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ABSTRACT 

 

Human factors (HFs) are important factors to the Macondo well blowout, but 

traditional risk assessment has not addressed them. Some common methodologies for 

offshore drilling risk assessment are fault tree, event tree and Bow-tie analysis, which 

are static structure and cannot consider common causes or conditional dependent factors. 

The Hybrid Causal Logic (HCL) model is a multi-layered, dynamic ever green model 

that can incorporate human factors. The HCL model enables the prediction of the 

probability of human errors and explains the reasons of human errors occurrence. This 

research applied the HCL model to offshore blowout risk assessment by using swabbing 

induced kick as a case study. 

The contribution of human factors to accidents in offshore industry has been 

identified based on literature review. They were categorized as individual factors, group 

factors and organization factors. The sub-heading human factors was considered as 

influencing factors in the HCL model. 

In the HCL model, an event tree was developed to display the links between kick 

and blowout. The safety barriers were identified as kick detection, kick control and shear 

ram. Basic events that could contribute to kick scenario, failure of kick detection, kick 

control and shear ram to seal the well were developed in fault trees. Then, the fault trees 

and event tree were mapped into Bayesian networks (BN). The human factors that could 

contribute to causal events in fault trees were also linked with BN. Objected-oriented 
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BN was applied to link the fault trees models into a higher-level model with input and 

output nodes. 

This higher-level model was able to evaluate the impact of different HFs’ levels 

on the probability of kick and blowout. The most influencing factors could also be 

tracked in this model for risk control and mitigation. Based on the assumptions and 

structure of this model, competence, pressure, communication and management were 

identified as the most influencing factors for blowout escalating by swabbing induced 

kick. The blowout probability could be decreased four times if the competence level of 

an operator was increased from a low level to a high level.  
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1 INTRODUCTION 

 

1.1 Background 

On April 20th, 2010, 11 people were killed and 17 were injured in the Deepwater 

Horizon Blowout accident. Hydrocarbon released from the Macondo well because of an 

uncontrolled blowout, resulting in fire and explosions on the Deepwater Horizon 

offshore oil platform. Figure 1 shows the Deepwater Horizon after the explosion and the 

sinking platform. It is considered the worst and largest oil spill in the U.S. history. After 

this accident, the offshore industry focused new attention on human factors (HFs) 

because HFs is considered one of the ultimate sources of the resulting consequences of 

these events. According to a comprehensive study of more than 600 well failures from 

1988 to 2005, 80% of major failures in offshore structures were due to human factors 

(HFs) [1].  

 

Figure 1 Deepwater Horizon after the explosion [2] 
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1.2 Offshore drilling and blowout 

With the increasing demand for oil and gas all over the world and new 

developing technologies of oil exploration and drilling, the global offshore industry is 

expected to continuing increase in the coming years. According to Global Business 

Intelligence (GBI) estimation, the offshore drilling spending has increased dramatically 

during the last 15 years and it is estimated that the offshore drilling activity will still 

increase.  

The sub-operations of drilling involve drilling, tripping out, tripping in, casing 

and cementing. Figure 2 shows a simplified sequence of drilling operations.  

 

Figure 2 Simplified sequence of drilling [3] 
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Offshore drilling activities are among the highest risk because of the special 

working environment and complex characters of drilling operation. Offshore drilling is 

trending to deeper depth, with ever larger and more complex drilling rigs, which will 

increase the safety risk. One serious event in offshore drilling is blowout. Blowout is the 

uncontrolled release of oil and/or gas after pressure control systems have failed. Once 

the oil or gas is ignited, fire and explosion could result in a catastrophic disaster. 

Blowout accidents statistics show that most of blowouts happened in the drilling phase 

[4]. In order to prevent blowout, some safety barriers are established and each barrier 

relies on human to interact with the system.  

1.3 Human factors and human errors 

1.3.1 Human factors 

There is no uniform definition about human factors so far. When it comes to 

safety, Health and Safety Executive (HSE) and International Association of Oil & Gas 

Producers (OGP) give their definition and explanation about human factors.  

HSE definition [5]: Human factors refer to environmental, organizational and job 

factors, and human and individual characteristics that influence behavior at work in a 

way that can affect health and safety. HSE addressed three aspects, including the job, 

individual and organization factors. The job factor includes task, workload, environment, 

display & controls, procedures, and so on. The individual factor includes competence, 

skills, personality, attitudes, risk perception and so on. The organization factor includes 

safety culture, leadership, resources, work patterns, communications and so on.  
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OGP definition [6]: Human factor is the term used to describe the interaction of 

individuals with each other, with facilities and equipment, and with management 

systems”. The detailed explanations are shown in Figure 3. 

 

Figure 3 Human factors definition from OGP [6] 

1.3.2 Human errors  

Rasmussen developed an influential classification system to classify human 

performance into three levels, which is Skill, Rule and Knowledge (SRK) based 

behaviors [7]. The skill-based behaviors refer to highly practiced and automatic actions 
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without conscious thought or attention. Rule-based behaviors apply learned rules or 

procedures to control activities in a familiar situation. Knowledge based behaviors are 

those in unfamiliar situation and in which a novel problem need to be solved. The 

distinction between skill-based behaviors and rule-based behaviors rely on individual’s 

attention and training level.   

Reason [8] categorized human failures based on the SRK model. The basic error 

types are described as slips, lapses and mistakes. He distinguishes rule-based mistakes 

and knowledge-based mistakes. Violations are also included in his taxonomy of human 

error, which used when people break the rule intentionally. The detail classification of 

human errors by Reason is shown in Figure 4. 

 

Figure 4 Reason’s taxonomy of human errors [8] 
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Taxonomy of human error - slips, lapses, mistakes and violations are active 

errors, which can cause immediate adverse effects by front-line operators. Another kind 

of error is latent errors that are often hard to foresee and may lie dormant in the system 

for many years to trigger the accident. Most latent errors could be caused by designers, 

decision makers and maintenance person in the organizational and management aspects 

[8].  

In offshore industry, the terms “human factors” and “human error” are often used 

interchangeably [9]. Rachael proposed a framework of the relationships between the 

underlying causes of human factors and the active human errors, which is shown in 

Figure 5. Human factors categories can be used to identify the underlying causes of 

accidents in the offshore oil industry. In his study, he defined the underlying human 

factors as individual, group and organization factors. Individual factors are competence, 

stress and motivation. Group factors are management, supervision and crew. 

Organization factors are company policies, company standards and systems and 

procedures. An improved categorization based on his work will be discussed later.  

1.4 Contribution of HFs on the Macondo well blowout 

After the Macondo Well blowout, many investigation reports have been 

published by different agencies, such as BP [10], CSB [11], DHSG [12] and National 

Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling [13]. Some 

reports addressed the contribution of human factors in the failure of several safety 

barriers. 
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Human Factors  Human Errors 

Individual Factors  Skill-Based 

Competence  Action errors 

Stress  Checking errors 

Motivation   

Group Factors  Rule-Based 

Management  Retrieval errors 

Supervision  Transmission errors 

Crew   

Organization Factors  Knowledge-Based 

Company policies  Diagnostic errors 

Company standards  Decision errors 

Systems and procedures   

Figure 5 Relationship between human factors and human errors [9] 

The BP accident investigation team released a report on this accident on Sep. 

2010, in which eight defensive physical and operational barriers were identified. 

Najmedin Meshkati attacked BP’s report stating that their investigation did not address 

human performance issues, organizational factors, and decision-making issues. The 

information about shift duration, worker fatigue and safety culture are not included in 

this report. BP’s head of safety and operations also admitted that errors in human 

judgment contributed to three of the safety barriers’ failures. A pressure test should have 
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revealed problems, but people from BP and the Transocean rig interpreted it as 

successful by incorrect judgment. The pipe pressure was expected to drop, which some 

indicators had shown the pipe pressure had increased and were unrecognized for about 

40 minutes, which shorten the emergency response time. The rig crew may have been 

distracted by simultaneous operations. The root cause of distraction was not identified in 

the report, which may be long shift duration and fatigue [14].   

In kick detection, the operator did not detect kick at the early stage. The Chief 

Counsel’s report from National Commission on the BP Deepwater Horizon Oil Spill and 

Offshore Drilling [13] pointed out that kick detection instrumentation was highly depend 

on human’s abilities and attention. 

The final report from the Deepwater Horizon Study group on the investigation of 

the Macondo Well blowout disaster also addressed the organization factors. This report 

[12] pointed out the malfunctions and shortsightedness of BP’s organization. Poor 

decision making when choosing production over system protection was a key factor in 

the accident causation. Other factors such as not following required guidelines, poor 

maintenance, inadequate communications, unawareness of risks and no appropriate 

management of change were pointed out in the report. Also, the offshore oil and gas 

industry did not learn lessons from previous accidents, for example, another blowout 

happened just eight months before this accident in Montara well. Ultimately, it is not just 

the company that stands to benefit from learning lessons from accidents, but rather the 

entire offshore industry. This requires a good balance between operating companies, 

government and environmental organizations to prevent barriers failures.   



 

9 

 

Patrick Smith et al. [15] analyzed human error of the Macondo well blowout. He 

identified 25 human errors and developed an error classification system, which is 

divided into eight categories. The eight categories include design, maintenance/testing, 

policies/procedures, training, decision making, organization/management, risk 

perception/acceptance and communication. Their analysis shows the factor with the most 

contribution is organization or management.  

1.5 Risk assessment methodology 

Risk assessment is the process of identifying hazards, evaluating the levels of 

risk that related to the hazards quantitatively or qualitatively, and determining ways to 

reduce or eliminate the hazards to level of acceptable risk. The level of risk distribution 

is the product of the probability distribution and the consequences distribution. This 

study will focused on the probability of blowout scenarios. The risk assessment 

approaches that will be used are fault tree (FT), event tree (ET) and Bayesian Network 

(BN).  

1.5.1 Fault tree analysis  

Fault tree analysis [16] is a deductive approach to identify the hazards that could 

lead to accidents. Fault tree begins with a top event and works backwards towards 

different intermediate events or basic events that could contribute to that event. The 

basic events are marked with a circle symbol and intermediate events are marked with a 

rectangles symbol. These events can be hardware failure, software failure, and human 

and environment factors.  
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Logic diagrams with gates are used to construct a fault tree. A detailed list of 

logic transfer components are shown in Figure 6. The most important two gates are 

‘AND’ and ‘OR’ gate. The output state of an AND gate is active only when all the input 

states are active. The output state of an OR gate is active when at least one of its input 

sates is active.  

The fault tree can be used both for qualitative or quantitative risk assessment. 

The qualitative risk assessment can express the casual relationship between basic event, 

intermediate events and top events. If their probabilities are available, quantitative risk 

assessment could be achieve. Assuming P(F) is the probability of top events, P(A), P(B) 

and P(C) are basic events and they are independent, the probability of the output state 

obtained from the AND gate is expressed as following 

P (F) = P (A) x P (B) x P(C) 

OR gate is given by the expression 

P (F) = P (A) + P (B) + P(C) 
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Figure 6 List of logic functions in fault tree [17] 

Figure 7 is an example of the quantitative calculations of a fault tree. 

 

Figure 7 Example of fault tree calculations [17] 
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1.5.2 Event tree analysis  

Event tree analysis is an inductive approach to determine accident event 

sequences that start from an initiating event. It provides information about all possible 

consequences that following a specified failure mode. In the offshore industry, there are 

some safety functions or safety barriers existing to prevent or mitigate the accident from 

propagating if an initiating event occurs. The success or fail of these safety systems will 

determine the consequences of initiating event. Conventionally, event trees are 

constructed from left-to-right with the initiating event located in the center of the page 

on the left. A line is drawn from the initiating event to two branches with success of the 

first safety function upward and failure of the function downward. The two lines are 

horizontal lines and the analysis proceeds to the next applicable operation. This process 

continues until an end state is reached. The ET analysis concept is shown in Figure 8.  

For constructing an event tree, the first step is to identify an initiating event of 

interest. After that, safety functions or safety barriers that are assigned to deal with the 

initiating event are identified. Then, event tree are constructed beginning with the 

initiating event and processing with failure of the safety functions or safety barriers. The 

last step is to describe the resulting event sequences.   

Event tree can be used in risk assessment qualitatively or quantitatively. We can 

quantify the final outcomes if data are available on the probabilities of the initiating 

event and each safety functions.  

There are some drawbacks of ET analysis. It can only consider one initiating 

event for each event tree. If an engineer considers a specified outcome, the initiating 
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event could not be the only reason and the one that the engineer is interested. Another is 

the data availability if quantitative analysis is required. Data gathering is always 

challenging in offshore industry.  

 

Figure 8 The event tree concept [17] 

1.5.3 Bayesian network 

One limitation of fault tree and event tree is that they are not applicable for 

scenarios with common causes or conditional dependence. Another limitation is that 

they are not applicable in dynamic safety analysis. If the probability of event is updated, 

the consequence risk is difficult to be updated due to the static structure. 

Bayesian network (BN) is a popular method used in dynamic risk assessment that 

can overcome these limitations due to its flexibility. Nodes and arrows are used to link 

the causal-effects relationships in a graph. Nodes represent variables and arrows 

represent the relationships among these variables. If two nodes are affected by a 
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common cause, they will be connected with arrows to the common cause node, which 

can show the relationship clearly and solve the limitation in FT or ET.  

BN can be used qualitatively or quantitatively. The network with nodes and 

arrows can be used for qualitative analysis. If the conditional probabilities between 

nodes are available, BN can be used for quantitative risk assessment. The probabilities of 

variables can be updated if new data are available through observation or other ways. 

Bayes’ theorem is the fundamental knowledge to update the prior probability given the 

evidence in the BN. Suppose the prior probability of variable H has 𝑖 possible states 

ℎ1, ℎ2, … . , ℎ𝑖 , where they represent 𝑖 different outcomes and they are mutually 

exhaustive and exclusive. If E represent new evidence, the posteriors probability can be 

represented by Equation 1 [18]. 

𝑷(𝒉𝒊|𝑬) =
𝑷(𝑬|𝒉𝒊)𝑷(𝒉𝒊)

∑ 𝑷(𝑬|𝒉𝒊)𝑷(𝒉𝒊)
    Equation 1 

A simple example with CPT in BN is shown in Figure 9. The Rain or sprinkler 

could cause the grass to be wet. When it is raining, the probablitiy of turning on the 

sprinkle is small as 0.01, so the sprinkle and rain are not independent and an arrow is 

connected to shown their depenency [19].  
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Figure 9 An example of Bayesian network with CPT [19] 

BN is also useful in situations with high uncertainty. In offshore drilling, HFs are 

highly uncertain due to the different environment, personality and organization. There 

are rare data collected for HFs in offshore industry, so it is difficult to define a certain 

probability for HFs variables.   



 

16 

 

2 LITERATURE REVIEW 

 

In order to develop model that could take HFs into account in offshore drilling 

risk assessment, two areas of literature review have been conducted. The first part 

concludes the research that has been done in the offshore drilling risk assessment. 

Another part gives an overview of models that have incorporated human factors in 

offshore risk assessment. 

2.1 Research about offshore drilling risk assessment 

In offshore drilling, there are unexpected severe consequences due to its harsh 

environment, compact space for equipment and people. Blowout is the worst accidents 

that could threaten human lives and environment in offshore drilling. Risk assessment is 

a widely used tool to provide prevention and mitigation measures for accident and 

incident.  

The most extensively used method in risk assessment of blowout is FT analysis. 

In 1978, Bercha et al. only used fault trees to analyze the blowout probability in 

Canadian artic waters [20], including human, environmental and equipment failures. In 

1994, Kirwan [21] also developed a comprehensive fault tree for offshore blowout that 

focused on human errors. The results were quantified to five major top events, including 

drill-pipe blowout, blowout through the BOP, the choke system, at the mud-processing 

level and shallow gas blowout. As we mentioned above, FT can reflects the casual-effect 

relationship related to blowout scenarios, but it is a static method that cannot capture 
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dynamic parameters in drilling, such as pressure in wellbore and weight of drilling mud. 

Also, it fails to consider the dependent failures and common cause failures.  

Khakzad [22] demonstrated QRA of offshore drilling operations with a bow-tie 

model and Bayesian network. The bow-tie model consists of fault trees and event trees 

for potential blowout scenarios. Then, the bow-tie model is mapped into BN for its 

flexibility application in situation with common cause failures and conditional 

dependencies. The fault tree was used to investigate the causes of kick and kick 

detection. Event tree illustrated the safety barriers that prevent kick from propagating 

into blowout. Some common factors are considered with BN in his model. The mud 

density is the common cause failure for kick and kick detection. Also, the kick can be 

detected only if kick occurs, which shows their dependency. His method is very effective 

in decision making of well control safety. However, his work did not consider the well 

control regain scenarios, and the effect of organization factors on basic events of kick 

and safety barriers was not addressed in his model.   

Cai [23] analyzed the effect of human factors safety barriers on offshore 

blowouts with the application of dynamic Bayesian networks and pseudo-fault tree. The 

pseudo-fault tree was introduced to eliminate the binary restriction of fault tree to build 

the structure of human factors barrier. He categorized the underlying human factors that 

contribute to offshore blowout into three parts, including individual, group and 

organization factors. He also investigated the effect of repair action on the human factors 

barrier failure and conducted sensitivity analysis in Bayesian networks. The results 

showed that repair action can improve the performance of human factors barriers. 
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Among the three categories of human factors, the important sequences are: group 

factors, organization factors and individual factors. This paper gave a comprehensive 

analysis of HFs, but it did not study the physical causal mechanisms related to the kick 

and blowout phenomenon. A system approach should identify how human factors affect 

multi-step procedures involved in drilling and well control operations.  

In 2014, Tabibzadeh [24] developed a systematical risk analysis methodology in 

offshore drilling and emphasized the contribution of HFs on the negative pressure test 

(NPRT). This method could qualitatively and quantitatively analyze the interpretation of 

NPRT. NPRT is used to test whether cement barrier can seal off the hydrocarbons. It is 

the only method to test cement integrity during offshore drilling [13]. In Macondo Well 

blowout, the negative pressure test was misinterpreted, which was a major contribution 

to this accidents [10] and showed the problem of human factors. Three approaches were 

introduced and constituted in his risk analysis methodology. The first approach is a 

comparative analysis of the test conducted by Deepwater Horizon crew with “standard” 

negative pressure test to identify the discrepancies between the two tests procedures. The 

second approach is a conceptual assessment framework to identify the causes of the 

above discrepancies with three layers. The three layers are physical state of system or 

basic events level, decisions or actions level made by crew and root organizational 

factors level from bottom to top. Finally, he proposed a rational decision making model 

to quantify a section of the developed conceptual framework in the second step. His 

methodology is focused only on the NPRT. It could be applied in analysis of other single 
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operation activity in offshore drilling, but it is too complex to analyze the whole picture 

of blowout scenarios in such detail steps. 

2.2 Research about integrating HFs in offshore risk assessment 

2.2.1 Human reliability analysis 

The most well - known method to integrate human factors into risk assessment is 

Human Reliability Assessment (HRA) that proposed by Kirwan in 1994. HRA can 

identify human errors. The general HRA process is shown in Figure 10. 

Numerous HRA approaches based on above process are developed in the last 40 

years. Some major approaches include THERP, HEART, Human HAZOP Study, 

SHERPA, and APJ [24]. Some methods that have been used in offshore operations 

include THERP and APJ [24]. Tabibzadeh [24] mentioned that those methods are only 

focused on human performance analysis. The root organization factors, such as 

procedures, management are not addressed in them.  
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Figure 10 Process of HRA [21] 
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2.2.2 Barrier and operational risk analysis 

Barrier and operational risk analysis (BORA) project was initiated to develop a 

method for analyzing the frequency of hydrocarbon release qualitatively and 

quantitatively by incorporating the effect of technical, operational, human and 

organizational factors in offshore industry. The method is called BORA-release, which is 

built by barrier block diagrams, fault trees, event trees and risk influencing diagrams 

[25]. The general model for the leak scenarios is illustrated in Figure 11. The first step is 

to identify initiating events, which are types of errors, or failures that may lead to a leak 

during the work operations or equipment failures due to corrosion, fatigue, or other 

technical causes. For certain work operation, generic frequency will be assigned to 

initiating events. This frequency is influenced by RIFs. The barrier block diagram is an 

event tree to model barrier systems to prevent the initiating events from developing to 

hydrocarbon release. The performances of safety barrier systems are modeled with fault 

tree analysis. The basic events in FT are also influenced by RIFs and their probabilities 

are identified by risk influencing diagrams. The main contribution of this model is that it 

introduces the term “Risk Influencing factors”, which include technical, operational, 

human and organizational factors.  
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Figure 11 BORA general risk model [26] 

OTS method is another project that based on the BORA to monitor the status of 

human and organizational factors with questionnaire survey, interview, HSE data 

analysis and documents review on [27]. Seven performance standards are comprised in 

OTS method, including work practice, competence, procedures and documentation, 

communication, workload and physical working environment, management, 

management of change.  

The Risk modelling - Integration of Organizational, Human and Technical 

factors (Risk_OMT) is a further developed program built on BORA and OTS methods to 

provide quantitative risk analysis [26]. Bayesian Network is introduced in this model to 

consider the dependency of basic events, RIFs and common cause effects.  
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2.2.3 Hybrid causal logic 

In 2005, Wang [28] developed a multi-layered model that could incorporate 

human factors and physical environments in addition to hardware failures, which is 

called the Hybrid Causal Logic (HCL) model. This model combines event trees or event 

sequence diagrams, fault trees and BN networks. The event trees and fault trees are input 

information in BN. The three major layers of HCL include: 

 Develop event trees or event sequence diagrams to define the accident or incident 

scenarios and consequences.  

 Develop fault trees to identify contribution factors to accidents or incidents in the 

above event trees or event sequence diagrams.  

 Develop a model to link the human factors that are contributed to causal events in 

fault trees with BN.  

The HCL has already been applied in aviation industry [29]. Roed [30] used this 

framework in offshore oil and gas industry and discuss its application in hydrocarbon 

release scenarios. The general HCL framework is illustrated in Figure 12.  
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Figure 12 General HCL framework [30] 

Wang.et al. [31] presented a similar method to analyze the probability of offshore 

fire by integration of HFs. Fault trees are used to identify the basic events that contribute 

to the fire scenarios. Then, fault trees are converted into BN and human factors are 

linked into the model by extended BN.  

2.3 Gaps in research 

It is important to identify HFs before developing models so that comprehensive 

influencing factors could be considered. However, there is no uniform definition about 

HFs so far. The category about human factors that developed 30 years ago did not 

consider about the new technology, environment and organization change.  
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Even though many methods have been developed to integrate human factors in 

risk assessment, they are not appropriate or applied in offshore drilling. The HRA 

methodologies are focused on human errors without considering organization factors. 

The BORA method is mainly focused on the hydrocarbon scenarios and it is not 

appropriate for situation where data is not enough.   

Traditional offshore drilling risk assessment models did not comprehensively 

address HFs and dynamic parameters in complex drilling activities and environments. A 

model should be developed to have the following functions: 1) incorporate HFs; 2) 

dynamic risk assessment; 3) reflect dependency and common cause failures; 4) multi-

step procedures in drilling and well control operations. HCL is a good method to have all 

above functions, but it has not been used in offshore drilling yet. Hence, this work will 

apply HCL framework in offshore blowout risk assessment.  

2.4 Research objective 

As offshore drilling is vulnerable to human factors in offshore oil and gas 

industry [21], this research will develop a model to incorporate human factors in 

offshore blowout risk assessment. The general research scope and methods are shown in 

Figure 13.  
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Figure 13 Scope and methodologies of research 

The first step is to identify categorized human factors in offshore industry. 

General category of human factors includes individual, group and organization factors. 

More detail specification under the three categories will be concluded in this research.   

Fault trees will be developed to identify human errors that could contribute to 

kick scenario, failure of kick detection, kick control and shear ram to seal the well. An 

event tree will display the links of kick into blowout. Then, the fault tree and event tree 

will be converted into Bayesian networks to consider the common cause failures, 

especially the common human factors. This methodology is a dynamic, ever green safety 

assessment by updating probability if new data is available.    
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3 IDENTIFY CATEGORIZED HFS IN OFFSHORE INDUSTRY 

 

In 1996, Gordon [9] gave an overview of the contribution of human factors on 

accidents in the offshore oil industry. He suggested improved accident reporting forms 

by providing detailed categories of human factors accident causation. In order to make a 

clear explanation, three levels of category are divided as main - categories, subheadings 

and sub-categories. The main-categories are individual factors, group factors and 

organizational factors, which are illustrated in Table 1 [5,9].  

Table 1 Explanation of human factors categories 

Main categories of 

HFs 
Explanation 

Individual factors 
Individual characteristics and external factors that affect a person’s 

performance 

Group factors 
Factors that affect teamwork, including the role of middle management, 

supervision and crew factors 

Organization 

factors 
Factors in which behavior occurs and the basis of people’s expectations 

 

Gordon’s categories gave a detailed structure of basic human factors that should 

be considered in the accident reporting forms. However, this paper did not provide an 

importance ranking of each factor in offshore industry. Some factors addressed in recent 

accident reports are also not covered in the categories, such as HMI. Factors, like 

communication, in sub-category can be important and contribute to many major 
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accidents. It is very important to list these factors in subheading and specify them in 

detail.  

In order to give a more comprehensive category and address the key factors, 

improved categorizations of human factors based on Gordon’s paper [9], literature 

review [15,23,24,26,27] and expert judgment have been developed, which are shown in 

Figure 14, Figure 15 and Figure 16. As it is hard to consider all factors in the risk 

assessment, this research will consider the sub-heading factors.  

 

 

Figure 14 Individual factors [9,15,23,24,26,27] 
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Figure 15 Group factors [9,15,23,24,26,27] 

 

Figure 16 Organization factors [9,15,23,24,26,27] 
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4 INTEGRATE HFS IN BLOWOUT RISK ASSESSMENT WITH HCL 

FRAMEWORK 

 

As we have identified sub-heading human factors in offshore drilling, we will 

discuss how to incorporate them into risk assessment with HCL framework. The steps to 

develop the HCL model for offshore blowout are illustrated as following.  

1. As the kick is the initiating event for blowout, the first step is to define kick 

scenarios and safety barriers 

2. Develop the event tree of kick escalation to blowout because of safety barriers’ 

failure 

3. Develop fault trees of kick and safety barriers  

4. Identify HFs and causal relation for the basic events in fault trees  

5. Map fault trees and causal relationship into Bayesian network with different fault 

tree mapping model 

 Build BN structure with nodes and arcs 

 Assign Node Probability Table to each node 

6. Map the event tree in Bayesian network, import fault trees and connect them with 

OOBNs 

7. Analyze the Bayesian networks and evaluate the results 
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Both the event tree and fault trees in this research are qualitative analysis, 

showing causal relationships. The quantitative analysis will be completed in 

Agenarisk [32], which is the software to build Bayesian network.  

4.1 Kick scenarios  

Kick is an unscheduled flow of formation fluids into the wellbore during drilling 

operations. An uncontrolled kick may result in a blowout. Kick could occur in any sub-

operations of offshore drilling, such as drilling, tripping, making a connection, casing, 

logging and cementing.  

To prevent a kick, the wellbore pressure should be greater than the rock pore 

pressure, but cannot exceed the fracture pressure, which could be expressed as Equation 

2 

𝑃𝑝 < 𝑃𝑏 <  𝑃𝑓     Equation 2 

𝑃𝑝 is pore pressure, 𝑃𝑓 is fracture pressure, 𝑃b is wellbore pressure 

Pore pressure is the pressure of fluids in the pores of a reservoir [33]. Fracture 

pressure is the pressure required to cause the rock formation to fail or split [34].  

The wellbore pressure varies with different sub-operations. The wellbore 

pressures during sub-operations are expressed as following [22,35]. 

 Drilling: 𝑃𝑏 = 𝑃ℎ +  ∆𝑃  

 Tripping out: 𝑃𝑏 = 𝑃ℎ +  ∆𝑃 − 𝑃𝑠𝑏  

 Tripping in: 𝑃𝑏 = 𝑃ℎ +  ∆𝑃 + 𝑃𝑠𝑔  

 Cementing: 𝑃𝑏 = 𝑃ℎ +  ∆𝑃 
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 Casing: 𝑃𝑏 = 𝑃ℎ +  ∆𝑃 + 𝑃𝑠𝑔 

Where 𝑃ℎ = 0.052 ∗ MW ∗ vertical depth + 𝑃0, is hydrostatic pressure and 

depends on the density and depth of drilling mud. MW is mud weight, the unit is pound 

per gallon (ppg).  

∆𝑃 is the frictional pressure losses 

𝑃𝑠𝑏  and 𝑃𝑠𝑔 are swabbing and surging pressures due to drillstring tripping out 

and tripping in the wellbore.  

Kick causes could be insufficient wellbore fluid density, reduction of mud 

column height, excessive swab friction pressure, wellbore collision or cement hydration 

[35]. 

According to the SINTEF Blowout Database between 1980 and 1994, the most 

frequent activities performed when a deep drilling blowout initiated are drilling, tripping 

out and waiting on cement to harden [4]. The most common reasons are swabbing while 

tripping out, unexpected high well pressure and low mud weight while drilling  

Due to the complexity of offshore drilling, it is hard to consider all kick scenarios 

in the same model. This would complicate the Bayesian network resulting in an 

impractical size and CPU time for calculation. Hence, the scenario of swabbing induced 

kick, which is one of the most common reason for blowout, will be used as a case study 

to analyze the effect of human factors on offshore blowout probability quantitatively in 

this research.  
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4.2 ET of kick into blowout  

To construct an event tree for blowout scenarios, kick is the initiating event 

leading to a blowout.  

Some kick detection equipment and tools are used to detect any signs of kick if 

kick occurs. If the operators observe some warning signs of kick, they will take some 

measures to control the well, which include shut-in the well according to shut-in 

procedure, operators’ experience and judgment and kill the well after shut-in. If well 

control is failure, the last safety barrier is shear ram in BOP. The chain of events that 

lead to a blowout are: kick occurs, kick is detected, kick is controlled and blowout is 

prevented [21].  

The HCL framework for offshore blowout is shown in Figure 17. The top part is 

the event tree for kick leading to blowout consequence. Kick is the initiating event, the 

safety barriers are kick detection, kick control and shear ram to seal the well. The bottom 

part is the fault tree general model for kick and safety barriers. The basic events that 

contribute to the top event will be emphasized on the unsafe acts. After the basic events 

are identified, the underlying causes (HFs) that affect the basic events will be linked with 

arrows in Bayesian networks. 
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Figure 17 HCL framework for offshore blowout scenarios 

4.3 FT of swabbing induced kick 

Pulling the drill pipe out of the borehole (POOH) could cause swabbing pressure 

and lower the bottom hole pressure. During the tripping out, void space formed by the 

drill-pipe, drill-collar, or tubing must be filled by pumping mud into the space.  If the 

rate of tripping out is greater than rate of pumping, then swab will occur. If the lower 
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bottom hole pressure due to swabbing is below the pore pressure, a potential kick has 

developed [35] [36]. 

Kirwan [21] developed a large, human-error-based fault tree analysis of offshore 

drilling operations. Two basic events for swabbing induced kick are POOH too fast 

without sufficient check during tripping operation, so the fault tree of swabbing induced 

kick is shown in Figure 18 and the basic events are shown in Table 2.  

 

Figure 18 FT of swabbing induced kick 

Table 2 Basic events of FT of swabbing induced kick 

Swabbing induced kick 

Index Basic events 

1 POOH fast  

2 Insufficient checks 
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4.4 FT of kick detection 

It is crucial to detect the kick quickly because whether a kick develops into a 

blowout is highly dependent on whether a kick could be detected at early time [22]. 

When kick occurs, there are some warning signs for operators to detect the kick. These 

signs include [35]:  

• Increase in mud return rate 

• Pit gain 

• Decrease in circulating pressure 

• Increase in pump rate and decrease in pump pressure 

• Mud property changes 

Figure 19 shows FT analysis that could contributes to the failure of kick 

detection either by equipment failure or human response failure [21]. The basic events 

are shown in Table 3. Equipment of the kick detection are a tank level indicator, flow 

meter, pressure gage, displacement sensor, gas detector, density meter, resistivity sensor 

[22]. The alarm system failure could be caused by hardware failure, trip sensors 

miscalibrated or inhibited, isolated or blocked sensors [21]. Even if the warning sign are 

successful, the operator or mud engineer could not monitor the signal, or misinterpret the 

signal due to alarm saturation or distraction due to multi-tasking. Communication error 

can also occur between the rig crew or mud engineer to warn the driller [21].  
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Figure 19 FT of kick detection 

Table 3 Basic event of FT of kick detection 

Index Basic events 

1 Signal is not monitored 

2 Signal interpretation failure 

3 Communication error 

4 Setting error 

5 Rule violation 

6 Hardware failure 

7 Maintenance/testing error 

8 Inhibit alarm and forget to reset 
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4.5 FT of kick control 

If any warning signs of kick are observed, shut-in the well and kill the well 

should be conducted to control the kick [35]. 

1. Shut-in procedures - close in a flowing well to reduce the kick influx and prevent 

a blowout from occurring 

2. Well kill - circulate out any formation fluid already in the wellbore with circulating 

appropriate balanced mud into the well without allowing further fluid into the hole. 

Two kind of shut-in procedures are “hard” and “soft”. In the shut-in procedure, 

the chock line valves are in the closed position. The BOP is closed immediately after the 

pumps are shut down. In soft shut-in procedures, the choke valves are in the opened 

position firstly. Then the BOP is closed. Choke valves are closed after the BOP is closed 

[36]. The hard shut-in can shut in the well faster than the soft shut-in. A shut-in 

procedure is a company-specific procedure, and the policy of a company will dictate 

how a well should be shut-in [35].  

Shut-in procedures also vary with the type of rig and the drilling operations when 

the kick occurs[37]. Drilling rigs could be floating rig, land or bottom supported rig. For 

example, deep-water drilling rigs are mostly floating rig, and swabbing occurs during 

tripping operations. The specific procedures for tripping on a floating rig should be 

employed. 

The most likely failure for well killing involves in an incorrect hydrostatic 

balance, caused by the mud weight, the pumping rate, or the choke control [21]. Gao 

https://en.wikipedia.org/wiki/Wellbore
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also pointed out that equipment failure and operation error are major contributions to the 

failure well control in deep-water drilling [38]. A detailed FT of kick control is shown in 

Figure 20 and the basic events are shown in Table 4. 

 

Figure 20 FT of kick control 
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Table 4 Basic event of FT of kick control 

Index Basic events 

1 Not follow the shut-in procedure  

2 Action inadequate or error for shut-in  

3 BOP failure（pipe rams and annular preventer） 

4 Choke valve failure 

5 Blockage in choke system 

6 Pump rate error 

7 Choke control error 

8 Incorrect mud weight 

9 Mud pump failure 

 

4.6 FT of shear ram to seal the well 

The pipe and shear rams are effective barrier system when control is fail [21]. 

The blind shear ram is designed to cut the drill pipe and shut-in the well in am 

emergency situation. However, the shear ram could fail to seal the well for design 

limitations [39]. A study by a drilling consulting firm for Minerals Management Service 

(MMS) in 2002 [39] showed that only 71% shear rams were tested successfully. This 

percentage dropped to 50% under operational condition. This study also pointed out that 

many operators and drilling contractors had chosen not to perform actual shear testing 

when accepting new or rebuilding drilling rigs. Thereby, the evidence to show the 

shearing success of installed shear rams is lacking. In order to improve the accuracy of 
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the shear tests, therefore improve the probability of shear operation success when 

required, consistent testing methodologies and standards should be considered.  

FT of shear rams failing to seal the well is shown in Figure 21 and the basic 

events are shown in Table 5.  

Shear ram fails to 

seal the well

Failure to use 

shear ram

21

Installation  

error

4 5

Function error

3

 

Figure 21 FT of the blind shear ram failing to seal the well 

Table 5 Basic events of FT of shear ram failing to seal the well 

Index Basic events 

1 Design limitation 

2 Failure of shear ram test 

3 Action error 

4 Installation error occurs 

5 No detection of error during Maintenance/testing 
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4.7 Methodologies to convert HCL model into BN 

Agenarisk will be used to build the Bayesian network. It is a powerful but 

intuitive tool for modelling and analyzing risk and predicting about uncertain events. It 

combines the benefits of BNs, statistical simulations and spreadsheet-like analysis. 

Otherwise, it is easy to use and flexible [18]. The Agenarisk risk maps are used to model 

causal relationships in Bayesian networks by supporting both diagnostic and predictive 

reasoning about uncertainty.  

4.7.1 Fault tree mapping into BN 

FT is represented as a BN through a directed graph and a set of node probability 

tables (NPT). The directed graph consists of a set of nodes and arcs [18]. The top event, 

intermediate events and basic events are represented as a leaf node, intermediate nodes 

and root nodes in the equivalent Bayesian network [40]. These nodes are connected in 

the same way as the corresponding events in FT. Roots nodes, intermediate nodes and 

leaf nodes are Boolean nodes with states either True or False. The fault tree mapping 

into BN is shown in Figure 22. 

4.7.2 Event tree mapping into BN 

Bearfield and Marsh [41] used a train derailment case study to show how an 

event tree can be mapped into the Bayesian network. A safety node in BN represents 

corresponding safety barrier. The node is either success or failure, which is represented 

as true or false in BN. Consequence node in BN represents consequence in event tree 

and the states of consequence node are the same number of event tree consequences. The 

consequences here are near miss and blowout. Another state that is not reflected in event 
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tree is safe state when there is no kick. Both the near miss and safe state are expressed as 

false blowout in BN. 

 

Figure 22 Fault tree mapping into BN 

Two kinds of arcs need to complete the network, which are consequence arcs and 

causal arcs [41]. Consequence arcs connect each safety node to consequence node. 

Causal arcs connect each safe node to all safety nodes later in time. As the blowout and 

safety barriers are also influenced by initiating event “swabbing induced kick”, the kick 

node should also be connected to safety nodes and the consequence node. Figure 23 

shows the detail of event tree mapping into BN.  
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Figure 23 Event tree mapping into BN 

4.7.3 BN for human factors 

The human factors are represented as human factors (HFs) nodes in BN, such as 

nodes HF1, HF2 in Figure 24. In numerical step, the HF nodes are ranked nodes with 

TNormal distribution with 5 levels from “Very low” to “Very high.” TNormal 

distribution is very flexible and can generate satisfactory NPTs for all ranked nodes with 

ranked parents [18]. Another power of TNormal distribution is that the child ranked 

node can be weighted by the importance of the parent nodes. When we input evidence of 

the parents, the mean value of the child nodes is equal to the weighted average of the 

parent nodes.  
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Figure 24 BN for human factors 

In order to consider about the human factors, the fault tree structure is extended 

with linking the root nodes to their corresponding influencing HF nodes. If the root node 

is linked with n HF nodes (n≥2) directly, 2*5n probabilities need to be assigned in NPT, 

which is large and complicated. Another shortage is that the weighted importance of 

human factors cannot be reflected. A solution is to insert a child ranked node of the 

influence HF nodes if parent nodes have 2 or more HF nodes, then the insert node (IS 

node) will link to the root node. The assigned probability number will reduce to 10 and 

the important of the HFs can be reflected with weighted functions for ranked node. Take 

Figure 24 for example, the root node B1 is influenced by the HF nodes HF1, HF2 and 

HF4, so IS1 is inserted as the child node of them and the parent node of B1.  
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A common cause human factor can also be considered in BN. For example, HF2 

influences both the B1 and B4, so two links are connected with HF2 to B1 and HF2 to 

B4 indirectly, which shows common cause factors being considered here. One 

assumption is that subheading human factors are independent in this research.  

The HFs can be evaluated with BN if the indicators information are available. 

Some human factors cannot be measured directly, but we can measure them indirectly 

by measured indicators. The indicator node is a child of the HF node. The NPT for the 

indicator node is defined as a TNormal distribution where the parameters are 

conditioned on the states of the HF node. Figure 25 shows the evaluation model of the 

competence factor. Training months and training frequency are indicators for the 

competence factor. The competence is likely to be very low in scenario 1 and to be high 

in scenario 2. 

 

Figure 25 The impact of indicators on competence level 
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4.7.4 Object-oriented Bayesian networks 

As we see from the HCL framework, we have four fault trees and one event tree. 

Kick is the initiating event in the event tree and the top event in the kick fault tree. 

Failure of kick detection, kick control and shear ram to seal the well are also top events 

in the fault tree and safety barriers in the event tree. If we build all nodes in the same 

BN, it will be very complicated and difficult to recognize the logic relationship in BN. In 

order to simplify the model and make it easier to understand, object-oriented Bayesian 

networks (OOBNs) is introduced.  

OOBNs can decompose the model into smaller simple models. The individual 

OOBNs can be linked into a higher-level model with input and output nodes. The input 

and output nodes have the same type and the same probability values [18]. In other 

words, the event tree model and fault tree models are developed separately, and then 

they are combined together with OOBNs. This is illustrated in Figure 26.   

All of the dashed pink arcs are used to connect the nodes by the OOBNs method. 

For example, if the probability of swabbing induced kick is updated in the BN of the 

fault tree, the probability of kick in the BN of event tree should also be updated as the 

same value. Hence, the kick node is assigned as an output node in the fault tree and an 

input node in the event tree.
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Figure 26 Mapping fault trees and event tree in BNs
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Figure 27 OOBNs in Agenarisk 

The connections of different models in Agenarisk are illustrated in Figure 27.  

Another application of the OOBN objective method is the influence of HFs. The 

BN allows the same HFs to have a connection to different safety barriers models. For 

example, the level of HF3 affects the probability of swabbing induced kick and failure of 



 

50 

 

kick detection. If we assign the probability manually in each model, it is time-

consuming. If we use OOBNs and assign HF3 as the output node in their evaluation 

model and the input node in fault trees BN, the information of HF3 will be updated 

simultaneously.  

4.8 Mapping FTs and ET into BN 

Before constructing the model in BN, some assumptions in the models include: 

 All models consider the kick scenario due to swabbing in this research 

 Some probabilities of basic events are assumed as the same value in 

literatures. If there is no information available, the value can be input by 

expert judgment.  

 This research mainly focused on illustrating the methodology to 

incorporate HFs in offshore drilling risk assessment and analyze the results. 

The accuracy of the results depends on data information. The sensitivity 

analysis results in this research are only valid based on the assumptions in 

this paper.  

 The same human factors that influence basic events are assumed to have 

the same distribution.   

4.8.1 BN of swabbing induced kick 

As we discussed above in section 4.7.3, the NPTs of human factors are TNormal 

distribution. They are quantified by mean and variance. The influencing importance rank 

of HFs nodes to basic events is assigned by weights. The scale of weights ranges from 1 
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to 5. If the human factor has the highest importance, the weight is assigned to 5. The 

mean of a child node is a weighted average of its parent nodes and calculated with a 

built-in WeightedMean expression in Agenarisk. The human factors that cause POOH 

fast includes [21]:  

 Calculation error of pulling speed because of a low level of an engineer’s 

competence 

 Communication error 

 Time pressure 

 Insufficient data information about wells because of poor management of 

information 

The HFs and their importance weights relevant to basic events are shown in 

Table 6. 

Table 6 HFs and their weights to basic events in FT of swabbing induced kick 

Basic events Contributed human factors Weights 

POOH fast Pressure 4 

Competence 3 

Communication 2 

Management 1 

Insufficient check Management 3 

Supervision 2 
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In offshore industry, the general probability of basic events is a certain value that 

is determined by generic data. However, the probability value could change on a certain 

specific platform due to different levels of influencing human factors. In order to reflect 

this consideration in the model, the probabilities of basic events are inputted as general 

probabilities when the conditions of the insert nodes are the “medium” level. The 

probabilities of basic events given by different parent node levels should be adjusted 

from the general probability. If the general probability is less than 0.1, the adjustment 

factors are suggested from the BORA method [30]. Otherwise, the adjusted probabilities 

are suggested by expert judgment. The suggested adjustment factors and the conditional 

probabilities of POOH fast for different levels of error are shown in Table 7.  

Table 7 Probabilities of POOH fast for different levels of error 

Level of error Very Low low medium High Very high 

Adjustment factors [30] 0.1 0.55 1 4 7 

Probability of POOH fast 0.01 0.055 0.1 0.4 0.7 

 

Figure 28 is the BN of swabbing induced kick. The prior probability of swabbing 

induced kick is 9.7%. 
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Figure 28 Swabbing induced kick by BN 

4.8.2 BN of FT of kick detection 

The HFs and their importance weights relevant to basic events in FT of kick 

detection are shown in Table 8. 

With the same methodology as swabbing induced kick, the fault tree of kick 

detection is represented by BN in Figure 29. The prior probability of kick detection 

failure is 24.1%. 
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Table 8 HFs and their weights to basic events in FT of kick detection 

Basic events Contributed human factors Weights 

Signal is not monitored 
HMI 5 

Pressure 3 

Signal interpretation failure Competence ­ 

Communication error Communication ­ 

Setting error Procedure ­ 

Rule violation Risk perception ­ 

Hardware failure ­ ­ 

Maintenance/testing error 

Supervision 5 

Crew 2 

MOC 3 

Inhibit alarm and forget to reset 
Risk perception 4 

Pressure 2 
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Figure 29 FT of kick detection by BN 

4.8.3 BN of FT of kick control 

The HFs and their importance weights relevant to basic events in FT of kick 

control are shown in Table 9. 

The fault tree of kick control is represented by BN in Figure 30. The prior 

probability of kick detection failure is 22.6%.   
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Table 9 HFs and their weights to basic events in FT of kick control 

Basic events Contributed human factors Weights 

Not follow the shut-in procedure 

Procedures 5 

Pressure 3 

Policies 3 

Action inadequate or error for shut-in 
Communication 4 

Crew 1 

Failure of pipe rams and annular 

preventer in BOP  
­ ­ 

Choke valve failure ­ ­ 

Blockage in choke system Management ­ 

Pump rate error Competence ­ 

Choke control error Competence ­ 

Incorrect mud weight  
Competence 3 

Communication 2 

Mud pump failure  Management ­ 
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Figure 30 FT of kick control by BN 

4.8.4 BN of FT of shear ram to seal the well  

The HFs and their importance weights relevant to basic events in FT of shear ram 

to seal the well are shown in Table 10. 

With the same methodology as swabbing induced kick, fault tree of shear ram to 

seal the well is represented by BN in Figure 31. The prior probability of kick detection 

failure is 16.8%.   
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Table 10 HFs and their weights to basic events in FT of shear ram to seal the well 

Basic event Contributed human factors Weights 

Design limitation Standards - 

No shear ram test 
Procedures 3 

Standards 4 

Action error 

Competence 2 

Risk perception 3 

Pressure 3 

Installation error  
Procedure 3 

Supervision 1 

Maintenance/testing error  

Management 3 

Supervision 1 

Crew 2 
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Figure 31 FT of shear ram to seal the well by BN 

4.8.5 BN of ET 

As we discussed above, the probabilities of swabbing induced kick, failure of 

kick detection, kick control and shear ram to seal the well are the same as the 

probabilities of top events in fault trees by OOBNs, which are shown in Figure 32. If any 

information is updated in the fault trees, the probabilities in this event tree model will be 

updated automatically. The prior probability of blowout is 2.6%. 
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Figure 32 ET of kick into blowout by BN 

4.9 Sensitivity analysis 

The Agenarisk provides the function of sensitivity analysis. The length of the 

bars in Figure 33 correspond to each sensitivity node in the tornado graph as a measure 

of the impact of that node on the target node. The value shows the probability of the 

target node given the sensitivity node. For example, P (blowout= “True” | swabbing 

induced kick = “True”) = 0.27. Thus, the node swabbing induced kick is by far the most 

impacted node on blowout and the kick detection is the second most impacted node. In 

industry, preventing the kick is the first and most important barriers for blowout, which 

prove that the model result is reasonable.  
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Figure 33 Sensitivity analysis of event tree  

The important influencing HFs to kick, kick detection, kick control and shear 

ram function are shown in Figure 34 - Figure 37. For swabbing induced kick, the 

important HFs are pressure and management. For kick detection, they are competence 

and human-machine interface. For kick control, they are competence and management. 

For shear ram to seal the well, they are standards and pressure.  

 

Figure 34 Sensitivity analysis of HFs’ effect on kick 
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Figure 35 Sensitivity analysis of HFs’ effect on kick detection 

 

Figure 36 Sensitivity analysis of HFs’ effect on kick control 
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Figure 37 Sensitivity analysis of HFs’ effect on shear ram 

As the HFs nodes and blowout node are developed in different models and linked 

with OOBNs, the sensitivity function in Agenarisk cannot be achieved automatically. 

However, the blowout probability can be updated by assigning HFs information 

manually. Each human factor is assumed to be the lowest level and the probabilities of 

blowout are updated and compared. The results in Table 11 show that the most 

influencing human factors of blowout are competence, pressure, communication and 

management. 
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Table 11 Sensitivity analysis of HFs’ effect on blowout  

Human factors Blowout probabilities 

Prior probability 2.63% 

Communication 4.39% 

Pressure 5.22% 

Management 4.35% 

Competence 5.63% 

Supervision 3.6% 

Procedures 2.93% 

HMI 3.57% 

Management of change 2.74% 

Risk perception 3.11% 

Crew 2.72% 

Policies 2.65% 

 

As the most influencing factor is competence, the blowout probabilities for 

different competence levels (very low, medium, very high) are also studied. The input 

information of the three scenarios are shown in Figure 38. The very low, medium, and 

very high levels of competence are shown as blue, green and orange. The corresponding 

updated probabilities of blowout are 5.63%, 2.28% and 1.15% in Figure 39. The results 

show that the blowout probability decreases four times if the competence level of 

operators increases from a low level to a high level.  
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Figure 38 Input information of three scenarios 

 

Figure 39 Updated blowout probabilities of different competence levels 
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The results show that the oil & gas companies should focus on the measures to 

improve the operators’ competence, establish a balance between pressure and safety, 

improve management and improve communication between crews and different level of 

organization to mitigate the drilling risk due to swabbing.  
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5 CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

As the offshore drilling is in a complex environment that depends on human 

factors, it is necessary to develop methodology to analyze the role of HFs. However, 

traditional risk assessment methodologies, such as FT, ET and bow-tie are static and not 

able to include soft evidence. HCL is a dynamic risk assessment model that capable of 

incorporating HFs together with common cause failures and casual relationships in 

drilling.  

This research introduced the HCL framework for offshore blowout risk 

assessment to assess the contribution of human factors to offshore drilling safety with 

ET, FT and OOBNs. This work focused on a very common reason for kick – swabbing 

as a case study to illustrate how to apply these approaches to predict the blowout 

probability.  

This work starts with identifying the HFs that should be considered in offshore 

industry. Only sub-heading human factors are considered in the model, including 

competence, motivation, risk perception, HMI, pressure, supervision, crew, 

communication, management, policies, management of change, standards, procedures 

and documentations.  

Event tree is developed to describe how kick developed into blowout because of 

safety barriers’ failure. Fault trees of swabbing induced kick and safety barriers are also 

developed to identify the basic events. The HFs is integrated to Bayesian network by 
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linking arrows to basic events in fault trees mapping models. OOBNs is used to simply 

the model and connect all modes together for information updating.    

The advantages of this model include: 

 Evaluate the impact of HFs’ levels on the probability of kick, kick detection, 

kick control, shear ram successful and blowout  

 Track the most influencing factors for risk control and mitigation 

 Update blowout probability by any accident precursor observations, such as 

kick 

 Obtain more accurate result for specific platform and company  

Result analysis of the BN in this research indicates that preventing the kick is the 

first and most important barriers for blowout. The most influencing human factors for 

blowout are competence, pressure, communication and management. The blowout 

probability decreases 4 times if the competence level of operators increases from a low 

level to a high level.  

The developed models are only used to analyze the swabbing induced kick 

scenario. In offshore drilling, kick could be occurred by other reason during different 

sub-operations. The corresponding kick control methods could also varies, which will 

affect the detail information in fault trees. However, the methodologies are the same. It 

is expected to apply this work to other kick scenarios. In addition, human factors is a 

major contribution to other high-risk operations, either onshore or offshore, for which 

this model can be used. 
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5.2 Future work 

In offshore drilling, another important performance factor is the respond time. 

whether a kick escalates into a blowout is highly dependent on how quickly it is detected 

and how properly and timely the mitigation measures are implemented [22]. In the 

Macondo Well, an important factor is that the operator did not detect the kick until more 

than 40 minutes later, which was too late for well control. This work only focused on 

human errors, so it could be improved by considering the time dependency.   

Another limitation of this work is that human factors are assumed to be 

independent, which is not true in realistic. As the organization factors affect individual 

and group behavior, it is important to identify their dependent relationships.  

The availability of date is important for the accuracy of blowout probability. 

Developing human factor indicators and establishing indictor databases are important 

tools to evaluate the effectiveness of HFs in human factors evaluation models.  

Collaborate with a human factors expert to identify a more comprehensive 

structure of HFs categorization, such as perception and memories in cognition.  
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