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ABSTRACT 

 

             Investigations on the adsorption dynamics or interactions of nanomaterials at 

interfaces have enabled applying nanotechnologies in current industrial systems 

effectively. In this work, enhanced oil recovery (EOR) and impacts of nanoparticles on 

environment are energy-related and environmental-related systems investigated 

respectively. Amphiphilic materials were investigated at liquid-liquid and liquid-solid 

interfaces in the EOR system. Dynamics of asphalt recovery using surfactant floods was 

studied using quartz crystal microbalance with dissipation (QCM-D) and a promising 

mobility control approach that could replace current methods was proposed.  

          The kinetic model of asphalt (heavy oil) recovery via surfactant flooding is related 

to a fast removal process of large microemulsions and a slow removal process of loaded 

micelles at interfaces of the asphalt film and the surfactant solution. Effective type of 

surfactant and the concentration range of surfactant flooding useful for the asphalt 

recovery were also found.   

          One novel system was developed based on the complexation and supramolecular 

assembly of amino-amide type amphiphiles and maleic acid to change viscosity of 

aqueous displacement fluids for mobility control in EOR. It was shown that the addition 

of only 2 wt. % of adaptable amphiphiles/maleic acid into water increased the viscosity 

of water by 4.510
5
 times. This superior viscosity behavior was ascribed to the 

formation and entanglements of layered cylindrical supramolecular assemblies having 

diameters of several hundred nanometers. Furthermore, the viscosity of the amphiphile 
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solution could be changed in a reversible manner by changing pH with no obvious 

degradation. Sand column displacement experiments were carried out with different 

process variables for future pilot applications. 

          Polymeric nanomedicines were studied at liquid-solid interfaces in the 

environmental-related system. Deposition trends of various polymeric nanomedicines 

were investigated in environmental related media for wastewater control in hospitals or 

pharmaceutical manufacturers. Adsorption dynamics and transportation behaviors 

through porous media were studied considering the effect of surface chemistries of 

polymeric nanomedicines. The mobility of negatively charged nanoparticles is strongly 

dependent on the amount and types of salts in solutions. With the presence of calcium 

ions, even at low ionic strengths (i.e. 10mM), induced adsorption appeared on silica 

surfaces and strongly limited the mobility of polymeric nanomedicines.  
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NOMENCLATURE 

 

AFM atomic force microscopy 

AS                              alkaline-surfactant 

ASP                            alkaline-surfactant-polymer  

CFT                            colloidal filtration theory 

CMC                          critical micelle concentration 

DLS dynamic light scattering 

DLVO                        Derjaguin–Landau–Verwey– Overbeek 

DMPDA                     N,N- dimethyl-1,3-propanediamine 

EO                              ethoxylate 

EOR                            enhanced oil recovery 

ICM                           iodized contrast media 

IFT                             interfacial tension 

IOR                            improved oil recovery 

M                               mobility ratio 

NOM                         natural organic matter 

NP                             nanoparticle 

OPEC                        organization of the petroleum exporting countries 

O/W                          oil-in-water 

PAA                          polyacrylic acid 

PAM                         polyacrylamide 
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PCL poly-ε-carprolectone 

PEI                              polyethyleneimine 

PEO                            polyethyleneoxide 

PLA                            polylactide 

PNDDS polymeric nanoparticulate drug delivery systems 

PNVP polyvinylpyrrolidone 

PO                               propoxylate 

PS polystyrene 

PV                               pore volume 

QCM-D quartz crystal microbalance with dissipation 

RF                               resistance factor 

ROS                            residual oil saturation 

SD                               standard deviation 

SEM Scanning electron microscopy 

SFM spectrofluorometry 

SP                               surfactant-polymer 

TEM transmission electron microscopy 

THF tetrahydrofuran 

vdW van der Waals 

W/O                            water-in-oil 
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CHAPTER I  

INTRODUCTION  

 

1.1     Background of oil recovery   

          Over the past 15 years, studies of improving flooding process in petroleum 

industry have dramatically increased to decelerate the increasing rate of oil price. 

Although several events occurred related to the precipitous fall of the oil price like 

global economical recession, massive oil production by shale gas method in the US, oil 

production by organization of the petroleum exporting countries (OPEC) and 

development of clean energy supply to the energy market, with the growing population 

and energy demand, oil price will grow by 2040 predicted by US energy information 

administration, and several companies like Exxon mobile, Shell. Currently, international 

energy agency estimates that there is more than 150 years of oil supply. As the new 

discoveries of conventional oil fields are declining, questions arise as how to effectively, 

economically, environmental friendly drill out petroleum remaining in underground 

reservoirs.    

          World oil resource exists in various forms, thus development of traditional 

methods like primary depletion and second water flooding are not enough for the large 

energy demand. For primary and secondary recovery, pressure gradient is the driving 

force. Pressure depletion of primary recovery is from the natural reservoir energy like 

solution-gas drive, natural water drive, fluid and rock expansion and etc. Secondary 

recovery is commonly used by injecting water or gas as an effective pressure support to 
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the production wells; however, only 20-50% of oil can be extracted from an oil reservoir 

due to the poor sweep efficiency as a result of the oil property or reservoir environment
1–

3
. The remaining 50-80% of oil stays underground where oil is adsorbed on rock 

surfaces, leading to oil entrapment within the rock pores
4–6

. To extend the lifetime of the 

oil reservoir before reaching economical limit by conventional method, tertiary recovery 

or later called enhanced oil recovery (EOR) has been actively investigated by 

researchers
7–10

 trying to squeeze extra barrels from oil fields. There is another term 

called improved oil recovery (IOR), which includes EOR and other activities to increase 

oil recovery like reservoir characterizations or improved reservoir management
11

. 

Typical EOR techniques aim to achieve one of the following: (i) decrease oil viscosity, 

(ii) increase viscosity of water, (iii) reduce capillary force or interfacial tension between 

oil and oil-stratum. Various EOR techniques such as miscible gas injection, chemical 

injection, microbial injection, or thermal recovery have been investigated to apply to 

different reservoir characteristics.  

          Since 1960, EOR of chemical injection has been attractive since small quantities 

are necessary to effectively change properties of the displacing fluid, however, technical 

and economical problems appeared to effectively use this method. Although chemical 

EOR is a less common method than thermal and gas EOR, huge projects have been 

initiated or revisited around the world since 2000. Surfactant and polymer flooding are 

the two main methods in chemical EOR that have been applies in fields in China, Middle 

East, USA and etc. Surfactant flooding is known to reduce oil-water interfacial tension 

or change the wettability of the reservoir
12–15

. Polymer flooding is well-known in 
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improving water-oil mobility ratio by increasing the viscosity of injecting fluid. This 

approach enables a uniform advance of water front to sweep a larger volume of the 

reservoir.   

          Surfactants and polymers are commonly combined as surfactant-polymer flooding 

to enhance sweep efficiency with both chemical’s properties in oil fields. There is 

another system applying smart materials which can respond to environment stimuli with 

particular changes in one or more properties to decrease pumping costs. The smart 

amphiphilic system has recently received great attention
16–18

.With more investigations in 

this system, cost-effective and similar displacement efficiency will be attractive to apply 

in oil fields in the next decades.  

 

1.2     Background of environmental impact from polymeric nanomedicine   

          Significant developments in nanomedicines have occurred over the past few 

decades. According to a recent study relying on literatures, clinical data and the Web, 

about 250 nanomedicines have been approved for use under clinical trials or on the 

verge of clinical study
19

. While the increasing production and consumption of 

nanomedicines on treatment, prevention of disease and research, concerns have arisen in 

the fate of nanomedicines in the environment, bioaccumulation may occur and the 

potential consequences to human health
20–22

. Currently, among the major types of 

nanomedicines like nanoemulsions, liposomes, polymeric nanoparticles, surfactant 

micelles, dendrimers, and semiconductor nanocrystals, the commonly used form of 

nanomedicines is polymeric nanoparticulate drug delivery systems (PNDDS) (Fig. 1.1) 
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due to their increased bioavailability, ability to solubilize hydrophobic molecules, the 

higher payload capacity, excellent thermodynamic solution stability in aqueous 

environments, and prolonged blood circulation times
23–27

. The high stability of PNDDS 

can be undesirable when nanomedicine is released to environment through various ways 

like sewer system or underground leak of storage tank and ultimately end up in aquatic 

system. As most of the therapeutic component of PNDDS can be ecotoxic, their 

improved solubility and bioavailability in PNDDS will be much danger to living 

organisms at lower concentrations. Moreover, therapeutics in PNDDS can travel with 

prolonged stability to distribute in aquatic environment. Thus, if the sustainable 

implementation of nanaotechnology is to occur, detail information regarding the 

mechanism that control retention, deposition and release of nanomedicine under relevant 

environmental conditions needs to be done to control the contamination in specific 

aquatic environments. 

 

 

 

Figure 1.1 Illustration of PNDDS structure and typical building blocks used 

in current formulations
28

. 
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1.3     Objectives statement  

          In oil recovery part, since a large part of world oil remaining underground in the 

form of heavy oil like in North Sea, Canada and Venezuela, it is essential to effectively 

apply EOR to these reservoirs. For surfactant EOR, mechanism of heavy oil recovery 

was unclear about choosing the suitable chemical combinations to the field. Thomas
29

 

stated that the insufficient understanding of the mechanisms and scale-up methods to 

fields are the main technical limitations. An urgent need will be to develop a suitable 

model for effective surfactant flooding in heavy oil resources. The goal of this 

dissertation is to investigate the removal process of asphalt (heavy oil) from the silica 

surface. Furthermore, developing the heavy oil desorption mechanism happening at 

interface of surfactant solution and heavy oil to help choose the suitable surfactants for 

oil fields. 

          The other goal is to develop a system using a novel type of adaptable amphiphile 

which can respond to environmental stimuli with changes in viscosity to increase oil 

recovery. Various stimuli have been considered, such as light, oxidation reactions, 

enzymes, pH, and temperature
30–33

.  Comparing conditions between well surfaces and 

reservoirs, specific condition that is different from the well surface and the reservoir will 

be chosen as a natural existing stimulus. The concept is viscosity of the injecting 

amphiphile solution will be maintained at low near the wellbore region which enables 

injecting fluid flow with a relatively low pressure drop. This process can save a 

considerable amount of energy required during injection. In addition, the low viscosity 

injection can avoid the generation of unwanted fractures near the wellbore. Then, away 
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from the near wellbore region, the solution viscosity can be spontaneously increased via 

an external stimulus just before or upon contacting the oil (Fig. 1.2). The increased 

viscosity lowers the injecting fluid mobility and increases oil displacement efficiency. 

The goal is to develop the adaptable mechanism of the new system by evaluating 

rheological properties of the material such as steady-shear viscosity and viscoelastic 

behavior as a function of the reservoir conditions. Lab-scale column experiments with 

several environmental conditions from oil fields such as concentrations, salinities and 

temperatures need to be considered for future pilot application.  

 

 

Figure 1.2 Concept of using adaptable amphiphiles for controlling viscosity 

of injected water in EOR
34

. 

Initially low viscosities will lead to easier injectivity and efficient pumping while 

later high viscosities will yield favorable mobility ratios and elimination of water 

fingering. 

 

          In environmental aspects, the transportation of engineered nanoparticles has 

received increased attentions as the consumption and production volumes of such 

nanoparticles increase. For instance, many field and laboratory investigations dealing 
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with the distribution, retention, and fate of nanomaterials such as TiO2
35–37

, SiO2
38,39

, 

CeO2 
40–42

, ZnO
43,44

, Fe2O3
45

, Ag
46,47

, Au
48,49

, fullerenes
50–53

 and carbon nanotubes
54,55

 

have been conducted. A general conclusion of these studies is that hydrodynamic 

parameters (such as flow velocity
40,43

) as well as parameters that modulate the particle-

surface and particle-particle interactions (such as surface potential of nanoparticles 

36,41,46,56
, the presence of organic species

55,57
, particle aggregation

46,58
, and concentration 

of NPs
38,40

 i.e. interparticle distance) play a role on the retention and transport behaviors 

of NPs. However, similar environmental studies on soft nanomaterials such as polymeric 

nanomedicines are rather limited. Efforts have been made to model PNDDS adsorption 

and desorption mechanism on environmental surfaces
59,60

 and organisms
61

. Our goal is 

to model the transport behaviors of different surface types of PNDDS at various 

environmental conditions like solution chemistries (ionic strength or existence of natural 

organic material) and different salts’ ( such as monovalent vs divalent) impacts. PNDDS 

solutions will also flow through porous media which more related to the real world 

conditions (Fig. 1.3).  
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Figure 1.3 Concept of nanoparticle flow through a porous media at different 

conditions
28

. 

Ionic strength, different types of salt, natural organic material and pH may have 

effect during the transport in a porous media. Arrow direction is showing the 

possible types of competing force direction between NP and the large surface.  

 

1.4     Outline of the dissertation 

          The dissertation is organized to 6 chapters, with this introduction providing a brief 

background served as chapter I.  

Chapter II discusses more details about chemical EOR like surfactant flooding and 

polymer flooding with underlying theories. Commercial products are discussed to 

understand the advantages and limitations in oil fields. At last, discussions on how to 

improve the current chemical flooding processes by designing surfactants and polymers.       

Chapter III provides a background of nanoparticle transportation behaviors in a porous 

media. Extended DLVO model and CFT model for the deposition process are discussed.   

Chapter IV describes the details of surfactant flooding dynamics on surfaces coated with 

asphalt. The effect of surfactant concentration on recovery efficiency was investigated. 

For the recovery model, four complementary techniques were conducted to evaluate. 
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The results also provided experimental evidence to support current model from 

simulation. 

Chapter V describes the synthesis of a pH-responsive supramolecular material and its 

application in EOR. Extensive rheological measurements were conducted in terms of 

pH, concentrations, temperatures and salinities. Sand column flooding experiments were 

conducted to simulate reservoir conditions. 

Chapter VI presents the transport behaviors of PNDDS in the proximity of silica and 

sand. The effects of ionic strength, electrolyte types and natural organic species were 

investigated and discussed. The effects on adsorption of different surface functional 

groups of PNDDS were evaluated.  

Chapter VII is devoted to conclusions and recommendations for future research work 

based on these studies.  
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CHAPTER II 

CHEMICAL ENHANCED OIL RECOVERY 

 

2.1     Introduction 

          Among numerous techniques to improve oil recovery, EOR strived to improve 

microscopic displacement efficiency by removing hydrocarbon stuck to the rock surface. 

Started in 1960’s, chemical methods including polymers, surfactants, foams, alkalines 

and etc. are important and attractive methods because small quantities effectively change 

the injecting fluid property. Several technical issues appeared to lessen the usage until 

recently. In chemical flooding, the effective recovery of unswept remaining oil is 

dependent mainly on two conditions: one is the relative mobilities of the displacing and 

displaced fluids during the flood from one well to another (polymer flooding), the other 

is the maintenance of low interfacial tension during the flood (surfactant flooding). Other 

effect like wettability alteration (surfactant method) plays an important role in some oil-

wet reservoir. Combinations of surfactant and polymer as alkaline-surfactant-polymer 

(ASP), surfactant-polymer (SP) or alkaline-surfactant (AS) processes are also considered 

as potential methods
62,63

.  

          Mobility of the resident oil or water is the ratio of the permeability of the porous 

rock and the viscosity of the solution. Permeability is governed by Darcy’s law which 

measures the capacity of the medium to transmit fluids. To obtain an effective process, 

the mobility of the displacing fluid must be equal or less than the mobility of the 

mobilized oil to prevent the injected fluid from bypassing the oil-water bank. Since the 
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mobility of the mobilized oil is low due to relative permeability effects in the rock, the 

viscosity of the displacing fluid usually must be higher than the resident oil in order to 

achieve the same or lower mobility. Polymers are usually applied to increase the 

viscosity of displacing fluid to reach higher oil displacement efficiency. 

          Interfacial tension (IFT) between the oil and injecting fluid plays an influential 

role at the pore regions in reservoir. Considering the curvature and wettability around the 

two phases, capillary pressure which is the pressure difference existing across the 

interface of two immiscible fluids can be obtained. In the same pore size, strong IFT will 

trap oil and cause relatively high residual oil saturation. Reduction in IFT by adding 

chemicals like surfactants to remobilized oil is regarded as an important method to attain 

higher oil displacement efficiency. For non-fractured and fractured reservoirs, strong 

capillary forces make different influences. In non-fractured reservoir, strong capillary 

forces during water flooding will trap oil and cause relatively high residual oil 

saturation
64

. In fractured reservoirs, higher displacement efficiency can be achieved by 

spontaneous imbibition of water due to strong capillary forces
65

. Capillary forces are 

often the strongest forces in a multiphase flow and the combination of all the active 

surface forces determines the capillary pressures in the porous rock  

          In chemical EOR, viscous forces and capillary forces are determining the flow of 

oil and water in porous media. Capillary number is a dimensionless value in oil field to 

evaluate whether the injection of fluid is effective. A large capillary number means less 

residual oil. In an oil reservoir, capillary fingering regime is for very slow displacement 

where is controlled by the capillary pressure of the interface. Viscous fingering regime is 
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fast displacement where viscous forces overcome capillary effect. Extensive studies have 

been done on two regimes to apply the appropriate fluid during the flooding process.  

          On the other hand, wettability of a reservoir can also have a significant impact on 

flow during oil recovery and upon the volume and distribution of the residual oil
64,66

. 

Fluid distribution in porous media depends on solid-liquid and liquid –liquid IFT. Thus, 

wettability of the rock affects flooding behavior and capillary pressure. Wettability 

depends on the mineral ingredients of the rock and the composition of the oil and water 

and temperature. This dissertation does not focus on changing the wettability of rocks in 

the reservoir to increase the displacement efficiency. However, this is a useful parameter 

in some fractured reservoirs where flooding is not effective. 

          Since 1980’s, significant amount of pilot tests have increased. Several field 

performances of chemical EOR have been demonstrated in the United States by Shell
67

, 

Exxon
68

, Bill Barret Corp.
69

, in China by Surtek
70

 or by administration bureau, PRC
71

, in 

Canada by Pengrowth
72

, in Oman by Shell
73,74

 and etc. The chemical EOR which often 

applies in mature reservoirs takes a long time like about 20 years to evaluate the 

additional yield of the oil production. Due to the good feedback from around 20 years 

ago, the number of projects has increased lately
74

. 

 

2.1.1   Mobility ratio 

          Mobility of fluid is a measure of how easy the fluid flow through a porous media 

as in equation 2.1. Mobility ratio is defined in equation 2.3 as the ratio between mobility 

(λ) of displacing fluid and displaced fluid. Lake
7
 defined as the ratio of mobility behind 



 

13 

 

and ahead of a displacing front. When measuring a fluid’s flow rate in porous media, 

mobility term and pressure drop term are combined in equation 2.3 known as Darcy’s 

law.  

  
 

 
                                                                                                                             [2.1] 

  
                 

                
 
                      

                     
                                                                      [2.2] 

 

 
   

 

 

  

 
                                                                                                                  [2.3] 

where λ is mobility of a fluid, µ is the viscosity of the fluid, κ is the effective 

permeability to the fluid, M is the mobility ratio, µdisplaced is the viscosity of the displaced 

fluid, µdisplacing is the viscosity of the displacing fluid, κdisplaced is the effective 

permeability to displaced fluid, κdisplacing is the effective permeability to displacing fluid. 

q is the volumetric rate, A is the cross section area, v is Darcy’s velocity, ΔP pressure 

gradient in a distance L. 

          A favorable mobility ratio is maintained to avoid fingering of injected fluids as in 

Fig. 2.1(b). For an inefficient displacement where injecting fluids tend to bypass the oil, 

M is larger than 1 as in Fig. 2.1(a).  
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Figure 2.1 Flow path of displacing fluid with different mobility ratio in oil 

bank. 

a) Mobility ratio higher than unity where fingering effect is obvious. b) Mobility 

ratio lower than 1 to prevent fingering effect. 

 

2.1.2   Capillary pressure 

          Capillary pressure has a great influence on oil recovery efficiency, because it 

controls the fluid distribution in the reservoir rock. Capillary pressure is usually 

measured as a function of saturation of wetting phase due to the complex structure of the 

porous media. In oil reservoir, it is defined as the pressure of the non-wetting fluid minus 

the pressure of the wetting fluid. It can also be described using Laplace equation with 

known interface parameters as in equation 2.4. For a water-wet reservoir saturated by 

water and oil as in Fig. 2.2(a), water tends to fill inside pores by capillary force because 

rock surfaces prefer this liquid and oil is trapped in larger pores. Any oil in small pores 

will be displaced to larger places by water imbibition to lower the energy in the system. 

At production well, recovery at water breakthrough will be high, with little additional 

production afterwards. Residual oil is trapped as small globules or completely 



 

15 

 

surrounded by water. In an oil-wet reservoir as in Fig. 2.2(b), on the other hand, oil 

occupies small pores and water is staying in large pore areas due to hard penetration. In 

this case, water breakthrough happens earlier with simultaneously oil and water 

production during a long period of time afterwards. Over 60% of reservoirs in the world 

are oil-wet, the injecting liquid pressure equal to the capillary pressure must be applied 

to push the oil out of pores. More energy is required to displace wetting fluids (oil) by 

non-wetting fluids
75,76

. 

             (
 

  
 

 

  
)                                                                                  [2.4] 

where Pc is the capillary pressure, Pw is the pressure of wetting phase at interface, PNW is 

the pressure of non-wetting phase at interface, R1 , R2 are the orthogonal radii of 

curvature at any point of the curved surface respectively (curved surface is formed 

between wetting and non-wetting phase), σow is the interfacial tension of the two 

immiscible phases (non-wetting & wetting phases).    
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Figure 2.2 Displacement of oil by water in reservoir of different wettability. 

a) Water-wet reservoir where oil globules trapped in the large pores during 

flooding. b) Oil-wet reservoir where oil is trapped in small pores.   

 

          Capillary number is a dimensionless ratio between the viscous force and the 

capillary force as in equation 2.5. By reducing the interfacial tension between the 

displacing and displaced fluids in oil-wet reservoirs, the effect of capillary force is 

lowered, yielding a lower residual oil saturation and higher oil recovery. Increase the 

viscosity of injection fluids in water-wet reservoirs, oil trapped by fingering effect in 

Fig. 2.2 (a) will decrease. In operation of secondary oil recovery, typical capillary 
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number (Nc) is < 10 
6

 and values on the order of 10 
7

 are probably most common in 

reservoir pores.  

   
             

                 
 
  

 
                                                                                            [2.5] 

where v is the Darcy’s velocity, µ is viscosity of the displacing fluid, σ is IFT between 

the displaced and displacing fluid. 

 

2.1.3   Oil recovery efficiency 

          The overall oil recovery efficiency can be defined as  

    
  

 
                                                                                                                          [2.6] 

where Nr is the amount of oil recovered, N is the original amount of oil in reservoir. 

Overall efficiency consists of volumetric sweep efficiency (Ev) and displacement 

efficiency (Ed) as below. 

                                                                                                                          [2.7] 

          Ev is the fraction of volume swept by the displacing fluid to the total volume in the 

reservoir
7
. Ed is the ratio of amount of oil recovered to the oil in the swept volume. Ev 

depends on several parameters like the fracture of reservoir, mobility ratio, flow rate and 

etc. Thus, it consists of vertical and areal sweep efficiency in the reservoir. Poor Ev will 

increase the costs to inject fluids and this can be improved by mobility control such as 

polymer flooding. Ed is a function of time, IFT, wettability, viscosity and etc. In oil or 

water wet reservoirs, there are residual oil remaining due to those parameters. Proper 
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processes like surfactant or polymer flooding can be applied after systematic 

characterizing petroleum reservoirs. 

 

2.2     Surfactant flooding 

          Surfactant flooding or so called detergent flooding, miscible type floods, 

microemulsion flooding represents the important method to inject surface active 

chemicals and recover trapped oil by changing the IFT between displacing and displaced 

fluid or by changing wettability of the rock after water flooding. When contacting with 

oil and water interfaces, many surfactant dispersions can spontaneously take up water or 

oil forming water-in-oil (W/O) or oil-in-water (O/W) microemulsions, respectively. 

With this concept, it was first described as an improved oil recovery method in late 

1920’s
77

. Since then, there are two common strategies has widely been used in 1960’s: 

one is using large pore volumes of low concentration surfactant slugs where less than 

2% of surfactant was used. The other is small pore volumes of high concentration slugs 

where surfactant concentration is usually larger than 5% (3-20%). Meanwhile, 

electrolytes, co-surfactants (usually alcohol) or polymers are often considered adding in 

the surfactant displacing flood to improve the process.  

          Technical feasibility of oil recovery via surfactant flooding were demonstrated in 

early field tests by Surkalo et al.
78,79

, Hill et al.
80,81

, Pursley et al.
82,83

, and Lake and 

Pope
84

. Besides, numerous studies focusing on the bulk oil recovery properties of 

surfactant floods have been conducted. Majority of these studies have investigated the 

effects of phase behavior
85

, wettability
86

, interfacial tension
87–91

, water mobility
89

, and 
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foaming performance
92

 on the behaviors of oil recovery using surfactant floods. While 

there are many studies on enhanced oil recovery via surfactant floods at the bulk scale
93–

96
, studies on the nanoscale dynamics of oil recovery via surfactant floods are very 

limited. 

          Overall, in surfactant flooding process, several factors need to be considered to 

increase displacement efficiency like recovery mechanisms in various fluids’ and 

reservoirs’ conditions, loss of surfactants due to adsorption, scaling methods from 

laboratory results to the fields. Cost of surfactants, the current oil price and tax load are 

also major limiting factors running the process.  

 

2.2.1   Types of surfactant 

          A surfactant is an amphiphilic molecule with at least one hydrophobic part called 

tail and at least one hydrophilic part called head. The hydrophilicity of a surfactant is 

determined by the structure of tail and head. According to the head group, surfactants are 

categorized into four types: anionic, cationic, nonionic and zwitterionic surfactants. 

Anionic surfactants are negatively charged amphiphiles with small cations like sodium 

ions, potassium ions or ammonium ions. They are the most used surfactants in oil fields 

because of their relatively cheap prices, low adsorption on sand reservoirs. Sulfonates, 

sulfates, carboxylates and phosphates are common-used anionic surfactants. However, in 

carbonate reservoirs, anionic surfactants would have high adsorption because of positive 

charged reservoir surfaces. Salts like sodium carbonate are sometimes added to change 

the surface potential to less positive and reduce adsorption amount
97

. Cationic 
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surfactants are positively charged molecules like ammonium organics, pyridinums, 

imidazoliniums. They are not popular in sandstone reservoirs because of loss in 

adsorption. Cationic surfactant flooding is mainly used to change the rock surfaces to 

water-wet
98,99

. Nonionic surfactants use hydrogen bonding, not ionic bonds, with water 

to exhibit surfactant properties. Oxygen-rich functional groups like ethylene oxide or 

propylene oxide are usually found in heads to make molecules locally polar to interact 

with aqueous phase. In chapter IV, one commercial nonionic surfactant was found to be 

the good candidate for heavy oil recovery. The benzyl ring at the polar region interacted 

with benzyl-rich compound like asphaltenes in heavy oil, thus forming emulsions during 

flooding process. Anionic and Cationic surfactants were tested useless in this system. 

Zwitterionic surfactants have both positive and negative charges in the head group. 

Dipole moment formed at head region makes the head polar and soluble in water. Since 

they have more resistance than ionic and nonionic surfactants on salt concentration and 

temperature, recent studies have worked to improve main challenge in surfactant loss by 

adsorption
100

.  

 

2.2.2   Mechanism 

          Lowering IFT is the main mechanism in surfactant flooding. Salinity and brine 

hardness are two most important factors that affect the surfactant’s ability to lower IFT. 

In solution, surfactants will have different phases like monomers, micelles, 

microemulsions depending on the surfactant concentration. At low concentration, 

monomers stay in the solution or at interface. With increasing surfactant concentration, 
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amount of monomers increases and at concentration where monomers start to aggregate 

to form micelles, the concentration is called critical micelle concentration (CMC). IFT is 

decreasing during the increase of surfactant concentration until CMC is reached. Two 

immiscible fluids can form a continuous phase above this critical surfactant 

concentration. At higher surfactant concentration, the amount of monomers and IFT of 

the solution will not change much, but the number of micelles increases.  Micelles, 

which structures have various forms, are formed to stabilize two phases into one 

continuous phase by dispersing one phase inside and one phase outside. For example, 

W/O micelles are water dispersed inside the structures with oil as solvent staying outside 

of the micelles. Micellar solutions with thermodynamically stable dispersion of oil, 

water and surfactant are frequently called microemulsions. Microemulsions’ sizes are 

usually lower than 100nm. The phase behavior of microemulsions is important in EOR 

because it is related to IFT. Salinity, temperature, concentration of surfactants and etc. 

form a combination of phase behaviors in oil and water solution. There are mainly four 

types of phase system in surfactant, oil and water solution: Winsor type I, II, III, VI in 

Figure 2.3. Type 1: surfactants prefer to stay in aqueous phase and O/W microemulsions 

formed near the excess oil interface. IFT will not reach ultra-low value at this condition. 

In type II system, surfactants form W/O emulsion in oil phase near water excess 

interface. This leads surfactant retention in oil which is unfavorable in recovery process. 

For type III, a three phase system where surfactant microemulsion phase formed in the 

middle of water and oil excess phase. This type will reach ultralow IFT which is 

applicable in EOR. Type 4 is a single phase of solution. This type although reach low 
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IFT, large amount of surfactants is needed which is not favorable in field application. 

Increasing the salinity, for example, in ionic surfactant solutions will change the phase 

behavior from type I to type III to type II. Find the optimum condition of salinity with 

type III phase is essential for surfactant flooding. As investigations in heavy oil recovery 

are limited, surfactant flooding has been commonly used for light and middle oil 

reservoir. However, type II and III conditions are hardly seen for many commercial 

surfactants. For the optimum condition in surfactant recovery, different mechanism is 

presented in chapter IV for detail discussion. 
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Figure 2.3 Phase equilibrium of water, oil and microemulsion 

solution.(Winsor type) 

a) Type 1, b) Type II, c) Type III, d) Type IV 

 

2.2.3   Design of surfactants and flooding process  

          To have a commercial application of surfactant process, several factors needs to be 

considered in designing surfactants and the process for specific conditions. Co-
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surfactants, surfactant retention effect, length of hydrophobic tail, types of hydrophilic 

head are four main variables considered in designing effective surfactant flooding. For 

co-surfactants, alcohols are commonly used to help inhibit formation of high viscosity 

phases that traps surfactants in reservoir
101

 or to adjust the desired solution condition to 

reach optimum IFT. However, alcohols will raise the minimum IFT and need extra costs 

in flooding prices.  

          Surfactant retention by adsorption on reservoirs, precipitation or phase trapping 

would be mostly unfavorable in EOR. In oil-wet reservoirs, adsorption may sometimes 

be desired to change wettability. Most of the time, like mentioned in chapter II 2.2.1, 

surfactant adsorption by head characteristics (anionic or cationic) and rock properties 

(sand or carbonate) increase the consumption. In addition to reservoir surfaces, fluid 

properties like salinity, pH, temperature, or ion types affect surfactant retention as well. 

Precipitation caused by reduction in electric potential at high ionic strength, reaction of 

divalent ions with head groups, phase trapping effect mentioned in chapter II 2.2.2 as 

Winsor type II where surfactants lost in oil phase during flooding are undesirable. A 

common observation
102

 in designing surfactants is branching the tail or mixing two 

different anionic surfactants that often reduce adsorption amount. Also, the ethoxylate 

(EO) and propoxylate (PO) groups help surfactant to have tolerance to divalent ions. In 

chapter IV, head region with benzyl group was found to be helpful in heavy oil recovery. 

In the surfactant flooding process, even preflush which often used to form the best 

conditions for reduction of IFT is not effective, thus designing surfactant and the process 

is important
103

 to recover residual oil. 
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2.3     Polymer flooding  

          Polymer flooding is the simplest and important method to thicken the displacing 

fluids with a small amount mainly for increasing the volumetric displacement efficiency 

as in equation 2.7
104

. The primary function is to reduce the mobility of water thus forcing 

water to flow through more channels in reservoirs. There is another system called 

conformance control using polymer gels to block the high permeability regions and then 

diverting remaining floods to low permeability regions. The less amount of the 

displacing fluid used in polymer process can also reduce the operational costs in 

handling disposal of produced water. In 1960’s, polymer flooding was first introduced in 

mobility control
105

. Conformance control was first done by Phillips till 1970’s
106

. The 

typical concentration of polymer process is 0.025 to 0.4 wt. %. Performance of polymer 

process is commonly evaluated by resistance factor (RF), which compares the polymer 

solution resistance to flow through a porous media to the water solution flow resistance. 

It can be defined as the ratio of water mobility to polymer solution mobility in Eqn. 2.8. 

Higher RF means lower mobility in the porous media.  

   
      

                 
                                                                                                    [2.8]              

          Economic and technical successes are reported for polymer floods in sandstone 

and carbonate reservoirs. It has been shown that production costs of polymer flooding 

were comparable to water flooding
107

. The polymer injection has successfully been 

implemented in Marmul (Oman)
74

, Oerrel (Germany)
108

, Courtenay (France)
109

, and 

Daqing (China) fields
110

. In addition, there are several promising field trials and pilot 

studies undergoing in Argentina, Brazil, Canada, India, the USA, and Venezuela
63,111–113

. 
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However, there are several critical factors limit the use of polymer process such as low 

values of polymer-injectivity and pumping-efficiencies, the loss of polymers due to 

degradation or retention. Similar to surfactant process, the costs from polymer 

consumption is a very important factor. Thus, designing an adaptable system that 

maintains low mobility at injection well, and then increases via an external stimulus just 

before or contact the oil as in Fig. 1.2 is desirable. Besides, to decrease the amount of 

polymer degradation during flooding is important in the design. Chapter V discusses a 

novel amphiphilie system for flooding purpose which had the adjustable property to 

overcome injectivity limitation and the potential to resolve degradation effect. 

 

2.3.1   Types of polymer 

          In the context of oil recovery, most commonly investigated viscosity modifiers are 

water soluble polymers such as polyacrylamide (PAM)
114–116

, polysaccharide
117

, 

polyvinyl alcohol
118,119

, poly(vinylpyrrolidone)
120

. PAM is a synthetic polymer that 

performance depends on molecular weight and degree of hydrolysis. The polymer’s 

monomeric unit is an acrylamide molecule. When hydrolyzed, acrylamide group is 

converted to negatively-charged acrylic acid. Partially hydrolyzed PAM has been 

selected for better solubility in water or viscous behavior. If the hydrolysis is too small, 

polymers will not be soluble
121

. Typical degree of hydrolysis is 30-35%. In EOR 

process, partially hydrolyzed PAM is commonly used in fields
7
. Due to the anionic 

groups in hydrolyzed PAM, PAM polymers lose the high viscous property through ionic 

shielding. When flowing in porous media, PAM polymers may lose its performance 
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caused by shear degradation through high shear rates in small pore regions. 

Polysaccharide bio-polymers known as xanthan gum or seleroglucan are other 

candidates used for EOR. They are pseudoplastics with viscosifying effect and with 

excellent tolerance in high salinity conditions because polysaccharide molecules are 

relatively non-ionic and, therefore, free of the ionic shielding effects. Moreover, 

compared to PAM polymers, they have higher resistance to shear degradation and less 

retention in the reservoirs due to more rigid and branched structures. However, they are 

very susceptible to bacteria attack, no tolerance to extreme pH and more expensive than 

PAM polymers. Other polymers are not as commonly used as these two types in fields.     

 

2.3.2   Design of polymers and flooding process 

          To have a commercial application of polymer flooding process, there are several 

challenges to overcome like the cost of pumping due to high injection pressure, creation 

of unwanted injection well fractures, polymer retention in pore structures and 

mechanical degradation of polymers due to high shear rates in porous media. Moreover, 

the focus on environmental friendly chemicals in the industry continues to grow. For 

example, EOR of bio-surfactant flooding is taking place in Norway. Researchers have 

aimed to find new effective chemicals to build a white system meaning having 

biodegradable environmental friendly ingredients in EOR
122

. Although biopolymers 

have been developed that mentioned in chapter II 2.3.1, only promising but not 

profitable materials created at that time. There is still need in designing new 

environmental-friendly materials for mobility control process.  
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          In conformance control, besides materials’ properties, there are two issues in the 

process of injecting polymer-gel system through the narrow pore. First, different 

adsorption rates and amount of polymers and cross linkers may change the desired 

gelling time. Second is polymers may block the wrong sites due to the trigger time of 

gelation. Polymers and cross linkers are later designed to inject separately to ensure the 

polymer-gel system is transported to the desired positions. One commercial product, 

Bright water
123,124

, has been developed for conformance control in fields with easy 

injection at begins and then gel formation in pores by stimuli at specific sites. 

          In chapter V, utilizing the acrylamide groups in PAM, a novel type of adaptable 

amphiphile system based on the complexation of a long chain amino-amide and maleic 

acid had a property to reversibly adjust viscosities. This can enable us to overcome the 

injectivity limitation in flooding process. The choice of hydrophobic tail can come from 

environmental friendly materials. Mechanical degradation properties of polymers can be 

resolved by the reversible structure of the designed supramolecular assembly.  
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CHAPTER III 

TRANSPORT OF POLYMERIC NANOPARTICLES IN POROUS MEDIA 

 

3.1     Introduction 

          In general, the fate and transport of both natural and engineered nanoparticles 

(NPs) in porous media depend on their aggregation and deposition behaviors
125

 which 

involve the interaction between NPs or NPs with a mobile surface during transport. They 

were first developed in 1970’s to improve packed bed filter performance in water 

treatment
126,127

. During transport, the mechanisms of attachment between two NPs are 

dependent on Brownian diffusion, fluid velocity gradient and differential settling. For 

deposition of NPs on surfaces, Yao et al
126

 first classified Brownian diffusion (BD), 

interception, and sedimentation as three mechanisms. Normally, for a polymeric NP 

flowing in a low velocity region, BD is the dominant mechanism in deposition and 

aggregation. Under favorable conditions, the most common model
126

 to describe the 

deposition behavior of NPs in porous media is known as colloidal filtration theory 

(CFT). 

After knowing the possible mechanisms of deposition and aggregation during the 

flow, the interaction energy between the surfaces needs to be considered to explain the 

models. Classic Derjaguin–Landau–Verwey–Overbeek (DLVO) theory has been 

universally employed to explain the aggregation and deposition behaviors of charged 

particles in the presence of simple electrolytes
128,129

. DLVO theory and CFT model are 

often compared to check consistency of the deposition behaviors. In some conditions 
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like deposition at secondary minimum of energy curve or surface charge heterogeneity, 

observed results deviated from the CFT predictions
130,131

. For deposition behavior of 

polymeric nanomedicines, there have been some studies on the adsorption and 

desorption behaviors in pure water over large plate
59,60

, very little is known about 

kinetics in saturated porous media with environmental related conditions. Secondary 

minimum effects may appear with higher salinity or with natural organic materials 

(NOM). It is important to plot the DLVO energy curves before applying CFT model to 

the deposition process.   

  

3.2     Interaction between polymeric nanoparticles and surface 

          In a given medium, most important nanoparticle characteristics that determine the 

nature of interactions between a nanoparticle and an immobile surface are chemical 

composition, size, shape, surface area, porosity, crystallinity, and heterogeneity of the 

nanoparticle
132,133

. Suspending medium determines other important properties of 

nanoparticles, such as the effective surface charge (zeta potential), particle aggregation, 

stability/biodegradability, dissolution characteristics, and hydration and valence 

properties of the surface layers
23,134,135

. Chemical or physical interactions are used to 

classify deposition behaviors between NPs and surfaces. Usually physical interactions 

(adsorption) are weak and reversible, while chemisorptions are much stronger and 

irreversible. Formation of strong covalent bonds only happens to the adsorbed particles 

during their rearrangement or deformation on surfaces. In physical interactions, several 

types of interaction such as van der Waals (vdW) interaction, Born interaction, electrical 
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double-layer interaction and etc., play the important roles in the adsorption process. 

Consider physical interactions in a simple system (Fig. 3.1a) of a spherical rigid 

nanoparticle with a flat surface where radius of the particle is R and the closest distance 

between the particle and the surface is h. 

  

 

Figure 3.1 Interaction of rigid nanoparticle to the surface
136

.  

a)Illustration of a simple system. b) Total interaction energy versus distance, x 

axis is the distance, y axis is the interaction energy. Wm is the primary attractive 

minimum energy, δm is the distance between particle and surface at primary 

minimum. Wb is the primary repulsive maximum energy at a larger disctance δb. 

 

          First, the van der Waals interaction energy between a sphere and a semi-infinite 

plate can be expressed as 
137

: 
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]                                                                           [3.1] 

where A is the Hamaker constant.  
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          Second, Born repulsion is a short-range molecular interaction, resulting from the 

overlap of electron orbitals. It is the twelfth-order term of the empirical Lennard-Jones 

6-12 potential.  The born repulsion between a sphere and a plate can be estimated by 

assuming that these molecular interactions are linearly superimposed 
138

: 
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]                                                                               [3.2] 

where σ is the collision diameter. (typically 0.3-0.5 nm). 

Third, the double-layer interaction between a sphere and a plate can be expressed 

as 
139
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where ε is fluid dielectric constant of the medium, φs1 and φs2 are surface potential of the 

polymer nanoparticle and flat surface, κ
-1

 is Debye length. This expression is appropriate 

for monovalent electrolyte solutions when κh > 2 and κR >> 1. For low surface 

potentials (φs1, φs2 <50 mV), the follow equation may also be used 
139

. 

   ( )                
                                                                             [3.4] 

          Summing the contributions from each effect (equation 3.1, 3.2, 3.3 or 3.4) gives 

the total energy of interaction between a particle and a plate: 

W(h) =Wvdw(h) + WBorn(h) + WDL(h)                                                                             [3.5] 

          Figure 3.1(b) shows the total interaction curve with the activation energy or 

energy barrier to adsorption Wb. The corresponding rate constants of adsorption can be 

estimated using Kramers’ rate theory
138,140
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where E(x) is the interaction potential between PNDDS and silica surface, Ea is the 

activation energy, x* is the distance at which the potential energy has a maximum, D(x*) 

is the diffusivity of a NP at the distance leading to the maximum in the potential energy 

profile. For NPs, large activation energies will lead to infinitesimally small adsorption 

rates due to the exponential dependence. Once total interaction curve shows secondary 

minimum at longer distance, the activation energy is the difference between repulsive 

maximum and secondary minimum.           

 

3.2.1   Adsorption isotherms 

          For polymeric NPs in the solution condition where particle-particle aggregations 

were not observed due to repulsion interaction, multi-layer adsorption will not exist. 

Then, the polymeric nanoparticle adsorption equilibrium isotherm is commonly seen as a 

Langmuir-type or Freundlich-type shape. The Langmuir-type model is described by  

  
         

       
                                                                                                                [3.7] 

where Ceq is the equilibrium concentration, Γ is the absorbed mass of the polymeric 

nanoparticle, Γmax is the plateau value and KL is the Langmuir coefficient.  

          Langmuir-type model is based on the assumption that the adsorption enthalpy does 

not vary with coverage. The isotherm shows a steep initial slope followed by attainment 

of a plateau at high concentration. Freundlich model is described by 

    (   )
                                                                                                                [3.8] 

where KF is the Freundlich coefficient is the Freundlich constant, 1/m is is heterogeniety 

index or adsorption intensity, Γ is the absorb mass of the polymeric nanoparticle, Ceq is 
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the equilibrium concentration. Freundich model is based on the assumption that the 

adsorption enthalpy decrease linearly with surface coverage. Freundlich-type isotherm 

shows a monitonic increase for all range of concentrations.  

Due to the complicated interaction between polymeric NPs, Langmiur-

Freundlich model might be used as in equation 3.9. This isotherm is the composite of 

Langmuir and Freundlich isotherm and can reduce to Freundlich-type at low 

concentration and to Langmuir-type at high concentration. Langmuir-type isotherm is 

more widely used and it is valid for most of adsorption cases.  

  
     (   )

 

   (   ) 
                                                                                                             [3.9] 

          

3.3     Deposition behaviors in porous media  

Elimelech and co-workers has investigated the transportation behaviors of 

various nanoparticles in different solution conditions through saturated porous media, 

studies on transport of polymeric nanomedicines are rather limited. CFT model 

mentioned in chapter III 3.1 has been commonly used in modeling transportation of 

nanoparticles in saturated porous media without energy barriers utilizing a pore-space 

geometry called Happer’s sphere-in-cell model
141

. One of the earliest and most widely 

used equation was proposed by Rajagopalan and Tien called R-T equation
127

: 

     

 

    
 
 

       

 

   

  

            

 

   
 
 

                                                             [3.10] 
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                                                                               [3.11] 
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where η is the contact efficiency of particle to porous media, As is the Happer’s 

coefficient, Npe is the Peclet number, NLo is the London number, Nr is the aspect ratio of 

nanoparticle to the grain or called interception number, NG is the gravity number. θ is the 

porosity of the porous media.  
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                                                                                                                         [3.15] 

where v is the Darcy’s velocity, dg is the diameter of grain, D is the diffusion coefficient 

of the nanoparticle, A is the Hamaker constant calculated based on nanoparticle-grain –

solution system. dp is the diameter of the nanoparticle, ρp is the density of nanoparticle, 

ρf is the density of the solution, µ is the viscosity of the solution. 

          Therefore, it is clear that diffusion, interception and gravitational sedimentation 

are three mechanisms used in R-T equation for the CFT model. New modified terms 

considering hydrodynamic interactions and vdW interactions
142

 have later improved the 

prediction of the column efficiency in equation 3.10. Although knowing the contact 

efficiency between nanoparticles and grains, attachment efficiency (α) shall be 

considered to know the amount of nanoparticles adsorbed on the grains. This can be 

calculated by fitting an empirical equation to the early-stage breakthrough curve of a 

nanoparticle solution flowing through a column with porous media: 
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 (   )   

   
                                                                                                       [3.16] 

where Cout and Cin is the concentration of nanoparticles at outlet and inlet, respectively. θ 

is the porosity of the column, α is the attachment efficiency, η is the contact efficiency, L 

is the column length or transport distance of the solution, dg is averaged diameter of 

grains. Based on the fitting value α and calculated value η from experiment, deposition 

rate constant can be known. For first order kinetics, the deposition rate constant is as: 

     
 (   )   

   
                                                                                                           [3.17] 

At unfavorable conditions, theoretical attachment efficiency calculated by DLVO theory 

will be less from equation 3.16, because it neglects the secondary minimum effect from 

surface heterogeneity and straining effect happened when flowing in porous media.  
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CHAPTER IV 

NANOSCALE DYNAMICS OF HEAVY OIL RECOVERY USING SURFACTANT 

FLOODS* 

 

4.1     Introduction   

          Using primary and secondary recovery, only 20-50% of oil can be extracted from 

an oil reservoir
1–3

. The remaining 50-80% of oil stays underground where oil is adsorbed 

on rock surfaces, leading to oil entrapment within the rock pores
4,6,66

. At a time of 

surging global energy demand, researchers are now actively investigating ways
7–10

 to 

squeeze extra barrels from oil fields via various enhanced oil recovery (EOR) techniques 

such as gas injection, chemical injection, microbial injection, or thermal recovery.  

          Surfactant flooding, which is one type of EOR, involves the addition of surfactants 

to water floods to reduce oil-water interfacial tension (IFT) to ultra-low values so that 

mobility of oil droplets is increased
12–15

. Such a low IFT typically leads to a three-phase 

behavior in which a bicontinuous microemulsion is in equilibrium with excess oil and 

water phases
12–15

. The technical feasibility of oil recovery via surfactant flooding were 

demonstrated in early field tests by Surkalo et al.
78,79

, Hill et al.
80,81

, Pursley et al.
82,83

,  

and Lake and Pope
84

.  

 

 

 *Reprinted with permission from “Nanoscale dynamics of heavy oil recovery using surfactant    

 floods” by I-Cheng Chen and Mustafa Akbulut, 2012. Energy & Fuels, 26(12), pp.7176-

7182. Copyright 2012 American Chemical Society. 
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          Since then, numerous studies focusing on the bulk oil recovery properties of 

surfactant floods have been conducted: Majority of these studies have investigated the 

effects of phase behavior
88

, wettability
86

, interfacial tension
87–91

, water mobility
89

, and 

foaming performance
92

 on the behavior of oil recovery using surfactant floods. However, 

while there are a numerous studies on enhanced oil recovery via surfactant floods at the 

bulk scale
93–96

, studies on the nanoscale dynamics of oil recovery via surfactant floods 

are very limited.  

          In this work, we have investigated the kinetics and mechanism of asphalt removal 

using a model non-ionic surfactant solution, 4-nonylphenyl-polyethylene glycol at 

nanoscale. We focused on asphalt because asphalt, which is found in the heavy ends of 

crude oil
143

, has been shown to have a great impact on the EOR process
144,145

. 4-

nonylphenyl-polyethylene glycol is used mainly due to its ability of heavy oil 

recovery
146

. This study was conducted using four complementary techniques: quartz 

crystal microbalance with dissipation (QCM-D), atomic force microscopy (AFM), 

ellipsometry, and dynamics light scattering (DLS). 

 

4.2     Materials and methods 

4.2.1   Materials 

          Asphalt (Cheyenne Oilfield, CO) was received from Valero Energy Corporation 

(TX, USA) and used as received. 4-nonylphenyl-polyethylene glycol (polyoxyethylene 

(n=9) nonylphenylether, average Mn=617) and tetrahydrofuran (THF, >99.9%) were 

purchased from Sigma-Aldrich. 
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 4.2.2   Preparation of asphalt film 

          Asphalt was rigorously mixed with THF to form a homogenous solution without 

any sediment. A few drops of asphalt-THF mixture were casted on a SiO2 QCM sensor. 

Then, the sample was thoroughly dried in a vacuum chamber (using an Edwards XDS-5c 

scroll pump) at 0.1 torr over at least 24 hrs to ensure the comprehensive removal of 

THF. The mass of the dried asphalt film on the sensor was measured using QCM-D. The 

surface topography of the dried asphalt layer was characterized by atomic force 

microcopy. 

 

4.2.3   Quartz crystal microbalance with dissipation (QCM-D)  

          The removal dynamics of asphalt from SiO2 surface was studied using a QCM-D 

(E1, Q-sense) and a SiO2 QCM sensor (QSX 303, Q-sense). The QCM consists of a thin 

quartz disc sandwiched between a pair of electrodes
147,148

. Due to the piezoelectric 

properties of quartz, it is possible to excite the crystal, resulting in oscillation, by 

applying an AC voltage across its electrodes. The resonance frequency (f) of the crystal 

depends on the total oscillating mass, including water coupled to the oscillation
147,148

. 

When a thin film is attached to the sensor crystal, a decrease in the oscillation frequency 

occurs while an increase in the oscillation frequency takes places upon the removal of 

mass from the sensor crystal surface. The time sensitivity of QCM-D (E1, Q-sense) is 

200 points per second, and its mass sensitivity is 1.8 ng/cm
2
 in liquids (hydrocarbons). In 
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this work, QCM was utilized as a very sensitive balance with nano-gram resolution and 

time resolution of 0.1 s. 

          Figure 4.1 shows typical steps involved in a QCM experiment. First, a baseline for 

a dry sensor was acquired. Then, the mass of asphalt film deposited was calculated from 

the oscillation frequency shift that was induced by the presence of asphalt film. Then, a 

new baseline was obtained using Milli-Q water (18.2 MΩ cm
-1

 @ 25 °C). Next, Milli-Q 

water was replaced by surfactant solutions to initiate and measure the removal 

(desorption) process of asphalt film from the SiO2 surface. The flow rates of both Milli-

Q water and surfactant solutions were 0.2 g/min. Measurement data for frequencies (f) 

was acquired at several harmonics (15, 25, 35, 45, 55, and 65 MHz) simultaneously. All 

measurements in the flow chamber were performed at a temperature of 25°C, to within 

0.1°C to avoid drifts in f. The asphalt film was exposed to the surfactant solution for 

about 10 hour during which frequency and dissipation data were simultaneously 

recorded via QCM-D.  
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Figure 4.1 Different stages of experiments used for investigating the removal 

dynamics of asphalt from the SiO2 surface. 

First step involves   obtaining a baseline for the dry sensor. The second step is the 

deposition of asphalt film on the SiO2 surface and determination of the asphalt 

mass. The third step involves the exposure of the loaded sensor to water and 

obtaining a new baseline for the wet system. The fourth step consists of the 

exposure of the sensor to surfactant solution, the measurement of the asphalt 

mass on the sensor as a function of time, and the analysis of effluent with DLS. 

The final step is the characterization of the asphalt film with AFM at pre-defined 

intervals. 

 

          In addition, the effluent coming out of the QCM chamber was collected at pre-

defined times and analyzed using dynamic light scattering (DLS) (Zetasizer Nano ZS90, 

Malvern) to determine the particle size distribution of potential micelles and emulsions. 

 

4.2.4   Atomic force microscopy (AFM) 

          The surface topography of asphalt deposited and the change in the surface 

topography was measured via AFM in tapping mode (Nanoscope IIIa, Veeco 

Instruments, CA, USA) as a function of time of exposure to surfactant solution. The 

AFM measurements were conducted using a tip radius of less than 10 nm. AFM 

measurements were performed at a 0˚ scan angle on a 50-µm 50-µm area at a speed of 

0.2 µm/s.  
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4.2.5   Ellipsometry 

          Film thicknesses were measured using image nulling ellipsometry (EP3 

Ellipsometer-Nanofilm, Germany). The xenon lamp was used as light source, which was 

polarized from 400 to 800 nm, and had an angle of incidence at 50. Measurements were 

performed on at least five different spots on each sample for each different flooding 

time.  

 

4.3     Results 

4.3.1   The formation of asphalt film on QCM-D SiO2 sensor surface 

          We found that the evaporation of asphalt/tetrahydrofuran mixture under vacuum 

condition led to fairly smooth and robust asphalt film (Fig. 4.2). The interplay among 

hydrogen bonding and donor/acceptor interactions and dispersion forces determines the 

wetting behavior of thin films
149,150

. Asphalt is a mixture of acids (e.g. phenol and 

benzoic acid), bases (e.g. quinoline and hydroxyquinolone), and polar and non-polar 

neutrals
151–153

. Considering that SiO2 is typically negatively charged
154,155

 and also can 

act as Bronsted acid
154–156

, it is no surprise that SiO2 and the basic components of asphalt 

can form strong acid-base electrostatic attraction, leading to the complete wetting of the 

asphalt film on the SiO2 substrate. Furthermore, interaction between polar components 

of asphalt such as aromatic groups and silica surface can also contribute to the observed 

wetting behavior
154,155,157–163

.  
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Figure 4.2 Photographs of SiO2 quartz sensor during the surfactant 

flooding. 

 (a) clean SiO2 quartz sensor, (b) asphalt film on the sensor, and (c) asphalt film 

that is treated with 60 hour flow of surfactant solution at a concentration of 0.7 

g/L. In addition, the effects of surfactant concentration and exposure durations on 

the removal of asphalt are also investigated and described in the proceeding 

section. 

 

4.3.2   Removal dynamics of asphalt from SiO2 surface 

          Figure 4.3 shows the mass of asphalt film remaining on the SiO2 surface as a 

function of time of surfactant exposure at various surfactant concentrations. The analysis 

of this figure revealed the following results: First, the rate of asphalt removal increased 

with increasing concentration of surfactant solution. Second, when the surfactant 

concentration is below critical micelle concentration (CMC, 0.07 g/L), the removal 

dynamics of asphalt followed a different trend compared to the dynamics obtained at 

concentrations above CMC. Third, for all surfactant concentrations, desorption data 

could be well described by two term exponential decay fits, Eqn.1, (dashed lines in Fig. 

4.3), suggesting that two different first-order processes are responsible for the overall 

removal of asphalt.  

1 2

0 1 2( ) k t k tm t m m e m e                                                                                 [4.1] 

          The corresponding rate constants for the asphalt removal process at various 

surfactant concentrations are listed in Table 4.1. 
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Figure 4.3 Mass desorption trend from QCM-D via surfactant flooding. 

The mass of asphalt film remaining on the SiO2 surface as a function of time of 

surfactant exposure at various concentrations and two-term exponential fits for 

the mass vs. time data (shown with dashed lines). 

 

Table 4.1 Desorption rate constants of asphalt film. 

The summary of rate constants ± 1 standard deviation (SD) obtained through 

fitting mass vs. time data with Eqn. 1 and the removal efficiency calculated at 10 

hrs of surfactant flooding.  Note: Experiment in each surfactant concentration 

was repeated 4 times. The data fitting was carried out using Originlab Pro 8.0. 

 

Surfactant concentration  

in terms of CMC 

Rate constant 

k1, 10
-4

 s
-1

  

Rate constant 

k2, 10
-5

 s
-1

  

 

0.5  1.46±0.14  

1 2.32±0.13 1.95±0.04  

2 2.35±0.15 2.02±0.08  

3 2.69±0.12 2.16±0.06  

5 2.97±0.14 2.85±0.13  

10 3.35±0.24 3.80±0.50  

 

          In equation 4.1, one rate constant, k1, was larger (faster process) and in the order 

of 10
-4

 s
-1

 while the other one, k2, was smaller (slower process) and in the order of 10
-5

 s
-

1
. Both rate constants increase with increasing surfactant concentrations above the CMC. 
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At 10 hrs of surfactant exposure, the asphalt removal efficiency, (min-m10hr)/min, ranged 

from 21% to 29% depending on the concentration of the surfactant flood (Fig. 4.4). 

Below CMC, the fast process disappeared, leading to an inefficient removal. 

 

 

Figure 4.4 Removal efficiency relation with surfactant concentration. 

Asphalt removal efficiency ± 1 SD as a function of surfactant concentration upon 

10 hrs of surfactant flooding. Note: Experiment in each surfactant concentration 

was repeated 4 times. 

 

4.3.3   Characterization of the effluent containing asphalt emulsions 

          To determine the size characteristics of colloids in the effluent, we used the 

dynamic light scattering technique. Figure 4.5 displays the particles size analysis of the 

effluent that is formed by flowing a 5CMC concentration of surfactant over the asphalt 

film as function of time. For all times, the effluent contained micelles that are several 

nanometers and microemulsions that are a few to several hundred nanometers. The 

empty (unloaded) micelles were 2-4 nm in size, suggesting that the micelles shown in 
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figure 4.5 are loaded with a trace amount of oil. In addition, the relative ratios of loaded 

micelles to microemulsions increased with increasing time of flow. Furthermore, while 

the mean sizes of both microemulsions and micelles mostly decreased with increasing 

time of flow, the decrease was more pronounced for the microemulsions (i.e. 63% 

decrease for microemulsions and 20% decrease for micelles). Considering that the 

overall removal process has one fast and one slow component (Fig. 4.3 and Eq. 4.1), 

these trends suggest that the fast process (effective at early times) is related to the 

formation of larger microemulsions while the slow process is related to the formation of 

micelles. Alternatively, these trends may be formed because the inlet is continuously 

supplied with a fixed concentration of surfactant above CMC while there is a limited 

amount of asphalt film on the substrate. However, even at longer times, since 55-65% of 

asphalt remained on the surface, it is unlikely that the latter effect the finite mass 

effect  is responsible for these trends. 
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Figure 4.5 Size distribution from dynamic light scattering measurements. 

The particle size distribution of the effluent stream, which formed upon exposing 

asphalt films to a flow of surfactant solution, as a function of time. At CMC, 

empty (unloaded) micelles had a mean size ranging from 2-4 nm in the absence 

of oil. 

 

4.3.4   Topography of asphalt film on SiO2 surface before and after surfactant rinsing 

          We relied on atomic force microscopy (AFM) to determine the structural changes 

on the asphalt surface due to the exposure of surfactant solution. The neat asphalt film 

on SiO2 was mostly smooth while the surface also had some randomly distributed, small 

asperities (Fig. 4.6a). Upon the flow of surfactant solution, these asperities mostly 

disappeared (Fig. 4.6b-e). The comparison of the topographical maps obtained at 

different times of exposure reveals that there is a gradual formation of holes on the 

asphalt film as the surfactant solution passes over it (Fig. 4.6b-e) 
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Figure 4.6 AFM micrographs of the asphalt-film on SiO2 surfaces. 

(a) before surfactant flood, after (b) 2 hr, (c) 6 hr, (d) 10 hr, and (e) 18 hr 

surfactant flood exposure. Surfactant concentration 0.35g/L in 200 mg/min flow 

rate at 25°C. 

 

          It is important to note that AFM measures only the relative displacement of 

structures on a surface. Therefore, to determine whether there is a continuous, uniform 

(throughout) removal of asphalt film in addition to the local removal of asphalt forming 

holes on the surfaces, we have compared the removed mass measured by the QCM with 

that estimated by analyzing total volumes of holes using the AFM data. Such 

comparison revealed that the removal of asphalt from the holes could not solely account 

for the total mass removal, suggesting that there is also a continuous uniform removal of 
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asphalt for this process (Fig. 4.7). The presence of uniform (throughout) removal has 

also been confirmed by independent, time-resolved ellipsometry studies (Fig. 4.7). 

 

 

Figure 4.7 Removal of asphalt masses by QCM-D, AFM and ellipsometer. 

Removal of asphalt mass ± 1 SD as a function of time due to the exposure of 

surfactant solution (5CMC) to a thin film of asphalt on SiO2 surfaces measured 

by QCM-D, AFM, and ellipsometry. Note: Removed asphalt masses at specified 

time intervals measured by ellipsometer were repeated 3 times. 

 

4.4     Discussion 

4.4.1   Further details of QCM-D studies 

          In each QCM-D experiment, two types of data were recorded simultaneously: 

variations in resonance frequency and energy dissipation response. While the former 

provides information on the mass of adsorbate on the surface, the latter provides 

information about the elastic property of the adsorbed film
164–167

. In all experiments, the 

dissipation traces were very small, indicating that the asphalt film was relatively rigid. 
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Therefore, the use of Sauerbrey equation is appropriate for calculating the adsorbed mass 

on the sensor
167

.  

          It is important to underline that even without soft layer dissipation effect, the 

frequency changes can be related to more than simple mass loading 

factors
154,155,166,168,169

. Liquid loading effect due to the change of viscosity/density
168

 and 

liquid trapping effect due to the surface roughness (interfacial cavities and pores)
166,169

 

can also partially contribute to the frequency drift/shifts during the measurement.  

To understand the influence of viscosity/density change, we monitored the frequency 

change upon alternating exposure of pure water and surfactant solutions several times. 

These control experiments revealed that viscosity/density effect is noticeable within the 

first 5 seconds only. Considering that all experiments had time scales in the order of 

several hours, the influence of the viscosity-density effect on this study is insignificant.  

Regarding the surface roughness effect on the QCM studies, AFM micrographs revealed 

that the depths of cavities and holes formed on the asphalt surface due to surfactant 

flows were in the order of 10 to 50 nm depending on the time of surfactant exposure (Fig. 

4.6). Martin et al.
169

 showed that surface features can be considered hydrodynamically 

smooth in a steady flow if they are smaller than 30% boundary layer thickness. For 

water oscillating at 5 MHz above a quartz sensor, the boundary layer is about 38 nm.
169

 

Namely, at early times, the depths of cavities are much smaller than the boundary layer 

for almost all the surface, suggesting that the influence of surface roughness is 

insignificant on the QCM measurements. However, the roughness effect becomes 

noticeable at longer times of surfactant exposure. This finding is also consistent with 
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independent ellipsometry studies relying on an optical means rather than a mechanical 

means to detect the adsorbed mass (Fig. 4.7): The difference between QCM-D and 

ellipsometry results is very small before 7-8 hrs of surfactant exposure while the 

difference is noticeable after 7-8 hr. 

 

4.4.2   The presence of two exponential terms in the removal rate equation 

          Influences such as surface inhomogenities and interplay between diffusion and 

adsorption can lead to the presence of two different rate constants. First, surfaces are 

usually not perfectly homogeneous as are the asphalt surfaces used in this study. On 

heterogeneous surfaces, the binding energy of an adsorbate will generally not be a fixed 

value, but there is a distribution of binding energies
170–172

. In other words, some regions 

of the surface can have higher affinity for surfactants, leading to a faster adsorption 

while other regions can have lower affinity, giving rise to a slower adsorption. 

Considering that the removal of the asphalt is ultimately related to the amount of 

surfactant adsorbed on the asphalt surface
94,173

, the surface heterogeneity can explain the 

presence of fast and slow removal processes.  

 

4.4.3   Comparison of the results with previous bulk and computational studies 

          Previous bulk scale studies suggest that the removal of an oil droplet from a solid 

using surfactant solution involves two stages. First, the roll-up of the oil into the shape of 

a droplet takes place due to the imbalance of forces at the contact line arising from the 

presence of surfactant in the aqueous phase
174,175

. Second, the emulsification of the oil 
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droplet in the aqueous solution occurs after detachment from the solid surface
176–178

. 

Two major mechanisms have been proposed for mobilizing oil: (i) lowering oil-water 

interfacial tension (IFT) while buoyancy is the driving force for oil recovery
15,179,180

, and 

(ii) altering formation wettability from oil-wet to intermediate or water-wet
181–183

. Qiao 

et al.
184

 have recently shown that upon increasing surfactant concentration, IFT of crude 

oil rapidly decreases first and then reaches a steady-state value (stabilizes). This finding 

is very similar to the trend in Figure 4.3, indicating that IFT is directly related to the oil 

removal efficiency. 

          Past studies on adsorption kinetics of non-ionic surfactants on surfaces have 

displayed the following common trends: (i) a linear increase in adsorption with time; (ii) 

a transition regime where the rate of adsorption decreases; and (iii) a plateau regime
185–

187
. The range over which each region extends varies as a function of the bulk 

concentration, nature of the surfactant, nature of the surface, presence of salt, etc. In this 

study, adsorption of surfactants on asphalt surface is much more complex than a typical 

adsorption process because surfactant adsorption and consequent removal of asphalt 

simultaneously take place. Studies on polymer adsorption and desorption have shown 

that desorption is usually non-exponential in time when it is rate-limited by diffusion 

away from the surface rather than by energetics of surface detachment
188,189

. When 

desorption is rate-limited by the energetics of surface detachment, desorption is 

exponential and extensions of classical Langmuir kinetics are appropriate
188,189

. 

Therefore, due to the existence of the exponential kinetics, we believe that the 

detachment of microemulsions and loaded micelles is the rate-limiting step (as opposed 
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to diffusion) in the oil recovery experiments. This may be reasonable considering the 

relatively high viscosity and rigidity of asphalt film.  

          However, it is important to note that the detachment of microemulsions is still 

faster than the detachment of loaded micelles (Fig. 4.5). If we only consider the 

thermodynamical aspects of this process, the energy change in the overall system due to 

the formation of micelles and microemulsion is equal to the sum of the energy required 

to create surface area (surface area between the oil and aqueous phases, A, multiplied 

by the interfacial tension,  and the decrease in the configurational entropy (-TS)
170

. 

The change in the interfacial area is always positive and configuration entropy is always 

negative. Configurational entropy dominates over the interfacial term as the size of 

emulsions decrease or number of emulsions increases
170

. Therefore, according to the 

Arrhenius equation, (kexp(-Ebinding/kT)
190

, the micelles are expected to form faster than 

the microemulsions. However, we observed an opposite trend, suggesting that the 

mechanism of micelle formation is different from that of microemulsion formation. The 

formation of water channels that predominantly assist the formation of microemulsions 

is presumably responsible for this discrepancy. 

          Liu et al.
175

 has recently studied the mechanism of oil detachment from a silica 

surface using surfactant floods via molecular dynamics simulations. Their study has 

shown that formation of water channel within the oil is a critical element of oil 

detachment process
175

. In addition, the diffusion penetration of water molecules into oil-

water interface and subsequent gel layer formation in the vicinity of the contact line was 

found to accelerate the removal of the oil molecules from the silica surface
175

. In light of 
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this study, we suspect that the pores and nanochannels within the asphalt film could 

guide the formation of water channels and may facilitate the removal of asphalt using 

surfactant floods. 

          Chanda and Bandyopadhyay
191

 have shown that the surfactant molecules exhibit 

more extended conformations with increasing the thickness of the monolayer in the 

presence of the oil medium. They also observed that the hydrocarbon tails of the 

surfactants are more vertically oriented at the oil/water interface
191

. In addition, the 

reorientation of both the head and the tail parts of the surfactant molecules is slower in 

the presence of the oil medium and that the rigidity of the surfactant monolayer increases 

in the presence of oil due to penetration of the oil molecules into the hydrocarbon tail 

region of the monolayer
191

. These effects may also be responsible for the retardation of 

asphalt removal that was observed at late exposure stages (i.e. when more oil is 

dispersed into water).  

 

4.4.4   Overall mechanism of oil removal via surfactant floods 

          When we put everything together, the picture emerges that the removal 

mechanism involves several phenomena: diffusion, adsorption, Marangoni Effect, and 

the formation of water channels (Fig. 4.8). First, the surfactants that are dispersed in 

water at either molecular or micellar form reaches oil-water interface through diffusion 

and convection (Fig. 4.8a). Next, the hydrophobic part of the surfactant gradually 

penetrates into the asphalt phase. The local variations in surfactant concentrations that, 

for instance, can be induced by asphalt heterogeneity create a gradient in surface tension 



 

55 

 

(Fig. 4.8b). Such a gradient causes a liquid to flow away from regions of low surface 

tension because the liquid with a high surface tension pulls more strongly on the 

surrounding liquid than one with a low surface tension
192,193

.  

          In addition, asphalts generally form porous structures. Water prefers to be in 

contact with silica rather than asphalt due to the hydrophobic interactions
194

. In the 

presence of surfactants, such porous structures can be filled with water/surfactant 

mixture to minimize the free energy of the overall system (Fig. 4.8c). Considering high 

viscosity and rigidity of asphalt, we believe that the surfactant encapsulated asphalt 

granules within water channels are likely to form the microemulsions identified in 

Figure 4.5 while the deformations induced by Marangoni effects are associated with the 

formation of micelles. 
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Figure 4.8 The possible processes taking place during the removal of asphalt 

via surfactant floods. 

(a) Diffusion and adsorption of surfactant on asphalt are prerequisites for the 

efficient removal of asphalt. (b) Marangoni effect helps to roll asphalt film 

through surface tension gradients. (c) Because the asphalt is more hydrophobic 

than silica (the substrates), thermodynamics favors a direct contact between silica 

and water rather a contact between asphalt and water. Therefore, water channels 

are likely to form in the asphalt film with time.  

 

4.5     Conclusion 

          We have investigated the removal of asphalt from silica surfaces using surfactant 

floods as a function of surfactant concentration and time of surfactant exposure at 

nanoscale. This study shows that the removal rate increased with increasing surfactant 
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concentration until concentration of 2-3CMC. The removal dynamics could be well 

described by two-term exponential decay models, indicating that two different first-order 

processes are responsible for this behavior. The characterization of the effluent upon 

exposure to the surfactant solution as a function of time suggested that the fast process is 

associated with the formation of larger microemulsions while the slow process is related 

to the formation of loaded micelles. Overall, this work relying upon various advanced 

experimental techniques leads to new insights into the dynamics of heavy oil recovery 

via surfactant floods. 
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CHAPTER V 

USE OF PH-RESPONSIVE AMPHIPHILIC SYSTEMS AS DISPLACEMENT 

FLUIDS IN ENHANCED OIL RECOVERY* 

 

5.1     Introduction   

          When oil is displaced by plain water flooding, the injected water fingers through 

the reservoirs due to the high oil-water mobility ratios. Water fingers leave most of the 

oil behind, leading to inefficient oil recovery
195,196

. One approach in enhanced oil 

recovery (EOR) is to increase the viscosity of water by adding viscosity modifiers to 

better match the viscosity of reservoir oil. Such an approach enables a uniform advance 

of the water front to sweep a larger volume of the reservoir and helps displacing oil in 

micropores and crevices that cannot be otherwise displaced by water flooding
197,198

.  

In the context of oil recovery, most commonly investigated viscosity modifiers are water 

soluble polymers such as poly(acrylamide)
114–116

, polysaccharides
199,200

, poly(vinyl 

alcohol)
118,119

, and poly(vinylpyrrolidone)
120

. The polymer injection in EOR has 

successfully been implemented in Marmul (Oman)
74,201

, Oerrel (Germany)
108

, Courtenay 

(France)
109

, and Daqing (China) fields
110

. In addition, there are several promising field 

trials and pilot studies undergoing in Argentina, Brazil, Canada, India, the USA, and 

Venezuela
63,111,112,202

.  

 

 

*
Reprinted with permission from “ Use of pH-responsive amphiphilic systems as 

displacement fluids in enhanced oil recovery” by I-Cheng Chen, Cengiz Yegin, Ming Zhang 

and Mustafa Akbulut, 2014. Society of Petroleum Engineers, 19(06), pp.1035-1046. 

Copyright 2014 Society of Petroleum Engineers. 
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          Aside from water soluble polymers, wormlike micelle solutions have recently 

received increased attention because of their unique rheological properties as potential 

viscosity modifiers in EOR
203,204

. Cationic, anionic, nonionic, and zwitterionic 

surfactants and their mixtures have been shown to produce wormlike micelles having 

viscoelastic properties
205–209

.  

          The current heuristics suggest that polymer flooding should be applied in 

reservoirs with oil viscosities between 10 and 150 mPa.s
210,211

. The key factor limiting 

the recommended range is that for oil viscosities greater than 150 mPa.s, the injected 

water viscosity values required for a favorable mobility ratio (M=kwµo/koµw1) give rise 

to prohibitively low values of polymer-injectivity and pumping-efficiencies. In this 

work, we describe a novel type of adaptable amphiphile system based on the 

complexation of a long chain amino-amide and maleic acid having reversibly adjustable 

viscosities that can enable us to overcome the injectivity limitation. The concept is that 

the viscosity of injected amphiphile solution will be maintained at initially low values 

for easy injection and pumping, and then increased via an external pH-stimuli just before 

or upon contacting oil (Fig. 5.1). To demonstrate the proof-of-concept, rheometry and 

sand column displacement experiments at various temperatures, pH, and salt 

concentrations were used. The mechanism of viscosity adjustment was investigated by 

use of cryogenic transmission electron microscope (cryo-TEM). 
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Figure 5.1 Concept of using adaptable amphiphiles for controlling viscosity 

of injected water in EOR. 

Initially low viscosities will lead to easier injectivity and efficient pumping while 

later high viscosities and efficient pumping, whereas later high viscosity will 

yield favorable mobility ratios and elimination of water fingering. For the 

developed adaptable amphiphile, when the oil field has naturally basic pH such 

as carbonate reservoir
212

, high viscosity can be spontaneously obtained and, 

hense, the external stimuli may not be needed in this case. 

 

5.2     Materials and methods 

5.2.1   Materials 

          Aluminum oxide, Al2O3, (activated, neutral, 150 mesh), paraffin oil, hydrochloric 

acid (37%), Stearic acid (95%), polyacrylamide (5-610
6
 g/mol, non-ionic water 

soluble), and sodium hydroxide (≥97.0%) were purchased from Sigma Aldrich (St. 

Louis, MO). Maleic acid (>98%), N,N- dimethyl-1,3-propanediamine, DMPDA, 

(>99%), and sodium fluoride, NaF, (99%) were purchased from Alpha Aesar (Ward Hill, 

MA).  Sand (pure, 40-100 mesh) was purchased from Acros Organics (Geel, Belgium). 

All chemicals were used as received. 
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5.2.2   Synthesis of adaptable amphiphile 

          Figure 5.2 describes the synthesis of the adaptable amphiphile system with pH-

sensitive viscosity. N-(3-(dimethylamino)propyl)stearamide (marked in Fig. 5.2 as A) 

was prepared by condensation of stearic acid directly with DMPDA in the absence of 

any solvent using reflux at 160°C in oil bath for 10 hours by Chu and Feng
213

. The 

reaction was carried out under argon atmosphere to eliminate undesired oxidation 

byproducts. While NaF was used as catalyst to accelerate the reaction, Al2O3 was 

utilized to absorb water forming during condensation reaction. After the reaction was 

completed, the excess DMPDA was removed by washing with cold acetone. Then, the 

product was dried under vacuum at 40°C for 24 h. Next, the complexation of A with 

maleic acid and/or formation of 2-(dimethyl(3-stearamidopropyl)ammonio)acetate 

(marked in Fig. 5.2 as C) was induced by the addition of maleic acid. The chemical 

characterization of synthesized materials are described in chapter V 5.7.  

 

 

Figure 5.2 The two-step synthesis protocol for the formation of the pH-

sensitive amphiphile. 
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5.2.3   Rheology measurements  

          Steady and dynamic rheological experiments were performed using a modulator 

compact rheometer (MCR301, Anton Paar GmbH, Graz, Austria) with a cone-and-plate 

geometry (50 mm diameter, 0.987  cone angle). The gap was set at 0.05 mm and 

temperature was controlled at 22 °C, within ± 0.1 C, throughout the measurements. 

Samples were equilibrated at the temperature of interest for at least 30 min prior to the 

experimentation. Dynamic shear measurements were taken over the frequency range of 

10
-3 

to 10
3 

Hz. The extrapolation of viscosity/shear-rate curve to zero frequency was 

used to determine the zero-shear viscosity of the amphiphile solutions. The amphiphile 

and polyacrylamide concentrations (10, 20, 30, 40, and 50 mM), the pH of the solution 

(pH 4, 5, 6, 7, 8, and 9), temperature (22, 50, and 75 C), and salt concentrations (0.5, 1, 

3 and 5 wt% in amphiphilic solution, and 1 and 5 wt% in polyacrylamide solution) were 

four main parameters of interest in rheological studies. Each experiment was repeated at 

least three times for the statistical reliability.  

 

5.2.4   Oil displacement experiments 

          Oil displacement experiments were carried out in a vertical cylindrical glass 

column with an internal diameter of 8.2 mm and a total length of 70 mm (i.e. V=3.70 

cm
3
). In all sand column experiments, a fixed weight  (5.81±0.03 g) of air-dried SiO2 

sand (40-100 mesh) was placed in the column using gentle shaking and tapping to ensure 

uniform packing of sand and to ensure that the sand is homogenously extending from the 

bottom to the top. Also, a stainless steel net with 250 mesh was places at the bottom and 
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top of the column to mechanically keep sand in place. The porosity of the sand pack was 

estimated to be 40.8±0.5%, and the corresponding pore volume (PV) was 1.51±0.01 

cm
3
. As shown in Fig. 5.3, after preparing sand column, first, it was saturated with water 

using a high pressure syringe pump with a flow rate of 1.96 cm
3
/min. The corresponding 

initial water saturation was 0.97±0.01. Then, paraffin oil was pumped through the water 

saturated column to replace the water until irreducible water saturation was reached. The 

oil flow rate used to establish initial oil saturation was 0.33 cm
3
/min, which leads to the 

initial oil saturation of 0.99±0.01. Afterwards, a predetermined volume (4.9 cm
3
, 3.3 PV) 

of water, adaptable amphiphile solution, or polyacrylamide (PAM) solution was flooded 

into the sand column to displace the oil. During all flooding tests, the Darcy velocity was 

0.34 mm/s. The residual oil saturation (ROS) attained and recovery fraction were 

calculating by separating the displaced oil-water (or amphiphile or polyacrylamide 

solution) mixture and volumetrically measuring each phase. These experiments were 

carried out at three different pH values, three different temperatures, and four different 

salt concentrations with at least triplicate repeats. 

 

 

Figure 5.3 The experimental set-up used in the oil displacement 

experiments. 
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5.2.5   Pendant drop experiments 

          The interfacial tension (IFT) for the oil–water (or adaptable amphiphile, 

polyacrylamide, or brine) system was characterized using pendant drop method as 

described by Kim and Kovscek
214

. In essence, the method relies on capturing digital 

images of oil drop and the analysis of drop shape to calculate the interfacial 

tensions
215,216

. 

 

5.2.6   Cryogenic transmission electron microscopy (cryo-TEM) 

          Cryo-TEM is used to better understand the mechanism by which the developed 

adaptable amphiphile system modify viscosity. The sample preparation was carried out 

inside an automated vitrification device (FEI Vitrobot, Hillsboro, OR) as described by 

Regev et al.
217

. The vitrified samples were transferred to the cryo-TEM transfer stage, 

which inserted into the microscope (FEI, Tecnai G2 F20 FETEM, Hillsboro, Oregon) for 

direct observation. The experiments were maintained below -170°C throughout the 

specimen observation. The adaptable amphiphile solutions were characterized by cryo-

TEM at pH 4 and 8 and each experiment was repeated twice. 

 

5.3     Results and discussion 

5.3.1   Rheological properties 

          Rheological measurements were performed to determine how viscosity of the 

adaptable amphiphile solution is influenced by varying pH values, amphiphile 

concentrations, temperatures, and salt concentrations, and to compare the rheological 
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properties of the developed amphiphile system with PAM solutions, which are 

commonly used as displacement fluids
218,219

.  

 

5.3.2   Influence of pH on viscosity 

           Figure 5.4a depicts the measured viscosity as a function of shear rate at 22°C and 

50 mM (approximately 2 wt%). For a given pH, the amphiphile system displayed a 

shear-thinning behavior (i.e. a decreasing viscosity with increasing shear rate). For a 

given concentration (approximately 2 wt%), the viscosity of the solution increased with 

increasing pH, reached a maximum at pH of 8, and started going down after this value. 

This trend can be better seen from zero-shear viscosity, 0, versus pH plot that have been 

obtained by extrapolating the viscosity curves (Fig. 5.4b) as described by the Cross 

viscosity model
220

. At a pH of 8, the amphiphile solution was about 4.5×10
5
 times more 

viscous than water (1 mPa·s). On the other hand, when the pH of solution was lowered 

to 4, the viscosity became approximately 3.7×10
4 

mPa·s. Furthermore, when the solution 

pH was increased back to 8, the viscosity went back to 4.5×10
5 

mPa·s again, indicating 

the reversibility of pH-induced viscosity changes. At this point, the rheological data 

suggest that the structure of networks that is responsible for the viscoelastic behavior 

changes with respect to pH. We will further discuss the mechanism of pH responsive 

viscosity after presenting cryo-TEM data. 
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Figure 5.4 Rheology results of amphiphile and PAM solution at different pH 

values. 

(a) Effect of solution pH on the viscosity of amphiphile solution (2% wt.) and (b) 

Zero frequency viscosity of adaptable amphiphile and polyacrylamide solution as 

a function of pH at 2% wt. concentration and room temperature (22 C). Note: 

Rheology results and zero frequency viscosities at different pH were averaged 

with 3 repeats (error bar is 1 SD).  

 

          The comparison of zero frequency viscosity of the developed amphiphile and 

polyacrylamide solutions indicated that for a given concentration (2 wt%) and 

temperature (22C), amphiphile solution had much higher viscosity than polyacrylamide 

solution (Fig. 5.4b).  Polyacrylamide solution had mostly constant viscosity in the range 

of pH 5 to 9, and slight decrease in viscosity at fairly acidic conditions. The latter 

observation is consistent with the previous studies focusing on the rheological properties 

of polyacrylamide solutions
221

. Although there was a 12 fold decrease in viscosity due to 

acidity for amphiphile solution, there was only about 2 fold decrease in viscosity due to 

acidity for polyacrylamide solution. This finding indicates that amphiphile solution is 

much more responsive against a pH stimulus and will be more beneficial when a large 
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range of adjustable viscosity is desired in oil recovery applications. The reversible 

viscosity of adaptable amphiphiles is attributed to their ability to reversibly break and 

recombine. Conversely, polymers tend to irreversibly shear-degrade
222

, which is another 

limitation of polymer-based viscosity modifiers. 

 

5.3.3   Influence of concentration on viscosity 

          Systematic studies as a function of amphiphile concentrations were carried out at 

pH 8 since this pH gave rise to the maximum viscosity. Figure 5.5a displays the 

viscosity of the solution as a function of shear rate at concentrations of 10 mM (0.4 

wt%), 20, 30, 40, and 50 mM (2 wt%). At low shear rates, the viscosity increased nearly 

two orders of magnitude as the concentration of solution was increased from 10 mM to 

50 mM. At very high shear rates, the difference between the viscosities for each 

amphiphile concentration became negligible (Fig. 5.5a). This finding indicates that the 

network structure of the amphiphile solution is disrupted at extremely high shear rates
223

. 
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Figure 5.5 Rheology results of amphiphile and PAM solution at different 

concentrations. 

(a) Effect of the amphiphile concentration on the viscosity at pH 8 and 22 C. (b) 

Zero frequency viscosity of adaptable amphiphile and PAM solutions as a 

function of concentration at 22 C. The concentrations used in these studies were 

10 mM (approximately 0.4 wt.%), 20, 30, 40, and 50 mM (approximately 2 

wt%). Note: Rheology results and zero frequency viscosities at different 

concentrations were averaged with 3 repeats (error bar is 1 SD). 

 

          The comparison of zero frequency viscosity behavior of the developed amphiphile 

and polyacrylamide solutions with respect to the solution concentration is shown in 

Figure 5.5b. Both viscosity curves could be fitted with a power-law function where the 

exponents for the amphiphile and PAM solutions were 1.9 (r
2
=0.83) and 1.0 (r

2
=0.91), 

respectively. In other words, the viscosity was much more sensitive against the amount 

of amphiphile solution present than the amount of PAM solution present. The 

concentration dependence of the viscosity can be explained as follows: Surfactant 

micelles self-assemble and form a network structure as a consequence of 

entanglements
224

. An increase in the concentration leads to an increase in micellar 

contour length and the degree of entanglement. The entangled structure leads to a 
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resistance to the flow of the solution (i.e. an increase in solution viscosity
225

). It is also 

important to note that the power-law dependence of viscosity on the concentration for 

polyacrylamide solution is in agreement with previous research concentrated polymer 

solutions
226,227

. 

 

5.3.4   Influence of temperature on viscosity 

          In oil reservoirs, the temperature increases with depth due to the geothermal 

gradient. Thus, it is significant to examine the rheological behavior of the amphiphile 

solution at elevated temperatures to better evaluate the feasibility of amphiphile solution 

in enhanced oil recovery. Figure 5.6a shows the temperature dependence of the viscosity 

of the amphiphile solution. As expected, the viscosity of the solution decreased with 

increasing temperature.  
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Figure 5.6 Rheology results of amphiphile solution at different 

temperatures. Arrhenius type plot of amphiphile and PAM solutions. 

(a) Effect of temperature on the viscosity of amphiphile solution (2 wt%). 

Operating temperatures are 22, 50, and 75 °C (b) Natural logarithm of the 

corresponding zero frequency viscosities (µ0) of amphiphile and PAM solutions 

is plotted against 1/T in an Arrhenius type plot
228

. In both figures, the solution 

pH and concentration are 8 and 50 mM, respectively. Note: Rheology results at 

different temperatures were averaged with 3 repeats (error bar is 1 SD). 

 

          As shown in Fig. 5.6b, temperature dependence of the viscosity can be described 

by Arrhenius relation, μ(T)=μ0 exp(Ea/RT), where viscosity is related to the inverse of 

the temperature
228

. By fitting a linear line on Log ( vs. 1/T curve plot, the activation 

energy, Ea, was calculated as 21.1 kT (or 52.3 kJ/mol).  The typical activation energy of 

wormlike micelles ranges from 30 kT to 240 kT
229–231

. Given that the activation energy 

of the adaptable amphiphile described here is about 20 kT, it is reasonable to claim that 

the amphiphile system described here can form structures different from wormlike 

micelles. Ideally, it is desirable to have high activation energy for viscosity modifiers to 

have smaller viscosity reductions at elevated temperatures. In this respect, wormlike 

micelles may be slightly advantageous over the adaptable amphiphiles described here. 

However, it is known that wormlike micelles loses their assembled nanostructures and 
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viscous behavior in the presence of salt
232

, which hinders their feasibility in oilfields. 

The comparison of activation energy values for adaptable amphiphile and 

polyacrylamide solutions indicate that the activation energy for PAM solution is about 3 

times smaller than that for amphiphile solution. In other words, viscosity of amphiphile 

solution is less sensitive to temperature fluctuations than that of PAM solution, which is 

one of the most commonly used viscosity modifiers in oil fields.  

 

5.3.5   Influence of salt on viscosity 

          Many oil reservoirs contain connate water with high concentrations of sodium 

chloride and divalent ions
233

. Therefore, it is essential to determine the influence of salt 

on the viscosity of the developed amphiphile system. Figure 5.7a displays the viscosity 

versus shear rate plots for adaptable amphiphile solutions at varying salt concentrations. 

There was a twofold reduction in zero frequency viscosity when 5 wt% salt was 

introduced into amphiphile solution containing no salt. Fig. 5.7b displays a similar plot 

for PAM solution. It is interesting to note that PAM solution also had a roughly twofold 

reduction in zero frequency viscosity when 5 wt% salt is added into the PAM solution. 

At high shear rates, the influence of salt was negligible for both cases. This is 

presumably because entanglements responsible for viscosity is reduced or disrupted at 

high shear rates and salt cannot further disturb and influence the viscosity.In essence, the 

presence of salt demonstrated a similar effect on adaptable amphiphile and PAM 

solutions, suggesting that both solutions will have similar resilience against oilfield 

brine. Overall, it is significant to emphasize that adaptable amphiphile solution has a 
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significantly enhanced adjustable viscosity behavior and much less sensitivity towards 

temperature in comparison to PAM solution and reversible viscous behavior even after 

experiencing prolonged high shear rates. Therefore, rheological data strongly suggest 

that supramolecular assembly of amino-amide based amphiphiles have a strong potential 

as a viscosity modifying fluid in EOR. 

 

 

Figure 5.7 Rheology results of amphiphile and PAM solutions at different 

salt concentrations. 

Influence of salt on the viscosity of (a) amphiphile solution (0.4% wt.) and (b) 

polyacrylamide solution (0.4% wt.). All experiments were conducted at pH 8 and 

22 C. Note: Rheology results at different NaCl concentrations were averaged 

with 3 repeats (error bar is 1 SD). 

 

5.4     Oil displacement behavior  

          To go one step further than rheological measurements and to better evaluate 

feasibility of adaptable amphiphile solutions in EOR, we carried out oil displacement 

experiment involving sand columns. Figure 5.8 compares the oil recovery efficiencies of 

water, adaptable amphiphile and PAM solutions with a concentration of 0.4 wt. % as a 
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function of pH. Overall, the amphiphile solution clearly showed much higher 

displacement efficiency compared to water and polyacrylamide solution at basic pHs. 

Under basic conditions, for an injection volume of 5 cm
3
, the ROS attained was 0.29-

0.30 for amphiphile solution (0.4 wt. %) and 0.45-0.50 for polyacrylamide solution (0.4 

wt. %) while it was 0.55-0.60 for water. In other words, there was 50-67% increase in 

displacement efficiency when switched from polyacrylamide to adaptable amphiphile 

solutions. There was 83-100% increase in displacement efficiency when switched from 

plain water to adaptable amphiphile solution. At acidic conditions, the ROSs attained for 

PAM to adaptable amphiphile solutions were similar but still higher than plain water. 

However, it is important to note that adaptable amphiphile solution described here is 

envisioned to be used solely in basic oilfields as displacement fluid while it was planned 

to be pumped down at initial acidic condition until reaching the reservoir to facilitate the 

pumping and injectivity. 

 

 

Figure 5.8 Fraction of displaced oil as a function of injected fluid volume at 

various pH values and 25 ˚C. 

(a)water, (b) 0.4 wt% adaptable amphiphile solution, and (c) 0.4 wt% PAM 

solution. Injected volume corresponds to 3.3 times PV. Note: For each pH of 

three solutions, fraction of oil recovered from sand column was averaged with 4 

repeats (error bar is 1 SD). 
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          To explain the observed trends, we rely on the Capillary number (Ca). The ROS 

decreases when Ca increases beyond 10
-3

 to 10
-4

.
234

 This is found to be particularly found 

true for sands and sandstones. For experimental conditions used in this study, PAM and 

adaptable amphiphile solutions had the Ca in the order of 10
-1

 to 10
-2

 due to their viscous 

natures while plain water solution had the Capillary numbers in the order of 10
-6

 (Table 

5.1 through 5.3). Therefore, for plain water, the displacement is controlled by the 

capillary pressures along the interface while for PAM and adaptable amphiphile 

solutions, viscous forces overcome capillary effects and control the displacement. For 

water, the deviation from pH 7 indicates a larger amount of H
+
 or OH

-
 ions in the 

solution. The presence of such ions can disrupt the structuring of water molecules, 

thereby decreasing the interfacial tension. Therefore, for water, the capillary number at 

pH 4 was slightly larger than that at pH 6 and 8. As such, the ROS was slightly lower at 

pH 4 for water. For PAM, the interfacial tension decreases with increasing pH while the 

viscosity is mostly constant above pH of 5 and decreases changing from pH 5 to 4. 

Overall, the Capillary number increased with increasing pH for PAM solution. Although 

the ROS values for pH 6 and 8 were similar for an injection volume of 5-cm
3
 PAM 

solution, the steady-state was reached for pH 6 but not fully reached for pH 8. In other 

words, PAM solution is expected to reach a smaller remaining oil saturation value as 

expected from Ca. For adaptable amphiphile solution, viscosity increased with increasing 

pH (Fig. 5.4). In this case, the decreased ROS was attributed to the increased viscous 

forces overcoming capillary effect. 
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Table 5.1 IFT of three different fluids at oil interface as a function of pH and 

the corresponding capillary numbers calculated by Darcy velocity, the 

measured viscosity, and interfacial tension. 

The Darcy velocity was 0.34 mm/s for PAM and amphiphile and 0.48 mm/s for 

the water flooding Darcy velocity. PAM and adaptable amphiphile solutions 

were 0.4 wt%. All of the experiments were conducted at 22 C. Interfacial 

tension between each solution at different pH with paraffin oil was averaged with 

4 repeats (1 SD).  

 

pH Amphiphile 

 (mJ/m
2
) 

PAM 

 (mJ/m
2
) 

Water 

 (mJ/m
2
) 

Ca (×10
-2

) 

(Amphiphile) 

Ca (×10
-2

) 

(PAM) 

Ca (×10
-6

) 

(Water) 

4 8.4±0.9 43.2±0.6 48.7±2.2 4.8±1.7 1.5±0.2 9.9±0.4 

6 12.0±0.5 45.7±0.2 53.0±0.4 26.2±3.5 1.6±0.5 9.1±0.1 

8 30.1±1.6 54.7+1.1 53.1+0.6 16.4±2.3 2.6±1.8 9.0+0.1 

 

 

          Figure 5.9 compares the oil recovery efficiencies of water, adaptable amphiphile 

and PAM solutions with a concentration of 0.4 wt% at pH 8 as a function of 

temperature. For all temperatures tested, the ROS attained was the smallest for adaptable 

amphiphile solution. For all cases, the ROS increased with increasing temperature. For 

water and PAM solution, 5 ml injection volume (3.3 times PV) was mostly enough to 

reach steady-state ROS while for adaptable amphiphile solution, 5 cm
3
 injection volume 

did not lead to a steady-state ROS value. This finding indicates that if a larger volume of 

amphiphile solution is injected, the residual oil saturation value can decrease for 

adaptable amphiphile solution but not for water and PAM solution. For all three cases, 

the observed trends can be explained in terms of the Ca: with increasing temperature, the 
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Ca decreased (Table 5.2). Therefore, the increase in the ROS with increasing temperature 

can be attributed to the fact that oil recovery increases with increasing Ca. 

 

 

Figure 5.9 Fraction of displaced oil as a function of injected fluid volume for 

water, 0.4 wt% PAM solution, and 0.4 wt% adaptable amphiphile solution 

at various temperatures. 

(a) 22 C, (b) 50 C,  and (c) 75 C. For all cases, pH was 8.  Injected volume 

corresponds to 3.3 times PV. Note: For each temperature of three solutions, 

fraction of oil recovered from sand column was averaged with 4 repeats (error 

bar is 1 SD). 

 

Table 5.2 IFT of three different fluids at oil interface as a function of 

temperature and the corresponding capillary numbers calculated by Darcy 

velocity, the measured viscosity, and interfacial tension. 

The Darcy velocity was 0.34 mm/s for PAM and amphiphile and 0.48 mm/s for 

the water flooding Darcy velocity. PAM and adaptable amphiphile solutions 

were 0.4 wt%, and pH was 8. Interfacial tension between each solution at 

different temperature with paraffin oil was averaged with 4 repeats (1 SD).  

 

T (C) Amphiphile 

 (mJ/m
2
) 

PAM 

 (mJ/m
2
) 

Water 

 (mJ/m
2
) 

Ca (×10
-2

) 

(Amphiphile) 

Ca (×10
-2

) 

(PAM) 

Ca (×10
-6

) 

(Water) 

22 30.1±1.6 54.7±1.1 53.1±0.6 16.4±2.3 2.6±1.8 9.0±0.1 

50 24.6±0.6 31.8±1.4 45.4±0.4 9.6±3.0 0.9±0.3 5.8±0.1 

75 21.9±2.1 35.1±0.2 40.3±1.1 1.2±0.2 0.2±0.0 4.5±0.1 
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          Figure 5.10 compares oil displacement efficiencies of water and adaptable 

amphiphile and PAM solutions with a concentration of 0.4 wt% and pH of 8 with 

different brine conditions (0, 0.5, 1 and 3 wt% sodium chloride (NaCl)). For water, the 

recovered oil increased with increasing salt concentration. When 3 wt% salt is added 

into water, the fraction of displaced oil increased about 14%. For PAM, the presence of 

NaCl did not significantly alter fraction of oil recovered. For adaptable amphiphile, there 

was about 20% reduction in fraction of oil recovered going from no salt to 3 wt% NaCl 

condition. However, the fraction of oil recovery was still the largest for adaptable 

amphiphile even at 3 wt% NaCl concentrations (i.e. 0.48 for water, 0.56 for PAM, and 

0.57 for adaptable amphiphile). The IFT of salt water and oil decreases with increasing 

salt concentration and the Ca increases (Table 5.3). Hence, the slightly increased 

displacement efficiency of water at higher salt concentrations is attributed to this 

phenomenon. For PAM, both the IFT and the viscosity decrease with increasing salt 

concentration (Table 5.3 and Figure 5.7). Therefore, viscous and interfacial effects have 

opposing trends and the interplay between these two effects keep the capillary number 

mostly constant as a function of salt concentration. Therefore, the ROS did not 

significantly depend on the salt concentration for PAM solution. For the adaptable 

amphiphile solution, the decrease in viscosity with increasing salt concentration was 

ascribed to the increasing ROS. Here, it is worth noting that since the adaptable 

amphiphile system involve surface active components, aside from the displacement 

effect, the formation of emulsions may also take place, especially at relatively low 

interfacial values
96,235,236

. 
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Figure 5.10 Fraction of displaced oil as a function of injected fluid volume at 

various NaCl concentrations for water, 0.4 wt% PAM solution, and 0.4 wt% 

adaptable amphiphile solution at 25˚C. 

 (a) water, (b) 0.4 wt% PAM solution,  and (c) 0.4 wt% adaptable amphiphile 

solution. For all cases, pH was 8. Injected volume corresponds to 3.3 times PV. 

Note: For each NaCl concentration of three solutions, fraction of oil recovered 

from sand column was averaged with 4 repeats (error bar is 1 SD). 

 

Table 5.3 IFT of three different fluids at oil interface as a function of NaCl 

concentration and the corresponding capillary numbers calculated by Darcy 

velocity, the measured viscosity, and interfacial tension. 

The Darcy velocity was 0.34 mm/s for PAM and amphiphile and 0.48 mm/s for 

the water flooding Darcy velocity. PAM and adaptable amphiphile solutions 

were 0.4 wt%, 22˚C and pH was 8. Interfacial tension between each solution at 

different NaCl concentrations with paraffin oil was averaged with 4 repeats (1 

SD). 

 

NaCl  

(wt%) 

Amphiphile 

 (mJ/m
2
) 

PAM 

 (mJ/m
2
) 

Water 

 (mJ/m
2
) 

Ca (×10
-2

) 

(Amphiphile) 

Ca (×10
-2

) 

(PAM) 

Ca (×10
-6

) 

(Water) 

0 30.1±1.6 54.7±1.1 53.1±0.6 16.4±2.3 2.6±1.8 9.0±0.1 

0.5 54.8±2.6 53.6±1.1 52.3±0.6 7.6±0.9 2.2±1.2 9.2±0.1 

1.0 52.3±8.2 52.7±2.2 51.8±1.1 8.8±2.0 1.5±1.0 9.3±0.2 

3.0 52.3±8.2 45.9±2.7 49.2±0.8 7.5±1.7 1.6±0.6 9.8±0.2 
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5.5     Mechanism for pH-switchable viscosity 

          To directly visualize the nanostructural changes responsible for pH-adjustable 

viscosity behavior at multiple length scales, we relied on optical microscopy and cryo-

TEM. Figure 5.11 shows optical microscope and cryo-TEM micrographs of the 

complexation product of maleic acid and amino-amide in water under acidic and basic 

conditions. While small, plate-like structures were observed under acidic condition (pH 

of 4), large layered, tubular (cylindrical) structures were detected under basic condition 

(pH of 8). These structures having diameters of 300-800 nm, which were much larger 

than typical wormlike micelles (diameter of 5-10 nm i.e. about length of two surfactant 

monomers)
224

. 

 

Figure 5.11 Optical microscopy and cryo-TEM micrographs of the 

complexation product of maleic acid and amino-amide in water. 

(Left) optical microscope images, Right) Cryo-TEM images at acidic 

(pH=4)(top) and basic (pH=8)(bottom) conditions. 
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          The switchable viscosity behavior is attributed to the complexation induced by the 

protonation of amino groups and deprotonation of carboxyl groups (Fig. 5.12). Below 

pH 4, while only one of the carboxyl groups of maleic acid is dissociated due to its pKa 

values (pKa1=1.9 and pKa2=6.1), the amino-amide is positively charged at the amino 

group (pKa=9.4). As the pH increases from 4 to 8, the degree of dissociation for the non-

dissociated carboxyl group of maleic acid changes from almost none to almost all. On 

the other hand, amino amide is almost completely protonated below pH 7.4 because it 

has a pKa of 9.4. As the pH increases from 7.4 to 11.4, the degree of protonation for the 

amino group changes from almost all to almost none. When maleic acid is completely 

dissociated, it can form intermolecular complexes with two amino-amides. On the other 

hand, it can only complex with one amino-amide when maleic acid only loses one proton 

through electrostatic interactions. We believe the transition from dimer to trimer type of 

complex is primarily responsible for the increased viscosity at basic pH values. It is 

important to note that when pH is above 7.4, then the amino-amide starts losing its 

charge and the electrostatic contribution of intermolecular interactions gradually 

disappear. This explanation is consistent with the decrease in viscosity upon increasing 

pH from 8 to 9. 
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Figure 5.12 The effect of pH on the dissociation of the amino and carboxyl 

groups of the developed adaptable amphiphile. 

 

          It is also possible that quaternary amine (C) can also form complexation reactions 

with the amino-amide (A) or itself. Comparison of the relevant pKa values suggest that 

neither CA (794 Da) nor CC (825 Da) complexes are expected to have a pH-

switchable viscosity behavior. Furthermore, CC complex is expected to be stable even 

at high pH values. Overall, we believe that while the zwitterionic quaternary amine does 

not directly provide the system with any pH responsiveness, it can still play a role in the 

supramolecular assembly of AB complexes and enhance the effective viscosity of the 

system. 



 

82 

 

          The formation of dimers and trimers cannot solely account for the enormous 

viscosities of the amphiphile solution because of their relatively small sizes. To explain 

this trend, the supramolecular assembly of dimers and trimers needs to be considered. As 

shown in Figure 5.11, the amphiphile system at basic conditions forms very large 

superstructures, which are much larger than typical wormlike micelles. The scaling 

theories suggest that the zero-shear viscosity of a Maxwell fluid is linearly depend upon 

the contour length
237

. While the contour length of the amphiphile system at pH 8 is 

roughly a few hundred micrometers (Fig. 5.11), that of high molecular weight water 

soluble polymers used in enhanced oil recovery is typically 0.110 m (estimated from 

molecular weight information). Therefore, these amphiphile solutions display much 

larger viscosities than typical polymer solutions.  

 

5.6     Conclusion 

          Our results indicate that the adaptable amphiphile with amino-amide groups 

display very intriguing pH-switchable physicochemical properties. For instance, the 

addition of just 2 wt% of adaptable amphiphile/maleic acid into water increased the 

viscosity of water by 4.510
5
 times. Furthermore, the viscosity of the amphiphile 

solution can be increased 12 times by changing pH from 4 to 8 in a reversible manner. 

We also demonstrated the proof-of-concept for the use of adaptable amphiphile solutions 

in EOR as oil displacement fluids through column experiments. Such a tunable viscosity 

can be very beneficial for oil recovery applications when the injectivity becomes a 

limitation. We also showed that adaptable amphiphile solution has several advantages 
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over PAM solution, which is commonly used in mobility control. For instance, in 

comparison to PAM solution, adaptable amphiphile solution is less sensitive against 

temperature gradients and has reversible-viscosity dependence because of its ability to 

reversibly break and recombine. Tunable viscosity behavior can be beneficial to oil 

recovery appications when injectivity becomes a limitation. In addition, switchable 

viscosity can cut down the energy cost associated with pumping large volumes of 

viscous displacement fluid. Moreover, because oil reservoirs can show a rich variation in 

viscosity even within a given reservoir, the use of pH adjustable viscosity can alleviate 

the need for using different displacement fluids in different zones of reservoirs. Because 

of their increasing viscosity at basic pH values, we envision the use of the adaptable 

amphiphile system in carbonate reservoirs. It is important to note that the key raw 

material of the adaptable amphiphile system is stearic acid, which can sustainably be 

obtained from coconuts at high yield.  

 

5.7     Appendix 

5.7.1   Mass and nuclear-magnetic-resonance (NMR) spetroscopy 

          The chemical analysis of the long-chain amino-amide (first step) and adaptable 

amphiphile complex (second step) was performed by use of electrospray ionization mass 

spectroscopy (ESI-MS) and NMR spectroscopy. ESI-MS (MDS SCIEX API QStar 

Pulsar, Ontario, Canada) was used in the positive-ion mode. Sample was dissolved in 

methanol and electrosprayed by use of ion spray (needle) at 4.5 kV. Sheath gas and 

curtain gas flow were set to 40 and 20 psi, respectively. The sample flow rate was 7 
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µl/min. Proton NMR (H-NMR) was used to further confirm chemical reactions shown in 

Fig. 5.14. The products of the first step were dissolved in deuterated chloroform 

(CDCl3), whereas the products of the second step were dissolved in deuterated water 

(D2O). The solutions were analyzed by use of a Bruker 400 MHz NMR spectrotrometer 

(Bruker, Billerica, Masssachusets) at 298K. 

 

5.7.2   Chemical characterization of adaptable amphiphile  

          Fig. 5.13a shows ESI-MS spectra of the product obtained at the end of first step in 

reaction of Fig. 5.2. The main peak that is responsible for 80.7% of the overall intensity 

is at 369 daltons, suggesting the formation of C23H49N2O
+
, which is a hydrogen adduct 

of amino-amide (A). The smaller peaks are ascribed to the isotopic distribution. ESI-MS 

was also utilized to determine the molecular weight of the complex forming upon the 

addition of maleic acid to amino-amide (Fig. 5.13b). In this case, the main peaks that are 

responsible for a total of 89.9% of the overall signal intensity are located at 794, 853, 

and 876 daltons. It is most likely that amino-amidemaleic acidamino-amide 

(ABA) complex accounts for the peak at 853 daltons and the peak at 876 daltons is 

the sodium adduct of ABA complex. The peak at 794 daltons can be due to the 

formation of amino-amidezwitterionic quaternary amine (AC) (794 Da) complex. 

This scenario requires the formation of acetic acid which may form by the cleavage or 

decomposition of maleic acid
238

 because of the extensive amount of sonication energy 

provided in the second step of the reaction. It is also possible that CC complex can be 

responsible for the peak at 853 Da and the peak at 876 Da is its sodium adduct. Fig. 5.14 
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displays 
1
H NMR spectrum of products obtained after first and second steps of synthesis 

in CDCl3 and D2O, respectively. For the first step of the reaction, the signals from two 

types of methyl groups (a and i) are observed at δ=2.4 and 0.9 ppm, respectively. Peak at 

δ=7.0 ppm is associated with the signals from the proton of amide (e). The other major 

peaks are shown on the molecular structure. In the second step of the reaction, if the 

quaternary amine with two carbonyl groups formed, the signal from amide peak 

disappears due to deuterium-hydrogen exchange
239

. The peak at δ=4.6 ppm is attributed 

to –CH2– (j) that is located between quaternary amine and carbonyl groups. The other –

CH2–attached to amino group (b) experiences a large shift because of the electron-

withdrawing effect induced by the formation of quaternary amine after the completion of 

the reaction. In the second step of the reaction, the quaternary amine with one carbonyl 

group can also form by the deuteration of amino-amide. This quaternary amine can also 

explain observed NMR trends. Overall, the presence of relatively broad peaks compared 

to the peaks observed in the first step suggests that a mixture of these quaternary amines 

form. 
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Figure 5.13 Mass spectrum of the adaptable amphiphile and the precursor. 

(a) the adaptable amino-amide amphiphile in CDCl3 and (b) its condensation 

product with maleic acid in D2O shown in Fig. 5.2 

 

 

 

Figure 5.14 H-NMR spectra of the adaptable amphiphile and the precursor. 

(a) the adaptable amino-amide amphiphile in CDCl3 and (b) its condensation 

product with maleic acid in D2O shown in Fig. 5.2 
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5.7.3   Nomenclature 

Ca = capillary number 

Ea = the activation energy 

k = Boltzmann constant 

ko = effective permeability of oil 

kw = effective permeability of water 

pKa = logarithmic acid-dissociation constant 

R = universal gas constant 

T = temperature 

µ = viscosity 

µ0 = zero-shear viscosity 

µo = oil viscosity 

µw = water viscosity 
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CHAPTER VI 

TRANSPORT OF POLYMERIC NANOPARTICULATE DRUG DELIVERY 

SYSTEM IN THE PROXIMITY OF SILICA AND SAND* 

 

6.1     Introduction 

          Over the past few decades, significant developments in nanomedicine have 

occurred, particularly in cancer diagnosis and therapy
240

, antibacterial therapeutics
241

, 

and therapeutics for the central nervous system
242

. According to recent estimates, there 

are approximately 250 nanomedicines that have been approved for use, are under clinical 

trial, or on the verge of clinical study
243

. As research, production, and consumption of 

nanomedicine increases, there have been increasing concerns about the occurrence, 

transport behavior, and fate of nanomedicine in the environment and the potential 

consequences for human health
244

.  

          The environmental concerns were exacerbated with studies indicating that some of 

the administered nanomedicines can be excreted from the kidney or the hepatobiliary 

system
245–247

. While the former route is capable of rapidly removing smaller particles 

from the vascular compartment relatively unaltered from their original form
248

, the latter 

route typically leads to partial or full metabolization, which is eventually followed by 

biliary and fecal excretion
248,249

.  

 

           

*
Reprinted with permission from “ Transport of polymeric nanoparticulate drug delivery 

systems in the proximity of silica and sand” by I-Cheng Chen, Ming Zhang, Blake Teipel, Isa 

Silveira de Araujo, Yagmur Yegin and Mustafa Akbulut, 2015. Environmental Science & 

Technology, 49(6), pp.3575-3583. Copyright 2015 American Chemical Society. 
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          After excretion, nanomedicine can reach the sewer system, and subsequently 

travel through a waste treatment facility before finding its way into receiving waters or 

land through the application of sewage sludge. However, prior studies have indicated 

that standard wastewater treatment does not capture nanomaterials, such as titanium 

dioxide nanoparticles, well
250,251

. While there are significant differences between 

physicochemical properties of titanium dioxide and nanomedicine, it is still an unknown 

and complimentary concern regarding how different types of nanomaterials interact with 

the standard wastewater treatment. In addition, therapeutic compounds tend to pose a 

challenge for waste water treatment plants
252,253

. According to the American Housing 

Survey for the United States: in 2009
254

, the percentage of households connected to 

public sewage for waste water disposal is about 80%, and the remaining percentage 

mainly rely on septic tanks, which are primary treatment systems. It was reported that 

plumes from septic tanks can be tens of meters wide, several meters thick, and can 

extend tens to hundreds of meters downgradient of tile beds
255–257

. Furthermore, sewage 

systems can become defective and leaky
258

, and such a leak can seep into a subsoil and 

transport through an unsaturated zone, capillary fringe, and saturated zone
259,260

. 

Likewise, polluted storm-water runoff can also contaminate waterbodies
261

. Because of 

these reasons, the possibility of groundwater contamination with therapeutic agents 

including nanomedicine is a valid concern. 

          Recently, environmental aspects of engineered nanoparticles are receiving 

increased attention as the consumption and production volumes of such nanoparticles 

increase. For instance, many field and laboratory investigations dealing with the 
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distribution, retention, and fate of nanomaterials such as TiO2
35–37

, SiO2
38,39

, CeO2
40–42

, 

ZnO
43,44

, Fe2O3
45

, Ag 
46,47

, Au
48,49

, fullerenes
50–53

 and carbon nanotubes 
54,55

 have been 

conducted. A general conclusion of these studies is that hydrodynamic parameters (such 

as flow velocity
40,43

 as well as parameters that modulate the particle-surface and particle-

particle interactions (such as surface potential of nanoparticles
36,41,46,56

, the presence of 

organic species
55,57

, particle aggregation
46,58

, and concentration of NPs i.e. interparticle 

distance
38,40

) play a role on the retention and transport behavior of NPs. However, 

similar environmental studies on soft nanomaterials such as polymeric nanomedicine are 

rather limited. In particular, little is known about the adsorption dynamics, retention, and 

transport behavior of polymeric nanomedicine near and through environmental surfaces. 

          This work is concerned with the effect of surface chemistry on the adsorption 

dynamics and transport of polymeric nanoparticulate drug delivery systems on silica 

surfaces and through sand columns. Here, polymeric nanoparticulate drug delivery 

systems (PNDDS, Fig. 6.1) are of particular interest because PNDDS filled with 

therapeutic agents currently represent one of the most commonly used forms of 

nanomedicines due to their ability to solubilize hydrophobic molecules, as well as their 

higher payload capacity, prolonged blood circulation times, and enhanced 

thermodynamic solution stability
262–265

. Silica is of environmental significance as it is 

one of the most common minerals found on the surface of the earth
266

.  The transport of 

PNDDS near flat surfaces and in saturated porous media was studied using quartz crystal 

microbalance with dissipation (QCM-D) and column transport experiments, 

respectively. In addition, the influence of ionic strength, salt type, and humic acid were 
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investigated for both of the flow geometries. The generated experimental data were 

described by DLVO theory,  and Kramers' rate theory. 

 

 

Figure 6.1 Illustration of PNDDS structure and typical building blocks used 

in current formulations. 

 

6.2     Materials and methods 

6.2.1   Materials 

          All PNDDSs were loaded with paclitaxel (Selleck Chemicals, Houston, TX), 

which is a commonly used therapeutic agent in formulations of various polymer 

nanomedicines
267

. The surface chemistry of PNDDS was systematically varied by 

selecting different hydrophilic polymer blocks that are typically used as steric stabilizers 

in contemporary polymeric nanomedicines. To be specific, five different diblock 

copolymers were used in this study: poly(caprolactone-b-ethyleneimine) (PCL-b-PEI, 

2,500-b-2,500 g/mol, PolySciTech, West Lafayette, IN), poly(caprolactone-b-

ethyleneoxide) (PCL-b-PEO, 6,500-b-5,000 g/mol, Polymer Source Inc., Dorval, QC, 

Canada), poly(lactide-b-n-vinylpyrrolidone) (PLA-b-PNVP, 6800-b-12,000 g/mol, 

Polymer Source Inc.), Poly(styrene-b-acrylic acid) (PS-b-PAA, 5200-b-4800 g/mol, 
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Polymer Source Inc.) and Pluronic F-127 (Sigma-Aldrich, St. Louis, MO). 

Tetrahydrofuran (THF, ≥99%, Sigma-Aldrich) was used for dissolving polymers and 

paclitaxel. Sodium chloride (NaCl, ≥99%), sodium sulfate (Na2SO4, ≥99%), calcium 

chloride dihydrate (CaCl2●2H2O, ≥99%), calcium sulfate (CaSO4, ≥99%) and humic 

acid (technical grade), which were purchased from Sigma-Aldrich, were used to mimic 

the conditions in environmental waters. Quartz sand (pure, 99.8%, 40-100 mesh, Acros 

Organics, Fair Lawn, NJ) was used for preparing a model environmental porous media. 

 

6.2.2   Preparation of PNDDS loaded with paclitaxel 

          All PNDDSs were prepared using a generic precipitation method
268,269

. All 

polymeric nanomedicines were prepared using a rapid precipitation method
268,269

. 

Briefly, paclitaxel and one of the five amphiphilic diblock copolymers were molecularly 

dissolved in THF. Then, the THF solution was rapidly mixed with Milli-Q water 

(resistivity ≥18MΩ cm) with a tangential vortex mixer. The flow rates of THF and water 

streams were 5 ml min
-1

 and 50 ml min
-1

, respectively. The resultant nanoparticle 

solutions were dialyzed overnight to remove THF. For all five polymeric nanomedicine, 

copolymer and paclitaxel concentration in THF was 0.1 wt% and 0.005 wt%, 

respectively (Table 6.1). All formulations also included a trace amount of Nile-red 

(0.001%) to enable the spectrofluorometric characterization. Nile-red, which is a 

hydrophobic agent, is imbibed into the core of the nanoparticle where its presence does 

not, therefore, affect the surface chemistry of the nanomedicine. The size distributions 

and zeta potential values of the PNDDS from different copolymers were measured using 
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dynamic light scattering (DLS, Zetasizer Nano ZS90, Malvern, Westborough, 

Massachusetts) to ensure same size of nanomedicine as in Table 6.1. The count rate from 

DLS measurement was used to determine the concentration of PNDDS using a pre-

generated calibration curve. TEM micrographs of the resultant nanomedicine are shown 

in Figure 6.2. 

 

Table 6.1 Five different copolymers used for producing nanomedicine 

loaded with paclitaxel. The concentration is in weight % (weight 

reagent/weight THF).  

Size and zeta potential measurements of each nanoparticle were averaged with 6 

repeats ± 1 SD. 

 

Copolymer 

names 

Copolymer 

concentration 

Paclitaxel 

concentration 

Particle size 

(diameter, nm) 

Zeta 

potential 

in milli-Q 

H2O 

PCL-b-PEI 0.1% 0.005% 173.9±3.7 43.3±3.1 

PS-b-PAA 0.1% 0.005% 181.8±1.8 -46.1±4.3 

PCL-b-PEO 0.1% 0.005% 182.2±7.3 -27.7±6.4 

PLA-b-PNVP 0.1% 0.005% 185.5±3.8 -32.0±5.4 

Pluronic F127 0.1% 0.005% 180.9±4.5 -26.8±4.2 

 



 

94 

 

 

Figure 6.2 TEM micrographs of five different types of nanomedicine 

produced. 
 

6.2.3   Quartz crystal microbalance with dissipation (QCM-D) 

          The adsorption dynamics of PNDDS onto the silica surface were studied using a 

QCM-D (E1, Q-sense, Biolin Scientific, Linthicum Heights, MD) and silica-coated 

sensors (QSX 303, Q-sense, Biolin Scientific). QCM experiments were conducted as 

described elsewhere
59,60

. In this study, for all types of PNDDS, the concentration was 

kept constant at 0.007 wt%, corresponding to an effective drug concentration of 3.5 ppm 

(~3.5 mg/L) in suspension and the flow velocity was 2.410
-3

 µm/s. The adsorption 

behavior was investigated as a function of ionic strength (i.e. with NaCl at ionic 

strengths of ~0 mM, 10 mM, and 100 mM), salt type (i.e. NaCl, Na2SO4, CaCl2, and 

CaSO4 at an ionic strength of 10 mM) and humic acid concentration (5 mg/L, 15 mg/L, 
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and 30 mg/L) for all PNDDS types. QCM experiments for each PNDDS surface 

chemistry were repeated at least four to five times to achieve statistical reliability. 

 

6.2.4   Selection of ionic strengths and salts types   

          Our selection criterion is based on the data available on the ionic strength and salt 

types of various forms of waterbodies: The groundwater beneath Chihuahuan desert in 

Texas contains 190 mM Na
+
, 23.5 mM Ca

2+
,48 mM Cl

-
, 132 mM SO4

2-
 in the 

unsaturated zones at a depth of 23.7 m
270

. For this groundwater, these four ions that we 

selected are the most abundant ones among all other ions. The western Murray Basin in 

Australia contains 170 mM Na
+
, 75 mM Ca

2+
, 287 mM Cl

-
, 39 mM SO4

2-
 in fresh 

groundwaters; 1964 mM Na
+
, 157 mM Ca

2+
, 2560 mM Cl

-
, 654 mM SO4

2-
 in brackish 

groundwaters
271

. In this case, these four ions are some of the most abundant ones among 

all other ions (Mg
2+

 concentrations are higher than Ca
2+

 concentrations). Aquifers near 

Sutherland in the Western Karoo, South Africa have 160 mM Na
+
, 107 mM Ca

2+
, 269 

mM Cl
-
, 148 mM SO4

2-
. For this groundwater, Na

+
 and Ca

2+
 are the most common 

cations while Cl
-
 and SO4

2-
 are two of the most common anions (HCO3

-
 is the most 

abundant)
272

. Carbonate-rock aquifer at the Leetown Science Center of West Virginia, 

USA contains 1 mM Na
+
, 0.5 mM Ca

2+
, 0.37 mM Cl

-
, 0.18 mM SO4

2-
. From this 

groundwater source, 70% of the cations are from Ca
2+

and Na
+
. Cl

-
 and SO4

2-
 are two 

common anion ions (HCO3
-
 is the most abundant)

273
. The  groundwater from meadow 

complex in the Toquima Mountains of central Nevada, USA contains Na
+
(19.5ppm, 0.8 

mM), Ca
2+

(113.6ppm, 2.8mM), Cl
-
,(19.2ppm, 0.5 mM), SO4

2-
(37.2ppm, 0.4 mM). From 
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the springs and wells, these four ions are the most abundant ones among all other ions 

(NO3
-
 concentration is similar to SO4

2-
)
274

. The  groundwater sources in Maryland 

Atlantic Coastal Plain, USA contains averaging Na
+
(56ppm, 2.4 mM), Ca

2+
(5.6ppm, 

0.14mM), Cl
-
,(7ppm, 0.2 mM), SO4

2-
(18.2ppm, 0.2 mM) in Upper Patapsco aquifer

275
. 

These are the four common ions from different wells. Na
+
 is the most abundant cation 

(Ca
2+ 

, Mg
2+

,and K
+
 are at similar concentration). Cl

-
 and SO4

2-
 two of the most common 

anions (HCO3
-
 is the most abundant). The standard seawater contains Na

+
 (0.486 mol/kg, 

~ 486 mM), Ca
2+

 (0.011 mol/kg, ~ 11 mM), Cl
-
 (0.566 mol/kg, 566 mM),  SO4

2-
 (0.029 

mol/kg, 29 mM)
276

. Cl
-
 and SO4

2-
 are the most abundant anions in the seawater while 

Na
+
 and Ca

2+
 are two of the most common 3 cations (Mg

2+
 is slightly more abundant 

than Ca
2+

). 

          Considering the upper and lower limits of concentrations and most abundant types 

of salts of the abovementioned waterbodies, we selected to use NaCl, CaCl2, Na2SO4, 

and CaSO4 as model salts at concentrations of 10 mM and 100 mM. Conveniently, this 

set of salts also allowed us to investigate the effect of anion and cation valency on the 

transport behavior of PNNDS (We selected NaCl, CaCl2, Na2SO4, and CaSO4 , 

corresponding to 1:1, 2:1, 1:2, and 2:2 type electrolytes). 
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6.2.5   PNDDS column transport experiments 

          For all experiments, columns were packed with pure quartz sand. The uniformity 

in size and shape of the sand grains and the variation in pore/channel geometry were 

characterized and confirmed using SEM (Fig. 6.3).  

Polydimethylsiloxane (PDMS) of 5 PV was injected in a wet-packed sand column to fill 

the pores and channels of the column formed during packing. Then, the column was 

cured in oven at 110˚C for two hours to completely immobilize the sand grains in the 

polymer matrix. Then, the consolidated column was fractured into smaller pieces for 

SEM imaging.  

 

 

Figure 6.3 SEM micrographs of quartz sand consolidated with 

polydimethylsiloxane in the sand column. 

The mean grain diameter was found to be 260 μm with a standard deviation of 50 

μm.  The zeta potential of quartz sand was measured using a Zetasizer Nano 

ZS90 in milli-q water, NaCl (ionic strength: 10 and 100 mM), Na2SO4 (ionic 

strength: 10 mM), CaCl2 (ionic strength: 10 mM), CaSO4 (ionic strength: 10 

mM), and humic acid (5, 15, and 30 mg/L) after roller-milling the sand overnight 

to achieve particle sizes leading to Brownian motion (i.e. 500-700 nm).  

 



 

98 

 

          Laboratory sand column transport experiments were conducted as described by 

Elimelech and co-workers
54,277

. The PNDDS transport experiments were performed in 

glass chromatography columns of 0.8 cm inner diameter packed with pure quartz sand. 

To minimize layering and air entrapment, sand columns were wet-packed by letting the 

quartz sand slowly sediment in milli-Q water while gently shaking and vibrating the 

column. The column height was approximately 8.0 cm for all experiments. Gravimetric 

analysis revealed that the porosity of the column was 0.44±0.01, which corresponded to 

a pore volume (PV) of 1.8 mL.   

          After preparing the column, first, 5 PV of milli-Q water was injected into the 

column to eliminate any potential mobile debris using a programmable syringe-pump 

(Nexus-6000, Chemyx Inc., Stafford, TX). Then, depending on the parameter of interest, 

the column was flushed with 5 PV of solution containing either NaCl, Na2SO4, or CaCl2 

at a concentration of 10 mM or humic acid at a concentration of 5 mg/L, 15 mg/L, or 30 

mg/L to provide a uniform surface charge. Then, 3 PV of the various PNDDS 

suspensions with an effective drug concentration of 3.5 ppm (~3.5 mg/L) and a given 

concentration of salt or humic acid were injected.  Finally, the column was rinsed with 2 

PV of the appropriate solution (i.e. either of milli-Q water, NaCl, Na2SO4, CaCl2, CaSO4 

or humic acid). The injection flow rate for all solutions was 0.3 mL/min. Once PNDDS 

began to inject into the sand column, the effluent was collected every 0.2 mL for a total 

volume of 8.8 mL, and subsequently diluted 10-fold with milli-Q water for analysis via 

spectrofluoremetry.  
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6.2.6   Selection of the drug concentration   

          The concentration of pharmaceuticals in the environment strongly depends upon 

how far they are from the contamination source. For common pharmaceuticals, the 

concentrations ranging from 1 ng/L to 100 μg/L in various types of groundwaters have 

previously been reported
278–280

. However, the drug concentrations can be orders of 

magnitude larger than these near their source. For instance, flows from some 

pharmaceutical formulation facilities in New York were reported to contain oxycodone 

up to concentrations of 1.7 mg/L and metaxalone up to concentrations of 3.8 mg/L
281

. A 

review article by Verlicchi et al.
282

 has reported that hospital effluents can contain 

iodized contrast media (ICM) at an average concentration of ~1 mg/L,  analgesics at an 

average concentration of 0.1 mg/L and a maximum concentration of 1 mg/L, antibiotics 

at an average concentration of 11 g/L and a maximum concentration of 0.2 mg/L. 

There is no comparable data available for nanomedicine. In this study, we selected a 

concentration of 3.5 mg/L (~3.5 ppm), which is comparable with the drug concentrations 

in hospital and pharmaceutical manufacturing effluents. In some regions, where there are 

less strict regulations regarding the waste disposal and treatment, the concentration of 

drugs in the environment can be much larger as well: For instance, the effluent of a 

waste treatment plant serving bulk drug manufacturers near Hyderabad, India was 

reported to contain ciproflaxin in the range 28-31 mg/L, losartan in the range of 2.4-2.5 

mg/L, and cetirizine in the range of 1.3-1.4 mg/L
283

. In addition, ciprofloxacin (up to 6.5 

mg/L) and cetirizine (up to 1.2 mg/L) were detected in two lakes in India
284

. The list of 
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some other river systems with high drug concentration is also given in a review article 

by Hughes et al
285

.    

 

6.2.7   Spectrofluorometry 

          To determine the breakthrough concentration of the PNDDS, the core of PNDDS 

was pre-loaded with a trace amount of fluorescent Nile Red. The fluorescence intensity 

of the influent and effluent PNDDS solution was measured using a PTI QuantaMaster 

series spectrofluorometer (Photon Technology International, Inc,. NJ, USA) equipped 

with a PTI LPS-220B lamp, using 1 cm disposable cells. The excitation wavelength was 

549 nm and the corresponding emission spectra were collected from 559 nm to 700nm. 

The concentration measurements were carried out after confirming that there are linear 

relationships between the fluorescence intensity and PNDDS concentration, following 

Beer-Lambert Law. 

 

6.3     Results and discussion 

6.3.1   Characterization of PNDDS and sand surface 

          To properly interpret the adsorption and transport behavior of PNDDS, the size 

and surface potential of PNDDS and surfaces interacting with these PNDDS need to be 

extensively investigated. Figure 6.4 displays the particle size distribution for PNDDS 

with five different surface chemistries. All of the size distributions were unimodal, 

relatively narrow, and peaked around 180±5 nm (in diameter) in milli-q water (Fig. 6.4). 

The -potentials of PNDDS ranged from -46 mV to 43 mV in milli-Q water due to the 
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differences in the hydrophilic components of the diblock copolymers used for preparing 

PNDDS (Table 6.2). As expected, the presence of NaCl, Na2SO4, CaCl2, and CaSO4 

tended to decrease the -potentials for all types of PNDDS. The magnitude of the 

reduction depended on the salt and PNDDS type. For negatively charged PNDDS, 

multivalent Ca
2+

 ions in comparison to monovalent Na
+
 ions led to more pronounced 

reductions. The presence of Ca
2+

 ions even caused aggregation and precipitation of PS-

PAA type PNDDS (Fig. 6.5). The aggregation is presumably due to the formation of 

insoluble calcium complexes on polymer surfaces. In addition, the screening of divalent 

ions are stronger than that of monovalent ions. Hence, Ca
2+

 can cause a bigger reduction 

in electrostatic repulsive stabilization. For positively charged PNDDS, multivalent SO4
2-

 

ions in comparison to monovalent Cl
-
 ions gave rise to bigger reductions.  
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Table 6.2 The mean zeta potential of PNDDS and fine sand grains as a 

function of salt type and ionic strength. 

Zeta potential result of each nanoparticle in different solutions was averaged with 

6 repeats ± 1 SD. 

 

Material 

NaCl 

(0 mM) 

NaCl 

(10 mM) 

NaCl 

(100 mM) 

Na2SO4 

(10 mM) 

CaCl2 

(10 mM) 

CaSO4 

(10 mM) 

ζ (mV) ζ (mV) ζ (mV) ζ (mV) ζ (mV) ζ (mV) 

PS-PAA -46.1±4.3 -46.0±6.9 -26.5±1.4 -44.2±6.6 -13.2±3.6* -14.3±3.0* 

PLA-PNVP -32.0±5.4 -25.4±10.1 -8.9±0.9 -23.0±9.5 -9.3±7.2 -10.8±5.6 

PCL-PEO -27.7±6.4 -4.2±6.6 -1.7±1.1 -3.1±8.0 -1.8±7.3 -3.7±4.6 

Pluronic  -26.8±4.2 -2.6±7.3 -1.7±0.3 -1.7±6.5 -1.9±7.2 -2.9±4.4 

PCL-PEI +43.3±3.7 +38±8.1 +20.5±1.4 +14.6±5.4 +36.1±9.2 +15.8±5.9 

Sand -54.0±2.6 -53.7±2.5 -28.2±2.5 -60.5±2.2 -21.8±3.8 -21.4±3.8 

      * Aggregation and precipitation were observed. 

 

 

Figure 6.4 The intensity-weighted particle size distribution for five PNDDS. 
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Figure 6.5 PS-PAA particle size distribution with time in a solution with 

different types of salt. 

Dashed line: 10mM NaCl, Solid line: CaCl2 solution (solid line) 

 

          For all PNDDS, there was no significant change in the particle size (hydrodynamic 

diameter) with respect to time in milli-q water during the time scales of transport studies. 

Likewise, the presence of salt did not change the size distribution for all PNDDS 

significantly except PS-PAA type PNDDS with CaCl2 and CaSO4. This prolonged 

stability was ascribed to the combination of steric and electrostatic effects due to the 

presence of long polymer chains and relatively large values of zeta potentials.  

          Regarding the characterization of the surfaces with which PNDDS interacted, the 

-potential of the roller-milled sand grains was measured to be -54.0±2.6 mV in milli-Q 

water. The addition of Ca
2+

 ions (10 mM) significantly reduced -potential to about -21 

mV, probably due to the complexation of silanol groups and Ca
2+

 ions. While NaCl at a 

low ionic strength (10 mM) did not alter the -potential significantly, NaCl at a high 

ionic strength (100 mM) reduced the -potential to about -28 mV. Interestingly, the 
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presence of Na2SO4 slightly increased the magnitude of the -potential. Similar trends 

with the sulfate ion were previously observed and attributed to the enhanced silica 

dissolution arising from the donation of electron from the adsorbed SO4
2−

 ions
286

. Prior 

studies have shown that the -potential of silica, which is the material coating the QCM-

D sensors, is in the range of -70 to -90 mV in water
287–290

. These data will later be used 

to calculate the electrostatic interactions between PNDDS and silica/sand surfaces to 

explain the trends in QCM-D and column transport experiments. 

 

6.3.2   Transport of PNDDS in the case of flow over a flat silica surface  

          The two most common flow conditions relevant to the environmental transport are 

flow over an external object (flat or curved) and flow through a porous media. In this 

study, we first focused on the transport of PNDDS suspension traveling on a flat silica 

surface as a function of time (Fig. 6.6). For PS-PAA (46mV), PLA-PNVP 

(32mV), PCL-PEO ( 28mV), and Pluronic (27mV) in milli-Q water; there 

was no statistically significant adsorption observed on the silica surface. For PCL-PEI 

(+43mV), initially, the adsorbed mass of the silica increased with time, indicating the 

rapid adsorption of the PCL-PEI on the silica surface. Later, the adsorbed mass reached 

a plateau, indicating that the silica surface was saturated with PCL-PEI (Fig. 6.7). The 

absence of adsorption for PS-PAA, PLA-PNVP, PCL-PEO, and Pluronic-type 

nanomedicine on silica was ascribed to high activation barriers (>200kT, Fig. 6.11). For 

PCL-PEI, there was no activation barrier:  the adsorption could be described by the mass 

transfer coefficient described by the modified Leveque equation for QCM-D geometry. 
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Representative QCM-D frequency shifts of five PNDDS on the silica surface in different 

solutions are shown in Figure 6.8.  

 

 

Figure 6.6 Steady-state mass adsorption of PNDDS on silica surface for five 

different surface chemistries as a function of salt type and ionic strength. 

For all types of PNDDS, the concentration was kept constant at 0.007 wt%. The 

flow rate was kept constant for all experiments and 2.5 μL/s to ensure a laminar 

flow behavior. The dashed arrows indicate that there is a continuous increase in 

the adsorption mass. For these cases, the adsorption mass was measured at 20 

min. Note: Averaged Steady-state mass adsorption (1 SD) of all nanoparticles 

was repeated 3 times with no salt and 10mM NaCl solutions. 4 times repeats in 

10mM Na2SO4, 10mM CaCl2 and 10mM CaSO4 solutions. 5 times repeats in 

100mM NaCl solution. 
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Figure 6.7 Mass adsorption of PNDDS on silica surface as a function of time 

for five different surface chemistries in Milli-Q water. 

For all types of PNDDS, the concentration was kept constant at 0.007 wt%. The 

flow rate was and kept constant for all experiments and 2.5 μL/s to ensure a 

laminar flow behavior. 
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Figure 6.8 Representative QCM-D frequency shifts of PNDDS on silica 

surface as a function of time for five different surface chemistries in 6 

different solutions. 

a) Milli-Q water, b) 10mM NaCl, c) 100mM NaCl, d) 10mM Na2SO4, e) 10mM 

CaCl2, and f) 10mM CaSO4. For all types of PNDDS, the concentration was kept 

constant at 0.007 wt%. The flow rate was and kept constant for all experiments 

and 2.5 μL/s to ensure a laminar flow behavior. 
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          When NaCl at a low ionic strength (10 mM) was added into the solution, there 

was no change in the adsorption behavior for PS-PAA (46mV), PLA-PNVP 

(25mV), PCL-PEO (4mV), and Pluronic(3mV) (i.e., still no adsorption, 

p<0.05). Here, while the magnitude of the -potential for negatively charged 

nanomedicine decreased, the steric repulsion due to polymeric nature of PNDDS was 

sufficient to prevent particulate adsorption. For PCL-PEI (+38mV), the adsorption 

slightly increased (p<0.05). For this case, while the strong electrostatic attraction was 

probably more pronounced than the steric repulsion, the increased salinity yielded a 

decrease in the Debye length and range of electrostatic repulsion. Hence, a higher areal 

packing of positively charged nanomedicine on the substrate was possible.  

          When NaCl at a high ionic strength (100 mM) was introduced into the solution; 

PS-PAA, PCL-PEO, and Pluronic type nanomedicine were still non-adsorbent 

presumably since steric repulsion was enough to keep nanomedicine away from silica 

surface. For NaSO4 (ionic strength of 10 mM), very similar trends were observed for 

these three types of nanomedicine. For PLA-PNVP type nanomedicine, the presence of 

SO4
2-

 ions and high concentrations of Cl
-
 ions caused drastic changes in the adsorption 

behavior. This is most likely because even though PNVP in aqueous solution was found 

to carry a net negative charge, the existence of a partially positive charge on a nitrogen 

has previously been noted due to the tautomer formation
291,292

. It was shown that such 

nitrogen groups of PNVP strongly interact with SO4
2-

 ions and many other anions, and 

may form zwitterionic complexes
292

. Hence, we believe the discrepancy between the 

adsorption behavior of PLA-PNVP and PS-PAA, PCL-PEO, and Pluronic type 
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nanomedicine can be explained by this phenomena. For PCL-PEI, the addition of NaCl 

at high ionic strength (21mV) or Na2SO4 (mV) increased the adsorbed mass 

due to a higher areal packing as discussed above. 

          For CaCl2 and CaSO4 solutions, all types of PNDDS gave rise to non-equilibrium 

adsorption behavior (i.e. continuously increasing the adsorption mass with increasing 

time) as indicated by dashed arrows in Figure 6.6. These findings can be explained as 

follows: First, calcium salts often have a low water solubility
293

 and can form complexes 

with silica and silicates
294

, which is consistent with the observed significant reductions in 

the -potentials of silica surfaces (from -54 mV to -21 mV). Second, for a similar reason, 

calcium ions can also complex with the negatively charged PNNDS surface, causing a 

decrease in the surface charge and even aggregation for PS-PAA (Table 6.2). To support 

this explanation, TEM imaging of PCL-PEO type nanomedicine in the presence of Ca
2+

 

was carried out (Fig. 6.9). In comparison to the bare PCL-PEO (Fig. 6.2), there were 

noticeable dark (high contrast) regions indicating the presence of calcium atoms there. 

          Third, as the -potential of nanomedicine gets close to zero, the formation of 

multilayers and higher areal packing densities are more likely to occur due to the 

decreased electrostatic repulsion. 
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Figure 6.9 TEM micrographs of PCL-PEO in the presence of Ca
2+

 ions. 

 

6.3.3   Theoretical considerations 

          To explain adsorption trends in QCM-D studies, we have relied on the potential 

energy profiles of adsorption for PNDDS. The interaction energy, E, between a charged 

nanoparticle and a charged substrate across an aqueous electrolyte solution is assumed to 

have two main contributions as described by Derjaguin and Landau, Verwey and 

Overbeek (DLVO) theory
295

. The first contribution is the attractive van der Waals 

interaction arising from dispersive interactions where the non-retarded van der Waals 

interaction energy between a spherical particle and a semi-infinite plate can be expressed 

as: 

    ( )   
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]                                                                            [6.1] 

where A is the Hamaker constant (Table 6.3), and R is the radius of particle. The second 

contribution is the electric double-layer interaction, which can be repulsive or attractive 

for a PNDDS/silica system. The double layer interaction energy between spherical 

particle and flat surfaces is given as follows
138

: 



 

111 

 

   ( )        (
  

 
)
 
     (

   

   
)     (

   

   
)                                                                    [6.2] 

where ε is the dielectric constant of the medium; ε0 is the permittivity of free space; e is 

the electron charge; k is Boltzmann constant; T is temperature; ψ1 and ψ 2 are the surface 

potential of the PNDDS and silica surface, respectively; and κ
-1

 is the Debye length. 

          Because van der Waals interactions dominate over double-layer interactions at 

short distances, it is appropriate to introduce a short ranged repulsive term to avoid 

physically unrealistic situations where the particle approaches the substrate indefinitely. 

In this context, the Born repulsion, which is a short-range molecular interaction resulting 

from the overlap of electron orbitals, was considered. The Born repulsion between a 

spherical particle and a plate can be estimated by assuming that these molecular 

interactions are linearly superimposed
138

: 
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where σ is the collision diameter (typically 0.3-0.5 nm). Summing the contribution from 

each effect leads to the total interaction energy between a particle and a plate: 

                                                                                                                        [6.4] 

          Figure 6.10 displays the potential energy profiles of adsorption for all five PNDDS 

used in this study. A further analysis revealed that the activation energy was very large, 

and 455kT, 320kT, 285kT, and 200kT for PS-PAA, PLA-PNVP, PCL-PEO, and 

Pluronic; respectively. The corresponding rate constants of adsorption can be estimated 

using Kramers’ rate theory
138,140

: 
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where E(x) is the interaction potential between PNDDS and silica surface, Ea is the 

activation energy, x* is the distance at which the potential energy has a maximum, D(x*) 

is the diffusivity of PNDDS at the distance leading to the maximum in the potential 

energy profile. For all PNNDS, these large activations energies lead to infinitesimally 

small adsorption rates due to the exponential dependence. Hence, the absence of 

adsorption for PS-PAA, PLA-PNVP, PCL-PEO, and Pluronic on silica was ascribed to 

such high activation barriers. 

 

Table 6.3 Hamaker constant of building blocks estimated from the Lifshitz 

theory. 

The dielectric constant and refractive index of silica was taken to be 3.9 and 1.46, 

respectively. Black text indicates hydrophilic PNDDS shell while red text 

indicates hydrophobic core.  

 

 

 

 Dielectric 

constant 

Refractive 

index 

Hamaker 

constant (J) 

PEO 12.7 1.46 0.6E-20 

PEI 3.4 1.67 1.4E-20 

Pluoronic 12 1.47 0.7E-20 

PAA 3.3 1.44 0.6E-20 

PNVP 2.3 1.53 0.9E-20 

PCL 3.2 1.48 0.8E-20 

PLA 3.4 1.48 0.8E-20 

PS 2.6 1.59 1.1E-20 
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Figure 6.10 The interaction potential between a silica surface and polymeric 

nanomedicine in milli-Q water as a function of distance. 

The following parameters were used to construct the graphs: silica surface 

potential of – 70 mV, cut-off distance of 0.3 nm, a Debye length of 65 nm 

(obtained by measuring the conductivity of aqueous solution in the column), and 

Hamaker constant of 110
-20

 J (obtained from the Lifshitz theory). 

        

          For PCL-PEI (+43mV), there was no activation barrier, suggesting that the 

adsorption of PCL-PEI from the bulk to the interface is a transport-limited adsorption. In 

this case, for the QCM-D geometry, the adsorbate mass can be described by a modified 

Leveque solution
60

: 

  

  
   
⁄       

                                                                                                              [6.6] 

where CNP is the concentration of nanoparticles in bulk; Q is the total volumetric flow 

rate;  , is a geometrical constant and equal to 4.44×10
3
 m

-4/3
 for the QCM-D chamber. 

This model assumes that at times long relative to the time required for the initial 

nanoparticle front to displace the pure water, a steady-state concentration boundary layer 

is established in the nanoparticle dispersion adjacent to the adsorbing surface. By fitting 
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the adsorbate mass versus time plot with Eqn. 6.6, we estimated the diffusivity of PCL-

PEI nanomedicine to be 2.78±0.04 m
2
/s. Similarly, the diffusivity was also calculated 

using the particle size and the Stokes-Einstein equation, and found to be 2.84±0.22 

m
2
/s. Overall, these two diffusivity values are very close, indicating that the modified 

Leveque equation describe the adsorption dynamics of PCL-PEI nanomedicine on silica 

surfaces sufficiently well. 

          In essence, since all PNDDS contain mostly organic copolymer and organic 

therapeutic agent, their Hamaker constants are similar, and in the order of ~110
-20

 J for 

PNDDS-water-silica system using Lifshitz mean field theory
295

. In addition, because 

they also have very similar sizes, the van der Waals energy is similar for all PNDDS. 

Therefore, the differences in the double-layer interactions are responsible for the 

differences in the adsorption behavior. 

          The absence of adsorption for PS-PAA, PLA-PNVP, PCL-PEO, and Pluronic-type 

nanomedicine on silica was ascribed to high activation barriers (>200kT, Fig. 6.10). For 

PCL-PEI, there was no activation barrier:  the adsorption could be described by the mass 

transfer coefficient described by the modified Leveque equation for QCM-D geometry 

60
.  
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6.3.4   Transport of PNDDS in the case of flow through a porous media 

          For a flow through a porous media; the interplay among the particle size, Debye 

length, and characteristic length scales of pores and channels can lead to multiple 

scenarios differing from the particulate transport for the case of flow over an external 

object aside from hydrodynamical differences. For instance, size and charge exclusion 

effects have previously been observed 
296–298

. Hence, it is essential to investigate the 

transport behavior of PNDDS in a porous media to better understand their environmental 

distribution and fate. In milli-Q water, PNDDS breakthrough curves displayed three 

different trends (Fig. 6.11a): PS-PAA (46mV), PLA-PNVP (32mV), and 

Pluronic (27mV) showed high mobility in the saturated columns packed with quartz 

sand (with no statistically significant difference among each other at a p<0.05 level). On 

the other hand, PCL-PEI (+43mV) displayed no mobility and PCL-PEO (28mV) 

demonstrated limited mobility. Considering the sign of the-potentials of nanomedicine 

and substrate, which is negative for PS-PAA, PLA-PNVP, Pluronic, and sand substrate 

and positive for PCL-PEI; these trends seem to be reasonable. 
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Figure 6.11 Breathrough curves of 5 PNDDS in sand column as a function of 

salt type and ionic strength. 

(a) Breakthrough curves for five different types of PNDDS in milli-Q water-

saturated columns packed with pure quartz sand, and (b) total recovery fractions 

as a function of ionic strength and salt type. Note: Averaged mass removal 

fraction (1 SD) of all nanoparticles with sand column experiments was repeated 3 

times in 100mM NaCl, 10mM CaCl2 and 10mM CaSO4 solutions; 4 times 

repeats in no salt, 10mM NaCl and 10mM Na2SO4solutions.  
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          The mobility of PCL-PEO type nanomedicine was much lower than that of PLA-

PNVP and Pluronic ones while these three nanomedicine have similar -potentials and 

sizes. This unusual behavior is attributed to the disintegration and degradation of PCL-

PEO on the sand surface upon adsorption under high shear and in a confinement 

environment. In figure 6.11, AFM phase images of sand surfaces after breakthrough 

studies with PLA-PNVP, PCL-PEO, and PCL-PEI. For the case of bare sand, there was 

no detectable adsorbates on sand. For the case of PLA-PNVP, the presence of intact 

PLA-PNVP was detected, consistent with high glass transition temperature core. There 

was substantial rupture and disintegration of PCL-PEO and PCL-PEI observed after 

breakthrough studies in sand columns. The mechanical integrity of nanomedicine is 

related to the glass transition temperature of the core material
299

. PCL has a glass 

transition of Tg, 60 C
300

, while PS and PLA has a glass transition temperature of 

6070 C and 4050 C, respectively
301,302

. Hence, at room temperature, PNDDS with 

PCL core is more vulnerable to the disintegration and rupture upon mechanical 

disturbances. We note that PCL-PEI, which has no mobility across sand columns, also 

tends to strongly deform and rupture on sand surfaces (Fig. 6.12), further supporting the 

abovementioned concepts. 
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Figure 6.12 AFM micrographs of bare sand and sand after being exposed to 

PLA-PNVP, PCL-PEO, and PCL-PEI dispersions.            

           

          While studies involving nanomedicine in ultrapure water are useful for providing a 

mechanistic understanding of transport behavior, it is well-established that the 

environmental water bodies includes various types and concentrations of salts
303

. Hence, 

we have also investigated the influences of ionic strength and salt type on the PNDDS 

transport across sand columns (Fig. 6.11b). First, one can immediately notice the 

significant reductions in the PNDDS mobility in the presence of CaCl2 and CaSO4 

solutions, in agreement with the increased adsorption of PNDDS onto flat silica surfaces 

with these salts. Second, PCL-PEI type nanomedicine showed no mobility under all 

conditions, consistent with its strong adsorption to the oppositely charged sand surfaces. 

Third, there was no change in the mobility of PS-PAA type nanomedicine with 

increasing the ionic strength (p<0.05). This is no surprise considering no major change 

in -potentials and the lack of adsorption observed in QCM-D studies under these 

conditions. On the other hand, the mobility of PLA-PNVP and Pluronic-type 

nanomedicine mostly decreased with increasing the ionic strength. The reduced -

potentials may account for this trend (Table 6.2): It is well-documented that if the 
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electrostatic forces between ions and particles and porous media are repulsive, then the 

ions and particles can be excluded from locations near solid surfaces due to charge 

exclusion
297,298

. With charge exclusion, only a fraction of the pore space will be 

accessible to mobile ions and particles, thereby accelerating the transport of particles
297

. 

Hence, the decreased mobility of PLA-PNVP and Pluronic-type nanomedicine in the 

presence of electrolytes can be explained with the reduction in -potentials and Debye 

length, and hence, charge exclusion. Enhanced PLA-PNVP and Pluronic-type 

nanomedicine retention may also be due to surface charge heterogeneity and roughness 

leading to locally reduced or eliminated energy barriers
304,305

. If -potential of particles 

is small (as with PLA-PNVP and Pluronic-type nanomedicine under saline conditions), 

such heterogeneity and roughness may have a possibility to lead deposition. On the other 

hand, if -potential is large (as with PS-PAA type nanomedicine), heterogeneity and 

roughness effect may not be enough to yield deposition. 

 

6.3.5   Effect of humic acid on PNDDS transport 

          Natural organic matter in the environment, such as humic acid, can adsorb on 

nanoparticles, thereby causing changes in their surface chemistry and modulating their 

interactions through screening and/or depletion effects
306

. Humic acid gains a negative 

charge in aqueous media due to the dissociation of carboxylic acid groups
307

. Hence, we 

have studied the influence of humic acid on the PCL-PEI (positively charged) transport 

behavior. First, we focused on the transport behavior over a flat surface via QCM-D 

studies (Fig. 6.13). Control experiments with humic acid suspension revealed that there 
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was no detectable adsorption of humic acid on silica surfaces. When a small amount of 

humic acids (5 mg/L) was introduced into a PCL-PEI suspension, the total adsorbed 

mass on silica surfaces increased about 3-fold, which is most likely due to the larger 

areal packing that is stemming from the reduction in the interparticulate electrostatic 

repulsions on the plane of substrate. Also, the attachment of humic acid can increase the 

effective mass of PCL-PEI nanoparticles, thereby increasing the total adsorbed mass. 

When a larger amount of humic acid (15 mg/L) was present in the suspension, humic 

acid started to coat PCL-PEI type nanomedicine (TEM inset, Fig. 6.13) and hence, 

decreased the overall zeta-potential of PCL-PEI.  

 

 

Figure 6.13 Total adsorption of PCL-PEI on silica surface as a function of 

amount of humic acid measured by QCM-D. 

Inset TEM micrographs demonstrate the attachment of humic acid on PCL-PEI 

above certain concentrations. Note: At each humic acid concentration, steady-

state mass adsorption of PCL-PEI PNDDS was repeated 4 times ± 1 SD. Zeta 

potential values were averaged with 6 repeats. 
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          These changes corresponded to a much larger adsorption on silica surfaces. When 

there is excess amount of humic acid (30 mg/L) present with PCL-PEI suspension, the 

sign of the zeta-potential changed from positive to negative, suggesting an extensive 

coverage of humic acid on PCL-PEI surfaces. In this case, the adsorbed mass was lower 

than that without any humic acid. Although the mean zeta-potential value was negative, 

there was still adsorption on negatively charged silica surfaces. The existence of a broad 

distribution of zeta-potential, reaching to positive zeta potential values around the tail of 

distribution, can account for this trend (Fig. 6.14).  

 

 

Figure 6.14 Zeta-potential distribution of PCL-PEI as a function of amount 

of humic acid. 

           

          Regarding the influence of humic acid in sand column experiments, there was no 

measurable breakthrough for PCL-PEI type nanomedicine. In other words, the presence 

of humic acid did not facilitate the transport of positively charged nanomedicine in 

porous media containing negatively charged packing materials.  
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6.4     Conclusion 

          In summary, this laboratory study showed that nanomedicine with positive surface 

charge displayed strong adsorption towards silica surfaces and no mobility in porous 

media composed of quartz sand even in the presence of humic acid. The mobility of 

negatively charged nanomedicine strongly depended on the amount and type of salt 

present in the aqueous media: In the absence of any salt, negatively charged 

nanomedicine demonstrated high levels of mobility in porous media of quartz sand and 

over flat silica surfaces. The presence of CaCl2 and CaSO4, even at low ionic strengths, 

strongly limited the mobility of nanomedicine in sand columns and initiated adsorption 

on flat silica surfaces. Considering the majority of polymeric nanomedicine tend to 

possess a negative surface charge, it may be possible to effectively block environmental 

transport of nanomedicine via salts such as CaCl2 and CaSO4. This study has focused on 

one class of nanomedicine: polymeric nanoparticulate drug delivery systems. 

Considering that production and consumption of nanomedicine increases day by day, 

there is an increasing need to conduct more studies focusing on the environmental 

transport behavior of other types nanomedicine to obtain a holistic understanding of their 

fate and distribution in the environment. We also noted that the nanoparticles can display 

different colloidal stability and aggregation behavior in porous media and under 

nanoconfinement. 
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6.5     Appendix 

6.5.1   Relative importance of steric and electrostatic contribution in colloidal stability  

          According to extended-DLVO theory, the steric stabilization effect including 

osmotic and elastic contributions need to be taken into account due to the presence of 

polymer chains of PNDDS
308

. The osmotic effect will appear when two particles are 

closer than a distance equal to 2 twice of the effective average thickness of polymeric 

shell, , of PNDDS
309

. However, if the two particles are closer than a distancesome of 

the polymer molecules will experience elastic compression, leading to a net loss in 

configurational entropy. In terms of steric stabilization, we expect that all PNDDS 

studied here would have orders of magnitude steric repulsions because these have 

similarly hydrophilic surface characteristics (contact angle is less than 30 for all 

polymeric shell materials) and similar molecular weights in their shell (hydrophilic) 

polymers. Overall, while the steric contribution exists for all PNDDS, the differences in 

their colloidal stability should be due the differences in their electostatic contributions.  

 

6.5.2   Statistical analysis of QCM and sand column transport data 

          One-way analysis of variance (ANOVA) with Tukey's post hoc test were used to 

determine significant differences between QCM adsorption and sand column mobility 

data with respect to the salt type/concentration and with respect to polymer type. All 

analyses were performed by using Microsoft Office Excel® (Microsoft Corp., Redmond, 

WA, USA) statistical software packages. 
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Table 6.4 The effect of salt type and ionic strength on the QCM adsorption 

behavior for each PNDDS.  

Different letters in each column indicate statistically significant difference 

(p<0.05). 

 

 PS-PAA PLA-PNVP PCL-PEO Pluronic PCL-PEI 

No salt B E B B D 

NaCl 10 mM B E B B C 

NaCl 100 mM B C B B A 

Na2SO4 10mM B D B B B 

CaCl2 10mM A A A A E 

CaSO4 10mM A B A A A 

 

 

Table 6.5 The effect of PNDDS surface chemistry on the QCM adsorption 

behavior for each salinity condition.   

Different letters in each row indicate statistically significant difference (p<0.05). 

 

 PS-PAA PLA-PNVP PCL-PEO Pluronic PCL-PEI 

No salt B B B B A 

NaCl 10 mM B B B B A 

NaCl 100 mM C B C C A 

Na2SO4 10 mM C B C C A 

CaCl2 10 mM D A C D B 

CaSO4 10mM D B C D A 
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Table 6.6 The effect of salt type and ionic strength on the sand column 

transport behavior for each PNDDS. 

Different letters in each column indicate statistically significant difference 

(p<0.05). 

 

 PS-PAA PLA-PNVP PCL-PEO Pluronic PCL-PEI 

No salt AB A A A A 

NaCl 10 mM A B B B AB 

NaCl 100 mM A C B BC AB 

Na2SO4 10mM B CD C C AB 

CaCl2 10mM C D C D AB 

CaSO4 10mM C D C D B 

 

 

Table 6.7 The effect of PNDDS surface chemistry on the sand column 

transport behavior for each salinity condition. 

Different letters in each row indicate statistically significant difference (p<0.05). 

 

 PS-PAA PLA-PNVP PCL-PEO Pluronic PCL-PEI 

No salt A A B A C 

NaCl 10 mM A B C B D 

NaCl 100 mM A C C B D 

Na2SO4 10 mM A BC C B C 

CaCl2 10 mM A AB AB AB B 

CaSO4 10mM A AB AB AB B 
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CHAPTER VII  

SUMMARY  

 

          In this dissertation, dynamics of asphalt recovery by surfactant flooding, a new 

amphiphilic material with supramolecular assembling structures for chemical EOR and 

the transport behaviors of polymeric nanomedicines in the porous media were presented 

in three chapters. In chapter IV, we investigated desorption dynamics of asphalts 

happened at liquid-liquid-solid interfaces. Removal of asphalts from silica surfaces using 

a commercial nonionic surfactant floods as a function of surfactant concentrations and 

exposure time was studied at nanoscale using characterization techniques including 

quartz crystal microbalance with dissipation (QCM-D), atomic force microscopy (AFM), 

ellipsometry, and dynamic light scattering (DLS). It was found that the asphalt recovery 

was inefficient below the CMC of the surfactant solution, recovery efficiency increased 

with increasing surfactant concentration until the surfactant concentration of 2-3CMC, 

then reached a plateau. The removal dynamics could be well described by a two-term 

exponential decay model with one fast desorption process forming large microemulsions 

and one slow desorption process forming small micelles. To obtain a more general 

model of surfactant flooding to apply in heavy oil recovery, future work could be done 

on changing different parameters like the rock surfaces to CaCO3, the heavy oil sources, 

and injecting solution chemistries.  

          In chapter V, the proof of concept for the use of adaptable amphiphile solutions in 

chemical EOR as oil displacement fluids through sand column experiments at various 
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reservoir conditions. One commercial PAM polymer was chosen as the competitor 

among all conditions like pH, salinities, and temperatures in rheology measurements and 

sand column experiments.  pH-adaptable amphiphiles, unlike the PAM polymer, will be 

able to maintain the viscous property even after high shear rates. The reversible 

supramolecular structures in the fluid will remain after flowing through small pores.  For 

future work, different rock surfaces like carbonate need to be tested, since this is the 

reservoir type that can apply first in economical aspect. With similar concept in 

synthesis, temperature adaptable amphiphiles can be synthesized for investigation. The 

other direction is to apply this high viscous material in conformance control instead of 

flooding. This can be compared with the candidate hydrolyzed PAM polymer. 

Moreover, due to the adaptable viscosity, this material can be applied to shale reservoirs. 

Low viscosity above ground will be able to save costs of pumping injecting fluid, and 

higher viscosity underground will be able to carry sands to the desired positions with 

less settling amount during transportation.        

          In chapter VII, the laboratory study showed the transport of different surface 

chemistries of PNDDS towards silica surfaces and saturated porous media of quartz 

sands at various solution conditions. Their transport behaviors were characterized via 

QCM-D, sand column, spectrofluorometry, and DLS techniques. For PNDDS having 

positive zeta-potential displayed strong adsorption onto silica surfaces and no mobility in 

porous media of quartz sands, even in the presence of humic acid. The mobility of 

negatively charged nanomedicine strongly depended on the amount and types of salt in 

the aqueous media: In the absence of any salt, negatively charged PNDDS demonstrated 
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high mobility in porous media of quartz sand and over flat silica surfaces. With the 

bridging effect of Ca
2+

, PNDDS tended to adsorb to the silica surfaces and decreased the 

mobility. In the future, besides the different environmental related media we can try such 

as soils, we shall also focus on the nanoconfinement effect of PNDDS when flowing 

through porous structures. The other issue is due to the soft layer of polymers, drugs in 

the hydrophobic core may release when passing through small pore regions. More 

researches can be done to make this PNDDS transportation model complete. 
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