou, X. W., M. Rivera-Betancourt, J. M. Bosilevac, T. L. Wheeler, S. D. 
Shackelford, B. L. Gwartney, J. O. Reagan, and M. Koohmaraie. 2003. Effect of 
chemical dehairing on the prevalence of Escherichia coli O157:H7 and the levels of 
aerobic bacteria and Enterobacteriaceae on carcasses in a commercial beef processing 
plant. J. Food Prot. 66:2005-2009. 
 
 
81. Pascuzzi, S., and E. Cerruto. 2015. Spray deposition in “tendone” vineyards 
when using a pneumatic electrostatic sprayer. Crop Protection. 68:1-11.



 

 

67 

82. Penney, N., T. Bigwood, H. Barea, D. Pulford, G. LeRoux, R. Cook, G. Jarvis, 
and G. Brightwell. 2007. Efficacy of a peroxyacetic acid formulation as an antimicrobial 
intervention to reduce levels of inoculated Escherichia coli O157:H7 on external carcass 
surfaces of hot-boned beef and veal. J. Food Prot. 70:200-203. 
 
 
83. Phebus, R. C., N.J. Sevart, N.W. Baumann, R.K. Phebus. Electrostatic spray 
cabinet evaluation to verify uniform delivery of chemical and biological solutions to pre-
chilled meat animal carcasses. p. 115-118. In, Meat and Food Safety. 
 
 
84. Phebus, R. K., A. L. Nutsch, D. E. Schafer, R. C. Wilson, M. J. Riemann, J. D. 
Leising, C. L. Kastner, J. R. Wolf, and R. K. Prasai. 1997. Comparison of steam 
pasteurization and other methods for reduction of pathogens on surfaces of freshly 
slaughtered beef. J. Food Prot. 60:476-484. 
 
 
85. Pitten, F. A., and A. Kramer. 2001. Efficacy of cetylpyridinium chloride used as 
oropharyngeal antiseptic. Arzneimittel-Forschung. 51:588-595. 
 
 
86. Pohlman, F. W., M. R. Stivarius, K. S. McElyea, and A. L. Waldroup. 2002. 
Reduction of E. coli, Salmonella Typhimurium, coliforms, aerobic bacteria, and 
improvement of ground beef color using trisodium phosphate or cetylpyridinium 
chloride before grinding. Meat Sci. 60:349-356. 
 
 
87. Porto-Fett, A. C. S., S. G. Campano, J. L. Smith, A. Oser, B. Shoyer, J. E. Call, 
and J. B. Luchansky. 2010. Control of Listeria monocytogenes on commercially-
produced frankfurters prepared with and without potassium lactate and sodium diacetate 
and surface treated with lauric arginate using the Sprayed Lethality in Container 
(SLIC®) delivery method. Meat Sci. 85:312-318. 
 
 
88. Potter, A. A., S. Klashinsky, Y. Li, E. Frey, H. Townsend, D. Rogan, G. 
Erickson, S. Hinkley, T. Klopfenstein, R. A. Moxley, D. R. Smith, and B. B. Finlay. 
2004. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination 
with type III secreted proteins. Vaccine. 22:362-369. 
 
 
89. Prasai, R. K., R. K. Phebus, C. M. Garcia Zepeda, C. L. Kastner, A. E. Boyle, 
and D. Y. C. Fung. 1995. Effectiveness of trimming and/or washing on microbiological 
quality of beef carcasses. J. Food Prot. 58:1114-1117.



 

 

68 

90. Pre-Harvest Production Best Practices, BIFSCO. 2013, Production Best Practices 
(PBP) to Aid in the Control of Foodborne Pathogens in Groups of Cattle. Available at: 
http://www.bifsco.org/CMDocs/BIFSCO/Best Practices/Production Best Practices.pdf. 
Accessed 22 July 2015. 
 
 
91. Ransom, J., K. Belk, J. Sofos, J. Stopforth, J. Scanga, and G. Smith. 2003. 
Comparison of intervention technologies for reducing Escherichia coli O157: H7 on 
beef cuts and trimmings. Food Prot. Trends. 23:24-34. 
 
 
92. Reagan, J. O., G. R. Acuff, D. R. Buege, M. J. Buyck, J. S. Dickson, C. L. 
Kastner, J. L. Marsden, J. B. Morgan, R. Nickelson, II, and G. C. Smith. 1996. 
Trimming and washing of beef carcasses as a method of improving the microbiological 
quality of meat. J. Food Prot. 59:751-756. 
 
 
93. Riley, L. W., H. B. McGee, J. G. Wells, R. S. Remis, and S. D. Helgerson. 1983. 
Hemorrhagic colitis associated with a rare Escherichia coli serotype. New Engl. J. Med. 
308:681-685. 
 
 
94. Russell, S. M. 2004. Sanitizing Poultry Processing Facilities Using Electrostatic 
Spraying. Accessed 27 July 2015. 
 
 
95. Salmond, C. V., R. G. Kroll, and I. R. Booth. 1984. The effect of food 
preservatives on pH homeostasis in Escherichia coli. J. Gen. Microbiol. 130:2845-2850. 
 
 
96. Scharff, R. L. 2012. Economic burden from health losses due to foodborne 
illness in the United States. J. Food Prot. 75:123-131. 
 
 
97. Smith, J. L., P. M. Fratamico, and N. W. Gunther. 2014. Shiga toxin-producing 
Escherichia coli. Adv. Appl. Microbiol. 86:145-197. 
 
 
98. Starrs, C. 2009. New applications help company with patented spray system 
grow. Accessed September 16, 2015.



 

 

69 

99. Van Netten, P., J. H. J. Huis in 't Veld, and D. A. A. Mossel. 1994. The 
immediate bactericidal effect of lactic acid on meat-borne pathogens. J. Appl. Bacteriol. 
77:490-496. 
 
 
100. VanOverbeke, D. L. 2007. The Handbook of Beef Safety and Quality. New York 
: Haworth Food & Agricultural Products Press, [2007]. 
 
 
101. Wheeler, T. L., N. Kalchayanand, and J. M. Bosilevac. 2014. Pre- and post-
harvest interventions to reduce pathogen contamination in the U.S. beef industry. Meat 
Sci. 98:372-382. 
 
 
102. Wolf, M. J., M. F. Miller, A. R. Parks, G. H. Loneragan, A. J. Garmyn, L. D. 
Thompson, A. Echeverry, and M. M. Brashears. 2012. Validation comparing the 
effectiveness of a lactic acid dip with a lactic acid spray for reducing Escherichia coli 
O157:H7, Salmonella, and non-O157 shiga toxigenic Escherichia coli on beef trim and 
ground beef. J. Food Prot. 75:1968-1973. 
 
 
103. Xi, C., L. J. Bauermeister, G. N. Hill, M. Singh, S. F. Bilgili, and S. R. McKee. 
2014. Efficacy of various antimicrobials on reduction of Salmonella and Campylobacter 
anti quality attributes of ground chicken obtained from poultry parts treated in a postchill 
decontamination tank. J. Food Prot. 77:1882-1888. 
 
 
104. Xiong, H., Y. Li, M. F. Slavik, and J. T. Walker. 1998. Spraying chicken skin 
with selected chemicals to reduce attached Salmonella Typhimurium. J. Food Prot. 
61:272-275. 
 
105. Zuniga, A. G. d., M. E. Anderson, R. T. Marshall, and E. L. Iannotti. 1991. A 
model system for studying the penetration of microorganisms into meat. J. Food Prot. 
54:256-2.


