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ABSTRACT

The standard multigroup (MG) method for energy discretization of the transport

equation can be sensitive to approximations in the weighting spectrum chosen for

cross-section averaging. As a result, MG often inaccurately treats important phe-

nomena such as self-shielding variations across a fuel pin. From a finite-element

viewpoint, MG uses a single fixed basis function (the pre-selected spectrum) within

each group, with no mechanism to adapt to local solution behavior. In this work,

we introduce the Finite-Element-with-Discontiguous-Support (FEDS) method, an

extension of the previously introduced Petrov-Galerkin Finite-Element Multigroup

(PG-FEMG) method, itself a generalization of the MG method. Like PG-FEMG,

in FEDS, the only approximation is that the angular flux is a linear combination

of basis functions. The coefficients in this combination are the unknowns. A basis

function is non-zero only in the discontiguous set of energy intervals associated with

its energy element. Discontiguous energy elements are generalizations of bands in-

troduced in PG-FEMG and are determined by minimizing a norm of the difference

between sample spectra and our finite-element space. We present the theory of the

FEDS method, including the definition of the discontiguous energy mesh, definition

of the finite element space, derivation of the FEDS transport equation and cross

sections, definition of the minimization problem, and derivation of a useable form of

the minimization problem that can be solved to determine the energy mesh. FEDS

generates cross sections that ordinary MG codes can use without modification, pro-

vided those codes can handle upscattering, allowing FEDS answers from existing

MG codes.

FEDS requires that the energy domain is divided into elements, each in general a
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collection of discontiguous energy intervals. FEDS solves a minimization problem to

find the optimal grouping, in a certain sense, of hyperfine intervals into its elements.

It generates accurate, convergent discretizations without need for accurate reference

solutions. We show convergence in energy as energy elements are added for several

types of problems, beginning with cylindrical pincell problems. Convergence is ob-

tained for a variety of basis functions ranging from simple (1/E) to more complicated

(space-angle-averaged reference spectra), demonstrating robustness of the method.

We investigate four sets of problems. We first investigate the same pincell prob-

lems used when testing the PG-FEMG method. We use lessons learned from these

pincell calculations to inform our implementation of the FEDS method on an energy-

generalized version of the C5 problem, which we call the C5G∞ problem. We then ap-

ply FEDS to time-dependent neutronics problems, where correctly capturing stream-

ing times in a time-of-flight problem becomes important. Finally, we compare the

FEDS method to continuous-energy Monte Carlo one-dimensional slab pincell prob-

lem. We find FEDS to be superior in efficiency and accuracy to MG with the same

weighting functions and number of energy unknowns. Whereas MG requires un-

known counts commensurate with the number of resonances to be convergent, we

find FEDS converges in energy even at low numbers of energy unknowns.
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DEDICATION

“ ‘Who is this that darkens counsel by words without knowl-

edge? I will ask you, and you instruct Me!

Where were you when I laid the foundations of the earth?

Tell Me, if you have understanding. Who determined its

measurements? Since you know.

Where is the way to the dwelling of light? And darkness,

where is its place, that you may take it to its territory, that

you may know the paths to its home? By what way is light

diffused? Do you know it, for you were born then, and the

number of your days is great!’ ”

(Job 38:2-5,19-21,24 NASB and NKJV)

“[Even if I] understand all mysteries, and all knowledge, I

am nothing. Whether there be knowledge, it shall vanish

away. For we know in part, and we prophesy in part. But

when that which is perfect is come, then that which is in

part shall be done away. For now we see through a glass,

darkly; but then face to face: now I know in part; but then

shall I know even as also I am known.”

(1 Corinthians 13:2,8-10,12 KJV)

This dissertation is dedicated to my parents, Thomas and Kimberly Till, who

have always encouraged my natural curiosity and who have unceasingly supported

me in my academic endeavors, even when such endeavors led me far afield.
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NOMENCLATURE

FEDS Finite Element with Discontiguous Support

MG Multigroup

αMG Adaptive Multigroup

sMG Standard Multigroup

DOF Degree of Freedom

QOI Quantity of Interest

RRR Resolved Resonance Region

URR Unresolved Resonance Region

SCDT Serial Cylindrical Deterministic Transport Code

PDT Parallel Deterministic Transport Code

NJOY Cross-Section Generation Code

MCNP Monte Carlo N-Particle Transport Code

C5 Configuration 5 Reactor Benchmark

C5G∞ Configuration 5 Energy Resolution Problem

TOF Time-of-Flight

PG-FEMG Petrov-Galerkin Finite-Element Multigroup

MB Multiband

ODF Opacity Distribution Function

PT Probability Table

SG Subgroup

FE(M) Finite Element (Method)

PWLD Piecewise-Linear Discontinuous

GEM Generalized Energy Mesh
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IR Intermediate Resonance (Approximation)

NR Narrow Resonance (Approximation)

CP Collision Probability

MC Monte Carlo

MOC Method of Characteristics

Sn Discrete Ordinates

CE Continuous-Energy

FSP Fixed-Source Problem

HFG Hyper-Fine Group

RI Resonance Integral

XS Cross Section

CED Continuous Energy Domain

DED Discontinuous Energy Domain

BP Band-Preserving

MP Moment-Preserving

BBC Band-Boundary Calculation

CDF Cumulative Density Function

PDF Probability Density Function

RR Reaction Rate

LWR Light-Water Reactor

PWR Pressurized Water Reactor

RT Radiative Transfer (or Radiation Transport)

RH Radiation Hydrodynamics

SPH Superhomogénéisation (Factor)

vii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Energy Discretization Methods: Overview . . . . . . . . . . . . . . . 4
1.1.1 The Multigroup (MG) method . . . . . . . . . . . . . . . . . . 6
1.1.2 The Multiband (MB) family of methods . . . . . . . . . . . . 8
1.1.3 The Petrov-Galerkin Finite-Element Multigroup (PG-FEMG)

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.4 The Finite Element with Discontiguous Support (FEDS) method 12

1.2 Energy Discretization Methods: History and Current Status . . . . . 15
1.2.1 Historical MB methods . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Traditional MG implementations . . . . . . . . . . . . . . . . 18
1.2.3 Modern MG-like methods . . . . . . . . . . . . . . . . . . . . 20

2. THE FINITE ELEMENT WITH DISCONTIGUOUS SUPPORT (FEDS)
METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Energy Mesh Determination . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Definition of the discontiguous energy mesh and elements . . . 23
2.2.2 Mapping the minimization problem to a clustering problem . . 27
2.2.3 Clustering algorithms that produce contiguous energy meshes 36
2.2.4 Nested energy meshes with coarse groups and automatic ap-

portioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



2.3 Method Definition and Derivation . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Definition of the finite element space . . . . . . . . . . . . . . 44
2.3.2 Derivation of the FEDS transport equation and cross sections 45

2.4 Generating Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5 Properties of the FEDS Method . . . . . . . . . . . . . . . . . . . . . 57
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3. ONE-DIMENSIONAL PINCELL PROBLEMS . . . . . . . . . . . . . . . 66

3.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4. THE C5G∞ PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5. A MODEL NEUTRON TIME-OF-FLIGHT PROBLEM . . . . . . . . . . 100

5.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 The iron cross section and its impact on the source . . . . . . 106
5.3.2 Detector responses for high DOF count in energy . . . . . . . 107
5.3.3 Detector responses for energy DOF counts in energy . . . . . . 110

5.4 Quantitative Comparisons to a Reference Solution . . . . . . . . . . . 111
5.5 Convergence Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6. COMPARISONS TO CONTINUOUS-ENERGY MONTE CARLO . . . . 132

6.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3.1 Errors for problem C . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.2 Errors for problem A . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.3 Errors for problem D . . . . . . . . . . . . . . . . . . . . . . . 148
6.3.4 Errors for problem B . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.5 Component errors for problem B . . . . . . . . . . . . . . . . 151
6.3.6 Error convergence for problems A and B . . . . . . . . . . . . 154

7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

ix



7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.3 How To Break FEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

APPENDIX A HISTORICAL MULTIBAND METHODS DERIVATIONS . . 178

A.1 Method 1: Different Flux Shielding Moments . . . . . . . . . . . . . . 180
A.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.1.2 Method 1a: Recalculated band probabilities . . . . . . . . . . 189
A.1.3 Method 1b: Evenly-weighted band probabilities . . . . . . . . 190
A.1.4 Method 1c: Intermediate resonance approximation . . . . . . 190
A.1.5 Method 1d: Planck and Rosseland moments . . . . . . . . . . 190

A.2 Method 2: Different Background XS . . . . . . . . . . . . . . . . . . 191
A.3 Method 3: Different XS Moments . . . . . . . . . . . . . . . . . . . . 196
A.4 Explicit Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.4.1 Resolved resonance region . . . . . . . . . . . . . . . . . . . . 209
A.4.2 Unresolved resonance region . . . . . . . . . . . . . . . . . . . 210

A.5 Treatment in CP and MC Codes . . . . . . . . . . . . . . . . . . . . 212
A.6 Adding Unknowns in Deterministic Codes . . . . . . . . . . . . . . . 213

APPENDIX B ADDENDUM TO SECTION 2 . . . . . . . . . . . . . . . . . 219

B.1 Energy Penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
B.2 Detailed Apportioning Algorithm . . . . . . . . . . . . . . . . . . . . 221
B.3 Comparing FEDS to PG-FEMG and MG . . . . . . . . . . . . . . . . 226
B.4 Relevant Problems for FEDS . . . . . . . . . . . . . . . . . . . . . . . 227
B.5 Running FEDS Problems . . . . . . . . . . . . . . . . . . . . . . . . . 229

B.5.1 The workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
B.5.2 Within-subelement basis functions and between-subelement ba-

sis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
B.5.3 The Bondarenko iteration . . . . . . . . . . . . . . . . . . . . 234

B.6 Bondarenko Iterations and NJOY . . . . . . . . . . . . . . . . . . . . 235
B.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
B.6.2 Problem studied . . . . . . . . . . . . . . . . . . . . . . . . . . 241
B.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

B.7 Calculating Total Cross Section on a Union Energy Grid . . . . . . . 256
B.8 Calculating Infinite-Medium Flux Spectra on a Union Energy Grid . 257

APPENDIX C ADDENDUM TO SECTION 3 . . . . . . . . . . . . . . . . . 261

C.1 Differences Between FEDS and PG-FEMG . . . . . . . . . . . . . . . 261
C.2 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

x



APPENDIX D ADDENDUM TO SECTION 4 . . . . . . . . . . . . . . . . . 287

D.1 Wynn-Epsilon Acceleration . . . . . . . . . . . . . . . . . . . . . . . 287
D.2 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

APPENDIX E ADDENDUM TO SECTION 5 . . . . . . . . . . . . . . . . . 290

E.1 Apportioning Distributions . . . . . . . . . . . . . . . . . . . . . . . . 290
E.2 TOF Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
E.3 Testing the Reference Solution . . . . . . . . . . . . . . . . . . . . . . 290
E.4 Testing the Escape Cross Section . . . . . . . . . . . . . . . . . . . . 293

APPENDIX F ADDENDUM TO SECTION 6 . . . . . . . . . . . . . . . . . 309

F.1 Additional Slab Pincell Errors . . . . . . . . . . . . . . . . . . . . . . 309
F.2 SHEM group structures . . . . . . . . . . . . . . . . . . . . . . . . . 309

APPENDIX G TIME-OF-FLIGHT ANALYTIC DERIVATIONS . . . . . . . 325

G.1 Derivation of the Angular Flux at the Right Edge of the Source . . . 325
G.2 Derivation of the Time-Integrated Angular Flux at the Detector Lo-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

APPENDIX H APPLICATIONS OF FEDS TO MONTE CARLO . . . . . . 336

xi



LIST OF FIGURES

FIGURE Page

1.1 Component cross section and scalar flux solution for an infinite lattice
of pincells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Examples of MB and its relationship to cross-section space . . . . . . 9

1.3 Band boundary calculation examples for PG-FEMG . . . . . . . . . . 12

2.1 Example MG and FEDS generalized energy meshes. . . . . . . . . . . 24

2.2 Workflow for the FEDS method, focusing on cross section preparation. 53

2.3 Example definitions of the effective total cross section required by
PG-FEMG when multiple resonant materials are present . . . . . . . 59

2.4 Solution and cross section components for a pincell calculation . . . . 61

2.5 Comparison of energy penalty versus coarse groups for controlling el-
ement size in energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Example union energy mesh and approximate fluxes for the C5 problem 62

2.7 Observations plotted versus energy for multiple resonant materials and
an energy penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8 Observations plotted against other observations . . . . . . . . . . . . 63

2.9 Observations and their L2 fits using the elements . . . . . . . . . . . 64

2.10 Comparisons of projection error to QOI error . . . . . . . . . . . . . 65

3.1 Pincell problem geometry cartoons . . . . . . . . . . . . . . . . . . . 67

3.2 Energy meshes for several energy unknown counts and two problems
for the one-dimensional cylinder pincell study. . . . . . . . . . . . . . 71

3.3 Errors for the k-eigenvalue QOI as a function of energy elements for
problem 3 in the low-energy RRR for each case and all methods . . . 76

xii



3.4 Errors for the k-eigenvalue QOI as a function of energy elements for
problem 5 in the medium-energy RRR for each case and all methods 77

3.5 Errors for all QOI as a function of energy elements for problem 3 in
the low-energy RRR for case 3 for each clustering method. . . . . . . 78

3.6 Errors for all QOI as a function of energy elements for problem 3 in
the low-energy RRR for case 2 for each clustering method. . . . . . . 79

3.7 Errors for all QOI as a function of energy elements for problem 3 in
the low-energy RRR for case 1 for each clustering method. . . . . . . 80

3.8 Errors for all QOI as a function of energy elements for problem 5 in
the medium-energy RRR for case 3 for each clustering method. . . . . 81

3.9 Errors for all QOI as a function of energy elements for problem 5 in
the medium-energy RRR for case 2 for each clustering method. . . . . 82

3.10 Errors for all QOI as a function of energy elements for problem 5 in
the medium-energy RRR for case 1 for each clustering method. . . . . 83

4.1 The NEA/NSC/DOC(2001)4 layout of the C5 problem and pin powers. 87

4.2 The low-resolution mesh used for the C5G∞ problem. . . . . . . . . . 88

4.3 C5G∞ fluxes for selected elements and 27 energy unknowns in the RRR. 90

4.4 Observations and energy meshes for the C5G∞ problem. . . . . . . . 91

4.5 Errors for all QOI as a function of energy element number for the
C5G∞ problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Errors for selected QOI as a function of energy element number for
the C5G∞ problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Criticality eigenvalue error for different energy discretization methods
as a function of energy element number for the C5G∞ problem . . . . 99

5.1 Layout of the neutron time-of-flight model problem . . . . . . . . . . 101

5.2 Group-integrated fission source, total iron cross section, and group-
integrated absorption and transmission as a function of energy for the
TOF problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xiii



5.3 Reference energy-integrated differential detector response plotted against
detector time using 10,000 time bins for different detector distances . 112

5.4 Energy-integrated differential detector response plotted against detec-
tor time using 10,000 time bins at a detector distance of 1 m using
1600 unknowns in energy . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Energy-integrated differential detector response plotted against detec-
tor time using 10,000 time bins at a detector distance of 10 cm with
1600 unknowns in energy . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Energy-integrated differential detector response plotted against detec-
tor time using 50 time bins at a detector distance of 1 m using 1600
unknowns in energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7 Energy-integrated differential detector response plotted against de-
tector time using 10,000 time bins at 1 m using either 100 or 400
unknowns in energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8 Energy-integrated differential detector response plotted against de-
tector time using 10,000 time bins at 10 cm using either 100 or 400
unknowns in energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.9 Energy-integrated differential detector response plotted against detec-
tor time using 10,000 time bins at 10 cm using varying ratios and 100
energy unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.10 Energy element membership as a function of energy penalty . . . . . 119

5.11 Behavior of errors with fixed ratio and increasing total energy DOF
for all errors at several distances and 10,000 time bins. . . . . . . . . 122

5.12 Behavior of errors with fixed total energy DOF and varying ratio for
all errors and 10,000 time bins. . . . . . . . . . . . . . . . . . . . . . 124

5.13 Behavior of errors with fixed total energy DOF and varying ratio for
all errors and 50 time bins. . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1 Flux and reaction rates tallied onto the SHEM-361-group structure
using MCNP for problem A (cf. Table 6.1). . . . . . . . . . . . . . . . 140

6.2 Reaction rates with the SHEM group structures using PDT for prob-
lem B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xiv



6.3 Total absorption errors between MCNP and PDT for different energy
structures for problem A in pcm, normalized to the total absorption
rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Total absorption errors between MCNP and PDT for different energy
structures for problem D in pcm, normalized to the total absorption
rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 Total absorption errors between MCNP and PDT for different energy
structures for problem B in pcm, normalized to the total absorption
rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.6 Total fission errors between MCNP and PDT for different energy
structures for problem B in pcm, normalized to the total fission rate . 153

6.7 Component errors between MCNP and PDT using the 361-group
SHEM structure for problem B in pcm, normalized to the total ab-
sorption or fission rate . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.8 Component errors between MCNP and PDT using the R4,e structure
for problem B in pcm, normalized to the total absorption or fission rate156

6.9 Errors in selected QOI as a function of energy unknowns for different
mesh families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.1 Workflow for the FEDS method, from ENDF data to QOI. . . . . . . 230

B.2 Pointwise cross sections as a function of energy for varying resonance
locations of nuclide g . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

B.3 One-step fluxes and true flux as a function of energy for varying res-
onance locations of nuclide g . . . . . . . . . . . . . . . . . . . . . . . 245

B.4 Two-step, frozen, and true fluxes as a function of energy for varying
resonance locations of nuclide g . . . . . . . . . . . . . . . . . . . . . 246

B.5 Absolute errors in group-averaged cross sections using the one- and
two-step methods as a function of the background cross section used
in the frozen flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

B.6 Relative errors in group-averaged cross sections between the one- and
two-step methods as a function of the background cross section used
in the frozen flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

xv



B.7 Absolute errors in group-averaged cross sections using the one- and
two-step methods as a function of the background cross section used
in the frozen flux for small true escape cross section . . . . . . . . . . 250

B.8 Absolute errors in group-averaged cross sections using the one- and
two-step methods as a function of the background cross section used
in the frozen flux for moderate true escape cross section . . . . . . . . 251

B.9 Pointwise cross sections as a function of energy for varying resonance
locations of nuclide g for large true escape cross section . . . . . . . . 252

B.10 One-step fluxes and true flux as a function of energy for varying res-
onance locations of nuclide g for large true escape cross section . . . . 253

B.11 Two-step, frozen, and true fluxes as a function of energy for varying
resonance locations of nuclide g for large true escape cross section . . 254

B.12 Absolute errors in group-averaged cross sections using the one- and
two-step methods as a function of the background cross section used
in the frozen flux for large true escape cross section . . . . . . . . . . 255

C.1 Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the hierarchical agglomer-
ative clustering method. . . . . . . . . . . . . . . . . . . . . . . . . . 265

C.2 Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the hierarchical agglomer-
ative clustering method (cont.). . . . . . . . . . . . . . . . . . . . . . 266

C.3 Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the k-means clustering method.267

C.4 Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the k-means clustering
method (cont.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

C.5 Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the αMG clustering method.269

C.6 Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the αMG clustering method
(cont.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

C.7 Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the sMG group structure. . 271

xvi



C.8 Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the sMG group structure
(cont.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

C.9 Errors for individual QOI as a function of energy elements for prob-
lem 3 in the medium-energy RRR for all cases and the hierarchical
agglomerative clustering method. . . . . . . . . . . . . . . . . . . . . 273

C.10 Errors for individual QOI as a function of energy elements for prob-
lem 3 in the medium-energy RRR for all cases and the hierarchical
agglomerative clustering method (cont.). . . . . . . . . . . . . . . . . 274

C.11 Errors for all QOI as a function of energy elements for problem 3 in the
medium-energy RRR for each case and the hierarchical agglomerative
clustering method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

C.12 Errors for individual QOI as a function of energy elements for problem
5 in the low-energy RRR for all cases and the hierarchical agglomer-
ative clustering method. . . . . . . . . . . . . . . . . . . . . . . . . . 276

C.13 Errors for individual QOI as a function of energy elements for problem
5 in the low-energy RRR for all cases and the hierarchical agglomer-
ative clustering method (cont.). . . . . . . . . . . . . . . . . . . . . . 277

C.14 Errors for all QOI as a function of energy elements for problem 5 in
the low-energy RRR for each case and the hierarchical agglomerative
clustering method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

C.15 Errors for individual QOI as a function of energy elements for prob-
lem 5 in the medium-energy RRR for all cases and the hierarchical
agglomerative clustering method. . . . . . . . . . . . . . . . . . . . . 279

C.16 Errors for individual QOI as a function of energy elements for prob-
lem 5 in the medium-energy RRR for all cases and the hierarchical
agglomerative clustering method (cont.). . . . . . . . . . . . . . . . . 280

C.17 Errors for individual QOI as a function of energy elements for problem
5 in the medium-energy RRR for all cases and the k-means clustering
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

C.18 Errors for individual QOI as a function of energy elements for problem
5 in the medium-energy RRR for all cases and the k-means clustering
method (cont.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

xvii



C.19 Errors for individual QOI as a function of energy elements for problem
5 in the medium-energy RRR for all cases and the αMG clustering
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

C.20 Errors for individual QOI as a function of energy elements for problem
5 in the medium-energy RRR for all cases and the αMG clustering
method (cont.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

C.21 Errors for individual QOI as a function of energy elements for problem
5 in the medium-energy RRR for all cases and the sMG group structure.285

C.22 Errors for individual QOI as a function of energy elements for prob-
lem 5 in the medium-energy RRR for all cases and the sMG group
structure (cont.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

D.1 Errors for selected QOI as a function of inverse energy element number
for the C5 problem and the MG reference . . . . . . . . . . . . . . . . 288

D.2 Errors for selected QOI as a function of inverse energy element number
for the C5 problem with the FEDS reference . . . . . . . . . . . . . . 289

E.1 Number of energy elements per coarse group as a function of energy
for various numbers of coarse groups and ratios. . . . . . . . . . . . . 291

E.2 Histogram of the distribution of energy unknowns to coarse groups for
various numbers of coarse groups and ratios. . . . . . . . . . . . . . . 292

F.1 Component errors between MCNP and PDT using the 361-group
SHEM structure for problem A (cf. Table 6.1) in pcm, normalized
to the total absorption or fission rate. . . . . . . . . . . . . . . . . . . 310

F.2 Component errors between MCNP and PDT using the R4,d structure
for problem A in pcm, normalized to the total absorption or fission rate.311

F.3 Component errors between MCNP and PDT using the R4,e structure
for problem A in pcm, normalized to the total absorption or fission rate.312

F.4 Component errors between MCNP and PDT using the R4,d structure
for problem B in pcm, normalized to the total absorption or fission rate.313

F.5 Relative total absorption errors between MCNP and PDT for different
energy structures for problem A . . . . . . . . . . . . . . . . . . . . . 314

F.6 Relative total absorption errors between MCNP and PDT for different
energy structures for problem D . . . . . . . . . . . . . . . . . . . . . 315

xviii



F.7 Relative total absorption errors between MCNP and PDT for different
energy structures for problem B . . . . . . . . . . . . . . . . . . . . . 316

F.8 Relative total fission errors between MCNP and PDT for different
energy structures for problem B. . . . . . . . . . . . . . . . . . . . . . 317

F.9 Relative component errors between MCNP and PDT using the 361-
group SHEM structure for problem A. . . . . . . . . . . . . . . . . . 318

F.10 Relative component errors between MCNP and PDT using the R4,d

structure for problem A. . . . . . . . . . . . . . . . . . . . . . . . . . 319

F.11 Relative component errors between MCNP and PDT using the R4,e

structure for problem A. . . . . . . . . . . . . . . . . . . . . . . . . . 320

F.12 Relative component errors between MCNP and PDT using the R4,d

structure for problem B. . . . . . . . . . . . . . . . . . . . . . . . . . 321

F.13 Relative component errors between MCNP and PDT using the R4,e

structure for problem B. . . . . . . . . . . . . . . . . . . . . . . . . . 322

H.1 Cross section clustering example with various numbers of elements for
various low-Z nuclides . . . . . . . . . . . . . . . . . . . . . . . . . . 340

H.2 Cross section clustering example with variable number of total ele-
ments for various high-Z nuclides . . . . . . . . . . . . . . . . . . . . 341

H.3 Cross section clustering example with 10 total elements for various
partial cross sections for high-Z nuclides . . . . . . . . . . . . . . . . 342

xix



LIST OF TABLES

TABLE Page

2.1 Energy mesh family names and descriptions . . . . . . . . . . . . . . 36

3.1 The different cases investigated for the pincell problem. . . . . . . . . 69

4.1 QOI for the C5G∞ problem versus the number of energy elements in
the RRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Relative errors for the C5G∞ problem compared to the reference MG
solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Relative errors for the C5G∞ problem compared to the reference Wynn-
epsilon-accelerated FEDS solutions . . . . . . . . . . . . . . . . . . . 98

5.1 Selected TOF QOI errors for vacuum distance 10 cm and 50 time bins 126

5.2 Selected TOF QOI errors for vacuum distance 10 cm and 10,000 time
bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Selected TOF QOI errors for vacuum distance 1 m and 50 time bins . 128

5.4 Selected TOF QOI errors for vacuum distance 1 m and 10,000 time bins129

5.5 Selected TOF QOI errors for vacuum distance 10 m and 50 time bins 130

5.6 Selected TOF QOI errors for vacuum distance 10 m and 10,000 time
bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1 Pincell problem definitions . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Coarse groups used for the edits . . . . . . . . . . . . . . . . . . . . . 138

6.3 Energy resolutions outside the RRR. . . . . . . . . . . . . . . . . . . 139

6.4 Energy resolutions in the RRR for the slab pincell problem . . . . . . 139

6.5 Errors in k-eigenvalue for various energy resolutions for problem C . . 143

6.6 Errors for energy discretization R5,e for problem C. . . . . . . . . . . 144

xx



6.7 Errors for energy discretization R5,e for problem C (cont.). . . . . . . 145

6.8 Errors for energy discretization R5,e for problem C (cont.). . . . . . . 146

6.9 Errors for energy discretization R5,e for problem C (cont.). . . . . . . 158

E.1 TOF QOI errors for vacuum distance 10 cm and 50 time bins . . . . 295

E.2 TOF QOI errors for vacuum distance 10 cm and 10,000 time bins . . 296

E.3 TOF QOI errors for vacuum distance 1 m and 50 time bins . . . . . . 297

E.4 TOF QOI errors for vacuum distance 1 m and 10,000 time bins . . . 298

E.5 TOF QOI errors for vacuum distance 10 m and 50 time bins . . . . . 299

E.6 TOF QOI errors for vacuum distance 10 m and 10,000 time bins . . . 300

E.7 TOF QOI errors for vacuum distance 10 cm and 50 time bins . . . . 301

E.8 TOF QOI errors for vacuum distance 10 cm and 10,000 time bins . . 302

E.9 TOF QOI errors for vacuum distance 1 m and 50 time bins . . . . . . 303

E.10 TOF QOI errors for vacuum distance 1 m and 10,000 time bins . . . 304

E.11 TOF QOI errors for vacuum distance 10 m and 50 time bins . . . . . 305

E.12 TOF QOI errors for vacuum distance 10 m and 10,000 time bins . . . 306

E.13 TOF QOI errors for differing reference solutions for a vacuum distance
of 10 m and 10,000 time bins . . . . . . . . . . . . . . . . . . . . . . . 307

E.14 TOF QOI errors for differing escape cross sections for various vacuum
distances and numbers of time bins . . . . . . . . . . . . . . . . . . . 308

F.1 Energy boundaries for the SHEM-166 group structure in eV. . . . . . 309

F.2 Energy boundaries for the SHEM-244 group structure in eV. . . . . . 323

F.3 Energy boundaries for the SHEM-361 group structure in eV. . . . . . 324

xxi



1. INTRODUCTION

There is a practical need to accurately and efficiently simulate nuclear systems.

This requires accurate and efficient treatment of the propagation of radiation and its

interaction with its environment. The popular “deterministic method” of simulating

these propagations and interactions discretizes the seven-dimensional phase space

(space, angle, energy, and often time) upon which the radiation field depends and

solves the discretized equations for the expected radiation distribution. Discretizing

in energy has historically been a difficult problem due to the presence of resonances,

which are sharp spikes in the cross sections that quantify the probability that a

neutron interacts with a nucleus.

This work describes a novel discretization of the energy variable for radiation

transport. Radiation, be it neutrons, gamma rays, thermal photons, etc., may be

thought of as individual particles, where each particle has an associated energy /

frequency. The interaction of a particle with its environment depends strongly on

the energy of the particle. Within a cross section resonance, the probability of a

neutron interacting with a nearby nucleus may change many orders of magnitude

for a very small change in incident radiation energy due to quantum-mechanical

effects. A resonant cross section is plotted in Fig. 1.1(a). Photon interactions are

characterized by a similar strong dependence in the probability of interaction with

atoms, quantified by opacities, which have lines that depend strongly on photon

frequency.

While these resonances may be well-characterized, resolving them in their entirety

using a deterministic method would be impractical. Resolving all the resonances

requires an energy unknown count in excess of and proportional to the number of
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resonances in the problem. Deterministic methods require a total unknown count

proportional to the product of the number of spatial unknowns, the number of energy

unknowns, and the number of angular (or moment) unknowns. This presents both

memory and processing requirements that are impractical to meet even for foreseeable

high-performance computing systems. Even if a computing system were able to store

and solve such a problem, this would be an inefficient use of resources.

In practice, the energy dependence is often coarsened and averaged to create a

reduced data size that is amenable to computation. This coarsening, a type of dis-

cretization, carries with it a necessary loss of fidelity. The loss of fidelity is especially

apparent in the traditional “multigroup” (MG) treatment of the energy variable.

This work describes a new method that allows increased resonance fidelity without

substantial increase in computational cost. We apply our new method to neutron

radiation problems.

Figure 1.1 shows the energy dependence of the cross section of the major resonant

component (a) and the neutron-transport solution (b) to a simple pincell problem

averaged over various spatial regions. High energy fidelity was attainable in this

example because a simple geometry was used. Resonance shielding effects occur in

the context of such nuclear reactor simulations. Neutrons are born from fission with

high energy and downscatter through the resonance region. As the neutrons stream

through a resonant material, absorptions in the resonances cause depressed fluxes

near resonance energies; such depressions increase in magnitude as the neutrons

penetrate more deeply into a resonant material such as fuel, a phenomenon known

as spatial self-shielding. This implies that the energy profile depends upon where

the neutrons are and where they came from; that is, the energy-dependent fluxes

have spatial and angular dependencies. The flux dips rapidly for neutron energies

near resonant energies of the fuel. The magnitude, but not location in the energy
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domain, of these flux dips depends on spatial position (different colors of Fig. 1.1(b))

and direction (not shown) of the neutrons. These effects are important because they

influence reaction rates, which determine depletion rates, power profiles, and system

criticality.
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Figure 1.1: Component cross section (a) and scalar flux solution (b) of a simple
infinite lattice of pincells with low-enriched uranium averaged over different pieces
of the spatial domain.

In this work, we develop a new energy discretization method and apply it to

problems of increasing complexity and importance. The method uses finite elements

with discontiguous support to treat the energy variable. Clustering algorithms are

used to solve a minimization problem whose solution is a discontiguous energy mesh.

Our method naturally captures solution resonance behavior and achieves high fidelity

with low numbers of degrees of freedom in the energy domain. Importantly, and

unlike methods in use today, the new method converges predictably to the analytic

solution as the number of unknowns increases. In addition, the method’s equations

have the same form as those of today’s MG method, which means that standard MG
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codes can, without modification, use the new method’s parameters and obtain the

new method’s solutions.

In past work, we developed a new energy discretization scheme that we called

Petrov-Galerkin Finite-Element Multigroup (PG-FEMG) [1]. PG-FEMG had a solid

theoretical foundation, was found to be computationally efficient, and was shown to

allow the within-group spectral shape of the solution to adapt to local conditions in

the current problem. Previous work applied the method to one-dimensional pincells

for reactor calculations. The current work introduces a new method based on PG-

FEMG and applies it to several problem types, including multi-dimensional nuclear

reactor cores.

While we implement and assess the new method in the context of nuclear reac-

tor and neutron time-of-flight simulations, we stress that our method is sufficiently

general as to apply to many photon-transport applications.

The following subsections characterize past work in the treatment of the en-

ergy variable, and introduce our generalized-MG method, which we call the Finite-

Element-with-Discontiguous-Support (FEDS) method.

1.1 Energy Discretization Methods: Overview

In the context of deterministic particle transport, there are two classical schools

of thought when it comes to discretization of the energy variable. The first school

uses the multigroup (MG) concept of averaging over contiguous energy domains

called groups [2]. To limit memory size and problem runtime, MG is often applied

in the under-resolved regime where group widths span many resonances. Because

such groups smear out fine structure, MG practitioners have been forced to develop

clever methods involving calculations on smaller problems that yield averaged cross

sections that approximately preserve reaction rates on the full problem.
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The second school uses the multiband (MB) concept, which includes the prob-

ability table (PT), subgroup (SG)1, and opacity density function (ODF) methods.

Such methods discretize in cross section space instead of energy space.

The linear Boltzmann transport equation describes how neutrons move through

and interact with a system. If r is the spatial location of a neutron (in R3), E is

its kinetic energy (in R+), Ω is its direction of travel (a unit vector in R3), t is time

(in R), n(r, E,Ω, t) is a differential number density (in R), and d is a differential

size, then n(r, E,Ω, t) dr dE dΩ is the number of neutrons in dr about r, with en-

ergies in dE about E, traveling in directions dΩ about Ω at time t. The solution

to the transport equation is called the angular flux and is the product of the ex-

pected neutron density and speed: v(E)n(r, E,Ω, t). The transport equation is a

integro-differential equation in the given phase-space, which consists of space, energy,

direction, and time (r, E, Ω, and t). The transport equation has derivatives in space

and time — and, in cylindrical and spherical coordinates, in the angle variables that

describe direction — and integrals over direction and energy.

The vast majority of quantities of interest involve integrals over the angular and

energy variables of the flux multiplied by a response function, usually a cross sec-

tion. Examples include heating rates, absorption rates, fission rates, leakage rates,

neutron-induced nuclide production / loss rates, and combinations thereof, such as

the criticality eigenvalue or critical boron concentration.

There are two common classes of methods for solving the transport equation. One

focuses on simulating individual particles and summing up the contribution of each

particle to the quantity of interest (QOI), often called a tally. This former approach

is known as Monte Carlo. The latter approach involves solving the linear Boltzmann

1While some researchers use the SG method as a MB method, others use the SG method as a
means to generate MG cross sections. We refer to the former usage here.
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transport equation for the expectation of the neutron density by discretizing the

PDE and solving the resultant linear system. This is known as the deterministic

approach. There exist numerous physical approximations and methods for transport

discretizations. This research focuses on the discretization of the energy variable

with applications to deterministic methods, though similar concepts can be used for

energy-discretized Monte Carlo methods.

1.1.1 The Multigroup (MG) method

The traditional “multigroup” (MG) energy discretization approach is to combine

particles with like energies into groups. Each group corresponds to all the particles

in a contiguous energy range, say 1 to 5 eV. The unknowns associated with the

discretization in energy are integrals of the flux over the energies within each group.

Quantities of interest go from integrals over energy to sums over groups. Cross

sections are averaged in energy over each group.

The process of integrating the transport equation over the energies within a group

introduces approximations in practice. In theory, it is possible to define MG cross

sections without any approximations as weighted averages of the pointwise cross

sections, where the weighting is the angular flux (the solution). There are two

problems with this approach. The first is that the solution is not known. The second

is that this process would produce MG cross sections that depend continuously on

space, angle, and time (r, Ω, and t). The solution to the first problem is to use a

shape function from a lower-order calculation that approximates the true flux. The

solution to the second is to make this shape function depend only on energy and
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material (i.e., piecewise constant in r and independent of Ω and often t).2

There are three fundamental sources of approximation for the MG method. The

first is applying the averaged cross sections to more complicated problems than those

for which they were created. For example, it is common to create cross sections using

a shape function that is the solution to an infinite (homogeneous) lattice of pincells

/ assemblies but to apply these cross sections to the full problem geometry, which

is often a heterogeneous arrangement of pincells / assemblies. The second source of

approximation is using approximate physics when doing the calculations to build the

averaged cross sections. For example, the intermediate resonance (IR) approximation

or the flat source approximation is often used to simplify the right-hand-side of the

transport equation. The third source of approximation is that, while the MG cross

sections may be calculated to preserve some energy-, space- and angle-integrated

reaction rates, they often fail to capture differential / local reaction rates in space

/ angle / energy. For example, self-shielding is averaged over a material, which

introduces errors in the spatial shape of reaction rates, including the fission rate in

a reactor problem. This and other similar effects may impact spatial distributions

of nuclides in depletion problems and power peaking factors.

Most of the errors associated with the MG method exist because of approximate

resonance treatment. If the cross sections were smooth, two positive effects would

occur. The first effect is that resolution of the energy variable would be possible with

a reasonable number of groups. The second effect is that within-group spectrum

changes due to absorption and scattering would be far smaller than is the case for

2The true temporal dependencies of the group-averaged microscopic cross sections depend on the
details of the time-dependent angular flux. In time-dependent calculations where the cross sections
depend on time, these time dependencies are often due to changes in atom densities that affect the
macroscopic (and sometimes microscopic3) cross sections independently of angular flux effects.

3Microscopic cross sections often come from table lookups.4 These lookups take arguments that
depend on the densities of other nuclides present in the material.

4Cross section generation can be a convoluted process.
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groups containing resonances. This second effect implies that if the correct MG

cross sections / shape functions could be found, they would be correct differentially

as well as in an average sense. The lack of resonance shielding and interference

effects in this case would make the approximate, reduced-geometry calculations more

representative of the actual problem, meaning the correct MG cross sections would

be used for the full problem. The FEDS method produces cross sections with many

of these desirable features.

1.1.2 The Multiband (MB) family of methods

The second school of thought uses the multiband (MB) concept to discretize the

energy variable. While both MG and MB could be said to be concerned with accu-

rately computing reaction rates — integrals over energy of cross sections multiplied

by flux moments — whereas the MG approach seeks to approximate the Riemann

form of the integral, the MB approach seeks to approximate the Lebesgue form

of the integrals (Fig. 1.2(a)-(b)). Justification for MB often relies on invoking a

narrow-resonance-like approximation to transform integrals of a flux-like quantity

over energy into integrals over cross section space. MB methods create quadratures

in this cross section space. MB works well for cases in which resonances can be

treated as independent among nuclides.

The Lebesgue integration used by MB effectively transforms the energy discretiza-

tion problem from one that must resolve many thin resonances in energy space

(viz., MG) to one that must resolve a monotonic function in cross-section space

(Fig. 1.2(c)). This allows the energy domain to be resolved indirectly by resolving

cross section space with relatively few unknowns (Fig. 1.2(b)).

The name MB comes from early implementations that defined the quadrature

by dividing up the cross section into bands based upon magnitude of the total cross
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section (Fig. 1.2(b)). The quadrature weight for a band was the amount of the

energy space represented by cross sections in the band. The quadrature points were

averages of the total cross section over the band.
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Figure 1.2: Examples of MB and its relationship to cross-section space. MB inte-
grates cross sections (a) in a Lebesgue sense (b). The cumulative density function
(CDF) of a cross section (c) is monotonic and easier to discretize than the cross
section in energy space (a).

While discretization over cross section space allows proper treatment of reso-

nances for a small number of quadrature points, the Achilles’ heel of MB methods is

their inability to treat multiple nuclides or cross sections well simultaneously. Most

derivations rely on a transformation from lethargy space to total cross section space

that becomes approximate if the flux depends more than one cross section. This

is the case when the flux depends on partial cross sections or there are multiple

total cross sections due to multiple, distributed resonant materials being present in

the problem. MB methods commonly employ an approximate scattering treatment

that uses a low-rank representation based on band probabilities instead of accurately

representing the energy distributions of resonances within a group.

Another common problem is that it is not obvious which total cross section to use
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when defining the bands. Using microscopic cross sections yields nuclide-dependent

quadratures whose combination is not straightforward due to resonance interference

effects.5

MB is often plagued by correlation issues among cross sections. The three most

prominent issues are correlation among total cross section and partial cross sections

for a given nuclide, correlation of cross sections at different temperatures for a given

nuclide, and correlation of cross sections among nuclides. The first two issues may

be solved by defining the bands based on a single total cross section at a preselected

temperature and then defining band-wise partial cross sections for all temperatures

and total cross sections for all other temperatures as the expectation values of those

cross sections within the already chosen bands.6 The last issue has been addressed by

many authors, including Hébert [4] who developed correlation matrices that encode

resonance interference effects.

More information on the MB method and its major contributors is given in Sec-

tion 1.2.1 and in the first appendix (Appendix A).

1.1.3 The Petrov-Galerkin Finite-Element Multigroup (PG-FEMG) method

In this subsection we briefly outline our past work in the discretization of the

energy variable for particle transport. Given the many fundamental difficulties in-

herent to MB methods, it was desirable to seek a method that did not live in cross

section space. While remaining resolutely in energy space, in previous work we took

inspiration from MB and relaxed the fundamental MG requirement of discretizing

over contiguous energy ranges. Our resultant discontiguous energy elements were ex-

5Probability tables [3] often avoid this problem by restricting themselves to the unresolved
resonance range and to Monte Carlo applications, where it is valid and possible, respectively, to
sample cross sections for each nuclide independently of the other nuclides.

6This has similarities to our method: we first choose a partitioning of the energy domain and
then consistently define cross sections averaged over each piece.
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actly those that would be produced were one to transform a band from cross section

space back to energy space (Fig. 1.3(a)).

Previous work [1] introduced a new method in the MB family that sought to

overcome many of the issues mentioned previously without the need to introduce

correlation matrices. The resultant PG-FEMG method was shown to successfully

marry MB and MG. Like MG, the unknowns were defined in energy space. Like MB,

unknowns were defined by banding a total cross section. Unlike typical MB, a single

total cross section was chosen to represent to the entire problem, which led to global

energy domains. Unlike typical MG, the energy domains became discontiguous. PG-

FEMG was found to yield errors in several quantities of interest (QOI) — including

k-eigenvalue and region-wise absorption rates — an order of magnitude or more lower

than standard MG.

The fundamental deficiency of PG-FEMG was a theoretical limitation requiring

the definition of a problem-wide effective total cross section from which to determine

the energy elements. This was problematic for several reasons. First, solutions to

transport problems do not depend solely on the total cross section, but on the partial

cross sections as well. For example, elastic scattering peaks cannot be described

by the total cross section. Second, it is not obvious how to construct an effective

total cross section for problems with multiple resonant materials, or this is even

possible (Fig. 1.3(c)). This limitation is stronger than it appears, because it applies

to problems with one fuel type but multiple temperatures.

Recognizing the limitations of PG-FEMG, we focus on developing an improved

method instead of testing PG-FEMG more thoroughly. In this work, we propose a

new method, called Finite Element with Discontiguous Support (FEDS), that retains

the positive attributes of PG-FEMG while addressing all of the listed limitations.
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Figure 1.3: Band boundary calculation examples for PG-FEMG. (a) A discontiguous
energy element is formed when mapping from a contiguous band in cross section space
back to energy space. (b) Energy elements are defined by groups (two shown) and
bands within a group (two shown for each group). Different colors indicate different
energy elements. (c) Forming one effective total cross section is ambiguous when
multiple resonant materials exist in the problem.

1.1.4 The Finite Element with Discontiguous Support (FEDS) method

In this work, we present our new FEDS method, a generalization of the PG-

FEMG method. There are two important distinctions of FEDS compared to PG-

FEMG. The first is that the finite element is defined with respect to a Generalized

Energy Mesh (GEM), which generalizes the concept of groups and bands within a

group to one of energy elements, which may be thought of as discontiguous groups.

The second is that this GEM is constructed by solving a minimization problem, where

the quantity to be minimized is the within-energy-element variance of a collection of

spectra. These concepts are expounded upon in the following sections:

• Section 2: The Finite-Element-with-Discontiguous-Support (FEDS) method,

including

– A mathematical description of a generalized energy mesh (GEM) made

up of discontiguous energy elements,
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– A finite element method that lives on the GEM,

– A weak form of the transport equation that uses these finite elements,

– The basis-function-weighted cross sections used in this transport equation,

– A minimization problem that uses approximate spectra and yields the

discontiguous energy elements that constitute the GEM,

– Methods to solve the minimization problem using clustering algorithms

from machine learning,

– A different minimization problem that yields a contiguous (MG) energy

mesh, and

– An algorithm to partition energy unknowns among the coarse groups,

within each of which a separate minimization problem is solved

• Section 3: Description and results for the one-dimensional cylindrical pincell

problems, which use a MG reference over a subset of the resolved resonance

range

• Section 4: Description and results for an energy-generalized C5 problem called

the C5G∞ problem, which uses a MG reference over a subset of the resolved

resonance range

• Section 5: Description and results for a streaming-dominated, time-dependent,

time-of-flight (TOF) neutronics problem, which uses a hyperfine MG reference

• Section 6: Description and results for one-dimensional slab pincell problems,

which use a continuous-energy Monte Carlo reference

• Section 7: Conclusions
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• Appendix A: Addendum to Section 1. Description of several traditional MB

implementations

• Appendix B: Addendum to Section 2, including

– A discussion of the energy penalty implementation,

– Derivations that show the apportioning algorithm used for partitioning

energy unknowns among coarse groups satisfies useful properties,

– Further comparisons between FEDS and PG-FEMG,

– A workflow for running FEDS problems,

– A detailed definition and exploration of the Bondarenko iteration process,

and

– A description of the method used to compute the hyperfine-group (HFG)

spectra used in the minimization problem and for basis functions

• Appendix C: Addendum to Section 3

• Appendix D: Addendum to Section 4

• Appendix E: Addendum to Section 5, including quantification of the effect of

varying the escape cross section on QOI error

• Appendix F: Addendum to Section 6

• Appendix G: Derivation of analytic solutions to a neutron advection problem

used in Section 5

• Appendix H: Application of FEDS cross sections to Monte Carlo and interpre-

tation as physics-based lossy data compression
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1.2 Energy Discretization Methods: History and Current Status

1.2.1 Historical MB methods

Many authors have contributed to the development and evolution of MB meth-

ods. Such authors include Chandrasekhar [5], Strom and Kurucz [6], Carbon [7],

Nikolaev and Filippov [8], Stewart [9], Cullen and Pomraning [10], Takeda et al.

[11], Yamamoto [12], Huang et al. [13], Ribon and Maillard [14], Chiba and Unesaki

[15], Hébert and Coste [16], Martin and Hébert [17]. Notable works include Shilkov

[18] and Wray et al. [19], which introduce methods similar to the Petrov-Galerkin

Finite-Element Multigroup (PG-FEMG) developed in previous work [1, 20], though

all were developed independently.

The idea of subdividing an energy or frequency range within a group based on

the total cross section or opacity dates back to Chandrasekhar in 1935 [5], when

astrophysicists developed the opacity density function (ODF) method. Major con-

tributors included Strom and Kurucz [6], Carbon [7], and Mihalas [21]. Modern

work on the ODF method includes the work by Auer and Lowrie [22], Lowrie and

Haut [23], Ripoll and Wray [24], and Wray et al. [19], the last of which has some

similarities with the method presented in this paper, though both were developed

independently.

Since 1935 there has been a proliferation of methods designed to give fidelity

within a group. Different authors independently reinvented the ODF idea under new

names and applied it to their physics regime. Three such sets of methods are: multi-

band (MB), which has seen application to both radiative transfer and neutronics;

subgroup (SG), a new name to distinguish neutronics-specific applications of MB;

and probability tables (PT), which were first introduced for the unresolved resonance

range for neutronics. We briefly discuss each of these variants below.
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Cullen [10] claims that Nikolaev [8, 25] and Stewart [9] were the first to propose

using the MB framework for neutrons and photons, respectively, in the 1960’s; Cullen

himself did extensive work analyzing and implementing the method in the 1970’s and

1980’s [26, 27]. Other notable early MB work includes [28–30]. Modern work and

implementation of the MB / SG method has been done by Yamamoto and Takeda

[11, 12, 31–34], Huang et al. [13], Milošević [35], and others [36–42]. Due to its

wide range of applicability in the literature and the fundamental similarities of all

the methods, we will hereafter use MB to refer to any of the ODF, SG, PT, or MB

methods generally.

The probability table (PT) method was developed by Levitt [3] for treating neu-

trons in the unresolved resonance range. Cullen [26] generalized PT to the resolved

resonance region. Ribon and Maillard [14] were major contributors to PT theory and

introduced a new moments-based approach to determine the band parameters. Mod-

ern work has been done on the PT method by Hébert and Martin [16, 17, 43, 44], and

Chiba [15]. Since the output of the PT method is tables of correlated parameters that

are straightforward to sample from, the probability table method sees substantial use

in Monte Carlo calculations to treat the unresolved resonance range. Examples in-

clude codes such as MCNP from LANL [45], and RACER and MC21 from KAPL

[46, 47]. Deterministic methods often use the PT method only when using SG to

form MG cross sections, as explained below. As such, uses of the PT method for

deterministic calculations have seen negligible use when performing full-core (or even

assembly-level) calculations.

MB methods can be grouped into three families: band-preserving (BP), moment-

preserving (MP), and discontiguous energy domain (DED). BP MB methods split

up each microscopic total cross section into bands such that the total cross section

is split up by its magnitude. These bands are used to define nuclide-specific dis-
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contiguous energy meshes in the following sense. All energies that have total cross

sections that are within a band (cross section range) are placed inside the element

corresponding to that band. We refer to this process of determining the discontigu-

ous energy mesh from bands as a band boundary calculation (BBC). The total and

partial cross sections are condensed over each element to form band-wise microscopic

cross sections. As each nuclide formally has its own set of element boundaries, res-

onance interference and correlation issues arise when combining microscopic band

cross sections into macroscopic band cross sections. Most early ODF, MB, and PT

methods were BP.

MP MB methods use quadrature to preserve moments of the nuclide-specific

total (and sometimes partial) cross section(s). The quadrature consists of a set of

probabilities and (microscopic) total cross sections for each band. While this method

has desirable characteristics with respect to positivity of coefficients, and accuracy

and convergence of integration for a single nuclide, it suffers from the same correlation

problem as BP MB and further correlation problems because partial cross sections

may not be perfectly correlated to the total cross section.

These correlation problems can be addressed by introducing correlation matrices

between nuclides / reaction types and conditional band probabilities. Correlation

matrices are straightforward to sample from for Monte Carlo simulations. For deter-

ministic simulations, conditional band probabilities are often used in the context of

producing MG cross sections via the SG method. Often, for each type of fuel pin en-

countered, separate collision probability calculations are performed for each band of

each resonant nuclide of interest. Cross sections for the other nuclides are computed

as the expectation value of those nuclides’ cross sections using their own band-wise

cross sections and the conditional band probabilities. Most correlation-preserving

techniques have been inapplicable or not applied to deterministic methods such as
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Sn and MOC due in part to the added complexity and unknown count of being forced

to juggle multiple band structures for the different nuclides to account for band-wise

cross section correlation among nuclides. More recent MB, SG, and PT methods

have been MP.

DED MB methods are MG methods that use global energy element definitions.

Such nuclide- and region-consistent discontiguous energy meshes resolve the mapping

issues between regions and the correlation issues among nuclides within a region, but

must be carefully constructed to preserve resonance features for all relevant nuclides

/ resonances in the problem. Oftentimes, a problem-wide effective total cross section

is constructed to form bands in much the same way as BP MB. The difference is that

these bands are not nuclide- or region-specific but global. These bands determine

problem-wide element definitions over which to condense the cross sections, which

are then used like normal MG cross sections. The FEDS method, the PG-FEMG

method [1], [18], and [19] may all be classified as DED MB methods.

1.2.2 Traditional MG implementations

Modern reactor engineering calculations in the United States, Canada, and France

have used a hierarchical solution methodology. The scheme begins with pointwise

cross section data which is processed into many groups with a narrow-resonance

(NR) / IR flux, e.g., [1/(σt(E) + σ0)] (1/E). This is done for several values of the

background cross section, σ0. On a pincell level, cross sections are mixed and NR

/ IR approximations with equivalence theory is used to determine the proper local

background cross sections. One nuclide may use different background cross sections

in different regions if it is mixed with different types and amounts of other nuclides

in those regions or if one region is nearer to a boundary. Cross sections are then col-

lapsed into an intermediate number of groups using a lattice cell calculation, usually
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with a fixed source and reflective boundaries. Oftentimes, this coarsening is accom-

panied by a superhomogénéisation (SPH) factor [4] to ensure the coarse-group cross

sections produce the same reaction rates as the fine-group cross sections. Few-group

cross sections are then used for a full-core calculation, often nodal diffusion with

discontinuity factors. Traditional references on this method include [48]. Modern

references include [49–52]. Other notable works for computing better reaction-rate-

preserving MG cross sections include [53–58].

The problem with the hierarchical approach is that resonance information is av-

eraged out early in the hierarchy, even though the spectral shape of the correct

final solution varies strongly with position and direction on the scale of individual

resonances. This is especially problematic when spatial homogenization does not ac-

company energy condensation, because, in this case, cross sections that correspond

to material averages of homogenous arrangements are used for the heterogeneous

geometry. Additionally, the standard hierarchy has trouble taking into account het-

erogeneity effects on scales larger than individual pincells, including the effects of

non-similar fuels in nearby pincells or, for fast systems, resonances in structural

materials.

As an aside, the shape functions used for cross section condensation for MG are

often used implicitly by defining the MG cross sections via lookup tables. To build

such tables, computations are done on a variety of geometries and material com-

positions. These computations often involve two-region pincell collision probability

problems and/or IR approximations. MG cross sections are defined to preserve the

total and partial (e.g., scattering, absorption, fission) reaction rates for each prob-

lem. At the same time, background cross sections, moderator ratios, etc. for each

problem are calculated. These cross sections and material parameters are combined

into lookup tables that are later interpolated using the actual problem geometries
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and material compositions. The fine-scale shape functions come into play in the

calculation of the MG cross sections for each problem; they are often never explicitly

stored.

1.2.3 Modern MG-like methods

Three novel treatments of the energy variable have been developed in the past 15

years. In 2002, Attieh and Pevey developed a generalized MG method that allowed

an energy range to have partial membership in multiple groups using a combination

of piecewise-constant square-tooth functions and linear hat-functions [59, 60]. The

motivation was better energy spectra than piecewise-constant over a group avail-

able from MG. The result was a group spectral shape that was problem-adaptive.

This method does not solve the energy discretization problem because within-group

spectral shapes are not well approximated by polynomials of even moderate order.

Forget and Rahnema developed another generalized-MG method that expanded

the neutron flux in terms of an orthogonal basis set [61, 62]. The 0th-order moment

was shown to be equivalent to MG, producing the same integral quantities such as

eigenvalues and reaction rates. Their technique allowed for estimation of the spec-

tral shape within a group using a low-resolution energy (coarse-group) calculation;

however, it suffered from an oscillatory interpolating polynomial that often went

negative. Zhu and Forget later generalized this method to use discrete Legrendre or-

thogonal polynomials, which returned a fine-group flux estimate from a coarse-group

calculation [63]. Further work developed the method as an iterative scheme using

the unfolded flux from the current iteration to recondense the cross sections for the

next iteration [64]. Under the constraints of using step-difference spatial finite dif-

ference, storing the angular flux, and computing cell-wise cross sections, the authors

showed that their DGM (discrete generalized MG) method converged to the fine-
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group eigenvector and eigenvalues for several k-eigenvalue problems. More recently,

Gibson and Forget have recast their method as producing fine-group accuracy with

coarse-group work [51].

Finally, Douglass and Rahnema have a method they call the Subgroup Decom-

position Method (SDM) [52]. Though they do not describe it in these terms, SDM is

a high-order low-order (HOLO) method where the HO calculation is fine-group MG

with a fixed source and the LO calculation is a k-eigenvalue problem with coarse-

group MG and a consistency term from the HO calculation. The SDM method shares

the same aims as the DGM method.

The DGM and SDM methods offer incremental improvements and do not address

the need for improved approximations at the resolution scale of individual resonances

to deal with spatial self-shielding. Both methods work within the reactor calculation

hierarchy mentioned above and at best allow one level finer of energy resolution to

be used.
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2. THE FINITE ELEMENT WITH DISCONTIGUOUS SUPPORT (FEDS)

METHOD

2.1 Physical Model

The physical model underlying our work is the transport equation. Sometimes

referred to as the linearized Boltzmann transport equation, it describes the movement

of neutral particles under non-equilibrium conditions and is one of the workhorse

equations of the nuclear engineering discipline.

Because FEDS uses the same energy finite element space for all positions and di-

rections of travel, without loss of generality we begin with the continuous k-eigenvalue

formulation of the transport equation for neutronics with anisotropic scattering and

white boundary conditions:

Ω · ∇ψ(r, E,Ω) + Σt(r, E)ψ(r, E,Ω) =∫
4π

dΩ′
∫ ∞

0

dE ′ Σs(r, E
′ → E,Ω′ ·Ω)ψ(r, E ′,Ω′) +

χ(r, E)

4π keff

∫ ∞
0

dE ′ νΣf (r, E
′)φ(r, E ′), (2.1a)

φ(r, E) =

∫
4π

dΩ ψ(r, E,Ω), (2.1b)

ψ(r, E,Ω) =
1

π

∫
Ω·n>0

dΩ′ |Ω′ · n|ψ(r, E,Ω′)

r ∈ ∂V, Ω · n(r) < 0, (2.1c)

for ψ(r, E,Ω) the energy-dependent angular flux, φ(r, E) the energy-dependent scalar

flux, r the spatial coordinate, Ω the direction of travel, E the energy, Σt(r, E) the

local macroscopic total cross section, Σs(r, E
′ → E,Ω′ · Ω) the angle-differential,
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energy-differential scattering macroscopic cross section, χ(r, E) the fission distri-

bution function, νΣf (r, E
′) the neutron-production-from-fission macroscopic cross

section, and keff the eigenvalue.

2.2 Energy Mesh Determination

2.2.1 Definition of the discontiguous energy mesh and elements

We use a generalized energy mesh (GEM) to define our partitioning of the energy

domain into a discontiguous energy mesh. The GEM consists of two components, a

list of energy subelement boundaries, E , and a list of element memberships, S, for

some number of energy elements, Ne:

E = {E1/2, E3/2, . . . , EG+1/2}, 0 ≤ Eg−1/2 < Eg+1/2, ∀g = 1, . . . , G, (2.2a)

S = {s1, s2, . . . , sG}, sg ∈ {1, 2, . . . , Ne}, ∀g = 1, . . . , G. (2.2b)

For standard MG, E are just the group boundaries, G = Ne, and Sg = g. For MG,

groups, elements, and subelements are identical. Figure 2.1 shows example MG and

FEDS meshes. FEDS allows for discontiguous energy elements.

We define energy subelements, Ξg, to be the contiguous energy ranges determined

by the subelement boundaries:

Ξg =
{
E |E ∈

(
Eg−1/2, Eg+1/2

)
, Eg±1/2 ∈ E

}
, g = 1, . . . , G. (2.3)

Energy subelements are combined into energy elements, Ee, using the element mem-

bership lists:
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Figure 2.1: Example MG and FEDS generalized energy meshes.

Se = {g | S 3 sg = e}, (2.4a)

Ee =
⋃
g∈Se

Ξg. (2.4b)

Se holds the indexes of the sublements that belong to element e. Ee is a union of

subelements determined by Se. That is, Ee is a set of discontiguous energy ranges.

For example, if

Ne = 2, (2.5a)

E = {1, 2, 3, 4, 5, 6} eV, and (2.5b)

S = {1, 2, 1, 2, 1}, (2.5c)
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then,

Ξ1 = (1, 2) eV,

Ξ2 = (2, 3) eV,

Ξ3 = (3, 4) eV,

Ξ4 = (4, 5) eV,

Ξ5 = (5, 6) eV, (2.5d)

and

S1 = {1, 3, 5}, E1 = (1, 2) ∪ (3, 4) ∪ (5, 6) eV, (2.5e)

S2 = {2, 4}, E2 = (2, 3) ∪ (4, 5) eV. (2.5f)

Because

Ξg ∩ Ξγ = ∅, g 6= γ, (2.6a)

and

Se ∩ Sk = ∅, e 6= k, (2.6b)

our definition for Ee implies

Ee ∩ Ek = ∅, e 6= k. (2.6c)
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Additionally, because

G⋃
g=1

Ξγ =
(
E1/2, EG+1/2

)
(2.7a)

and

sg ∈ {1, 2, . . . , Ne}, ∀g = 1, . . . , G, (2.7b)

our definitions for Se and Ee imply

Ne⋃
e=1

Ee =
(
E1/2, EG+1/2

)
. (2.7c)

Our energy elements, Ee, do not overlap and cover the full energy range. These

properties are necessary to use them as a mesh. Notice further that Ne ≤ G and

usually Ne � G. That is, the size of our GEM using discontiguous elements may

be substantially smaller than the size of a MG energy mesh using contiguous subele-

ments.

While both (E ,S) and {Ee,Se}, e = 1, . . . , Ne, carry the same information, the

former is a more efficacious for storing / representing the energy mesh, while the

latter is more efficacious for defining the finite elements.

Using the GEM framework, standard MG chooses energy elements, Ee, equal

to the subelements, Ξg. That is, Ne = G, S = {1, 2, . . . , G}, Se = {e}, and

Ee = {E |E ∈ (Ee−1/2, Ee+1/2)}. For FEDS, an energy element (aka a discontiguous

group), Ee, may contain multiple unconnected subelements, Ξg.
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2.2.2 Mapping the minimization problem to a clustering problem

Our finite element definition relies, in part, on the definition of its underlying

mesh, which we call the generalized energy mesh (GEM). We create this energy

mesh by choosing the best possible definitions of the energy elements, where best

is defined by solving a minimization problem. This minimization problem requires

three ingredients: a hyperfine group (HFG) structure that resolves resonances, a

set of spectra (fluxes) on this hyperfine structure that we want our finite element

space to accurately represent, and a final number of elements. While there are many

ways to define the HFG structure, we use an adaptive energy mesh that maximally

resolves the features of the spectra using a minimal number of points. Appendix B

gives more details. In the following derivation, we take our subelements to be the

hyperfine groups.

Ideally, we would want to use several energy-resolved fluxes from the problem

of interest as the spectra that we wish to capture with our finite element space.

However, this would not be useful, because we want to solve the problem of interest

without having to use a resolved energy mesh. Instead, we use approximate fluxes

that come from inexpensive infinite-medium calculations. We may precompute and

store many of these spectra, and then use those spectra which are characteristic of

the problem of interest when computing the GEM for that problem. For example, if

the problem of interest is a beginning-of-life PWR, we may wish to use three infinite-

medium spectra: new UO2, MOX, and control rod. This generality also allows us to

reuse energy meshes for similar problems.

Once we have our spectra, we solve the following minimization problem to deter-

mine the energy mesh:

1. For a given set of spectra and a given set of energy subelements, pick a combi-
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nation of the subelements into elements (choose an S).

2. Compute the averages of the spectra in each element.

3. Compute the within-element variances. For each element and each spectrum,

compute the difference between the hyper-fine spectrum and the element-

averaged spectrum.

4. Sum these variances over all elements and spectra. This yields a variance

/ projection error that indicates how well the energy elements capture the

resonance-scale behavior of the spectra. We call this error F .

5. Choose element definitions, S, that minimize this projection error by looking

at all possible combinations of subelements into elements.

There are efficient implementations of algorithms that solve the above problem, or

closely related problems. Some definitions of the above problem do not require

exhaustively searching for all possible combinations of subelements into elements,

but may, for example, iteratively choose the elements.

We minimize the difference between a set of predetermined spectra and their

projection onto energy elements. Minimizing this projection error is equivalent to

minimizing the within-element variance because the projection of the spectra onto

the energy elements is done via an average. We call this set of predetermined spectra

a library.

There are many ways to determine the library of spectra we use as inputs to our

minimization problem. The spectra may be hyperfine fluxes, or they may be more

generally any quantity that is correlated with the flux or reaction rates. For example,

the macroscopic total cross section is highly correlated with both the angular flux
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and the reaction rates, especially at higher resonance energies, where the narrow

resonance approximation better applies.

The notion of a point, p, in the library is very general and may refer to a material

(e.g., if the spectra come from cross sections or infinite-medium-like slowing-down

calculations), a spatial point (e.g., if the spectra come from the scalar flux at a

point of a pointwise-in-energy pincell calculation), or a space/angle point (e.g., if

the spectra come from an angular flux, as by ray tracing, or a partial current). We

use an infinite-medium slowing down calculations for each material, as this produces

effective spectra. This can be done for many material compositions of interest ahead

of time and those that are deemed to be relevant to the problems for which the mesh

is to be generated may be used during generation.

Mathematically, we may define a norm of the within-element variances, F , as

follows:

F1 =

∑
p

ωp

[∑
g

∆Eg

∣∣∣φp,g − φ̄p,g(e)∣∣∣]M
1/M

, (2.8)

where ωp is the weight / importance of spectrum / point p, φp,g is the average

hyperfine-group flux for point p and group g, φ̄p,g(e) is the average of φp,g over energy

element e, andM ∈ R+ characterizes the norm used. ForM =∞, we use a maximum

instead of the sum. We define the average more explicitly as:

φ̄p,g(e) =
∑
e

φ̄e,pwe,g, (2.9)

where e is the energy element index, we,g is an element membership function (we,g = 1

if g ∈ Se and 0 otherwise) and φ̄e,p is the average of φe,g over element e for point

p. Notice that we,g does not depend on p, but applies to all points. Though some
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algorithms never need to explicitly define the averages, φ̄e,p, we include them for

clarity of presentation.

The original minimization problem involves defining energy elements such that

F1 is minimized. That is, we choose how to combine hyperfine groups into elements

such that the elements maximally preserve the spectra of interest.

Notice Eq. (2.9) may be thought of as using a finite element approximation for

the energy dependence of the flux. This finite element uses basis functions that are

piecewise constant within an element and zero elsewhere. When we later apply the

FEDS method to a problem, we will again have a finite-element-in-energy represen-

tation for the flux, but with problem-dependent basis functions that capture solution

behavior. (We cannot use these non-constant basis functions now because we calcu-

late the GEM before we apply it to a given problem.) If, in the real problem, we

use basis functions that look more like the solution, b(r, E) ' φ(r, E), we expect our

within-element variance to be lower than that predicted by our minimization of F1.

That is, using less information at this phase does no harm and allows us to reuse

energy meshes for multiple problems (for any and all problems for which the library

of spectra applies).

Equation (2.8) is not in a useful or easily solvable form. We modify our defini-

tion of the minimization problem and map it to a problem that is easily solvable

while maintaining the property that the energy elements it creates will still minimize

within-element variance in some norm.

The first step in our mapping is to generalize the norm in energy to use the LN

norm, for some N , instead of the L1 norm. This allows us to generalize our energy

weights to be κg. If we think of φp,g as a pointwise representation of the flux at

energy points instead of the average over a hyperfine energy group, it may make
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sense to treat all groups with the same weight (κg = 1).

F2 =

∑
p

ωp

[∑
g

κg

∣∣∣φp,g −∑
e

φ̄e,pwe,g

∣∣∣N]M/N
1/M

. (2.10)

Our second step is to flip the norms. Instead of computing the error over all

energy groups for each point and then taking a norm over points, we take the error

over all points for each group and then take a norm over groups. We have:

F3 =

∑
g

κg

[∑
p

ωp

∣∣∣φp,g −∑
e

φ̄e,pwe,g

∣∣∣M]N/M
1/N

, (2.11)

Our third step is to split the sum over groups into two sums: one over the energy

elements and another over the the hyperfine energy groups within an energy element.1

We have:

F3(S) =

∑
e

∑
g∈Se

κg

[∑
p

ωp

∣∣∣φp,g −∑
e′

φ̄e′,pwe′,g

∣∣∣M]N/M
1/N

,

F3(S) =

∑
e

∑
g∈Se

κg

[∑
p

ωp

∣∣∣φp,g − φ̄e,p∣∣∣M]N/M
1/N

, (2.12)

where we have used we′,g = δe′,e for g ∈ Se and made explicit F3’s dependence on S.

We define a scaled flux that incorporates our weights:

Φp,g = κ1/N
g ω1/M

p φp,g. (2.13)

1Our errors, F (S), are computed for a given partitioning of the groups into elements (for a fixed
S), so this sum splitting is valid. It is later that we minimize over all S.
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This simplifies our error expression:

F3(S) =

∑
e

∑
g∈Se

[∑
p

∣∣∣Φp,g − Φ̄e,p

∣∣∣M]N/M
1/N

. (2.14)

Our fourth step is to generalize our norms by allowing a different metric for

hyperfine energy points in an element versus among elements:

F4(S) =


∑
e

∑
g∈Se

[∑
p

∣∣∣Φp,g − Φ̄e,p

∣∣∣M]N1/M
N2/N1


1/N2

. (2.15)

Finally, we generalize our procedure to use simple functions of the fluxes. We

often care about minimizing the variance across a wide range of flux magnitudes and

hence we find it more practical to deal with log φ instead of φ. Further, we take

a page from MB and move to lethargy space, where the flux has less variance over

long scales: φ(u) = Eφ(E). We define the term “observation” to mean the simple

function of φ that we actually use for our minimization:

Op,g = κ1/N
g ω1/M

p log (Egφp,g) . (2.16)

Our final form of the mapped minimization problem minimization uses:

FM,N1,N2(S) =


∑
e

∑
g∈Se

[∑
p

∣∣∣Op,g − Ōe,p

∣∣∣M]N1/M
N2/N1


1/N2

, (2.17a)

or, equivalently,

FM,N1,N2(S) =
∥∥∥Op,g − Ōe,p

∥∥∥
Wp({1,...,P})×Wg(Se)×We({1,...,Ne})

. (2.17b)
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The minimization problem is: choose which elements each subelement belongs

to (choose S) such that FM,N1,N2(S) is minimized in Eq. (2.17). Minimization over

observations from a library does not imply minimization of the projection error

from the reference solution itself, but rather from something that is related to the

solution, like an infinite-medium flux or a cross section. So long as the spectra used

are representative or bounding for the problem of interest, the minimization based

on them still combines into elements energies that behave similarly across the entire

problem.

Algorithms that can solve Eq. (2.17) come from machine learning and are called

clustering algorithms because they combine their inputs into clusters, that is, hyper-

fine groups into energy elements. When we use a clustering algorithm to perform

our minimization, we say we are clustering the data.

We note that using a spectrum of φp,g = Σt,eff,g, P = 1, N1 = ∞, N2 = ∞

and observations equal to logarithm of the spectra results in the band boundary

calculation used for PG-FEMG. The results of that work [1] showed PG-FEMG

worked well with up to six bands per group, implying we are allowed to use spectra

that do not fully capture solution behavior. That said, the total cross section is a

reasonable surrogate for the angular flux because its magnitude is correlated with the

amount of self-shielding, which is a form of spectral change with varying space/angle.

We investigate two clustering methods, k-means and hierarchical agglomeration.

Both solve the minimization problem and both are implemented in both Scipy and

scikit-learn [65, 66]. Of the vector quantization options, these seemed the most

applicable to our situation. K-means minimizes Eq. (2.17) using M = N1 = N2 = 2.

Hierarchical agglomeration with the squared Euclidean distance metric and Ward

linkage minimizes Eq. (2.17) using M = N1 = 2 and N2 =∞.

Hierarchical agglomeration does not search the entire combinatoric space to de-
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termine which groups should be part of which elements (the Se), but instead goes

through G−Ng stages. At the beginning of the calculation, each subelement belongs

to its own element. In each stage, the two nearest two clusters / elements are merged

together into one. At the end of the calculation, Ng elements remain.

The traditional implementation of k-means, Lloyd’s algorithm, which is imple-

mented in both Scipy and scikit-learn, iterates between defining the location of

the elements’ centers, the Ōe,p, as the average position of their constituent subele-

ments and defining membership of the subelements as the element with the nearest

center. If the iteration converges, the result can depend on the initial element center

positions. For this reason, Lloyd’s algorithm is often repeated for several random

initial conditions and the choice that resulted in the smallest F is chosen. In practice,

Lloyd’s algorithm often results in an F that is very close to the minimal F .

The easiest way to generate the GEM is to define the subelements as the HFG

structure, though this may lead to more points than are necessary to store the

grid. Instead, all contiguous sets of energy points, g, that belong to the same en-

ergy element, e, should be grouped together, so only the boundaries between energy

subelements need to be stored as the Eg+1/2 in the GEM. Once the GEM is formed,

cross sections must be defined, which is tantamount to specifying the basis functions.

This process is problem-dependent.

If the spectra represent fluxes at energy points instead of averaged over hyperfine

groups, a straightforward way to generate the GEM is to associate each point, g,

with the range ∆Eg = [Eg−1/2, Eg+1/2] = [
√
Eg−1Eg,

√
Eg Eg+1] and then build the

GEM with this group structure.

There is still the issue of determining how many and which points to use. Though

it may seem as though many space/angle points p would be required, especially for

M <∞, in practice this may be computationally intractable and is not guaranteed
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to yield a better GEM than using several interesting bounding points. The optimal

choice of space/angle points is an open question that is beyond the scope of this

work. Conversely, we do know that many energy points e are required, because we

wish to resolve the resonance structure.

We accumulate two sources of error when building our GEM. The first comes

from using norms, spectra, observations, and material points that are approximate

or that do not map well to the desired minimization problem (e.g., Eq. (2.8)). The

second source of error comes from using a small / finite number of energy elements /

clusters. Results show the latter to be more important for low to moderate numbers

of elements / clusters. If that is the case, we should be able to get away with using

inexpensive methods, spectra, observations, and points.

Our FEDS method is a two-step method. In the first step, we use infinite-

medium spectra for several materials we expect to see in the problem of interest

as inputs to a minimization problem whose solution is an energy mesh that uses

discontiguous energy elements (groups). In the second step, we compute problem-

specific basis functions with which we weight the continuous-energy cross sections

to produce FEDS cross sections. These cross sections are flux-weighted averages

over the discontiguous energy elements found in the first step. Once we have these

cross sections, we may use them in any existing transport code without further

modification to either cross section or code. The transport solver returns fluxes

integrated over the discontiguous energy elements.

In addition to the infinite-medium spectra mentioned above, we often added an

energy penalty of log(Eg) to our observations, weighted to be approximately the same

magnitude as the other observations. Because our minimization combines hyperfine

energy groups that have similar observations for all spectra, an observation of energy

itself causes the minimization to separate groups with highly dissimilar energies into
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separate elements. As the number of elements are increased, the energy range of

an energy element decreases. A major conclusion of this work is that using energy

penalties as the primary means to bound the extent of an element in energy is inferior

to using coarse groups for the same purpose. More information on energy penalties

may be found in the accompanying appendix, Appendix B.

2.2.3 Clustering algorithms that produce contiguous energy meshes

Machinery developed to solve the minimization problem to produce discontiguous

energy elements can be reused with new algorithms that produce contiguous energy

elements. This offers an automatic means of generating MG group structures. While

the idea of adaptive energy mesh generation is not new, this formulation works with

existing methods.

Table 2.1 gives an overview of the three types of meshes considered in this work.

The first is sMG (standard MG), which uses equal-lethargy-spaced group structures.

This subsection describes αMG, the adaptive MG option. Finally, FEDS uses a

general clustering that produces discontiguous energy elements.

Table 2.1: Energy mesh family names and descriptions

Energy
Abbreviation Description Contiguity

sMG Standard MG (equal-lethargy spaced) Contiguous
αMG Adaptive MG Contiguous

FEDS FEDS Discontiguous

Mosca et al. [57] developed a workflow for generating automatic MG boundaries

that shares strong similarities to the methods we use for FEDS mesh generation,

though each were developed separately. Both the Automatic Energy Mesh Con-
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structor in [57] and our FEDS method create a reference hyperfine mesh that ade-

quately resolves the flux and its resonance dips for several spectra of interest, choose

these spectra as the infinite-medium-equivalent slowing-down solution in materials

of interest, minimize error on the coarsened fine mesh, and generate meshes that

are hierarchical with a coarse mesh. Their method computes error on reaction rates

from the hyperfine mesh to those rates computed from a separate infinite-medium-

equivalent slowing-down calculation on each proposed fine mesh. This requires an

expensive nonlinear iteration on the fine group boundaries. We minimize a variance

within an energy element with respect to the approximate spectra, which requires

only one slowing-down calculation on the hyperfine mesh and one application of a

clustering algorithm. Their method yields contiguous groups, where ours can be

altered to either produce contiguous groups or discontiguous elements. They use

importance weighting to determine how much error is tolerable in different nuclides

and energy regions, while we work with the solution itself and do not assume energy

regions have differing importances. They generalize their slowing down to fast sys-

tems where the fission source must be modeled accurately. We treat thermal systems

or fast systems without fissionable nuclides. They use advanced weighting schemes

within a group, such as the subgroup method. We use simpler, less accurate basis

function shapes.

The basic idea for our adaptive MG is to limit the amount of solution variation

within a group. Variation may be measured by a variety of norms that operate

over spectra and hyperfine groups within the final MG fine group. We differentiate

between the hyper-fine mesh that resolves the resonances and the fine mesh that is

the mesh used by the adaptive MG method.

Three methods have been developed that rely on different norms. The first mini-

mizes the squared error within a fine group by equally spacing the cumulative squared
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error, which is defined as

Se =
e∑

g′=1

max
p

∣∣Og′,p −Og′−1,p

∣∣2. (2.18)

The total cumulative squared error, SNe is divided by the desired number of final

groups to determine the squared error per group. Group boundaries are placed at

intervals of this per-group error. This method minimizes variance because it limits

the amount of change in the spectra that can occur within a group. This method

may be implemented without iteration, requiring only the computation of Se and

one iteration through it to determine coarse group boundaries.

The second method minimizes actual variance within a final group. Because this

variance is not known ahead of time, this method requires an outer iteration on the

variance per final group. Once that value is known, hyperfine groups are added to

the fine group until its variance reaches the desired variance. This is repeated for all

fine groups. Before convergence, there is the possibility that the group boundaries do

not fit within the desired range. Because the results from this method were similar

to those from the squared-error version, results from this method are not shown in

this work.

The final method minimizes variance implicitly by dividing in index space. This

method chooses final MG group boundaries by evenly dividing on the index of the

hyperfine mesh. If the hyperfine mesh has Ne energy points and G final groups are

desired, the group boundaries are i(Ne/G), i = 0, . . . , G, or the closest integers.

The final method requires an efficient hyperfine mesh. This third method treats

all energy points as having equal information content about some aspect of the

solution, and becomes inefficient if significant fractions of the hyperfine mesh resolve

unimportant aspects of the solution and these unimportant points are not evenly

38



spaced. For example, if the hyperfine mesh is evenly spaced in lethargy, this method

will yield a MG mesh evenly spaced in lethargy. Alternatively, if the hyperfine mesh

spends most of its resources resolving variations in the spectra instead of variations

in energy, this third method should be an efficient downsampling of the hyperfine

mesh.

Our hyperfine mesh, described in Appendix B, is efficient and works well with

the third adaptive MG method. Points on the hyperfine mesh are chosen to bound

jumps in the solution:

rg,p ≡ max

(
φg,p
φg−1,p

,
φg−1,p

φg,p

)
, (2.19a)

max
p
rg,p ≤ c1. (2.19b)

At the same time, the hyperfine mesh is thinned where possible to reduce redundant

points. Points are removed if the linear interpolation error made by removing those

points is below a tolerance. This leads to the following condition:

c2 ≤ max
p

∣∣∣∣∣∣
φg,p −

[
φg−1,p + (φg+1,p − φg−1,p)

(
Eg−Eg−1

Eg+1−Eg−1

)]
φg,p

∣∣∣∣∣∣ . (2.19c)

Equations (2.19b) and (2.19c) bound the jump in the flux from above and below.

Notice that if the jump in the flux for all points were constant,

max
p
re,p → c, (2.20a)
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then the difference in observation between two points would also be constant:

max
p
| log φg,p − log φg−1,p| = c, (2.20b)

max
p
|Og,p −Og−1,p| = c. (2.20c)

In this limit of constant jump, the third method reduces to the first method. In

practice, the third method behaves similarly to the first method and is used for

adaptive MG implementations in future sections.

2.2.4 Nested energy meshes with coarse groups and automatic apportioning

It is advantageous to perform hierarchical, or nested, partitioning of the energy

domain. The outer level of the nesting is to divide energy into coarse groups. The

inner level of the nesting is to divide the energies within a coarse group into energy

elements, each of which may be discontiguous but may not include subelements

outside of its coarse group.

Nested partitioning solves several problems. Reaction rate edits on a fraction of

the full energy domain are simpler if the energy elements are hierarchical to the edit

structure. Another problem solved is treating aspects of the solution that depend

explicitly on energy, such as the scattering kernel and 1/v streaming. As will be

explored in future sections, it is often impossible to generate accurate basis functions

that are independent of neutron location, direction, and time for energy elements

that span large ranges in energy. Dividing energy into coarse groups before dividing

into elements solves these problems.

Although the energy discretization is often nested, energy index is treated as flat.

This allows FEDS notation to more closely match MG notation. A notation of coarse

group and element within that coarse group is often unnecessary and is unhelpful in
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the context of the MG transport solver. Further, it calls to mind the group, band

indexing using in MB and PG-FEMG. We wish to distinguish FEDS from MB and

PG-FEMG and do not wish to be hampered by their notation.

The use of coarse groups adds two requirements to the FEDS method. The

first requirement is determining the locations of the coarse group boundaries, which

is explored in future sections. The second requirement is determining how many

energy elements to use per coarse group. A method was developed, implemented

and tested to determine this apportioning automatically.

The goal is to minimize the maximum variance within any energy element. For

a fixed energy unknown count, this is accomplished if all elements have the same

within-element variance. The problem is that variances within the coarse groups are

in general not equal, so using an equal number of elements per coarse group will not

satisfy our goal. Instead, we should bestow a number of energy elements to each

coarse group proportional to the relative standard deviation in that coarse group.

This conclusion relies on the following conditions and assumptions:

1. The true variance of the solution within a coarse group is well described by the

variance of the spectra within the coarse group,

2. When a coarse group contains only one energy element, the energy element

is the coarse group, meaning the variance within the energy element is the

variance of the spectra within the coarse group,

3. Doubling the number of energy elements within a coarse group often halves

the standard deviation within the energy elements that belong to this coarse

group,

4. Variance is simply the square of standard deviation,
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The third assumption is an observation that is true if the spectra data form lines

when plotted against each other (as occurs in Fig. 2.8). If these Voronoi-like diagrams

of spectra-vs-spectra are full, then more than a factor of two more elements must be

added to decrease the standard deviation within the elements by a factor of two.

If a coarse group c begins at index gc−1/2 and ends at index gc+1/2 in the hyperfine

energy mesh, then we compute its standard deviation, Sc, as:

Nc = gc+1/2 − gc−1/2 + 1, (2.21a)

Ω̄p,c =
1

Nc

gc+1/2∑
g=gc−1/2

Og,p, (2.21b)

Sc =

√√√√ 1

NcP

gc+1/2∑
g=gc−1/2

P∑
p=1

∣∣Og,p − Ω̄p,c

∣∣2. (2.21c)

The 1/Ng comes into play because the error within a coarse group or energy element

is proportional to the average distance of the spectra from the mean, not the number

of energy points within this group or element.

There is a wrinkle in the implementation of this apportioning to guarantee each

coarse group receives at least one element. The full implementation is given in

Appendix B.

An alternative, more complicated method would be to iterate on the number

of energy elements per coarse group by computing the maximum variance of the

elements within a coarse group, dividing by the sum of all coarse groups, and then

reapportioning elements proportionally to this quantity. This level of sophistication

was not found to be required.

Automatic apportioning can be applied for adaptive MG as well, though the

method is different. The assumption that doubling the number of elements within a

42



coarse group halves the standard deviations of the elements within that coarse group

does not apply to contiguous elements (groups) for small numbers of fine groups per

coarse group because they will not resolve resonance structure. Instead, we look back

to the squared error formula developed previously, Eq. (2.18). For adaptive MG, fine

groups should be apportioned among coarse groups based on the relative L1 error of

each coarse group. This is based on the following observations and assumptions:

1. Minimizing the variation in the spectra for each fine group minimizes the error

in each fine group and hence the solution,

2. The L1 error, Lc, is a reasonable measure of the variation in the spectra for a

group,

3. Doubling the number of fine groups per coarse group halves the variation in

the L1 error of the fine groups within that coarse group.

The L1 error is

Lc =

gc+1/2∑
g=gc−1/2

max
p
|Og,p −Og−1,p| . (2.22)

The L1 error and not the squared error was used because of its proportionality to

the number of energy points within a coarse group. Namely, if resolution is doubled,

the individual differences in the |Og,p − Og−1,p| will halve but there will be twice as

many of them, so the error — and hence the number of fine groups within that coarse

group — will stay the same, which is desired. If the coarse group is doubled in size

and resolution kept constant, there will be twice as many |Og,p − Og−1,p| terms of

approximately the same magnitude, and the error — and hence the number of fine

groups within that coarse group — will approximately double, which is also desired.
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A final automatic apportioning method is to assign unknowns to coarse groups

proportional to the maximum deviation of the spectrum within a coarse group, Mc:

Mc = max
p

max
g∈c

φg,p

min
g∈c

φg,p
(2.23)

because Mc is another measure of variation within a coarse group. In this work,

adaptive MG used the L1 apportioning and FEDS used the standard-deviation-based

apportioning.

2.3 Method Definition and Derivation

2.3.1 Definition of the finite element space

In this subsection, we define our finite element in energy:

ϕ(r, E,Ω) ≡
Ne∑
e=1

Ψe(r,Ω) be(r, E), (2.24)

' ψ(r, E,Ω),

such that, for some user-defined spatial region, Vi, and region-specific spectrum fi(E),

be(r ∈ Vi, E) =

 Ci,e fi(E) E ∈ Ee,

0 otherwise,
(2.25)

with

Ci,e =
1∫

Ee
dE fi(E)

, (2.26)

for e = 1, . . . , Ne. We note that approximating the true angular flux as a finite

element in energy is our only approximation. The derivation to determine the FEDS
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transport equation does not introduce further approximations.

We do not restrict the Ψe(r,Ω) in this subsection, requiring only that they have

similar regularity requirements to
∫∞

0
dE ψ(r, E,Ω). The next subsection will discuss

a finite element method to define these coefficients.

There are several interesting properties satisfied by the basis functions, be(r, E).

First, the basis functions are orthonormal because the Ee do not overlap. Second, the

basis functions are piecewise-constant with respect to r. They have no continuous

dependence on space or direction (r or Ω). Third, the basis functions have the same

spectral shape as the fi(E) within the energy element.

Our choice of finite element space is reasonable. If we choose fi(E) = 1, our finite

element space contains the constant solution ψ(r, E,Ω) = 1 because the Ee span the

entire energy domain. If the flux is separable in energy — i.e., if ψ(r, E,Ω) =

g(E)Φ(r,Ω) — and we choose fi(E) = g(E) and Ψe(r,Ω) = Φ(r,Ω), then our finite

element space contains ψ(r, E,Ω).

It is acceptable for our finite element solution to be discontinuous in energy

because we care about integrals over energy. Our basis functions are Lp(Emin, Emax)

integrable so long as the spectral shapes, fi(E), are Lp(Emin, Emax) integrable, which

is physical. Standard MG also produces solutions that are discontinuous in energy

at group boundaries.

2.3.2 Derivation of the FEDS transport equation and cross sections

In this subsection, we derive, without approximation, equations for the coefficients

of the FEM, the Ψe(r,Ω), using a weak form of the transport equation. These

equations will depend on element-averaged cross sections that we will find to be

basis-function weighted.

Our weak form of the transport equation will use weight functions not equal
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to the basis functions. This makes our FEM a Petrov-Galerkin FEM. The weight

functions we choose are

we(E) =

 1 if E ∈ Ee,

0 otherwise,
(2.27)

for e = 1, . . . , Ne. These weight functions have no spatial dependence, are orthonor-

mal, and span the entire energy domain.

We begin with the space-, energy-, and angle-dependent linear neutron trans-

port equation with fission and anisotropic scattering. The scattering term has been

expanded in spherical harmonics moments, using the common assumption that the

scattering kernel depends on Ω′ ·Ω only. We assume a finite but arbitrary trunca-

tion order to the scattering moments. The fission term has been assumed dyadic in

energy, though this is not required by the method. We show here the white bound-

ary condition, though it is straightforward to apply the method to many boundary

conditions, including vacuum, reflective, specified current, etc. We begin with:

(
Ω · ∇+ Σt(r, E)

)
ψ(r, E,Ω) =∫ ∞

0

dE ′
L∑
l=0

2l + 1

4π
Σs,l(r, E

′ → E)
l∑

m=−l

Yl,m(Ω)φl,m(r, E ′) +

χ(r, E)

4π keff

∫ ∞
0

dE ′ νΣf (r, E
′)φ(r, E ′), (2.28a)

φl,m(r, E) =

∫
4π

dΩ Yl,m(Ω)ψ(r, E,Ω), (2.28b)

ψ(r, E,Ω) =
1

π

∫
Ω·n>0

dΩ′ |Ω′ · n|ψ(r, E,Ω′), r ∈ ∂V, Ω · n(r) < 0, (2.28c)

where φ(r, E) ≡ φ0,0(r, E) and Y0,0(Ω) = 1.

To derive the weak form, we multiply by weight functions and integrate over
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energy. We further use the definition of our finite element solution, ϕ, to give explicit

dependence on the basis functions. We have:

∫ ∞
0

dE wn(E)

{(
Ω · ∇+ Σt(r, E)

)∑
e

Ψe(r,Ω)be(r, E)

}
=

∫ ∞
0

dE wn(E)

{∫ ∞
0

dE ′
L∑
l=0

2l + 1

4π
Σs,l(r, E

′ → E)
l∑

m=−l

Yl,m(Ω)
∑
e′

φl,me′ (r)be′(r, E
′)

}
+∫ ∞

0

dE wn(E)

{
χ(r, E)

4π keff

∫ ∞
0

dE ′ νΣf (r, E
′)
∑
e′

φe′(r)be′(r, E
′)

}
, (2.29a)∫ ∞

0

dE wn(E)φl,m(r, E) =

∫ ∞
0

dE wn(E)

{∫
4π

dΩ Yl,m(Ω)
∑
e

Ψe(r,Ω)be(r, E)

}
,

(2.29b)∫ ∞
0

dE wn(E)

{∑
e

Ψe(r,Ω)be(r, E)

}
=∫ ∞

0

dE wn(E)

{
1

π

∫
Ω·n>0

dΩ′ |Ω′ · n|
∑
e

Ψe(r,Ω
′)be(r, E)

}

r ∈ ∂V, Ω · n(r) < 0. (2.29c)

We now rearrange terms by bringing the quantities that do not depend on energy
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outside of the integrals:

Ω · ∇
∑
e

Ψe(r,Ω)

[ ∫ ∞
0

dE wn(E) be(r, E)

]
+

∑
e

Ψe(r,Ω)

[ ∫ ∞
0

dE wn(E) Σt(r, E) be(r, E)

]
=

L∑
l=0

2l + 1

4π

l∑
m=−l

Yl,m(Ω)
∑
e′

φl,me′ (r)

[∫ ∞
0

dE ′ be′(r, E
′)

∫ ∞
0

dE wn(E) Σs,l(r, E
′ → E)

]
+

1

4π keff

∑
e′

φe′(r)

[∫ ∞
0

dE wn(E)χ(r, E)

] [∫ ∞
0

dE ′ νΣf (r, E
′)be′(r, E

′)

]
,

(2.30a)[∫ ∞
0

dE wn(E)φl,m(r, E)

]
=

∫
4π

dΩ Yl,m(Ω)
∑
e

Ψe(r,Ω)

[∫ ∞
0

dE wn(E) be(r, E)

]
,

(2.30b)∑
e

Ψe(r,Ω)

[∫ ∞
0

dE wn(E) be(r, E)

]
=

1

π

∫
Ω·n>0

dΩ′ |Ω′ · n|
∑
e

Ψe(r,Ω
′)

[∫ ∞
0

dE wn(E)be(r, E)

]

r ∈ ∂V, Ω · n(r) < 0. (2.30c)

We now use the definition of our basis functions and impose orthonormality:

∫ ∞
0

dE wn(E) be(r, E) =

∫ ∞
0

dE wn(E)we(E)Ce,i fi(E)

= δe,nCe,i

∫
Ee

dE fi(E)

= δe,n. (2.31)

This orthonormality result implies the unknowns, Ψe(r,Ω), have a physical in-
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terpretation as the angular flux integrated over (discontiguous) energy domains:

Ψn(r,Ω) =
∑
e

Ψe(r,Ω)

[∫ ∞
0

dE wn(E)be(r, E)

]
=

∫ ∞
0

dE wn(E)ϕ(r, E,Ω). (2.32)

This, in turn, gives us justification for defining:

φl,me (r) ≡
∫ ∞

0

dE we(E)φl,m(r, E). (2.33)

Our orthonormality property also helps us with our interaction terms:

∫ ∞
0

dE wn(E) Σx(r, E) be(r, E) =

∫ ∞
0

dE wn(E)we(E)Ce,i fi(E) Σx(r, E)

= δe,n

∫ ∞
0

dE Ce,i fi(E)we(E) Σx(r, E)

= δe,n

∫ ∞
0

dE be(r, E) Σx(r, E). (2.34)

We define spectrally-averaged interaction terms:

Σt,e(r) ≡
∫ ∞

0

dE be(r, E) Σt(r, E), (2.35a)

χe(r) ≡
∫ ∞

0

dE we(E)χ(r, E), (2.35b)

νΣf,e(r) ≡
∫ ∞

0

dE be(r, E) νΣf (r, E), (2.35c)

Σs,l,e′→e(r) ≡
∫ ∞

0

dE we(E)

∫ ∞
0

dE ′ be′(r, E
′) Σs,l(r, E

′ → E). (2.35d)

The cross sections are weighted with the basis function, which has the shape fi(E).

The cross sections are averaged over discontiguous energy domains, because both

basis and weight functions have support restricted to one energy element, and all
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energy elements are in general discontiguous.

We use orthonormality and our cross section definitions to simplify the transport

equation to:

[Ω · ∇+ Σt,e(r)] Ψe(r,Ω) =
L∑
l=0

2l + 1

4π

∑
e′

Σs,l,e′→e(r)
l∑

m=−l

Yl,m(Ω)φl,me′ (r) +

χe(r)

4π keff

∑
e′

νΣf,e′(r)φe′(r), (2.36a)

φl,me (r) =

∫
4π

dΩ Yl,m(Ω) Ψe(r,Ω), (2.36b)

Ψe(r,Ω) =
1

π

∫
Ω·n>0

dΩ′ |Ω′ · n|Ψe(r,Ω
′),

r ∈ ∂V, Ω · n(r) < 0, (2.36c)

for e = 1, . . . , Ng.

A common approximation is that cross sections are constant within a user-defined

region, Vi. Though our method does not require this approximation, using it allows

us to simplify our cross sections and equations. Our cross sections become, for r ∈ Vi:

Σt,e,i ≡
∫ ∞

0

dE be(r, E) Σt,i(E), (2.37a)

χe,i ≡
∫ ∞

0

dE we(E)χi(E), (2.37b)

νΣf,e,i ≡
∫ ∞

0

dE be(r, E) νΣf,i(E), (2.37c)

Σs,l,e′→e,i ≡
∫ ∞

0

dE we(E)

∫ ∞
0

dE ′ be′(r, E
′) Σs,l,i(E

′ → E), (2.37d)

where we make use of the fact that, ∀r ∈ Vi, be(r, E) = we(E)Ce,ifi(E), i.e., our basis

functions do not have continuous dependence on space within a material region.
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With the approximation of piecewise-constant-in-space cross sections, our trans-

port equation becomes, for r ∈ Vi:

[Ω · ∇+ Σt,e,i] Ψe(r,Ω) =
L∑
l=0

2l + 1

4π

∑
e′

Σs,l,e′→e,i

l∑
m=−l

Yl,m(Ω)φl,me′ (r) +

χe,i
4π keff

∑
e′

νΣf,e′,i φe′ , (2.38a)

φl,me (r) =

∫
4π

dΩ Yl,m(Ω) Ψe(r,Ω), (2.38b)

Ψe(r,Ω) =
1

π

∫
Ω·n>0

dΩ′ |Ω′ · n|Ψe(r,Ω
′),

r ∈ ∂V, Ω · n(r) < 0. (2.38c)

Because FEDS uses orthonormal basis functions / orthogonal weights, interface con-

ditions are trivial: Ψe(r
+,Ω) = Ψe(r

−,Ω) for r− ∈ Vi, r+ ∈ Vj, and r ∈ Vi ∩ Vj,

∀e = 1, . . . , Ne.

Equation (2.38) is identical in form to the MG transport equation with spatially

piecewise-constant cross sections. The only differences are in the definition of the

cross sections, which are now basis-function averaged over discontiguous energy do-

mains, and the physical interpretation of the unknowns, which are now integrals of

the scalar flux over discontiguous energy domains.

2.4 Generating Cross Sections

Once we have the energy mesh, cross sections must be defined, which is tanta-

mount to specifying the basis functions. This process is problem-dependent. Many

existing methods that produce MG cross sections may be directly applied to pro-

duce FEDS cross sections, the sole difference being that the methods are applied

to a discontiguous energy domain instead of a contiguous one. Even methods that
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implicitly define basis functions, such as through lookup tables [50, 67] or by using

unnormalized condensation / homogenization factors (e.g., SPH [4]), are acceptable.

We are free to represent the cross sections and basis functions however we desire.

For the purposes of this work, we primarily use an infinite-medium slowing-down

calculation with analytically-approximated escape cross section to determine the ba-

sis functions on a hyperfine energy mesh and use those basis functions to flux-weight

the cross sections over the discontiguous energy mesh. We repeat this calculation in

each material. As shown in our results, we do not require a pincell calculation to

determine cross sections.

Unless otherwise stated, the estimate we use for our escape cross section is the

average chord length, equal to the surface area of the fuel divided by four times

its volume. Further details are given in the relevant sections. Justification for this

expression is provided in Appendix B.

There are three components required to generate FEDS cross sections. These

are given below and summarized in Fig. 2.2, which gives a workflow for the FEDS

method in practice.

1. Generate the generalized energy mesh (GEM).

(a) Use NJOY2 [68] to generate resolved cross sections for each nuclide of

interest.

The total and elastic scattering cross sections will be needed. The energy

grid from the PENDF file resolves the resonances for the represented nu-

clide. A union energy grid will be built over all nuclides and thinned as

needed.

2NJOY is a cross section preparation code that was originally called MINX (Multigroup Inter-
pretation of Neutron Cross Sections). Legend has it that an off-by-one error when printing the
characters in MINX resulted in a printout of NJOY, which was kept in later versions of the code.
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Figure 2.2: Workflow for the FEDS method, focusing on cross section preparation.

(b) Choose several material compositions and temperatures of interest in the

problem.

These compositions will either correspond to actual material compositions

in the problem of interest or be approximate compositions, in the case of

depletion. Temperatures will always be assumed to be known ahead of

time.

(c) Use those cross sections and material definitions to define infinite-medium

spectra.

These spectra will consider only elastic scattering sources, and will use

exact scattering kernels for each desired nuclide present in the material.

This is sufficient for resolving spectra in the resolved resonance region of
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heavy nuclides. Do this for each material and temperature on a hyper-fine

union energy grid that resolves resonances.

(d) Use a clustering algorithm to combine energy ranges into energy elements.

The algorithm will combine, into elements, the energy ranges with similar

spectra values. At the end of the process, all energy ranges will belong

to exactly one energy element, though one element may contain multiple,

potentially discontiguous, energy ranges. Energy elements are defined to

minimize within-element variance for a given number of total elements.

This means that all the spectra in an element are maximally nearby, for

all materials, given the constraint that a fixed number of elements are to

be used. As we have shown, choosing elements in this fashion minimizes

the projection error when going from the pointwise representation of the

spectra to the element (averaged) representation of the spectra, for a given

number of elements.

(e) Use the definition of elements to define a generalized energy mesh.

A generalized energy mesh (GEM) has two components: a list of con-

tiguous energy ranges called subelements and a list of which subelements

belong to which elements. An element may include multiple, discontigu-

ous subelements. If multiple contiguous hyperfine groups share the same

element, they are combined into one (contiguous) energy subelement for

reduced storage costs.

2. Generate cross sections on the subelements using standard MG techniques.

(a) Define a MG energy structure using the subelements.

The subelements are contiguous and so look the same as MG energy

groups. For a given number of elements, the number of subelements may
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be 1-2 orders of magnitude larger, depending on the definition of the ele-

ments. The ratio increases for higher energies because resonances become

denser.

(b) Use NJOY and other standard cross section preparation techniques to

generate MG cross sections and transfer matrices on the subelements.

This is identical to current MG procedures. Tables will be generated

to store the cross sections as functions of background cross section and

temperature for each reaction of each nuclide.

3. Generate cross sections on the elements by combining cross sections on the

subelements.

(a) Use the GEM as a map to determine which subelements to combine into

elements.

The condensation from subelements to elements is identical to the conden-

sation from fine-group to coarse-group, except that the final cross sections

on the elements cover discontiguous instead of contiguous energy ranges.

(b) Generate element-wise cross sections and transfer matrices.

As before, cross sections for each nuclide are represented as tables accessed

by background cross section and temperature for each reaction.

The second and third steps of the above could be combined if the GROUPR

routine in NJOY (or a similar code) were to be modified to condense into discontigu-

ous instead of contiguous ranges. This combination would offer substantial memory

savings, as the cross sections on the subelements would never need to be defined or

stored. Such modification is beyond the scope of this work.

Using the separation of tasks listed above shows both the novel and preexisting
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components of the FEDS method. The first component is novel. Although there have

been various attempts at automatically generating MG group structures, none thus

far have generated discontiguous energy structures and used them consistently for

all nuclides. Further, using a clustering algorithm is novel and is a generalization of

banding to multiple dimensions (i.e., multiple materials or space/angle points). The

optimal way to implement the first component is an open question. For the purposes

of this research, we have chosen to use an inexpensive, approximate method that

uses only the infinite-medium fluxes for most of the calculations.

The second component is already done with MG calculations today. The first

step of these calculations is to use NJOY or a similar code to determine fine-group

cross sections from ENDF data. The method uses NJOY to determine subelement

cross sections from ENDF data.

The third component is straightforward to implement. It requires an estimate of

the flux on the subelements so that they may be properly averaged into an element.

NJOY produces an estimate of this flux already. Instead, we prepose to use another

set of infinite-medium calculations, with approximate analytic escape cross sections,

to determine the flux on the subelements for condensation purposes.

Final storage costs for FEDS and for MG are identical when the same number of

energy unknowns are used. There are two caveats to this. The first is, if the locations

of the sublements are needed, either during post-processing or when analytically

integrating a term in energy on-the-fly during the transport calculation3, then FEDS

will require additional storage proportional to the number of subelements.

The second caveat is that our implementation of FEDS requires temporary stor-

age of cross sections on the subelements, which becomes expensive at high unknown

counts. Such intermediate storage is not an intrinsic requirement of FEDS, but stems

3This is not the done for the fission spectrum or other quantities given in tabular form.
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from our use of NJOY to initially process the cross sections. Cost is maximal for

H-1, where the elastic scattering matrix is full and must be stored for all scattering

moments, background cross sections and temperatures. For the reactor problems we

studied, the subelement cross section file sizes for H-1 approached 5 GB4 when using

approximately 200 elements in the resolved resonance region (RRR), P3 scattering,

10 background cross-section (σ0) values, and 1 temperature.5 For the same case,

the final cross sections condensed onto the elements and interpolated in background

cross section and temperature required around 5 MB of storage. Once the final FEDS

cross sections are calculated, the temporary cross section file is deleted.

2.5 Properties of the FEDS Method

The FEDS method, like the PG-FEMG method before it, has several notable

properties compared to the standard MG method. Integrals over energy once again

become sums over energy unknowns (elements instead of groups). The only difference

between FEDS cross sections / fluxes and MG cross sections / fluxes is the former

represent averages / integrals over discontiguous energy domains, while the latter are

over contiguous energy domains. A second property is that the FEDS method uses

the same shape functions as are used by MG, meaning neither MG nor FEDS cross

sections carry continuous spatial or any angular dependence. For this reason and

because the finite element discretization is applied consistently, FEDS cross sections

can be used in existing MG codes without modification to either the cross sections

or the code. The only difference between MG and FEDS cross sections is that FEDS

cross sections are defined over discontiguous elements instead of contiguous ones.

The third notable property is that some energy elements become associated only

4This number could be reduced by approximately a factor of two by changing from an ASCII to
binary file format.

5Cf. footnote 4 in section 1.
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with resonances, leading to large cross sections in those energy elements. This forces

robust spatial discretizations, because the FEDS method preserves boundary layers

that are present in the true solution. Finally, FEDS cross sections, like MG cross

sections, may be represented using lookup tables, which are memory-compact.

One interesting and undesirable feature of any method that uses discontiguous

energy ranges is that they produce upper-diagonal terms in the scattering matrix.

I call this effective upscattering and this phenomenon occurs for all problems that

contain physical downscattering.6

Particles cannot upscatter unboundedly. If the scattering matrix were lower-

triangular with a MG group structure, it would become block lower-triangular with

a FEDS structure. That is, in each column of the scattering matrix, there is a

column-dependent minimum row to which particles can upscatter. With FEDS, if

coarse groups are used, multiple clustering calculations are done and stitched together

to form the GEM, and the size of the upscattering blocks is bounded from above by

the number of elements per coarse group. In energy instead of index space, the size

of a block is limited to the energy range of the coarse group.

Effective upscattering also occurs in the PG-FEMG method. For PG-FEMG,

the size of a block was the number of bands within a group and particles could not

upscatter between groups. For FEDS, effective upscatter can only occur between

elements whose subelements are interleaved, which is specified by the GEM. (As a

notational note, I am deprecating the use of “groups” and “bands within a group”

because they are misleading. I prefer the non-hierarchical definition of “energy ele-

ment,” even when coarse groups are used.)

6N.B. Scattering kernels that are characterized by no energy loss, such as coherent scattering,
or by absorption-reemission, such as fission and or that occurs numerically in radiative transfer, do
not experience effective upscattering.
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2.6 Discussion

FEDS overcomes a major problem with MB and PG-FEMG, which is how to use

handle multiple resonant materials. For MB, they are often handled inconsistently.

For PG-FEMG, they are combined into one effective material. How to form this

effective material is unclear. The different effective total cross sections in Fig. 2.3(b)-

(d) will have different energy meshes.
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Material 1
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Figure 2.3: Example definitions of the effective total cross section required by PG-
FEMG when multiple resonant materials are present

Figure 2.4 shows solution and cross section components for a reference MG so-

lution of a pincell calculation. The solution depends on more than the total cross

section alone, but is well-approximated by the scattering source divided by the local
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total cross section. Infinite-medium fluxes overestimate flux dips near the edges of

the fuel, but do well near the center. They capture scattering peaks, resonances, and

their relative importances.

Figure 2.5 shows examples of the effect on clustering of using an energy penalty

(a) versus using coarse groups (b). The energy penalty can create unexpected and

undesirable splitting locations.

Figure 2.6 shows infinite-medium fluxes for the C5 problem on a coarse union

energy grid suitable for clustering or a MG reference solution. It requires almost

10,000 groups to resolve all of the resonances, which is prohibitively expensive for

the latter purpose. Instead, a portion of the resolved resonance range was chosen

and the rest was not resolved by the group structure.

FEDS creates energy elements that handle multiple inputs. Figure 2.7 gives

observations for a problem that includes multiple resonant materials and an energy

penalty. The energy penalty is scaled to be less important than the solution, so it

does not cause undue splitting in energy.

Figure 2.8 shows observations plotted against each other for the same problem as

Fig. 2.7. Coloring indicates element membership, squares indicate element centers,

and the dotted line is matching observations. Because clustering algorithms use L2

distances to determine distances between observations and elements, Fig. 2.8 is what

the clustering algorithm “sees.”

Figure 2.9 shows spectra and their L2 fits from the elements. Increasing the

number of elements improves the fit, which is expected because the minimization

problem was formulated to maximize the fits of the observations and the observations

are simple functions of the spectra. The real FEDS basis functions are often not

piecewise flat, so the fits here will be poorer than if the true basis functions were

used. The infinite-medium spectra shown here are not the true solution, and the
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Figure 2.4: Solution and cross section components for a pincell calculation

61



3000 4000 5000 6000 7000 8000 9000
Energy (eV)

1.5

1.0

0.5

0.0

0.5

1.0

O
b
se

rv
a
ti

o
n
 (

a
rb

.)
2 elements

(a) Energy penalty effect

105 106 107

Energy (eV)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

O
b
se

rv
a
ti

o
n
 (

a
rb

.)

100 elements

(b) Coarse groups example

Figure 2.5: Comparison of energy penalty versus coarse groups for controlling element
size in energy. Energy ranges are colored by elements
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Figure 2.6: Example union energy mesh and approximate fluxes for the C5 problem.
Different colors are different materials in the C5 problem, including UO2 (blue), 4.3%-
enriched MOX (green; covered by red), 7.0%-enriched MOX (red), 8.7%-enriched
MOX (cyan), fission chamber (magenta), and control rod (yellow).
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Figure 2.7: Observations plotted versus energy for multiple resonant materials and
an energy penalty
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Figure 2.8: Observations plotted against other observations
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FEDS solution is not the L2 projection of the true solution. Nevertheless, adding

energy elements allows the FEDS solution to naturally self-shield.
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Figure 2.9: Observations and their L2 fits using the elements

Figure 2.10(a) shows the L2 projection error of the spectra on the elements and

the k-eigenvalue error for a cyilndrical pincell problem using FEDS with k-means

clustering. Both errors decrease with increasing resolution, which verifies our use of

the minimization problem. Figure 2.10(b) shows the k-eigenvalue QOI error versus

the L2 projection error along with first- and second-order lines. Minimizing projec-
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tion error minimizes solution error, though not always in a smooth way.
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Figure 2.10: Comparisons of projection error to QOI error
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3. ONE-DIMENSIONAL PINCELL PROBLEMS

3.1 Problem Overview

In this section, we revisit the pincell calculations that were studied in [1]. These

problems, while simple, allowed us to study the effect of numerous parameters on

reaction rate errors. We vary the problem, effective resolved resonance range (RRR),

clustering algorithm used to determine the GEM, basis functions used in cross section

condensation, and the number of energy degrees of freedom (DOF) in the RRR.

Testing on more realistic and more challenging problems, including multi-dimensional

full-core simulations, is done in the next subsection.

Results in this section show FEDS to be accurate and convergent. FEDS is shown

to be convergent for the reaction-rate-based QOI studied compared to a reference MG

solution that resolved a third of the full RRR in lethargy space. Convergence is often

approximately first-order in energy unknown, but is often uneven and sometimes

convergent at a rate closer to half-order. The unevenness in convergence is attributed

to using energy penalties to bound the size of an element in energy instead of using

coarse groups, which were used by PG-FEMG in previous work and found again to

work well in future sections. As expected, using higher-fidelity basis functions leads

to better error constants. We found we could achieve target errors of 50 pcm in our

QOI with fewer than 1,000 energy unknowns in our partial RRR, and often with

fewer than 200 energy unknowns.
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An adaptive MG was developed that attempted to maximally resolve resonance

structure for a given number of groups. Results show adaptive MG (αMG; Table 2.1)

to perform at lower errors than standard MG (sMG) that uses groups spaced equally

in lethargy. Both adaptive MG and standard MG require their group structures to

resolve the resonances before they begin converging appreciably.

3.2 Problem Description

(a) Problem 3 (b) Problem 5

Figure 3.1: Pincell problem geometry cartoons

This section shows the results of our cylindrical pincell calculations. Figure 3.1

gives a cartoon of the geometries and materials used for two of the the cylindrical

pincell problem. In problem 3, MOX in three rings of different temperatures (1000

K, 800 K, 700 K) is surrounded by cooler (550 K) moderator. In problem 5, MOX is

surrounded by light-water moderator, which is itself surrounded by UO2 (all at 400

K). Further details on the geometry, material, and solver specifications for the pincell

problems may be found in [1, 20], where they are called problems 3 and 5, respectively.

For the pincell problems, P0 scattering and all reactions (including inelastic scattering

and S(α, β) thermal scattering) were used. Due to the group-squared memory and

calculation expenses of the reference solution, we did two separate sets of pincell
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calculations per problem, one resolving the low-energy RRR while not resolving the

medium-energy RRR, and vice versa.

We defined coarse chunks of the energy domain as thermal (< 3 eV), the “low-

energy RRR” (3 – 55.6 eV), the “medium-energy RRR” (55.6 – 1060 eV), and the

rest (> 1060 eV). For each problem, we defined a problem-specific RRR as the low-

or medium-energy RRR chunks only. Outside of this problem-specific RRR, we used

the SCALE 44-group energy boundaries [69].

Table 3.1 gives a description of how the energy mesh and cross sections were

determined for the three cases studied. The spectra were only used to generate the

energy mesh. The basis functions were only used to flux-weight the cross sections

for a given energy mesh. The first two cases do not use any reference information

while the latter case uses only reference information, representing an upper-bound

on fidelity. The “infinite-medium” option for “spectra used” means we performed

infinite-medium slowing-down calculations in the MOX (O-16, U-238 and Pu-239)

and UO2 (O-16, U-235, and U-238) to determine the spectra for clustering. 1/E

basis functions means a spectrum with no resonance information was used to weight

the cross sections.

We used partial currents from the reference solution for the spectra in case 3.

This produced a slightly richer and more localized set of spectra: two half-currents

per face and the partial current at the center of the pin versus one region-averaged

scalar flux per material. The difference in fidelity between using partial currents and

region-averaged scalar fluxes for the spectra was minimal. More important was using

reference information for the basis functions used in cross section condensation.

For the infinite-medium with escape cross section calculation, we used a simple an-

alytic estimate for the escape cross section of the chord length where possible. These

calculations should approximately preserve flux dips and resonance interference ef-
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fects. For the fuel pin in problem 3 and the center fuel in problem 5, the escape cross

section was computed as the average chord length, C/(4A), with C = 2πr, A = πr2,

and r = 0.47 cm, yielding 1.064 cm−1. For the outer fuel in problem 5, the escape

cross section was computed using the ratio of the partial current surface integral on

the inner boundary (rmJg,out) to the volume integral in the outer fuel (
∫

dr rφg(r)).

The median value over all groups was used. This method appears to be accurate

even at low energy unknown count. This method produced an escape cross section

of 0.8375 cm−1, which is equivalent to using a pin with radius 0.597 cm.

Table 3.1: The different cases investigated for the pincell problem.

Case Spectra Used Basis Functions Used

1 Infinite-medium 1/E
2 Infinite-medium Infinite-medium with escape XS
3 Reference-soln. partial currents Reference-soln. material-averaged fluxes

Figure 3.2 shows energy meshes used with hierarchical agglomerative clustering

and no reference information. The quantity plotted is the logarithm of the infinite-

medium flux multiplied by energy. The left column is for problem 3 and a low-energy

RRR. The right column is for problem 5 and a medium-energy RRR. For problem

5, the flux shown is in the UO2. Individual dots give the resolution of the reference

mesh, which resolves each resonance with several groups. Rows give the energy

mesh at 10, 20, and 40 energy DOF in the RRR. Coloring indicates how the fine

energy points are agglomerated into energy elements. Hierarchical agglomeration is

noteworthy because meshes at lower DOF counts are always hierarchical to those at

higher DOF counts. In Fig. 3.2, this is shown when one color splits into two or more

colors evenly going down the rows.
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An energy penalty is used to control element size in energy space. As energy

DOF are added, the fine mesh is split into elements that occupy less flux and energy

space. Energy penalties may not be the best way to accomplish the desired bound-

ing of an energy element in energy space, because it leads to splitting that is not

horizontal bands in Fig. 3.2. Other sections in this work use coarse groups instead

of or in addition to an energy penalty. This is found to yield smoother convergence

properties.

Four different clustering algorithms were used to solve the minimization prob-

lem. K-means (algorithm 1) and hierarchical agglomeration (alg. 2) resulted in

discontiguous energy elements and used FEDS. Adaptive MG (alg. 3) produced

contiguous groups and used MG. Standard MG (alg. 4) had an analytic solution

of equally-spaced lethargy groups and used MG. Implementations for both k-means

and hierarchical agglomeration were from Scipy [65].

We investigated several quantities of interest (QOI), including absorption / fission

production rates in the resonant nuclides (Pu-239, U-238, and U-235), criticality

eigenvalue (keff), and power shape. Errors in QOI are relative errors with respect to

a multigroup (MG) reference solution that resolves the resonances in our RRR. For

the power shape, a relative L2 error in space was used.
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Figure 3.2: Energy meshes for several energy unknown counts and two problems for
the one-dimensional cylinder pincell study.
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3.3 Results

We plot errors in QOI in two ways. First, we show error in a specific QOI as a

function of the number of energy elements in the RRR for all cases. These are given

in Figs. 3.3 and 3.4. Colored lines are best-fits to the data, gray lines are at given

convergence rates, and a green target of 5× 10−4 (50 pcm) is given.

Second, we show errors in all the QOI as a function of the number of energy

elements in the RRR for each case separately. These are given in Figs. 3.5 – 3.10.

The red and blue lines give the maximum and minimum QOI error for all the QOI

investigated. The black dots and cyan squares give measures of average QOI error.

Gray lines are convergence rate fiducials.

Figure 3.3 shows errors in the k-eigenvalue QOI as a function of energy elements

in the RRR for problem 3 with the low-energy portion of the RRR resolved. The

different sub-figures use the three different condensing spectra (Table 3.1). Within

each figure, the four algorithms are the different clustering methodologies, starting

with k-means, then hierarchical agglomeration, then adaptive MG, then standard

MG. Figure 3.4 shows the same things, except for problem 5 and the medium-energy

portion of the RRR resolved.

Figures 3.5 – 3.7 shows errors in all QOI as a function of energy elements in the

RRR for problem 3 with the low-energy portion of the RRR resolved, for condens-

ing spectra cases 3, 2, and 1 respectively, for each of the four clustering algorithm

methodologies. Figures 3.8 – 3.10 show the same things, except for problem 5 and

the medium-energy portion of the RRR resolved. More results may be found in the

accompanying appendix, Appendix C.

Figs. 3.5 – 3.10 collectively show that QOI error decreases with increasing num-

bers of energy elements for the low-energy RRR. For most QOI and cases, this
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decrease is first-order, though case 1 is often more than first-order and case 2 is

sometimes less than first-order. The convergence appears to be non-uniform, es-

pecially for cases 2 and 3. For case 2, we hypothesize that this non-uniformity is

caused by using a weighting spectrum (basis function shape) that is not exact, and

may incorrectly average cross sections over resonances significantly disparate in en-

ergy. For case 3, the errors are small in magnitude and near the target errors, so a

poor convergence rate is acceptable so long as the errors do not stagnate or diverge,

which they do not.

If a predictable and stable error convergence rate is desired when energy penalties

are used, case 1 seems to be the best option studied. However, it begins with a larger

error and requires more energy unknowns to reach the target error than either case

2 or 3. We claim that the goal is to use as few energy elements as possible to reach

the target error without requiring reference information. Case 2 best satisfies these

requirements and so we use it for the C5G∞ problem.

Taken together, Figs. 3.3 – 3.10 show promising and worrying properties concern-

ing convergence rates and error magnitudes for FEDS. The worrying properties are

related to uneven convergence rates and may be attributable to the use of an energy

penalty, which is either not used or used in conjunction with coarse groups in later

sections. While overall convergence for FEDS with both k-means and hierarchical

agglomerative clustering are close to first-order, local convergence for a specific QOI

can be uneven or even locally divergent. The latter we attribute to reductions in

error cancellation with increasing DOF and note these regions occur either at DOF

count below 10 or at errors around the single-digit pcm level. Uneven convergence,

including convergence of individual QOI at half-order instead of first-order for signif-

icant spans of DOF count, are peculiar to this section. Other aspects peculiar to this

section and the next section are strong reliance on energy penalty and low resolution
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of the reference solution, especially at higher energies. An aspect peculiar to these

results is defining cross sections by condensing the reference cross sections directly

instead of returning to continuous-energy cross sections and condensing from there.

This may compound errors in the poor resolution of the reference solution.

These results used a hand-tuned energy penalty in an attempt to naturally divide

the elements in energy space. Future sections rely less or do not rely on this mecha-

nism. The theoretical advantage of using an energy penalty is the ability to let the

clustering algorithm do all of the splitting in energy automatically and at once. The

practical results of energy penalties are less desirable. Energy penalties can cause

the flux to produce energy elements with undesirable shapes (e.g., Fig. 2.5(a)). At

low unknown counts, all of the resonances are effectively in one coarse group. As

unknown counts rise, some elements that span multiple resonances are split because

they have different energies. These splits, especially of the low-lying resonances ex-

plored with problem 3, can cause large reductions in error that show up as uneven

convergence rates.

The promising properties shown in this section include convergence rates and

error magnitudes. Convergence in the maximum error taken over all QOI is first-

order for FEDS, even when other QOI error rates are not. This shows the method

is able to determine where the error is and minimize it. FEDS begins converging

immediately, while MG implementations require unknown counts proportional to the

number of resolved resonances before convergence begins. FEDS is able to achieve

the target error of 50 pcm in all QOI for all problems studied using fewer than 1,000

energy unknowns in the RRR, even with 1/E condensing spectrum.

The moderate-fidelity weighting spectrum (case 2) leads to lower errors than the

1/E condensing spectrum. Case 2 is especially useful for the medium-energy range,

where FEDS is able to achieve low errors with around 20 energy unknowns in the

74



RRR.

While k-means and hierarchical agglomerative clustering overall yielded similar

results, there are reasons to prefer hierarchical agglomeration to k-means clustering.

Most implementations of k-means, including the one used here, have a stochastic

element that is undesirable for reproduceability. Further, k-means results have a

dependence on the hyperfine energy mesh used in the minimization problem. In my

experience, k-means produces energy meshes of a higher quality for energy grids that

have more resolution near the resonances as opposed grids that are equally spaced in

lethargy. Finally, convergence for k-means is often less uniform than for hierarchical

agglomeration in Figs. 3.3 – 3.10. For these reasons, hierarchical agglomeration is

the clustering algorithm used in future sections.

Another promising development was the verification of the adaptive MG method.

This method converges uniformly and rapidly once the unknown count is sufficient

to resolve all of the important resonances. This property is useful if high energy

resolution can be afforded, such as the low-energy portion of the RRR. Adaptive MG

can achieve errors an order of magnitude lower than standard equally-lethargy-spaced

MG for high energy unknown count, but behaves similarly at low energy unknown

count. For these simple problems, adaptive MG can achieve almost second-order

convergence in the asymptotic region.
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Figure 3.3: Errors for the k-eigenvalue QOI as a function of energy elements for
problem 3 in the low-energy RRR for each case and all methods. Algorithms one
through four in the legends refer to k-means, hierarchical agglomeration, adaptive
MG, and standard MG, respectively. Cases one through three in the figure captions
refer to the cases in Table 3.1.
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Figure 3.4: Errors for the k-eigenvalue QOI as a function of energy elements for
problem 5 in the medium-energy RRR for each case and all methods. Algorithms
one through four in the legends refer to k-means, hierarchical agglomeration, adaptive
MG, and standard MG, respectively. Cases one through three in the figure captions
refer to the cases in Table 3.1.
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Figure 3.5: Errors for all QOI as a function of energy elements for problem 3 in the
low-energy RRR for case 3 for each clustering method.

78



100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

(a) Hierarchical agglomeration

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

(b) K-means

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

(c) αMG

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

(d) sMG

Figure 3.6: Errors for all QOI as a function of energy elements for problem 3 in the
low-energy RRR for case 2 for each clustering method.
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Figure 3.7: Errors for all QOI as a function of energy elements for problem 3 in the
low-energy RRR for case 1 for each clustering method.
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Figure 3.8: Errors for all QOI as a function of energy elements for problem 5 in the
medium-energy RRR for case 3 for each clustering method.
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(a) Hierarchical agglomeration
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Figure 3.9: Errors for all QOI as a function of energy elements for problem 5 in the
medium-energy RRR for case 2 for each clustering method.
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Figure 3.10: Errors for all QOI as a function of energy elements for problem 5 in the
medium-energy RRR for case 1 for each clustering method.
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4. THE C5G∞ PROBLEM

4.1 Problem Overview

In this section, we move from simple cylindrical pincells with white boundaries

to a two-dimensional reactor benchmark problem with cylindrical pins of varying

composition in a square lattice. Multi-dimensional full-core problems introduce chal-

lenges not present in one-dimensional pincell problems. The most obvious is increased

cost of solution due to increased dimensionality in space. Less obvious is the coupled

dependence of the solution on neutron energy, direction and location.

The regular fuel lattices used in most nuclear reactors complicate the azimuthal

dependence of the flux in angle due to shadowing. Particles traveling in different

azimuthal directions have different distances between fuel pins, which causes self-

shielding at resonance energies to have a fine-structure dependence in angle. This

occurs regardless of the number of resonant materials. This phenomenon is not

seen in one-dimensional pincell problems because white boundary condition are used

and/or outer fuel pins are treated as annuli. Both of these approximations smear

out angular dependence over the half-space (incoming or outgoing).

Real reactor cores contain more resonant nuclides than were treated previously.

These nuclides are distributed heterogeneously in a manner that often exacerbates

shadowing. Having more resonant nuclides and more variation in their combination

stresses schemes that produce the GEMs and challenges methods that use approxi-

mate weighting spectra. For our multi-dimensional reactor case, we choose a standard

benchmark problem in the two-dimensional C5 problem [70]. We emphasize our fo-

cus on energy discretization effects by calling our version of this problem the C5G∞

problem.
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This section shares methodologies with the previous section. Once again, a refer-

ence MG solution that resolves only a portion of the resolved resonance region (RRR)

is used, in this case 3 – 1060 eV. While this may be unsatisfying, it allows attribution

of error to energy discretization effects. The RRR is split into two evenly-sized coarse

groups but energy penalties are used to divide elements in energy space within each

coarse group.

Results in this section are similar to the results of the previous section. FEDS is

convergent in energy, even at low numbers of energy unknowns in the RRR. Conver-

gence is approximately first-order and reaches target errors of 100 pcm in eigenvalue

and 0.1 % in pin powers using fewer than 200 energy unknowns the RRR. An adaptive

MG implementation requires sufficient groups to resolve the resonances before con-

vergence begins. This section reiterates the result that energy penalties are inferior

to using coarse groups alone for bounding element sizes in energy.

4.2 Problem Description

To create the C5G∞ problem, we reused the geometry and material specifications

of the C5G7 problem, but created new cross sections. For each nuclide present in

the C5G7 problem, we used NJOY99 [68] to generate cross sections for all reactions

on a hyperfine energy grid that resolved our RRR, which for these results was 3 –

1060 eV. P3 scattering was used. We formed our macroscopic cross sections using the

material definitions of the C5G7 problem. We homogenized fuel and cladding (but

not fuel and moderator) like the C5G7 specification. Unlike the C5G7 specification,

we defined this homogenization to be atom-density-weighted, with no flux factors

in fuel or cladding. We ran the C5G∞ problem using the PDT transport code [71]

using our FEDS cross sections.

We defined coarse chunks of the energy domain as thermal (< 3 eV), the “low-
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energy RRR” (3 – 1060 eV), and the rest (> 1060 eV). We resolved resonances

within the low-energy RRR only. Outside of this problem-specific RRR, we used the

SCALE 44-group energy boundaries [69]. For FEDS and adaptive MG, we used two

coarse groups of equal lethargy size when calculating the energy mesh. A separate

minimization problem, Eq. (2.17), was solved within each coarse group, meaning

energy elements only contained subelements from one coarse group. This also means

there is no effective upscattering outside of a coarse group.

To determine the spectra used for the energy mesh determination, we performed

infinite-medium slowing-down calculations in the UO2 (O, Al, Zr1, U-235, and U-

238) and the 8.7%-enriched MOX (O, Al, Zr, U-235, U-238, Pu-238, Pu-239, Pu-240,

Pu-241, Pu-242, and Am-241). Due to our restriction of the RRR to below 1060 eV,

we resolve few, if any, Zr resonances. The escape cross section was the fuel chord

length, area / (4 * circumference), and was the same for all pins.

We believe it was valid to resolve energy while keeping spatial and angular res-

olutions fixed because the optical thicknesses of cells are bounded with the largest

pointwise macroscopic total cross section, which is itself bounded for a given prob-

lem. Further details on the geometry, material, and solver specifications for the

C5G∞ problem may be found by looking at C5G7 references [70, 71].

Figure 4.1(a) gives the physical layout for the C5 problem. The C5 problem

consists of 4 assemblies surrounded by moderator, with each assembly containing a

square lattice of 17-by-17 pincells with 20 guide tubes and one center fission chamber.

The top and left boundaries are reflecting, while the bottom and right boundaries

are vacuum. The top-left and bottom-right assemblies use one enrichment of UO2

1We compute separately all the cross sections for the naturally occuring isotopes of Zr on a
background cross section (σ0) grid. The macroscopic UO2 and MOX cross sections combine their
component nuclides using the Bondarenko iteration to interpolate in background cross section. See
Appendix B for more details.
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fuel, while the other assemblies use three enrichments of MOX fuel.

Figure 4.1(b) gives pin powers for the C5G∞ problem from a FEDS calculation

using 27 elements in the RRR. The unrodded C5 problem used here has a unphys-

ical, large power peaking factor, with a ratio of maximum-to-minimum pin powers

exceeding 10.

(a) C5 layout (b) Pin powers

Figure 4.1: The NEA/NSC/DOC(2001)4 layout of the C5 problem and pin powers.

Figure 4.2 shows the spatial mesh we used for all runs of the C5G∞ problem. We

placed three rings in the fuel/guide tube and one in the moderator. The outermost

fuel ring was thin to resolve the flux dip in resonance energy elements. To increase

robustness with this coarse spatial resolution, we used a lumped piecewise-linear

discontinuous (PWLD) spatial discretization.2 In angle, we used a Gauss-Chebyshev

2We use lumped PWLD because optical thicknesses in some of the fuel cells can be large for
energy elements in the resolved resonance region and the thermal region for the spatial mesh used.
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quadrature with 2 polar angles per half-plane (S4) and 5 azimuthal directions per

quadrant. Limitations in computer resources — especially for the reference solution

— restricted us to these penurious spatial and angular resolutions.

Figure 4.2: The low-resolution mesh used for the C5G∞ problem.

4.3 Results

Figure 4.3 shows element-integrated fluxes for selected energy elements for the

C5G∞ problem solved with FEDS and 64 total energy elements. The colormap is

proportional to the logarithm of the solution.

Figure 4.3(a) shows the fast flux, which peaks inside the fuel pins and dips slightly

in the moderator-filled guide tubes. Figure 4.3(b) shows the flux in the URR, which

is diffusive. Figure 4.3(c) shows the flux in the RRR for an energy element not

corresponding to a resonance. This flux peaks in the moderator-filled guide tubes and

moderator between pins, but overall has modest gradients. Figure 4.3(d) shows the

flux in the RRR for an energy element at the tip of a resonance. This flux is strongly

self-shielded, showing a steep gradient near the fuel-moderator boundaries of the pins.

The flux in the moderator smoothly decreases from the center outward. Figure 4.3(e)

shows the flux in an epithermal group with a low-lying Pu-239 resonance. The low-
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frequency spatial mode of the flux is high in the center and decreases toward the

outside. There is an interface near the MOX boundaries and large gradients within

the MOX pins. Figure 4.3(f) shows the flux in a low-energy thermal group, where

there is strong peaking in moderator regions overlaid on a peaking near the center

UO2 assembly and depression in the MOX assemblies.

Figure 4.4 gives three energy meshes used in the C5G∞ problem. The first row

shows the FEDS mesh with 91 energy elements in the RRR. Energies that have the

same color share the same element. The left and right columns are the observations

taken from the MOX and UO2 spectra. These and the energy penalty were the only

spectra used in creating the energy meshes. The second row shows the energy mesh

for adaptive MG with 91 resonance groups. The third row shows the reference MG

energy mesh with 1499 resonance groups. The reference group structure used one

coarse group in the RRR while the adaptive MG group structure used two.

We used pin powers and the criticality eigenvalue as QOIs for the C5G∞ problem.

Table 4.1 shows how our QOI changed as a function of increasing the number of

energy elements within the RRR. The first five QOI are pin powers, the latter three

of which are sums over pins within an assembly. For the case of 2 energy elements,

the energy mesh used two contiguous elements to cover the RRR and hence was

similar to standard MG.

Table 4.2 gives relative errors in the QOI compared to the reference MG solution.

The MG reference used 1,536 groups with adaptive spacing (1,499 groups in the

RRR). Table 4.2 shows error in QOI decreases as energy elements are added to the

RRR for all methods. Pin power errors are below 0.095% error when using 59 or more

energy elements in the RRR (96 or more total energy elements) with FEDS. Errors

in criticality eigenvalue quickly decrease as unknowns are added, until they saturate

around 20 pcm for 91 or more DOF in the RRR for FEDS. This error stagnation

89



(a) Fast (b) URR element

(c) RRR background element (d) RRR resonance element

(e) Low-lying Pu-239 resonance (f) Thermal

Figure 4.3: C5G∞ fluxes for selected elements and 27 energy unknowns in the RRR.
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Figure 4.4: Observations and energy meshes for the C5G∞ problem.
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may have many causes, including the use of the energy penalty. Adaptive MG also

converges, and has larger errors for a given number of energy unknowns. Standard

MG has larger errors by a factor of 3 – 5 than adaptive MG. Both sMG and αMG

(cf. Table 2.1) are non-convergent at low energy unknown counts. These results are

similar to the one-dimensional results and indicate convergence in energy may be

attainable with a reasonable number of unknowns (DOF) in energy.

The MG reference solution may be underresolved. Only 1,499 energy unknowns

were used to resolve the partial RRR of 3 – 1060 eV. A FEDS reference solution was

developed as an independent reference solution and to allow estimation of error in the

MG reference solution. Wynn-epsilon extrapolation [72, 73] was used to accelerate

the converging sequence of the FEDS existing solutions. The five highest resolutions

of the FEDS run were extrapolated to form the FEDS reference solution. More

information on Wynn’s epsilon method may be found in the accompanying appendix,

Appendix D.

Table 4.3 gives relative errors in the QOI compared to the Wynn-epsilon-accelerated

FEDS reference solution. The bottom row shows the relative difference between the

FEDS reference solution and the MG reference solution. If these are taken as un-

certainty levels in either reference solution, pin powers are known to 0.04 to 0.09 %

and k-eigenvalue is known to 40 pcm. These pin power uncertainties are larger than

the pin power errors at the highest FEDS resolution in Table 4.2. This k-eigenvalue

uncertainty is a factor of two smaller than than the eigenvalue error at the highest

FEDS resolution. Comparisons to the FEDS reference solution as the preferred ref-

erence should be made warily, especially for the pin powers. Nevertheless, trends are

similar for FEDS, αMG, and sMG in Table 4.3 compared to Table 4.2.

Figure 4.5 gives a graphical interpretation of the errors in the methods for both

references. FEDS begins converging and then stagnates for many QOI compared
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to the MG reference solution. Stagnation does not occur when compared to the

FEDS-accelerated reference solution. Adaptive MG starts non-convergent when it

has insufficient unknown count to resolve individual resonances, but then resolves in

a first-order manner. Standard MG converges slowly and non-uniformly.

Figure 4.6 shows the same errors versus unknown count, but combines the pin-

power errors into one average error. This clarifies the convergence. FEDS converges

first-order in k-eigenvalue error for both reference solutions. It begins converging

first-order in power error but stagnates compared to the reference solution. First-

order convergence persists when compared to the FEDS reference solution, though

this many only show the method is self-convergent. αMG requires approximately 20

unknowns before convergence begins, at which point it converges first-order in both

eigenvalue and power error compared to the MG reference solution. Convergence

in eigenvalue is similar compared to the FEDS reference solution. Unexpectedly,

convergence in power error appears to be second-order with respect to the FEDS

reference solution, which may indicate that this solution is accurate.

Figure 4.7 shows errors versus unknown count for k-eigenvalue error with all

methods on the same plot. FEDS is able to achieve lower errors than αMG for the

same unknown count by a factor of 3 or more for either reference solution.
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(a) FEDS with MG reference
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(b) FEDS with FEDS reference
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(c) αMG with MG reference
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(d) αMG with FEDS reference
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(e) sMG with MG reference
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(f) sMG with FEDS reference

Figure 4.5: Errors for all QOI as a function of energy element number for the C5G∞

problem
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(b) FEDS with FEDS reference
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(c) αMG with MG reference
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(d) αMG with FEDS reference
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(e) sMG with MG reference
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Figure 4.6: Errors for selected QOI as a function of energy element number for the
C5G∞ problem
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Table 4.1: QOI for the C5G∞ problem versus the number of energy elements in the
RRR. The first five quantities are pin powers, the latter three of which are sums over
pins within an assembly.

Method RRR Max Pin Min Pin Inner UO2 MOX Outer UO2 keff

Power Power Power Power Power

FEDS 2 2.52591 0.250210 494.534 209.476 142.514 1.132217
FEDS 4 2.54452 0.246440 497.246 208.503 141.747 1.151449
FEDS 6 2.54702 0.247390 497.718 208.174 141.933 1.148358
FEDS 13 2.54185 0.247960 496.891 208.545 142.019 1.145999
FEDS 27 2.54173 0.248260 496.881 208.524 142.072 1.145422
FEDS 43 2.54265 0.248220 497.055 208.436 142.072 1.145888
FEDS 59 2.54198 0.248390 496.942 208.478 142.103 1.145159
FEDS 91 2.54215 0.248500 496.950 208.466 142.118 1.144663
FEDS 219 2.54239 0.248510 496.980 208.453 142.114 1.144739

αMG 2 2.52591 0.250210 494.534 209.476 142.514 1.132217
αMG 4 2.53192 0.250450 495.429 209.013 142.545 1.131446
αMG 6 2.53191 0.250550 495.402 209.023 142.552 1.131080
αMG 13 2.52852 0.250450 494.876 209.292 142.540 1.131300
αMG 27 2.53676 0.249140 496.143 208.803 142.251 1.138854
αMG 43 2.53804 0.248450 496.418 208.714 142.154 1.142845
αMG 59 2.53887 0.248880 496.516 208.643 142.197 1.140460
αMG 91 2.54083 0.248640 496.848 208.484 142.183 1.142198
αMG 219 2.54224 0.248470 496.989 208.445 142.121 1.143608

sMG 2 2.52591 0.250210 494.534 209.476 142.514 1.132217
sMG 4 2.52990 0.250510 495.106 209.166 142.562 1.131144
sMG 6 2.52938 0.250400 495.088 209.172 142.567 1.131595
sMG 13 2.53539 0.249810 496.042 208.760 142.438 1.134836
sMG 27 2.54289 0.249040 496.997 208.415 142.173 1.138324
sMG 43 2.54287 0.249110 497.021 208.395 142.189 1.138634
sMG 59 2.54057 0.249240 496.680 208.547 142.225 1.137819
sMG 91 2.54383 0.248770 497.178 208.348 142.126 1.140773
sMG 219 2.53837 0.249100 496.387 208.692 142.229 1.140051

MG ref. 1499 2.54438 0.248330 497.247 208.348 142.058 1.144490
FEDS ref. N/A 2.54220 0.248467 496.965 208.466 142.115 1.144944
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Table 4.2: Relative errors for the C5G∞ problem compared to the reference MG
solution. The first five errors are pin powers, the latter three of which are sums over
pins within an assembly.

Method RRR Max Pin Min Pin Inner UO2 MOX Outer UO2 keff

DOF (%) (%) (%) (%) (%) (pcm)

FEDS 2 -0.7259 0.7571 -0.5456 0.5414 0.3210 -1,072
FEDS 4 0.0055 -0.7611 -0.0002 0.0744 -0.2189 608
FEDS 6 0.1038 -0.3785 0.0947 -0.0835 -0.0880 338
FEDS 13 -0.0994 -0.1490 -0.0716 0.0946 -0.0275 132
FEDS 27 -0.1042 -0.0282 -0.0736 0.0845 0.0099 81
FEDS 43 -0.0680 -0.0443 -0.0386 0.0422 0.0099 122
FEDS 59 -0.0943 0.0242 -0.0613 0.0624 0.0317 58
FEDS 91 -0.0876 0.0685 -0.0597 0.0566 0.0422 15
FEDS 219 -0.0782 0.0725 -0.0537 0.0504 0.0394 22
αMG 2 -0.7259 0.7571 -0.5456 0.5414 0.3210 -1,072
αMG 4 -0.4897 0.8537 -0.3656 0.3192 0.3428 -1,140
αMG 6 -0.4901 0.8940 -0.3710 0.3240 0.3477 -1,172
αMG 13 -0.6233 0.8537 -0.4768 0.4531 0.3393 -1,152
αMG 27 -0.2995 0.3262 -0.2220 0.2184 0.1359 -492
αMG 43 -0.2492 0.0483 -0.1667 0.1757 0.0676 -144
αMG 59 -0.2166 0.2215 -0.1470 0.1416 0.0978 -352
αMG 91 -0.1395 0.1248 -0.0802 0.0653 0.0880 -200
αMG 219 -0.0841 0.0564 -0.0519 0.0466 0.0443 -77
sMG 2 -0.7259 0.7571 -0.5456 0.5414 0.3210 -1,072
sMG 4 -0.5691 0.8779 -0.4306 0.3926 0.3548 -1,166
sMG 6 -0.5895 0.8336 -0.4342 0.3955 0.3583 -1,127
sMG 13 -0.3533 0.5960 -0.2423 0.1977 0.2675 -844
sMG 27 -0.0586 0.2859 -0.0503 0.0322 0.0810 -539
sMG 43 -0.0593 0.3141 -0.0455 0.0226 0.0922 -512
sMG 59 -0.1497 0.3664 -0.1140 0.0955 0.1176 -583
sMG 91 -0.0216 0.1772 -0.0139 0.0000 0.0479 -325
sMG 219 -0.2362 0.3101 -0.1730 0.1651 0.1204 -388
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Table 4.3: Relative errors for the C5G∞ problem compared to the reference Wynn-
epsilon-accelerated FEDS solutions. The first five errors are pin powers, the latter
three of which are sums over pins within an assembly.

Method RRR Max Pin Min Pin Inner UO2 MOX Outer UO2 keff

DOF (%) (%) (%) (%) (%) (pcm)

FEDS 2 -0.6406 0.7015 -0.4892 0.4846 0.2809 -1,112
FEDS 4 0.0914 -0.8158 0.0565 0.0179 -0.2588 568
FEDS 6 0.1897 -0.4335 0.1515 -0.1399 -0.1280 298
FEDS 13 -0.0136 -0.2041 -0.0149 0.0380 -0.0674 92
FEDS 27 -0.0183 -0.0833 -0.0169 0.0280 -0.0301 42
FEDS 43 0.0178 -0.0994 0.0181 -0.0142 -0.0301 82
FEDS 59 -0.0085 -0.0310 -0.0046 0.0059 -0.0083 19
FEDS 91 -0.0018 0.0133 -0.0030 0.0001 0.0022 -25
FEDS 219 0.0076 0.0173 0.0030 -0.0061 -0.0006 -18
αMG 2 -0.6406 0.7015 -0.4892 0.4846 0.2809 -1,112
αMG 4 -0.4042 0.7981 -0.3091 0.2625 0.3027 -1,179
αMG 6 -0.4046 0.8383 -0.3145 0.2673 0.3076 -1,211
αMG 13 -0.5380 0.7981 -0.4203 0.3964 0.2992 -1,192
αMG 27 -0.2138 0.2708 -0.1654 0.1618 0.0958 -532
αMG 43 -0.1635 -0.0069 -0.1101 0.1191 0.0276 -183
αMG 59 -0.1308 0.1662 -0.0903 0.0851 0.0578 -392
αMG 91 -0.0538 0.0696 -0.0235 0.0088 0.0480 -240
αMG 219 0.0017 0.0012 0.0048 -0.0099 0.0043 -117
sMG 2 -0.6406 0.7015 -0.4892 0.4846 0.2809 -1,112
sMG 4 -0.4837 0.8222 -0.3741 0.3359 0.3146 -1,205
sMG 6 -0.5041 0.7780 -0.3777 0.3388 0.3182 -1,166
sMG 13 -0.2677 0.5405 -0.1857 0.1412 0.2274 -883
sMG 27 0.0273 0.2306 0.0064 -0.0243 0.0409 -578
sMG 43 0.0265 0.2588 0.0113 -0.0339 0.0522 -551
sMG 59 -0.0640 0.3111 -0.0573 0.0390 0.0775 -622
sMG 91 0.0643 0.1219 0.0429 -0.0565 0.0079 -364
sMG 219 -0.1505 0.2547 -0.1163 0.1086 0.0803 -427
MG ref. 1499 0.0859 -0.0552 0.0568 -0.0565 -0.0400 -40
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Figure 4.7: Criticality eigenvalue error for different energy discretization methods as
a function of energy element number for the C5G∞ problem
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5. A MODEL NEUTRON TIME-OF-FLIGHT PROBLEM

5.1 Problem Overview

In this section, we test the applicability of FEDS to a new type of neutronics

problem, one that involves time dependence. In this problem, we pulse a fission

source that is surrounded by a material with resonances and simulate a detector

at various distances from the material. We record the energy-integrated detector

response as a function of time. Neutrons travel at a speed that is a direct function

of their energy. The time at which a neutron arrives at the detector is a direct

function of its energy, and accurate detector responses requires accurate treatment

of all neutron velocities. Because FEDS naturally defines energy elements with highly

disparate subelement energies, unoptimized FEDS would yield inaccurate detector

responses. We make FEDS competitive to standard MG by imposing coarse groups.

The main result of this section is that FEDS with coarse groups is a viable

candidate for such time-of-flight (TOF) problems. Standard MG that uses groups

equally spaced in lethargy does well at simulating the detector response but poorly

at other relevant quantities of interest (QOI), such as absorption fraction in the

material or in the cumulative detector response. FEDS is formulated with a knob

to adjust the average number of energy elements per coarse group. For a fixed total

number of energy unknowns, using few energy elements per coarse group means many

coarse groups are used and FEDS acts similarly to standard MG. When many energy

elements per coarse group are used and the total unknown count fixed, FEDS does

worse at simulating detector response but better at simulating absorption fractions.

Both effects are found to be first-order, meaning FEDS can be tuned to do well at

a desired error. For sufficient energy resolution, FEDS can beat standard MG on
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both detector response and absorption fraction for a fixed energy unknown count.

Adaptive MG is also investigated, but behaves to within a factor of 2 of standard

MG.

5.2 Problem Description

Fission source (0.05 cm thick; pulsed for 1 ns)!

Iron (2.06 cm thick)! Point detector!

Neutrons advect from source to detector!

Vacuum (variable thickness)!Th
in
!

Figure 5.1: Layout of the neutron time-of-flight model problem. Neutrons are gen-
erated in the source and stream toward the point detector, where they are tallied as
a function of time. Perfect collimation and a small detector are assumed.

Figure 5.1 gives the physical layout for the TOF problem. Neutrons are born

in the left (fission source region) with a Watt fission spectrum in energy, isotropic

distribution in direction, and uniform distribution in space and time. The source is

pulsed and turns off at 1 ns. Perfect collimation and a small detector imply only

uncollided neutrons traveling in direction Ω = +x̂ reach the detector on the right.

For this reason, angular versus scalar sources, fluxes, and reaction rates are used
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interchangeably for the remainder of the section. We focus on the energies from 50

keV to 10 MeV, ignoring the small source contributions outside this range.

A solution analytic in space and time exists for this problem. The derivation is

performed in Appendix G. This solution assumes neutrons are quantized such that

every neutron energy has a uniquely associated total cross section and speed, but

there are a finite number of allowable total cross sections and speeds. The differential

angular flux solution is a pulse that advects in space-time from the source to the

detector at its neutrons’ associated speed, interacting with its neutrons’ associated

total cross section. Each pulse has a finite width in space/time determined by the

finite extent of the source in space and time. The analytic solution is integrated

over the set of energies that share the same speed and total cross section, as these

neutrons advect identically. This set of neutrons has an effective source strength

equal to the integral of the fission spectrum over its set of energies.

The reference solution uses a hyperfine MG group structure that resolves both

the iron macroscopic total cross section and the neutron speeds for the detector

distances of interest. As the point detector is moved farther from the source, the

time between the fastest neutrons reaching the detector to the slowest neutrons

reaching the detector increases, but the pulse width in space/time of each group

remains constant. This causes less overlap among groups, forcing the use of smaller

groups to maintain fidelity. The groups must be shrunk in energy width and cross

section difference. For a given detector distance, the required energy fidelity may be

determined using a resolution study in energy. More information on this study is

provided in the accompanying appendix, Appendix E.

Different energy discretizations are compared against the reference solution. These

discretizations, listed in Table 2.1, include standard MG, which defines groups as

equally spaced in lethargy, an adaptive MG that puts more groups where the total
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cross section has higher variance, and FEDS that is like the adaptive MG but is not

forced to use contiguous energy elements. The infinite-medium flux in and the total

cross section of iron were used as spectra when generating the energy meshes. It was

discovered early on that groups or elements that included disparate energies would

advect improperly, effecting error.

Attaining fidelity for this TOF problem required bounding the maximum group

(MG) or element (FEDS) thickness in energy. This was automatically satisfied for

standard MG. For adaptive MG and FEDS, this was solved by first imposing an

equally-spaced lethargy mesh of coarse groups and then splitting the coarse groups

into fine groups or energy elements, where the number of fine groups / energy ele-

ments per coarse group was determined automatically based on the variance of the

total cross section within a coarse group.

This two-step process adds a knob: the ratio between the total number of energy

degrees of freedom (DOF) and the number of coarse groups. If the ratio is one,

the scheme reduces to standard MG. For a fixed total number of energy DOF, a

large ratio means better cross section fidelity, but worse speed fidelity. Alternatively,

one could imagine figuring out the required speed fidelity for a problem of interest

and then increasing the total energy DOF until sufficient cross section fidelity is

acquired. The first idea introduces the idea of maximizing fidelity by balancing

different sources of error for given a fixed computational cost. The second introduces

the idea of increasing computational cost to meet a desired fidelity. Either may be

valid. This study looks at errors in QOI as the total number of energy unknowns

(DOF) are increased for several ratios of energy DOF to coarse groups for both

adaptive MG and FEDS methods within a coarse group.

The quantities of interest (QOIs) involve neutron reaction rates in the iron and

at the detector. All QOIs are integrated over all energies (and are for the Ω = x̂
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direction). The first QOI, that of absorption fraction in the iron, is the space- and

time-integrated total reaction rate in the iron, which represents total absorption in

the iron. The third QOI, called detector response, is the time-binned total reaction

rate at the point detector. This QOI uses a flat detector response, meaning the

detector cross section is constant in energy. The second QOI, called cumulative

detector response, is the cumulative sum in time of the third, that is, the sum of the

detector response from time 0 to the end of the time bin for each bin. QOI errors

for the latter two QOI are L2 norms over the vector of time bins. Errors in the first

QOI are typically smaller than errors in the second, which are themselves typically

smaller than errors in the third. Different time bin sizes are investigated. Larger

time bins allow for more within-bin error cancellation.

The error in the first QOI describes how well the total cross section is discretized.

The exact expression for the first QOI is
∫∞

0
dE q(E)(1− e−Σt,iron(E)X), where q(E)

is the Watt fission spectrum and X is the thickness of the iron. The exact QOI

does not depend on details of the speed discretization for the neutrons, but depends

strongly on capturing the integral effect of the total cross section.

If the flux for the reference solution integrated in energy and binned over time

bin b is rb, and that of the FEDS or MG flux is mb, then the detector response and
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cumulative detector response errors are

edet. = λ

√√√√√√
∑
b

∣∣rb −mb

∣∣2∑
b

∣∣rb∣∣2 , (5.1a)

ecumul det. = λ

√√√√√√
∑
b

∣∣ ∑
b′≤b

(rb′ −mb′)
∣∣2

∑
b

∣∣ ∑
b′≤b

rb′
∣∣2 , (5.1b)

λ ≡
∑
b

rb, (5.1c)

where λ represents the total transmission through the iron, and is approximately

0.58 for this problem. The detector response errors are multiplied by λ to normalize

them per source particle.

In addition to total cross section fidelity, the error in the third QOI describes how

well neutron speed is discretized. The L2 error over time bins means that a neutron

traveling at a sufficiently wrong speed will appear in the wrong time bin(s). This

induces error both in the time bin(s) where it should have been and the time bin(s)

where it scored. Another source of error in this QOI comes from errors in transmission

from the iron, transmission being proportional to q(E)e−Σt,iron(E)X . Physically, errors

in this QOI represent neutrons imparting energy (heat) and momentum differentially

at the wrong time, a property to which a set of coupled physics may be sensitive.

The error in the second QOI is similar to the third, except it has a different

sensitivity to arrival times. Comparing cumulative reaction rates means neutrons

that travel at the wrong speed and score to the wrong bin(s) will induce errors in all

bins between the correct bin(s) and the scored bin(s). For large time bins or small

errors in speed (and negligible error in transmission), only one bin will add error

to this QOI, as opposed to both bins for the third QOI. Physically, errors in this
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QOI represent neutrons imparting wrong integral amounts of energy and momentum,

integral in the sense of
∫ t

0
dt′ R(t′), a property to which a potentially different set of

coupled physics may be sensitive.

This problem setup is more difficult than the real time-of-flight experiments.

No scattering means pulses are thinner than they would be realistically. Perfect

collimation means only one angle makes it from the source to the detector. If an Sn

calculation were performed for the experimental setup, there would be many angles

within the solid angle of the detector, meaning each group would have multiple,

smaller pulses. Approximate advection would add additional smoothing of pulses

and hence detector response. Taking these real phenomena would smear the detector

response curve in time, reducing error 3, probably substantially. Another way to

think of error 3 is the differential angular error for a larger problem with more

angles.

5.3 Solutions

5.3.1 The iron cross section and its impact on the source

Figure 5.2 shows sources, cross sections, and spectra for the TOF problem. The

first (a) is the fission source, restricted to the energies of interest (50 keV – 10

MeV). The second (b) is the elemental iron total cross section. The third (c) is

the absorption rate in the iron integrated over all times. The fourth (d) is the flux

transmitted through the iron integrated over all times. This is the same flux seen by

the detector.

Figure 5.2 shows three energy scales: the coarse scale of the fission source, χ(E);

the fine scale of the fine resonances in the cross sections of the iron, and an interme-

diate scale of more slowly-varying resonance-like cross sections in the iron.

In future figures, the abscissa changes from neutron energy to detector time. The
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two are related by t ∝ E−1/2, which flips and stretches the x-axis.

5.3.2 Detector responses for high DOF count in energy

What follows are a series of detector responses for our TOF problem. The detector

response is the energy- and time-integrated signal at a point detector downstream of

the fission source. Time integration is performed within a time bin at the location

of the detector.

A caption of “1 m, 1600 elements, r = 2, FEDS” indicates that the point detector

was 1 m away from the right edge of the iron and the solution came from a FEDS

structure with 1600 total energy unknowns and a ratio (of total energy unknowns

to number of coarse groups) of 2, meaning 800 coarse groups were used. For all

problems, the solution is the uncollided flux only, and no scattering fill-in is taken

into account.

Figure 5.3 shows that increasing detector distances increases intermediate struc-

ture in the detector response. At short distances, the pulses for individual groups

overlap due to the finite size and time of the source. The first row of Fig. 5.3 is the

detector response without iron at 12.06 cm from the right edge of the source (2.06

cm to leave space for the later addition of the iron, and 10 cm from the right edge of

the to-be-inserted iron). The second row is the same response with the iron inserted.

The third row is the response for a detector 1 m away from the right edge of the

iron.

Figure 5.4 shows the detector response for various group structure definitions

(cf.Table 2.1). Standard equal-lethargy spacing (sMG, top row) maximally captures

intermediate-scale behavior. FEDS (bottom rows) uses discontiguous energy ele-

ments that maximally resolve resonance behavior while simultaneously restricting

the energy elements in energy space using a set of coarse groups that limit the ratio
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(c) Absorption in iron
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(d) Transmission through iron

Figure 5.2: Group-integrated fission source, total iron cross section, and group-
integrated absorption and transmission as a function of energy for the TOF problem.
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of the maximum to minimum energies represented within an energy element. The

middle row uses a ratio of 2 and the bottom row a ratio of 4, with larger ratios

meaning fewer coarse groups and often less accuracy in the detector response.

For a given number of degrees of freedom (DOF) in energy, the latter two rows

/ group structures spend more DOF getting the individual resonances correct. This

means they have fewer DOF to spend on energy intervals that do not contain reso-

nances. For the detector distances used, the pulses for individual resonances overlap.

This leads to the following situation: some time bins will have contributions from

many energy groups/elements, while others will have contributions from few or no

energy groups/elements. This is what causes the spiky behavior in the bottom row

of Fig. 5.4 that is not present in the top rows. For the top row, the sMG group struc-

ture essentially minimizes the maximum velocity spread within a group. This leads

to a more uniform number of groups contributing to each time bin in the detector,

meaning the top row has the most correct shape.

However, the top row (sMG) does not have the most correct magnitudes. Al-

though sMG does well at resolving the intermediate energy scale, it does not resolve

the finest (small resonance) energy scale. We do not expect sMG to do proper self-

shielding for the fine resonances within each group, meaning the sMG transmission

will not be correct until the group sizes are sufficiently small to resolve all fine reso-

nances.

Figure 5.5 shows the effects of using a shorter detector distance. These figures

add adaptive MG (middle row), which uses contiguous groups that maximally resolve

fine-scale (resonance) behavior in addition to a base coarse group structure that

resolves speeds.The first effect of using a shorter detector distance is that errors in

group speed have smaller (absolute) effect on time-to-detector. The shorter distance

implies a lower group dispersion, causing pulses of more groups to overlap in each
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detector time bin. This smooths the detector response in time and results in αMG

and FEDS (bottom rows) having more correct detector response shapes than in

Fig. 5.4. At long times, errors are visible for αMG and FEDS that show up as noise

in the detector response.

Alternatively, the same effect can be achieved at larger detector distances using

coarser time bins. Figure 5.6 shows the same detector distance as Fig. 5.4 but a

factor of 200 fewer time bins. Aside from late time bins where the flux is small, all

three group structures (sMG, αMG, FEDS) agree to eye norm.

5.3.3 Detector responses for energy DOF counts in energy

Figure 5.7 shows the detector response for a large distance and fewer numbers

of groups. All methods yield a poor differential detector response at this distance

with this energy resolution. Far detector distance and fine time binning allow for the

resolution of pulses for individual groups/elements. Notice that the ordinate limits

on Fig. 5.7 (c,e) are expanded. As energy unknowns are added, detector response

improves.

Figure 5.8 is the same as Fig. 5.7, except it uses a shorter detector distance. This

yields substantially improved differential detector response.

Figure 5.9 is the same as Fig. 5.8, except with fixed group count and varying

ratios of total energy unknowns to coarse groups. As fewer coarse groups are used,

both methods develop worse differential detector response. For αMG, adding fine

groups on top of the coarse groups improves speed fidelity in those coarse groups.

This is not the case for FEDS (cf. Fig. 5.9 (f)). Notice that the ordinate limits on

Fig. 5.9 (f) are expanded.

Figure 5.10 shows example energy meshes used for αMG and FEDS. For FEDS,

the coarse groups discretize in energy while the elements within a coarse group dis-
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cretize in cross section / flux.

Further figures are given in Appendix E.

5.4 Quantitative Comparisons to a Reference Solution

Tables 5.1 – 5.6 give selected results for errors in the three QOI compared to a

finely resolved reference solution for sMG, αMG, and FEDS for various cases and

ratios. A case has a unique distance to the detector, number of time bins, and number

of total energy DOF. Ratios, r, are the number of total energy DOF divided by the

number of coarse groups. The lowest errors for sMG, αMG, and FEDS for each

case are in green, red, and blue, respectively. A fixed grid of ratios were investigated,

though any ratio larger than unity is valid (a ratio of unity being by definition sMG).

Further results are given in Appendix E.

The data have several interesting trends. sMG yields the lowest detector response

errors (error 3) in cases with high bin counts and distances. For intermediate dis-

tances and/or low bin counts, where the error is around a few times 10−3, FEDS can

out-perform sMG for the detector response error, which was not expected, and is

attributed to FEDS being more accurate in the transmission spectrum. FEDS and

αMG yield lower absorption and cumulative detector response errors (errors 1 and

2) than sMG. While holding the total number of energy unknowns fixed, increasing

the ratio generally decreases the absorption and cumulative detector response errors

but increases the detector response error. FEDS can have a factor of 10 smaller

error 1 and factor of 2-8 smaller error 2 than sMG for a fixed total number of energy

DOF. αMG has a factor of 1.5 or less smaller error for errors 1 and 2 than sMG for a

fixed total energy DOF. Increasing the total energy DOF while keeping a fixed ratio

decreases all errors for all problems, including absorption fraction error for FEDS.
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(a) 10 cm, 14,500 groups, no iron
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(b) 10 cm, 14,500 groups, no iron
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(c) 10 cm, 14,500 groups
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(d) 10 cm, 14,500 groups
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(e) 1 m, 14,500 groups
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(f) 1 m, 14,500 groups

Figure 5.3: Reference energy-integrated differential detector response plotted against
detector time using 10,000 time bins for different detector distances. Left column is
linear-linear (x-y). Right column is linear-log.
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(a) 1 m, 1600 groups, sMG
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(b) 1 m, 1600 groups, sMG
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(c) 1 m, 1600 elements, r = 2, FEDS
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(d) 1 m, 1600 elements, r = 2, FEDS
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(e) 1 m, 1600 elements, r = 4, FEDS
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Figure 5.4: Energy-integrated differential detector response plotted against detector
time using 10,000 time bins at a detector distance of 1 m using 1600 unknowns in
energy. Left column is linear-linear (x-y). Right column is linear-log.
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Figure 5.5: Energy-integrated differential detector response plotted against detector
time using 10,000 time bins at a detector distance of 10 cm with 1600 unknowns in
energy. Left column is linear-linear (x-y). Right column is linear-log. A ratio of 10
was used for FEDS and αMG.
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Figure 5.6: Energy-integrated differential detector response plotted against detector
time using 50 time bins at a detector distance of 1 m using 1600 unknowns in energy.
Left column is linear-linear (x-y). Right column is linear-log. A ratio of 10 was used
for FEDS and αMG.
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(f) 1 m, 400 elements, FEDS

Figure 5.7: Energy-integrated differential detector response plotted against detector
time using 10,000 time bins at 1 m using either 100 or 400 unknowns in energy. A
log-linear scale was used. A ratio of 2 was used for FEDS and αMG.
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Figure 5.8: Energy-integrated differential detector response plotted against detector
time using 10,000 time bins at 10 cm using either 100 or 400 unknowns in energy. A
log-linear scale was used. A ratio of 2 was used for FEDS and αMG.
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Figure 5.9: Energy-integrated differential detector response plotted against detector
time using 10,000 time bins at 10 cm using varying ratios and 100 energy unknowns.
A log-linear scale was used.
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Figure 5.10: Energy element membership as a function of energy penalty. The plot
is the total cross section of iron as a function of energy, colored so that each energy
element has its own color.

119



5.5 Convergence Rates

There are two ways we studied to change resolution. In the first, the ratio was

fixed and the total DOF was be increased.1 In the second, the total number of energy

DOF was fixed and the ratio was increased.2 The rate of error reduction in general

depends on which resolution pattern is used.

Figure 5.11 gives errors for the different methods as a function of total energy

DOF for selected fixed ratios. For FEDS, ratios of 2 and 4 were chosen. Error values

for other ratios may be found in tables in the appendices. There is no expectation of

(first-order) convergence because the ratio for FEDS is fixed for each line. The plots

show the effect of increasing groups while keeping the elements per group constant.

The absolute errors and relative position of the lines are as important as the rates

for these plots.

The top column of Fig. 5.11 is for the absorption error (error 1), which does not

depend on the detector placement. Convergence rates are around k1/2, where k is

the total number of energy DOF. sMG does the worst for this QOI and FEDS with

high ratio does the best. αMG is similar to sMG. Error magnitudes are small, below

1 %.

The second column of Fig. 5.11 is for the cumulative detector response error. It

looks similar to the top absorption errors, with half-order convergence rates in total

energy DOF.

The third column is for the detector response error. This error converges rapidly,

between k1 to k3/2. Except at high unknown count, this error has the opposite or-

dering as the others, with sMG having the lowest error for a given unknown count.

This is expected, as sMG uses all of its DOF to resolve the 1/v streaming to which

1This is equivalent to fixing the ratio and increasing the number of coarse groups.
2This is equivalent to fixing the total DOF and decreasing the number of coarse groups.
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this QOI is sensitive, while FEDS and αMG also resolve the fine-scale solution be-

havior. Error magnitudes for this QOI may be large, above 10 %. This error is

an upper-bound on expected advection error, because there is no error cancellation

from numerical smoothing, scattering, or finite solid angle that would be present in

a more realistic problem.

Figures 5.12 and 5.13 show the ratio of αMG or FEDS error to sMG for a fixed

total energy DOF count but varying ratio (number of coarse groups) for several

detector distances, numbers of time bins, and total energy DOF. Values above 1.0

mean αMG or FEDS does better than standard equally-lethargy-spaced MG. First-

order and negative first-order fiducial lines of r1 and r−1 are given.

The right column with FEDS shows expected behavior for the absorption error.

Increasing the ratio (upping the elements per coarse group) decreases this error in a

first-order manner, which shows up as a first-order increase in ratio of sMG error to

FEDS error in Fig. 5.12. An accurate absorption QOI requires correct treatment of

the total cross section, which occurs when more elements per coarse group are used.

Increasing the ratio is often found to increase the detector response error in a

first-order manner, which was not expected, though seems reasonable. An accurate

detector response requires accurate differential treatment of two components, that

of particle advection (speed), and that of transmission fraction through the iron.

Increasing the ratio decreases the number of coarse groups in a first-order manner,

and it seems reasonable that coarse group width impacts advection fidelity in a first-

order sense. The former component explains why decreasing coarse group count

increases error relative to the sMG solution. The second component explains why,

for high unknown count and/or low time bin count, the detector response error can

decrease with increasing ratio for small ratios. In these cases, increased fidelity in

the transmission fraction offsets decreased fidelity in the advection treatment. For
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Figure 5.11: Behavior of errors with fixed ratio and increasing total energy DOF for
all errors at several distances and 10,000 time bins.
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some 50 time bin cases, detector response error was seen to increase more rapidly

than first-order. The cause may stem from decreased error cancellation within the

thick time bins for reduced coarse group count.

Cumulative detector response seems to have the same two error components as

detector response does. Treatment of transmission fraction through the iron is first-

order in ratio while treatment of advection is negative first-order in ratio. The

cumulative detector error tends to decrease (do better versus sMG) at first, then

increase as advection errors begin to dominate, indicating that the cumulative de-

tector response QOI is more sensitive to transmission treatment and less sensitive to

advection treatment than the detector response QOI.

FEDS allows the user to tune the ratio to minimize the error of interest for a fixed

cost, as measured in total energy DOF. If errors in absorption are more important,

higher ratios should be used. If errors in differential detector response are more

important, lower ratios should be used. αMG shows similar trends to FEDS, but at

much lower rates, offering less error tradeoff ability than FEDS. αMG requires the

group structure to be able to resolve the resonant spectral behavior within a fine

group in order to decrease reaction error in that group. The numbers of fine groups

per coarse group were insufficient to effect this. The absorption and cumulative

detector errors for αMG were less than a factor of 2 smaller than the sMG errors,

even at high ratios. Conversely, the detector response errors were up to a factor of 4

larger for αMG than for sMG for large ratios. αMG tends to do better with respect

to sMG at high energy unknown counts, which are not shown here. These results

show sMG to be superior to αMG for low energy unknown counts.
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(a) αMG, 10 cm, 100 DOF

20 21 22 23 24

Ratio of total energy DOF to number of coarse groups

2-4

2-3

2-2

2-1

20

21

22

23

24

R
a
ti

o
 o

f 
sM

G
 e

rr
o
r 

to
 F

E
D

S
 e

rr
o
r abs.

cumul. det.

det.

(b) FEDS, 10 cm, 100 DOF
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(c) αMG, 1 m, 200 DOF
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(d) FEDS, 1 m, 200 DOF
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(e) αMG, 1 m, 400 DOF
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(f) FEDS, 1 m, 400 DOF

Figure 5.12: Behavior of errors with fixed total energy DOF and varying ratio for all
errors and 10,000 time bins.
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(a) αMG, 10 cm, 100 DOF
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(b) FEDS, 10 cm, 100 DOF
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(c) αMG, 1 m, 200 DOF
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(d) FEDS, 1 m, 200 DOF
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(e) αMG, 1 m, 400 DOF
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Figure 5.13: Behavior of errors with fixed total energy DOF and varying ratio for all
errors and 50 time bins.
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Table 5.1: Selected TOF QOI errors for vacuum distance 10 cm and 50 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.77× 10−3 5.59× 10−3

αMG 1.25 80 4.79× 10−3 4.65× 10−3 5.61× 10−3

1.6 62 4.22× 10−3 4.12× 10−3 7.59× 10−3

2 50 4.62× 10−3 4.48× 10−3 6.34× 10−3

4 25 4.42× 10−3 4.28× 10−3 6.31× 10−3

10 10 4.28× 10−3 4.31× 10−3 4.59× 10−2

FEDS 1.25 80 4.08× 10−3 4.08× 10−3 5.51× 10−3

1.6 62 2.88× 10−3 2.92× 10−3 6.52× 10−3

2 50 2.22× 10−3 2.26× 10−3 8.01× 10−3

4 25 1.49× 10−3 1.63× 10−3 2.25× 10−2

10 10 3.38× 10−4 5.09× 10−3 1.90× 10−1

sMG 1 200 200 4.07× 10−3 4.02× 10−3 4.50× 10−3

αMG 1.25 160 3.99× 10−3 3.94× 10−3 4.44× 10−3

1.6 125 3.54× 10−3 3.52× 10−3 4.02× 10−3

2 100 3.62× 10−3 3.56× 10−3 4.30× 10−3

4 50 3.29× 10−3 3.25× 10−3 5.09× 10−3

10 20 3.26× 10−3 3.20× 10−3 4.85× 10−3

FEDS 1.25 160 3.29× 10−3 3.33× 10−3 4.39× 10−3

1.6 125 2.45× 10−3 2.50× 10−3 3.37× 10−3

2 100 2.16× 10−3 2.20× 10−3 3.77× 10−3

4 50 9.70× 10−4 1.02× 10−3 6.65× 10−3

10 20 3.13× 10−4 1.42× 10−3 4.75× 10−2

sMG 1 400 400 3.06× 10−3 3.07× 10−3 3.48× 10−3

αMG 1.25 320 3.01× 10−3 3.02× 10−3 3.50× 10−3

1.6 250 2.67× 10−3 2.69× 10−3 3.14× 10−3

2 200 2.56× 10−3 2.58× 10−3 3.08× 10−3

4 100 2.48× 10−3 2.50× 10−3 3.25× 10−3

10 40 2.30× 10−3 2.33× 10−3 3.01× 10−3

FEDS 1.25 320 2.45× 10−3 2.50× 10−3 3.24× 10−3

1.6 250 1.89× 10−3 1.94× 10−3 2.58× 10−3

2 200 1.59× 10−3 1.63× 10−3 2.22× 10−3

4 100 8.25× 10−4 8.47× 10−4 2.38× 10−3

10 40 2.43× 10−4 4.03× 10−4 8.11× 10−3
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Table 5.2: Selected TOF QOI errors for vacuum distance 10 cm and 10,000 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.75× 10−3 3.68× 10−2

αMG 1.25 80 4.79× 10−3 4.63× 10−3 4.01× 10−2

1.6 62 4.22× 10−3 4.11× 10−3 4.35× 10−2

2 50 4.62× 10−3 4.48× 10−3 5.21× 10−2

4 25 4.42× 10−3 4.27× 10−3 6.31× 10−2

10 10 4.28× 10−3 4.27× 10−3 1.09× 10−1

FEDS 1.25 80 4.08× 10−3 4.09× 10−3 4.64× 10−2

1.6 62 2.88× 10−3 2.93× 10−3 6.05× 10−2

2 50 2.22× 10−3 2.26× 10−3 7.59× 10−2

4 25 1.49× 10−3 1.88× 10−3 1.51× 10−1

10 10 3.38× 10−4 6.06× 10−3 3.47× 10−1

sMG 1 200 200 4.07× 10−3 4.02× 10−3 1.55× 10−2

αMG 1.25 160 3.99× 10−3 3.94× 10−3 1.82× 10−2

1.6 125 3.54× 10−3 3.52× 10−3 1.97× 10−2

2 100 3.62× 10−3 3.56× 10−3 2.20× 10−2

4 50 3.29× 10−3 3.24× 10−3 3.58× 10−2

10 20 3.26× 10−3 3.19× 10−3 4.66× 10−2

FEDS 1.25 160 3.29× 10−3 3.33× 10−3 2.03× 10−2

1.6 125 2.45× 10−3 2.50× 10−3 2.67× 10−2

2 100 2.16× 10−3 2.20× 10−3 3.47× 10−2

4 50 9.70× 10−4 1.03× 10−3 7.04× 10−2

10 20 3.13× 10−4 1.36× 10−3 1.53× 10−1

sMG 1 400 400 3.06× 10−3 3.07× 10−3 5.38× 10−3

αMG 1.25 320 3.01× 10−3 3.02× 10−3 6.65× 10−3

1.6 250 2.67× 10−3 2.69× 10−3 7.52× 10−3

2 200 2.56× 10−3 2.58× 10−3 9.59× 10−3

4 100 2.48× 10−3 2.50× 10−3 1.67× 10−2

10 40 2.30× 10−3 2.33× 10−3 2.23× 10−2

FEDS 1.25 320 2.45× 10−3 2.50× 10−3 7.34× 10−3

1.6 250 1.89× 10−3 1.94× 10−3 1.00× 10−2

2 200 1.59× 10−3 1.63× 10−3 1.34× 10−2

4 100 8.25× 10−4 8.41× 10−4 3.06× 10−2

10 40 2.43× 10−4 4.43× 10−4 7.97× 10−2
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Table 5.3: Selected TOF QOI errors for vacuum distance 1 m and 50 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 200 200 4.07× 10−3 4.04× 10−3 5.83× 10−3

αMG 1.25 160 3.99× 10−3 3.95× 10−3 6.60× 10−3

1.6 125 3.54× 10−3 3.55× 10−3 6.48× 10−3

2 100 3.62× 10−3 3.57× 10−3 9.27× 10−3

4 50 3.29× 10−3 3.41× 10−3 2.91× 10−2

10 20 3.26× 10−3 3.33× 10−3 3.45× 10−2

FEDS 1.25 160 3.29× 10−3 3.28× 10−3 7.26× 10−3

1.6 125 2.45× 10−3 2.65× 10−3 1.31× 10−2

2 100 2.16× 10−3 2.35× 10−3 2.05× 10−2

4 50 9.70× 10−4 2.54× 10−3 6.03× 10−2

10 20 3.13× 10−4 5.73× 10−3 1.92× 10−1

sMG 1 400 400 3.06× 10−3 3.08× 10−3 3.87× 10−3

αMG 1.25 320 3.01× 10−3 3.02× 10−3 3.84× 10−3

1.6 250 2.67× 10−3 2.70× 10−3 3.75× 10−3

2 200 2.56× 10−3 2.60× 10−3 3.96× 10−3

4 100 2.48× 10−3 2.48× 10−3 4.14× 10−3

10 40 2.30× 10−3 2.33× 10−3 8.12× 10−3

FEDS 1.25 320 2.45× 10−3 2.50× 10−3 3.29× 10−3

1.6 250 1.89× 10−3 1.94× 10−3 4.52× 10−3

2 200 1.59× 10−3 1.63× 10−3 3.98× 10−3

4 100 8.25× 10−4 1.06× 10−3 1.80× 10−2

10 40 2.43× 10−4 2.01× 10−3 7.22× 10−2

sMG 1 800 800 2.32× 10−3 2.33× 10−3 2.76× 10−3

αMG 1.25 640 2.10× 10−3 2.13× 10−3 2.66× 10−3

1.6 500 1.83× 10−3 1.87× 10−3 2.41× 10−3

2 400 1.78× 10−3 1.82× 10−3 2.49× 10−3

4 200 1.56× 10−3 1.61× 10−3 2.58× 10−3

10 80 1.48× 10−3 1.51× 10−3 3.22× 10−3

FEDS 1.25 640 1.68× 10−3 1.72× 10−3 2.28× 10−3

1.6 500 1.30× 10−3 1.33× 10−3 1.90× 10−3

2 400 1.03× 10−3 1.07× 10−3 2.17× 10−3

4 200 5.66× 10−4 5.87× 10−4 3.17× 10−3

10 80 1.74× 10−4 7.35× 10−4 2.24× 10−2
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Table 5.4: Selected TOF QOI errors for vacuum distance 1 m and 10,000 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 400 400 3.06× 10−3 3.07× 10−3 8.00× 10−2

αMG 1.25 320 3.01× 10−3 3.02× 10−3 8.80× 10−2

1.6 250 2.67× 10−3 2.69× 10−3 8.80× 10−2

2 200 2.56× 10−3 2.58× 10−3 1.19× 10−1

4 100 2.48× 10−3 2.51× 10−3 1.39× 10−1

10 40 2.30× 10−3 2.35× 10−3 2.16× 10−1

FEDS 1.25 320 2.45× 10−3 2.50× 10−3 1.00× 10−1

1.6 250 1.89× 10−3 1.94× 10−3 1.27× 10−1

2 200 1.59× 10−3 1.63× 10−3 1.52× 10−1

4 100 8.25× 10−4 1.01× 10−3 3.05× 10−1

10 40 2.43× 10−4 2.72× 10−3 7.34× 10−1

sMG 1 800 800 2.32× 10−3 2.33× 10−3 3.56× 10−2

αMG 1.25 640 2.10× 10−3 2.13× 10−3 4.16× 10−2

1.6 500 1.83× 10−3 1.87× 10−3 4.60× 10−2

2 400 1.78× 10−3 1.81× 10−3 5.09× 10−2

4 200 1.56× 10−3 1.60× 10−3 7.76× 10−2

10 80 1.48× 10−3 1.52× 10−3 1.05× 10−1

FEDS 1.25 640 1.68× 10−3 1.72× 10−3 4.57× 10−2

1.6 500 1.30× 10−3 1.33× 10−3 5.55× 10−2

2 400 1.03× 10−3 1.07× 10−3 6.70× 10−2

4 200 5.66× 10−4 5.94× 10−4 1.29× 10−1

10 80 1.74× 10−4 8.18× 10−4 3.76× 10−1

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.37× 10−2

αMG 1.25 1280 1.22× 10−3 1.25× 10−3 1.68× 10−2

1.6 1000 1.11× 10−3 1.14× 10−3 2.07× 10−2

2 800 1.00× 10−3 1.03× 10−3 2.32× 10−2

4 400 8.96× 10−4 9.23× 10−4 4.14× 10−2

10 160 8.45× 10−4 8.70× 10−4 5.09× 10−2

FEDS 1.25 1280 9.75× 10−4 1.00× 10−3 1.78× 10−2

1.6 1000 7.82× 10−4 8.07× 10−4 2.28× 10−2

2 800 6.19× 10−4 6.38× 10−4 2.78× 10−2

4 400 3.30× 10−4 3.42× 10−4 5.66× 10−2

10 160 9.50× 10−5 1.61× 10−4 1.27× 10−1
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Table 5.5: Selected TOF QOI errors for vacuum distance 10 m and 50 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 800 800 2.32× 10−3 2.34× 10−3 4.54× 10−3

αMG 1.25 640 2.10× 10−3 2.13× 10−3 3.79× 10−3

1.6 500 1.83× 10−3 1.88× 10−3 6.94× 10−3

2 400 1.78× 10−3 1.85× 10−3 8.86× 10−3

4 200 1.56× 10−3 1.69× 10−3 1.39× 10−2

10 80 1.48× 10−3 1.58× 10−3 1.18× 10−2

FEDS 1.25 640 1.68× 10−3 1.72× 10−3 4.55× 10−3

1.6 500 1.30× 10−3 1.41× 10−3 9.01× 10−3

2 400 1.03× 10−3 1.12× 10−3 1.28× 10−2

4 200 5.66× 10−4 1.00× 10−3 2.96× 10−2

10 80 1.74× 10−4 1.42× 10−3 5.07× 10−2

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 2.02× 10−3

αMG 1.25 1280 1.22× 10−3 1.24× 10−3 2.08× 10−3

1.6 1000 1.11× 10−3 1.13× 10−3 2.32× 10−3

2 800 1.00× 10−3 1.04× 10−3 2.53× 10−3

4 400 8.96× 10−4 9.54× 10−4 4.99× 10−3

10 160 8.45× 10−4 8.93× 10−4 4.70× 10−3

FEDS 1.25 1280 9.75× 10−4 1.00× 10−3 1.57× 10−3

1.6 1000 7.82× 10−4 7.94× 10−4 1.87× 10−3

2 800 6.19× 10−4 6.48× 10−4 3.04× 10−3

4 400 3.30× 10−4 4.19× 10−4 6.09× 10−3

10 160 9.50× 10−5 4.64× 10−4 1.57× 10−2
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Table 5.6: Selected TOF QOI errors for vacuum distance 10 m and 10,000 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 800 800 2.32× 10−3 2.33× 10−3 4.50× 10−1

αMG 1.25 640 2.10× 10−3 2.14× 10−3 5.29× 10−1

1.6 500 1.83× 10−3 1.87× 10−3 5.63× 10−1

2 400 1.78× 10−3 1.82× 10−3 6.20× 10−1

4 200 1.56× 10−3 1.64× 10−3 8.08× 10−1

10 80 1.48× 10−3 1.59× 10−3 9.07× 10−1

FEDS 1.25 640 1.68× 10−3 1.73× 10−3 5.60× 10−1

1.6 500 1.30× 10−3 1.35× 10−3 6.56× 10−1

2 400 1.03× 10−3 1.10× 10−3 7.44× 10−1

4 200 5.66× 10−4 8.33× 10−4 1.02× 100

10 80 1.74× 10−4 1.53× 10−3 1.40× 100

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.49× 10−1

αMG 1.25 1280 1.22× 10−3 1.25× 10−3 1.69× 10−1

1.6 1000 1.11× 10−3 1.14× 10−3 2.22× 10−1

2 800 1.00× 10−3 1.03× 10−3 2.81× 10−1

4 400 8.96× 10−4 9.33× 10−4 4.72× 10−1

10 160 8.45× 10−4 8.97× 10−4 5.69× 10−1

FEDS 1.25 1280 9.75× 10−4 1.00× 10−3 1.87× 10−1

1.6 1000 7.82× 10−4 8.09× 10−4 2.64× 10−1

2 800 6.19× 10−4 6.44× 10−4 3.44× 10−1

4 400 3.30× 10−4 4.11× 10−4 6.30× 10−1

10 160 9.50× 10−5 6.35× 10−4 9.19× 10−1
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6. COMPARISONS TO CONTINUOUS-ENERGY MONTE CARLO

6.1 Problem Overview

In this section, we address an important question: can FEDS attain similar fi-

delity as continuous-energy Monte Carlo? Specifically, I address whether my FEDS

implementation can attain sufficiently small errors in a simple-yet-relevant reactor

problem compared with MCNP using the same initial cross sections. The results

of this section constitute an existence proof that it is possible to attain MCNP-like

accuracy with this method. The results give a upper bound on resolution required

match MCNP for this problem, and quantify the closeness of this matching.

There are several interesting questions this section does not answer. Most im-

portantly, it does not answer the question of required unknown count to achieve

a desired resolution in energy. By specifying the number of energy elements per

coarse group manually instead of automatically, I was able to decrease the error in

k-eigenvalue in some cases, for example. Results in other sections show that much

lower errors can be achieved if better basis functions are used when condensing the

cross sections. I leave to future work applying and testing the various condensation

schemes used in reactor engineering calculations today that have made unresolved

MG capable of high accuracy.

The comparisons in this section to MG use an unoptimized MG. This section

does not compare an unoptimized FEDS to an optimized MG because it is an unfair

case. Many, if not all, methods to optimize MG cross sections to preserve reaction

rates in heterogeneous geometries can be applied in a straightforward way to FEDS:

they may be applied to the subelements, and the subelements can be combined using

SPH-like methodologies. I leave to future work the interesting question of comparing
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an optimized MG to an optimized FEDS.

I claim these results are valuable in convincing others try the FEDS method, es-

pecially in light of results in previous sections. The cylindrical pincell problems with

MG reference solution quantify expected convergence rates. The C5 problem shows

FEDS can handle complicated geometries with several heterogeneously positioned

resonant nuclides. The time-of-flight problem shows FEDS is sufficiently flexible to

tailor resolution to the energy or cross section / flux domain. This slab pincell prob-

lem with MCNP reference solution shows the method can get the “correct” answer

with at most a reasonable number of unknowns in energy, at least for simple pincell

problems.

This section addresses shortcomings in the methodologies of the cylindrical pincell

and C5 sections in an attempt to be more compelling. Those previous sections used

energy penalties for dividing energy space, which is shown to be inferior to the use

of coarse groups in this section. Previous sections compared to a reference MG

solution, while this section compares to the “right answer” of continuous-energy

Monte Carlo. Previous sections used QOI that were energy-integrated, which may

hide error cancellation. This section defines an edit structure of 12 coarse groups

and does error comparisons on each coarse group, showing a more differential view

of solution fidelity.

The results of this section are that FEDS attains correct fine-scale behavior of the

solution at around 250 unknowns over the entire resolved resonance range (RRR).

Error reduction rates are found to be first-order with respect to unknown count in

the RRR until errors reach 10 – 50 pcm, at which point errors in energy discretization

are comparable to other numerical errors. In contrast to FEDS, a MG comparison

does not converge as unknowns are added for the unknown counts used here, except

for the low-lying resonances that are resolved by the group structure.
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6.2 Problem Description

Table 6.1 gives a description of the problems studied. All problems used a one-

dimensional (infinite by way of reflecting boundaries in x and y) infinite lattice of

pincells made up of UO2 fuel (10.29769 g/cm3 in z ∈ [0, 0.39218] cm) and H2O

moderator (0.740582 g/cm3 in z ∈ [0.39218, 0.62992] cm). Both MCNP and PDT

used the same problem geometry and material compositions. A resolution study in

space/angle/scattering moment was performed in PDT to determine when the reac-

tion rates stopped changing. PDT used P3 scattering, S32 Gauß-Legendre quadra-

ture, and lumped PWLD spatial discretization with 20 (12) cells in the fuel (and its

boundary) and 10 (5) cells in the moderator (and its boundary).

Varying energy discretizations were used for this problem. MCNP5 version 1.60

was used as the reference with ENDF/B-VII.1 cross sections at 293.6 K processed

with NJOY 99.364 to create custom ACE files. PDT (circa version 928) was used as

the test with the same ENDF/B-VII.1 cross sections at 293.6 K processed with NJOY

99.364 to create custom GENDF files, that were then converted to PDT-format cross

section files by a custom Python script.

Four problems were investigated. The first problem (A) used only depleted ura-

nium (U-238) and a spatially-flat, fixed fission source. The fission source was the

thermal-neutron-induced Watt fission spectrum characterized by a = 0.988 MeV and

b = 2.249 MeV−1. PDT was given an analytically group-integrated version of this

quantity. So not to double count the fission source, the nonu card was used in MCNP

and the ν, νσf and χ cross sections were manually removed from the PDT cross sec-

tions. The fixed fission source is a decent approximation to the true fission source

within a pin and provided a level of additional consistency between MCNP and PDT.

The second problem (B) added a fissile material (4% by atom U-235) but kept the
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fixed fission source. This added the challenge of resonance interference effects. The

third problem (C) was the same as B, except it was formulated as a k-eigenvalue

problem and so had a spatially dependent source. Unlike MCNP, the PDT cross sec-

tions used a fixed fission spectrum, χ, for all incident neutron energies for problem

C. The fourth problem (D) was the same as A, but incorrect chord lengths / escape

cross sections were used. Namely, chord lengths for a 2D pincell with cylindrical

fuel were used. This was meant to show the dependence of MG schemes on using

accurate self-shielding parameters.

Reaction-rate-based quantities of interest (QOI) were compared between MCNP

and PDT on a coarse energy grid. The energy grid was chosen based on conversations

with Dr. Kord Smith at MIT and is given in Table 6.2. The highest-energy group is

for fast neutrons. The second-highest-energy group is for the unresolved resonance

range (URR) of U-238. The next eight groups are in the resolved resonance region

(RRR) above 4 eV, where thermal effects start becoming important. The penultimate

group contains low-lying resonances, and the final, lowest-energy group is for thermal

neutrons. The edit structure is hierarchical with the SHEM-361 boundaries. All

energy structures investigated in this section are hierarchical with the coarse energy

grid. For FEDS energy meshes, all elements are restricted to live within one coarse

group, which simplifies the process of projecting onto the coarse mesh.

Varying energy meshes were compared. Table 6.3 gives the number of groups

used in the non-RRR coarse groups. All calculations in this section used the SHEM-

361-group structure outside the RRR region. Table 6.4 gives the number of energy

elements used within each of the RRR coarse groups.

The SHEM-361-group structure was developed in Canada to be accurate for sev-

eral reactor types when using the subgroup (SG) method to generate cross sections

[56]. For this study, the SG method was not used. Instead, the “lattice calculation”
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was a Bondarenko iteration on background cross section using a analytically com-

puted escape cross section of S/(4V ), where S is the surface area of the fuel and V

is its volume. Because an approximate self-shielding calculation was used, the errors

from the SHEM-361-group structure are higher than would be expected from cross

sections produced by, for example, DRAGON [74].

New SHEM-244 and SHEM-166 group structures were created for this section. To

create the SHEM-244 and SHEM-166 group structures, I began with the coarse group

boundaries in Table 6.2. The SHEM-361 group structure [56] was used in the fast and

thermal regions (coarse groups I, II, XI, and XII). For the SHEM-244 group structure,

a lethargy width of approximately 0.2 was used for the higher-energy RRR where the

resonances were not resolved by the group structure. For the lower-energy RRR, I

attempted to resolve the lowest 3 resonances of U-238 and a few low-lying resonances

of U-235. A lethargy thickness of approximately 0.027 was used to accomplish this.

For the SHEM-166 group structure, 2 or 3 equally-spaced-in-lethargy groups were

used in the higher-energy RRR. Lethargy spacings of approximately 0.18 and 0.10

were used in coarse groups IX and X, respectively. Group boundaries for all the

SHEM meshes may be found in the accompanying appendix, Appendix F.

For the FEDS energy meshes, a two-step process was used. In the first step, the

number of elements to use per coarse group was determined by making this number

proportional to the relative standard deviation of the spectra the coarse group. The

second step looped over coarse groups, determining a generalized (discontiguous)

energy mesh per coarse group. These meshes were stitched into one mesh over all

energies.

In this section, we focus on two types of errors, plotted for each coarse group.

136



The first error is absolute normalized error, in units of per-cent-mille (pcm):

Et,g,pcm = (Pt,g −Mt,g)
Vt

Nt,pcm

105 pcm, (6.1a)

where Et,g is the error for tally t in coarse group g, Vt is the volume associated with

the tally, Pt,g is the volume-averaged value of the tally t integrated over group g

given by PDT, Mt,g is the volume-averaged value of the tally t integrated over group

g given by MCNP, and Nt,pcm is either the total absorption or fission reaction rate

for all nuclides integrated over the entire pincell. The second error is the relative

error in percent:

Et,g,rel =
Pt,g −Mt,g

Mt,g

100 %. (6.1b)

This total absorption rate gives the reaction rate of nuclide disappearance from

neutron interaction. PDT defines the total absorption rate using a cross section equal

to MT 1 - MT 2 - MT 4, where MT 1 is the total cross section, MT 2 is the elastic

cross section, and MT 4 is the sum of the inelastic cross sections. These PDT cross

sections are not the sums of the columns of their respective transfer matrices. MCNP

defines the total absorption rate using an FM multiplier using cross sections “(-2:-

6:16:17).” -2 means total neutron disappearance (absorption that does not produce

another neutron), -6 means total fission, 16 is (n,2n), and 17 is (n,3n). This FM tally

does not include reactions such as (n,4n), (n,αn), etc. in its absorption rate. Such

additions are negligible for the materials used and the thermal spectrum present.

The total fission rate gives the reaction rate of nuclide disappearance due to

fission. It does not include ν, the average number of neutrons produced per fission,

because ν had to be “turned off” to do problems A, B, and D. PDT defines the total
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fission rate using MT 18, the fission cross section. MCNP defines the total fission

rate using an FM tally multiplier using cross section -6, the total fission cross section.

Table 6.1: Pincell problem definitions

Problem Description
A 1D slab U-238 pincell with fixed fission source
B 1D slab U-238 and U-235 pincell with fixed fission source
C 1D slab U-238 and U-235 pincell in k-eigenvalue formulation
D 1D slab U-238 pincell with fixed fission source using 2D pin escape XS

Table 6.2: Coarse groups used for the edits

Coarse Group Upper Energy (eV) Uses FEDS?
I 2.00000× 107 No

II 1.40000× 105 No
III 2.26994× 104 Yes
IV 9.11881× 103 Yes
V 2.08410× 103 Yes

VI 5.39204× 102 Yes
VII 1.54176× 102 Yes

VIII 5.17847× 101 Yes
IX 2.78852× 101 Yes
X 9.50002× 100 Yes

XI 4.21983× 100 No
XII 6.24999× 10−1 No

6.3 Results

Figure 6.1 plots the volume- and bin-averaged fluxes and absorption reaction

rates for problem A. MCNP5 was used to calculate these values on a tally that used

the SHEM-361-group structure. This is the “exact” answer projected onto a coarse
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Table 6.3: Energy resolutions outside the RRR.

Coarse group I II XI XII Total
Fine groups per coarse group 35 15 52 34 136

Table 6.4: Energy resolutions in the RRR for the slab pincell problem. “Resonant
nuclides” refers to which nuclides were used as spectra when computing the energy
mesh. Values given for each coarse group in the RRR are the number of energy
elements within that coarse group.

Name Resonant nuclides III IV V VI VII VIII IX X Total
SHEM-166 N/A 2 3 3 3 3 3 5 8 30
R1,d U-238 1 2 3 3 4 5 6 6 30
R1,e U-238 + U-235 1 2 3 4 4 5 5 6 30
R2,d U-238 2 4 6 7 8 10 11 11 59
R2,e U-238 + U-235 2 4 6 7 8 10 11 11 59
SHEM-244 N/A 5 8 7 6 6 8 37 31 108
R3,d U-238 4 8 10 12 15 19 20 20 108
R3,e U-238 + U-235 4 8 10 12 15 19 19 21 108
SHEM-361 N/A 6 9 16 31 39 20 52 52 225
R4,d U-238 9 16 20 26 32 39 42 41 225
R4,e U-238 + U-235 9 16 21 25 32 39 40 43 225
R5,d U-238 11 19 26 32 40 49 52 52 281
R5,e U-238 + U-235 11 19 26 32 40 49 50 54 281
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mesh (Table 6.2). Zoom-ins of the lower portion of the resolved resonance region

(RRR) show the SHEM-361-group structure resolves the lower resonances of U-238,

but not the larger ones.
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Figure 6.1: Flux and reaction rates tallied onto the SHEM-361-group structure using
MCNP for problem A (cf. Table 6.1).

Figure 6.2 gives the unnormalized volume- and energy-averaged absorption rates

for problem B for the three different SHEM group structures to show where the group

140



structures resolve resonance features. The left column is the entire energy range. The

right column is a zoom of the lower RRR. Absorption rates in the inner and outer

fuel are plotted. Spatial self-shielding causes flux depressions in the inner fuel that

reduce resonance reaction rates. The effect of the self-shielding can be large: more

than a factor of ten difference in average reaction rates between inside and outside.

6.3.1 Errors for problem C

Table 6.5 gives error in k-eigenvalue for problem C for the various energy dis-

cretizations studied. The errors in the SHEM MG family do not converge and end at

several hundred pcm. SHEM-244 gets a low eigenvalue error through fortuitous error

cancellation. Errors in the FEDS methods begin large but converge uniformly with

increasing energy resolution in the RRR. Both the Rd family, which only uses U-238

when calculating the energy mesh, and the Re family, which uses both U-238 and

U-235, have approximately the same magnitude (and sign) of errors. This indicates

either fortuitous error cancellation for the Rd family on U-235-related errors, or that

U-238 is the dominant nuclide, and getting it right is necessary and sufficient for

getting the flux, and hence reaction rates, correct.

The last column of Table 6.5 is efficiency, which is defined as the inverse of the

error multiplied by the number of energy unknowns in the RRR. Efficiency should be

constant if the method is first-order convergent. Efficiency decreases for the SHEM

MG case because increasing resolution is not decreasing the error because the group

structures are insufficient to resolve all of the resonances. Efficiency is approximately

constant for the FEDS methods, starting around 4, and dipping to around 3 before

climbing to around 5.5. The dip may be due to increases in fidelity causing decreases

in error cancellation while not affecting the integral eigenvalue error.

Tables 6.6 – 6.9 give errors in all the QOI for problem C for the R5,e energy
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Figure 6.2: Reaction rates with the SHEM group structures using PDT for problem
B
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discretization, which represents the highest fidelity energy discretization used. Errors

for many differential QOI are given on the coarse group mesh. Relative errors in

percent and absolute errors in pcm are given. These results show FEDS can get

differential behavior correct with a minimal number of DOF in the RRR. Most

relative errors are under 0.5 % and most absolute errors are under 20 pcm for coarse

groups in the RRR. U-238 absorption errors in coarse group VI are still large, but

are within 1.3 %.

Errors for other problems are similar and are not given in table format. Errors in

FEDS tend to converge with increasing resolution. Differential errors in MG using

the SHEM group structures are large and do not tend to converge with increasing

resolution for the resolutions studied.

Table 6.5: Errors in k-eigenvalue for various energy resolutions for problem C

Name Error (pcm) Efficiency
(1/[error×DOF])

SHEM-166 −202± 2 16.5
SHEM-244 −93± 2 9.9
SHEM-361 −587± 2 0.8
R1,d 762± 2 4.4
R2,d 493± 2 3.4
R3,d 317± 2 2.9
R4,d 116± 2 3.8
R5,d 69± 2 5.2
R1,e 757± 2 4.4
R2,e 506± 2 3.4
R3,e 313± 2 3.0
R4,e 89± 2 5.0
R5,e 63± 2 5.6
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Table 6.6: Errors for energy discretization R5,e for problem C.

Coarse PDT MCNP (P-M) (P-M)
Group mean sigma /M

(rxn. frac.) (rxn. frac.) (%) (%) (pcm)
Total absorption

I 1.04269× 10−1 1.04128× 10−1 0.00 0.14 14
II 2.88655× 10−2 2.88853× 10−2 0.00 -0.07 -2
III 1.98683× 10−2 1.97710× 10−2 0.01 0.49 10
IV 3.99224× 10−2 3.98728× 10−2 0.01 0.12 5
V 4.98174× 10−2 4.98341× 10−2 0.01 -0.03 -2
VI 6.26583× 10−2 6.30235× 10−2 0.01 -0.58 -37
VII 7.37969× 10−2 7.39168× 10−2 0.01 -0.16 -12
VIII 5.71912× 10−2 5.74328× 10−2 0.01 -0.42 -24
IX 7.98188× 10−2 7.99493× 10−2 0.01 -0.16 -13
X 7.76790× 10−2 7.78452× 10−2 0.01 -0.21 -17
XI 5.70235× 10−2 5.67182× 10−2 0.01 0.54 31
XII 3.49220× 10−1 3.48623× 10−1 0.01 0.17 60
Total 1.00013× 100 1.00000× 100 0.00 0.01 13

Total fission
I 1.42551× 10−1 1.42704× 10−1 0.00 -0.11 -15
II 1.15503× 10−2 1.15456× 10−2 0.00 0.04 0
III 6.35742× 10−3 6.33496× 10−3 0.01 0.35 2
IV 1.48349× 10−2 1.48181× 10−2 0.00 0.11 2
V 2.47220× 10−2 2.47963× 10−2 0.01 -0.30 -7
VI 3.98580× 10−2 3.99442× 10−2 0.01 -0.22 -9
VII 4.66445× 10−2 4.65741× 10−2 0.01 0.15 7
VIII 3.30419× 10−2 3.30459× 10−2 0.01 -0.01 -0
IX 4.87366× 10−2 4.86913× 10−2 0.01 0.09 5
X 2.66386× 10−2 2.68131× 10−2 0.01 -0.65 -17
XI 6.93492× 10−2 6.89325× 10−2 0.01 0.60 42
XII 5.36665× 10−1 5.35800× 10−1 0.01 0.16 87
Total 1.00095× 100 1.00000× 100 0.01 0.10 95
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Table 6.7: Errors for energy discretization R5,e for problem C (cont.).

Coarse PDT MCNP (P-M) (P-M)
Group mean sigma /M

(rxn. frac.) (rxn. frac.) (%) (%) (pcm)
Inner absorption (U-238)

I 6.83657× 10−2 6.83019× 10−2 0.00 0.09 6
II 1.75628× 10−2 1.75707× 10−2 0.00 -0.04 -1
III 1.27617× 10−2 1.26883× 10−2 0.01 0.58 7
IV 2.40863× 10−2 2.40416× 10−2 0.01 0.19 4
V 2.46261× 10−2 2.45685× 10−2 0.01 0.23 6
VI 2.52666× 10−2 2.54792× 10−2 0.01 -0.83 -21
VII 2.82720× 10−2 2.83475× 10−2 0.01 -0.27 -8
VIII 2.12401× 10−2 2.14664× 10−2 0.02 -1.05 -23
IX 2.62440× 10−2 2.63835× 10−2 0.01 -0.53 -14
X 3.59815× 10−2 3.60029× 10−2 0.01 -0.06 -2
XI 1.00480× 10−2 1.00132× 10−2 0.01 0.35 3
XII 2.62318× 10−2 2.61838× 10−2 0.01 0.18 5
Total 3.20687× 10−1 3.21047× 10−1 0.00 -0.11 -36

Outer absorption (U-238)
I 1.50927× 10−2 1.51016× 10−2 0.00 -0.06 -1
II 3.93380× 10−3 3.94888× 10−3 0.00 -0.38 -2
III 2.90693× 10−3 2.89808× 10−3 0.01 0.31 1
IV 5.80774× 10−3 5.81693× 10−3 0.01 -0.16 -1
V 7.12959× 10−3 7.15933× 10−3 0.01 -0.42 -3
VI 8.85728× 10−3 8.96788× 10−3 0.02 -1.23 -11
VII 1.13607× 10−2 1.14666× 10−2 0.02 -0.92 -11
VIII 9.43902× 10−3 9.44095× 10−3 0.02 -0.02 -0
IX 1.24264× 10−2 1.24397× 10−2 0.02 -0.11 -1
X 1.95071× 10−2 1.95413× 10−2 0.02 -0.17 -3
XI 2.28902× 10−3 2.28017× 10−3 0.01 0.39 1
XII 6.58048× 10−3 6.55816× 10−3 0.01 0.34 2
Total 1.05331× 10−1 1.05619× 10−1 0.01 -0.27 -29

145



Table 6.8: Errors for energy discretization R5,e for problem C (cont.).

Coarse PDT MCNP (P-M) (P-M)
Group mean sigma /M

(rxn. frac.) (rxn. frac.) (%) (%) (pcm)
Fuel absorption (U-238)

I 8.34585× 10−2 8.34036× 10−2 0.00 0.07 5
II 2.14966× 10−2 2.15196× 10−2 0.00 -0.11 -2
III 1.56687× 10−2 1.55863× 10−2 0.01 0.53 8
IV 2.98941× 10−2 2.98585× 10−2 0.01 0.12 4
V 3.17557× 10−2 3.17279× 10−2 0.01 0.09 3
VI 3.41238× 10−2 3.44470× 10−2 0.01 -0.94 -32
VII 3.96327× 10−2 3.98139× 10−2 0.01 -0.46 -18
VIII 3.06792× 10−2 3.09073× 10−2 0.01 -0.74 -23
IX 3.86704× 10−2 3.88232× 10−2 0.01 -0.39 -15
X 5.54886× 10−2 5.55445× 10−2 0.01 -0.10 -6
XI 1.23370× 10−2 1.22934× 10−2 0.01 0.35 4
XII 3.28122× 10−2 3.27420× 10−2 0.01 0.21 7
Total 4.26017× 10−1 4.26667× 10−1 0.00 -0.15 -65

Fuel absorption (U-235)
I 1.69156× 10−2 1.68705× 10−2 0.00 0.27 5
II 7.34548× 10−3 7.34257× 10−3 0.00 0.04 0
III 4.18261× 10−3 4.16801× 10−3 0.01 0.35 1
IV 9.98246× 10−3 9.96902× 10−3 0.00 0.13 1
V 1.79838× 10−2 1.80289× 10−2 0.01 -0.25 -5
VI 2.84092× 10−2 2.84522× 10−2 0.01 -0.15 -4
VII 3.39935× 10−2 3.39335× 10−2 0.01 0.18 6
VIII 2.63867× 10−2 2.64012× 10−2 0.01 -0.05 -1
IX 4.08524× 10−2 4.08311× 10−2 0.01 0.05 2
X 2.19127× 10−2 2.20235× 10−2 0.01 -0.50 -11
XI 4.32494× 10−2 4.29946× 10−2 0.01 0.59 25
XII 3.09153× 10−1 3.08655× 10−1 0.01 0.16 50
Total 5.60367× 10−1 5.59671× 10−1 0.01 0.12 70
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6.3.2 Errors for problem A

We compare reaction rate errors for MG and FEDS using the same number

of degrees of freedom for each. This provides an apples-to-apples comparison of

resolution versus cost. Element structures with 30, 108, and 225 unknowns in the

RRR are compared. Problems A, B, and D are compared (Table 6.1). Results for

problem C were similar to problem B and so are not shown, aside from errors given

above in Tables 6.5 – 6.9. Fuel-integrated total absorption and fission reaction rates

are compared. Statistical uncertainties from MCNP are shown as shading around

the lines.

Figure 6.3 gives the errors in absorption rate for problem A over the entire prob-

lem for several energy discretizations compared to continuous-energy Monte Carlo.

Resolution increases left to right. The top row shows MG, using the SHEM group

boundaries. As resolution is increased, differential errors stay approximately con-

stant around 200 pcm for the higher portion of the RRR where the resonances are

not resolved by the group structure. The errors in the lower portion of the RRR

decrease with increasing resolution because the group structure begins to resolve

the low-lying resonances (cf. Fig. 6.2). The normalization for problem A is on total

absorption rate, meaning the sum of the errors is zero.1 The absorption rate in the

lowest coarse group may be regarded as a cumulative error of its upstream errors.

This error does not converge for the SHEM group structures.

The middle row of Fig. 6.3 uses FEDS with energy meshes in the Rd family. In

this family, the only resonant nuclide used in determining the energy mesh is U-238.

At the lowest resolution, with 30 energy unknowns in the RRR, differential errors

1Differences in the cross sections used to define absorption rate and inconsistencies in the one-
dimensional cross sections versus the column sums of the transfer matrices may make the sum of
the errors non-zero, though this was measured as a small effect.
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are upwards of 200 pcm and the cumulative error above 500 pcm. As resolution is

increased to 225 unknowns, differential errors decrease to around 60 pcm or less and

cumulative error to around 100 pcm. These FEDS energy structures are getting a

better integral answer without relying on error cancellation.

The bottom row of Fig. 6.3 uses FEDS with energy meshes in the Re family. In

this family, the resonant nuclides used in determining the energy mesh include both

U-235 and U-238. There is no U-235 in problem A, so this family of energy meshes

should be less efficient than the Rd family. Figure 6.3 shows similar errors for both

Rd and Re families, indicating the loss in efficiency is negligible for this problem.

6.3.3 Errors for problem D

Figure 6.4 gives the errors in absorption rate for problem D, which is like problem

A, except it uses 2-D pincell escape cross sections instead of 1-D slab escape cross

sections. Using the wrong escape cross section should increase error in resonances not

resolved by the energy mesh. The SHEM group boundaries show differential errors

in excess of 700 pcm and cumulative errors in excess of 1000 pcm. The cumulative

errors converge for the MG comparison. This is likely caused by resolution of the

lower RRR at higher energy unknown count.

Both the Rd and Re families converge with increasing energy unknown count.

Even at the coarsest unknown count of R1,d, differential errors are below 200 pcm in

all coarse groups. As energy unknown count is increased, differential errors converge.

At 225 unknowns in the RRR, the FEDS differential and cumulative errors are similar

to those of problem A, where the proper escape cross section was used. This is another

demonstration that FEDS is insensitive to basis function / condensing spectrum.
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(b) SHEM-244
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(c) SHEM-361
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Figure 6.3: Total absorption errors between MCNP and PDT for different energy
structures for problem A in pcm, normalized to the total absorption rate
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(c) SHEM-361
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Figure 6.4: Total absorption errors between MCNP and PDT for different energy
structures for problem D in pcm, normalized to the total absorption rate

150



6.3.4 Errors for problem B

Figures 6.5 and 6.6 give the total absorption and fission rate errors for problem

B. Fission errors do not include ν. Results are similar to problem A, except problem

B has U-235, and so the Re family is expected to be more efficient than the Rd

family, which will not resolve U-235 resonances in its energy mesh. This is seen in

Fig. 6.6, where the differential errors in the Re family decrease more quickly than

differential errors in the Rd family. The differential errors in R4,e are a factor of

2 to 4 smaller than those in R4,d, which are less than 80 pcm. The cumulative

errors are approximately the same, due to favorable error cancellation for R4,d. This

shows FEDS can handle disparate resonant nuclides but also shows FEDS can do

well when not all resonant nuclides are accounted for. The SHEM MG family does

not appreciably converge at the resolutions used because the group structure does

not resolve resonance behavior.

6.3.5 Component errors for problem B

Figure 6.7 shows errors on further tallies for problem B using the SHEM-361

energy mesh, which uses 225 unknowns in the RRR. The tallies explored are more

differential in space and nuclide. Figure 6.7(a)-(c) give errors in absorption in U-238

in the inside, outside, and totality of the fuel, respectively. Spatial self-shielding is

larger near the inside of the fuel. The condensation used for the SHEM MG cross

sections was formulated to get the reaction rate correct averaged over the entire fuel

pin, not portions of the pin. Figure 6.7(a)-(c) show that MG makes a large (over 200

pcm) spatial error, having more reactions in the center than the outside of the fuel.

There is large error cancellation to get approximate rates correct over the entire fuel.

Figure 6.7(d) and (e) give the U-235 absorption and fission rate errors over the

entire fuel, respectively. Differential errors are around 50 pcm per coarse group.
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(b) SHEM-244
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(c) SHEM-361
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Figure 6.5: Total absorption errors between MCNP and PDT for different energy
structures for problem B in pcm, normalized to the total absorption rate
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(c) SHEM-361
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(i) R4,e

Figure 6.6: Total fission errors between MCNP and PDT for different energy struc-
tures for problem B in pcm, normalized to the total fission rate
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Cumulative errors are large, above 250 pcm. This is at the highest resolution of MG

studied.

Figure 6.8 shows errors on further tallies for problem B using the R4,e energy

mesh, which uses 225 unknowns in the RRR and includes U-235 resonances when

generating the energy mesh. Figure 6.8(a)-(c) give errors in absorption in U-238 in

the inside, outside, and totality of the fuel, respectively. They show FEDS correctly

treats spatial self-shielding, leading to differential errors below 25 pcm in each coarse

group in (a) and (b).

Figure 6.8(d) and (e) give the U-235 absorption and fission rate errors over the

entire fuel, respectively. Differential errors are below 20 pcm per coarse group. Cu-

mulative errors are below 90 pcm. Errors in R5,e, which uses 281 unknowns in the

RRR, are smaller yet, indicating FEDS converges correctly on differential quantities.

Other figures show the same general trends, and may be found in Appendix F.

6.3.6 Error convergence for problems A and B

Figure 6.9 shows convergence rates in the U-238 absorption rate in inner fuel and

coarse group VI (a), U-238 absorption rate in outer fuel and coarse group VI (b), total

U-235 fission rate (c), and U-235 fission rate in coarse group VI (d). The convergence

rate is approximately first-order for several QOI except at low unknown count or low

error magnitudes. For low unknown count, error cancellation or insufficient DOF

within the coarse group may lead to non-convergence. When QOI error decreases to

around 10 – 20 pcm, numerical errors not related to the energy discretization begin

to dominate, ending convergence (Fig. 6.9(d)). This behavior is typical. See tables

and figures above and in Appendix F for more convergence rate examples.
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(a) Inner fuel U-238 absorption differences
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(b) Outer fuel U-238 absorption differences
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(c) Total fuel U-238 absorption differences
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(d) Total fuel U-235 absorption differences
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(e) Total fuel U-235 fission differences

Figure 6.7: Component errors between MCNP and PDT using the 361-group SHEM
structure for problem B in pcm, normalized to the total absorption or fission rate
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(a) Inner fuel U-238 absorption differences
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(b) Outer fuel U-238 absorption differences
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(c) Total fuel U-238 absorption differences
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(d) Total fuel U-235 absorption differences
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(e) Total fuel U-235 fission differences

Figure 6.8: Component errors between MCNP and PDT using the R4,e structure for
problem B in pcm, normalized to the total absorption or fission rate
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Figure 6.9: Errors in selected QOI as a function of energy unknowns for different
mesh families. Re and Rd refer to the mesh family. VI refers to the coarse group.
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Table 6.9: Errors for energy discretization R5,e for problem C (cont.).

Coarse PDT MCNP (P-M) (P-M)
Group mean sigma /M

(rxn. frac.) (rxn. frac.) (%) (%) (pcm)
Fuel fission (U-235)

I 3.09515× 10−2 3.08718× 10−2 0.00 0.26 8
II 1.15388× 10−2 1.15343× 10−2 0.00 0.04 0
III 6.35385× 10−3 6.33149× 10−3 0.01 0.35 2
IV 1.48322× 10−2 1.48157× 10−2 0.00 0.11 2
V 2.46520× 10−2 2.47263× 10−2 0.01 -0.30 -7
VI 3.98576× 10−2 3.99446× 10−2 0.01 -0.22 -9
VII 4.66444× 10−2 4.65747× 10−2 0.01 0.15 7
VIII 3.30419× 10−2 3.30463× 10−2 0.01 -0.01 -0
IX 4.87364× 10−2 4.86919× 10−2 0.01 0.09 4
X 2.66385× 10−2 2.68135× 10−2 0.01 -0.65 -18
XI 6.93491× 10−2 6.89334× 10−2 0.01 0.60 42
XII 5.36665× 10−1 5.35809× 10−1 0.01 0.16 86
Total 8.89261× 10−1 8.88093× 10−1 0.01 0.13 117
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7. CONCLUSIONS

7.1 Conclusions

I have developed, implemented, and tested the Finite-Element-with-Discontiguous-

Support (FEDS) method, a novel energy discretization scheme for radiation transport

that can capture resonance behavior in the solution with a modest unknown count

that does not depend on the number of resonances. This property is characteristic

of multiband (MB) methods, which discretize the solution in a Lebesgue sense, but

is not shared by multigroup (MG) methods, which require multiple unknowns per

resonance to capture fine-scale behavior in energy. FEDS generalizes the MB notion

of discretizing the solution by banding a single resonant total cross section to dis-

cretizing the solution by minimizing the variance of several infinite-medium spectra

within an energy element. Like MG methods, FEDS defines its unknowns in energy

space, though unlike MG, its energy elements become discontiguous. By using one

energy mesh for the entire problem, FEDS overcomes the primary weakness of MB,

which is an approximate handling of band interface conditions between regions with

disparate materials or temperatures. FEDS is less sensitive than unresolved MG to

condensing spectrum because resonances are resolved by the energy elements.

Mathematically, FEDS is a Petrov-Galerkin Finite Element Method whose weight

functions are membership functions1 that have support only within the corresponding

discontiguous energy element and whose basis functions have the same support and a

user-defined shape that accounts for short-range resonance self-shielding effects and

long-range solution behavior, where “range” refers to distance along the energy axis.

1Membership functions are square-tooth functions that vary discontinuously between unity in
some regions and zero in other regions. Mathematically, they may be generated by sums of Heaviside
step functions.
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The FEDS method uses cross sections that are basis-function-weighted in a transport

equation that can be solved by traditional MG transport solvers, provided they can

handle upscattering.

In addition to the FEDS method, this work introduced two novel techniques.

The first was a family of clustering algorithms that solve the minimization problem

but produce contiguous groups, resulting in an adaptive MG method that achieves

higher fidelity than standard equal-lethargy-spaced MG for the same group count and

condensing spectrum. The second was a method that allowed efficient hierarchical

energy structures to be used. A coarse group structure is defined and each coarse

group is further split into energy elements or groups. The second technique was an

algorithm to automatically apportion unknowns among the coarse groups based on

a relative variance-like metric within a coarse group.

FEDS performs favorably on a variety of problems and for a variety of quantities

of interest (QOI). FEDS demonstrated first-order convergence as energy unknowns

were added, even at relatively low unknown counts. FEDS was able to achieve errors

on the order of 10 – 50 pcm for 200 – 300 energy unknowns in the resolved resonance

region (RRR) in the reactor-inspired problems on which it was tested. Convergence

was demonstrated with a variety of basis function fidelities and clustering algorithms;

for heterogeneous reactor-type problems with several resonant components; and in

a time-dependent problem where 1/v streaming effects were important. FEDS so-

lutions were evaluated in comparison to continuous-energy Monte Carlo simulations

for pincell-scale problems.

7.2 Future Work

This work has demonstrated the viability of the FEDS method. Along the way,

new opportunities for further research were discovered. This subsection distills such
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unanswered questions into suggestions for future work.

Section 6 performed comparisons to continuous-energy Monte Carlo for a sim-

ple slab pincell problem. This should be extended to more complicated geometries

and material compositions, including a standard two-dimensional pincell and typical

burnup compositions / temperature gradients.

The FEDS method requires the locations in energy of the cross sections to be

defined. This is not possible in the unresolved resonance region (URR). Integrating

concepts from MB, especially probability tables, for the URR may allow FEDS to be

expanded to cover the entire resonance range. One challenge here is that the URR for

one nuclide may overlap the RRR for other nuclides. The number of nuclides that

may simultaneously receive an URR treatment might need to be limited to avoid

combinatorically large energy unknown counts.

Although FEDS has been developed for neutrons in a static medium, the concept

can be generalized to other physics. The presence of spatially-dependent material

motion complicates the method, as resonances effectively shift position in the labo-

ratory reference frame depending on the material velocity.

Thermal radiation problems depend on opacities much like neutronics problems

depend on cross sections. Opacities have lines which are similar in effect to reso-

nances. An interesting area for future work is the application of FEDS to thermal

radiation problems and problems of photon transport in the atmosphere.

Using a nested energy mesh with energy elements within coarse groups was found

to be efficient and convergent. Determining the optimal number and location of

the coarse group boundaries is an open question. The use of many coarse groups

at low energy unknown count forces the method to act more like unresolved MG,

reducing convergence and efficiency. In the limit of energy unknown counts sufficient

to resolve all of the resonances, use of one element per coarse group may be desirable.
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For downscattering-dominated problems, studying the downscattering kernel with

respect to resonance widths and downscattering widths may be useful in deriving a

theory for coarse group boundary placement.

Resolution of the solution in some coarse groups may be less important than in

others for an accurate quantity of interest. Weighting the standard deviations of the

coarse groups with importance information based on an adjoint calculation on the

coarse groups may yield higher efficiency of energy element placement.

The FEDS method transforms downscattering kernels into block-full element-to-

element scattering matrices. The MG method, in contrast, has lower-diagonal group-

to-group scattering matrices for such kernels. Previous work using Gauß-Seidel in

energy showed the increased work to solve the block-full scattering matrices was less

than a factor of 2 increase in the number of required sweeps. Block-Gauß-Seidel

iterative techniques with an inner Jacobi iteration in energy should be tested and

quantified, as they offer increased parallelism opportunity and efficiency.

Energy mesh generation can be improved. There are questions of the best way to

generate the mesh given resource constraints such as computer time, memory, and

available parallelism. The proposed spectra do not take into account heterogeneity

effects directly, relying on the minimization problem to take care of such correlations

in the norm over materials. It is unclear whether this produces the best energy

meshes.

Cross section generation and condensation can be optimized. Currently, NJOY

is used in addition to a Bondarenko iteration on background cross section and an

analytic escape cross section. While inexpensive, this may be inaccurate, as it does

a poor job handling resonance interference or the effects of heterogeneous lattices.

There is the opportunity to study how to incorporate the resonances of important

nuclides not present in the chosen bounding materials. For example, what is the best
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way to incorporate the effects of zirconium (thermal reactors) or stainless steel (fast

reactors) cladding on the spectra when generating the energy mesh? One idea would

be to include them as separate materials, perhaps weighted to be less important.

Another idea would be to include them as separate homogenized materials (combined

fuel and cladding, e.g.). A final idea would be to include their effects from a finite-

dimensional (say, 1-D pincell) slowing-down calculation directly. I ignored their

effects when generating the energy meshes in this work.

Current cross section definitions are inconsistent. NJOY by default uses nuclide-

specific spectra, either (1/E) [1/(σt + σ0)] or the result of a single-nuclide slowing-

down calculation. These imply an inconsistent basis function among nuclides, making

re-expansion of the flux unclear. Further consistency issues arise when using different

region-averaged weighting spectra, fi(E), when defining the observations and when

running NJOY. When doing reconstructions, fi(E) could be used for the assumed

within-group shape.

The above topics are relevant and important and I bring them up to indicate the

rich potential for future research.

7.3 How To Break FEDS

FEDS is not a perfect method and it is possible to make it yield poor results.

This subsection presents some lessons learned during development of FEDS to serve

as a guide for potential future researchers on what aspects should be given additional

care. The order of this subsection is approximately the order in which the method

is implemented.

The first thing a would-be user must do is determine which materials to use when

generating the spectra. The problems studied in this work used only a handful of

resonant nuclides and material definitions. For realistic problems, one must deter-
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mine a way to select which materials to use, where a material is composed of a set

of nuclides, their densities, a temperature, and a background source. We used either

1/E or a Watt fission spectrum for the source, depending on energy, though this may

not be appropriate for all problems. All our problems used at most a small number

of known temperatures, though real problems may need to use materials at bounding

or representative temperatures. The same is true for material compositions, which

is especially important for burnup studies.

I would caution against using microscopic cross sections instead of spectra as in-

puts to the minimization problem. Using spectra instead of cross sections is grounded

in the theory of minimizing the variance of the solution across the element, at least

in the infinite-medium limit, which makes the solution less sensitive to errors in

the shape of the basis functions. The solution is not proportional to individual mi-

croscopic cross sections, but to scattering sources divided by macroscopic total cross

sections. Further, using many unweighted microscopic cross sections would dilute the

energy elements and would spend computational resources on resolving resonances to

which the solution is not sensitive. Using microscopic cross sections adds additional

complexity. Users must decide whether they wish to use partial cross sections or the

total. If microscopic cross sections are used, they should be weighted so “important”

nuclides receive more resolution. This would require researching weighting strategies.

One potential advantage to using microscopic cross sections is that, if both the flux

and the individual cross sections are used, the resulting energy mesh may minimize

reaction rate variance within an energy element, accurate reaction rates being the

ultimate goal. It is dubious that this uncertain advantage would outweigh the known

disadvantages.

The next task is to compute infinite-medium spectra on a union hyperfine grid

that resolves all the spectral features. This means the grid must resolve all the
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resonance dips and scattering peaks. Insufficient resolution of resonances on this

grid will prevent the minimization problem from assigning energy unknowns to those

resonances. The grid should be kept small so that the clustering algorithms may be

solved rapidly. Less intuitively, the type of union hyperfine grid may impact the

final energy mesh. An equally-spaced grid in lethargy has many grid points that are

not on resonances. Clustering algorithms like k-means use L2 norms over hyperfine

groups and put more energy elements where the grid points are compared to more

expensive methods like hierarchical agglomerative clustering. Using a hyperfine grid

that puts more unknowns where the solution is changing may lead to better results

from the clustering algorithms and hence better energy meshes.

The hyperfine grid used for clustering is not used in the same way as a typical

grid. When building a hyperfine grid for continuous-energy cross sections, for ex-

ample, points are added to bound the linear interpolation error from the grid. For

the clustering application, points should be added to bound solution jump between

points. This is because clustering combines like values and needs sufficient resolution

of values when it divides into elements. Imagine the solution were perfectly linear

in energy. Then two points would be enough for a continuous-energy representation

of the grid. A FEDS or MG grid using a constant condensing spectrum would not

be accurate with one or two energy elements, and the clustering algorithm would

require a hyperfine grid with more than two points to yield more than two elements,

because the clustering does not subdivide points.

The spectra must be converted to observations, which are then fed to the clus-

tering algorithm to solve the minimization problem. Many clustering algorithms use

unweighted L2 norms over the different observations present. This means all spectra

and all relevant features in the spectra should have similar magnitudes. This is why

I used a logarithm of the fine-group-averaged spectra to define the observations. Not
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dividing by the ∆Eg of a hyperfine group will lead to energy elements that combine

hyperfine groups of the same sizes, which is not useful. It is desirable to limit cross

section variance within an energy element in addition to solution variance, because

cross sections are averaged over an energy element with an approximate weighting

spectrum (the basis function). This requires energies with similar total cross section

have similar observation values. Spectra are often proportional to M(E)/Σt(E),

where M(E) is a shape function that may be Maxwellian in the thermal range, 1/E

in the resonance range, and a Watt spectrum in the fast range. I divided my spectra

by M(E) to effect this second property. While one-dimensional cylindrical pincell

results not included in this work show an insensitivity to observation definition, their

definition should nevertheless be given careful consideration.

The user must select an efficient clustering algorithm. Clustering algorithms often

trade speed for fidelity. If on-the-fly clustering is performed, an efficient, approximate

algorithm such as Birch, mini-batch-k-means, or k-means may be desirable [66]. Most

implementations of (mini-batch-)k-means use a random initialization of centroids,

which causes the final energy mesh to be stochastic as well. Similarly, Birch is often

optimized for machine-specific parameters, such as cache size, and this will cause

different results on different machines. On the other side of fidelity, unoptimized

hierarchical agglomeration is O(G3) expensive, where G is the size of the hyperfine

grid on which the spectra are defined. Optimizations exist to limit searches to a

small number of nearest neighbors, which decreases cost substantially, but which

may impact solution. Hierarchical agglomeration was chosen because its result is

deterministic and repeatable, and the Scikit-Learn implementation usually takes less

than two minutes on a typical single computing core2 for a hyperfine mesh that is

appropriate for the RRR in a typical thermal reactor.

2At the time of this writing.
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One of the most important aspects is bounding element extent in energy. FEDS

will yield poor results if one large coarse group is used because energy elements will

span large lethargy widths. This will increase sensitivity to the long-range behavior

in energy of the basis functions, which is not the case for MG. Basis functions are

often inaccurate at such long-range behavior, which will lead to loss in fidelity for the

scattering kernel and other energy-explicit terms, such as the 1/v streaming term.

Energy penalties do not work as well as coarse groups for explicitly dividing in

energy. Further, energy penalties add another free parameter for how much to divide

in energy versus dividing in flux. Optimizing this parameter was often ad hoc and

problem-dependent.

The final energy mesh is sensitive to the coarse group boundaries. Boundaries

should not occur within a resonance. Coarse group boundary placement may require

expert guidance. Existing coarse MG group structures may work well for coarse

group boundaries.

If coarse groups are used, the user must determine how to determine how many

energy elements to use within each coarse group. Optimal apportioning may be

manual, though this again requires expert judgement and introduces another free

parameter. Automatic apportioning relies on determining a functional that approx-

imates the total variance within each coarse group. Using the wrong functional will

assign a non-optimal number of elements to the coarse groups, reducing efficiency.

Once an energy mesh has been determined, cross sections are generated. The

current implementation is to generate cross sections on the contiguous subelements

in NJOY and to combine these into cross sections on the discontiguous elements

in a post-processing step. This implementation requires temporary storage of the

scattering matrices on the subelements, which for hydrogen requires MG2 floating-

point numbers, where M is the number of Legendre moments and G is the number of
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subelements. This limits resolution by requiring large processing times and storage

costs. Some versions of NJOY have a compile-time limit on the number of groups that

may be handled, providing a harder limit on resolution. Alternative implementations

would require development of improved cross-section preparation software.

FEDS accuracy depends on basis function fidelity. FEDS cross sections are basis-

function weighted, and more accurate basis functions yield more accurate cross sec-

tions, especially for low energy unknown counts. Accurate basis functions are oblig-

atory if the energy mesh does not resolve all of the resonances present within the

problem. This occurs for minor nuclides that do not affect the spectrum, because the

energy mesh is determined by minimizing variance of spectra, not individual cross

sections. We used equivalence theory to implicitly define basis functions based on

escape cross sections. Using escape cross sections that were wrong by a factor of 2

was observed to decrease QOI fidelity by a similar factor, indicating some sensitivity

to basis function.

Due to the complexity of the transport equation with its myriad microscopic

cross section and scattering kernel contributions, we have not developed theory on

expected convergence order. While such theory may be possible to compute for

simple problems that depend on one resonant cross section and for some cluster-

ing algorithms, its extension to more complicated, heterogeneous problems is not

straightforward. We have observed first-order convergent behavior with increasing

energy element count for a fixed number of coarse groups. While this behavior was

widely observed, we did not develop a theoretical basis for it and the convergence

rate was often bumpy, especially when energy penalties instead of coarse groups were

used to divide in energy. Local convergence rates of half-order or less were observed

when energy penalties were used.

Finally, care must be taken when considering how FEDS affects resolution re-
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quirements elsewhere in the phase space and how it affects solver requirements. The

transport solver must be able to handle the effective upscattering FEDS creates.

The problems studied where such artificial upscattering was present were eigenvalue

problems with an outer iteration on the fission source. The use of groupsets in PDT

and this additional outer iteration were sufficient to handle the upscattering without

incurring noticeable overhead in solve time.

With respect to the resolution requirements, FEDS produces energy elements

that have large cross sections, in excess of 100 cm−1. This forces finer space-angle

resolutions and / or a spatial discretization robust to unresolved absorptive boundary

layers. Spatial and angular mesh resolutions that worked for MG may be insufficient

for FEDS.

Failure to account for the above may lead to poor FEDS performance or efficiency.

My goal in airing these implementation stipulations is to make future research on

FEDS accessible and fruitful.
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[56] A. Hébert, A. Santamarina, Refinement of the Santamarina-Hfaiedh Energy

Mesh Between 22.5 eV and 11.4 keV, in: International Conference on the

Physics of Reactors (PHYSOR), American Nuclear Society, Interlaken, Switzer-

land, 2008.

[57] P. Mosca, C. Mounier, R. Sanchez, G. Arnaud, An Adaptive Energy Mesh

Constructor for Multigroup Library Generation for Transport Codes, Nuclear

175



Science and Engineering 167 (1) (2011) 40–60.

[58] S. Yasseri, F. Rahnema, Subgroup Decomposition Method in Diffusion Theory,

Annals of Nuclear Energy 60 (2013) 235–241.

[59] I. Attieh, R. Pevey, An Adaptive General Multigroup Method, in: Proc. 27th

Annual CNS-CAN Student Conference, Toronto, Ontario, Canada, 2002.

[60] I. K. Attieh, Generalized Multigroup Method, Ph.D. thesis, The University of

Tennessee (2004).

[61] B. Forget, F. Rahnema, A Spectral Unfolding Method, Trans. Am. Nucl. Soc.

96 (2007) 669.

[62] F. Rahnema, S. Douglass, B. Forget, Generalized Energy Condensation Theory,

Nucl. Sci. Eng. 160 (2008) 41–58.

[63] L. Zhu, B. Forget, A Discrete Generalized Multigroup Energy Expansion The-

ory, Nucl. Sci. Eng. 166 (2010) 239.

[64] L. Zhu, B. Forget, An Energy Recondensation Method Using the Discrete Gen-

eralized Multigroup Energy Expansion Theory, Annals of Nuclear Energy 38 (8)

(2011) 1718 – 1727.

[65] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open-Source Scientific Tools

for Python, [Online; accessed 2014-12] (2001–).

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine

Learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830.

[67] M. L. Williams, K. S. Kim, The Embedded Self-Shielding Method, in: Confer-

ence on the Physics of Reactors (PHYSOR) - Advances in Reactor Physics, The

American Nuclear Society, Knoxville, Tennessee, USA, 2012.

[68] R. E. MacFarlane, D. W. Muir, The NJOY Nuclear Data Processing System,

176



Version 91, Los Alamos National Laboratory, Los Alamos, New Mexico, report

LA-12750-M (1994).

[69] S. M. Bowman, SCALE 6: A Comprehensive Nuclear Safety Analysis Code

System, Nuclear technology 174 (2) (2011) 126–148.

[70] E. Lewis, M. Smith, N. Tsoulfanidis, G. Palmiotti, T. Taiwo, R. Blomquist,

Benchmark Specification for Deterministic 2-D/3-D MOX Fuel Assembly Trans-

port Calculations without Spatial Homogenization (C5G7 MOX), Tech. rep.,

NEA/NSC (2001).

[71] C. N. McGraw, M. L. Adams, W. D. Hawkins, M. P. Adams, T. Smith, Accuracy

of the Linear Discontinuous Galerkin Method for Reactor Analysis with Resolved

Fuel Pins, in: International Conference on the Physics of Reactors (PHYSOR)

- The Role of Reactor Physics toward a Sustainable Future, American Nuclear

Society, Kyoto, Japan, 2014.

[72] A. Sidi, Practical Extrapolation Methods: Theory and Applications, Vol. 10,

Cambridge University Press, 2003.

[73] B. D. Ganapol, The Response Matrix Discrete Ordinates Solution to the 1D Ra-

diative Transfer Equation, Journal of Quantitative Spectroscopy and Radiative

Transfer 154 (2015) 72–90.
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APPENDIX A

HISTORICAL MULTIBAND METHODS DERIVATIONS

There are many flavors of MB. This appendix seeks to describe some common

variants and their advantages and shortcomings. This appendix also describes a

possible extension of FEDS to the unresolved-resonance region (URR).

We desire subgroup fidelity that will allow the within-group flux shape to adapt

to local shielding effects. We do this by assuming the resonance within-group shape

flux shape in energy is 1/E multiplied by a shielding factor that depends on the local

macroscopic total cross section only:

ψ(r, E,Ω) ' Ψ(r,Ω) fss(Σt(E))
1

E
. (A.1)

More generally, methods express fss as a function of macroscopic resonance absorp-

tion (or total) cross sections and a background cross section (XS): fss = fss(Σa/t(E),Σ0).

The background cross section accounts for non-resonant nuclides such as moderators,

for the equivalence cross section, and possibly potential resonance scattering. The

equivalence cross section takes into account limited heterogeneity effects (see books

on equivalence theory). The point is that fss is a function of the local macroscopic

absorption (or total) resonance cross section only.
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We do quadrature on reaction-rate-like terms:

∫
∆Eg

dE ψ(r, E,Ω)Σt(E) ' Ψ(r,Ω)

∫
∆Eg

dE

E
fss(Σt(E))Σt(E)

= Ψ(r,Ω)

∫
∆ug

du fss(Σt(u))Σt(u)

= Ψ(r,Ω)

∫
∆σ

dσ p(σ)fss(σ)σ

' Ψ(r,Ω)
M∑
m=1

pmfss(σm)σm

=
M∑
m=1

Ψm(r,Ω)σm. (A.2)

Here, pm ∼ |∆um| is a quadrature weight corresponding to a lethargy area, Ψm(r,Ω) =

Ψ(r,Ω)pmfss(σm) is a MB flux, and σm is a quadrature point in XS space.

This quadrature idea applies to any function of total cross section; we can generate

our quadratures to be exact for select powers of total cross section:

∫
∆ug

du g(Σt(u)) '
M∑
m=1

pmg(σm), (A.3a)

∫
∆ug

du Σl
t(u) =

M∑
m=1

pmσ
l
m, l = 0, . . . , L(M). (A.3b)

So long as Eq. (A.1) is correct and we have an accurate quadrature scheme, we can

capture reaction rates, flux values, and cross section moments of the true solution.

Partial reaction rates can similarly be treated with quadrature by incorporating
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the idea of expectations:

∫
∆Eg

dE ψ(r, E,Ω)Σx(E) ' ψ(r,Ω)
M∑
m=1

pmfss(σm)E(σx|σm) =
M∑
m=1

Ψm(r,Ω)xm,

(A.4)

where E(σx|σt) is the expectation of the partial cross section given the total cross

section and xm = σx,m = E(σx|σt = σm). The interpretation of xm as an expectation

is accurate in the URR.

In general, the angular flux is not a function of the local total macroscopic cross

section only. It depends upon the local scattering kernel (which determines the

source, Q) and non-local macroscopic cross sections (which determine the boundary

flux into the region). For radiative transfer (RT) problems and problems with fast

neutron fluxes, the angular flux also depends on the spectrum of the local source,

which may not be smooth in energy or correlated to the local absorption XS.

Equation (A.1) is not the most egregious approximation made for MP MB. There

are often correlation approximations within a group that affect how the macroscopic

XS are formed from microscopic XS or resonance integrals (RI), there are approxi-

mations to the scattering kernel, and there are approximations for region interface

conditions. These will be explained below.

A.1 Method 1: Different Flux Shielding Moments

Physically, near the edge of a material, the flux is unshielded. Near the inside,

it becomes increasingly shielded. The unshielded flux goes as 1/E. The NR flux

goes as (1/E) [1/(σt(E) + σ0)]. This progression inspires us to define cross section
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moments with respect to different amounts of flux shielding:

fm(Σt(u)) =
1

(Σt(u) + Σ0)m
, (A.5a)

fm(Σt,n) =
1

(Σt,n + Σ0)m
, (A.5b)

(Σx)m =

∫
∆ug

du fm(Σt(u)) Σx(u)∫
∆ug

du fm(Σt(u))
. (A.5c)

Here we use macroscopic cross sections because they are the correct flux shapes. Σ0

represents the equivalence XS or any (non-resonance) XS not included in Σt.

Using these definitions, we define band-wise total macroscopic cross sections and

band probabilities which preserve moments of the total macroscopic cross section,

similar to the quadrature idea in Eq. (A.2):

(Σt)m =

N∑
n=1

Σt,nPnfm(Σt,n)

N∑
n=1

Pnfm(Σt,n)

m = 0, . . . ,M − 1, (A.6a)

N∑
n=1

Pn = 1. (A.6b)

Equation (A.6) consists of M + 1 equations for 2N unknowns. The equations are

M moment equations (Eq. (A.6a)) and 1 conservation equation (Eq. (A.6b)). The

unknowns are N band macroscopic total cross sections, Σt,n, and N band probabil-

ities, Pn. N is specified, so M = 2N − 1 is the number of required moments to be

satisfied.

The system in Method 1 is nonlinear, as the unknowns appear together in the

term Σt,nPn and nonlinearly in the term fm(Σt,n). The system can be shown to be

ill-posed unless we require Σt,n ≤ Σt,n+1. There is no guarantee that the probabilities
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are positive or that Σt,min ≤ Σt,n ≤ Σt,max.

Physically, m = 0 corresponds to unshielded, m = 1 corresponds to totally

shielded flux, and m = 2 corresponds to totally shielded current [10].

Once the Σt,n and Pn are known, the following system can be used to get the

Σx,n:

(Σx)m =

N∑
n=1

Σx,nPnfm(Σt,n)

N∑
n=1

Pnfm(Σt,n)

m = 0, . . . ,M ′ − 1, (A.7)

for x = c, f, s, etc., where c is capture (n, γ), f is fission (n, f), and s is scattering,

e.g. (n, n), (n, n′). Since the Pn are known, Eq. (A.7) is a set of M ′ linear equations

for N unknowns, requiring M ′ = N .

The result of Method 1 is a set of band-wise macroscopic total cross sections,

Σt,n, band-wise macroscopic partial cross sections, Σx,n, and band-wise probabilities,

Pn, for each group g. We have suppressed the group subscript for readability.

Scattering is treated approximately within a group as

Σs,(g′,b′)→(g,b) = Σs,g′,b′Tg′→gPg,b, (A.8)

where Σs,g′,b′ is a Σx,n, Pg,b is a Pn, and Tg′→g is the group-to-group scattering prob-

ability.

This ensures that

Bg∑
b=1

Σs,(g′,b′)→(g,b) = Σs,g′,b′Tg′→g, (A.9a)

G∑
g=1

Bg∑
b=1

Σs,(g′,b′)→(g,b) = Σs,g′,b′ , (A.9b)
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which upholds the definition of Σs,(g′,b′)→(g,b) as an energy-differential cross section.

There are two bounds on subgroup interface conditions. The first assumes com-

plete correlation, and is given by

ψg,b,in = ψg,b,out. (A.10a)

The other assumes no correlation and is given by

ψg,b,in = Pg,b,in

Bg∑
b′=1

ψg,b′,out. (A.10b)

Equation (A.10b) assumes that the flux is flatly redistributed within a group at a

material interface such that the average downwind flux is the same for each band.

Implementing Eq. (A.10b) would require rewriting existing MG transport codes

to advect bands within agroup together so interface conditions could be treated

without lagging information. Such rewriting would allow more efficient treatment of

within-group scattering: Eq. (A.8) may strongly couple all bands within a group.

Note that Pg,b represents the normalized size of the band in energy space or

lethargy space:

Pg,b ∼
|∆Eg,b|
|∆Eg|

, (A.11a)

while ψg,b represents the integrated angular flux over a band:

ψg,b ∼
∫

∆Eg,b

dE ψ(E). (A.11b)

Here ∆Eg,b is the set of energies corresponding to the band. With MP MB, the ∆Eg,b

are never actually constructed as they are with BP MB.
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A.1.1 Implementation

As a matter of implementation, resonance integrals are normally computed ahead

of time, often for the microscopic cross sections. A common practice is to have a

code such as NJOY compute

RIx,i,m =

∫
∆ug

du
σx,i(u)

(σt,i(u) + σ0)m
(A.12a)

or, if material information is known or can be approximated,

RIx,i,m =

∫
∆ug

du
σx,i(u)

(Σt(u) + Σ0)m
(A.12b)

for several σ0 or Σ0 values and several m values ahead of time. Care must be

taken when converting from microscopic to macroscopic cross resonance integrals,

as the proper denominator involves the macroscopic quantities. One instance where

Eq. (A.12a) and Eq. (A.12b) are equivalent is when there is only one resonant nuclide

in a material, a case often used in the literature.

For ease of notation, we define σx=0,i ≡ 1, such that

RI0,i,m =

∫
∆ug

du
1

(Σt(u) + Σ0)m
. (A.13)

One idea which preserves the spirit of non-correlation is to use the approximation

that the current resonant nuclide is the only resonant nuclide when computing the

resonance integrals. In this case,

RIx,i,m =

∫
∆ug

du
σx,i(u)

(Σt(u) + Σ0)m
' 1

Nm
i

∫
∆ug

du
σx,i(u)

(σt,i(u) + λi)
m , (A.14a)
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where

λi ≡
∑
j 6=i

Nj

Ni

σ̄t,j +
1

Ni

Σe, (A.14b)

σ̄t,j '
RIt,j,1
RI0,j,1

. (A.14c)

The approximation in σ̄t,j comes about because the background, not the average,

value should be used in λi. The above equations require a Bondarenko iterative

process to find the λi, which play the role of background cross sections.

If using several flux moments, several resonance integrals will be required. It

might be easiest to use one λi, determined by the m = 1 flux, as shown above.

Once the λi and σ̄t,j have been computed, one must calculate the (Σx)m from the

RI. This is non-trivial because

1

(Σt(u) + Σ0)m
6= N−mi

1

(σt,i(u) + λi)
m (A.15)

in general.

There are several options, including

A Ignore Eq. (A.15) and define

(Σx)m =
∑
i

Ni
RIx,i,m
RI0,i,m

. (A.16a)

This term-by-term division of the RI may minimize the error from Eq. (A.15)

by using a nuclide-consistent numerator and denominator RI.
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B Approximate the left-hand of Eq. (A.15) by defining

(Σx)m =

∑
iNi RIx,i,m ni,m∑
iwi RI0,i,m ni,m

, (A.16b)

ni,m = N−mi , (A.16c)∑
i

wi = 1. (A.16d)

The ni,m, which divide out term-by-term in Eq. (A.16a), can be adjusted to

include any differences in normalization among the disparate nuclides.

The wi simply provide a way of averaging the distinct RI0,i,m. Two obvious

choices would be a straight average or to use wi = δi,r for dominant resonant

nuclide r.

C Ignore all correlation assumptions and define

(σx,i)m =
RIx,i,m
RI0,i,m

, (A.16e)

(σx,i)m =

N∑
n=1

σx,i,nPi,nfm(σt,i,n)

N∑
n=1

Pi,nfm(σt,i,n)

, (A.16f)

This yields nuclide-specific band-dependent cross sections and band probabili-

ties. Such data are used, for example, in MC calculations or for deterministic

calculations where the number of unknowns is increased to be dependent on

the number of resonant nuclides (see Section A.6).

Notice that this may not be useful for Method 1, as formation of the λi and

hence σ̄t,j are required for this method, meaning the nuclides need to be cou-

pled before the band calculation from the moments anyway.

If region-independent microscopic XS are desired, set λi = 0. This is a rather
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severe approximation, but allows each nuclide to be computed independently.

What should not be done, but what I have noticed in the literature, is to sum

the band-dependent cross sections:

Σx,n =
∑
i

Niσx,n (bad). (A.16g)

Equation (A.16g) implicitly assumes the microscopic cross sections have the

same band structure. A band refers to a set of energies within the group

that have similar total cross section. (In MP MB, this energy range is never

explicitly formed, but its concept still exists.) If different total cross sections

are used, as in Eq. (A.16f), this implies different band structures. Further,

the band probabilities, Pi,n, refer to the size of the band in lethargy or energy

space. When different nuclides have different band probabilities, it is impossible

to combine them without blatantly ignoring correlation effects.

To be specific, Eq. (A.16g) assumes full correlation between the bands, which

is not the case for MP MB. This is why Eqs. (A.6a) and (A.7) are defined

with respect to macroscopic cross sections, so that they are consistent within

a material.

D Preserve Eq. (A.15) and use the macroscopic total cross section in the denom-

inator of the RI. That is, use Eqs. (A.12b) and (A.13). Notice this requires

forming the total cross section as a function of energy, which involves knowledge

of both the material and detailed cross sections. This option is more expensive

and may not allow some of the memory and time savings of the previous meth-

ods. However, this method does not require computation or iteration of the λi

or σ̄t,j, as the true macroscopic cross section is explicitly formed as a function

of energy.
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An algorithm for options A and B above might look something like

1. Preprocess in NJOY:

Compute microscopic resonance integrals (Eq. (A.12a)) for several values

of σ0 and m (and possibly temperature) for each group for each nuclide

independently.

2. Begin problem-specific XS preparation:

(a) Guess the background cross sections, the λi.

(b) Compute escape XS using Dancoff factors or a similar method.

(c) Interpolate the resonance integrals and compute the σ̄t,j using Eq. (A.14c).

(d) Compute background cross sections using Eq. (A.14b) with equivalence

XS from above.

(e) Iterate between 2c and 2d.

3. Once the converged, material-specific background XS are known, combine

resonance integrals to form macroscopic XS moments using Eq. (A.16a) or

Eq. (A.16b).

4. For each material, determine band probabilities, and total and partial band XS

using Eq. (A.6) and Eq. (A.7).

Instead of storing the RI for several σ0 and T , one could store coefficients for a

functional approximation, which could save substantial data.

An algorithm for option D above might look something like

1. Preprocess in NJOY by computing hyperfine-group (HFG) XS, possibly for

several temperatures.
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2. Determine equivalence XS using Dancoff factors or an HFG fixed-source slowing-

down problem (FSSDP).

3. Replace integrals in Eq. (A.5c) with sums over the HFG structure, using only

the equivalence XS for the background XS term. Compute macroscopic XS

moments using material composition.

4. For each material, determine band probabilities, and total and partial band XS

using Eq. (A.6) and Eq. (A.7).

Note that this algorithm is more expensive, as it requires storage and manipulation of

the HFG XS. Aside from more rigorous math and a potentially more exact quadrature

set, the advantage of the MP method over the BP method is avoiding the expense of

computing and storing the HFG representation of the XS. Since MP MB is already

approximate with regard to scattering kernel and material interface conditions, the

extra work required for option D may not be justified.

A resonance interference factor (RIF) [50] should be used to get the shielded

scattering matrix from an unshielded matrix for option D. This would allow the

scattering matrix to only be stored in coarse form, not in HFG representation.

Option D could alternatively use CE instead of HFG.

A.1.2 Method 1a: Recalculated band probabilities

Since M ′ < M , there are multiple choices of sets of moments to preserve the

partial XS. Some authors claim this makes the band probabilities and partial cross

sections inconsistent. A common remedy is to use Eq. (A.6) to calculate the Σt,n

and Pn, and then to calculate P ′n by preserving moments m = 0, . . . ,M ′ − 1 of

Eq. (A.6a) using the previously calculated Σt,n. This is a linear solve. The P ′n then

replace the Pn before the calculation in Eq. (A.7) and are used thereafter as the band

189



probabilities. Notice this does not guarantee that
∑N

n=1 P
′
n = 1.

A.1.3 Method 1b: Evenly-weighted band probabilities

A common early variant of Method 1 is to set the Pn ahead of time (e.g., [26]).

Method 1b sets

P̂n =
1

N
. (A.17)

Since the probabilities are already determined, solving Eq. (A.6) requires M = N

moments.

This linearizes the system and is similar to the Russian approach, [25], except

the latter is potentially iterated. Ribon and Maillard [14] points out that this is less

accurate than allowing the Pn to vary by band and that it preserves fewer moments.

A.1.4 Method 1c: Intermediate resonance approximation

Our derivation of Method 1 involved using the NR approximation. This can

easily be extended to the IR approximation, which many authors claim is superior.

In the IR approximation, only some of the resonant nuclide’s scattering cross section

is assumed to be resonant (the rest is treated as background). Caution must be taken

when doing so, as the IR simply provides a knob that varies from NR to WR (wide

resonance). Neither of these limits is correct, especially in heterogeneous systems.

The same approximations that the flux only depends on the local macroscopic cross

section still apply.

A.1.5 Method 1d: Planck and Rosseland moments

A variant of Method 1 for radiative transfer is to preserve Planck and Rosseland

moments of the cross section. If Method 1 is used, M = 2N − 1 and is always odd.

A third moment must be added, usually a “super-Rosseland” mean (cf. [10]). If

190



Method 1b is used, M = N , and only the two moments are required.

In RT applications, there is often a single material in a region, simplifying the

implementation of Method 1d. This is equivalent to the simplifying case of the

macroscopic XS having only one resonant component above.

A.2 Method 2: Different Background XS

Another method to capture the different flux environments seen within a material

due to self-shielding is to use multiple background XS for the XS moments. Low

background XS correspond to highly shielded environments seen, for example, in the

center of fuel pins. High background XS correspond to less shielded or unshielded

environments seen, for example, at the edge of fuel pins.

Method 2 is highly similar to Method 1, differing in the definition of the flux

factor used for the moments:

Fl(Σt(u)) =
1

Σt(u) + Σ0,l

, (A.18a)

Fl(Σt,n) =
1

Σt,n + Σ0,l

, (A.18b)

Σ0,l = N̄10l, (A.18c)

[Σx]l =

∫
∆ug

du Fl(Σ(u))Σx(u)∫
∆ug

du Fl(Σx(u))
, (A.18d)

where N̄ is a representative atom density for the material. Method 2, like Method

1, normally uses microscopic RI that are combined into macroscopic moments which

are used to determine the band parameters. As in Method 1, this introduces approx-

imations not present if the macroscopic XS are used throughout.

Background XS are conventionally used with the microscopic (per-nuclide) appli-

cation of the NR approximation. To preserve this interpretation (and units) when
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dealing with macroscopic XS, we have introduced N̄ , which should be the atom

density of the resonant nuclides or dominant resonance nuclide in the material.

As in Method 1, a quadrature representation is used to preserve M = 2N − 1

background XS moments to determine the band-dependent total XS, Σt,n, and band

probabilities, Pn, using Eq. (A.6) with [Σt]l instead of (Σt)m. Once these are known,

the band-dependent partial XS, Σx,n are calculated through Eq. (A.7) in the same

manner as Method 1, again with [Σx]l replacing (Σx)m.

Method 2 has similar variants as Method 1. The recalculated band probabilities

(Method 1a, Section A.1.2), evenly-weighted band probabilities (Method 1b, Sec-

tion A.1.3), and intermediate-resonance approximation (Method 1c, Section A.1.4)

map directly to Method 2. Using Planck and Rosseland moments (Method 1d, Sec-

tion A.1.5) does not easily map, as there is no background XS for those moments.

In Method 1, the background cross sections are iterated to consistency in a Bon-

darenko fashion using the λi’s and σ̄t,j’s (Eqs. (A.14b) and (A.14c)). In traditional

implementations of Method 2, no such iteration is performed. We now make the

argument for why this is disadvantageous and introduce a scheme that reintroduces

this concept.

Not using the λi’s leads to a lack of consistency. To see why, take two hypothet-

ical nuclides, A and B. Both are resonant nuclides and but nuclide A has a high

background XS while B has a low background XS. Say we are in a regime where the

NR approximation is valid. For simplicity, the material only contains the two above

nuclides in equal atom densities. Say we want to add in a very small background

XS. Then the flux moment we would use is

F (u) =
1

σA(u) + σB(u) + ε
, (A.19a)

192



for some small ε.

Using independence and the NR approximation, we could instead use

FA(u) =
1

σA(u) + σ̄B + ε
=

1

σA(u) + σ0,A
(A.19b)

for nuclide A, and

FB(u) =
1

σ̄A + σB(u) + ε
=

1

σB(u) + σ0,B
(A.19c)

for nuclide B, where σ̄A and σ̄B are the background XS for nuclides A and B chosen

to make F (u) ' FA(u) ' FB(u) in some sense.

Because σ̄A � σ̄B � ε by assumption, then σ0,A � σ0,B. However, Method 2

requires us to use the same background XS, σ0,l, for both nuclides:

FA,l(u) =
1

σA(u) + σ0,l

, (A.19d)

FB,l(u) =
1

σB(u) + σ0,l

. (A.19e)

This equates to using a different flux for each nuclide: FA,l 6= FB,l. This poses

problems when the microscopic XS moments are added together to form macroscopic

XS moments, as the moments should use the same weighting fluxes but do not.

Another problem is over-shielding the current resonant nuclide. The amount of

background that nuclide A sees should always be at least σ̄B. However, there is

nothing stopping someone from picking σ0,l � σ̄B in Eq. (A.19d). This argument

becomes more cogent if nuclide B were a moderator.

A potential fixup for both of these difficulties would be to add two sources of
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background XS:

Fi,l(u) =
1

σi(u) + κi + N̄
Ni
σ0,l

, (A.20)

with κi =
∑

j 6=iNj/Niσt,j. κi and the σ0,l term can be combined into λi,l and a

Bondarenko-like iteration as in Method 1 (Eqs. (A.14b) and (A.14c)) can be used.

Equation (A.20) would give consistency between the microscopic implementations

of Method 2 and the macroscopic implementation. I have not seen this done in the

literature.

While the flux generally does not become more shielded than 1/(σi(u) + κi), it

does become less shielded, say near the edge of the fuel for incoming fluxes. Equa-

tion (A.20) preserves these physics.

This is one area where Method 2 outperforms Method 1. In Method 1, all higher

moments are more shielded than the m = 1 moment, which is the maximum amount

of shielding desired. In Method 2, using Eq. (A.20), σ0,l provides a knob to go

between fully shielded (σ0,l = 0) and fully unshielded (σ0,l → ∞). Additionally,

different σ0,l now represent different escape XS.

If we wish to use microscopic RI for our implementation, we use Eq. (A.20) to
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define the flux instead of Eq. (A.18a). We define our microscopic RI as

RIx,i,l =

∫
∆ug

du
σx,i(u)

σt,i(u) + λi,l
, (A.21a)

RI0,i,l =

∫
∆ug

du
1

σt,i(u) + λi,l
, (A.21b)

λi,l =
∑
j 6=i

Nj

Ni

σ̄t,j +
N̄

Ni

σ0,l, (A.21c)

σ0,l = 10l, (A.21d)

σ̄t,j =
RIt,j,−∞
RI0,j,−∞

, (A.21e)

for several values of σ0,l. We can once again use NJOY or a similar code to pre-

compute RI for several values of λ and interpolate during the Bondarenko iteration.

Using Eq. (A.21) to define the RI, we reuse the implementations from Sec-

tion A.1.1. For option A, simply replace m terms with l terms. For option B,

again replace m’s with l’s and set ni,m = N−1
i . For option C, iterate to consistency,

or take λi,l = σ0,l and do no iteration. Option D in Section A.1.1, which uses macro-

scopic RI, is essentially the same for Method 1 and Method 2, differing only in the

definition of the flux weighting, fm(Σt) vs. FL(Σt).

As a final note, instead of exactly preserving quadrature integrals as in Eqs. (A.6)

and (A.7) for a certain number of moments, many authors minimize the L2 error by

approximately preserving many more moments. A common way to do this is to fit

[Σt](σ0,l) to a functional form and then choose a quadrature scheme that approxi-

mates this function either at discrete values of the function or in an L2 sense over

the entire domain. In the former case, this could allow the same moments for [Σt]l

and [Σx]l to be approximately preserved. Depending on how the non-linear iteration

were carried out, this scheme might yield strictly positive band probabilities. Care
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must be taken such that
∑

n Pn = 1 still holds. See [41] for an example of using

L2 error minimization with physical constraints such as positivity on XS and band

probabilities.

A.3 Method 3: Different XS Moments

By far the most popular method in the recent literature is to preserve moments

of the cross sections directly:

〈Σm
t 〉 =

1

∆Eg

∫
∆Eg

dE Σm
t (E), m = −M−, . . . , 0, . . . ,M+, (A.22a)

〈Σm
t 〉 =

N∑
n=1

pnσ
m
n , m = −M−, . . . , 0, . . . ,M+, (A.22b)

〈ΣxΣ
m
t 〉 =

1

∆Eg

∫
∆Eg

dE Σx(E)Σm
t (E), m = −M ′−, . . . , 0, . . . ,M

′+, (A.22c)

〈ΣxΣ
m
t 〉 =

N∑
n=1

pnxnσ
m
n , m = −M ′−, . . . , 0, . . . ,M

′+, (A.22d)

where Σm
t (E) = (Σt(E))m and xn = E(Σx|Σt = σn).

The rationale behind this is to preserve the Laurent series of functions that depend
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solely on the total cross section:

f(σ) = . . .+
a−2

σ2
+
a−1

σ
+ a0 + a1σ + a2σ

2 + . . . ,

f(σ) =
∞∑

i=−∞

aiσ
i, (A.23a)

f(σ) ' f̂(σ) =
M+∑

i=−M−
aiσ

i, (A.23b)

1

∆Eg

∫
∆Eg

dE f(Σt(E)) =
∞∑

i=−∞

ai
1

∆Eg

∫
∆Eg

dE Σi
t(E),

'
M+∑

i=−M−
ai

1

∆Eg

∫
∆Eg

dE Σi
t(E),

=
M+∑

i=−M−
ai

∫
∆σ

dσ p(σ)σi,

=
M+∑

i=−M−
ai

N∑
n=1

pnσ
i
n,

=
N∑
n=1

pnf̂(σn),

'
N∑
n=1

pnf(σn). (A.23c)

Notice the approximation here is not in the quadrature representation of the integral

but in the truncation of the expansion of f . Recall that p(σ) acts as a Jacobian when

going from energy space to XS space and is physically positive.

As in the previous methods, if the groupwise total flux depends solely on local

macroscopic total cross section, then Method 3 will preserve integrals of this quantity

such as group fluxes and reaction rates. We repeat that this is assumption is not

justified for real systems.

The moments method was first introduced by Ribon and Maillard [14] in a paper
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that is often the foundation of MB work done by authors today.

With a technique reminiscent of the previous methods, N macroscopic total XS

quadrature points and N band probabilities (quadrature weights) are chosen to

preserve Eq. (A.22b) for 2N moments. Normally, the moments used are −(N −

1), . . . , 0, 1, . . . , N , implying M− = N − 1 and M+ = N . It is useful to use moments

0 and 1 in particular because they correspond to conservation and correct integral

of the total reaction rate with constant flux, respectively.

The algorithm to implement the required nonlinear solve is discussed below.

Method 3 was developed so that the nonlinear portion of the algorithm only in-

volved finding the roots of a polynomial from a Padé expression.

Once the total XS band values and probabilities have been found, a linear solve

is often done to define N partial XS quadrature points by preserving N moments

through Eq. (A.22d). This is done for each partial XS. More details are given below.

For now, just take M
′± < M±, and M

′± ≥ 1.

The following gives an algorithm to compute the band parameters from the XS

moments using Padé forms. It is reproduced from [14].
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Let

mn =
1

∆Eg

∫
∆Eg

dE Σn
t (E) =

∫
∆σ

dσ p(σ)σn, (A.24a)

Mn =
N∑
i=1

Piσ
n
i , (A.24b)

F (z) =

∫
∆σ

dσ p(σ)
1

1− zσ

=

∫
∆σ

dσ p(σ)
(
1 + zσ + . . .+ zkσk + . . .

)
= m0 +m1z + . . .+m2N−1z

2N−1 + R
(
z2N
)

=
a0 + a1z + . . .+ aN−1z

N−1

1 + b1z + . . .+ bNzN
+ R′

(
z2N
)

=
PN−1(z)

QN(z)
+ R′

(
z2N
)

=
PN−1(z)∏N

i=1 (1− z/zi)
+ R′

(
z2N
)

=
N∑
i=1

ωi
1− z/zi

+ R′
(
z2N
)
, (A.24c)

F (z) = M0 +M1z + . . .+M2N−1z
2N−1 +R

(
z2N
)

=
N∑
i=1

Pi
(
1 + σiz + σ2

i z
2 + . . .+ σ2N−1

i z2N−1
)

+R
(
z2N
)

=
N∑
i=1

Pi
1− σiz

+R′
(
z2N
)
, (A.24d)

where preservation of the desired moments, n = 0, . . . , 2N − 1, is used to equate

Mn = mn in the first step of Eq. (A.24d).

Once the zi and ωi are known, it is simple to determine the quadrature weights
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and abscissas. Equating Eq. (A.24c) and Eq. (A.24d), we find

Pi = ωi, (A.24e)

σi = 1/zi. (A.24f)

Per Ribon and Maillard [14], using the Padé form introduces minimal errors in

Eq. (A.24c) compared to the errors present in Eq. (A.24d):

R
′ (z2N

)
� R′

(
z2N
)
. (A.24g)

The above derivation assumed M− = 0. For more general M−, we find, using

I = −M− for consistency with Ribon and Maillard [14],

F (z) =

∫
∆σ

dσ p(σ)σI
1

1− zσ

= MI +MI+1z + . . .+MI+2N−1z
2N−1 +R

(
z2N
)

=
N∑
i=1

Piσ
I
i

(
1 + σiz + σ2

i z
2 + . . .+ σ2N−1

i z2N−1
)

+R
(
z2N
)

=
N∑
i=1

Piσ
I
i

1− σiz
+R′

(
z2N
)
. (A.25a)

This in turn implies:

Pi = ωiσ
−I
i , (A.25b)

σi = 1/zi. (A.25c)

We still need to determine the zi and ωi. The first step in this process is solving

for the coefficients in PN−1(z) and QN(z). The an and bn in PN−1(z) and QN(z),
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respectively, may be found using one linear solve. The system is to determine the bn

is:

0 = mN +mN−1b1 + . . .+m0bN ,

... (A.26a)

0 = m2N−1 +m2N−2b1 + . . .+mN−1bN .

Once the bn are known, the an may be computed without an additional linear

solve:

a0 = m0,

a1 = m1 +m0b1,

... (A.26b)

aN−1 = mN−1 +mN−2b1 + . . .+m0bN−1.

The roots, zi, i = 1, . . . , N , are the roots of QN(z) = 1 + b1z+ . . .+ bNz
N . There

are many routines that can determine all the roots of polynomials. In this case the

task is made simpler because the roots are real, there are no double roots and all the

roots are known to be in (1/Σmax, 1/Σmin) (see below).

Once the roots are known, the ωi can be calculated using another linear solve.
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Coefficient matching is used to determine the matrix:

PN−1(z)∏N
i=1(1− z/zi)

=
N∑
i=1

ωi
1− z/zi

,

PN−1(z) =
N∑
i=1

ωi

 N∏
j=1
i 6=j

1− z

zj

 ,

N−1∑
k=0

akz
k =

N∑
i=1

ωi

N−1∑
l=0

ci,lz
l,

aj =
N∑
i=1

ci,jωi, j = 0, . . . , N − 1,

CTω = a, (A.27a)

with (C)i,j = ci,j. This is a system with N unknowns and N equations that is not

singular so long as there are no repeated roots. Per Ribon and Maillard [14], repeated

roots only occur if p(σ) is composed of fewer than N Dirac measures and only this.

Combinatorics are used to determine the coefficients of the matrix:

ci,j =
∑

α∈Si,j

1

zα1
1 zα2

2 · · · zαi−1

i−1 z
αi+1

i+1 · · · zαN
N

, (A.27b)

Si,j =

{
α = {α1, . . . αN} | αk 6=i ∈ {0, 1}, αi = 0,

N∑
k=1

αk = j

}
, (A.27c)

|Si,j| =
(
N − 1

j

)
(A.27d)
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For example, for N = 4,

c4,0 = 1,

c4,1 = −
(

1

z1

+
1

z2

+
1

z3

)
,

c4,2 =
1

z1z2

+
1

z1z3

+
1

z2z3

,

c4,3 = − 1

z1z2z3

.

Solving Eq. (A.27a) allows one to determine the band probabilities, Pi. An alter-

native option, chosen by authors such as [15], is to instead get the Pi by preserving

the N XS moments used for the partial XS but with the recently calculated total XS

quadrature points:

〈Σm
t 〉 =

N∑
i=1

Piσ
m
i , m = −M ′−, . . . , 0, . . . ,M

′+.

Notice that if m = 0 is included, as shown above, that 1 =
∑N

i=1 Pi is preserved.

Further notice that if the ωi are not desired, the matrix C does not need to be formed

(Eq. (A.27b)), nor do the an need to be calculated (Eq. (A.26b)).

Method 3 is characterized by a much stronger foundation in mathematical theory.

The resultant quadrature, {pn, σn}, has several notable properties, including

1. A quadrature with N points is exact for 2N moments,

2. If the moment m = 0 is used, the quadrature is conservative:
N∑
n=1

pn = 1,

3. For everywhere-positive (physical) p(σ), the weights are all positive: pn > 0,

4. The quadrature points lie strictly within the domain: min
∆Eg

Σt(E) < σn <

max
∆Eg

Σt(E),
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5. The probabilities, which act as normalized energy areas, are collocated with

their quadrature points in the following sense:

• Let Si be such that
∫ S1

Σt,min
dσ p(σ) = p1,

∫ S2

S1
dσ p(σ) = p2, etc.

• Then Σt,min < σ1 < S1 < σ2 < S2 < . . . < SN−1 < σN < Σt,max

6. The quadrature is convergent and converges stably for physically accurate mo-

ments,

7. The quadrature is sensitive to noise, especially in the higher-order moments

(see [14] for more details).

Notice that none of the above apply to the xm, which are the expectation values of

the partial XS. The Padé method used to determine the quadrature scheme does not

have a straightforward multivariate extension. Ribon and Maillard [14] attempted to

add in the partial XS moments to the main quadrature calculation without success.

Future authors have determined the partial XS quadrature points after the main

calculation to get the total XS quadrature points and weights, as is the done with

Method 1 and Method 2. This requires a linear solve, though the resultant partial

XS quadrature points have no guarantee of positivity.

Whereas 2N moments are used for the total XS quadrature points and probabil-

ities calculation, only N moments are used for the partial XS calculation, implying

an inconsistency. At the least, there is a choice for which subset of the 2N moments

to use, leading to multiple valid sets of partial XS quadrature points. Some authors

have used an L2 fit to all 2N points in an attempt for maximum consistency. Others

have thrown out the probabilities determined from the 2N moment calculation and

instead recalculated probabilities to satisfy N moments of the total XS with known

total XS quadrature points. The partial XS quadrature calculation uses these same
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N moments for consistency. This latter method may produce negative probabilities.

Ribon and Maillard [14] did determine an algorithm to determine the macroscopic

XS moments from microscopic XS moments which relies on using positive moments

and invoking independence of moments:

〈Σn(E)〉 =
1

∆Eg

∫
∆Eg

dE Σn(E)

=
1

∆Eg

∫
∆Eg

dE (N1σ1(E) +N2σ2(E))n

=
1

∆Eg

∫
∆Eg

dE
n∑
i=0

(
n

i

)
N i

1σ
i
1(E)Nn−i

2 σn−i2 (E)

=
n∑
i=0

(
n

i

)
N i

1N
n−i
2

1

∆Eg

∫
∆Eg

dE σi1(E)σn−i2 (E)

'
n∑
i=0

(
n

i

)
N i

1N
n−i
2

 1

∆Eg

∫
∆Eg

dE σi1(E)


 1

∆Eg

∫
∆Eg

dE σn−i2 (E)


'

n∑
i=0

(
n

i

)
N i

1N
n−i
2 〈σi1〉〈σn−i2 〉, (A.28a)

for n = 0, 1, 2, . . .. This is easily extensible for macroscopic XS that have more than

two components.

It is not straightforward how to apply this scheme when using negative moments.

(If it were, we would have used it in Method 1 and Method 2.) One method that

seems to be considered is to use

Σn(E) ≡
(
N1

1

σ1(E)
+N2

1

σ2(E)
+ . . .

)|n|
, (A.28b)
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or something similar, instead of the proper

Σn(E) =
1

(N1σ1(E) +N2σ2(E) + . . .)|n|
, (A.28c)

for n = −1,−2, . . . and then to use independence as in Eq. (A.28a).

Using Eq. (A.28b) would not preserve negative moments of the true macroscopic

XS. Ribon and Maillard [14] do not see this as a difficulty, as the “the infinite series of

the positive moments describe unambiguously the table considered.” The negative

moments seem to be a sort of hack to get better results and so may be treated

approximately.

One way to treat the negative moments less approximately would be to use av-

eraged XS for other nuclides as was done in Method 1 and Method 2:

Σn(E) =
1(∑

iNiσi(E)
)|n|

'
∑
i

wiN
−|n|
i(

σi(E) +
∑

j 6=i(Nj/Ni)σ̄j

)|n| . (A.28d)

Backgroud/escape XS could additionally be added and λi’s could be used as above

in a Bondarenko iteration. As before, standard XS moments at several background

XS values (and temperatures) could be calculated by a XS preparation code and

interpolation used during the Bondarenko iteration. The disadvantage for the above

treatment is that the wi are completely arbitrary.

Using fractional XS moments has seen adoption in Japan. As mentioned con-

cerning Method 1, the unshielded flux goes as ψ(Σt(E)) ∼ 1 which corresponds to

m = 0. The shielded flux goes as ψ(Σt(E)) ∼ 1/Σt(E) or m = −1. Preserving

integrals of the flux thus requires the quadrature to have accuracy for XS moments
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with m ∈ [−1, 0]. Integrating a reaction rate, the cross section multiplied by the

flux, adds a power to m, meaning the quadrature should be accurate for m ∈ [0, 1].

This has led some authors to forego unit spacing between preserved moments and

concentrate on XS moments within m ∈ [−1, 1]. We note much of the above theory

no longer applies for this choice.

The difficulties of mixing microscopic XS or moments to macroscopic XS or mo-

ments are circumvented if HFG or CE XS are generated and used to define the XS

moments.While eliminating the complexity of mixing the nuclide-specific moments,

this introduces extra storage and calculational requirements. As with the previous

methods, Method 3 was created specifically so that the energy-resolved resonances

were not required during the band calculation and mixing. Only XS moments are

needed for the standard band calculation algorithm. These moments take up little

memory and can be calculated for each nuclide independently.

When using MC transport (Section A.5) or deterministic transport with more

unknowns (Section A.6), creating a separate band structure for each nuclide inde-

pendently is acceptable and may be desirable. In this case, no mixing algorithms

or approximations are needed. The downside is that treating each nuclide indepen-

dently ignores correlation effects, which are important in resonant nuclides such as

238U, 235U, 239Pu and others. Defining self-consistent material-specific band param-

eters with HFG or CE XS would allow correct treatment of correlation within a

material. However, correlation between materials would still be missing and there

would be additional upfront cost of generating material-specific band parameters

from HFG XS data. The ability to do “band tracking,” wherein the band a particle

interacts with is kept between collisions (even if the particle enters a different ma-

terial) for within-nuclide correlation between materials, would additionally be lost if

material-specific band structures were used (see Section A.5). For MC applications,
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it is more desirable to use correlation matrices alongside nuclide-specific band struc-

tures, which would preserve band tracking and introduce correlation among nuclides

within a material, or to try DED MB, which uses global energy structures and would

provide automatic correlation.

Methods 1-3 all have the goal of accurately preserving reaction-rate-like quanti-

ties using macroscopic XS, not microscopic XS. Microscopic reaction rates matter

in depletion applications. Nuclide-specific band calculations will produce optimal

band parameters that preserve reaction rates for each nuclide. The cost is that

these nuclide-specific band parameters are difficult to mix into macroscopic XS as

each nuclide has its own within-group energy discretization (band structure). Non-

correlation or explicit correlation can be used, but these are either approximations

in the former case or add considerable complexity to the system in the latter case

(e.g., adding unknowns, building correlation matrices, or building conditional prob-

abilities). All of these problems may be solved with DED MB.

The DEDs in DED MB can be chosen to preserve nuclide-specific reaction rates.

This is done by first splitting the within-group energy domain into “carriers” that rep-

resent invididual resonant nuclides or sets of resonant nuclides. Each carrier has its

own DED. A band boundary calculation can be done on each carrier independently.

The result is a set of non-overlapping DEDs that cover the group, automatically

preserve correlation (the DEDs are global and do not change between materials),

and are accurate for each resonant nuclide (or more correctly, each carrier).

FEDS is still preferable to a carrier-based scheme. FEDS defines energy elements

to preserve the solution behavior in energy, not quantities such as microscopic XS

that are correlated to solution behavior. One important feature of the solution not

present in any cross section is the up-spikes from resonances of the scattering source.

Additionally, the solution likely requires fewer unknowns to accurately discretize
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than were all of the individual microscopic (partial) XS used.

A.4 Explicit Bands

BP MB is the same as DED MB, except the DEDs are calculated based on local

HFG (or CE) macroscopic XS, not a global average XS. See my Master’s Thesis or

PHYSOR paper for further discussion of DED MB.

The BP MB as represented by [26] and [10] has its own mathematical framework

that results in the expected definitions of bands. Cullen multiplies the transport

equation by p(Σ, E), the probability that Σt = Σ at energy E.

A.4.1 Resolved resonance region

For the resolved resonance region (RRR), Σt is known at every energy. Hence,

p(Σ, E) = δ(Σ−Σt(E)). Notice this requires forming Σt(E), which requires material

information (esp. for neutronics) and XS information on a fine energy grid.

The transport equation is integrated over energy group and cross section band.

For example,

∫
∆Eg

dE

∫
∆Σn

dΣ p(Σ, E) [Ω · ∇ψ(r, E,Ω) + Σt(E)ψ(r, E,Ω)] =

∫
∆Eg

dE

∫
∆Σn

dΣ p(Σ, E)

[
1

4π

∫ ∞
0

dE ′ Σs(E
′ → E)φ(r, E) +Q

]
. (A.29a)

209



This defines band parameters,

ψg,n(r,Ω) =

∫
∆Eg

dE

∫
∆Σn

dΣ δ(Σ− Σt(E))ψ(r, E,Ω), (A.29b)

Σx,g,n =
1

Fg,n

∫
∆Eg

dE

∫
∆Σn

dΣ δ(Σ− Σt(E))Σx(E)f(E), (A.29c)

etc.,

Fg,n =

∫
∆Eg

dE

∫
∆Σn

dΣ δ(Σ− Σt(E))f(E), (A.29d)

Pg,n =
1

∆Eg

∫
∆Eg

dE

∫
∆Σn

dΣ δ(Σ− Σt(E)), (A.29e)

which are equivalent to DED MB band parameters, except with local band structures.

Here, f(E) is an approximation to the flux, usually 1 or 1/E. The resultant transport

equation,

Ω · ∇ψg,n + Σt,g,nψg,n =
1

4π

G∑
g′=1

Ng∑
n′=1

Σs,(g′,n′)→(g,n)φg′,n′ +Qg,n (A.29f)

uses the usual MB definition of the scattering kernel (Eq. (A.8)).

A.4.2 Unresolved resonance region

In the URR, for each nuclide, ladders (realizations of the XS based on resonance

distributions) are built and nuclide-specific band probabilities and XS are calculated

for each ladder. These band parameters are averaged over the ladders. Nuclide-

specific probabilities are combined using independence.

Band parameters are defined in the following sense. For the reference tempera-

ture, the microscopic total XS is split up into bands based on its value. This defines

a set of DEDs in the same way as DED MB. Total and partial XS are averaged over
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each band / DED. Band probabilities are simply the normalized energy areas of the

DEDs. Flat or 1/E XS weighting is often used within a band because the bands

themselves are generated to take care of the self-shielding.

There is one set of DEDs per nuclide and this set applies to all temperatures. This

preserves correlation among temperatures. Particles in the same band correspond to

the same energies for a given nuclide independent of temperature. This allows MC

calculations to remember the band when streaming between multiple materials that

share common nuclides, possibly at multiple temperatures (cf. Section A.5).

For the URR, Σt is only known in a distribution sense. Hence, p(Σ, E) is a PDF.

The math is simplified because this PDF depends weakly on energy: p(Σ, E) ' p(Σ).

Further, all the cross sections are physically uncorrelated, allowing p(Σ) to be formed

from the pi(σ) in a straightforward manner.

If pi(σ) is the probability that σt,i = σ (barns), Σt =
∑

iNiσt,i, and the pi are

independent, then it possible to define p(Σ), the probability that Σt = Σ (1/cm),

inductively. Let Σt,j =
∑j

i=1 Niσt,i and let πj(Σ) be the probability that Σt,j = Σ.

Then

πj(Σ) =

∫ Σ

0

dα πj−1(α) pj

(
Σ− α
Nj

)
. (A.30a)

Note that the usual representation of the data for PT is a nuclide-wide set of band

probabilities and total/partial XS in each band for each temperature. Data is stored

in this histogram fashion, with correlation within a nuclide. Applying Eq. (A.30a)

must be done with interpolation. A näıve approach would be to do each partial

reaction separately, but this would decorrelate them from the total cross sections,

which is undesirable. When the macroscopic XS is reconstructed from its microscopic

components, temperature correlation information will be lost.
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A better approach would be to build the expectation of the partial cross section

in each band as the total cross section is built. That is

σx,n =

∫
Σt∈∆Σt,n

dΣt E(σx|σt) p(σt|Σt), (A.30b)

p(σt|Σt) =
p(σt ∩ Σt)

p(Σt)
, (A.30c)

where the last result follows from Bayes’ Theorem. To build the p(σt ∩ Σt) may

require forming π̂i(Σ), the probability that Σ̂t,i = Σ, where Σ̂t,i =
∑

j 6=iNjσt,j, for

each i.

The above process could conceivably be applied to the RRR by treating the XS

as unresolved and forming band probabilities not from ladders, but from the actual

σt,i(E).

A.5 Treatment in CP and MC Codes

When using CP or MC calculations, one can use microscopic-based band struc-

tures along with correlation information between nuclides. NJOY can be used to

compute RI for individual nuclides and all Σ’s can be replaced by σ’s for band de-

termination purposes (cf. Section A.1.1, option C). For MC, one additional random

number is needed to compute the microscopic total cross section for each resonant

nuclide in a material.

The correlation information generally comes in two forms. The first is correla-

tion matrices, which are suitable for sampling from MC routines. If the algorithm

samples band 1 for 238U, then it can sample using the Choleksy decomposition of

the correlation matrix to determine which band of 235U to pick when computing the

total cross section. For CP routines, correlation information is often included in the

form of conditional probabilities, which play essentially the same role.
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For implementation details on PT in the URR in MCNP, see the (unrestricted,

freely available) Volume 1 of the MCNP5 manual. Specifically, see Chapter 2 (Cross

Sections), Section B: Particle Tracks for description of collision sampling (they need

to form the full Σt, not just one σt,i) and Section C: Neutron Interactions (sam-

pling of collision nuclide uses CDF of macroscopic cross sections from each nuclide

and hence requires knowing Niσt,i for each nuclide in the region). See Chapter 3

(Physics), Section C (Neutron Interactions), Part 7: Probability Tables for the Un-

resolved Resonance Range (page 2-55 ff). They do not say how they sample the total

cross sections for multiple resonant nuclides, though it is assumed that this is done

independently. Once the collision nuclide is known, its table location must be kept

until the next collision to allow proper correlation. This includes if the particle is

split or enters a region of different temperature. Of note, they cite a paper written

in 1999 that indicates use of PTs in the URR has a negligible impact unless systems

have a “significant flux” in the URR and contain “large amounts” of 238U.

A.6 Adding Unknowns in Deterministic Codes

There is a method which allows microscopic band-dependent XS and probabil-

ities to be used (cf. Section A.1.1, option C) but which results in more unknowns.

Depending on assumptions in correlation, the total number of unknowns may range

from BN to BN , where B is the number of bands per group and N is the number

of resonant nuclides in a material or the entire problem. Effective nuclides could be

used which represent several physical nuclides.

For the BN case, the idea is to have unknowns that correspond to the band-

dependent fluxes in each of the resonant nuclides. A flux can now be identified with
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a resonant nuclide and a DED (band) for that nuclide. The unknowns are

ψg,i,b, g = 1, . . . , G, i = 1, . . . ,Mg, b = 1, . . . , Bg,i (A.31a)

which is the integrated angular flux over band b of group g, for nuclide i. Mg has a

group dependence because multiple nuclides only need to be tracked within resonance

regions.

In general, Mg = Mr+1, where Mr is the number of resonant nuclides or pseudo-

nuclides being tracked. The other contribution, which we will call i = 1, is from all

of the non-resonant nuclides in the current material. This implies Bg,1 = 1.

The fluxes in Eq. (A.31a) interact with a macroscopic total cross section which

uses the band-dependent total cross section of the current nuclide, and the average

cross sections of the other nuclides:

Σt,g,i,b = Niσt,g,i,b +
∑
j 6=i

Njσ̄t,g,j, (A.31b)

where averaging is done in a Bondarenko-like manner as in Eq. (A.14c). Correlation

may be taken into account by using band-specific values in the sum, though this

requires mapping from one band structure to another. By default, non-correlation

among nuclides is assumed.

Notice that unknowns for a given nuclide can be used in a material that does not

contain that nuclide. In this case, Ni = 0 in Eq. (A.31b). This may be useful to

preserve band information while particles are in transit between similar region, for

example, when traveling in moderator between two fuel pins.

The first nuclide, corresponding to all non-resonant nuclides in the current region,

is a pseudo-nuclide. N1 is the sum of the non-resonant nuclide atom densities in
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the region (which could be zero), and σ̄x,g,1 = σx,g,1,1 is the atom-density-weighted

average of the non-resonant nuclide cross sections in the region.

The band probabilities, which correspond to normalized areas in energy covered

by the band in the group, are simply the band probabilities for the given nuclide:

Pg,i,b = (Pg,b)i =
| (∆Eg,b)i |
|∆Eg|

, (A.31c)

1 =

Bg,i∑
b=1

Pg,i,b i = 1, . . . ,Mg. (A.31d)

The source terms have the same contributions for each nuclide:

Sscat,g,i,b =
1

4π
Pg,i,b

G∑
g′=1

Mg′∑
i′=1

Ni′ Tg′→g,i′

Bg′,i′∑
b′=1

σs,g′,i′,b′ φg′,i′,b′ = Pg,i,bSscat,g, (A.31e)

Sfiss,g,i,b =
1

4πkeff

Pg,i,b

G∑
g′=1

Mg′∑
i′=1

Ni′ χg,i′

Bg′,i′∑
b′=1

νσf,g′,i′,b′ φg′,i′,b′ = Pg,i,bSfiss,g. (A.31f)

Notice these source terms have implicit non-correlation within a group. Using a

nuclide- and band-specific transfer function, T(g′,i′,b′)→(g,i,b) would alleviate this but

would increase complexity.

Interface conditions will depend on whether the flux unknowns are local to a

material or if the same set of nuclides are used globally. In the former case, an

averaging should be used, as in Eq. (A.10b), to signify non-correlation:

ψg,i,b,in = Pg,i,b,in
1

Ng

Bg,i′∑
b′=1

Mg∑
i′=1

ψg,i′,b′,out. (A.31g)

In the latter case, correlation is preserved because the same fluxes are used for the

215



entire problem. In this case, Eq. (A.10a) is used with an added nuclide index:

ψg,i,b,in = ψg,i,b,out. (A.31h)

In this latter case, temperature correlation may be kept, provided the same band

structure is used for all temperatures of each nuclide.

One issue with adding more unknowns is that group-wise fluxes cease to be

unique:

φg =

Bg,i∑
b=1

φg,i,b, i = 1, . . . ,Mg. (A.31i)

However, fluxes are normally not the desired end-result of a calculation, but

rather reaction rates are. Reaction rates, and hence eigenvalues, are unique because

they use the flux corresponding to the cross section used:

RRx,g,i,b = σx,g,i,b φg,i,b, (A.31j)

RRx =
G∑
g=1

Mg∑
i=1

Ni

Bg,i∑
b=1

σx,g,i,b φg,i,b. (A.31k)

For the BN case, the idea is not to assume independence of each (effective)

nuclide, but rather to treat all possible permutations. There is a spectrum between

BN and BN , where only certain permutations are kept. This is beyond the scope of

this overview.

For the BN case, the unknowns are

ψg,b, g = 1, . . . , G, ∀ b, (A.32a)

b = {b1, . . . , bMg}, bi = 1, . . . , Bg,i, i = 1, . . . ,Mg. (A.32b)
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The unknown fluxes interact with a macroscopic total cross section which uses

the band-dependent total cross sections of each nuclide:

Σt,g,b =

Mg∑
i=1

Niσt,g,bi , ∀ bi. (A.32c)

Here ∀ bi means over all BN possible permutations of b.

The band probabilities are products of the nuclides and are usually assumed to

be independent:

Pg,b =

Mg∏
i=1

(Pg,b)i =

Mg∏
i=1

| (∆Eg,b)i |
|∆Eg|

, ∀ bi (A.32d)

This implies the flux ψg,b corresponds to the union energy space for bands {b1, . . . , bMg}

of the nuclides {1, . . . ,Mg}. The union definition renders the group-wise flux defi-

nition unique, as a sum over all b is necessary to cover the energy space within a

group.

The source terms, which determine the RHS and the reaction rates, are now given

by:

Sx,g,b =
1

4π
Pg,b

G∑
g′=1

Mg′∑
i′=1

Ni′ Tg′→g,i′

Bg′,i′∑
b′
i′=1

σx,g′,i′,b′
i′
φg′,i′,b′

i′
, (A.32e)

φg′,i′,bi′ =

Bg′,1∑
b1=1

· · ·
Bg′,i′−1∑
bi′−1=1

Bg′,i′+1∑
bi′+1=1

· · ·
Bg′,Mg′∑
bMg′

=1

φg′,b. (A.32f)

Notice Eq. (A.32f) assumes only the total flux within a nuclide’s band matters, not

its distribution. This is an approximation.

The BN or BN framework allows us to make use of microscopic band-wise XS

(option C in Section A.1.1). Resonance integrals (RI) can be computed for each
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nuclide (or pseudo-nuclide) independently and combined to form band parameters

independently. These nuclide-optimal band parameters may then be used as they

are. The only coupling needed among nuclides is a Bondarenko-like treatment to

get the background cross sections from the other nuclides (the σ̄’s), and this is only

necessary for the BN case.

The price paid for this simplicity and band optimality is additional unknowns

and complexity. This method may not be cost-effective, especially the BN case. In

years past, XS preparation has been memory- and computation-limited and shortcuts

were needed to avoid forming, storing, and operating on HFG or CE XS for more

than one nuclide. Today, computer resources allow us to use the HFG or CE XS

directly for 1-D problems. This means bands can be chosen — potentially constant

across the entire problem — to be accurate and consistent for many nuclides, solving

the problem of correlation and allowing a more first-principles approach to energy

discretization. Such advances have been utilized when developing FEDS.
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APPENDIX B

ADDENDUM TO SECTION 2

B.1 Energy Penalties

The minimization problem minimizes the variance of all observations within an

energy element, where observations hold information about how the solution behaves.

We use three types of observations: macroscopic total cross sections, infinite-medium

fluxes (possibly with escape cross section), and energy itself. The last observation

type is the energy penalty, which provides a mechanism to bound energy element

extent in energy instead of flux. When multiple observations are used, which is often

the case, they must be balanced in magnitude because the minimization problem

sums over variances in individual observations using an unweighted norm. The mag-

nitude of the energy penalty determines its relative importance. A magnitude of zero

means no energy penalty. A magnitude much greater than the other observations

will force contiguous energy elements that are equally spaced in lethargy. In this

work, two separate energy penalty magnitude strategies were used.

For the cylindrical pincell problem, the energy penalty magnitude was determined

by an α parameter and the observation for the energy penalty was:

Og,energy, cyl. = (1 + α) log10Eg, (B.1)

for hyperfine group / point g.

The problem with this strategy is the magnitude of the energy penalty should

be chosen to balance the magnitudes of the flux-based observations. Otherwise,

applying the same energy penalty to two different problems or energy regions will

219



result in different penalty strengths. In practice, this strategy required manually

tuning the energy penalty for each problem, which was undesirable. The values of

energy penalty used for the cylindrical pincell problems were α = 0.65 for problem 3,

α = 0.45 for problem 5 and the low-energy RRR, and α = −0.45 for problem 5 and

the medium-energy RRR. Sensitivity to the energy penalty magnitude was observed

to be low, so long as an energy penalty with α > −1 was used.

For the C5G∞ problem, a better strategy was devised, wherein a β parameter

determined the energy penalty magnitude. The observation for the energy penalty

was:

Og,energy, C5 = β
√
N log10

[
φmax

φmin

]
log10Eg

log10
Emax

Emin

, (B.2)

where N is the number of other observations, and φmax/φmin is the ratio of largest-to-

smallest flux over the entire RRR. The square root was used because all minimization

problems used an L2 norm over the observations for computing distances and the

energy penalty should balance the distance of the flux-based spectra.

With this strategy, the energy penalty strength relative to the other observations

should depend solely on the choice of β and be insensitive to the magnitude of

the other observations. A potential problem with the latter strategy is that the

energy penalty is calculated before the coarse groups are formed, meaning different

coarse groups may have different energy penalty strengths relative to the observation

magnitudes within each group. The C5G∞ problem used β = 0.36 and two coarse

groups with boundaries [3, 54.7, 1060] eV. The slab pincell problems used an energy

penalty with β = 0.96, but mostly relied on coarse groups for energy bounding. The

TOF problem did not use an energy penalty.

One conclusion of this work is that using energy penalties to control element
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extent in energy seems to be inferior to using coarse groups for this purpose. A

major reason energy penalties were developed was to allow the minimization problem

maximal freedom to determine where to put energy resolution. Using multiple coarse

groups requires either manually determining how many energy unknowns to allocate

to each coarse group or determining an algorithm to do this automatically. The

former is undesirable. The latter was developed and is described in section 2.

B.2 Detailed Apportioning Algorithm

In previous subsections, various variance-like metrics were developed for auto-

matic apportioning. The number of elements within a coarse group was said to be

approximately proportional to the metric for a coarse group divided by the metric

summed over all coarse groups multiplied by the total number of energy elements.

Metrics were norms of observations over hyperfine groups and materials, and in-

cluded the standard deviation metric, an L1 difference metric, and a maximum ratio

metric. This subsection details the precise implementation of the apportioning, given

a metric and proves the algorithm has certain desirable properties.

Let

vg = metric in coarse group g, (B.3a)

G = number of coarse groups, (B.3b)

Ntot = total number of energy elements desired, (B.3c)

Ng = number of energy elements in coarse group g, (B.3d)

vtot ≡
∑
g

vg = total metric. (B.3e)
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We desire that our apportioning satisfy

Ng '
vg
vtot

Ntot, (B.4a)

Ng ≥ 1, (B.4b)∑
g

Ng = Ntot. (B.4c)

Equation (B.4a) says we desire the number of elements per coarse group to be propor-

tional to the relative metric in that coarse group. Equation (B.4b) says we require

each coarse group to have at least one element, regardless of its metric. Equa-

tion (B.4c) says the sum of the elements per coarse group should equal the total

number of elements. It turns out to be difficult to satisfy all three requirements

simultaneously without requiring an iterative scheme.

Our apportioning strategy, which we later show satisfies Eq. (B.4), follows. Let

yg ≡
vg
vtot

Ntot, (B.5a)

Mg ≡ max (1, yg) , (B.5b)

Mtot ≡
∑
g

Mg, (B.5c)

γg ≡
Mg − 1

Mtot −G
, (B.5d)

N̂g ≡ bγg(Ntot −G)c+ 1, (B.5e)

δg ≡
(
γg(Ntot −G) + 1

)
− N̂g, (B.5f)

∆ = Ntot −
∑
g

N̂g. (B.5g)

Let a be the set that holds the g corresponding to the ∆ largest δg. That is, a

holds a list of coarse groups that have large remainders, δg, large being determined
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such that there are ∆ entries in a.

We define

Ng = N̂g if g /∈ a, (B.5h)

Ng = N̂g + 1 if g ∈ a. (B.5i)

We now show our apportioning strategy, Eq. (B.5), achieves the properties in

Eq. (B.4), assuming Ntot ≥ G. By definition,

Mg ≥ 1. (B.6a)

Thus,

γg ≥ 0. (B.6b)

Also, by definition,

∑
g

γg =
1

Mtot −G
∑
g

Mg − 1 =
Mtot −G
Mtot −G

= 1 (B.6c)

Continuing,

Mtot =
∑
g

max

(
1,

vg
vtot

Ntot

)
≥
∑
g

vg
vtot

Ntot = Ntot, (B.6d)

which implies

G ≤ Ntot ≤Mtot. (B.6e)

223



We use Eq. (B.6) to show

Ntot −G ≥ 0, (B.7a)

which implies

bγg(Ntot −G)c ≥ 0, (B.7b)

and hence

N̂g ≥ 1, (B.7c)

Ng ≥ 1, (B.7d)

proving Eq. (B.4b).

We use Eq. (B.6) to show

∑
g

N̂g =
∑
g

(
bγg(Ntot −G)c+ 1

)
≤ G+ (Ntot −G)

∑
g

γg = Ntot, (B.8a)

which implies ∆ ≥ 0 and our use of ∆ is valid. Finally, by definition of the cardinality

of a and of ∆,

∑
g

Ng = ∆ +
∑
g

N̂g = Ntot, (B.8b)

which proves Eq. (B.4c).
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Finally, note that if the maximum in the definition of Mg is never needed, then

Mg = yg, (B.9a)

Mtot =
∑
g

yg = Ntot

∑
g

vg
vtot

= Ntot, (B.9b)

Ng ' γg(Ntot −G) + 1 =
Mg − 1

Mtot −G
(Ntot −G) + 1 = Mg, (B.9c)

that is,

Ng '
vg
vtot

Ntot, (B.9d)

proving Eq. (B.4a). The “'” in Eq. (B.9c) follows from the definition of N̂g and the

way we distribute the final elements using the δg.

If the maximum in the definition of Mg is needed, we can still show the desired

proportionality of the elements. We begin by noting that

Ng '
Mg − 1

Mtot −G
(Ntot −G) + 1. (B.10a)

We define

r ≡ Ntot −G
Mtot −G

, (B.10b)

and note that Eq. (B.6) implies that

0 ≤ r ≤ 1. (B.10c)

r depends only on the number of times the maximum is used in Eq. (B.5b) and is

generally near 1.

225



We divide Ng by Ntot and apply our definition of r to find:

Ng '
vg
vtot

Ntot r + (1− r) 1, (B.11a)

Ng

Ntot

' vg
vtot

r + (1− r) 1

Ntot

. (B.11b)

Equation (B.11) says the number of elements per coarse group approximately satisfies

Eq. (B.4a) when r is close to 1 (when the maximum is used infrequently) and becomes

closer to 1 as r becomes appreciably smaller than 1. This latter case occurs when

a significant fraction of the coarse groups have little variance within themselves

compared to the average variance per coarse group.

B.3 Comparing FEDS to PG-FEMG and MG

In much the same way as the PG-FEMG method before it, the FEDS method

takes advantage of the low regularity requirements of the angular flux with respect

to energy and generalizes the MG method to use a finite element in energy based

on discontiguous energy elements. As with PG-FEMG, with FEDS, the support

of each element is discontiguous (made up of multiple, unconnected energy ranges

called subelements), no elements share support, and the union of the support of all

elements is the entire energy domain. In FEDS, I refer to the mesh that describes

the supports of the elements of the finite element space as the generalized energy

mesh (GEM).

As with PG-FEMG, in FEDS, both basis and weight functions for the finite el-

ement method are L1((0,∞)) integrable. This is all that is required when working

with the canonical neutral-particle transport equation, because the transport equa-

tion is integral with respect to the energy variable and because all the quantities

of interest are energy-integrated flux moments. Basis and/or weight functions with
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higher regularity would be required if derivatives in energy were desired or if it were

required to have a continuous representation of the angular flux in energy.1

Unlike PG-FEMG, which used a band boundary calculation on a single, effective

cross section, in FEDS, we generate the GEM using a clustering algorithm with

multiple inputs. The clustering algorithm is fed variables that are correlated with

the pointwise angular flux, such as local infinite-medium spectra, to determine which

energy subelements contain particles that behave similarly over the entire problem.

These subelements are clustered into elements.

The clustering is designed to minimize within-element variation of the angular flux

in the problem. We note that the clustering algorithm minimizes the projection error

between the angular flux (or a predictor thereof) and its finite element projection.

This property provides important theoretical justification for the FEDS method.

In the limit that the flux is completely determined by one resonant cross section,

the clustering algorithm will cluster based on the magnitude of that cross section.

This is the typical MB behavior that works well for simple problems. For more

complicated problems, the clustering generalizes MB and PG-FEMG, and overcomes

the limitations of using a single input that are inherent to PG-FEMG.

It was mentioned above that if the cross sections were smooth within a group or

element, then the MG method would work well. The same logic can be applied if

the flux within an element were approximately constant. As mentioned previously,

energy elements for FEDS are defined to maximize this property. Therefore, there

is strong reason to believe the FEDS method should work well.

B.4 Relevant Problems for FEDS

The FEDS method is well-suited to problems for which

1N.B., MG does not provide a continuous representation of the flux in energy either.
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1. There are a relatively small number of important components,

where “component” refers to a collection of one or more nuclides that consis-

tently appear in approximately the same relative densities.

• For example: U-238 in LWR fuel, U-235 in LWR fuel, Pu’s in LWR fuel,

Zr in LWR clad, or Ag-In-Cd in LWR control rods

• As a counter-example: Problems with large material motion, which shifts

the effective resonance positions, making each spatial location act as a

different resonance material

2. The total cross section or approximate spectra can be computed cheaply ahead

of time (the minimization step requires hyperfine cross sections and fluxes

defined on a hyperfine group structure).

3. The energy dependence of the cross sections are explicit.

• For example: The resolved resonance region (RRR)

• As a counter-example: The unresolved resonance region (URR)

4. The long-range energy dependencies may be easily approximated (cross sec-

tions must be flux-weighted over discontiguous energy domains. This requires

knowledge of the flux not only within each subelement, but also relatively

among subelements).

5. The solution depends on cross section values, not on energy explicitly.

• Downscattering is an important counter-example, where the scattering

kernel depends on energy lost.
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• Time-dependence is another important counter-example, where groupwise

velocities, which directly depend on energy, are used in the time derivative

term.

The last two points do not need to be satisfied if the amount of discontiguity of

the energy elements is somehow limited. Two straightforward ways to do this are

to add in energy itself to the minimization inputs, effectively introducing an energy

penalty term, and defining energy elements to live only within a coarse group, such

as by forming the energy mesh out of several small pieces.

B.5 Running FEDS Problems

B.5.1 The workflow

Figure B.1 shows the workflow for solving a k-eigenvalue or time-dependent neu-

tronics problem. Our workflow encompasses the entire range of the calculation,

beginning with ENDF data and ending with a problem QOI. Other required inputs

include the generalized energy mesh (GEM) — which we assume has already been

computed — problem-specific materials and geometry information, solver-specific

numerical and iterative method specifications / tolerances (not shown), and basis

functions. The basis functions here are shape-function integrals over the subele-

ments of the GEM and should be problem-dependent. We assume they have already

been calculated. The workflow for solving a MG problem is the same, except that

the GEM would contain contiguous elements and there may not be an element con-

densation in the GENDF reader step.

The first step in Fig. B.1 is to take evaluated nuclear data — ENDF/B-VII.1 in

this case — and process it with NJOY [68]. NJOY is composed of a series of modules,

each with a defined task. RECONR reconstructs point-wise cross sections from the

ENDF data, expanding such things as resonance parameters. BROADR broadens
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Figure B.1: Workflow for the FEDS method, from ENDF data to QOI.
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the cross sections, important for resonances, to the desired temperatures. UNRESR

deals with the unresolved resonance region (URR) and computes self-shielding in

this range.2 THERMR deals with thermal cross sections, where the neutron speeds

become comparable to the nuclei speeds and neutron energies become comparable to

lattice / molecular energies. These phenomena cause upscattering and add structure

to the scattering cross sections within the thermal range. GROUPR groups the

neutrons by their energies and computes flux-weighted averages of cross sections and

transfer matrices. For our implementation, we give GROUPR the subelement energy

boundaries, because subelements are contiguous and act exactly like MG groups. The

result of this first step is a set of cross sections for each subelement of each reaction

of each component / nuclide. Cross sections are given in a temperature-background

cross section (σ0) matrix.

The second step is to calculate element-wise cross sections for each component of

each material, where a material is a user-defined combination of component nuclides

at a user-defined temperature in a user-defined location (e.g., the inner ring of a UO2

fuel pin). This involves interpolating in temperature and background cross-section

space and condensing subelements into elements using the GEM. The condensation

in subelements defines a cross section as the basis-function-weighted average of all the

subelements within an energy element. The interpolation in background cross section

involves a Bondarenko iteration, described below. All of the problems studied in this

work used temperatures that were part of the temperature grid points in NJOY,

meaning there was no approximation in temperature.

The third step is to solve a k-eigenvalue or time-dependent neutronics problem

with a transport solver, using the FEDS cross sections produced in the second step

2In the URR, only a probabilistic distribution of the resonances are known, so cross sections at
an energy represent an average that must be self-shielded to account for the presence of other cross
sections.
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as inputs. In this work, we use three types of transport solvers: SCDT, a one-

dimensional, cylindrical, k-eigenvalue solver [1]; PDT, a two- or three-dimensional,

cartesian, k-eigenvalue or time-dependent solver [71]; and an analytic long-characteristics

in space-time, uncollided Python time-dependence solver. Notice that FEDS cross

sections may be used in standard MG codes without modification.

There are four caveats. The first caveat is that some energy elements may contain

large (resonance) cross sections, which forces either robust spatial methods or a fine

spatial discretization. The second caveat is that the iterative method needs to be

able to handle upscattering, as explained above. The third caveat is that, for time-

dependent problems, the user must be able to manually specify group speeds for the

elements as flux-weighted 1/ve. The final caveat is the user must be able to specify

element-integrated sources, e.g., for the fission spectrum.

The last step is to post-process the output from the transport solver. The amount

of required post-processing depends on the QOI. The k-eigenvalue requires no post-

processing, nor do reaction rates. Expanding the finite element fluxes to show their

true dependence on energy as a continuous variable requires knowing both the GEM

and the continuous-energy basis functions. Condensing fluxes / reaction rates to a

coarse group is trivial and does not require knowledge of basis functions or subelement

locations, only which elements belong to the coarse group.

B.5.2 Within-subelement basis functions and between-subelement basis functions

NJOY has three options for determining the within-group (within-subelement)

flux. Recall that the cross section for a subelement is a weighted average, where the

weighting used is this flux. The first option, which we use, is to invoke the narrow-

resonance (NR) approximation, which gives the within-sub-element flux for nuclide
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i as:

φi(σ0, E) = M(E)
1

σi(E) + σ0

, (B.12)

where M(E) is determined by the iwt parameter for GROUPR and is often 1/E in

the RRR. The second option is to use a flux calculator that solves the slowing-down

equation, but which only considers elastic scattering and an infinite medium com-

posed of a background cross section, σ0, and the current component’s cross sections,

σt,i and σs,i. The third option is to use a user-supplied flux for M(E) in Eq. (B.12).

This flux is given as Ei, φ(Ei) pairs, and linear-linear interpolations are done for

energies between supplied points. We chose to use the first option because it offers

reasonable fidelity at low cost compared to the second option and because it allows

us to run NJOY only once per nuclide, which is not necessarily the case for the third

option. Future work may investigate using other options.

We note that using Eq. (B.12) for the within-subelement fluxes is tantamount

to using approximate, nuclide-dependent basis functions for each component within

a material. The fact that the continuous-energy basis functions become nuclide-

dependent can be seen in Eq. (B.12), where the weighting flux used by NJOY depends

on the nuclide. Notice that, if only one component nuclide has a varying σt within

a subelement, or the variance within a subelement is small for all components, that

Eq. (B.12) is equivalent to saying:

φi(E) = M(E)
1

σi(E) + σ0

→M(E)
1

Σt(E) + Σe

, (B.13)

which eliminates the nuclide dependence.

When condensing the subelements into elements during the second phase of
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Fig. B.1, a consistent basis function is used for all components of a material. This

basis function is the integral over a subelement of the continuous-energy basis func-

tion, which is the solution to an infinite-medium-equivalent, slowing-down problem

with an analytic escape cross section. If small subelements are used, such that they

resolve all of the desired resonances, it is the basis functions described here that are

important. For all problems except the cylindrical pincell problems, subelements

were large, being composed of all contiguous hyperfine groups belonging to the same

element, so both basis functions described above were important.

B.5.3 The Bondarenko iteration

The Bondarenko iteration is one way to approximate the effect of other nuclides

on the within-subelement spectrum. Our version of this iteration scheme used a

narrow-resonance (NR) approximation (Eq. (B.12)) and an analytic escape cross

section calculation, described below. A more in-depth exploration of Bondarenko

iteration and its connection to NJOY is given in a future subsection. GROUPR uses

the φ(σ0, E) in Eq. (B.12) to flux-weight cross sections within each subelement on a

grid of at most ten σ0’s.

When a cross section is desired for a given material, the correct σ0 value for

each element for each component nuclide is selected using a Bondarenko iteration

on the σ0’s. This iteration has two steps. In the first step, for a given guess of

σ0 = σ0,i for nuclide i, the total cross section within each subelement is determined

by interpolating the σ0 grid. In the second step, σ0 values are calculated for each

subelement of each component nuclide using the σ0 values for the other component

nuclides within a material and the escape cross section:

σk+1
0,g,i =

1

Ni

Σe +
∑
j 6=i

Nj

Ni

σt,g,j(σ
k
0,g,j) (B.14)
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where k is the iteration index of the Bondarenko iteration, g is the subelement index,

and Σe is the escape cross section. We use the approximate escape cross section of

the chord length, which for a long cylinder of radius r is:

Σe '
Surface area

4 Volume
=

1

2r
. (B.15)

In practice, the Bondarenko iteration converges quickly, often requiring fewer than

ten iterations per material.

We justify using this form of the Bondarenko iteration by noting that this is a

standard scheme for computing cross sections, though most practitioners use escape

cross sections of higher fidelity that take into account square lattice effects and the

transport cross section within a material region.3

B.6 Bondarenko Iterations and NJOY

B.6.1 Introduction

There are many ways to define multigroup (MG) cross sections. When generating

MG cross sections directly from pointwise evaluated data, the common approach is

to compute the cross sections as a flux-weighted average:

σg =

∫
∆Eg

dE f(E)σ(E)∫
∆Eg

dE f(E)
, (B.16)

for some spectrum f(E).

To be accurate, the weighting spectrum, f(E), should be close to the actual

solution, ψ(r, E,Ω). Because the energy dependence of ψ is tightly coupled with

its spatial and directional dependence, it is in general not possible to factor out an

3Some practitioners even use transport calculations to inform their escape cross sections.
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f(E) that works in a pointwise sense. However, it is possible to define f(E) that

preserve the flux in some average sense. A common means of doing this is to employ

an escape cross section and equivalence theory.

Equivalence theory allows us to define region-average escape cross sections, Σe’s,

that play the role of part of the leakage term in the transport equation. We begin

by defining

J+(E) ≡
∫
∂D

d3r

∫
Ω·n≥0

dΩ |n ·Ω|ψ(r,Ω, E), (B.17a)

J−(E) ≡
∫
∂D

d3r

∫
Ω·n<0

dΩ |n ·Ω|ψ(r,Ω, E), (B.17b)

where n is the outward unit normal on the boundary of domain D.

We define our escape cross section, Σe(E), as the ratio of the exiting partial

current to the total flux within a region:

Σe(E) ≡ J+(E)

φ(E)
. (B.17c)

Equivalence theory treats leakage as though it were an absorption term with cross

section Σe(E).

Combining these definitions and assumptions, we find, ignoring time dependence
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and lumping all local sources into one term, q:

[∇ ·Ω + Σt(E)]ψ(r, E,Ω) = q(r, E,Ω), (B.18a)∫
D

d3r

∫
4π

dΩ [∇ ·Ω + Σt(E)]ψ(r, E,Ω) =

∫
D

d3r

∫
4π

dΩ q(r, E,Ω), (B.18b)

J+(E)− J−(E) + Σt(E)φ(E) = q(E), (B.18c)

[Σe(E) + Σt(E)]φ(E) = q(E) + J−(E) = Q(E). (B.18d)

Because of its weak dependence on energy, Σe(E) is often approximated as Σe. The

above derivation is to be applied separately for each material region.

This implies the flux is, to within a constant,

φ(E) ' Q(E)

Σe + Σt(E)
. (B.19)

The narrow resonance approximation is often employed because it simplifies the

flux to an analytic form. One of its assumptions is that resonances among different

nuclides are well-separated and do not affect each other through self-shielding. When

this is true, it is possible to represent the total cross section for a nuclide as the sum

of background cross sections of other nuclides plus the local cross section. That is,

Σt(E) '
(
σt,i(E) +

1

Ni

∑
j 6=i

Njσ̄t,j

)
Ni. (B.20)

The average cross sections and the escape cross section are often lumped together.
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This allows us to represent the flux as

φi(E) ' Q(E)

σt,i(E) + σ0,i

, (B.21a)

σ0,i ≡
1

Ni

(
Σe +

∑
j 6=i

Njσt,j

)
. (B.21b)

The upshot of this approach is it allows us to define a resonance-specific flux as a

function of two parameters only: Q(E) and σ0.

For many light-water reactors made up of fuel pins, the incident partial current

from the moderator is smoothed by the hydrogen and may be approximated as:

J−(E) ' c

E
. (B.22)

This bolsters our approximation of using Q(E) = 1/E in the resonance range.

We use Eq. (B.21a) with Q(E) = 1/E as our spectra, f(E), in Eq. (B.16). This

allows us to define MG cross sections as a function of background cross sections,

σ0. The important point is that this process may be done independently for each

nuclide. No information about other nuclides is required when doing the cross section

preparation.

The NJOY processing code uses this technique and builds all cross sections for

one nuclide on a σ0 and temperature (T ) grid. Later, cross sections can be properly

mixed for each material by iteratively defining the average cross sections used in the

background cross sections, the Bondarenko iteration. Analytic or simulated values

are calculated for the escape cross sections.

We can estimate the magnitude of Σe from geometric considerations alone. If
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ψ(r,Ω, E) is approximately constant within D, then

φ(E) =

∫
D

d3r

∫
4π

dΩ ψ(r, E,Ω) ' 4π|D|, (B.23a)

J+(E) =

∫
∂D

d3r

∫
Ω·n≥0

dΩ |n ·Ω|ψ(r,Ω, E) ' π|∂D|. (B.23b)

If we define V ≡ |D| and SA ≡ |∂D|, we get back the chord length estimate of the

escape cross section:

Σe '
SA

4V
. (B.23c)

The problem with the above method is it fails to account for resonance inter-

ference effects properly. For many nuclides of interest, e.g., U-238 and U-235, the

resonances are sufficiently thick and numerous that they interfere with each other.

The approximation in Eq. (B.20) is not appropriate, as σt,j(E) 6' σ̄t,j when σt,i(E)

has a resonance (is varying rapidly). For many reactors, U-238 is at a higher abun-

dance than U-235, and more strongly determines the spectrum. The approximation

in Eq. (B.20) therefore has more of an effect on the average cross section for U-

235 than U-238 because the approximate spectrum for U-238 is closer to the true

spectrum.

The solution in NJOY is to modify Q(E) for the minor nuclides to account for the

flux depressions that come from the major nuclides (major and minor here refering

to relative atom densities). A spectrum, fi,k(E) = (1/E)[1/(σt,i(E) + σ0,k)], is saved

from major nuclide i and used as the input to the group condensation for nuclide j
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by saying

Qj(E) ' fi,k(E). (B.24)

This implies the fluxes used for nuclides i and j are:

fi(E) =
1

E

1

σt,i(E) + σ0,i

, (B.25a)

fj,(i,k)(E) =
1

E

1

σt,i(E) + σ0,k

1

σt,j(E) + σ0,j

. (B.25b)

At first glance, this seems to be in error, as the correct spectrum is

fj(E) =
1

E

1

Niσt,i(E) +Njσt,j(E) + . . .+ Σe

(B.26)

It can be shown that Eq. (B.25) yields better estimates of the average cross

sections than using Q(E) = 1/E for each nuclide, assuming proper values of σ0,i,

σ0,j, and σ0,k may be found. The values of σ0,i and σ0,j may be found by using

Bondarenko iteration as per normal.

The difficulty with this approach as it is implemented in NJOY lies with the

definition of σ0,k, because it requires an a priori estimate instead of an a posteriori

calculation. That is, the flux cannot be given on a grid of σ0,k values and later

interpolated without performing multiple NJOY runs for the second nuclide.

A reasonable approximation to the average cross section is the potential cross

section, σp, which is the cross section a nuclide attains away from resonances. If

fuel composition is approximately constant, we can calculate the σ0,k using analytic

factors for the escape cross section, potential cross sections for the other nuclides,

and average nuclide atom densities for the other nuclides’ atom densities.
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To prevent confusion, we call using Q(E) = 1/E for all nuclides the “one-step

approach” and using Qi(E) = 1/E for the major nuclide and Qj(E) = fi,k(E) for

the minor nuclides the “two-step approach.” Although future subsections show the

two-step approach to be superior to the one-step approach, we utilize the latter in our

results in this work because the latter approach is a simpler workflow. This choice

should affect the error coefficients but should not affect the error convergence rates

for either MG and FEDS. This latter claim is backed up by results using reference-

weighted basis functions in the cylindrical pincell tests.

B.6.2 Problem studied

We wish to ascertain the accuracy of the one-step and two-step approaches in

calculating group-averaged cross sections. To do this, we have developed a mock

problem wherein the major nuclide, which we now call f , has one large resonance

at an energy of 10 eV and a potential cross section of 10 cm−1.4 In addition to

the major nuclide, there is a minor nuclide, which we now call g, that also has one

resonance. The resonance magnitude for g is a factor of 100 times smaller than for

f . The nuclide g also has a potential cross section of 10 cm−1.

We vary three parameters and study the accuracy of the MG cross section as

a function of these parameters. The parameters are the location (in energy) of

g’s resonance, which determines resonance overlap between f and g; the “frozen

background cross section,” which corresponds to σ0,k in the above derivation; and

the true escape cross section. Unlike the true escape cross section, which changes, the

escape cross section we use when calculating the weighting function spectra will be

fixed at the nominal value of the true escape cross section. Varying the true escape

cross section mimics changing radii in the fuel pin. This last variation allows us to

4We are using partial macroscopic cross sections throughout to eliminate confusing divisions by
atom density. The partial macroscopic cross section for nuclide i is Niσt,i.
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estimate how well our material- and energy-averaged cross sections approximate the

true spatially varying energy-averaged cross sections.

B.6.3 Results

B.6.3.1 Nominal escape cross section

Figure B.2 shows the cross sections as functions of energy. The subfigures show

different resonance positions for nuclide g with increasing amounts of overlap to the

resonance of nuclide f .

Figure B.3 shows the fluxes used by the one-step process to weight the cross

sections compared to the true flux. As expected, the one-step process produces poor

flux estimates when resonances overlap.

Figure B.4 shows the fluxes used by the two-step process. The frozen flux is also

shown, though it is in all cases overlapped by the flux for f , indicating we made a

reasonable guess for the background cross section that defines the frozen flux (more

on this later). The two-step flux for g does a much better job of tracking the true

flux for all cases of overlap, which was expected. The two-step flux for f , which does

not take into account any pointwise information about g, does not track the true

flux well near resonances of g, which is also expected. The two-step flux for g seems

to overestimate the shielding for complete overlap.

Figure B.5 shows the absolute errors in group-averaged cross sections for various

fluxes as a function of the background cross section used to define the frozen flux.

There are three interesting trends. The first is that it is possible to define a frozen

flux that gets the average cross section for g exactly correct. However, this position

is different for different overlap positions and furthermore is not knowable without

knowing the true flux, and so is of limited use. The second point is that using the

guess for background cross section of the frozen flux generally produces a better
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estimate of the average cross section for nuclide g than is attainable with the single-

step method. What was not anticipated was the error in average cross section for

nuclide f can also be decreased using the two-step method, even though the spectrum

for f has no knowledge of the pointwise spectrum of g. The reason is that f still

contains a background cross section to which g contributes. The increase in fidelity

for g feeds back into f . This effect is most apparent for the complete overlap case.

The final point is to notice the absolute magnitudes of the errors. For the low overlap

cases, the magnitude of the error is small for both nuclides, between 0.1 to 1.0 %.

With the one-step method, as overlap increases, error increases. For the two-step

method, error remains between 0.1 to 1.0 % or is reduced. The worst error occurs in

the case of large but not complete overlap, where error approaches 1 %.

Figure B.6 shows the ratio of errors between the one-step method and two-step

method as a function of the background cross section used to define the frozen flux.

In general, the error for f is approximately the same using either the one- or two-step

method. The error for g is generally better using the two-step method, though it

can worsened if a poor background cross section for the frozen flux is used. The case

where the error could get worse did have errors whose magnitudes were small.

B.6.3.2 Small escape cross section (inside pin)

This subsection examines the effect of drastically reducing the true escape cross

section while still using a larger (region-average) escape cross section in the one- and

two-step methods. This simulates fluxes and cross sections near the inside of a fuel

pin and seeks to show that MG cross sections do not perform well in a pointwise

sense.

Figure B.7 shows that the trends mentioned above hold, though the magnitude

of the errors are increased because an incorrect escape cross section is used for the
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Figure B.2: Pointwise cross sections as a function of energy for varying resonance
locations of nuclide g. Averages use the true average.
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Figure B.3: One-step fluxes and true flux as a function of energy for varying resonance
locations of nuclide g. Q(E) = 1/E was used in the one-step process.
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Figure B.4: Two-step, frozen, and true fluxes as a function of energy for varying
resonance locations of nuclide g. The frozen flux is the Q(E) used for g in the second
step (Q(E) = 1/E was used for f in the first step).
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Figure B.5: Absolute errors in group-averaged cross sections using the one- and two-
step methods as a function of the background cross section used in the frozen flux
(i.e., as a function of σ0,k). “Guess” refers to the background cross section that would
be chosen from the a priori potential-cross section estimate.
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Figure B.6: Relative errors in group-averaged cross sections between the one- and
two-step methods as a function of the background cross section used in the frozen
flux (i.e., as a function of σ0,k). “Guess” refers to the background cross section that
would be chosen from the a priori potential-cross section estimate.
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methods.

B.6.3.3 Moderate escape cross section (nearer to outside of pin)

In this subsection, a larger escape cross section is used in the true spectrum than

in the Bondarenko iteration used in the one- and two-step methods.

Figure B.8 shows that the same trends occur as were given in the previous sub-

section: multigroup cross sections are sensitive to spectrum in the resonances, which

in this case was modified by increasing the escape cross section.

B.6.3.4 Large escape cross section (outside of pin)

This subsection again varies the escape cross section used in the true spectrum

to simulate the spectrum near the outside of a fuel pin. The escape cross section is

now 1000 times that used in the one- and two-step methods.

Figure B.9 shows the pointwise cross section as a function of energy along with

the averaged cross sections using the true flux. Notice how much larger the averaged

cross sections are than in Fig. B.2.

Figure B.10 shows the one-step and true fluxes as functions of energy. For most

cases, the one-step fluxes vastly over-shield because they are using the wrong escape

cross section. Notice how the true flux does not dip at all due to nuclide g.

Figure B.11 shows the two-step and true fluxes as functions of energy. The two-

step method produces more correct average fluxes, but the point under consideration

is not near the average spectrum, so the two-step method does not do a good job

estimating the fluxes.

Figure B.12 shows the absolute errors in energy-averaged cross sections when

comparing region-averaged one-step and two-step fluxes against the pointwise (in

space) true flux. The errors in the flux for nuclide g are less than 1 % because

the resonance for nuclide g is small. The errors in the flux for nuclide f are large,
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Figure B.7: Absolute errors in group-averaged cross sections using the one- and two-
step methods as a function of the background cross section used in the frozen flux
(i.e., as a function of σ0,k) for small true escape cross section. “Guess” refers to
the background cross section that would be chosen from the a priori potential-cross
section estimate.
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Figure B.8: Absolute errors in group-averaged cross sections using the one- and two-
step methods as a function of the background cross section used in the frozen flux
(i.e., as a function of σ0,k) for moderate true escape cross section. “Guess” refers to
the background cross section that would be chosen from the a priori potential-cross
section estimate.
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approaching 70 %!

This last point is important, because it gives us a sense of the error we incur

in using a flat weighting flux (f(E) = 1/E). The error directly depends on the

magnitude of the resonances.
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Figure B.9: Pointwise cross sections as a function of energy for varying resonance
locations of nuclide g for large true escape cross section. Averages use the true
average.
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Figure B.10: One-step fluxes and true flux as a function of energy for varying res-
onance locations of nuclide g for large true escape cross section. Q(E) = 1/E was
used in the one-step process.
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Figure B.11: Two-step, frozen, and true fluxes as a function of energy for varying
resonance locations of nuclide g for large true escape cross section. The frozen flux
is the Q(E) used for g in the second step (Q(E) = 1/E was used for f in the first
step).
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Figure B.12: Absolute errors in group-averaged cross sections using the one- and
two-step methods as a function of the background cross section used in the frozen
flux (i.e., as a function of σ0,k) for large true escape cross section. “Guess” refers to
the background cross section that would be chosen from the a priori potential-cross
section estimate.
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B.7 Calculating Total Cross Section on a Union Energy Grid

We use the following approach to generate spectra using Σt:

1. Choose the bounding materials list.

2. From the bounding materials, create a global nuclide set. Nuclides at different

temperatures should be treated as separate nuclides.

3. Create a PENDF (or ACE) file for each nuclide and from it read in each σt.

4. Create a unionized energy grid over all nuclides in the global nuclide set that

is the union of the energy grid of each σt.

5. For each material, compute Σt on the unionized energy grid.

6. Thin the energy grid using a linear interpolation criterion.

Remove an energy grid point if the error made at that point using a linear

interpolation of its neighbors is within a tolerance for all materials (all Σt). Do

not remove multiple consecutive points during each thinning pass. Iterate until

no points are removed.

7. Enrich the energy grid near strong gradients to bound cross section jump.

The clustering algorithm and (FEDS-)MG in general uses a piecewise constant

representation of the cross sections, while the cross sections are currently rep-

resented as piecewise linear. For a given range, add a midpoint if the relative

difference between any two neighboring Σt is greater than some tolerance. Ap-

ply this recursively until no points are added.

8. Create an observation matrix (energy by material) equal to the logarithm of

the Σt.
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B.8 Calculating Infinite-Medium Flux Spectra on a Union Energy Grid

We use the following approach to create spectra from infinite-medium-equivalent

fluxes. A difficulty in this approach is that both the infinite-medium fluxes and a

suitable energy grid upon which they are to be defined are unknown a priori, and

must be built together iteratively. We use a predictor-corrector scheme when building

the mesh and its solution.

1. Choose the bounding materials list.

2. From the bounding materials, create a global nuclide set. Nuclides at different

temperatures should be treated as separate nuclides.

3. Create a PENDF (or ACE) file for each nuclide and from it read in each σs

and σt.

4. Choose which σs to keep. This may be done by relative atom fraction, atomic

number, manually, etc.

5. Create a unionized energy grid over all nuclides in the global nuclide set that

is the union of the energy grid of each σt. For each nuclide, σs and σt already

have the same grid.

6. For each material, compute Σt on the unionized energy grid.

7. Thin the energy grid using a linear interpolation criterion.

Remove an energy grid point if the error made at that point using a linear

interpolation of its neighbors is within a tolerance for all Σt. Do not remove

multiple consecutive points during each thinning pass. Iterate until no points

are removed.
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8. Enrich the energy grid to handle downscattering.

Require a minimum grid spacing in lethargy that is some small constant times

the downscatter distance off the heaviest nuclide. If two points are further

away than this criterion, add a midpoint. Do this iteratively until no points

are added.

9. Compute the infinite-medium flux, Q/Σt.

Do this for each material, solving an infinite-medium-equivalent slowing-down

equation, where Q includes a source from elastic down-scattering. See below

for more details. When looking up σs values, use linear-linear interpolation

from their original grid onto the union grid as needed.

10. Thin the energy grid using a linear interpolation criterion.

Remove an energy grid point if the error made at that point using a linear

interpolation of its neighbors is within a tolerance for all Q/Σt. Do not remove

multiple consecutive points during each thinning pass. Iterate until no points

are removed.

11. Enrich the energy grid near strong gradients of Q/Σt.

The clustering algorithm and (FEDS-)MG in general uses a piecewise constant

representation of the flux, while the flux on the union grid is represented as

piecewise linear. For a given range, add a midpoint if the relative difference

between any two neighboring Q/Σt is greater than some tolerance. Apply this

iteratively until no points are added.

12. Enrich the energy grid in energy.

To ensure a minimum lethargy resolution in the energy grid, add a midpoint

between two energy points further away than a criterion lethargy spacing. Do
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this iteratively until no points are added.

13. Create an observation matrix (energy by material) equal to the logarithm of

the normalized infinite-medium flux.

We calculate the Q/Σt by solving an infinite-medium-equivalent, fixed-source,

slowing-down equation. For thermal systems, a homogenized infinite medium in-

cludes hydrogen and hence a 1/E source in the resonance region. For fast systems,

this contribution is neglected. For thermal systems, we take

q(E) =

[
1

Ethermal

+
χ(Ethermal)

Efastχ(Efast)

]
M(E)

M(Ethermal)
(if E < Ethermal) +[

1

E
+

χ(E)

Efastχ(Efast)

]
(if Ethermal ≤ E < Ehigh) +[

1

Ehigh

+
χ(Ehigh)

Efastχ(Efast)

]
(if Ehigh ≤ E), (B.27a)

where M(E) is a Maxwellian, χ(E) is a Watt fission spectrum, Ethermal is around 0.1

eV, Efast is around 50 keV and Ehigh is around 10 MeV. Ehigh is used to prevent the

rapid decline of χ(E) at high energies. For fast systems, knowing nothing better, we

take

q(E) = 1 (if E < Efast) +

χ(E)

χ(Efast)
(if Efast ≤ E < Ehigh) +

χ(Ehigh)

χ(Efast)
(if Ehigh ≤ E). (B.27b)

For a given escape cross section, Σe, we solve

[
Σe + Σt(E)

]
φ(E) =

∑
i

[
Ni

1− αi

∫ E/αi

E

dE ′
φ(E ′)σs,i(E

′)

E ′

]
+ q(E), (B.28)
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for φ(E), where i is the index over nuclide (for the nuclides to be included in the

scattering source) and αi = [(Ai− 1)/(Ai + 1)]2. We solve the equation for each grid

point, which is like collocating on E. Using robust a trapezoidal approximation to

the scattering source, we find, for a given E,

∫ E/αi

E

dE ′ φ(E ′)σs,i(E
′) =∑

{j|E≤Ej∩Ej+1<E/αi}

(
Ej+1 − Ej

) [( Ej
Ej + Ej+1

)
φjσs,j
Ej

+

(
Ej+1

Ej + Ej+1

)
φj+1σs,j+1

Ej+1

]
+

(
E/αi − Ek

) [( Ek
Ek + E/αi

)
φkσs,k
Ek

+

(
E/αi

Ek + E/αi

)
φk+1σs,k+1

Ek+1

]
,

(B.29)

where k is defined such that Ek < E/αi ≤ Ek+1.

The equation may be solved without iteration by using backward substitution

(starting at high energies and decreasing). As we are not interested in the thermal

range, we do not solve past Ethermal, letting φ(E) = 1 there.

Most weighting spectra, including those used in NJOY use a long-range shape of

1/E. For thermal systems, weighting functions that look like q(E) are often used.

Let us define f(E) as a crude but nonetheless useful approximation to the weighting

spectrum. We approximate f(E) ' q(E).

We compute the observations as log [φ(E)/f(E)] and additively normalize them

such that the median is zero. The division by f(E) is important, as it removes

long-range shape from the observations.
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APPENDIX C

ADDENDUM TO SECTION 3

C.1 Differences Between FEDS and PG-FEMG

While the previous work developed the PG-FEMG method and demonstrated

its efficacy, it focused on one-dimensional problems, used a simple algorithm to de-

termine the generalized (discontiguous) energy mesh (GEM), and used either an

accurate-but-expensive or inexpensive-but-inaccurate weighting spectrum for cross

section condensation. In this work, we generalize the method to a larger class of

problems, GEM-determining algorithms, and weighting spectra. We develop and

test a more rigorous scheme for determining the GEMs that focuses on capturing

the solution, not one effective total cross section, which is merely a proxy for the

solution. Finally, we test weighting spectra for cross section condensation that are a

middle ground between using the reference solution on the full problem and using a

generic 1/E spectrum.

In previous work, [1], the GEMs were formed according to the magnitude of the

total cross section using a band-boundary calculation (BBC), as in BP or DED MB.

For problems with more than one material or temperature, an effective total cross

section was used so the GEM would be the same for every nuclide in the problem.

This effective total cross section was a weighted average of the macroscopic total

cross section in each user-defined spatial region, with weighting being either straight

or proportional to the region-averaged flux from a reference calculation.

BBC may not produce an optimal GEM. If only one resonant material is used,

the BBC does not account for resonant downscattering off heavy nuclides, as its
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energy elements are determined solely on the total cross section. If more than one

resonant material is used, an additional approximation is made of basing the bands

off a problem-averaged effective total cross section. It is not clear that simply averag-

ing the disparate macroscopic total cross sections and forming bands based on that

effective total cross section would preserve important resonant features in each ma-

terial. Even if all resonant features were preserved in the limit of infinite bands per

group, there would be no guarantee of GEM quality for moderate numbers of bands

per group. It would be better to form a GEM that isolates resonant features of the

total cross section for each material in addition to capturing resonant downscattering

regions.

In previous work, we focused on providing bounding cases for flux weighting

fidelity. Our low-fidelity weighting had no resonance shielding information and was

1/E in the resonance regions. Our high-fidelity weighting was the reference solution

averaged over a material region.

For this work, we seek weighting spectra that are both inexpensive (not the ref-

erence weighting) and accurate (not the generic weighting). We care less about

studying the sensitivity of the error to fidelity of the weighting spectrum and more

about developing a practical method for determining weighting spectra that can be

accurately and cheaply applied to multi-dimensional problems. Due to the funda-

mental similarities of FEDS and MG, we investigate weighting spectrum generation

methods used by MG for cross section condensation.

There are many schemes to determine weighting spectra for the MG method.

One common example is invoking the narrow-resonance (NR) approximation or its

kin. These are not appropriate in the resolved resonance region and may contribute

substantial error. Higher fidelity options include using hyperfine-group (HFG) or

continuous-energy (CE) calculations to determine weighting spectra. Such options
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often are not practical for multi-dimensional systems due to cost. When these options

are exercised on zero- or one-dimensional sub-problems, heterogeneity information is

lost or is approximated using equivalence theory, which may also introduce errors.

In this work, we focus on solving the infinite-medium slowing-down equations with

equivalence theory to account for heterogeneity with an escape cross section and

using these solutions as the weighting spectra within each material region.

While many of the above weighting spectrum generation methods require severe

approximations, we note PG-FEMG has previously been shown to be less sensitive

to weighting spectrum than MG. Both FEDS and PG-FEMG before it have separate

DOF for energies that are most sensitive to spatially and angularly induced changes

in the spectrum. In previous work, we found that we could get acceptable errors in

our quantities of interest (QOI) by increasing the number of bands per group, even

when we weighted the cross sections with 1/E. We will show that a similar emphasis

here allows us to focus on generation of the GEM and use a crude method to get our

weighting spectra.

We find FEDS to be superior to PG-FEMG for these pincell problems. Our

FEDS implementation is able to use more elements per resonance than our PG-

FEMG implementation, which allows FEDS to achieve lower errors at lower total

DOF count, especially when the new, medium-fidelity basis functions are used. Error

convergence rates, while not always smooth, demonstrate first-order convergence over

long ranges of energy element unknown counts that were unattainable in previous

PG-FEMG studies. Future sections introduce coarse groups and show FEDS to be

an attractive method for more complicated problems and against more convincing

reference solutions.
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C.2 Additional Results

Figures C.1 and C.2 give errors for each QOI for hierarchical agglomerative clus-

tering for problem 3 with the low-energy portion of the resonance range resolved.

Errors are given for varying basis function fidelities (the three cases) as a function

of the number of energy elements in the resolved resonance range (RRR).

Figures C.3 and C.4 give errors for each QOI for k-means clustering for problem

3 with the low-energy portion of the resonance range resolved.

Figures C.5 and C.6 give errors for each QOI for αMG for problem 3 with the

low-energy portion of the resonance range resolved.

Figures C.7 and C.8 give errors for each QOI for sMG for problem 3 with the

low-energy portion of the resonance range resolved.

Figures C.9 – C.11 give errors for each QOI for hierarchical agglomerative cluster-

ing for problem 3 with the medium-energy portion of the resonance range resolved.

Figures C.12 – C.14 give errors for each QOI for hierarchical agglomerative clus-

tering for problem 5 with the low-energy portion of the resonance range resolved.

Figures C.15 and C.16 give errors for each QOI for hierarchical aggl. clustering

for problem 5 with the medium-energy portion of the resonance range resolved.

Figures C.17 and C.18 give errors for each QOI for k-means clustering for problem

5 with the medium-energy portion of the resonance range resolved.

Figures C.19 and C.20 give errors for each QOI for αMG for problem 5 with the

medium-energy portion of the resonance range resolved.

Figures C.21 and C.22 give errors for each QOI for sMG for problem 5 with the

medium-energy portion of the resonance range resolved.
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Figure C.1: Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the hierarchical agglomerative clustering
method.

265



100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100
R

e
la

ti
v
e
 e

rr
o
r

Case 1

Case 2

Case 3

O(k−0.5 )

O(k−1 )

O(k−2 )

Target

(a) Absorption rate in inner U-238

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Case 1

Case 2

Case 3

O(k−0.5 )

O(k−1 )

O(k−2 )

Target

(b) Absorption rate in middle U-238

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Case 1

Case 2

Case 3

O(k−0.5 )

O(k−1 )

O(k−2 )

Target

(c) Absorption rate in outer U-238

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Case 1

Case 2

Case 3

O(k−0.5 )

O(k−1 )

O(k−2 )

Target

(d) Criticality eigenvalue

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Case 1

Case 2

Case 3

O(k−0.5 )

O(k−1 )

O(k−2 )

Target

(e) Power shape

Figure C.2: Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the hierarchical agglomerative clustering
method (cont.).
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Figure C.3: Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the k-means clustering method.
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Figure C.4: Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the k-means clustering method (cont.).
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Figure C.5: Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the αMG clustering method.
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Figure C.6: Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the αMG clustering method (cont.).

270



100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Case 1

Case 2

Case 3

O(k−0.5 )

O(k−1 )

O(k−2 )

Target

(a) Absorption rate in inner (hottest) Pu-239

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Case 1

Case 2

Case 3

O(k−0.5 )

O(k−1 )

O(k−2 )

Target

(b) Fission production rate in inner Pu-239

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Case 1

Case 2

Case 3

O(k−0.5 )

O(k−1 )

O(k−2 )

Target

(c) Absorption rate in middle Pu-239

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Case 1

Case 2

Case 3

O(k−0.5 )

O(k−1 )

O(k−2 )

Target

(d) Fission production rate in middle Pu-239

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Case 1

Case 2

Case 3

O(k−0.5 )

O(k−1 )

O(k−2 )

Target

(e) Absorption rate in outer (coolest) Pu-239

100 101 102 103

Number of energy elements in the RRR

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Case 1

Case 2

Case 3

O(k−0.5 )

O(k−1 )

O(k−2 )

Target

(f) Fission production rate in coolest Pu-239

Figure C.7: Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the sMG group structure.
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Figure C.8: Errors for individual QOI as a function of energy elements for problem
3 in the low-energy RRR for all cases and the sMG group structure (cont.).
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Figure C.9: Errors for individual QOI as a function of energy elements for problem 3
in the medium-energy RRR for all cases and the hierarchical agglomerative clustering
method.
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Figure C.10: Errors for individual QOI as a function of energy elements for problem 3
in the medium-energy RRR for all cases and the hierarchical agglomerative clustering
method (cont.).
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Figure C.11: Errors for all QOI as a function of energy elements for problem 3 in
the medium-energy RRR for each case and the hierarchical agglomerative clustering
method.
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Figure C.12: Errors for individual QOI as a function of energy elements for problem
5 in the low-energy RRR for all cases and the hierarchical agglomerative clustering
method.
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Figure C.13: Errors for individual QOI as a function of energy elements for problem
5 in the low-energy RRR for all cases and the hierarchical agglomerative clustering
method (cont.).
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Figure C.14: Errors for all QOI as a function of energy elements for problem 5 in the
low-energy RRR for each case and the hierarchical agglomerative clustering method.
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Figure C.15: Errors for individual QOI as a function of energy elements for problem 5
in the medium-energy RRR for all cases and the hierarchical agglomerative clustering
method.
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Figure C.16: Errors for individual QOI as a function of energy elements for problem 5
in the medium-energy RRR for all cases and the hierarchical agglomerative clustering
method (cont.).
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Figure C.17: Errors for individual QOI as a function of energy elements for problem
5 in the medium-energy RRR for all cases and the k-means clustering method.
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Figure C.18: Errors for individual QOI as a function of energy elements for problem 5
in the medium-energy RRR for all cases and the k-means clustering method (cont.).
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Figure C.19: Errors for individual QOI as a function of energy elements for problem
5 in the medium-energy RRR for all cases and the αMG clustering method.
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Figure C.20: Errors for individual QOI as a function of energy elements for problem
5 in the medium-energy RRR for all cases and the αMG clustering method (cont.).
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Figure C.21: Errors for individual QOI as a function of energy elements for problem
5 in the medium-energy RRR for all cases and the sMG group structure.
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Figure C.22: Errors for individual QOI as a function of energy elements for problem
5 in the medium-energy RRR for all cases and the sMG group structure (cont.).

286



APPENDIX D

ADDENDUM TO SECTION 4

D.1 Wynn-Epsilon Acceleration

The formula for the Wynn-epsilon extrapolation we used is:

qs+1
r = qs−1

r−1 +
1

qsr − qsr−1

(D.1)

where qsr is the QOI extrapolation at resolution r and Wynn-epsilon stage s. Equa-

tion (D.1) is the lower-diagonal formulation of the Wynn-epsilon acceleration tech-

nique. The q0
r are 0. The q1

r are the unextrapolated / original QOI values. The

values for odd stage counts converge while the values for even stage counts diverge.

The value at the highest resolution and odd stage is taken for the extrapolation.

For our FEDS reference solution, we used a maximum stage of s = 5 and resolu-

tions of {27, 43, 59, 91, 219} energy elements in the RRR from the FEDS solutions.

Using fewer than 5 stages was found to provide insufficient acceleration. Using more

than 5 stages required using QOI at low energy unknown counts. Other Wynn-

epsilon extrapolation flavors were tried, and found to be inferior. Wynn-epsilon

extrapolation was applied to each QOI separately to determine the FEDS reference.

D.2 Additional Results

Figures D.1 and D.2 show error plotted against the inverse energy DOF. If the

error is first-order in energy resolution, then the error in these plots should be a

straight line that goes through the origin. A lower slope means lower error constant

for Figs. D.1 and D.2.
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Figure D.1: Errors for selected QOI as a function of inverse energy element number
for the C5 problem and the MG reference
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Figure D.2: Errors for selected QOI as a function of inverse energy element number
for the C5 problem with the FEDS reference
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APPENDIX E

ADDENDUM TO SECTION 5

E.1 Apportioning Distributions

The ratio of total energy elements to number of coarse groups alone is insufficient

to describe the distribution of energy elements to coarse groups because elements are

not distributed uniformly. Figure E.1 shows the number of energy elements per coarse

group as a function of energy. Figure E.2 shows histograms of these distributions for

the TOF problem. The abscissa is the number of elements per coarse group. The

ordinate is the number of times the abscissa occurs, that is, the number of coarse

groups that have that number of elements. The legends show four numbers: the

percentage of coarse groups that have one element, and the 50th, 75th, and 90th

percentiles of number of elements per coarse group. The percentiles are computed

over the subset of coarse groups with more than one element. Apportioning for αMG

was proportional to relative L1 norm per coarse group, while apportioning for FEDS

was based on relative standard deviation per coarse group.

E.2 TOF Results

Tables E.1 – E.6 give QOI error for standard MG (sMG) and adaptive MG (αMG)

compared to a reference solution with 10,000 fine groups and 2,000 coarse groups.

Tables E.7 – E.12 give QOI error for standard MG (a.k.a., sMG) and FEDS

compared to a reference solution with 10,000 fine groups and 2,000 coarse groups.

E.3 Testing the Reference Solution

It is difficult to find a high-fidelity reference solution. NJOY 99 is limited to using

fewer than 15,000 groups. Using this number of equally-spaced groups would not be
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(a) 200 groups, r = 2, αMG
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(c) 200 groups, r = 10, αMG
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Figure E.1: Number of energy elements per coarse group as a function of energy for
various numbers of coarse groups and ratios.
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Figure E.2: Histogram of the distribution of energy unknowns to coarse groups for
various numbers of coarse groups and ratios.
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enough to resolve the fine resonances, which is necessary to get accurate absorption

and transmission QOIs. Any fidelity spent on the fine resonances is fidelity that

cannot be used to resolve the speeds, which is necessary to get accurate time-binned

detector-response QOIs.

Table E.13 gives the errors for several numbers of coarse and fine groups for a

possible reference solution. Each entry was compared against an energy mesh with

10,000 coarse groups and 14,500 fine groups (ratio of 1.45). Since the most difficult

case was a large distance with fine time bins, Table E.13 uses a distance of 10 m and

10,000 time bins.

All cases of the detector response error (error 3) are smaller by an order of mag-

nitude than are found in the MG and FEDS cases tested. The magnitudes of error

1 are the same as the most-resolved FEDS case tested. For these reasons, it was

decided to use a reference solution of 2,000 coarse groups and 10,000 fine groups for

the reference solution for all other cases.

E.4 Testing the Escape Cross Section

A Bondarenko iteration with escape cross section is used to approximate the flux

seen by the iron from the source. This subsection looks at the impact of the escape

cross section on the errors.

Say the thickness of the iron is M . The absorbed fraction in and the transmission

fraction through the iron for a neutron of energy E normalized to a source shape of
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q(E) is:

a(E)

q(E)
=

M∫
0

dx Σt(E)e−Σt(E)x = 1− e−Σt(E)M ' Σt(E)M

1 + Σt(E)M
=

Σt(E)

Σe + Σt(E)
,

(E.1a)

t(E)

q(E)
= e−Σt(E)M ' 1

1 + Σt(E)M
=

Σe

Σe + Σt(E)
, (E.1b)

Σe ≡
1

M
, (E.1c)

where the approximate equality for the absorption is accurate to 30 %, and maximum

relative deviation occurs around 1.8 mean free paths. Since the absorption rate, a(E),

is the flux multiplied by the total cross section, and the transmission rate, t(E), is

proportional to the flux, both indicate that a reasonable energy shape for the flux /

basis function is

φ(E) ' q(E)
1

Σe + Σt(E)
, (E.1d)

which is what is assumed with the Bondarenko iteration.

To determine the effect of the background cross section on the errors, we compared

two sets of cross sections. The first, (100 and 400) used escape cross sections of 1/M .

The second (101 and 401) used escape cross sections of infinity. The escape cross

section seems to provide approximately a factor of 2 in fidelity for the cross section

for both the FEDS and standard MG, with sMG being more sensitive than FEDS.
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Table E.1: TOF QOI errors for vacuum distance 10 cm and 50 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.77× 10−3 5.59× 10−3

αMG 1.25 80 4.79× 10−3 4.65× 10−3 5.61× 10−3

1.6 62 4.22× 10−3 4.12× 10−3 7.59× 10−3

2 50 4.62× 10−3 4.48× 10−3 6.34× 10−3

4 25 4.42× 10−3 4.28× 10−3 6.31× 10−3

10 10 4.28× 10−3 4.31× 10−3 4.59× 10−2

sMG 1 200 200 4.07× 10−3 4.02× 10−3 4.50× 10−3

αMG 1.25 160 3.99× 10−3 3.94× 10−3 4.44× 10−3

1.6 125 3.54× 10−3 3.52× 10−3 4.02× 10−3

2 100 3.62× 10−3 3.56× 10−3 4.30× 10−3

4 50 3.29× 10−3 3.25× 10−3 5.09× 10−3

10 20 3.26× 10−3 3.20× 10−3 4.85× 10−3

sMG 1 400 400 3.06× 10−3 3.07× 10−3 3.48× 10−3

αMG 1.25 320 3.01× 10−3 3.02× 10−3 3.50× 10−3

1.6 250 2.67× 10−3 2.69× 10−3 3.14× 10−3

2 200 2.56× 10−3 2.58× 10−3 3.08× 10−3

4 100 2.48× 10−3 2.50× 10−3 3.25× 10−3

10 40 2.30× 10−3 2.33× 10−3 3.01× 10−3

sMG 1 800 800 2.32× 10−3 2.33× 10−3 2.71× 10−3

αMG 1.25 640 2.10× 10−3 2.13× 10−3 2.58× 10−3

1.6 500 1.83× 10−3 1.87× 10−3 2.31× 10−3

2 400 1.78× 10−3 1.81× 10−3 2.24× 10−3

4 200 1.56× 10−3 1.60× 10−3 1.99× 10−3

10 80 1.48× 10−3 1.52× 10−3 1.94× 10−3

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.78× 10−3

αMG 1.25 1280 1.22× 10−3 1.25× 10−3 1.59× 10−3

1.6 1000 1.11× 10−3 1.13× 10−3 1.49× 10−3

2 800 1.00× 10−3 1.03× 10−3 1.35× 10−3

4 400 8.96× 10−4 9.22× 10−4 1.19× 10−3

10 160 8.45× 10−4 8.69× 10−4 1.13× 10−3
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Table E.2: TOF QOI errors for vacuum distance 10 cm and 10,000 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.75× 10−3 3.68× 10−2

αMG 1.25 80 4.79× 10−3 4.63× 10−3 4.01× 10−2

1.6 62 4.22× 10−3 4.11× 10−3 4.35× 10−2

2 50 4.62× 10−3 4.48× 10−3 5.21× 10−2

4 25 4.42× 10−3 4.27× 10−3 6.31× 10−2

10 10 4.28× 10−3 4.27× 10−3 1.09× 10−1

sMG 1 200 200 4.07× 10−3 4.02× 10−3 1.55× 10−2

αMG 1.25 160 3.99× 10−3 3.94× 10−3 1.82× 10−2

1.6 125 3.54× 10−3 3.52× 10−3 1.97× 10−2

2 100 3.62× 10−3 3.56× 10−3 2.20× 10−2

4 50 3.29× 10−3 3.24× 10−3 3.58× 10−2

10 20 3.26× 10−3 3.19× 10−3 4.66× 10−2

sMG 1 400 400 3.06× 10−3 3.07× 10−3 5.38× 10−3

αMG 1.25 320 3.01× 10−3 3.02× 10−3 6.65× 10−3

1.6 250 2.67× 10−3 2.69× 10−3 7.52× 10−3

2 200 2.56× 10−3 2.58× 10−3 9.59× 10−3

4 100 2.48× 10−3 2.50× 10−3 1.67× 10−2

10 40 2.30× 10−3 2.33× 10−3 2.23× 10−2

sMG 1 800 800 2.32× 10−3 2.33× 10−3 2.85× 10−3

αMG 1.25 640 2.10× 10−3 2.13× 10−3 2.69× 10−3

1.6 500 1.83× 10−3 1.87× 10−3 2.78× 10−3

2 400 1.78× 10−3 1.81× 10−3 3.35× 10−3

4 200 1.56× 10−3 1.60× 10−3 6.97× 10−3

10 80 1.48× 10−3 1.52× 10−3 1.00× 10−2

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.81× 10−3

αMG 1.25 1280 1.22× 10−3 1.25× 10−3 1.61× 10−3

1.6 1000 1.11× 10−3 1.14× 10−3 1.57× 10−3

2 800 1.00× 10−3 1.03× 10−3 1.47× 10−3

4 400 8.96× 10−4 9.23× 10−4 2.23× 10−3

10 160 8.45× 10−4 8.70× 10−4 4.38× 10−3
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Table E.3: TOF QOI errors for vacuum distance 1 m and 50 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.89× 10−3 2.17× 10−2

αMG 1.25 80 4.79× 10−3 4.61× 10−3 1.64× 10−2

1.6 62 4.22× 10−3 4.20× 10−3 3.05× 10−2

2 50 4.62× 10−3 4.64× 10−3 3.60× 10−2

4 25 4.42× 10−3 4.98× 10−3 7.18× 10−2

10 10 4.28× 10−3 5.43× 10−3 6.51× 10−2

sMG 1 200 200 4.07× 10−3 4.04× 10−3 5.83× 10−3

αMG 1.25 160 3.99× 10−3 3.95× 10−3 6.60× 10−3

1.6 125 3.54× 10−3 3.55× 10−3 6.48× 10−3

2 100 3.62× 10−3 3.57× 10−3 9.27× 10−3

4 50 3.29× 10−3 3.41× 10−3 2.91× 10−2

10 20 3.26× 10−3 3.33× 10−3 3.45× 10−2

sMG 1 400 400 3.06× 10−3 3.08× 10−3 3.87× 10−3

αMG 1.25 320 3.01× 10−3 3.02× 10−3 3.84× 10−3

1.6 250 2.67× 10−3 2.70× 10−3 3.75× 10−3

2 200 2.56× 10−3 2.60× 10−3 3.96× 10−3

4 100 2.48× 10−3 2.48× 10−3 4.14× 10−3

10 40 2.30× 10−3 2.33× 10−3 8.12× 10−3

sMG 1 800 800 2.32× 10−3 2.33× 10−3 2.76× 10−3

αMG 1.25 640 2.10× 10−3 2.13× 10−3 2.66× 10−3

1.6 500 1.83× 10−3 1.87× 10−3 2.41× 10−3

2 400 1.78× 10−3 1.82× 10−3 2.49× 10−3

4 200 1.56× 10−3 1.61× 10−3 2.58× 10−3

10 80 1.48× 10−3 1.51× 10−3 3.22× 10−3

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.79× 10−3

αMG 1.25 1280 1.22× 10−3 1.25× 10−3 1.60× 10−3

1.6 1000 1.11× 10−3 1.14× 10−3 1.51× 10−3

2 800 1.00× 10−3 1.03× 10−3 1.38× 10−3

4 400 8.96× 10−4 9.27× 10−4 1.52× 10−3

10 160 8.45× 10−4 8.74× 10−4 1.32× 10−3
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Table E.4: TOF QOI errors for vacuum distance 1 m and 10,000 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.81× 10−3 3.88× 10−1

αMG 1.25 80 4.79× 10−3 4.70× 10−3 4.18× 10−1

1.6 62 4.22× 10−3 4.21× 10−3 4.44× 10−1

2 50 4.62× 10−3 4.64× 10−3 5.30× 10−1

4 25 4.42× 10−3 4.82× 10−3 6.80× 10−1

10 10 4.28× 10−3 5.76× 10−3 8.42× 10−1

sMG 1 200 200 4.07× 10−3 4.02× 10−3 1.67× 10−1

αMG 1.25 160 3.99× 10−3 3.94× 10−3 1.74× 10−1

1.6 125 3.54× 10−3 3.53× 10−3 1.72× 10−1

2 100 3.62× 10−3 3.57× 10−3 2.04× 10−1

4 50 3.29× 10−3 3.35× 10−3 4.00× 10−1

10 20 3.26× 10−3 3.48× 10−3 4.93× 10−1

sMG 1 400 400 3.06× 10−3 3.07× 10−3 8.00× 10−2

αMG 1.25 320 3.01× 10−3 3.02× 10−3 8.80× 10−2

1.6 250 2.67× 10−3 2.69× 10−3 8.80× 10−2

2 200 2.56× 10−3 2.58× 10−3 1.19× 10−1

4 100 2.48× 10−3 2.51× 10−3 1.39× 10−1

10 40 2.30× 10−3 2.35× 10−3 2.16× 10−1

sMG 1 800 800 2.32× 10−3 2.33× 10−3 3.56× 10−2

αMG 1.25 640 2.10× 10−3 2.13× 10−3 4.16× 10−2

1.6 500 1.83× 10−3 1.87× 10−3 4.60× 10−2

2 400 1.78× 10−3 1.81× 10−3 5.09× 10−2

4 200 1.56× 10−3 1.60× 10−3 7.76× 10−2

10 80 1.48× 10−3 1.52× 10−3 1.05× 10−1

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.37× 10−2

αMG 1.25 1280 1.22× 10−3 1.25× 10−3 1.68× 10−2

1.6 1000 1.11× 10−3 1.14× 10−3 2.07× 10−2

2 800 1.00× 10−3 1.03× 10−3 2.32× 10−2

4 400 8.96× 10−4 9.23× 10−4 4.14× 10−2

10 160 8.45× 10−4 8.70× 10−4 5.09× 10−2

298



Table E.5: TOF QOI errors for vacuum distance 10 m and 50 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.98× 10−3 4.39× 10−2

αMG 1.25 80 4.79× 10−3 5.14× 10−3 7.71× 10−2

1.6 62 4.22× 10−3 4.37× 10−3 4.33× 10−2

2 50 4.62× 10−3 4.86× 10−3 5.59× 10−2

4 25 4.42× 10−3 5.14× 10−3 1.02× 10−1

10 10 4.28× 10−3 6.87× 10−3 1.53× 10−1

sMG 1 200 200 4.07× 10−3 4.16× 10−3 3.54× 10−2

αMG 1.25 160 3.99× 10−3 3.93× 10−3 1.49× 10−2

1.6 125 3.54× 10−3 3.60× 10−3 2.16× 10−2

2 100 3.62× 10−3 3.72× 10−3 3.13× 10−2

4 50 3.29× 10−3 3.85× 10−3 4.81× 10−2

10 20 3.26× 10−3 3.61× 10−3 5.09× 10−2

sMG 1 400 400 3.06× 10−3 3.09× 10−3 1.35× 10−2

αMG 1.25 320 3.01× 10−3 3.04× 10−3 8.22× 10−3

1.6 250 2.67× 10−3 2.74× 10−3 1.28× 10−2

2 200 2.56× 10−3 2.68× 10−3 2.27× 10−2

4 100 2.48× 10−3 2.65× 10−3 2.42× 10−2

10 40 2.30× 10−3 2.51× 10−3 2.70× 10−2

sMG 1 800 800 2.32× 10−3 2.34× 10−3 4.54× 10−3

αMG 1.25 640 2.10× 10−3 2.13× 10−3 3.79× 10−3

1.6 500 1.83× 10−3 1.88× 10−3 6.94× 10−3

2 400 1.78× 10−3 1.85× 10−3 8.86× 10−3

4 200 1.56× 10−3 1.69× 10−3 1.39× 10−2

10 80 1.48× 10−3 1.58× 10−3 1.18× 10−2

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 2.02× 10−3

αMG 1.25 1280 1.22× 10−3 1.24× 10−3 2.08× 10−3

1.6 1000 1.11× 10−3 1.13× 10−3 2.32× 10−3

2 800 1.00× 10−3 1.04× 10−3 2.53× 10−3

4 400 8.96× 10−4 9.54× 10−4 4.99× 10−3

10 160 8.45× 10−4 8.93× 10−4 4.70× 10−3
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Table E.6: TOF QOI errors for vacuum distance 10 m and 10,000 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 5.04× 10−3 1.99× 100

αMG 1.25 80 4.79× 10−3 4.96× 10−3 2.07× 100

1.6 62 4.22× 10−3 4.51× 10−3 2.09× 100

2 50 4.62× 10−3 4.98× 10−3 2.28× 100

4 25 4.42× 10−3 5.27× 10−3 2.61× 100

10 10 4.28× 10−3 6.29× 10−3 2.99× 100

sMG 1 200 200 4.07× 10−3 4.10× 10−3 1.34× 100

αMG 1.25 160 3.99× 10−3 4.03× 10−3 1.42× 100

1.6 125 3.54× 10−3 3.64× 10−3 1.47× 100

2 100 3.62× 10−3 3.71× 10−3 1.55× 100

4 50 3.29× 10−3 3.62× 10−3 1.87× 100

10 20 3.26× 10−3 3.83× 10−3 2.03× 100

sMG 1 400 400 3.06× 10−3 3.09× 10−3 8.55× 10−1

αMG 1.25 320 3.01× 10−3 3.05× 10−3 9.26× 10−1

1.6 250 2.67× 10−3 2.72× 10−3 9.60× 10−1

2 200 2.56× 10−3 2.63× 10−3 1.04× 100

4 100 2.48× 10−3 2.62× 10−3 1.27× 100

10 40 2.30× 10−3 2.52× 10−3 1.36× 100

sMG 1 800 800 2.32× 10−3 2.33× 10−3 4.50× 10−1

αMG 1.25 640 2.10× 10−3 2.14× 10−3 5.29× 10−1

1.6 500 1.83× 10−3 1.87× 10−3 5.63× 10−1

2 400 1.78× 10−3 1.82× 10−3 6.20× 10−1

4 200 1.56× 10−3 1.64× 10−3 8.08× 10−1

10 80 1.48× 10−3 1.59× 10−3 9.07× 10−1

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.49× 10−1

αMG 1.25 1280 1.22× 10−3 1.25× 10−3 1.69× 10−1

1.6 1000 1.11× 10−3 1.14× 10−3 2.22× 10−1

2 800 1.00× 10−3 1.03× 10−3 2.81× 10−1

4 400 8.96× 10−4 9.33× 10−4 4.72× 10−1

10 160 8.45× 10−4 8.97× 10−4 5.69× 10−1
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Table E.7: TOF QOI errors for vacuum distance 10 cm and 50 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.77× 10−3 5.59× 10−3

FEDS 1.25 80 4.08× 10−3 4.08× 10−3 5.51× 10−3

1.6 62 2.88× 10−3 2.92× 10−3 6.52× 10−3

2 50 2.22× 10−3 2.26× 10−3 8.01× 10−3

4 25 1.49× 10−3 1.63× 10−3 2.25× 10−2

10 10 3.38× 10−4 5.09× 10−3 1.90× 10−1

sMG 1 200 200 4.07× 10−3 4.02× 10−3 4.50× 10−3

FEDS 1.25 160 3.29× 10−3 3.33× 10−3 4.39× 10−3

1.6 125 2.45× 10−3 2.50× 10−3 3.37× 10−3

2 100 2.16× 10−3 2.20× 10−3 3.77× 10−3

4 50 9.70× 10−4 1.02× 10−3 6.65× 10−3

10 20 3.13× 10−4 1.42× 10−3 4.75× 10−2

sMG 1 400 400 3.06× 10−3 3.07× 10−3 3.48× 10−3

FEDS 1.25 320 2.45× 10−3 2.50× 10−3 3.24× 10−3

1.6 250 1.89× 10−3 1.94× 10−3 2.58× 10−3

2 200 1.59× 10−3 1.63× 10−3 2.22× 10−3

4 100 8.25× 10−4 8.47× 10−4 2.38× 10−3

10 40 2.43× 10−4 4.03× 10−4 8.11× 10−3

sMG 1 800 800 2.32× 10−3 2.33× 10−3 2.71× 10−3

FEDS 1.25 640 1.68× 10−3 1.72× 10−3 2.21× 10−3

1.6 500 1.30× 10−3 1.33× 10−3 1.73× 10−3

2 400 1.03× 10−3 1.07× 10−3 1.42× 10−3

4 200 5.66× 10−4 5.84× 10−4 8.87× 10−4

10 80 1.74× 10−4 1.92× 10−4 2.19× 10−3

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.78× 10−3

FEDS 1.25 1280 9.75× 10−4 1.00× 10−3 1.34× 10−3

1.6 1000 7.82× 10−4 8.06× 10−4 1.07× 10−3

2 800 6.19× 10−4 6.38× 10−4 8.28× 10−4

4 400 3.30× 10−4 3.41× 10−4 4.39× 10−4

10 160 9.50× 10−5 1.01× 10−4 3.47× 10−4
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Table E.8: TOF QOI errors for vacuum distance 10 cm and 10,000 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.75× 10−3 3.68× 10−2

FEDS 1.25 80 4.08× 10−3 4.09× 10−3 4.64× 10−2

1.6 62 2.88× 10−3 2.93× 10−3 6.05× 10−2

2 50 2.22× 10−3 2.26× 10−3 7.59× 10−2

4 25 1.49× 10−3 1.88× 10−3 1.51× 10−1

10 10 3.38× 10−4 6.06× 10−3 3.47× 10−1

sMG 1 200 200 4.07× 10−3 4.02× 10−3 1.55× 10−2

FEDS 1.25 160 3.29× 10−3 3.33× 10−3 2.03× 10−2

1.6 125 2.45× 10−3 2.50× 10−3 2.67× 10−2

2 100 2.16× 10−3 2.20× 10−3 3.47× 10−2

4 50 9.70× 10−4 1.03× 10−3 7.04× 10−2

10 20 3.13× 10−4 1.36× 10−3 1.53× 10−1

sMG 1 400 400 3.06× 10−3 3.07× 10−3 5.38× 10−3

FEDS 1.25 320 2.45× 10−3 2.50× 10−3 7.34× 10−3

1.6 250 1.89× 10−3 1.94× 10−3 1.00× 10−2

2 200 1.59× 10−3 1.63× 10−3 1.34× 10−2

4 100 8.25× 10−4 8.41× 10−4 3.06× 10−2

10 40 2.43× 10−4 4.43× 10−4 7.97× 10−2

sMG 1 800 800 2.32× 10−3 2.33× 10−3 2.85× 10−3

FEDS 1.25 640 1.68× 10−3 1.72× 10−3 2.30× 10−3

1.6 500 1.30× 10−3 1.33× 10−3 2.48× 10−3

2 400 1.03× 10−3 1.07× 10−3 3.72× 10−3

4 200 5.66× 10−4 5.84× 10−4 1.18× 10−2

10 80 1.74× 10−4 1.97× 10−4 3.51× 10−2

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.81× 10−3

FEDS 1.25 1280 9.75× 10−4 1.00× 10−3 1.36× 10−3

1.6 1000 7.82× 10−4 8.07× 10−4 1.21× 10−3

2 800 6.19× 10−4 6.38× 10−4 1.07× 10−3

4 400 3.30× 10−4 3.41× 10−4 2.89× 10−3

10 160 9.50× 10−5 9.90× 10−5 1.30× 10−2
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Table E.9: TOF QOI errors for vacuum distance 1 m and 50 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.89× 10−3 2.17× 10−2

FEDS 1.25 80 4.08× 10−3 4.09× 10−3 2.55× 10−2

1.6 62 2.88× 10−3 3.43× 10−3 6.22× 10−2

2 50 2.22× 10−3 3.37× 10−3 6.91× 10−2

4 25 1.49× 10−3 4.09× 10−3 1.13× 10−1

10 10 3.38× 10−4 1.15× 10−2 4.73× 10−1

sMG 1 200 200 4.07× 10−3 4.04× 10−3 5.83× 10−3

FEDS 1.25 160 3.29× 10−3 3.28× 10−3 7.26× 10−3

1.6 125 2.45× 10−3 2.65× 10−3 1.31× 10−2

2 100 2.16× 10−3 2.35× 10−3 2.05× 10−2

4 50 9.70× 10−4 2.54× 10−3 6.03× 10−2

10 20 3.13× 10−4 5.73× 10−3 1.92× 10−1

sMG 1 400 400 3.06× 10−3 3.08× 10−3 3.87× 10−3

FEDS 1.25 320 2.45× 10−3 2.50× 10−3 3.29× 10−3

1.6 250 1.89× 10−3 1.94× 10−3 4.52× 10−3

2 200 1.59× 10−3 1.63× 10−3 3.98× 10−3

4 100 8.25× 10−4 1.06× 10−3 1.80× 10−2

10 40 2.43× 10−4 2.01× 10−3 7.22× 10−2

sMG 1 800 800 2.32× 10−3 2.33× 10−3 2.76× 10−3

FEDS 1.25 640 1.68× 10−3 1.72× 10−3 2.28× 10−3

1.6 500 1.30× 10−3 1.33× 10−3 1.90× 10−3

2 400 1.03× 10−3 1.07× 10−3 2.17× 10−3

4 200 5.66× 10−4 5.87× 10−4 3.17× 10−3

10 80 1.74× 10−4 7.35× 10−4 2.24× 10−2

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.79× 10−3

FEDS 1.25 1280 9.75× 10−4 1.00× 10−3 1.35× 10−3

1.6 1000 7.82× 10−4 8.06× 10−4 1.09× 10−3

2 800 6.19× 10−4 6.40× 10−4 8.67× 10−4

4 400 3.30× 10−4 3.45× 10−4 1.16× 10−3

10 160 9.50× 10−5 1.49× 10−4 3.73× 10−3
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Table E.10: TOF QOI errors for vacuum distance 1 m and 10,000 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.81× 10−3 3.88× 10−1

FEDS 1.25 80 4.08× 10−3 4.23× 10−3 5.05× 10−1

1.6 62 2.88× 10−3 3.39× 10−3 6.46× 10−1

2 50 2.22× 10−3 3.22× 10−3 7.53× 10−1

4 25 1.49× 10−3 5.62× 10−3 1.13× 100

10 10 3.38× 10−4 1.19× 10−2 1.32× 100

sMG 1 200 200 4.07× 10−3 4.02× 10−3 1.67× 10−1

FEDS 1.25 160 3.29× 10−3 3.34× 10−3 1.98× 10−1

1.6 125 2.45× 10−3 2.53× 10−3 2.62× 10−1

2 100 2.16× 10−3 2.29× 10−3 3.60× 10−1

4 50 9.70× 10−4 2.38× 10−3 6.98× 10−1

10 20 3.13× 10−4 6.45× 10−3 1.06× 100

sMG 1 400 400 3.06× 10−3 3.07× 10−3 8.00× 10−2

FEDS 1.25 320 2.45× 10−3 2.50× 10−3 1.00× 10−1

1.6 250 1.89× 10−3 1.94× 10−3 1.27× 10−1

2 200 1.59× 10−3 1.63× 10−3 1.52× 10−1

4 100 8.25× 10−4 1.01× 10−3 3.05× 10−1

10 40 2.43× 10−4 2.72× 10−3 7.34× 10−1

sMG 1 800 800 2.32× 10−3 2.33× 10−3 3.56× 10−2

FEDS 1.25 640 1.68× 10−3 1.72× 10−3 4.57× 10−2

1.6 500 1.30× 10−3 1.33× 10−3 5.55× 10−2

2 400 1.03× 10−3 1.07× 10−3 6.70× 10−2

4 200 5.66× 10−4 5.94× 10−4 1.29× 10−1

10 80 1.74× 10−4 8.18× 10−4 3.76× 10−1

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.37× 10−2

FEDS 1.25 1280 9.75× 10−4 1.00× 10−3 1.78× 10−2

1.6 1000 7.82× 10−4 8.07× 10−4 2.28× 10−2

2 800 6.19× 10−4 6.38× 10−4 2.78× 10−2

4 400 3.30× 10−4 3.42× 10−4 5.66× 10−2

10 160 9.50× 10−5 1.61× 10−4 1.27× 10−1
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Table E.11: TOF QOI errors for vacuum distance 10 m and 50 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 4.98× 10−3 4.39× 10−2

FEDS 1.25 80 4.08× 10−3 4.89× 10−3 9.56× 10−2

1.6 62 2.88× 10−3 3.55× 10−3 6.54× 10−2

2 50 2.22× 10−3 4.15× 10−3 9.94× 10−2

4 25 1.49× 10−3 4.75× 10−3 1.32× 10−1

10 10 3.38× 10−4 1.33× 10−2 5.45× 10−1

sMG 1 200 200 4.07× 10−3 4.16× 10−3 3.54× 10−2

FEDS 1.25 160 3.29× 10−3 3.33× 10−3 2.11× 10−2

1.6 125 2.45× 10−3 2.63× 10−3 2.78× 10−2

2 100 2.16× 10−3 2.50× 10−3 4.04× 10−2

4 50 9.70× 10−4 3.68× 10−3 8.05× 10−2

10 20 3.13× 10−4 8.02× 10−3 2.35× 10−1

sMG 1 400 400 3.06× 10−3 3.09× 10−3 1.35× 10−2

FEDS 1.25 320 2.45× 10−3 2.53× 10−3 8.81× 10−3

1.6 250 1.89× 10−3 1.96× 10−3 1.57× 10−2

2 200 1.59× 10−3 1.84× 10−3 3.03× 10−2

4 100 8.25× 10−4 1.48× 10−3 3.96× 10−2

10 40 2.43× 10−4 3.35× 10−3 1.15× 10−1

sMG 1 800 800 2.32× 10−3 2.34× 10−3 4.54× 10−3

FEDS 1.25 640 1.68× 10−3 1.72× 10−3 4.55× 10−3

1.6 500 1.30× 10−3 1.41× 10−3 9.01× 10−3

2 400 1.03× 10−3 1.12× 10−3 1.28× 10−2

4 200 5.66× 10−4 1.00× 10−3 2.96× 10−2

10 80 1.74× 10−4 1.42× 10−3 5.07× 10−2

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 2.02× 10−3

FEDS 1.25 1280 9.75× 10−4 1.00× 10−3 1.57× 10−3

1.6 1000 7.82× 10−4 7.94× 10−4 1.87× 10−3

2 800 6.19× 10−4 6.48× 10−4 3.04× 10−3

4 400 3.30× 10−4 4.19× 10−4 6.09× 10−3

10 160 9.50× 10−5 4.64× 10−4 1.57× 10−2
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Table E.12: TOF QOI errors for vacuum distance 10 m and 10,000 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 100 100 4.90× 10−3 5.04× 10−3 1.99× 100

FEDS 1.25 80 4.08× 10−3 4.58× 10−3 2.23× 100

1.6 62 2.88× 10−3 3.96× 10−3 2.48× 100

2 50 2.22× 10−3 3.95× 10−3 2.69× 100

4 25 1.49× 10−3 6.46× 10−3 3.45× 100

10 10 3.38× 10−4 1.24× 10−2 3.74× 100

sMG 1 200 200 4.07× 10−3 4.10× 10−3 1.34× 100

FEDS 1.25 160 3.29× 10−3 3.47× 10−3 1.51× 100

1.6 125 2.45× 10−3 2.80× 10−3 1.70× 100

2 100 2.16× 10−3 2.70× 10−3 1.88× 100

4 50 9.70× 10−4 3.14× 10−3 2.30× 100

10 20 3.13× 10−4 6.99× 10−3 2.74× 100

sMG 1 400 400 3.06× 10−3 3.09× 10−3 8.55× 10−1

FEDS 1.25 320 2.45× 10−3 2.53× 10−3 9.81× 10−1

1.6 250 1.89× 10−3 2.01× 10−3 1.11× 100

2 200 1.59× 10−3 1.77× 10−3 1.21× 100

4 100 8.25× 10−4 1.60× 10−3 1.56× 100

10 40 2.43× 10−4 3.40× 10−3 2.11× 100

sMG 1 800 800 2.32× 10−3 2.33× 10−3 4.50× 10−1

FEDS 1.25 640 1.68× 10−3 1.73× 10−3 5.60× 10−1

1.6 500 1.30× 10−3 1.35× 10−3 6.56× 10−1

2 400 1.03× 10−3 1.10× 10−3 7.44× 10−1

4 200 5.66× 10−4 8.33× 10−4 1.02× 100

10 80 1.74× 10−4 1.53× 10−3 1.40× 100

sMG 1 1600 1600 1.50× 10−3 1.51× 10−3 1.49× 10−1

FEDS 1.25 1280 9.75× 10−4 1.00× 10−3 1.87× 10−1

1.6 1000 7.82× 10−4 8.09× 10−4 2.64× 10−1

2 800 6.19× 10−4 6.44× 10−4 3.44× 10−1

4 400 3.30× 10−4 4.11× 10−4 6.30× 10−1

10 160 9.50× 10−5 6.35× 10−4 9.19× 10−1
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Table E.13: TOF QOI errors for differing reference solutions for a vacuum distance
of 10 m and 10,000 time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

sMG 1 10000 10000 1.68× 10−4 1.72× 10−4 2.41× 10−3

αMG 1.25 8000 8.45× 10−5 8.70× 10−5 7.86× 10−3

2 5000 6.42× 10−5 6.67× 10−5 1.42× 10−2

5 2000 6.59× 10−5 6.95× 10−5 4.83× 10−2

αMG 1.8125 8000 14500 6.11× 10−7 1.74× 10−6 7.34× 10−3

2.9 5000 4.89× 10−6 6.32× 10−6 1.31× 10−2

7.25 2000 7.49× 10−6 7.88× 10−6 4.15× 10−3
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Table E.14: TOF QOI errors for differing escape cross sections for various vacuum
distances and numbers of time bins

Method Ratio Coarse Total Error 1 Error 2 Error 3
Groups DOF (abs.) (cumul. det.) (det.)

d = 10 cm, b = 10, 000
FEDS 2 50 100 2.28× 10−3 2.32× 10−3 7.59× 10−2

101 4.80× 10−3 4.67× 10−3 7.53× 10−2

sMG 1 100 100 4.97× 10−3 4.82× 10−3 3.68× 10−2

101 101 1.11× 10−2 1.01× 10−2 3.64× 10−2

FEDS 2 200 400 1.65× 10−3 1.70× 10−3 1.34× 10−2

401 2.77× 10−3 2.73× 10−3 1.36× 10−2

sMG 1 400 400 3.13× 10−3 3.14× 10−3 5.42× 10−3

401 401 7.55× 10−3 7.11× 10−3 8.06× 10−3

d = 1 m, b = 10, 000
FEDS 2 50 100 2.28× 10−3 3.27× 10−3 7.53× 10−1

101 4.80× 10−3 5.20× 10−3 7.51× 10−1

sMG 1 100 100 4.97× 10−3 4.88× 10−3 3.88× 10−1

101 101 1.11× 10−2 1.01× 10−2 3.69× 10−1

FEDS 2 200 400 1.65× 10−3 1.70× 10−3 1.52× 10−1

401 2.77× 10−3 2.73× 10−3 1.50× 10−1

sMG 1 400 400 3.13× 10−3 3.14× 10−3 8.00× 10−2

401 401 7.55× 10−3 7.11× 10−3 7.88× 10−2

d = 10 m, b = 10, 000
FEDS 2 50 100 2.28× 10−3 3.99× 10−3 2.70× 100

101 4.80× 10−3 5.68× 10−3 2.71× 100

sMG 1 100 100 4.97× 10−3 5.10× 10−3 1.99× 100

101 101 1.11× 10−2 1.02× 10−2 1.93× 100

FEDS 2 200 400 1.65× 10−3 1.83× 10−3 1.22× 100

401 2.77× 10−3 2.82× 10−3 1.21× 100

sMG 1 400 400 3.13× 10−3 3.16× 10−3 8.60× 10−1

401 401 7.55× 10−3 7.12× 10−3 8.49× 10−1

d = 10 m, b = 50
FEDS 2 50 100 2.28× 10−3 4.18× 10−3 9.93× 10−2

101 4.80× 10−3 6.24× 10−3 1.52× 10−1

sMG 1 100 100 4.97× 10−3 5.04× 10−3 4.39× 10−2

101 101 1.11× 10−2 1.03× 10−2 4.75× 10−2

FEDS 2 200 400 1.65× 10−3 1.90× 10−3 3.04× 10−2

401 2.77× 10−3 2.86× 10−3 3.01× 10−2

sMG 1 400 400 3.13× 10−3 3.16× 10−3 1.35× 10−2

401 401 7.55× 10−3 7.13× 10−3 1.14× 10−2
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APPENDIX F

ADDENDUM TO SECTION 6

F.1 Additional Slab Pincell Errors

Figures F.1 – F.4 give additional absolute errors (in pcm) for component QOIs for

problems A and B. Figures F.5 – F.13 give relative errors (in percent) for problems

A, B, and D. The corresponding absolute errors are in section 6.

F.2 SHEM group structures

Tables F.1 – F.3 give the group boundaries for the SHEM-166, SHEM-244, and

SHEM-361 structures, respectively. The SHEM-361 boundaries are taken from [56].

The SHEM-166 and SHEM-244 boundaries are manual coarsenings I created.

Table F.1: Energy boundaries for the SHEM-166 group structure in eV.

2.00000× 107 7.06511× 105 2.61001× 104 9.50002× 100 2.33006× 100 1.07799× 100 2.31192× 10−1

1.49182× 107 5.78443× 105 2.49991× 104 8.59597× 100 2.27299× 100 1.03499× 100 2.09610× 10−1

1.38403× 107 4.94002× 105 2.26994× 104 7.77796× 100 2.21709× 100 1.02101× 100 1.90005× 10−1

1.16183× 107 4.56021× 105 1.43872× 104 7.03779× 100 2.15695× 100 1.00904× 100 1.61895× 10−1

9.99999× 106 4.12501× 105 9.11881× 103 6.36805× 100 2.07010× 100 9.96501× 10−1 1.37999× 10−1

9.04836× 106 3.83884× 105 5.57526× 103 5.76205× 100 1.98992× 100 9.81959× 10−1 1.19995× 10−1

8.18730× 106 3.20646× 105 3.40872× 103 5.21372× 100 1.90008× 100 9.63960× 10−1 1.04298× 10−1

7.40817× 106 2.67826× 105 2.08410× 103 4.71757× 100 1.77997× 100 9.44022× 10−1 8.97968× 10−2

6.70319× 106 2.30014× 105 1.32800× 103 4.21983× 100 1.66895× 100 9.19978× 10−1 7.64969× 10−2

6.06530× 106 1.95008× 105 8.46204× 102 4.00000× 100 1.58803× 100 8.80024× 10−1 6.51999× 10−2

4.96585× 106 1.64999× 105 5.39204× 102 3.88217× 100 1.51998× 100 8.00371× 10−1 5.54982× 10−2

4.06569× 106 1.40000× 105 3.55228× 102 3.71209× 100 1.44397× 100 7.19999× 10−1 4.73019× 10−2

3.32871× 106 1.22773× 105 2.34025× 102 3.54307× 100 1.41001× 100 6.24999× 10−1 4.02999× 10−2

2.72531× 106 1.15624× 105 1.54176× 102 3.14211× 100 1.38098× 100 5.94993× 10−1 3.43998× 10−2

2.23130× 106 9.46645× 104 1.07171× 102 2.88405× 100 1.33095× 100 5.54990× 10−1 2.92989× 10−2

1.90139× 106 8.22974× 104 7.44972× 101 2.77512× 100 1.29304× 100 5.20011× 10−1 2.49394× 10−2

1.63654× 106 6.73794× 104 5.17847× 101 2.74092× 100 1.25094× 100 4.75017× 10−1 2.00104× 10−2

1.40577× 106 5.51656× 104 4.21301× 101 2.71990× 100 1.21397× 100 4.31579× 10−1 1.48300× 10−2

1.33694× 106 4.99159× 104 3.42754× 101 2.70012× 100 1.16999× 100 3.90001× 10−1 1.04505× 10−2

1.28696× 106 4.08677× 104 2.78852× 101 2.64004× 100 1.14797× 100 3.52994× 10−1 7.14526× 10−3

1.16205× 106 3.69786× 104 2.24906× 101 2.62005× 100 1.12997× 100 3.25008× 10−1 4.55602× 10−3

1.05115× 106 3.34596× 104 1.81396× 101 2.59009× 100 1.11605× 100 3.05012× 10−1 2.49990× 10−3

9.51119× 105 2.92810× 104 1.46303× 101 2.55000× 100 1.10395× 100 2.79989× 10−1 1.00000× 10−5

8.60006× 105 2.73944× 104 1.18000× 101 2.46994× 100 1.09198× 100 2.54997× 10−1
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(a) Inner fuel U-238 absorption differences
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(b) Outer fuel U-238 absorption differences
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(c) Total fuel U-238 absorption differences

Figure F.1: Component errors between MCNP and PDT using the 361-group SHEM
structure for problem A (cf. Table 6.1) in pcm, normalized to the total absorption
or fission rate.
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(b) Outer fuel U-238 absorption differences
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(c) Total fuel U-238 absorption differences

Figure F.2: Component errors between MCNP and PDT using the R4,d structure for
problem A in pcm, normalized to the total absorption or fission rate.
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(b) Outer fuel U-238 absorption differences
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(c) Total fuel U-238 absorption differences

Figure F.3: Component errors between MCNP and PDT using the R4,e structure for
problem A in pcm, normalized to the total absorption or fission rate.
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(a) Inner fuel U-238 absorption differences
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(b) Outer fuel U-238 absorption differences
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(c) Total fuel U-238 absorption differences
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(d) Total fuel U-235 absorption differences
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(e) Total fuel U-235 fission differences

Figure F.4: Component errors between MCNP and PDT using the R4,d structure for
problem B in pcm, normalized to the total absorption or fission rate.
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(b) SHEM-244
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(c) SHEM-361
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(f) R4,d
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(h) R3,3
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(i) R4,e

Figure F.5: Relative total absorption errors between MCNP and PDT for different
energy structures for problem A
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(b) SHEM-244
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(c) SHEM-361
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(h) R3,e
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(i) R4,e

Figure F.6: Relative total absorption errors between MCNP and PDT for different
energy structures for problem D
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(i) R4,e

Figure F.7: Relative total absorption errors between MCNP and PDT for different
energy structures for problem B
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(b) SHEM-244
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(c) SHEM-361
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(h) R3,e

10-310-210-1100 101 102 103 104 105 106 107 108

Energy (eV)

-0.8%

-0.6%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

R
e
a
ct

io
n
 r

a
te

 d
if
fe

re
n
ce

 (
p
e
rc

e
n
t 

w
it

h
 9

5
%

 c
o
n
fi
d
e
n
ce

)

(i) R4,e

Figure F.8: Relative total fission errors between MCNP and PDT for different energy
structures for problem B.
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(a) Inner fuel U-238 absorption differences
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(b) Outer fuel U-238 absorption differences

10-3 10-2 10-1 100 101 102 103 104 105 106 107 108

Energy (eV)

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

R
e
a
ct

io
n
 r

a
te

 d
if
fe

re
n
ce

 (
p
e
rc

e
n
t 

w
it

h
 9

5
%

 c
o
n
fi
d
e
n
ce

)

(c) Total fuel U-238 absorption differences

Figure F.9: Relative component errors between MCNP and PDT using the 361-group
SHEM structure for problem A.
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(a) Inner fuel U-238 absorption differences
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(b) Outer fuel U-238 absorption differences
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(c) Total fuel U-238 absorption differences

Figure F.10: Relative component errors between MCNP and PDT using the R4,d

structure for problem A.
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(b) Outer fuel U-238 absorption differences
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(c) Total fuel U-238 absorption differences

Figure F.11: Relative component errors between MCNP and PDT using the R4,e

structure for problem A.
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(b) Outer fuel U-238 absorption differences
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(c) Total fuel U-238 absorption differences
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(d) Total fuel U-235 absorption differences
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(e) Total fuel U-235 fission differences

Figure F.12: Relative component errors between MCNP and PDT using the R4,d

structure for problem B.
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(c) Total fuel U-238 absorption differences
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(d) Total fuel U-235 absorption differences
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(e) Total fuel U-235 fission differences

Figure F.13: Relative component errors between MCNP and PDT using the R4,e

structure for problem B.
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Table F.2: Energy boundaries for the SHEM-244 group structure in eV.

2.00000× 107 1.40000× 105 5.39204× 102 1.75314× 101 6.75778× 100 2.27299× 100 6.24999× 10−1

1.49182× 107 1.22773× 105 4.37070× 102 1.70491× 101 6.58302× 100 2.21709× 100 5.94993× 10−1

1.38403× 107 1.15624× 105 3.54282× 102 1.65800× 101 6.41279× 100 2.15695× 100 5.54990× 10−1

1.16183× 107 9.46645× 104 2.87176× 102 1.61238× 101 6.24695× 100 2.07010× 100 5.20011× 10−1

9.99999× 106 8.22974× 104 2.32780× 102 1.56802× 101 6.08541× 100 1.98992× 100 4.75017× 10−1

9.04836× 106 6.73794× 104 1.88688× 102 1.52487× 101 5.92804× 100 1.90008× 100 4.31579× 10−1

8.18730× 106 5.51656× 104 1.54176× 102 1.48292× 101 5.77474× 100 1.77997× 100 3.90001× 10−1

7.40817× 106 4.99159× 104 1.28779× 102 1.44212× 101 5.62541× 100 1.66895× 100 3.52994× 10−1

6.70319× 106 4.08677× 104 1.07565× 102 1.40244× 101 5.47994× 100 1.58803× 100 3.25008× 10−1

6.06530× 106 3.69786× 104 8.98458× 101 1.36385× 101 5.33823× 100 1.51998× 100 3.05012× 10−1

4.96585× 106 3.34596× 104 7.50455× 101 1.32632× 101 5.20018× 100 1.44397× 100 2.79989× 10−1

4.06569× 106 2.92810× 104 6.14420× 101 1.28983× 101 5.06571× 100 1.41001× 100 2.54997× 10−1

3.32871× 106 2.73944× 104 5.17847× 101 1.25434× 101 4.93471× 100 1.38098× 100 2.31192× 10−1

2.72531× 106 2.61001× 104 4.50195× 101 1.21983× 101 4.80710× 100 1.33095× 100 2.09610× 10−1

2.23130× 106 2.49991× 104 3.97295× 101 1.18627× 101 4.68279× 100 1.29304× 100 1.90005× 10−1

1.90139× 106 2.26994× 104 3.85276× 101 1.15363× 101 4.56169× 100 1.25094× 100 1.61895× 10−1

1.63654× 106 1.85847× 104 3.73257× 101 1.12189× 101 4.44373× 100 1.21397× 100 1.37999× 10−1

1.40577× 106 1.62005× 104 3.61239× 101 1.09102× 101 4.32882× 100 1.16999× 100 1.19995× 10−1

1.33694× 106 1.36037× 104 3.49220× 101 1.06100× 101 4.21983× 100 1.14797× 100 1.04298× 10−1

1.28696× 106 1.11377× 104 3.37201× 101 1.03181× 101 4.00000× 100 1.12997× 100 8.97968× 10−2

1.16205× 106 9.11881× 103 2.78852× 101 1.00342× 101 3.88217× 100 1.11605× 100 7.64969× 10−2

1.05115× 106 7.46585× 103 2.46578× 101 9.75809× 100 3.71209× 100 1.10395× 100 6.51999× 10−2

9.51119× 105 6.11252× 103 2.42334× 101 9.50002× 100 3.54307× 100 1.09198× 100 5.54982× 10−2

8.60006× 105 5.00451× 103 2.38089× 101 9.25435× 100 3.14211× 100 1.07799× 100 4.73019× 10−2

7.06511× 105 4.09735× 103 2.33845× 101 9.01504× 100 2.88405× 100 1.03499× 100 4.02999× 10−2

5.78443× 105 3.35462× 103 2.29600× 101 8.78191× 100 2.77512× 100 1.02101× 100 3.43998× 10−2

4.94002× 105 2.74653× 103 2.25356× 101 8.55481× 100 2.74092× 100 1.00904× 100 2.92989× 10−2

4.56021× 105 2.39729× 103 2.19155× 101 8.33359× 100 2.71990× 100 9.96501× 10−1 2.49394× 10−2

4.12501× 105 2.08410× 103 2.13126× 101 8.11808× 100 2.70012× 100 9.81959× 10−1 2.00104× 10−2

3.83884× 105 1.71487× 103 2.07262× 101 7.90815× 100 2.64004× 100 9.63960× 10−1 1.48300× 10−2

3.20646× 105 1.41105× 103 2.01559× 101 7.70365× 100 2.62005× 100 9.44022× 10−1 1.04505× 10−2

2.67826× 105 1.16106× 103 1.96013× 101 7.50443× 100 2.59009× 100 9.19978× 10−1 7.14526× 10−3

2.30014× 105 9.55364× 102 1.90620× 101 7.31037× 100 2.55000× 100 8.80024× 10−1 4.55602× 10−3

1.95008× 105 7.86107× 102 1.85375× 101 7.12133× 100 2.46994× 100 8.00371× 10−1 2.49990× 10−3

1.64999× 105 6.46836× 102 1.80275× 101 6.93717× 100 2.33006× 100 7.19999× 10−1 1.00000× 10−5
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Table F.3: Energy boundaries for the SHEM-361 group structure in eV.

2.00000× 107 1.62005× 104 1.88877× 102 4.41721× 101 1.40496× 101 5.96014× 100 1.11605× 100

1.49182× 107 1.48997× 104 1.87559× 102 4.31246× 101 1.35460× 101 5.80021× 100 1.10395× 100

1.38403× 107 1.36037× 104 1.86251× 102 4.21441× 101 1.33297× 101 5.72015× 100 1.09198× 100

1.16183× 107 1.11377× 104 1.84952× 102 4.12270× 101 1.26000× 101 5.61979× 100 1.07799× 100

9.99999× 106 9.11881× 103 1.83295× 102 3.97295× 101 1.24721× 101 5.53004× 100 1.03499× 100

9.04836× 106 7.46585× 103 1.75229× 102 3.87874× 101 1.23086× 101 5.48817× 100 1.02101× 100

8.18730× 106 6.11252× 103 1.67519× 102 3.77919× 101 1.21302× 101 5.41025× 100 1.00904× 100

7.40817× 106 5.00451× 103 1.63056× 102 3.73038× 101 1.19795× 101 5.38003× 100 9.96501× 10−1

6.70319× 106 4.09735× 103 1.54176× 102 3.68588× 101 1.18153× 101 5.32011× 100 9.81959× 10−1

6.06530× 106 3.48107× 103 1.46657× 102 3.64191× 101 1.17094× 101 5.21008× 100 9.63960× 10−1

4.96585× 106 2.99618× 103 1.39504× 102 3.60568× 101 1.15894× 101 5.10997× 100 9.44022× 10−1

4.06569× 106 2.70024× 103 1.32701× 102 3.56980× 101 1.12694× 101 4.93323× 100 9.19978× 10−1

3.32871× 106 2.39729× 103 1.26229× 102 3.45392× 101 1.10529× 101 4.76785× 100 8.80024× 10−1

2.72531× 106 2.08410× 103 1.20554× 102 3.30855× 101 1.08038× 101 4.41980× 100 8.00371× 10−1

2.23130× 106 1.81183× 103 1.17577× 102 3.16930× 101 1.05793× 101 4.30981× 100 7.19999× 10−1

1.90139× 106 1.58620× 103 1.16524× 102 2.78852× 101 9.50002× 100 4.21983× 100 6.24999× 10−1

1.63654× 106 1.34358× 103 1.15480× 102 2.46578× 101 9.14031× 100 4.00000× 100 5.94993× 10−1

1.40577× 106 1.13467× 103 1.12854× 102 2.25356× 101 8.97995× 100 3.88217× 100 5.54990× 10−1

1.33694× 106 1.06432× 103 1.10288× 102 2.23788× 101 8.80038× 100 3.71209× 100 5.20011× 10−1

1.28696× 106 9.82494× 102 1.05646× 102 2.21557× 101 8.67369× 100 3.54307× 100 4.75017× 10−1

1.16205× 106 9.09681× 102 1.03038× 102 2.20011× 101 8.52407× 100 3.14211× 100 4.31579× 10−1

1.05115× 106 8.32218× 102 1.02115× 102 2.17018× 101 8.30032× 100 2.88405× 100 3.90001× 10−1

9.51119× 105 7.48517× 102 1.01605× 102 2.14859× 101 8.13027× 100 2.77512× 100 3.52994× 10−1

8.60006× 105 6.77287× 102 1.01098× 102 2.13360× 101 7.97008× 100 2.74092× 100 3.25008× 10−1

7.06511× 105 6.46837× 102 1.00594× 102 2.12296× 101 7.83965× 100 2.71990× 100 3.05012× 10−1

5.78443× 105 6.12834× 102 9.73287× 101 2.11448× 101 7.73994× 100 2.70012× 100 2.79989× 10−1

4.94002× 105 6.00099× 102 9.33256× 101 2.10604× 101 7.60035× 100 2.64004× 100 2.54997× 10−1

4.56021× 105 5.92941× 102 8.87741× 101 2.09763× 101 7.38015× 100 2.62005× 100 2.31192× 10−1

4.12501× 105 5.77146× 102 8.39393× 101 2.07676× 101 7.13987× 100 2.59009× 100 2.09610× 10−1

3.83884× 105 5.39204× 102 7.93679× 101 2.06847× 101 6.99429× 100 2.55000× 100 1.90005× 10−1

3.20646× 105 5.01746× 102 7.63322× 101 2.06021× 101 6.91778× 100 2.46994× 100 1.61895× 10−1

2.67826× 105 4.53999× 102 7.35595× 101 2.05199× 101 6.87021× 100 2.33006× 100 1.37999× 10−1

2.30014× 105 4.19094× 102 7.18869× 101 2.04175× 101 6.83526× 100 2.27299× 100 1.19995× 10−1

1.95008× 105 3.90760× 102 6.90682× 101 2.02751× 101 6.81070× 100 2.21709× 100 1.04298× 10−1

1.64999× 105 3.71703× 102 6.68261× 101 2.00734× 101 6.79165× 100 2.15695× 100 8.97968× 10−2

1.40000× 105 3.53575× 102 6.64929× 101 1.95974× 101 6.77605× 100 2.07010× 100 7.64969× 10−2

1.22773× 105 3.35323× 102 6.61612× 101 1.93927× 101 6.75981× 100 1.98992× 100 6.51999× 10−2

1.15624× 105 3.19928× 102 6.58312× 101 1.91997× 101 6.74225× 100 1.90008× 100 5.54982× 10−2

9.46645× 104 2.95922× 102 6.55029× 101 1.90848× 101 6.71668× 100 1.77997× 100 4.73019× 10−2

8.22974× 104 2.88327× 102 6.50460× 101 1.79591× 101 6.63126× 100 1.66895× 100 4.02999× 10−2

6.73794× 104 2.84888× 102 6.45923× 101 1.77590× 101 6.60611× 100 1.58803× 100 3.43998× 10−2

5.51656× 104 2.76468× 102 6.36306× 101 1.75648× 101 6.58829× 100 1.51998× 100 2.92989× 10−2

4.99159× 104 2.68297× 102 6.23083× 101 1.74457× 101 6.57184× 100 1.44397× 100 2.49394× 10−2

4.08677× 104 2.56748× 102 5.99250× 101 1.68305× 101 6.55609× 100 1.41001× 100 2.00104× 10−2

3.69786× 104 2.41796× 102 5.70595× 101 1.65501× 101 6.53907× 100 1.38098× 100 1.48300× 10−2

3.34596× 104 2.35590× 102 5.40600× 101 1.60498× 101 6.51492× 100 1.33095× 100 1.04505× 10−2

2.92810× 104 2.24325× 102 5.29895× 101 1.57792× 101 6.48178× 100 1.29304× 100 7.14526× 10−3

2.73944× 104 2.12108× 102 5.17847× 101 1.48662× 101 6.43206× 100 1.25094× 100 4.55602× 10−3

2.61001× 104 2.00958× 102 4.92591× 101 1.47301× 101 6.35978× 100 1.21397× 100 2.49990× 10−3

2.49991× 104 1.95996× 102 4.75173× 101 1.45952× 101 6.28016× 100 1.16999× 100 1.00000× 10−5

2.26994× 104 1.93078× 102 4.62053× 101 1.44702× 101 6.16011× 100 1.14797× 100

1.85847× 104 1.90204× 102 4.52904× 101 1.42505× 101 6.05991× 100 1.12997× 100
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APPENDIX G

TIME-OF-FLIGHT ANALYTIC DERIVATIONS

This appendix derives the various analytic expressions used in the time-of-flight

calculations, including the time-dependent, speed-quantized, scattering-free (uncol-

lided), time-of-flight problem, and the analytic advection of a FEDS / MG flux in

space-time from a point source emitting uniformly over a timestep to a point detector.

G.1 Derivation of the Angular Flux at the Right Edge of the Source

In this subsection we derive an expression for the angular flux that is exact and

analytic in space, angle, and time for one energy point or energy group for the pulsed-

source, neutron time-of-flight problem. We begin with the time-dependent neutron-

transport equation in the Ω = x̂ direction, suppressing the energy dependence:

1

v

∂

∂t
ψ(x, t) +

∂

∂x
ψ(x, t) + Σ(x)ψ(x, t) = Q(x, t), x > 0, t > 0, (G.1a)

ψ(x, 0) = 0, (Initial Condition), (G.1b)

ψ(0, t) = 0, (Boundary Condition). (G.1c)

Let  x

t

 =

 x0

t0

+ s

 1

1
v

 . (G.2a)
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This implies

d

ds
=
∂x

∂s

∂

∂x
+
∂t

∂s

∂

∂t
(G.2b)

=
∂

∂x
+

1

v

∂

∂t
. (G.2c)

Our transport equation becomes:

dψ(s)

ds
+ Σ(s)ψ(s) = Q(s). (G.3a)

If s = 0 is chosen such that (x0, t0) = (x > 0, 0) or (0, t > 0), that is, a boundary

crossed in space or time, then s picks up an implicit dependence on (x, t) and the

boundary and initial conditions merge to become:

ψ(s = 0) = 0. (G.3b)

If we restrict ourselves to regions in (x, t) for which Σ(x) and Q(x, t) are constant,

the solution to our transport equation, Eq. (G.3), is

ψ(x, t) = ψbdr

(
s(x, t)

)
e−Σs(x,t) +

Q

Σ

(
1− e−Σs(x,t)

)
. (G.4a)

In this subsection, we derive ψ(X, t) where X is the width of the source region.

The source in turned on for t ∈ [0, τ). We encounter two setups with five different

regions each. A region is a set of locations/times where material properties are

constant and we can apply Eq. (G.4).

1. Long source in time (X
v
≤ τ)

(a) Negative times (t < 0)
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We include this region for completeness and because later transformations

may land us here. In this region,

ψ (X, t < 0) = 0. (G.5)

(b) Early times (0 ≤ t < X
v

)

In this region, Q(x, t) = q, Σ(x) = σ, and ψbdr occurs at t = 0 and has

value 0. We use Eq. (G.2a) and find

s = vt,

which implies

ψ

(
X, 0 ≤ t <

X

v

)
=
q

σ

(
1− e−σvt

)
. (G.6)

(c) Moderate times (X
v
≤ t < τ)

In this region, Q(x, t) = q, Σ(x) = σ, and ψbdr occurs at x = 0 and has

value 0. We use Eq. (G.2a) and find

s = x = X,

which implies

ψ

(
X,

X

v
≤ t < τ

)
=
q

σ

(
1− e−σX

)
. (G.7)

(d) Late times (τ ≤ t < τ + X
v

)

In this region, Σ(x) = σ. The source has been turned off by the time
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particles reach the boundary, but particles born while the source was on

continue to advect from inside the source to its boundary. These particles

exhibit exponential attenuation within the source region for times τ ≤ t.

The neutron path may be split into path with the source: ψ(x = 0, t) = 0

to ψ(x, t = τ) with Q(x, t) = q; and path without the source: ψ(x, t = τ)

to ψ(x = X, t) with Q(x, t) = 0. The amount of path with the source is

ssrc = X − (t− τ)v.

The rest of the path experiences only attenuation:

satten = X − ssrc = (t− τ)v.

Upon dual application of Eq. (G.3), we find

ψ

(
X, τ ≤ t < τ +

X

v

)
=
q

σ

(
1− e−σ[X−(t−τ)v]

)
e−σ(t−τ)v. (G.8)

(e) Tardy times (t < 0)

We include this region for completeness and because later transformations

may land us here. In this region, all particles produced by the source have

made it to the right boundary of the source region. Hence,

ψ

(
X, τ +

X

v
≤ t

)
= 0. (G.9)

2. Long source in space (τ < X
v

)

(a) Negative times (t < 0)

We include this region for completeness and because later transformations
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may land us here. In this region,

ψ (X, t < 0) = 0. (G.10)

(b) Early times (0 ≤ t < τ)

In this region, Q(x, t) = q, Σ(x) = σ, and ψbdr occurs at t = 0 and has

value 0. We use Eq. (G.2a) and find

s = vt,

which implies

ψ (X, 0 ≤ t < τ) =
q

σ

(
1− e−σvt

)
. (G.11)

(c) Moderate times (τ ≤ t < X
v

)

In this region, Σ(x) = σ. The source has been turned off by the time

particles reach the boundary, but particles born while the source was on

continue to advect from inside the source to its boundary. These particles

exhibit exponential attenuation within the source region for times τ ≤ t.

The neutron path may be split into path with the source: ψ(x, t = 0) = 0

to ψ(x, t = τ) with Q(x, t) = q; and path without the source: ψ(x, t = τ)

to ψ(x = X, t) with Q(x, t) = 0. The amount of path with the source is

ssrc = τv.

329



The rest of the path experiences only attenuation:

satten = t− ssrc = (t− τ)v.

Upon dual application of Eq. (G.3), we find

ψ

(
X, τ ≤ t <

X

v

)
=
q

σ

(
1− e−στv

)
e−σ(t−τ)v. (G.12)

(d) Late times (X
v
≤ t < τ + X

v
)

In this region, Σ(x) = σ. The source has been turned off by the time

particles reach the boundary, but particles born while the source was on

continue to advect from inside the source to its boundary. These particles

exhibit exponential attenuation within the source region for times τ ≤ t.

The neutron path may be split into path with the source: ψ(x = 0, t) = 0

to ψ(x, t = τ) with Q(x, t) = q; and path without the source: ψ(x, t = τ)

to ψ(x = X, t) with Q(x, t) = 0. The amount of path with the source is

ssrc = X − (t− τ)v.

The rest of the path experiences only attenuation:

satten = X − ssrc = (t− τ)v.

Upon dual application of Eq. (G.3), we find

ψ

(
X,

X

v
≤ t < τ +

X

v

)
=
q

σ

(
1− e−σ[X−(t−τ)v]

)
e−σ(t−τ)v. (G.13)
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(e) Tardy times (t < 0)

We include this region for completeness and because later transformations

may land us here. In this region, all particles produced by the source have

made it to the right boundary of the source region. Hence,

ψ

(
X, τ +

X

v
≤ t

)
= 0. (G.14)

G.2 Derivation of the Time-Integrated Angular Flux at the Detector Location

We desire integrals in time of the angular flux at the location of the detector.

The previous subsection yielded the angular flux at the right boundary of the source.

Between this boundary and the detector, the neutrons stream through iron and then

vacuum. In the iron,

dψ(s)

ds
+ σm(s)ψ(s) = 0, (G.15a)

where σm is the (macroscopic) cross section of natural iron, and the iron has total

mean-free path thickness of αm = Mσm, whose dependence on energy we are sup-

pressing in our derivation. The boundary conditions to the iron are ψbdr = ψ(x =

X, t), which we use even if this leads to negative times. In the vacuum,

dψ(s)

ds
= 0, (G.15b)

and boundary conditions are ψbdr = ψ(x = X+M, t), which we use even if this leads

to negative times.

We can relate the time-integrated angular flux at the detector (x = Xd) to the

331



time-differential angular flux at the right boundary of the source using Eq. (G.15):

ψ(Xd, t) = e−αm ψ

(
X, t− Xd −X

v

)
, (G.16a)∫ t′1

t′0

dt ψ(Xd, t) = e−αm

∫ t′1−
Xd−X

v

t′0−
Xd−X

v

dt ψ (X, t) , (G.16b)

for region of integration t ∈ [t′0, t
′
1]. Complete treatment of the boundaries, including

negative times, in the derivation in the previous subsection allow us to investigate

all times for ψ(X, t).

For ease of notation, we define

t0 ≡ t′0 −
Xd −X

v
, (G.16c)

t1 ≡ t′1 −
Xd −X

v
, (G.16d)

I(t0, t1) ≡
∫ t1

t0

dt ψ (X, t) , (G.16e)

⇒
∫ t′1

t′0

dt ψ(Xd, t) = e−αm I(t0, t1). (G.16f)

The following assume both t0 and t1 are in one time region. If they encompass

multiple regions, the time domain of interest may be split on the region boundaries

and each region may be looked up independently. The total integral is the sum of the

integrals for the individual regions. This approach was taken in my implementation,

which used the searchsorted and bincount functions in Numpy.

We now show analytic expressions for I(t0, t1) as a function of (t0, t1).

1. Long source in time
(
X
v
≤ τ

)
(a) Negative times ((t0, t1) < 0)
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The time at the detector is too early to see any particles from the source.

I(t0, t1) = 0. (G.17)

(b) Early times
(
0 ≤ (t0, t1) < X

v

)

I(t0, t1) =
q

σ
(t1 − t0)− q

σ2v
e−σvt0

(
1− e−σv(t1−t0)

)
. (G.18)

(c) Moderate times
(
X
v
≤ (t0, t1) < τ

)

I(t0, t1) =
q

σ

(
1− e−σX

)
(t1 − t0). (G.19)

(d) Late times
(
τ ≤ (t0, t1) < τ + X

v

)

I(t0, t1) =
q

σ2v
e−σv(t0−τ)

(
1− e−σv(t1−t0)

)
− q

σ
e−σX(t1 − t0). (G.20)

(e) Tardy times
(
τ + X

v
≤ (t0, t1)

)
The time at the detector is too late to see any particles from the source.

I(t0, t1) = 0. (G.21)

2. Long source in space (τ < X
v

)

(a) Negative times ((t0, t1) < 0)
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The time at the detector is too early to see any particles from the source.

I(t0, t1) = 0. (G.22)

(b) Early times (0 ≤ (t0, t1) < τ)

I(t0, t1) =
q

σ
(t1 − t0)− q

σ2v
e−σvt0

(
1− e−σv(t1−t0)

)
. (G.23)

(c) Moderate times
(
τ ≤ (t0, t1) < X

v

)

I(t0, t1) =
q

σ2v
e−σv(t0−τ)

(
1− e−σvτ

) (
1− e−σv(t1−t0)

)
. (G.24)

(d) Late times
(
X
v
≤ (t0, t1) < τ + X

v

)

I(t0, t1) =
q

σ2v
e−σv(t0−τ)

(
1− e−σv(t1−t0)

)
− q

σ
e−σX(t1 − t0). (G.25)

(e) Tardy times
(
τ + X

v
≤ (t0, t1)

)
The time at the detector is too late to see any particles from the source.

I(t0, t1) = 0. (G.26)

In this subsection, we have derived an analytic solution to the pulsed-source,

neutron time-of-flight problem for one energy and one angle. These results are easily

generalized to rays not traveling in Ω = x̂: simply replace all distance quantities such
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as X by X/(Ω·x̂). A cone of angles may be approximated using a quadrature scheme

in angle. These results may be applied independently for each energy point or group

and a quadrature scheme used to integrate over the points / groups. Equation (G.16e)

may be applied for each time bin independently. A finite detector thickness may be

approximated by using a quadrature of spatial locations, Xd. Scattering is more

difficult to add to these results, though they could be used as an uncollided flux

source for another calculation.
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APPENDIX H

APPLICATIONS OF FEDS TO MONTE CARLO

This appendix looks into applying discontiguous energy elements as a lossy data

compression mechanism for pointwise cross sections used in Monte Carlo applications.

I call the method cross section compression (XSC).

The following is my implementation of XSC in OpenMC [75], available at https:

//github.com/attom/openmc.git. It is comprised of two steps. In the first, the

pointwise cross section data is compressed using clustering algorithms. In the sec-

ond, the compressed data is used during normal cross section lookup during particle

tracking.

I Cluster Data

1 Read in pointwise nuclear data

2 Loop over all nuclides with resonances

3 Determine resolved resonance range (RRR) for the nuclide

For ease of implementation, make upper RRR energy boundary lower than

the lowest threshold reaction

4 Create observations from the cross sections: Ox,g = log σx,g

for x ∈ {t, s, f} and g the energy index

5 Guess the initial cluster centers as existing data points

Use every Gth energy point such that N initial cluster centers are specified

6 Perform Lloyd’s method to implement the k-means algorithm
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7 Store the centroid cross section values, subelement boundaries, and labels

of which centroid each subelement corresponds to

II Use Clustered Data

1 When computing Σt, loop over all nuclides present in the material

2 Determine the cross section index corresponding to the energy of the par-

ticle

3 If the particle energy is inside the RRR of the nuclide, use the cross section

index and an offset to look up which element that subelement corresponds

to

4 Use the partial and total cross section values of the element instead of the

pointwise cross section values

5 If an interaction produces secondary particles, do the normal lookups and

computations for the scattering kernel

Comparisons of the XSC method to FEDS follow.
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Usage

FEDS XSC

Minimize varaince over infinite-

medium spectra that are snapshots of

the solution.

Compress microscopic partial and to-

tal cross section data directly.

Use one energy mesh for all nuclides. Use a different energy mesh for each

nuclide, but the same mesh for all par-

tial cross sections for one nuclide.

Use a spectrum that approximates the

solution to flux-weight the cross sec-

tions within each element.

Use a flat spectrum (no weighting)

when averaging the cross sections

within each element.

Average over the secondary distribu-

tion for scattering.

Keep continuous-energy secondary

distribution information.

Discard subelement-to-element labels

and subelement energy boundary list

during transport solve.

Keep and use subelement-to-element

labels and subelement energy bound-

ary list during particle tracking.
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Properties

FEDS XSC

Akin to a physics-based compression

of the solution, or at least snapshots

of it.

Akin to a physics-based compression

of the individual component cross sec-

tions themselves.

Solves the correlation issue1 by using

one energy mesh and applying it to all

nuclides, and by consistently treating

element-to-element scattering.

Solves the correlation issue by keeping

track of particle energy explicitly, and

only approximating the cross section

for each nuclide on its own mesh, while

using the same scattering kinematics

(secondary treatment) as continuous-

energy Monte Carlo.

Able to achieve low errors with rela-

tively few degrees of freedom (DOF)

in energy because the solution is of-

ten low-dimensional, in the sense that

the variance in the solution within a

coarse group is well-explained by a

small number of resonant nuclides.

Requires substantially more DOF be-

cause the dimensionality of the cross

section data is greater (high fidelity

for all partial cross sections for all

resonant nuclides) and because the

method does not make assumptions

about the solution spectrum when do-

ing cross section averaging.

There are many possible generalizations of XSC that could be done in the future.

The first would be to use a different energy mesh for each partial cross section for

1MB is plagued by a correlation isue wherein correlation of bands of disparate nuclides / materials
/reactions / temperatures is often ignored.
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Figure H.1: Cross section clustering example with various numbers of elements for
various low-Z nuclides
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Figure H.2: Cross section clustering example with variable number of total elements
for various high-Z nuclides
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Figure H.3: Cross section clustering example with 10 total elements for various
partial cross sections for high-Z nuclides
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each nuclide. This would increase memory by at least a factor of 2 – 3, depending on

the fraction of fissionable nuclides. Because XSC was designed to minimize memory,

this may not be desirable.

Another generalization would be to use coarse groups and clustering within each

coarse group separately. If coarse groups with approximately equal lethargy width

were used, this would increase the relative resolution of the low-lying resonances, as

most of the data points would be in the higher-energy coarse groups but apportioning

of clusters to coarse groups would be based on average cross section variance within

a coarse group.

The partial cross sections are not correlated as simply with the total cross section

as one might think. This is shown in Figs. H.1 – H.3, where each pointwise cross

section is a blue dot and each element-averaged cross section is a red square. Most

of the data points are restricted to a small range of the cross section space, which

is why the red squares are clustered together. There are outlying resonances, often

from thicker low-lying resonances, whose structure is not captured by the element

centroids for low numbers of final elements. This makes it difficult to accurately

compress the data using k-means, which does a good job of minimizing the L2 error

between the distance between the data points and their centroids, but not as good

of a job with the L∞ error. Instead of giving each data point in energy equal weight,

we could try weighting by reaction rate, which would require either an approximate

solution or an adjoint.

For a pointwise cross section representation, the value of a cross section in the

RRR is equal to a linear interpolationbetween points. For XSC, the value of a

cross section in the RRR is equal to the average value of the cross section in the

corresponding element. This gives the pointwise representation an advantage in

that it can use less memory to store the same amount of information. XSC could

343



be reformulated to store not the integer of the element for each subelement, but

something with slope information as well.

Pointwise cross section grids are built for linear-linear interpolation, but the de-

sired input (fine) grid for XSC would be one made for histogram lookups. The

original grid could be thickened such that constant lookup error is bounded for each

point. This larger grid could be passed into the clustering algorithm.

There are over one hundred resonant nuclides that must be treated simultaneously

for depletion problems. This constitutes a large amount of data. One could imagine

classifying nuclides based on their importance to the solution, either based on impact

to the spectrum or on reaction rates. This classification could be done within each

coarse group. More important nuclides (in more important coarse groups) could be

given higher-fidelity compression treatments with more elements. Retaining accuracy

for the unresolved nuclides may require a problem- or region-specific flux weighting,

which might defeat the purposes of using XSC as an ab initio method and of trying

to save memory space.

Requiring the upper-bound for the RRR to be below the lowest threshold energy

for all threshold reactions can be a limiting assumption in practice for the lighter

nuclides that have resonances at higher energies. If an energy cannot be treated

as existing in the RRR, it must be stored as pointwise in our implementation of

XSC. Relaxing this requirement may involve significant code refactoring and make

the implementation of XSC more expensive.

We developed XSC for two reasons. The first and foremost reason was as a

means of reducing the data storage requirements for Monte Carlo to enable code

performance measurements with arbitrary cross section sizes while still using ap-

proximately correct physics, i.e., cross sections. The second reason was to study the

feasbility of XSC for a more general implementation. We found the first objective
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was achieved but there is still more work required before we can conclusively judge

the second. Preliminary analysis shows XSC as it is implemented here to be either

inaccurate (too few elements, not enough cross section fidelity) or too expensive (too

many elements, too much requirement memory). Continuous-energy Monte Carlo is

hard to beat.
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