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ABSTRACT 

 

In recent years, there has been an increasing use of social media in disseminating 

emergency messages to the public by various governmental and non-governmental 

emergency management organizations and agencies. These messages, including alerts, 

warnings and updates, carry important event-related information that helps improve 

individuals’ situational awareness and decision making before, during and after an event. 

Therefore, wide and timely dissemination of these messages among the public especially 

the population at risk will be a key for successful emergency preparedness, response, and 

recovery. However, there is too little knowledge about the impact of social media 

message propagation on individual message reception as well as the identification of 

strategies to facilitate message dissemination under the complex environments in 

disasters and extreme events.  

This research was motivated by these facts and takes a first step to conduct 

quantitative analysis on social media messaging strategies for emergency management 

organizations and agencies. Specifically, it examines the message propagation process 

on social media networks and explores message targeting strategies under the constraints 

of the length of planning horizon, source messaging capability as well as network 

structure and conditions. Three message dissemination scenarios are studied, including a 

single-network single-message scenario, a single-network multi-message scenario, and a 

multi-network multi-message scenario. The impacts of various factors on message 

dissemination outcomes and targeting decision making are examined through 
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computational experiments on smaller-scale random and Twitter networks. Results and 

implications for real-world applications are discussed.   

This research contributes to the theory and application of social media use in 

emergency communication mainly in three aspects. First, it summarizes the mainstream 

literature on this topic and points out the research need for social media messaging 

strategies for emergency management organizations and agencies in disasters and 

extreme events. Second, it conceptualizes the problem, develops three message 

dissemination application scenarios, and provides discrete optimization models for each 

of them. Third, it conducts extensive computational experiments on small-scale random 

and Twitter networks to verify the models and study their performance. The implications 

derived from the results provide valuable insights for emergency management 

organizations and agencies in developing social media messaging strategies in the real-

world applications.  
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CHAPTER I  

INTRODUCTION  

 

Social media is defined as any online or digital medium that is provided or collected 

through a channel that enables the two-way sharing of information, involving multiple 

parties. This includes social networking sites, texting, and blogs (DHS, 2014). In recent 

years, social media has been receiving significant attentions from various governmental 

and non-governmental emergency management organizations and agencies as a viable 

and accessible emergency communication platform in disasters and extreme events. In 

particular, there has been an increasing use of social media in disseminating emergency 

messages to the public. These messages carry important event-related information that 

contributes to improve individuals’ situational awareness and decision making in an 

event. Hundreds of emergency management organizations and agencies, including 

FEMA, NWS, and NOAA, have their own accounts or pages on social media sites like 

Twitter and Facebook (Sutton et al., 2012). They broadcast disaster knowledge, safety 

instructions for different emergency events and other disaster-related educational 

information to the public during normal (day-to-day) conditions (Figure 1.1), and 

disseminate alert and warning messages, event updates as well as evacuation information 

before, during and after an extreme event (Figure 1.2). More importantly, social media 

empowers these organizations and agencies to conduct two-way and many-to-many 

communications during an event, greatly improving the scale and efficiency of 

communication.  
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Figure 1.1 An example of FEMA educational message on Twitter (FEMA, 2015) 
 

 

Figure 1.2 An example of NWS warning message on Facebook (NWS, 2015) 
 

 

To obtain timely and accurate event-related information, the public may follow 

(Twitter), like (Facebook), or in some other way, connect to official social media 

accounts of governmental organizations and agencies at the national and local levels, 

such as FEMA or NWS, as well as non-governmental organizations (e.g., The Red 

Cross). FEMA has 396,773 followers on Twitter and NWS has 387,589 page likes on 

Facebook as of May 13, 2015 (obtained directly from twitter.com and facebook.com). 

This ease of accessibility, coupled with real-time (or near real-time) communication 

capabilities, enables social media users to actively engage in disaster preparation, 

response and recovery by either re-releasing/re-phrasing organization information or 

relaying their own observations, experiences, thoughts and actions. In disasters and 
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extreme events, individuals use social media to express emotional feelings (fear, 

concern, etc.), ask for help, check the wellbeing of their family and friends, and/or seek 

disaster-related information, among other uses. Responders or any member of the 

general public on the scene or near the scene of an extreme event incident are able to 

post on-the-ground information, including observations, images, and videos, to social 

media using any number of commercially available mobile devices (e.g., smartphone, 

iPad, etc.). In certain circumstances, members of the general public are actually serving 

in a pseudo-first responder role to help relay important information back to official 

emergency responders (Wukich & Mergel, 2014).  

Under current situations, the message dissemination process typically starts from 

an official source posting a message to its page on one or several social media sites, as 

illustrated in Figure 1.3. This message will be automatically shown on the wall of each 

user it is connected to (i.e., follower or page liker). The users who received and read the 

message may choose to redistribute it by sharing (retweeting) to their friends (followers) 

on the same network. They can even “transfer” this message to another social media site 

they use. This could happen when there is a link in the original message, which typically 

directs them to an article and they will have multiple redistribution options there. This is 

illustrated in Figure 1.4. When they do the transfer, they are actually redistributing this 

message on another social media site. As message redistribution continues on these sites, 

more and more people are potentially exposed to the message (we use the term 

potentially exposed as receipt of any social media message requires action on the part of 

the receiver to read the message. While a message may have been delivered to a social  
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Figure 1.3 A FEMA message on Facebook (left) and Twitter (right) (FEMA, 2015) 
 
 

 

Figure 1.4 An illustration of message transfer between sites (FEMA, 2015) 
 

 

media user, there is no guarantee when that message will be read). 

As one of the major stakeholders in an event, the official source would likely 

hope for the best dissemination outcome from any message distribution, which one 

might interpret as delivering the message to as many people as possible within a short 

period of time (i.e., within the planning horizon for a specific event). However, the 

           
        

 

                 

More Share options here 
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simple one-to-all, post-and-wait message dissemination strategy typical of most social 

media sites and tools may not satisfy such expectation and in practice quite often tends 

to fail in delivering key messages to specific audiences in need (CDC, 2012). An 

important reason for this failure is the lack of engagement in this process. Only a small 

portion of an active social media population (those who ‘follow’ or ‘like’ the official 

source) can receive directly from the source, leaving the majority of the population to 

receive the message from their friends or some other third-party in the network with 

whom they share a connection. While such a “word of mouth” message propagation 

mechanism is beneficial in emergency communication contexts due to the fact that 

people tend to react more actively when information is provided by family members and 

close friends than government officials (Crowe, 2010), the ultimate dissemination 

outcome will largely depend on the message’s starting points on the network (followers, 

page likers, and/or intended message receivers) and the degree of willingness and 

responsiveness of every recipient of the message to pass on the message so that it will be 

visible to other friends/users on the social media site (Kempe et al., 2003) . At the same 

time, the message dissemination outcome is also affected significantly by the length of 

planning horizon for the event or extreme event being discussed as well as the structure 

and condition of the underlying social media network during the event (within which we 

include consideration to the physical and cyber infrastructure necessary to reliably run 

and allow access to the social media site). A social media messaging strategy without 

considering these factors and limitations could barely be effective in the complex and 

dynamic environments in disasters and extreme events.    
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  Given the aforementioned observations and challenges in distributing time-

sensitive messages through social media, it is necessary to identify ways in which 

emergency management organizations and agencies could play a more engaged role in 

the message dissemination process, exploiting those well-known and exhibited social 

media behaviors to increase message penetration and message retention to influence or 

induce derivative action of a population. As an alternative to the current practice of 

message ‘blasting’ through social media during extreme events, a social media 

messaging strategy that integrates decision environments with an emphasis on node 

targeting could be a viable solution for emergency management organizations and 

agencies to achieve wide and timely message dissemination in disasters and extreme 

events. Specifically, agencies and managers could take into account the major factors 

impacting message dissemination outcomes, including length of planning horizon, 

source messaging capacity, social media network structure and conditions, and user 

behaviors, to target specific groups of users. This selective targeting, as it is reasoned, 

would achieve faster message propagation and wider message reception on the social 

media sites. This phenomenon is similar traditional message dissemination observed in 

evacuation warning: message source and content are two very key indicators of message 

reception, retention and subsequent action. By targeting messages towards known users 

during an extreme, emergency managers/agencies increase their capability to exploit 

these two indicators in extreme event message dissemination. An illustration of such a 

strategy is given in Figure 1.5, in which FEMA, NWS and a local agency could target 

users in the given way to achieve a better message dissemination outcome. 
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Figure 1.5 An illustration of social media messaging strategy with node targeting 
 

 

In this research, we examine the message propagation process on social media 

networks and explore effective message targeting strategies under the constraints of the 

length of planning horizon, source messaging capability, user behaviors as well as 

network structure and conditions. Three message dissemination application scenarios are 

studied, including a single-network single-message scenario, a single-network multi-

message scenario, and a multi-network multi-message scenario. The impacts of various 

factors on message dissemination outcomes and targeting decision making are examined 

through computational experiments on smaller-scale random and Twitter networks. 

Results and implications for real-world applications are discussed.   

This research contributes to the theory and application of social media use in 

emergency communication mainly in three aspects. First, it summarizes the mainstream 

literature on this topic and points out the research need for social media messaging 

strategies for emergency management organizations and agencies in disasters and 

extreme events. Second, it conceptualizes this problem, develops three message 
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dissemination application scenarios, and provides discrete optimization models for each 

of them. Third, it conducts extensive computational experiments on small-scale random 

and Twitter networks to verify the models and study their performance. The implications 

derived from the results provide valuable insights for emergency management 

organizations and agencies in developing social media messaging strategies in the real-

world applications.  

The remainder of this dissertation is organized as follows. Chapter II provides a 

thorough literature review, which summarizes recent research on social media use in 

emergency communication and compares the proposed problem with the existing ones 

from other fields. Chapter III through Chapter V detail three research problems, the 

Single-network Single-message Social Media Message Dissemination Problem (SS-

SMMDP), the Single-network Multi-message Social Media Message Dissemination 

Problem (SM-SMMDP), and the Multi-network Multi-message Social Media Message 

Dissemination Problem (SM-SMMDP), which correspond to three message 

dissemination application scenarios. Chapter VI concludes the dissertation and discusses 

some directions for future research.   
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CHAPTER II  

LITERATURE REVIEW 

2.1. Social Media in Emergency Communication  

There has been a wealth of literature put forth in the past few years on social media use 

in emergency communication, which is also referred to as disaster communication or 

crisis communication in different application contexts. Based on the method used, we 

can categorize them as either qualitative or quantitative. Table 2.1 and Table 2.2 

summarize the notable literature in recent years for these two categories, respectively. 

We can also put the qualitative literature into two categories based on the publication 

type, including: (1) agency reports, which were released by governmental and non-

governmental emergency management organizations and agencies, and (2) research 

papers, which were typically published on academic journals and conference 

proceedings. We elaborate on each of these categories in the following. 

2.1.1. A review on agency reports 

A large portion of the agency reports is detailing examples, practices as well as 

recommendations for social media use in emergency communication. Queensland Police 

Service (2011) details a successful use of social media in 2010 Australian Tropical 

Cyclone Tasha. They attribute a big part of their success to the capability empowered by 

social media that allowed them to push out large volumes of specific information straight 

to communities before the mainstream media coverage was available to them, and  
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suggest social media should be used immediately instead of waiting till a disaster strikes 

and be used for both disseminating information and receiving feedback.  

Wardell III and Su (2011) discuss social media adoption in the emergency 

management community, and conclude that social media technologies have been 

predominantly used by public information officers (PIOs) to disseminate information to 

the public and monitor streams of publicly available information. Lindsay (2011) point 

out that the public may increasingly expect emergency management agencies to use 

social media to meet their informational needs due to the fact that a significant number 

of people will likely choose social media as their main source of information as its 

popularity grows. They also suggest a systematic use of social media in disasters and 

extreme events including issuing alerts and warnings, receiving requests for assistance, 

monitoring user activities to establish situational awareness, and using uploaded images 

to create damage estimates.  

Mergel (2012a) provide a manager’s guide for using Twitter in government by 

detailing relevant Twitter features, such as retweeting, mentioning, hashtagging, direct 

messaging and so on, while Mergel (2012b) focus on the metrics to measure government 

social media interactions and discuss five potential approaches, including breadth (who 

they are reaching and if they are reaching the right audience), depth (how the audience 

percept and respond to their information), loyalty (how often citizens return to their 

social media sites), sentiments (how is engagement rate of citizens with their social 

media content), as well as data (what online and offline data indicate).  

 



 

13 

 

Meanwhile, challenges, considerations and gaps associated with the use of social 

media in emergency communication are discussed in detail in these reports as well. 

Wardell III and Su (2011) point out the gap between the current state and the desired 

state of social media usage in emergency communication and recommend one major 

focus for the emergency management community is examining social influences on 

citizen preparedness and response behavior with inclusion of the effect of social 

networks when coupled with various messaging strategies. Mergel (2012a) particularly 

mention the need for an effective tool to get an assessment of how many individuals 

were reached by the message send from a governmental account on Twitter, instead of 

simply looking at the number of followers and retweets. CDC (2012) think social media 

and their use on mobile devices is a rapidly changing landscape that requires constant 

analysis and proactive planning, and provide a social media communications strategy 

worksheet which considers target audience, objectives, resources and capacity, and so 

on. DHS (2014) discuss the challenges associated with the integration of social media 

data within the information sharing and operational environment as well as the 

considerations for better leveraging social media to enhance situational awareness and 

decision support. One of these challenges is how to use of social media data to predict 

and model potential outcomes and cascading effects. 

2.1.2. A review on research papers 

Magro (2012) examine the progress of social media policies in emergency management 

over time and point out the research need in long-range plans for citizen participation 

and involvement as well as strategies associated with that for using social media in e-
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government. Jaeger et al. (2007) and Tyshchuk and Wallace (2013) discuss a similar 

topic at the community level. Specifically, Jaeger et al. (2007) explore the concept of 

and need for developing community response grid (CRG) for community emergency 

response and examine the issues of public policy and technology related to such a 

system. Using the case of Del Norte County, CA during 2011 Japan tsunami, Tyshchuk 

and Wallace (2013) demonstrate that governmental organizations may successfully 

utilize social media during disaster events by closing a feedback loop between first 

responders and the public, by monitoring information flow, and by providing regular 

updates to the public.  

Shklovski et al. (2008), Hughes et al. (2008), and Sutton (2010) study the 

phenomenon that geographically dispersed users broadcast local and community-

relevant information in social media during an emergency event. They believe such 

interactions via information and communications technology (ICT) not only have 

immediate benefits, but also establish emergent practices that prepare for the future. 

Sutton et al. (2011) examine the role of social media in information-sharing in disasters 

compared to traditional news media, showing that pre-existing networks and community 

partnerships are the foundation for information sharing in an emergency event, while 

Yates and Paquette (2011) propose to use social media as a knowledge management 

system in the dynamic emergency environment by studying the US response to 2010 

Haiti Earthquake. Artman et al. (2011) introduce the concepts of dialogical emergency 

management and strategic awareness to enhance communication between emergency 

management organizations and the public in social media.  
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White (2012) and Crowe (2012) conduct systematic and comprehensive studies 

on social media, Web 2.0 technology, and leveraging them in emergency management 

and emergency communication. 

Quantitative research papers include applied or adapted methods that include 

data mining, machine learning, statistical analysis and modeling, content analysis, 

natural language processing as well as simulation. In these cases, Twitter is often the 

main social media venue used due to its popularity as a social networking site as well as 

its free accessibility to real-time and archived tweets (through the Firehose or other 

streaming/querying methods). A summary of these selected papers which emphasize a 

more mathematical or statistical research approach is provided in Table 2.2 previously.  

Taking social media users as social sensors, Sakaki et al. (2010) propose an 

algorithm to monitor tweets in real-time and detect earthquake event. They show that 

96% of the earthquakes with intensity scale 3 or more in Japan can be detected by the 

algorithm. By examining a population’s participation in evacuation with the presence of 

social network communications using agent-based simulation, Widener et al. (2012) find 

social networks with greater geographic dispersion result in more residents evacuating 

and suggest that the impact of social network on individuals’ evacuation decisions 

should be considered by emergency managers when they develop strategies to encourage 

evacuation in extreme events.  

Vieweg et al. (2010), Yin et al. (2012), Vieweg (2012), and Vieweg et al. (2014) 

examine social media as a critical tool to enhance emergency situational awareness. Yin 

et al. (2012) detail the architecture of a system developed for the Crisis Coordination 
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Center in Australia, which gathers tweets in real-time and integrates components for 

burst detection, text classification, online clustering, geotagging as well as visualization, 

while Vieweg et al. (2010), Vieweg (2012), and Vieweg et al. (2014) focus on applying 

behavioral and linguistic analysis to the extracted Twitter text stream and 

communication data during specific events to help emergency managers understand the 

“big picture” in time- and safety-critical situations. 

Tweeting/retweeting behaviors and the impact on message propagation in 

emergency events are studied in Starbird and Palen (2010), Spiro et al. (2012a), Spiro et 

al. (2012b), Lachlan et al. (2014a), Lachlan et al. (2014b), and Sutton et al. (2014). 

Specifically, Starbird and Palen (2010) summarize the characteristics of the tweets that 

are more likely to be retweeted during an emergency, in terms of the source and content 

of the tweets. Spiro et al. (2012a) identify perceived importance and potential to impact 

decision-making behavior as influential determinants in informal message dissemination 

by examining the case of 2010 Deepwater Horizon oil spill, while Spiro et al. (2012b) 

define the time between information dissemination and redistribution on Twitter as the 

waiting time of a tweet, and propose a preliminary model for the relationship between 

this time and features about the users involved, the external context, and the message 

itself.  

Lachlan et al. (2014a) examine the volume and content of tweets and 

dissemination of tweets in Hurricane Sandy and find tweet rate increased during the 

storm but governmental and organizational responses were largely absent, while Lachlan 

et al. (2014b) focus on the impact of hashtag use (i.e., localized hashtags vs non-
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localized hashtags) on message dissemination during Snowstorm Nemo, showing that 

tweets with localized hashtag tend to provide more useable information and using 

appropriate hashtags may contribute to a greater visibility of the tweets in the affected 

population. Sutton et al. (2014) examine the retransmission of tweets during 2012 Waldo 

Canyon Fire in Colorado and find the tweets containing hazard impact, safety 

instructions, and/or links (URL) to protective action guidance (e.g., evacuation) were 

more likely to be retweeted than others. They also conclude that in this event officials 

utilized Twitter to relay information that is broadly applicable to the entire local public 

rather than using Twitter to post timely, focused, warning guidance for populations 

under imminent threat. 

2.1.3. Alert and warning messages 

Alert and warning messages carry critical and time-sensitive information about the event 

(e.g., real-time updates, safety instructions, evacuation guidance, etc.) that emergency 

management organizations and agencies want to convey to the public. These messages, 

helps improve individuals’ situational awareness and decision making before, during and 

after an event, so wide and timely dissemination among the public especially the 

population at risk will be a key for successful emergency preparedness, response, and 

recovery. The content and style of these messages would affect the information 

dissemination and communication effectiveness to a large extent. Sorensen (2000) 

specify the aspects that warning messages should include in terms of content (nature, 

location, guidance, time, and source of the hazard or risk) and style (specificity, 

consistency, accuracy, certainty, and clarity) respectively. Lindell et al. (2007), Veil et 
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al. (2011), Vieweg (2012), and CDC (2012) emphasize that emergency managers must 

be aware of and take into account the differences among population segments, including 

culture diversity, ethnic background, community history, and socioeconomic status, 

while developing and distributing emergency warning messages. By Lindell et al. 

(2007), Tyshchuk et al. (2012), and Sutton et al. (2014) warnings are most effective 

when a credible source provides a message that is clear, consistent, easily understood 

and contain information about the potential impacts and risks of the threat, and include 

what action should be taken. Several key message components are also identified to 

increase the chance of retweet and improve effectiveness of communication. Such 

components include localized information and emergency-related terms (Starbird & 

Palen, 2010; Spiro et al., 2012a; Lachlan et al., 2014b), pictures/videos from the scene of 

event and maps showing the exact locations of evacuation zones and emergency shelters 

(Sutton et al., 2011), as well as hashtags, URLs (shortened or truncated URLs), and 

mentions of other users (Mergel, 2012; Spiro et al., 2012b; Lachlan et al., 2014a; 

Lachlan et al., 2014b). 

2.2. Related Problems from Other Fields 

2.2.1. Network flow problems (NFPs) 

There are several network flow problems that share some features with the social media 

dissemination problems we propose in this dissertation. These problems include the 

Minimum Cost Network Flow Problem (MCNFP) and the Shortest Path Problem (SPP), 

which can be viewed as a special case of MCNFP. The objective of MCNFP is to ship 
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the available supply through the network to satisfy demand at minimum cost by 

determining the amount of flow traveling on each available arc in the given 

transportation network (Bazaraa et al., 2009). If no arc capacity constraint is enforced, 

then MCNFP will become SPP. Another notable variant of MCNFP is called Minimum 

Cost Flow Over Time Problem (MCFOTP), which can be viewed as a dynamic version 

of the original MCNFP with additional restrictions on arc transit times and a time 

horizon (Skutella, 2009). 

2.2.2. Gossiping and broadcasting problems (GBPs) 

In communications and wireless networks, gossiping and broadcasting (Hedetniem et al., 

1988; Fraigniaud & Vial, 1997; Ravi, 1994) are two well-known problems that have 

some overlap with the social media dissemination problems. In the gossiping problem, 

every person in the network knows a unique item of information and needs to 

communicate it to everyone else, while in the broadcasting problem one individual has 

an item of information which needs to be communicated to everyone else. A node is 

allowed to communicate to one or several of its neighbors at a time, and the time delay 

for message transmission is typically assumed to be one unit of time. The objective is 

minimizing node communications or time spent such that every node receives the 

message(s), by determining a sequence of pairs each one representing a communication 

process to be performed between two nodes (information exchange either one-way or 

two-way). Lower bound and/or upper bound of the objective are typically proved as the 

main pursuit of the problems. 
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2.2.3. Influence maximization problems (IMPs) 

The Influence Maximization Problem (IMP) was motivated by the “word of mouth” 

effects and the design of viral marketing strategies. IMP aims to find a small subset of 

nodes in a social network to maximize the spread of influence over the entire network 

(Kempe et al., 2003). Linear Threshold and Independent Cascade Models are two of the 

most basic and wildly-studied diffusion models. In Linear Threshold model, a node 

becomes active once the total influence from its active neighbors reaches a predefined 

threshold, while in Independent Cascade model any active node has a single chance to 

activate each of its inactive neighbors with a predefined probability in each step. 

Variants of the IMP and algorithmic development can be found in Kimura and Saito 

(2006), Leskovec et al. (2007), Chen et al. (2009) and Guo et al. (2013).  

2.3. Summary 

It has been the practice and dominating trend for governmental and non-governmental 

emergency management organizations and agencies to adopt social media as a main 

platform for emergency management especially for emergency communication in 

disasters and extreme events. Guidelines and considerations for an effective use of social 

media to disseminate information, including alerts, warnings and updates are provided 

and successful use cases and examples at different levels and under different 

backgrounds are studied. However, there is still a gap between the current state and the 

desired state of social media usage for effective and reliable emergency message 

dissemination. In particular, there is a lack of tools for message dissemination planning 
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and outcome assessment as well as strategies integrating all decision parameters to 

facilitate message propagation on social media in disasters and extreme events.  

  Quantitative analysis that combines social media and emergency management 

generally focuses on data acquisition, event detection, text processing, geotagging, 

visualization, and specifics in the information sharing process (e.g., message content, 

format and style) so that fails to provide emergency managers with effective and 

actionable social media strategies in the complex decision environments in disasters and 

extreme events. Compared to these results, some works from other fields are more 

relevant in terms of developing social media messaging strategies to facilitate message 

dissemination, but they cannot accurately capture the situations or satisfy the 

requirements of emergency communication either. This mainly lies in the following 

aspects.  

• In a social media message dissemination (SMMD) scenario, the only decision a 

source node (e.g., FEMA, NWS, etc.) can make is when and to whom it should 

send its direct message. The message propagation after that purely depends on 

individual’s decision to pass on or not. However, in NFPs and GBPs the (amount 

of) flow on each arc is to be dictated to achieve the best outcome. For example, 

in the optimal solution node 𝑖 should send a message to node 𝑗, which is not 

realistic in real-world SMMD scenario. 

• Typically, alert and warning messages are useful when they are received within a 

certain period of time, (i.e., planning horizon), and the length of this time is 

specific to disaster (event) type. All the message dissemination outcomes should 
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be evaluated based on this planning horizon. At the same time, a message source 

may have limited messaging capacity in an emergency situation and may enforce 

messaging intervals to avoid message overload. However, such considerations 

are generally missing in NFPs, GBPs, and IMPs.  

• When a user shares a message in social media, there is typically a delay between 

the time she receives the message and when she shares it. This delay generally 

varies by users and is related to the content and source of the message as well. 

And once she shares, the message goes to all the friends (followers) of her on the 

network. Neither the communication mechanism in GBPs (node-to-node, unit 

delay) nor the diffusion models in IMPs (accumulated or probabilistic) can 

sufficiently capture such behaviors. 

• Each user may receive messages from different sources (e.g., FEMA, NWS, etc.) 

on multiple social media sites (e.g., Facebook, Twitter, etc.), and it’d be 

necessary for individuals to gather as much information as possible before they 

make any decisions (Lindsay, 2011). Such a scenario with multiple networks and 

multiple messages and considering message aggregation effect at the user end 

cannot be addressed using any variants of NFPs, GBPs or IMPs. 

 

This research was motivated by the above facts and observations, and is intended 

to provide insights in assessment and decision support on social media messaging for 

emergency management organizations and agencies. Specifically, it examines the 

message propagation process on social media networks and explore message targeting 
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strategies under the constraints of the length of planning horizon, source messaging 

capability, user behaviors as well as network structure and conditions. Three message 

dissemination application scenarios are studied, including a single-network single-

message scenario, a single-network multi-message scenario, and a multi-network multi-

message scenario. The impacts of various factors on message dissemination outcomes 

and targeting decision making are examined through computational experiments on 

smaller-scale random and Twitter networks. Results and implications for real-world 

applications are discussed. Details are presented in the following chapters.  
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CHAPTER III 

SINGLE-NETWORK SINGLE-MESSAGE SOCIAL MEDIA MESSAGE 

DISSEMINATION PROBLEM * 

3.1. Problem Description and Definition 

The Single-network Single-message Social Media Message Dissemination Problem (SS-

SMMDP) considers the scenario in which one message needs to be disseminated on one 

social media network within a predefined planning horizon. The network is represented 

by 𝐺 = (𝐼,𝐴), where each node 𝑖 ∈ 𝐼 represents a user in the social media and each arc 

⟨𝑖, 𝑗⟩ ∈ 𝐴 represents the relationship on the network (i.e., friend or follower) between 

users 𝑖, 𝑗 ∈ 𝐼, through which messages can flow from 𝑖 to 𝑗. The message source is 

represented by 𝑂 (not included in network 𝐺). The planning horizon is given by set 𝑇, 

where each 𝑡 ∈ 𝑇 represents a time period in the planning horizon. The last time period 

as well as the length of the planning horizon are both represented by |𝑇|. 

Message propagation on the network is initiated by the source 𝑂 through node 

targeting (i.e., send direct messages to some nodes in a predefined candidate set 𝑀 ⊆ 𝐼) 

and continues as individual nodes redistribute the received messages to their friends or 

followers, as illustrated in Figure 3.1. The source 𝑂 can send the message multiple 

waves if time allows, with a minimum reset time 𝑙 between two consecutive waves and a 

_______________________ 
* Part of this chapter is reprinted with permission from Ma, X., & Yates, J. (2014). Optimizing social media message
dissemination problem for emergency communication. Computers & Industrial Engineering, 78, 107-126. Copyright 
© 2014 Elsevier Ltd. 
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capacity 𝑝 in each wave. Accordingly, a subset of 𝑝 nodes (i.e., nodes to be targeted) 

needs to be determined corresponding to each wave of messages send from 𝑂. This 

process is illustrated in Figure 3.2. Message propagation on the network is modeled 

using a time delay 𝑑𝑖𝑗, which is defined on each ⟨𝑖, 𝑗⟩ ∈ 𝐴. Under normal conditions, this 

delay time may represent the time a message is spent unviewed in the user’s inbox 

(maybe the user did not hear the message receipt notification or did not have direct 

access to their mobile device or computer immediately). Under conditions experienced 

in extreme events, this delay time could also represent the user’s inability to access the 

message and/or some elongated transmission delay time due to damage of the underlying 

communications system (e.g., cell phone tower damage) or excessive load (i.e., too 

many users simultaneously sending messages has jammed the system and prevented 

messages from being sent). A user node 𝑖 is considered active after receiving the 

message, and the message dissemination outcome is expressed as a net gain (i.e., the 

total gain from activating nodes within the planning horizon minus the total cost of 

sending messages from the source), which essentially encourages wider message 

reception on the network with minimum targeted nodes.  

Now the SS-SMMDP can be formally stated as follows: Given social media 

network 𝐺 = (𝐼,𝐴), candidate set 𝑀, planning horizon 𝑇, source messaging capacity 𝑝, 

source reset time 𝑙, and delay matrix 𝐷(𝐼, 𝐼), SS-SMMDP optimizes the message 

dissemination outcome by determining a sequence of subsets, each containing at most 𝑝 

nodes from the candidate set 𝑀, to be targeted by the source. Problem formulation is 

presented in section 3.2. 
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Figure 3.1 Conceptualization of SS-SMMDP 
 

 

 

Figure 3.2 An illustration of source messaging behavior 
 

 

3.2. Problem Formulation 

3.2.1. Sets and parameters 

𝐼 =  the set of user nodes 

𝑂 = the message source 

𝑀 = the set of candidate nodes for targeting, 𝑀 ⊆ 𝐼 

𝑇 = the set of time periods 
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𝑎𝑖𝑗 = 1 if arc ⟨𝑖, 𝑗⟩ ∈ 𝐴, 0 otherwise 

𝑑𝑖𝑗 = the time delay of a message flowing from node 𝑖 to node 𝑗 

𝑤𝑖 = the reward for node 𝑖 being active within the planning horizon 

𝑐𝑖 = the cost of sending a direct message to node 𝑖 from the source 

𝑝 = the source messaging capacity 

𝑙 = the source reset time 

3.2.2. Decision variables 

𝑧𝑖𝑡 = 1  if node 𝑖 is active at time 𝑡, 0 otherwise 

𝑥𝑖𝑗𝑡 = 1  if a message flows on arc ⟨𝑖, 𝑗⟩ at time 𝑡, 0 otherwise 

3.2.3. Formulation 

𝑚𝑎𝑥 ∑ 𝑤𝑖𝑧𝑖|𝑇| − ∑ ∑ 𝑐𝑗𝑥𝑜𝑗𝑡𝑡∈𝑇𝑗∈𝑀𝑖∈𝐼          (3.1) 

𝑠. 𝑡.        

∑ ∑ 𝑥𝑜𝑗𝑠𝑡+𝑙
𝑠=𝑡 ≤ 𝑝                                   ∀ 𝑡 ∈𝑗∈𝑀 𝑇                (3.2) 

𝑧𝑖𝑡 − 𝑧𝑖,𝑡+1 ≤ 0                                           ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇               (3.3) 

∑ ∑ 𝑥𝑖𝑗𝑡𝑡∈𝑇𝑖∈𝐼∪𝑂 ≤ 1                                  ∀ 𝑗 ∈ 𝐼       (3.4) 

𝑧𝑗𝑡 − ∑ ∑ 𝑥𝑖𝑗𝑠𝑠∈{𝑇:𝑠≤𝑡−𝑑𝑖𝑗}𝑖∈𝐼∪𝑂 ≤ 0         ∀ 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇     (3.5) 

𝑥𝑖𝑗𝑡 − 𝑧𝑖𝑡 ≤ 0                                               ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇                (3.6) 

𝑥𝑖𝑗𝑡�1 − 𝑎𝑖𝑗� = 0                                        ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇                (3.7) 
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The use of weight and cost parameters makes the objective flexible and adaptive 

to different preferences of emergency managers. When 𝑤𝑖 = 𝑐𝑗 = 1 , the objective is 

altered to emphasize sending as few messages as possible. When 𝑤𝑖 = 1 and 𝑐𝑗 = 0, the 

objective is altered to emphasize activating the largest set of nodes possible. In this way, 

(3.1) can be slightly altered but always focuses on maximizing some prioritized 

combination of activated users minus a calculated messaging cost. 

  Constraint (3.2) limits the source node messaging capability to a maximum value 

𝑝 and constraint (3.4) ensures no nodes receive redundant messages. We employ 

constraint (3.3) to ensure that chronology in user activity is preserved. Constraints (3.5) 

and (3.6) control message dissemination through the social network such that messages 

are delayed appropriately and that no inactive nodes send a message. Constraint (3.7) 

guarantees messages are passed only through existing arcs. 

  The use of a candidate set for each message is helps managers/agencies yield the 

highest versatility from the model. If the model is used in the operational stage of an 

extreme event, the candidate set should be established according to the real situation 

(i.e., the connections that each government user has at that moment). If the model is used 

in the planning stage, then the candidate set can be set equal to the whole user set 𝐼. The 

implication of such a setting is, assuming all the users in set 𝐼 could be candidates for 

receiving messages directly, which of them should the governmental node target given 

the constraint on the number of allowable connections. These users are obviously more 

important for the message dissemination purpose, so the government could take 

measures to build connections to them in advance. 
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3.3. Computational Experiments 

We develop two cases upon which to test SS-SMMDP performance. The first is a 

computational experimental design testing five key model parameters and resulting in 

660 unique problem scenarios.  Per scenario, we generate 20 replications and make 

observations on the mean, standard deviation, minimum and maximum performance 

measures (e.g., objective value, CPU time, etc.). All generated graphs are assumed to be 

undirected for this case. The second test case, which will be presented in section 3.3.2, 

uses a social network generated by crawling the Twitter user space with 20 replicates 

under a smaller number of selected scenario combinations. Some networks areexamined 

in both directed and undirected scenarios. Note that the time requirement for message 

dissemination varies over different types of events and different levels of emergency. 

For example, NWS issues a hurricane watch 24-36 hours in advance of a potential event 

and a hurricane warning when the event is expected in 24 hours or less. While for 

tornados, the warning time may be only a few minutes or even less. Without loss of 

generality, the basic time unit being assumed here is hours. Each test case is now 

presented and discussed. 

3.3.1. Experiments on random networks 

The experimental design tests the following five factors: arc delay (𝐷), source messaging 

capacity (𝑝), source messaging interval (𝑙), length of time horizon (|𝑇|) and network size 

(|𝐼|).  Factor levels 𝐷 =  {0,1}, 𝑝 =  {1,2, … ,7,8}, 𝐿 =  {2,3,4,5,6}, |𝑇|  =  {2,3,4,5,6} 

and |𝐼| =  {50,100,150} resulted in 660 unique scenario combinations tested with 20 
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replications. Arc delay (𝑑𝑖𝑗) randomly assigned delay times to arcs using a uniform 

distribution between 1 and 10 time units (integer) for 𝐷 = 0 and set all arc delay times to 

1 when 𝐷 = 1. A randomly generated social network is created at each replication with a 

30% probability of connection between any pair of users. All networks generated for a 

specific scenario are tested to ensure completeness and uniqueness within the replication 

set. Parameters are set as 𝑤𝑖 = 1 and 𝑐𝑖 = 0.5 for all 𝑖 ∈ 𝐼, which is to emphasize 

activating the largest set of users possible. The candidate set 𝑀 is set equal to set 𝐼 in all 

instances.  

Generating our networks randomly and with a uniform connectivity probability 

between user pairs has been shown to yield networks that do not share certain 

characteristics with online social networks (Butts, 2008).  In general, randomly 

generated networks are significantly more uniform in their structure and do not possess 

the low-frequency of highly connected (i.e., high degree) nodes and high-frequency of 

sparsely connected (i.e., low degree) nodes witnessed in online social networks. This 

shortcoming leads to lower betweenness and geodesic network measures that can shorten 

message dissemination. At the same time, our network generation approach comes with 

less computational overhead than is typically observed in generating more representative 

online social network structures. Knowing this, we choose to institute the randomly 

generated network design for our experimental design in an effort to identify SS-

SMMDP computational trends. Results and observations from this experimentation will 

drive parameter selection in the second test case where real-world Twitter user sub-

graphs are used. All the instances are computed using ILOG Concert Technology with 
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C++/CPLEX 12.4 on a Dell OptiPlex 755 computer (Inter Core 2 Duo E8500 3.17GHz, 

4GB RAM and Windows 7 System), and the solution time are capped at 7,200 seconds. 

Table 3.1 introduces results for a selection of scenarios at the 𝐷 = 0 and |𝐼| = 50 

level. The most striking observation from the table is the increase in CPU time from 

|𝑇| = 4 to |𝑇| = 6 (increased by around 100%).  As the time horizon |𝑇| increases, CPU 

time becomes more unpredictable.  This is not unexpected (a |𝑇| = 4 scenario will have 

10,812 variables and 21,164 constraints while |𝑇| = 6 the size increases to 16,218 

variables and 31,772 constraints) and is aligned with expected computational 

performance in other network-based models. Statistically, the time horizon |𝑇| and the 

source messaging capacity 𝑝 significantly affect CPU time (𝑝-value < 0.05 using single-

factor ANOVA). Aside from CPU time, the other three metrics observed are objective 

function value (𝑂𝐵𝐽𝐸𝐶𝑇𝐼𝑉𝐸), number of active nodes at time |𝑇| (𝐴𝐶𝑇𝐼𝑉𝐸), and the 

number of messages sent by the source (𝑀𝐸𝑆𝑆𝐴𝐺𝐸𝑆).  Of the three active parameters 𝑝, 

𝑙 and |𝑇| in Table 3.1, only the time horizon |𝑇| significantly affects mean value and 

standard deviation in all three metrics statistically, which indicates that the amount of 

time allowed for message dissemination is a crucial factor that affects the overall 

performance.     

The litmus test for SS-SMMDP is that it exhibits behavior that we would 

intuitively expect from such a message dissemination model. To this extent, the model 

performs quite well, showing better objective performance as |𝑇| increases, a decrease in 

messages sent as 𝑙 increases, and an increase in the number of active users as 𝑝 and |𝑇| 

increase. Similar trends are indicated in Table 3.2 and Table 3.3, which introduce  
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Table 3.1 Selected SS-SMMDP results at 𝐷 = 0 and |𝐼| = 50  

 

 

Table 3.2 Selected SS-SMMDP results at 𝐷 = 0 and |𝐼| = 100 

 
 

 

 

 

 

AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX
2 2 2 50 8.850 1.236 7.0 12.0 9.850 1.236 8 13 2.000 0.000 2 2 0.438 0.063 0.33 0.58
2 2 4 50 37.250 3.315 30.0 43.0 39.250 3.315 32 45 4.000 0.000 4 4 3.519 1.312 1.62 6.58
2 2 6 50 48.875 0.311 48.0 49.5 50.000 0.000 50 50 2.250 0.622 1 4 5.379 1.657 2.93 8.80
2 4 4 50 34.950 4.663 27.0 43.0 35.950 4.663 28 44 2.000 0.000 2 2 4.489 0.636 3.53 6.12
2 4 6 50 48.925 0.286 48.0 49.5 50.000 0.000 50 50 2.150 0.572 1 4 5.199 1.190 3.70 8.60
2 6 6 50 48.700 0.534 48.0 49.5 49.650 0.477 49 50 1.900 0.300 1 2 5.422 1.717 3.24 9.69
4 2 2 50 16.250 1.972 13.0 21.0 18.250 1.972 15 23 4.000 0.000 4 4 0.532 0.131 0.41 1.05
4 2 4 50 45.200 1.435 43.0 47.5 48.950 1.161 47 50 7.500 0.866 5 8 3.671 0.953 1.59 5.46
4 2 6 50 48.900 0.339 48.5 49.5 50.000 0.000 50 50 2.200 0.678 1 3 5.580 1.879 3.20 11.12
4 4 4 50 42.800 2.135 38.0 46.0 44.800 2.135 40 48 4.000 0.000 4 4 3.868 1.121 2.45 6.12
4 4 6 50 48.925 0.363 48.0 49.5 50.000 0.000 50 50 2.150 0.726 1 4 5.135 1.585 3.03 8.92
4 6 6 50 48.925 0.286 48.5 49.5 50.000 0.000 50 50 2.150 0.572 1 3 5.061 1.465 2.93 7.83
6 2 2 50 21.750 2.142 19.0 26.0 24.750 2.142 22 29 6.000 0.000 6 6 0.595 0.096 0.44 0.80
6 2 4 50 46.650 0.502 45.5 47.5 50.000 0.000 50 50 6.700 1.005 5 9 2.403 0.685 1.48 4.12
6 2 6 50 48.975 0.192 48.5 49.5 50.000 0.000 50 50 2.050 0.384 1 3 5.324 1.532 3.04 8.77
6 4 4 50 45.850 1.226 43.0 47.5 48.800 1.166 46 50 5.900 0.300 5 6 2.984 0.867 1.61 4.62
6 4 6 50 49.075 0.286 48.5 49.5 50.000 0.000 50 50 1.850 0.572 1 3 5.451 1.082 4.29 8.17
6 6 6 50 48.925 0.286 48.0 49.5 50.000 0.000 50 50 2.150 0.572 1 4 5.369 1.696 2.92 9.22
8 2 2 50 25.250 2.467 20.0 29.0 29.250 2.467 24 33 8.000 0.000 8 8 0.463 0.106 0.33 0.84
8 2 4 50 46.575 0.618 45.5 47.5 50.000 0.000 50 50 6.850 1.236 5 9 2.409 0.767 1.45 4.31
8 2 6 50 49.050 0.269 48.5 49.5 50.000 0.000 50 50 1.900 0.539 1 3 5.071 1.277 3.20 8.72
8 4 4 50 46.400 0.970 44.0 47.5 49.750 0.536 48 50 6.700 1.145 5 8 2.349 0.849 1.25 4.66
8 4 6 50 48.975 0.295 48.5 49.5 50.000 0.000 50 50 2.050 0.589 1 3 5.110 2.247 2.87 9.84
8 6 6 50 48.950 0.150 48.5 49.0 50.000 0.000 50 50 2.100 0.300 2 3 5.003 1.514 3.37 8.33

OBJECTIVE ACTIVE MESSAGES CPU TIME
p l |T| |I|

AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX
2 2 2 100 15.550 1.244 14.0 18.0 16.550 1.244 15 19 2.000 0.000 2 2 1.418 0.325 0.98 2.26
2 2 4 100 92.300 2.027 88.0 95.0 94.300 2.027 90 97 4.000 0.000 4 4 17.819 3.391 12.84 25.49
2 2 6 100 99.500 0.000 99.5 99.5 100.000 0.000 100 100 1.000 0.000 1 1 32.512 6.383 16.91 50.01
2 4 4 100 91.250 2.826 85.0 96.0 92.250 2.826 86 97 2.000 0.000 2 2 18.061 6.559 9.63 37.58
2 4 6 100 99.475 0.109 99.0 99.5 100.000 0.000 100 100 1.050 0.218 1 2 33.568 6.182 24.32 43.91
2 6 6 100 99.500 0.000 99.5 99.5 100.000 0.000 100 100 1.000 0.000 1 1 30.418 7.487 23.31 55.32
4 2 2 100 28.150 2.151 24.0 33.0 30.150 2.151 26 35 4.000 0.000 4 4 1.000 0.122 0.87 1.28
4 2 4 100 97.950 0.415 97.0 98.5 100.000 0.000 100 100 4.100 0.831 3 6 11.745 1.969 8.89 15.96
4 2 6 100 99.500 0.000 99.5 99.5 100.000 0.000 100 100 1.000 0.000 1 1 32.551 6.933 20.45 47.74
4 4 4 100 97.775 1.030 94.0 98.5 99.650 0.963 96 100 3.750 0.433 3 4 13.979 5.717 8.64 36.15
4 4 6 100 99.500 0.000 99.5 99.5 100.000 0.000 100 100 1.000 0.000 1 1 32.694 8.608 22.12 50.09
4 6 6 100 99.500 0.000 99.5 99.5 100.000 0.000 100 100 1.000 0.000 1 1 32.640 6.565 22.48 46.43
6 2 2 100 37.650 1.621 35.0 40.0 40.650 1.621 38 43 6.000 0.000 6 6 1.376 0.305 0.97 2.26
6 2 4 100 98.025 0.334 97.0 98.5 100.000 0.000 100 100 3.950 0.669 3 6 11.749 2.416 7.02 17.44
6 2 6 100 99.500 0.000 99.5 99.5 100.000 0.000 100 100 1.000 0.000 1 1 29.512 5.044 18.80 35.82
6 4 4 100 97.900 0.255 97.5 98.5 100.000 0.000 100 100 4.200 0.510 3 5 11.894 3.476 8.19 22.96
6 4 6 100 99.500 0.000 99.5 99.5 100.000 0.000 100 100 1.000 0.000 1 1 31.771 9.926 22.50 64.21
6 6 6 100 99.500 0.000 99.5 99.5 100.000 0.000 100 100 1.000 0.000 1 1 30.465 7.060 22.00 46.88
8 2 2 100 46.450 2.037 44.0 50.0 50.450 2.037 48 54 8.000 0.000 8 8 1.564 0.396 1.00 2.62
8 2 4 100 97.975 0.334 97.0 98.5 100.000 0.000 100 100 4.050 0.669 3 6 12.344 3.541 8.17 21.14
8 2 6 100 99.500 0.000 99.5 99.5 100.000 0.000 100 100 1.000 0.000 1 1 28.795 7.365 19.86 57.25
8 4 4 100 97.950 0.269 97.5 98.5 100.000 0.000 100 100 4.100 0.539 3 5 12.819 3.932 7.16 26.43
8 4 6 100 99.500 0.000 99.5 99.5 100.000 0.000 100 100 1.000 0.000 1 1 28.097 3.246 21.51 32.59
8 6 6 100 99.500 0.000 99.5 99.5 100.000 0.000 100 100 1.000 0.000 1 1 27.420 6.121 17.50 43.52

ACTIVE MESSAGES CPU TIME
p l |T| |I|

OBJECTIVE
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Table 3.3 Selected SS-SMMDP results at 𝐷 = 0 and |𝐼| = 150 

 
 

selected experimental results for |𝐼| = 100 and |𝐼| = 150. From Table 3.1 through 3.3 , 

another notable trend is that the mean value and standard deviation of CPU time increase 

significantly from |𝐼| = 50 to |𝐼| = 150 (the maximum CPU time reaches 1,285 seconds 

for some instance of |𝐼| = 150), which suggests that fast solving procedures (e.g., 

heuristics) may be needed to solve large-scale problems efficiently. In light of this, we 

designed a standard Tabu Search procedure for SS-SMMDP as an initial study on 

heuristic performance, detailed discussions of which will be given in section 3.4. 

3.3.2. Experiments on Twitter sub-networks 

The results presented in section 3.3.1 are derived from SS-SMMDP applications on 

randomly generated networks with a pre-specified connectivity rate (e.g., 30% 

connected) and where focus was on computational experimentation. Using random 

networks enabled us to create a large body of diverse networks upon which to test SS-

SMMDP performance without significant computational burden. Realistically, however, 

randomly generated networks do not closely approximate the structure and properties of 

on-line social networks (Butts, 2008). Random networks tend to be significantly more 

AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX
2 2 2 150 21.250 1.639 18.0 24.0 22.250 1.639 19 25 2.000 0.000 2 2 2.560 0.569 1.68 4.45
2 2 4 150 147.350 1.566 145.0 149.0 149.000 1.265 147 150 3.300 0.781 2 4 209.969 267.931 20.67 954.27
2 2 6 150 149.500 0.000 149.5 149.5 150.000 0.000 150 150 1.000 0.000 1 1 125.494 23.537 83.49 175.92
2 4 4 150 146.850 1.982 143.0 149.0 147.850 1.982 144 150 2.000 0.000 2 2 339.245 422.334 19.80 1285.00
2 4 6 150 149.500 0.000 149.5 149.5 150.000 0.000 150 150 1.000 0.000 1 1 131.272 43.082 46.07 204.45
2 6 6 150 149.500 0.000 149.5 149.5 150.000 0.000 150 150 1.000 0.000 1 1 115.522 29.550 43.03 154.69
4 2 2 150 39.200 2.293 35.0 44.0 41.200 2.293 37 46 4.000 0.000 4 4 2.162 0.300 1.81 2.93
4 2 4 150 148.575 0.238 148.0 149.0 150.000 0.000 150 150 2.850 0.477 2 4 42.474 16.068 18.39 89.12
4 2 6 150 149.500 0.000 149.5 149.5 150.000 0.000 150 150 1.000 0.000 1 1 116.654 25.703 76.78 182.72
4 4 4 150 148.600 0.255 148.0 149.0 150.000 0.000 150 150 2.800 0.510 2 4 44.442 29.456 24.84 123.18
4 4 6 150 149.500 0.000 149.5 149.5 150.000 0.000 150 150 1.000 0.000 1 1 124.295 28.509 45.27 185.27
4 6 6 150 149.500 0.000 149.5 149.5 150.000 0.000 150 150 1.000 0.000 1 1 116.837 32.968 38.58 164.38

p l |T| |I|
OBJECTIVE ACTIVE MESSAGES CPU TIME
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uniform in structure and do not exhibit the small-world properties greatly present in 

social media (Butts, 2008; Gjoka et al., 2010).   

 Having demonstrated the computational properties of SS-SMMDP in section 

3.3.1, we now apply it to a series of collected, real-world social media networks. Our test 

networks are pulled from Twitter using a Python script that implemented a Metropolis-

Hastings Random Walk (MHRW) in the friend and follower directions and initiating at a 

randomly generated Twitter user node. We choose MHRW as it has been shown to 

generate social sub-networks with properties that are strongly consistent to the large-

scale (Gjoka et al., 2010). Appropriate network approximation is critical in cases of 

social network analysis as (1) it is impossible to capture and apply methods to the entire 

social network itself, and (2) sampling and approximation techniques introduce inherent 

bias to network applications. 

 For this analysis, we create two separate types of networks from the MHRW and 

will refer to them as the RED and GREEN networks. To generate both networks, we 

start from an initial randomly generated node in the Twitter network. We apply the 

MHRW to trace through the actual Twitter network of users and log both the selected 

nodes and the friends/followers of each selected node. The RED network represents a 

strong MHRW where only those nodes selected through the random walk are included in 

the graph. In the GREEN network, we include all nodes of the RED user nodes and 

augment the graph with all common friends/followers. In this way, the GREEN network 

can be substantially larger than the RED network. Three separate MHRW were 

conducted to the Twitter network in July 2013 with |𝐼| = {50, 100, 150}. The resulting 
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six networks are presented in Figure 3.3 and Figure 3.4 with RED and GREEN network 

statistics provided in Table 3.4. 

 

 

 

Figure 3.3 RED networks for (a) |𝐼| = 50, (b) |𝐼| = 100, and (c) |𝐼| = 150 
 

 

 

 

Figure 3.4 GREEN networks for (a) |𝐼| = 50, (b) |𝐼| = 100, and (c) |𝐼| = 150 
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Table 3.4 Network statistics for the RED and GREEN Twitter cases 

          Node Degree Statistics 
  Nodes Arcs Density   AVG StDev MIN MAX 

R
ed

 50 62 0.051   2.480 1.024 1 6 

100 259 0.052   5.180 4.801 1 18 

150 235 0.021   3.133 1.711 1 10 

G
re

en
 50 162 0.132   6.480 4.842 0 20 

100 1088 0.220   21.760 14.247 1 72 

150 720 0.064   9.600 7.096 1 36 

 

 

In testing SS-SMMDP performance on the RED networks, we examine both the 

directed and undirected cases noting that Twitter is a directed network of those who 

receive your tweets (follower) and those whose tweets you receive (following). We 

apply the same experimental design used in section 3.3.1 with 20 replications per factor 

combination which randomly generate the arc delay values. Parameters are set as 𝑤𝑖 = 1 

and 𝑐𝑖 = 0.5 for all 𝑖 ∈ 𝐼, which is to emphasize activating the largest set of users 

possible. The candidate set 𝑀 is set equal to set 𝐼 in all instances. All the computations 

are done with AMPL/CPLEX 12.1 on a Dell OptiPlex 755 computer (Inter Core 2 Duo 

E6750 2.67GHz, 2GB RAM and Windows 7 System). Tables 3.5 and Table 3.6 provide 

summarized results for the undirected and directed networks, respectively. 

Table 3.7 gives experimental results for the GREEN network. In this network, we 

set the arc delay values between any two nodes i and j to be a function of the common 

connections (followers/following) between them. With n representing the number of 

common connections, we establish three levels of delay 𝐷 = {0, 1, 2} where 𝐷 = 0 
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represents a reciprocal delay function (𝑑𝑖𝑗 = 10/𝑛 ), 𝐷 = 1 constant delay (𝑑𝑖𝑗 = 1), 

and 𝐷 = 2 exponential delay (𝑑𝑖𝑗 = 10𝑒−𝑛/10).  Given our definition of arc delay, only 

one problem instance is run for each factor combination (i.e., no replications are made 

for the GREEN network). 

 

 

Table 3.5 Selected SS-SMMDP results for 𝐷 = 0 and undirected RED networks  

 

 

 

 

 

 

 

 

AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX
2 2 4 50 6.350 0.654 5.0 8.0 8.350 0.654 7 10 4.000 0.000 4 4 0.128 0.027 0.11 0.23
2 2 6 50 11.850 1.682 9.0 15.0 13.850 1.682 11 17 4.000 0.000 4 4 0.243 0.072 0.17 0.45
2 4 4 50 5.250 0.698 4.0 7.0 6.250 0.698 5 8 2.000 0.000 2 2 0.137 0.021 0.12 0.17
2 4 6 50 9.100 1.480 6.0 11.0 11.100 1.480 8 13 4.000 0.000 4 4 0.186 0.048 0.14 0.36
2 6 6 50 8.650 1.621 7.0 13.0 9.650 1.621 8 14 2.000 0.000 2 2 0.215 0.039 0.16 0.28
8 2 4 50 18.750 1.512 15.0 22.0 26.750 1.512 23 30 16.000 0.000 16 16 0.069 0.011 0.06 0.09
8 2 6 50 28.950 2.801 24.0 35.0 36.950 2.801 32 43 16.000 0.000 16 16 0.117 0.063 0.08 0.36
8 4 4 50 14.900 1.972 9.0 18.0 18.900 1.972 13 22 8.000 0.000 8 8 0.063 0.014 0.05 0.12
8 4 6 50 25.900 2.119 21.0 29.0 33.900 2.119 29 37 16.000 0.000 16 16 0.197 0.227 0.08 1.17
8 6 6 50 22.000 1.897 16.0 25.0 26.000 1.897 20 29 8.000 0.000 8 8 0.142 0.039 0.08 0.2
2 2 4 100 11.900 1.044 10.0 14.0 13.900 1.044 12 16 4.000 0.000 4 4 0.267 0.141 0.12 0.83
2 2 6 100 25.950 2.247 23.0 30.0 27.950 2.247 25 32 4.000 0.000 4 4 5.644 4.031 1.08 15.96
2 4 4 100 11.200 1.030 9.0 13.0 12.200 1.030 10 14 2.000 0.000 2 2 2.422 2.198 0.16 7.14
2 4 6 100 22.750 2.567 19.0 28.0 24.750 2.567 21 30 4.000 0.000 4 4 5.271 2.316 0.76 9.2
2 6 6 100 21.550 1.627 19.0 24.0 22.550 1.627 20 25 2.000 0.000 2 2 5.558 3.987 1.09 15.37
8 2 4 100 31.300 1.977 27.0 36.0 39.300 1.977 35 44 16.000 0.000 16 16 1.005 1.147 0.11 3.42
8 2 6 100 54.050 3.471 47.0 61.0 62.050 3.471 55 69 16.000 0.000 16 16 23.968 35.351 1.76 128.2
8 4 4 100 28.400 1.881 24.0 31.0 32.400 1.881 28 35 8.000 0.000 8 8 1.013 1.279 0.11 3.42
8 4 6 100 50.000 2.214 46.0 54.0 58.000 2.214 54 62 16.000 0.000 16 16 58.694 167.400 0.7 763.19
8 6 6 100 44.600 2.973 39.0 52.0 48.600 2.973 43 56 8.000 0.000 8 8 40.107 83.632 0.75 308.83
2 2 4 150 8.650 0.910 7.0 10.0 10.650 0.910 9 12 4.000 0.000 4 4 4.096 2.639 0.17 8.27
2 2 6 150 19.000 2.345 14.0 24.0 21.000 2.345 16 26 4.000 0.000 4 4 9.988 3.830 2.06 16.49
2 4 4 150 7.800 1.122 6.0 11.0 8.800 1.122 7 12 2.000 0.000 2 2 6.328 3.213 1.93 11.43
2 4 6 150 14.650 1.682 10.0 17.0 16.650 1.682 12 19 4.000 0.000 4 4 7.672 3.428 0.92 14.01
2 6 6 150 14.450 1.431 12.0 17.0 15.450 1.431 13 18 2.000 0.000 2 2 6.395 3.710 0.7 13.87
8 2 4 150 28.200 1.568 25.0 31.0 36.200 1.568 33 39 16.000 0.000 16 16 1.698 2.683 0.19 10.33
8 2 6 150 50.350 2.886 45.0 57.0 58.350 2.886 53 65 16.000 0.000 16 16 426.876 581.582 2.7 1805.39
8 4 4 150 23.700 1.819 21.0 27.0 27.700 1.819 25 31 8.000 0.000 8 8 2.333 2.283 0.14 8.81
8 4 6 150 43.200 2.502 38.0 47.0 51.200 2.502 46 55 16.000 0.000 16 16 122.591 383.643 1.17 1763.72
8 6 6 150 39.950 2.479 35.0 44.0 43.950 2.479 39 48 8.000 0.000 8 8 30.302 48.073 0.66 228.43

ACTIVE MESSAGES CPU TIME
p l |T| |I|

OBJECTIVE



 

38 

 

Table 3.6 Selected SS-SMMDP results for 𝐷 = 0 and directed RED networks  

 
 

 

Table 3.7 Selected SS-SMMDP results for the GREEN networks  

 

AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX
2 2 4 50 5.450 0.865 4.0 7.0 7.450 0.865 6 9 4.000 0.000 4 4 0.128 0.028 0.11 0.23
2 2 6 50 9.550 0.973 8.0 11.0 11.550 0.973 10 13 4.000 0.000 4 4 0.182 0.064 0.12 0.41
2 4 4 50 4.150 0.726 3.0 5.0 5.150 0.726 4 6 2.000 0.000 2 2 0.123 0.028 0.09 0.23
2 4 6 50 7.650 0.963 6.0 10.0 9.650 0.963 8 12 4.000 0.000 4 4 0.160 0.023 0.12 0.19
2 6 6 50 6.000 0.775 5.0 7.0 7.000 0.775 6 8 2.000 0.000 2 2 0.168 0.019 0.14 0.2
8 2 4 50 17.850 1.276 16.0 21.0 25.850 1.276 24 29 16.000 0.000 16 16 0.128 0.022 0.11 0.2
8 2 6 50 26.900 2.663 22.0 32.0 34.900 2.663 30 40 16.000 0.000 16 16 0.140 0.020 0.12 0.19
8 4 4 50 14.350 1.424 11.0 18.0 18.350 1.424 15 22 8.000 0.000 8 8 0.125 0.014 0.11 0.16
8 4 6 50 24.200 1.749 21.0 28.0 32.200 1.749 29 36 16.000 0.000 16 16 0.135 0.020 0.11 0.19
8 6 6 50 20.100 2.468 16.0 26.0 24.100 2.468 20 30 8.000 0.000 8 8 0.133 0.015 0.11 0.17
2 2 4 100 11.650 1.195 9.0 13.0 13.650 1.195 11 15 4.000 0.000 4 4 2.664 1.976 0.11 6.54
2 2 6 100 23.500 1.775 20.0 26.0 25.500 1.775 22 28 4.000 0.000 4 4 3.425 2.163 0.59 7.11
2 4 4 100 11.200 1.249 10.0 14.0 12.200 1.249 11 15 2.000 0.000 2 2 1.772 1.630 0.12 5.52
2 4 6 100 20.750 1.337 17.0 23.0 22.750 1.337 19 25 4.000 0.000 4 4 4.182 1.439 0.84 6.54
2 6 6 100 19.500 0.975 18.0 21.0 20.500 0.975 19 22 2.000 0.000 2 2 4.912 0.530 4.12 6.36
8 2 4 100 30.450 1.774 27.0 34.0 38.450 1.774 35 42 16.000 0.000 16 16 1.524 1.389 0.11 3.2
8 2 6 100 50.550 2.673 45.0 56.0 58.550 2.673 53 64 16.000 0.000 16 16 4.388 3.672 0.33 14.74
8 4 4 100 26.400 1.715 22.0 31.0 30.400 1.715 26 35 8.000 0.000 8 8 1.149 1.203 0.09 3.34
8 4 6 100 42.400 2.498 38.0 50.0 50.400 2.498 46 58 16.000 0.000 16 16 3.942 1.648 0.27 7.3
8 6 6 100 38.350 2.080 34.0 42.0 42.350 2.080 38 46 8.000 0.000 8 8 3.237 1.618 0.37 6.05
2 2 4 150 8.150 1.195 6.0 10.0 10.150 1.195 8 12 4.000 0.000 4 4 3.878 2.481 0.2 9.84
2 2 6 150 15.700 1.584 13.0 19.0 17.700 1.584 15 21 4.000 0.000 4 4 6.056 3.297 0.83 11.79
2 4 4 150 6.650 1.014 5.0 8.0 7.650 1.014 6 9 2.000 0.000 2 2 5.390 4.097 0.19 16.16
2 4 6 150 12.450 1.322 10.0 15.0 14.450 1.322 12 17 4.000 0.000 4 4 5.050 2.408 0.76 10.22
2 6 6 150 10.950 1.465 7.0 14.0 11.950 1.465 8 15 2.000 0.000 2 2 6.223 3.447 2.09 16.08
8 2 4 150 25.450 1.857 22.0 30.0 33.450 1.857 30 38 16.000 0.000 16 16 3.517 3.643 0.31 10.31
8 2 6 150 45.300 2.283 40.0 50.0 53.300 2.283 48 58 16.000 0.000 16 16 16.327 14.164 0.58 58.87
8 4 4 150 21.550 1.431 19.0 25.0 25.550 1.431 23 29 8.000 0.000 8 8 3.284 3.084 0.12 14.04
8 4 6 150 36.100 2.047 31.0 39.0 44.100 2.047 39 47 16.000 0.000 16 16 5.135 4.176 0.51 18.95
8 6 6 150 33.350 1.851 30.0 38.0 37.350 1.851 34 42 8.000 0.000 8 8 6.495 4.464 1.28 16.16

p l |T| |I|
OBJECTIVE ACTIVE MESSAGES CPU TIME

OBJ ACT MSG CPU OBJ ACT MSG CPU OBJ ACT MSG CPU OBJ ACT MSG CPU
0 2 2 4 22.0 24 4 0.12 78.0 80 4 13.91 43.0 45 4 25.23 127.0 129 4 22.99
0 2 2 6 25.0 27 4 1.23 91.0 93 4 7.94 91.0 93 4 874.88 161.0 163 4 244.38
0 2 4 4 21.0 22 2 0.19 77.0 78 2 14.98 42.0 43 2 59.75 126.0 127 2 21.89
0 2 4 6 25.0 27 4 0.38 91.0 93 4 29.22 79.0 81 4 909.65 153.0 155 4 171.66
0 2 6 6 24.0 25 2 0.34 90.0 91 2 15.12 78.0 79 2 1460.78 152.0 153 2 187.78
0 8 2 4 29.0 37 16 0.09 91.0 99 16 2.82 91.0 99 16 1806.87 155.0 163 16 13.93
0 8 2 6 35.0 43 16 0.23 94.5 100 11 13.63 114.0 122 16 7.89 179.0 187 16 50.43
0 8 4 4 25.0 29 8 0.09 87.0 91 8 6.11 87.0 91 8 1813.98 151.0 155 8 36.54
0 8 4 6 35.0 43 16 0.27 94.5 100 11 2.51 113.0 121 16 139.48 179.0 187 16 1055.96
0 8 6 6 31.0 35 8 0.23 93.0 97 8 31.59 109.0 113 8 676.12 175.0 179 8 14.18
1 2 2 4 48.5 50 3 2.50 99.5 100 1 16.65 144.0 146 4 1762.18 198.5 200 3 187.67
1 2 2 6 49.0 50 2 0.72 99.5 100 1 29.73 149.5 150 1 38.05 198.5 200 3 1207.92
1 2 4 4 48.0 49 2 2.54 99.5 100 1 24.21 143.0 144 2 241.30 198.0 199 2 456.26
1 2 4 6 49.0 50 2 0.56 99.5 100 1 27.52 149.5 150 1 46.86 194.5 196 3 1833.87
1 2 6 6 49.0 50 2 1.12 99.5 100 1 63.76 149.5 150 1 78.83 198.0 199 2 1551.20
1 8 2 4 48.5 50 3 0.77 99.5 100 1 16.74 148.5 150 3 9.74 198.5 200 3 263.17
1 8 2 6 49.0 50 2 0.69 99.5 100 1 33.43 149.5 150 1 60.20 198.5 200 3 1673.54
1 8 4 4 48.5 50 3 0.23 99.5 100 1 30.98 148.5 150 3 6.15 198.5 200 3 254.03
1 8 4 6 49.0 50 2 0.58 99.5 100 1 57.64 149.5 150 1 62.48 198.5 200 3 1263.91
1 8 6 6 49.0 50 2 0.70 99.5 100 1 80.84 149.5 150 1 127.95 198.5 200 3 1350.73
2 2 2 4 16.0 18 4 0.20 55.0 57 4 4.13 21.0 23 4 11.75 68.0 70 4 33.35
2 2 2 6 21.0 23 4 0.25 70.0 72 4 10.55 41.0 43 4 310.18 100.0 102 4 198.40
2 2 4 4 15.0 16 2 0.08 54.0 55 2 7.88 20.0 21 2 13.35 67.0 68 2 15.60
2 2 4 6 21.0 23 4 0.20 66.0 68 4 15.10 27.0 29 4 210.82 92.0 94 4 71.84
2 2 6 6 20.0 21 2 0.16 65.0 66 2 10.17 26.0 27 2 336.38 91.0 92 2 87.19
2 8 2 4 22.0 30 16 0.12 69.0 77 16 2.08 49.0 57 16 227.10 93.0 101 16 17.21
2 8 2 6 27.0 35 16 0.14 83.0 91 16 4.16 74.0 82 16 293.58 125.0 133 16 21.82
2 8 4 4 18.0 22 8 0.09 65.0 69 8 6.97 45.0 49 8 170.04 89.0 93 8 20.12
2 8 4 6 27.0 35 16 0.16 83.0 91 16 43.57 70.0 78 16 1358.71 123.0 131 16 36.91
2 8 6 6 23.0 27 8 0.16 79.0 83 8 6.05 66.0 70 8 1802.55 119.0 123 8 21.14

|T|
|I| = 50 |I| = 100 |I| = 150 |I| = 200

p lD
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3.3.3. Observations and discussions 

The SS-SMMDP model discussed in this paper is meant to be used as tools to inform 

communicators in emergency events and to help illuminate some of the intricacies in 

social media communications that may enhance or inhibit message dissemination 

through social networks. To this extent, the experimentation has led us to identify a few 

key observations that may be of use to practitioners and planners.  First, there is a clear 

difference in the distribution of messages between the randomly generated networks of 

section 3.3.1 and the Twitter sub-networks of section3.3.2. Specifically, randomly 

generated networks can be shown through our experimentation to overestimate the 

number of active nodes and the cost-modified reach of the message (i.e., the objective 

function).  This is consistent with our knowledge of social media networks and 

illustrates the importance of network connectivity/structure. Social media networks elicit 

‘small world’ structures that are not well replicated through random network generation 

(Butts, 2008). 

We also observe differences in the behavior of the sources in the RED and 

GREEN Twitter sub-networks. For the RED network, the source always sends as many 

messages as possible. Given a maximum messages possible per scenario 𝑀𝐴𝑋 =

⌈|𝑇|/(𝑙 + 1)⌉ × 𝑝, the mean number of messages sent by the RED sources always 

reaches 𝑀𝐴𝑋 (further indicated by the 𝑆𝑡𝐷𝑒𝑣 = 0) as seen in Table 3.5 and Table 3.6 

(note that this behavior is also observed in certain cases for the randomly generated 

networks for SS-SMMDP in Table 3.1). This behavior is not observed in the GREEN 

network is largely due to the structure of the RED networks, which have a more stem-
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and-petal. This structure, often observed in online social networks, makes message 

distribution difficult as the single-friend connections through the stem act as a bottleneck 

for message movement. To combat this strategy, the source must initiate more message 

transmissions in an effort to force a wider distribution. 

Table 3.8 looks at the observed correlation of our experimental runs to the timing 

of message reception. Here, we focus on the first two waves of messages sent from the 

source, call them 𝑊𝑎𝑣𝑒 1 and 𝑊𝑎𝑣𝑒 2 which reflect the extent of observed correlation 

between node degree and message reception (either first or second wave). 𝐷𝑒𝑔𝑟𝑒𝑒 and 

𝐴𝑉𝐺 𝐷𝑒𝑙𝑎𝑦 refer to individual nodes, with observed correlation provided against 

message reception (𝑊𝑎𝑣𝑒 1 vs. 𝑊𝑎𝑣𝑒 2). Figure 3.5 and Figure 3.6 illustrate message 

reception for each node by frequency (nodes receiving more messages have a larger 

radius than nodes receiving fewer messages). From figures and the table, we can see 

strong correlations between degree and 𝑊𝑎𝑣𝑒 1 for both RED networks (undirected and 

directed) and note that very strong correlation is present in all but the |𝐼| = 100 case. 

This implies that nodes with higher degrees are more likely to receive messages from the 

source in 𝑊𝑎𝑣𝑒 1. The lack of correlation and consistency through the GREEN network 

is likely the result of either our arc delay calculations (which were not random but 

dependent on common friendships/connections) or on network structure (Table 3.4 

showed the increased connectivity/density of GREEN networks compared to RED). The 

combination of GREEN and RED |𝐼| = 100 results seems to indicate that network 

structure itself plays an important role in message targeting, though further investigation 

is necessary to uncover this relationship. In terms of degree and average delay, the  
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Table 3.8 Correlation by network 
Networks Wave 1 Wave 2 Degree AVG Delay 
RED (50) - Undirected 0.864 -0.357 -0.263 0.593 
GREEN (50) -0.162 -0.490 -0.273 0.380 
RED (50) - Directed 0.912 0.225 -0.204 0.458 
RED (100) - Undirected 0.590 -0.607 -0.465 0.354 
GREEN (100) 0.096 -0.433 -0.458 0.581 
RED (100) - Directed 0.559 -0.497 -0.443 0.246 
RED (150) - Undirected 0.902 -0.047 -0.497 0.283 
GREEN (150) 0.459 -0.202 -0.496 0.458 
RED (150) - Directed 0.876 -0.026 -0.523 0.305 
RED (200) - Undirected 0.891 0.011 -0.469 0.142 
GREEN (200) 0.078 -0.371 -0.340 0.551 
RED (200) - Directed 0.883 0.206 -0.439 0.329 

Figure 3.5 𝑊𝑎𝑣𝑒 1 for RED (a) |𝐼| = 50, (b) |𝐼| = 100, and (c) |𝐼| = 150 

Figure 3.6 𝑊𝑎𝑣𝑒 1 for GREEN (a) |𝐼| = 50, (b) |𝐼| = 100, and (c) |𝐼| = 150 

  (a)                   (b)              (c) 

  (a)                   (b)              (c) 
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results are as expected. Nodes with higher degree will receive messages earlier (i.e., 

lower batch number) and are thus negatively correlated with wave number while nodes 

with high delay characteristics are less likely to be targeted. Note that this last 

relationship is consistent in that average node delay is always positively correlated with 

wave number but that it is not a strong or significant correlation (ranging in [0.142 - 

0.593] in our samples). 

Computationally, the SS-SMMDP model shares similar properties with other 

network models. As the network’s size increases (in this case, from |𝐼| = 50 to |𝐼| =

150), computation time increases. We note that this increase is exponential and is 

magnified in the GREEN network case, which inherently more dense than either the 

RED or random networks. We also see an expected trend in the effect of the time 

horizon |𝑇| on objective performance and message distribution. In all cases, larger |𝑇| 

implies a larger mean objective function value and better reach of the message. While 

this is not true for comparison of specific replications due to the random arc delay, it is 

in general always beneficial, when possible, to increase the time horizon |𝑇|.   

3.4. Implementation of Tabu Search 

Looking into the experimental results, we observe that CPU times increased significantly 

with the increase of network size |𝐼|, length of time horizon |𝑇| as well as source 

messaging capacity 𝑝, which motivates us to examine how known heuristics or meta-

heuristics might help improve the computational efficiency. Therefore, we implement a 

Tabu Search procedure for SS-SMMDP as an initial test on heuristic performance versus 
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the CPLEX strategy implemented to this point. Detailed information of the proposed 

Tabu Search procedure is given in the following. 

3.4.1. Technical details 

3.4.1.1. Encoding of a solution 

Given time horizon |𝑇| and source messaging interval 𝑙, we fix the time points when the 

source node is eligible to send messages in the first place. Literally the set of eligible 

time points is 𝐸 = {1, 𝑙 + 2, 2𝑙 + 3, 3𝑙 + 4, … ,𝑇𝐿}, where 𝑇𝐿 is the last time point for 

sending message within the planning horizon. Let 𝑚 be the cardinality of set 𝐸. For each 

time point, at most 𝑝 users can receive the message from the source, so we designate 𝑝 

variables (each one represents a certain user, i.e., node index) for each time point and in 

total we have 𝑚 × 𝑝 variables. All these variables are then combined in a chronological 

order to form a solution 𝑋, which can be viewed as a message recipient list as illustrated 

in Figure 3.7. It assumes 𝑝 = 4 and users are indexed from 1 to |𝐼|. Note that 0 in the 

third box means empty (i.e., only 3 nodes are receiving the message at that time point).   

1, 3, 6, 8 2, 10, 12, 14 7, 9, 18, 0

time
1 l+2 2l+3

X   =

3l+4|T|

Planning horizon

targeted nodes in 1st 
wave 

targeted nodes in 2nd 
wave targeted nodes in 3rd 

wave 

Figure 3.7 An illustration of the structure of an encoded solution 𝑋 
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3.4.1.2. Neighborhood definition 

Given two solutions 𝑋 and 𝑌, they are defined as neighbors if they are different by only 

one variable value. Using the example in Figure 3.8, 𝑋 = {1,3,6,8,2,10,12,14,7,9,18,0} 

and let 𝑌 =  {1,3,6,5,2,10,12,14,7,9,18,0}. Then 𝑌 is a neighbor of 𝑋 because it’s are 

different from 𝑋 only at the 4th position. Given a solution 𝑋, a certain number of 

neighbors of 𝑋 are generated by exchanging a node 𝑖 in 𝑋 with any node 𝑗 (𝑗 ≠ 𝑖) to 

form a set of candidate solutions for evaluation. The first exchange that improves the 

current objective value will be adopted to form a new solution for next iteration. 

3.4.1.3. Evaluation function 

Given a solution or message recipient list 𝑋, the activation time of each node can be 

determined by implementing a shortest path algorithm. That is, the activation time of 

node 𝑖 is the minimum of the accumulated delay from any node 𝑗 in the recipient list to 

node 𝑖 plus the activation time of node 𝑗. In this way, the objective value for 𝑋 can be 

calculated and evaluated. According to the encoding of solutions and the neighborhood 

definition, any solution constructed is feasible. Therefore, no punishment is needed and 

the objective function can be used as evaluation function directly.  

3.4.1.4. Tabu criterion  

In each iteration, the node selected to enter the current solution will be recorded in Tabu 

list (denoted by 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡) and forced to stay in the solution for a certain number of 

iterations, which is referred to as the Tabu length 𝐿𝑡. The node will be released from 

𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 after 𝐿𝑡 iterations. 
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3.4.1.5. Aspiration criterion 

In any iteration, if the best exchange is Tabu (i.e., the node selected to enter the current 

solution is in the 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡), then this exchange is not allowed. In this case, aspiration 

criterion applies only if the objective value associated with this exchange is better than 

the best objective value found so far.  

3.4.2. Tabu Search procedure 

3.4.2.1. Notations 

𝑖𝑡𝑒𝑟:  iteration counter 

𝑖𝑡𝑒𝑟𝑀𝑎𝑥:   total number of iterations to be performed 

𝐿𝑡: Tabu length 

𝑋:  the current solution 

𝑌: neighbor of the current solution 𝑋 

𝑋𝐼𝑛𝑖𝑡:       the initial solution 

𝑋𝐵𝑒𝑠𝑡:  the best known solution 

𝑌𝐵𝑒𝑠𝑡:  the best neighbor of 𝑋 

𝑜𝑏𝑗𝑋:       the objective value corresponding to 𝑋 

𝑜𝑏𝑗𝑌:       the objective value corresponding to 𝑌 

𝑜𝑏𝑗𝑋𝐵𝑒𝑠𝑡:   the objective value corresponding to 𝑋𝐵𝑒𝑠𝑡 

𝑜𝑏𝑗𝑌𝐵𝑒𝑠𝑡:   the objective value corresponding to 𝑌𝐵𝑒𝑠𝑡 

𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡:   the Tabu list. When an exchange is adopted (e.g., node 𝑖 enters the current 

solution), the 𝑖𝑡ℎ value of 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 will be increased by 𝐿𝑡 
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3.4.2.2. Steps 

• Step 0: Initialization 

Initialize 𝑝, 𝑙, |𝑇|, 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡, 𝑋𝐼𝑛𝑖𝑡, 𝑋𝐵𝑒𝑠𝑡, 𝑜𝑏𝑗𝐵𝑒𝑠𝑡, and let 𝑖𝑡𝑒𝑟: = 1 and 

𝑋: =  𝑋𝐼𝑛𝑖𝑡. 

• Step 1: Neighborhood construction 

Construct a neighbor of 𝑋, denoted by 𝑌, by exchanging a node 𝑖 in 𝑋 with any 

node 𝑗 (𝑗 ≠ 𝑖) and calculate the objective value 𝑜𝑏𝑗𝑌. 

• Step 2: Solution evaluation 

If 𝑜𝑏𝑗𝑌 is better (greater) than 𝑜𝑏𝑗𝑋, then go to Step 3. Otherwise, go back to 

Step 1. If all the neighbors have been examined, then let 𝑌𝐵𝑒𝑠𝑡: = 𝑌 and 

𝑜𝑏𝑗𝑌𝐵𝑒𝑠𝑡: = 𝑜𝑏𝑗𝑌 and go to step 4. 

• Step 3: Tabu check 

If node 𝑖 is in 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡, then check aspiration criterion. If aspiration criterion is 

met, let 𝑌𝐵𝑒𝑠𝑡: = 𝑌 and 𝑜𝑏𝑗𝑌𝐵𝑒𝑠𝑡: = 𝑜𝑏𝑗𝑌, and then go to Step 4. Otherwise, go 

back to Step 1. If node 𝑖 is not in 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡, let 𝑌𝐵𝑒𝑠𝑡: = 𝑌 and 𝑜𝑏𝑗𝑌𝐵𝑒𝑠𝑡: =

𝑜𝑏𝑗𝑌, and then go to Step 4.  

• Step 4: Update 

Let 𝑋: = 𝑌𝐵𝑒𝑠𝑡 and 𝑜𝑏𝑗𝑋: = 𝑜𝑏𝑗𝑌𝐵𝑒𝑠𝑡. Update 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡. If 𝑜𝑏𝑗𝑋 > 𝑜𝑏𝑗𝐵𝑒𝑠𝑡, 

then set 𝑜𝑏𝑗𝐵𝑒𝑠𝑡: = 𝑜𝑏𝑗𝑋 and 𝑋𝐵𝑒𝑠𝑡: = 𝑋. Otherwise go to Step 5. 

• Step 5: Termination check 

Let 𝑖𝑡𝑒𝑟: = 𝑖𝑡𝑒𝑟 + 1. If 𝑖𝑡𝑒𝑟 > 𝑖𝑡𝑒𝑟𝑀𝑎𝑥, then stop and output 𝑋𝐵𝑒𝑠𝑡 and 

𝑜𝑏𝑗𝐵𝑒𝑠𝑡. Otherwise go to Step 1. 
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3.4.3. Implementation and discussions 

We test the performance of the proposed Tabu Search procedure using instances of the 

RED Twitter undirected sub-network, in which |𝐼| = 200, |𝑇| = 6 and 10 replications 

for each problem scenario. CPLEX results are obtained using AMPL/CPLEX 12.1 and 

the Tabu Search procedure is performed using MATLAB R2012B. All computations are 

performed on a Dell OptiPlex 755 computer (Inter Core 2 Duo E6750 2.67GHz, 2GB 

RAM and Windows 7 System).  

Table 3.9 gives the computational results for CPLEX and compares them with 

the Tabu Search strategy implemented, in which 𝑂𝐵𝐽 and 𝐴𝐶𝑇 refer to the average of the 

best objective values found and the average number of active nodes, respectively. 𝐶𝑃𝑈 

refers to the average of the time elapsed to get the best objective value. From the table, 

we can see that the objective values given by the Tabu Search are very close to the 

optimal objective values (i.e., small gaps), which are given by CPLEX, especially for the 

instances where 𝑙 = 4 and 𝑙 = 6. Similar trend can also be observed for the number of 

active users. Note that the absolute gap of the 𝐴𝐶𝑇 is exactly the same as that of the 

𝑂𝐵𝐽. The reason is that maximum number of messages are sent from the source in all 

instances, so the difference of the 𝑂𝐵𝐽 is essentially the difference of the 𝐴𝐶𝑇 between 

CPLEX and Tabu Search (recall that 𝑤𝑖 = 1 for all 𝑖 ∈ 𝐼). More importantly, these near-

optimal objective values are obtained in a very short time, compared to the time required 

by CPLEX. In addition, the CPU time of the Tabu Search procedure appears to be stable 

as 𝑝 increases. All these observations justify our initial idea in designing such an 
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Table 3.9 Computational results given by CPLEX and Tabu Search 

 

 

 

algorithm and also imply that the proposed Tabu Search procedure is potentially 

valuable for solving large-scale SS-SMMDP in the future study. 

3.5. Closing Remarks for SS-SMMDP 

In this chapter, we examine the single-network single-message application scenario in 

which one message needs to be disseminated on one social media network within a 

predefined planning horizon. While we anticipate this model being useful in extreme 

event scenarios as a planning tool for emergency managers to determine communication 

strategies that will promote message dissemination and great situational awareness 

among the population at risk, the model and its parameters are flexible enough to be 

used in other mass convergence events (e.g., civil violence/rioting, sporting events such 

as the Super Bowl, etc.) or in modeling social media communication in general. 

Through computational experiments, we show that the length of time horizon |𝑇| 

is the most important problem factor in determining the number of active users at the end 

of the planning horizon and CPU time of a test instance. Surprisingly, source messaging 

OBJ ACT CPU OBJ ACT CPU Absolute Percentage Absolute Percentage
4 2 6 200 53.1 57.1 356.31 52.3 56.3 0.88 0.8 1.507% 0.8 1.401%
4 4 6 200 44.3 48.3 21.78 44.2 48.2 0.93 0.1 0.226% 0.1 0.207%
4 6 6 200 39.5 41.5 48.99 39.5 41.5 0.67 0.0 0.000% 0.0 0.000%
6 2 6 200 65.8 71.8 1212.11 64.4 70.4 1.19 1.4 2.128% 1.4 1.950%
6 4 6 200 55.7 61.7 302.99 55.5 61.5 1.19 0.2 0.359% 0.2 0.324%
6 6 6 200 49.9 52.9 471.83 49.9 52.9 0.77 0.0 0.000% 0.0 0.000%
8 2 6 200 76.3 84.3 1623.43 75.1 83.1 1.44 1.2 1.573% 1.2 1.423%
8 4 6 200 65.1 73.1 757.86 65.0 73.0 1.62 0.1 0.154% 0.1 0.137%
8 6 6 200 61.3 65.3 642.87 61.3 65.3 0.96 0.0 0.000% 0.0 0.000%

CPLEX TABU SEARCH GAP of OBJ GAP of ACT
p l |T| |I|
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interval 𝑙 and source messaging capacity 𝑝 are not significant, indicating that social 

media message dissemination can be effective with very few starting messages given 

enough time to work the message through the network.   

We observe some significant differences between randomly generated and real-

world sub-networks. As expected, real-world social networks are less densely connected, 

leading to an over-estimation of message dissemination in randomly generated networks. 

We also see that the arc structure (directed or undirected) did not dramatically alter 

objective or computational performance. Lastly, we notice a distinct correlation between 

the time a message is received and the degree of the receiving node with higher-degree 

nodes consistently targeted earlier in our RED Twitter sub-networks. 

It is prudent to note that the SS-SMMDP model derived here is not devoid of 

limitation. As mentioned previously, there is a negative computational relationship 

between increased parameter values, increased network size and solution time. Although 

the proposed Tabu Search procedure works well for the test instances, it still needs to be 

examined and improved before larger and more realistic problems can be evaluated. 

Additionally, today’s social media networks are not independent but very integrated. 

Twitter users can post messages from photo and video social media such as Instagram 

and Vine while also sending their Twitter post to their Facebook accounts. To create 

more realistic application environments, it would be interesting to examine message 

dissemination scenarios which consider multiple message types and/or multiple social 

media sites in the future research.  
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CHAPTER IV  

SINGLE-NETWORK MULTI-MESSAGE SOCIAL MEDIA MESSAGE 

DISSEMINATION PROBLEM  

 

4.1. Problem Description and Definition 

The Single-network Multi-message Social Media Message Dissemination Problem (SM-

SMMDP) considers the scenario in which multiple messages need to be disseminated on 

one social media network within a predefined planning horizon. The network is 

represented by 𝐺 = (𝐼,𝐴), where each node 𝑖 ∈ 𝐼 represents a user in the social media 

and each arc ⟨𝑖, 𝑗⟩ ∈ 𝐴 represents the relationship on the network (i.e., friend or follower) 

between users 𝑖, 𝑗 ∈ 𝐼, through which messages can flow from 𝑖 to 𝑗. The messages to be 

disseminated are given by set 𝑀. Each message 𝑚 ∈ 𝑀 is assumed to be independent 

from others and corresponds to a unique source (i.e., it can only send its own message to 

the user nodes), and the number of unique messages is |𝑀|. The planning horizon is 

given by set 𝑇. Each 𝑡 ∈ 𝑇 represents a time period in the planning horizon and the 

length of the planning horizon is |𝑇|. 

Message propagation on the network is initiated by the sources through node 

targeting (i.e., send direct messages to the selected nodes) and continues as individual 

nodes redistribute the received messages to their friends or followers, as illustrated in 

Figure 4.1. The source for any message 𝑚 can send its message multiple waves if time  
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Figure 4.1 Conceptualization of SM-SMMDP 

allows, with a minimum reset time 𝑙𝑚 between two consecutive waves and a capacity 𝑝𝑚 

in each wave. Accordingly, a subset of 𝑝𝑚 nodes (i.e., nodes to be targeted) needs to be 

determined corresponding to each wave of message 𝑚 from its source. This process is 

illustrated in Figure 4.2. Individuals’ redistribution behaviors are modeled using a time 

delay called user share delay, which represents the time between message arrival at a 

user’s device (e.g., PC, cell phone, iPad, etc.) and when the user shares the message. It is 

assumed to be specific to individual node, message and the social media network 

through which the message is being distributed, and denoted by matrix 𝐷𝑆, with 

𝑑𝑠𝑖𝑚 ∈ 𝐷𝑆 representing the share delay of node 𝑖 for message 𝑚 (We don’t need a 

subscript for network since the nodes are on the same network). There is another type of 

delay, message transmission delay 𝑑𝑚, which reflects the physical transmission time 

between devices and is assumed to be specific to the network. This delay could be non-

negligible in emergency events due to cell phone tower damages and/or excessive load 
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within a short period. The illustration of delays is given in Figure 4.3. A user node 𝑖 is 

considered active after receiving all messages, and the message dissemination outcome 

is defined as the weighted sum of the activation status of all individual nodes over the 

planning horizon, which essentially encourages wider and sooner message reception on 

the network. 

Now the SM-SMMDP can be formally stated as follows: Given social media 

network 𝐺 = (𝐼,𝐴), message set 𝑀, planning horizon 𝑇, source messaging capacity 

matrix 𝑃(𝑀), source reset time matrix 𝐿(𝑀), user share delay matrix 𝐷𝑆(𝐼,𝑀), and 

message transmission delay 𝑑𝑚, SM-SMMDP optimizes the message dissemination 

outcome by determining a sequence of subsets, each containing at most 𝑝𝑚 nodes, to be 

targeted for each message 𝑚. Problem formulation is presented in section 4.2. 

Figure 4.2 An illustration of source messaging behavior (e.g., message 𝑚) 

Figure 4.3 An illustration of the delays in SM-SMMDP 
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4.2. Problem Formulation 

4.2.1. Sets and parameters 

𝐼 =  the set of user nodes 

𝑀 = the set of messages 

𝑇 = the set of time periods 

𝑇𝑚′ = the set of time periods eligible for the source of 𝑚 to send messages 

𝑁𝑖 = the set of nodes 𝑗 such that ⟨𝑗, 𝑖⟩ ∈ 𝐴 

𝑤𝑖𝑡 = the reward for node 𝑖 being active at time 𝑡 

𝑝𝑚 = the source messaging capacity for message 𝑚 

𝑑𝑠𝑖𝑚 = the share delay of node 𝑖 for message 𝑚 

𝑑𝑚 = the message transmission delay 

4.2.2. Decision variables 

𝑧𝑖𝑡 = 1  if node 𝑖 is active at time 𝑡, 0 otherwise 

𝑥𝑖𝑚𝑡 = 1  if node 𝑖 is targeted for message 𝑚 at time 𝑡, 0 otherwise 

𝑦𝑖𝑚𝑡 = 1  if node 𝑖 is active for message 𝑚 at time 𝑡, 0 otherwise 

4.2.3. Formulation 

       𝑚𝑎𝑥   ∑ ∑ 𝑤𝑖𝑡𝑧𝑖𝑡𝑡∈𝑇𝑖∈𝐼 .             (4.1) 

s.t.  

∑ 𝑥𝑖𝑚𝑡𝑖∈𝐼 ≤ 𝑝𝑚,    ∀ 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇𝑚′ .           (4.2) 

𝑦𝑖𝑚𝑡 ≤ ∑ 𝑥𝑙≤𝑡 𝑖𝑚𝑙 + ∑ 𝑦𝑗𝑚�𝑡−𝑑𝑚−𝑑𝑠𝑗𝑚�,   ∀ 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇𝑗∈𝑁𝑖 .   (4.3) 



 

54 

 

𝑧𝑖𝑡 ≤ 𝑦𝑖𝑚𝑡 ,   ∀ 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇.           (4.4) 

𝑦𝑖𝑚𝑡 ≤ 𝑦𝑖𝑚,𝑡+1,  ∀ 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇.          (4.5) 

𝑧𝑖𝑡 ≤ 𝑧𝑖,𝑡+1,  ∀ 𝑖 ∈ 𝐼,  𝑡 ∈ 𝑇.             (4.6) 

𝑥𝑖𝑚𝑡 ,𝑦𝑖𝑚𝑡, 𝑧𝑖𝑡 ∈ {0,1},∀ 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇.         (4.7) 

 

 

The objective function (4.1) optimizes the message dissemination outcome (i.e., 

maximizing the total reward for message reception over all user nodes within the 

planning horizon). For each node 𝑖, the weight 𝑤𝑖𝑡 is a decreasing function of time 𝑡, 

which serves to encouraging early reception. In this way, the ultimate goal of the 

objective is to encourage wider and sooner message reception on the network. Constraint 

(4.2) enforces the messaging capacity of the sources. Note that for any message 𝑚, set 

𝑇𝑚′  is developed based on 𝑇 and 𝑙𝑚. Constraint (4.3) states that, node 𝑖 is active for 

message 𝑚 at time 𝑡, if it received the message either from the source node prior to 𝑡 or 

from a friend node 𝑗 who shared the message previously. The lead time is node 𝑗’𝑠 share 

delay for message m, 𝑑𝑠𝑗𝑚, plus the transmission delay 𝑑𝑚 on the network. Constraint 

(4.4) ensures the message aggregation effect at the user end (i.e., a node has to receive 

all the messages to become active). Constraints (4.5) and (4.6) mean that node status 

preserves over time, and Constraint (4.7) imposes that all decision variables are binary.  
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4.3. Computational Experiments 

In this section, we present the results of computational experimentation on SM-SMMDP. 

In particular, this analysis illustrates how decision factors/parameters affect 

computational performance as well as message dissemination outcomes. The factors 

being tested include length of planning horizon (|𝑇|), source messaging capacity (𝑃), 

source messaging interval (𝐿), network type (𝑁), network structure (density), and 

network condition (𝑑𝑚). We use 100-node networks in these computational experiments 

and consider three unique messages are to be disseminated through the network (i.e., |𝐼| 

= 100, |𝑀| = 3). Three different network types are examined:  complete connectivity, 

random connectivity and a Twitter sub-network. The Twitter sub-networks are generated 

through a Metropolis-Hastings Random Walk (MHRW) on Twitter, with four such 

networks generated (each using a different, randomly selected Twitter user as Node 0 in 

the random walk). All networks are treated as undirected where two nodes are connected 

with an edge if they have a friend/follower relationship originally or they have at least 

one common friend/follower. We use the network density of the MHRW Twitter 

networks as the expected density to generate the random networks (in this process, two 

nodes are connected with an edge with probability = expected density). Table 4.1 

provides a summary of the Twitter sub-networks and Figures 4.4 gives the illustrations 

of them. 
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Table 4.1 Statistics of the Twitter sub-networks  

 
        Node Degree Statistics 

Notation Nodes Arcs Density   AVG StDev MIN MAX 

T1 100 454 0.09   9.08 6.90 2 32 

T2 100 545 0.11   10.90 9.47 2 37 

T3 100 716 0.14   14.32 12.05 2 51 

T4 100 1102 0.22   22.04 14.12 2 72 

 

 
Figure 4.4 Twitter sub-networks with 100 nodes generated from MHRW results 

 

4.3.1. Experimental design 

Table 4.2 provides the factors and levels for the implemented experimental design. It is 

known that the planning horizon for message dissemination varies by extreme event. For 

example, NWS issues a hurricane watch 24-36 hours in advance of a potential event and 

a hurricane warning when the event is expected in 24 hours or less, while the warning 

 

    

den = 0.11 den = 0.09 

den = 0.22 den = 0.14 
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time may be only a few minutes or less for a tornado. For the purposes of our 

experimentation, we assume the basic time unit to be hours (we note that such an 

assumption may easily be changed to adapt the SM-SMMDP for different extreme event 

circumstances/scenarios).  

Complete network is denoted by 𝐶 and random networks denoted by 𝑅1, 𝑅2, 𝑅3 

and 𝑅4 corresponding to the density values of 𝑇1, 𝑇2, 𝑇3 and 𝑇4, respectively. Source 

messaging capacity and messaging interval are assumed to be identical for all message 

sources on each network, i.e., 𝑝1 = 𝑝2 = 𝑝3 = 𝑝 and 𝑙1 = 𝑙2 = 𝑙3 = 𝑙. Message 

transmission delay 𝑑𝑚 is assumed to be constant, as discussed in section 4.1. 

Individual’s share delay is assumed to be independent over messages, and each element 

𝑑𝑠𝑖𝑚 ∈ 𝐷𝑆 is an integer sampled from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1,7) or 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(4) distribution. The 

parameters of the distributions are chosen such that the sampled values are expected to 

have same mean and variance. The reward coefficient 𝑤𝑖𝑡 in the objective function is 

assumed to be 𝑤𝑖𝑡 = 1/𝑡 for any node 𝑖 ∈ 𝐼. 

Table 4.2 A summary of experimental factors and levels 

Factors Levels 

Network (𝑁) 𝐶, 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑇1, 𝑇2, 𝑇3, 𝑇4 

Messaging capacity (𝑝) 1, 2, 3, 4, 5 

Planning horizon (|𝑇|) 1, 2, 3, 4, 5, 6 ,7 ,8 

Messaging interval (𝑙) 1, 2 

Transmission delay (𝑑𝑚) 1, 2, 3 

User share delay (𝐷𝑆) 1-𝑈𝑛𝑖𝑓𝑜𝑟𝑚, 2-𝑃𝑜𝑖𝑠𝑠𝑜𝑛 
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We define a problem scenario as a combination of decision parameters 

(𝑝, 𝑙, |𝑇|,𝑁, 𝑑𝑚), in which (𝑝, 𝑙, |𝑇|) can represent an emergency manager’s 

considerations and (𝑁,𝑑𝑚) reflects network structure. Based on all the factors and levels 

given in Table 4.2, there are 2,160 unique problem scenarios. Due to the random nature 

of user sharing behavior, we use two common distributions (𝑈𝑛𝑖𝑓𝑜𝑟𝑚 and 𝑃𝑜𝑖𝑠𝑠𝑜𝑛) 

and generate 10 replications for each scenario and each distribution in terms of the delay 

matrix 𝐷𝑆 to capture the variations, which results in 43,200 test instances in total (From 

the angle of network type, 4,800 instances for complete network, 19,200 for random 

network and Twitter network each). All the test instances are computed using ILOG 

Concert Technology with C++/CPLEX 12.4 on a Dell OptiPlex 755 computer (Inter 

Core 2 Duo E8500 3.17GHz, 4GB RAM and Windows 7 System), and the solution time 

are capped at 1,800 seconds for each test instance. Computational results and analysis 

are presented in the following 

4.3.2. Results and analysis on CPU time 

Table 4.3 provides an overall summary of objective gap and CPU time by network type. 

We note that nearly all the instances can be solved to optimality within the 1,800-second 

solution time cap (exceptions being for the random network). This suggests that the SM-

SMMDP model is tractable for 100-node networks, though disparity exists depending 

upon network structure. Complete and Twitter network instances (denoted as 

𝐶 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 and 𝑇 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 in the following analysis) solve on average within 4-7 

CPU seconds with a maximum of 100 CPU seconds observed in our experiments. 



59 

Random network instances (denoted as 𝑅 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 in the following analysis), 

alternatively, account for all non-optimal solutions (where 1,800 CPU seconds is not 

enough to generate an optimal solution) and exhibit significantly larger averages (30 

CPU seconds) and more variation (i.e., high standard deviation). These incomplete 

instances are typically associated with longer planning horizon (i.e., |𝑇| = 8) and larger 

messaging capacity (i.e., 𝑝 = 4 or 𝑝 = 5). 

Figure 4.5 shows the impact of length of planning horizon |𝑇| on CPU time (i.e., 

𝐴𝑉𝐺 and 𝑆𝑡𝐷𝑒𝑣 of CPU times) and compares this impact over network type and source 

messaging capacity 𝑝. In each individual chart, 𝑝 is fixed and instances are aggregated 

and averaged for each planning horizon length (i.e., |𝑇| = 1, . . . , 8) and each network 

type (i.e., complete, random, and Twitter). We denote the lines as 𝐶 𝐿𝑖𝑛𝑒𝑠, 𝑅 𝐿𝑖𝑛𝑒𝑠 and 

𝑇 𝐿𝑖𝑛𝑒𝑠 for complete, random, and Twitter networks, respectively. It is clear that CPU 

time increases as the increase of |T|. This is expected since problem size grows as the 

planning horizon gets longer. For a specific planning horizon length, 𝑅 𝐿𝑖𝑛𝑒𝑠 and 

𝐶 𝐿𝑖𝑛𝑒𝑠 provide the highest and lowest values respectively while 𝑇 𝐿𝑖𝑛𝑒𝑠 stay in the 

middle (this is particularly obvious when |𝑇| >= 4), which is true for both 𝐴𝑉𝐺 and 

𝑆𝑡𝐷𝑒𝑣. This actually extends the trend observed in Table 4.3, which considers network 

type only. 
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Table 4.3 A summary of objective gap and CPU time 

Figure 4.5 CPU time vs. |𝑇| by 𝑝 and network type 

AVG StDev MIN MAX AVG StDev MIN MAX
Complete 4,800 100.00% 0.000 0.000 0.000 0.000 4.533 3.795 0.000 52.026
Random 19,200 99.97% 0.000 0.000 0.000 0.033 29.339 106.553 0.000 1800.000
Twitter 19,200 100.00% 0.000 0.000 0.000 0.000 6.131 7.606 0.000 99.544

Network 
Type

Num of 
Instances

% of 
Optimal

Objective Gap CPU Time
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Given a source messaging capacity 𝑝, all lines appear to grow exponentially with 

|𝑇|, but the 𝑅 𝐿𝑖𝑛𝑒 grows much faster than the 𝑇 𝐿𝑖𝑛𝑒 and the 𝐶 𝐿𝑖𝑛𝑒, which is true for 

both 𝐴𝑉𝐺 and 𝑆𝑡𝐷𝑒𝑣. And as 𝑝 increases, the 𝑅 𝐿𝑖𝑛𝑒𝑠 are affected more significantly 

than the other two, which is interesting considering that 𝑝 is not a factor that determines 

the problem size. In a word, the characteristics of CPU times for 𝑇 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 are very 

similar to that for 𝐶 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠, as being relatively insensitive to the change of length of 

planning horizon |𝑇| and source messaging capacity 𝑝. As a general implication, such a 

property would potentially enable emergency managers to evaluate more node targeting 

alternatives (e.g., develop and compare strategies under different planning horizon 

length and messaging capacity) before they make final decisions in real-world 

applications. 

Figure 4.6 shows the impact of length of planning horizon |𝑇| on CPU time (i.e., 

𝐴𝑉𝐺 and 𝑆𝑡𝐷𝑒𝑣 of CPU times) and compares this impact over network type, density and 

source messaging capacity 𝑝. 𝐶 𝐿𝑖𝑛𝑒𝑠 are added to each chart for comparison, denoted 

as 𝑑𝑒𝑛 = 1. We may still see 𝐴𝑉𝐺 increase as the increase of |𝑇| for a given network 

type and density, but it is not always the case for 𝑆𝑡𝐷𝑒𝑣 (e.g., 𝑑𝑒𝑛 = 0.09, 𝑝 = 5, 

𝑅 𝐿𝑖𝑛𝑒𝑠). It is noticeable that for a specific messaging capacity 𝑝, the network density 

doesn’t show a consistent impact on AVG or CPU time. For example, the line 

corresponding to a higher density is not always higher than that to a lower density along 

the horizontal axis, or vice versa. However, distinction can still be identified between 

𝑅 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 and 𝑇 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠. Specifically, higher density tends to imply smaller 𝐴𝑉𝐺 

and 𝑆𝑡𝐷𝑒𝑣 for 𝑇 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠, while the opposite trend might be observed for 
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𝑅 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠. Lastly, some 𝑇 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 appear to be easier to solve than 𝐶 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠, 

such as when |𝑇| <= 5 for 𝑝 = 1 and |𝑇| <= 4 for 𝑝 = 2 or 𝑝 = 3. The reason for this 

is not clear at this point and this could be an interesting observation to examine in future 

studies. 

4.3.3. Results and analysis on objective values 

The objective function for SM-SMMDP is defined as the weighted sum of the activation 

status of all individual nodes over the planning horizon, which essentially encourages 

wider and sooner message reception on the networks. Given a specific |𝑇|, a larger 

objective value implies a better overall message dissemination outcome. Table 4.4 

introduces selected SM-SMMDP computational results, in which the average and 

standard deviation of objective values over 10 replications (denoted as 𝐴𝑉𝐺 and 𝑆𝑡𝐷𝑒𝑣) 

are given for each problem scenario (a total of 5,760 test instances are selected to 

populate these tables). The networks are listed according to the density, from the 

smallest to largest.  

Generally speaking, all model parameters impact the objective value, but the 

degree of impact varies from case to case. When the planning horizon is very short (i.e., 

|𝑇| = 1), the objective values are totally determined by the source messaging capacity 𝑝. 

In other words, no one can receive messages from his/her friends in this scenario. The 

objective values tend to increase as the increase of planning horizon length |𝑇| and 

messaging capacity 𝑝. However, they affect the variation of objective values differently. 

Specifically, larger |𝑇| tends to lead to larger variations (i.e., higher 𝑆𝑡𝐷𝑒𝑣 values), 
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Figure 4.6 CPU time vs. |𝑇| by 𝑝, network type and density 
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Table 4.4 Selected objective values for SM-SMMDP 

 

 

AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev
1 1 1 1 1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 1 1 2 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 1 3 1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 1 3 2 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 2 1 1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 2 1 2 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 2 3 1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 2 3 2 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 4 1 1 1 6.325 2.517 7.367 2.326 9.251 3.153 9.517 1.992 11.058 2.238 13.916 3.134 16.801 3.380 21.827 5.051
1 4 1 1 2 4.867 0.950 5.167 1.025 6.309 1.483 8.775 2.546 9.734 2.732 11.116 3.769 15.092 3.494 18.983 5.290
1 4 1 3 1 2.667 0.000 2.667 0.000 2.667 0.000 2.667 0.000 2.667 0.000 2.667 0.000 2.667 0.000 2.667 0.000
1 4 1 3 2 2.667 0.000 2.667 0.000 2.667 0.000 2.667 0.000 2.667 0.000 2.684 0.050 3.242 1.111 3.284 1.234
1 4 2 1 1 5.325 2.097 6.142 2.795 6.392 2.010 9.041 2.419 9.516 2.516 12.717 3.683 18.575 3.046 22.919 3.641
1 4 2 1 2 3.908 0.981 5.425 3.246 5.216 1.438 9.267 2.351 8.133 3.068 9.833 2.752 13.708 3.511 18.726 5.121
1 4 2 3 1 2.333 0.000 2.333 0.000 2.333 0.000 2.333 0.000 2.333 0.000 2.333 0.000 2.333 0.000 2.333 0.000
1 4 2 3 2 2.333 0.000 2.333 0.000 2.333 0.000 2.425 0.275 2.333 0.000 2.333 0.000 2.333 0.000 3.342 1.255
1 8 1 1 1 27.538 4.612 34.659 6.169 49.441 8.095 60.604 3.484 34.626 5.620 43.573 5.265 55.565 5.728 77.744 7.453
1 8 1 1 2 26.064 3.890 31.665 4.562 46.033 5.800 60.350 8.696 33.472 6.084 40.159 4.767 47.795 4.827 66.882 8.062
1 8 1 3 1 11.755 1.460 12.223 2.095 13.782 1.857 18.282 3.060 15.601 2.333 19.593 2.472 24.255 4.799 30.772 3.214
1 8 1 3 2 9.280 0.913 10.921 1.035 12.380 3.000 16.627 2.491 15.117 2.170 17.493 3.474 19.316 2.215 28.906 4.657
1 8 2 1 1 23.501 3.808 28.811 4.009 39.375 4.211 56.282 7.006 34.433 6.610 40.945 7.674 50.338 5.076 69.366 8.265
1 8 2 1 2 25.078 5.668 26.650 6.792 38.038 6.511 56.764 7.440 30.055 6.034 38.914 8.143 47.139 10.241 66.042 8.512
1 8 2 3 1 9.761 2.072 10.013 1.764 11.841 2.620 15.510 2.515 13.960 2.864 17.936 2.421 20.552 3.510 26.711 6.184
1 8 2 3 2 7.747 1.296 9.056 0.987 10.581 1.257 15.151 2.899 11.650 1.844 15.121 2.786 20.735 3.381 26.300 3.079
3 1 1 1 1 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 1 1 2 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 1 3 1 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 1 3 2 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 2 1 1 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 2 1 2 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 2 3 1 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 2 3 2 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 4 1 1 1 15.810 1.914 17.400 2.426 21.160 2.252 28.416 2.023 22.509 3.647 26.008 2.344 28.299 2.461 43.284 3.528
3 4 1 1 2 14.507 1.032 15.526 1.467 18.842 2.137 28.743 3.931 21.066 3.340 23.399 3.951 26.175 4.225 44.183 6.798
3 4 1 3 1 8.000 0.000 8.000 0.000 8.000 0.000 8.000 0.000 8.000 0.000 8.000 0.000 8.000 0.000 8.000 0.000
3 4 1 3 2 8.042 0.085 8.108 0.183 8.233 0.266 8.408 0.556 8.000 0.000 8.067 0.139 8.125 0.230 9.275 1.451
3 4 2 1 1 12.233 0.747 14.443 2.462 17.950 2.450 27.041 1.805 20.525 2.226 21.567 2.578 28.833 2.490 43.141 2.867
3 4 2 1 2 12.200 2.119 13.974 1.854 17.108 2.597 28.700 4.735 18.310 2.404 19.809 3.306 26.467 3.472 37.893 8.879
3 4 2 3 1 7.000 0.000 7.000 0.000 7.000 0.000 7.000 0.000 7.000 0.000 7.000 0.000 7.000 0.000 7.000 0.000
3 4 2 3 2 7.300 0.384 7.725 0.607 7.700 0.660 8.500 0.822 7.975 1.371 7.775 0.786 7.500 0.512 8.825 1.388
3 8 1 1 1 59.082 3.206 65.083 4.447 75.916 3.087 90.618 3.101 63.734 4.387 64.749 4.974 80.005 6.311 101.415 4.126
3 8 1 1 2 56.589 3.753 61.856 4.137 72.410 5.174 90.465 4.587 60.187 6.731 60.249 6.510 73.222 8.216 98.996 9.431
3 8 1 3 1 26.398 2.123 30.189 3.350 34.049 1.266 44.074 3.549 31.838 3.036 35.410 2.407 40.140 2.908 54.713 2.378
3 8 1 3 2 26.604 1.730 28.484 2.386 32.626 2.078 42.054 3.333 32.515 2.054 35.193 3.124 38.227 3.215 53.193 3.942
3 8 2 1 1 53.005 3.894 57.561 4.858 66.475 3.823 84.800 3.520 57.891 5.110 59.128 5.265 71.263 3.442 99.078 5.450
3 8 2 1 2 49.015 3.815 54.436 2.985 67.821 4.908 86.262 5.880 52.563 6.171 57.761 6.530 72.739 8.493 94.551 6.296
3 8 2 3 1 23.448 3.207 25.875 3.036 28.008 2.763 35.780 3.454 28.594 1.700 32.130 1.814 37.554 2.372 50.751 2.674
3 8 2 3 2 21.419 1.382 23.639 2.302 26.776 2.084 33.042 2.252 26.730 2.677 29.781 3.172 33.629 4.806 46.954 4.791
5 1 1 1 1 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 1 1 2 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 1 3 1 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 1 3 2 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 2 1 1 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 2 1 2 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 2 3 1 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 2 3 2 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 4 1 1 1 25.717 1.470 27.734 1.874 33.526 3.360 46.425 3.262 31.600 2.003 33.684 1.898 38.234 2.968 52.334 2.744
5 4 1 1 2 23.468 1.975 26.491 2.512 30.559 4.048 45.859 3.821 29.759 3.749 29.250 4.397 36.799 4.130 50.224 6.775
5 4 1 3 1 13.330 0.000 13.330 0.000 13.330 0.000 13.330 0.000 13.330 0.000 13.330 0.000 13.330 0.000 13.330 0.000
5 4 1 3 2 13.473 0.212 13.724 0.298 13.923 0.518 14.340 1.203 13.814 1.452 13.372 0.126 13.914 0.668 14.822 1.861
5 4 2 1 1 23.383 2.468 24.210 2.502 27.901 2.873 42.751 1.960 29.475 2.238 31.725 1.551 37.367 3.357 48.292 3.987
5 4 2 1 2 19.451 1.159 22.643 2.409 28.291 3.062 41.617 7.833 25.568 2.025 26.733 3.198 33.101 5.017 41.775 6.541
5 4 2 3 1 11.670 0.000 11.670 0.000 11.670 0.000 11.670 0.000 11.670 0.000 11.670 0.000 11.670 0.000 11.670 0.000
5 4 2 3 2 12.470 0.630 12.945 1.126 12.770 1.174 14.145 1.839 12.495 0.448 12.745 0.936 12.695 1.748 13.220 1.503
5 8 1 1 1 78.513 4.377 86.250 1.711 95.571 2.948 111.300 2.959 81.235 2.961 83.605 4.087 90.663 2.910 114.170 2.628
5 8 1 1 2 72.698 4.422 82.168 4.841 89.115 5.599 110.180 4.140 78.185 2.399 79.409 5.594 87.412 8.237 108.887 8.177
5 8 1 3 1 44.516 2.432 45.997 2.948 53.174 2.271 63.629 1.315 49.147 1.732 48.308 3.101 54.324 2.191 67.815 2.979
5 8 1 3 2 41.948 1.513 44.218 1.635 49.247 1.752 60.325 2.142 45.013 2.278 45.238 2.673 52.411 4.053 64.973 6.088
5 8 2 1 1 70.397 2.824 75.053 3.037 86.845 3.531 104.399 3.565 76.076 4.297 73.983 4.319 85.548 5.883 110.210 3.749
5 8 2 1 2 68.932 5.883 75.342 4.316 83.863 5.300 104.149 5.465 68.142 4.989 72.425 4.933 82.241 6.100 102.682 5.493
5 8 2 3 1 36.444 2.574 38.518 2.727 42.536 2.174 54.617 1.996 40.596 1.915 41.514 2.444 47.048 3.636 60.264 2.917
5 8 2 3 2 35.664 2.652 36.416 1.729 40.271 2.594 53.166 3.185 37.743 3.554 42.624 4.562 46.252 3.672 57.374 1.717

Random Neworks Twitter Networks
p |T| l dm DS R1 (exp. den = 0.09) R2 (exp. den = 0.11) R3 (exp. den = 0.14) R4 (exp. den = 0.22) T1 (den = 0.09) T2 (den = 0.11) T3 (den = 0.14) T4 (den = 0.22)
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while larger 𝑝 tends to do the opposite. From this perspective, emergency organizations 

and agencies could take measures to improve their node targeting capability in order to 

reduce the variations in message dissemination outcome due to the changes of user 

sharing behaviors in disasters and extreme events.  

Compared to |𝑇| and 𝑝, source massaging interval 𝑙 and message transmission 

delay 𝑑𝑚 have the opposite effect on the objective values. When 𝑙 or 𝑑𝑚 gets larger, the 

object values are likely to get smaller. The distribution of share delay 𝐷𝑆 appears to have 

the least impact on the objective values. It seems that the objective values are slightly 

larger for 𝐷𝑆 = 1 than 𝐷𝑆 = 2, where the delay values are sampled from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1,7) 

and 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(4) respectively, but it is not always the case. Such examples can be found 

in different problem scenarios from both 𝑅 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 and 𝑇 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠. Although the 

exact characteristics of user information sharing behaviors on social media are not clear 

yet, this property is desirable for emergency managers in that otherwise a messaging 

strategy could potentially perform poorly due to user behavior changes (i.e., different 

from the predicted behaviors at the planning stage) in disasters and extreme events. 

Looking at each table horizontally, we may find some interesting trends. For 

each problem scenario, the objective values tend to increase as network density 

increases, which is true for both 𝑅 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 and 𝑇 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠. This implies that denser 

networks are potentially beneficial for message dissemination. In particular, this increase 

tends to be more drastic when source messaging capacity is low (i.e., 𝑝 = 1). However, 

similar trend cannot be identified for 𝑆𝑡𝐷𝑒𝑣, which means that network density itself 

may not influence the variation of message dissemination outcomes significantly. 
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Another interesting trend to observe is how network type impacts the objective values. 

By comparing the 𝑅 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 and 𝑇 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 with same density, it is obvious that 

Twitter networks tend to result in larger objective values and this trend can be identified 

in almost all problem scenarios. This means that more nodes may become active and/or 

nodes may become active sooner within the planning horizon on a Twitter network than 

random network, which motivates us to examine node activation over time and compare 

the results between different types of networks. This analysis is presented in section 

4.3.4. 

4.3.4. Results and analysis on node activation 

Here we examine node activation within the planning horizon. In particular, we’re 

interested in how the number of active nodes increases over time within the planning 

horizon, and how network and model parameters impact this increase. To answer these 

questions, we create a chart for each pair of 𝑅 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑇 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒. Results of the 

corresponding 𝐶 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 are also added for comparison. Each line in the chart 

corresponds to a network type for the whole planning horizon and each dot on the line 

represents the average number of active nodes (over 10 replications) for a specific time 

period. By examining these charts, we are able to identify some key trends across 

problem scenarios (we focus specifically on |𝑇| = 4 or |𝑇| = 8 scenarios).  

Figure 4.7 and Figure 4.8 introduce some of the scenarios for |𝑇| = 4. Figure 4.7 

shows the impact of 𝑝 and network density on node activation for different networks. 

Specifically, charts on the left-hand-side are for 𝑝 = 1 and charts on the right-hand-side 
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for 𝑝 = 5. Top and bottom charts are based on the networks with density 0.09 and 0.22 

respectively. Figure 4.8 illustrates the impact of 𝑙 and 𝐷𝑆 by horizontal and vertical 

comparisons in a similar way and all the charts are based on the networks with density 

0.22. Figure 4.9 and Figure 4.10 show the same thing as in previous two but for |𝑇| = 8. 

We still denote the lines as 𝐶 𝐿𝑖𝑛𝑒𝑠, 𝑅 𝐿𝑖𝑛𝑒𝑠, and 𝑇 𝐿𝑖𝑛𝑒𝑠 in the following analysis. 

It is obvious that 𝐶 𝐿𝑖𝑛𝑒𝑠 are highly distinct from the other two. They are 

characterized by a sharp increase in a short period of time (e.g., period 2 to 3 in Figure 

4.7 and Figure 4.9) and all nodes can become active quickly regardless of the change of 

other parameters. Compared to that, 𝑅 𝐿𝑖𝑛𝑒𝑠 and 𝑇 𝐿𝑖𝑛𝑒𝑠 appear more stable. They 

don’t grow as drastically as the 𝐶 𝐿𝑖𝑛𝑒𝑠 in general and are more sensitive to the change 

of parameters. Specifically, there are more active nodes in each time period for a larger 𝑝 

or higher density on random and Twitter networks. Also, there tends to be more active 

nodes for a smaller 𝑙 or 𝐷𝑆, especially in the early periods of the planning horizon.  

Having seen the similarities between the 𝑅 𝐿𝑖𝑛𝑒𝑠 and 𝑇 𝐿𝑖𝑛𝑒𝑠, we are more 

interested in observing how they behave differently. A first trend to notice is that 

𝑇 𝐿𝑖𝑛𝑒𝑠 grow much faster than 𝑅 𝐿𝑖𝑛𝑒𝑠 in the initial phase of message dissemination, 

which is true for both |𝑇| = 4 and |𝑇| = 8 scenarios. It appears to be more significant 

for some of the scenarios, such as when messaging capacity is relatively small, (i.e., 

𝑝 = 1 or 𝑝 = 3) and share delay are sampled from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 distribution (i.e., 𝐷𝑆 = 1). 

Another trend to notice is that, for |𝑇| = 4 the 𝑇 𝐿𝑖𝑛𝑒𝑠 tend to be higher than the 

𝑅 𝐿𝑖𝑛𝑒𝑠 (i.e., more nodes are active) in each time period of the planning horizon, while 

for |𝑇| = 8 the 𝑅 𝐿𝑖𝑛𝑒𝑠 run below the 𝑇 𝐿𝑖𝑛𝑒𝑠 during the first few periods but surpass 
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Figure 4.7 Active nodes for |𝑇| = 4 comparing 𝑝 and density 

Figure 4.8 Active nodes for |𝑇| = 4 comparing 𝑙 and 𝐷𝑆
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Figure 4.9 Active nodes for |𝑇| = 8 comparing 𝑝 and density 

Figure 4.10 Active nodes for |𝑇| = 8 comparing 𝑙 and 𝐷𝑆 
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them at a later point of the planning horizon, as illustrated in Figure 4.9 and Figure 4.10. 

This surpassing point varies over different scenarios, but it tends to come sooner when 

the situation is more suitable for message dissemination (e.g., larger 𝑝, smaller 𝑙, higher 

network density, etc.). Given that each of the comparisons is made on networks with the 

same density, we are inclined to attribute these trends to the structural difference 

between random and Twitter networks. That is, the clustered structure of a Twitter sub-

network may contribute to wide message dissemination within a short period of time. 

However, some low-degree nodes (i.e., petal nodes) far from the center of the network 

are hard to reach. We further examine this in section 4.3.5. 

4.3.5. Further analysis on node activation 

Here we are interested in two questions: (1) Which nodes are more likely to become 

active within the planning horizon, and (2) Which nodes should be targeted by the 

sources to facilitate message dissemination, especially in the initial phase of the planning 

horizon. The answers to these questions may help the emergency managers better 

understand the nature of the message dissemination process in extreme events, and could 

be used as general guidelines when they develop social media message dissemination 

strategies in reality. 

Social networks are highly distinct from other networks (e.g., random networks) 

in that their node degree follows power law distribution. Therefore, we’d like to see how 

node degree may impact the activation of individual nodes and whether this impact 

varies by network type. To that end, we first examine degree centrality of active and 

inactive nodes for random and Twitter networks respectively. The degree centrality of a 
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node 𝑖 is defined as the degree of 𝑖 divided by the maximum possible degree in the 

network. We apply hypothesis test to see whether the active and inactive nodes are 

significantly different in terms of degree centrality. Specifically, for each test instance, 

we divide the nodes into 2 subsets, active (𝐴𝐶𝑇) and inactive (𝐼𝑁𝐴𝐶𝑇). If both of them 

have a size greater than or equal to 30 (in this case, we call this instance is valid for 

testing), we performed a 𝑧-test to compare the mean of degree centrality and observed 

the 𝑝-value. Table 4.5 provides a summary of the 𝑧-test results. Overall, we can find that 

100% of the valid instances are showing a significant difference (𝑝-value < 0.05) in 

degree centrality between active and inactive nodes for Twitter networks, while this 

percentage is 61.49% for random networks. It appears that node degree has significantly 

stronger impact on message reception in Twitter networks than random networks. More 

importantly, such impact exists regardless of network density. Compared to that, the 

percentage is showing a decreasing trend as network density increases for random 

networks. 

Table 4.5 A summary of the 𝑧-test results on degree centrality 

Network 
Type 

Network 
Density 

% of Instances with 
𝑝-value < 0.05 Valid Instances Total Instances 

Random 

0.09 71.78% 1,205 4,800 

0.11 66.94% 1,204 4,800 

0.14 57.12% 1,152 4,800 

0.22 48.13% 1,043 4,800 

Overall 61.49% 4,604 19,200 

Twitter 

0.09 100.00% 1,846 4,800 

0.11 100.00% 2,090 4,800 

0.14 100.00% 1,977 4,800 

0.22 100.00% 885 4,800 

Overall 100.00% 6,798 19,200 
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To further examine the extent to which node degree may affect message 

reception in both types of networks, we create a box plot for each comparing the 

distributions of degree centrality between active and inactive nodes as well as the change 

from |𝑇| = 4 to |𝑇| = 8, as shown in Figure 4.11. Note that 𝐴𝐶𝑇 and 𝐼𝑁𝐴𝐶𝑇 aggregate 

degree centrality of the nodes from all test instances for a specific |𝑇|. For each test 

instance, if a node turns out to be active, then we put its node centrality value into 𝐴𝐶𝑇, 

otherwise into 𝐼𝑁𝐴𝐶𝑇, and we do this for all the test instances. The information given 

for each subset of nodes includes min value, max value, first quartile, median and third 

quartile of degree centrality.  

Not surprisingly, we can observe a larger gap between two subsets of nodes for 

both |𝑇| = 4 and |𝑇| = 8 as well as a more obvious change from |𝑇| = 4 to |𝑇| = 8 for 

Twitter networks than random networks. Now we focus the attention on Twitter 

networks, the results of which can provide more insights for real-world applications. 

Figure 4.11 Distributions of degree centrality for active and inactive nodes
|T| = 4 |T| = 8 |T| = 4 |T| = 8 
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When |𝑇| = 4, 75% of the active nodes have at least 14 friends (i.e., degree centrality is 

about 0.14) while 75% of the inactive nodes have at most 14 friends. Such distinction 

appears to be more obvious when |𝑇| = 8. Specifically, 75% of the active nodes have at 

least 8 friends and 50% of them have at least 16 friends, while 75% of the inactive nodes 

have 5 friends or less. It is also noticeable that when a node has more than 57 friends, it 

is active in any problem scenario (the largest value in 𝐼𝑁𝐴𝐶𝑇 is about 0.57). Some nodes 

are hard to become active, such as those with 2 - 3 friends, even if the planning horizon 

gets longer. When |𝑇| = 8, 50% the inactive nodes have only 2 - 5 friends (between first 

and third quartiles). Given all these figures, we can conclude with more confidence that 

node degree can significantly impact individuals’ message reception on Twitter sub-

networks. More importantly, node degree has shown its potential to be a strong indicator 

of message reception. In other word, the chance a node can receive messages within the 

planning horizon might be predicted solely based on its degree on the social network. If 

this is true, then it would be really helpful for emergency managers to assess message 

reception and manage message dissemination on social media in reality.      

Here we move the attention to the nodes targeted by the sources in the planning 

horizon and examine their degree centrality and closeness centrality for short and long 

planning horizon respectively. The closeness centrality of a node 𝑖 is defined as the 

reciprocal of the sum of the shortest path distances from 𝑖 to all the other nodes in the 

network, and it can be normalized by multiplying it by the sum of minimum possible 

distances. In SM-SMMDP, the share delay of a node is specific to message type, so each 

node in the network has |𝑀| closeness values, corresponding to |𝑀| message types. Also 
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note that the distance (in terms of delay) from node 𝑢 to node 𝑣 for message 𝑚 is given 

by (𝑑𝑠𝑢𝑚 + 𝑑𝑚), while this distance is (𝑑𝑠𝑣𝑚 + 𝑑𝑚) for the opposite direction. 

Therefore, to calculate the shortest path distances, we have to construct |𝑀| directed 

multigraphs based on the original undirected social graph. This process is illustrated in 

Figure 4.12. In this way, we can get one degree value (𝐷𝐺) and three closeness values 

(𝐶𝐿1, 𝐶𝐿2 and 𝐶𝐿3) for each node in our experiments. To better characterize the 

closeness centrality of each node, we include average closeness (𝐴𝑣𝑔𝐶𝐿) and standard 

deviation of closeness (𝑆𝑡𝑑𝐶𝐿) in the analysis.  

 

 

Figure 4.12 Constructing directed multigraphs  
 

 

Figure 4.13 introduces the comparisons between targeted nodes in different time 

periods of the planning horizon for Twitter networks. Specifically, the targeted nodes are 

divided into three categories, including 1st Wave, Later Waves, and Overall. 1st Wave 

represents the nodes targeted by the sources in the first time period of the planning 

horizon, while Later Waves represents those targeted in later times. Overall includes all 

the targeted nodes, which is the union of nodes in the first two categories. We 

aggregated the instances for |𝑇| = 4 and |𝑇| = 8 respectively and each value shown in 

the figure is the average of 𝐷𝐺, 𝐴𝑣𝑔𝐶𝐿 or 𝑆𝑡𝑑𝐶𝐿 over all nodes in a specific category.  
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It is noticeable but not surprising that, the 1st-wave nodes are exhibiting some 

properties that make them highly distinct from others. They have significantly larger 𝐷𝐺, 

𝐴𝑣𝑔𝐶𝐿 and 𝑆𝑡𝑑𝐶𝐿 (comparing the blue bar and red bar in each block). Large 𝐷𝐺 means 

they typically have more friends on the network, which can help create more message 

outlets in the early periods of the planning horizon. Large 𝐴𝑣𝑔𝐶𝐿 indicates their 

messages can reach other nodes faster in general, while large 𝑆𝑡𝑑𝐶𝐿 implies they may be 

particularly helpful in disseminating a certain type of message. Further, when we 

compare the blue bars in each chart, we may find the 1st-wave nodes appear to have 

more potential for |𝑇| = 8 than |𝑇| = 4 (i.e., larger 𝐷𝐺 and 𝐴𝑣𝑔𝐶𝐿 can be observed for 

|𝑇| = 8). These observations prove that degree and closeness centrality can reflect the 

potential of individual nodes in facilitating message dissemination to some extent. As a 

result, emergency managers could take them into account when making message 

targeting decisions, especially for the initial phase of the planning horizon.  

 

 

Figure 4.13 Comparisons of 𝐷𝐺, 𝐴𝑣𝑔𝐶𝐿 and 𝑆𝑡𝑑𝐶𝐿 for targeted nodes 
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4.4. Closing Remarks for SM-SMMDP 

In this chapter, we examine the single-network multi-message application scenario in 

which multiple messages need to be disseminated on one social media network within a 

predefined planning horizon. A discrete optimization model for SM-SMMDP is 

provided and discussed. Through the computational experiments on small-scale test 

networks, we show that all model parameters, including network type, network density, 

source messaging capacity, length of planning horizon and so on, can impact the 

computational performance as well as message dissemination outcomes, but the degree 

of their impact varies. We also find that the Twitter networks are more like the complete 

network in terms of impacting CPU time, while they show similar trends to random 

networks in the way they affect objective values and active nodes.  

In addition to observing the trends of CPU time, objective values and number of 

active nodes, we further investigate some underlying factors that impact message 

reception of individual nodes and that may help emergency managers with message 

targeting decisions. We find a clear distinction in degree centrality between active nodes 

and inactive nodes in Twitter networks and such distinction appears more significant for 

a longer planning horizon. We also find that the nodes targeted in the initial period of the 

planning horizon are typically associated with larger degree and closeness centrality. 

The method applied in the analysis as well as the findings could potentially be valuable 

to emergency management organizations and agencies in developing social media 

communication strategies, especially in predicting message reception and generating 

message targeting alternatives. 
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Some future research directions can be pursued to get a better understanding of 

the SM-SMMDP. An first direction is gaining more understanding about message 

sharing behaviors in social media, including how users respond to messages received 

from difference sources (family members, friends, organizations at different levels, etc.) 

and how they behave in different social media (Twitter, Facebook, etc.). This is 

extremely helpful in characterizing and modeling delays in the message propagation 

process. Another direction is extending the scope of this paper, by studying message 

dissemination on large-scale networks and on other popular social networks. The trends 

observed here can be examined in these new scenarios and more implications could be 

derived potentially from the comparisons for real-world application. 
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CHAPTER V  

MULTIPLE-NETWORK MULTI-MESSAGE SOCIAL MEDIA MESSAGE 

DISSEMINATION PROBLEM 

 

5.1. Problem Description and Definition 

The Multi-network Multi-message Social Media Message Dissemination Problem (MM-

SMMDP) considers the scenario in which multiple messages need to be disseminated to 

a population within a predefined planning horizon in the presence of multiple social 

media networks. The MM-SMMDP extends the previously discussed single-network 

message dissemination problems and is meant to illustrate and identify the impacts of 

integrated social media use (e.g., Twitter plus Instagram plus Facebook).  This model is 

motivated by the observation that social messages can easily transfer between social 

media sites through users who either replicate or reiterate message content from one 

social media site onto another. These networks are represented by 𝐺𝑛 = (𝐼,𝐴𝑛), 𝑛 ∈ 𝑁, 

where a set of nodes, 𝐼 is considered. Each node 𝑖 ∈ 𝐼 represents a user and each arc 

⟨𝑖, 𝑗⟩ ∈ 𝐴𝑛 represents the relationship on network 𝑛 (i.e., friend or follower) between 

users 𝑖, 𝑗 ∈ 𝐼, through which messages can flow from 𝑖 to 𝑗 on the network. The 

messages to be disseminated are given by set 𝑀. Each message 𝑚 ∈ 𝑀 is assumed to be 

independent from others and corresponds to a unique source (i.e., it can only send its 

own message to the user nodes on each network), and the number of unique messages is  
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Figure 5.1 Conceptualization of MM-SMMDP 
 

 

|𝑀|. The planning horizon is given by set 𝑇. Each 𝑡 ∈ 𝑇 represents a time period in the 

planning horizon and the length of the planning horizon is |𝑇|. 

Message propagation on each network is initiated by the sources through node 

targeting (i.e., send direct messages to the selected nodes) and continues as individual 

nodes redistribute the received messages to their friends or followers, as illustrated in 

Figure 5.1. Note that the redistribution can be either message sharing on the current 

network or message transferring from the current network to other networks. The source 

for any message 𝑚 can send its message in multiple waves on each network 𝑛 if time 

allows, with a minimum reset time 𝑙𝑚 between two consecutive waves and a capacity 𝑝𝑚 

in each wave. Accordingly, a subset of 𝑝𝑚 nodes (i.e., nodes to be targeted) needs to be 

determined corresponding to each wave of message 𝑚 from its source. This process is 

the same as in Figure 4.2. Individuals’ redistribution behaviors are modeled using time 



 

80 

 

delays called user share delay and user transfer delay for sharing and transferring 

messages respectively. User share/transfer delay represents the time between message 

arrival at a user’s device (e.g., PC, cell phone, iPad, etc.) and when the user 

shares/transfers the message. It is assumed to be specific to the individual node, the 

message and the social media network(s) through which the message is being 

shared/transferred, and denoted by matrix 𝐷, in which 𝑑𝑖𝑚𝑛𝑛′ ∈ 𝐷 represents the delay 

of node 𝑖 for message 𝑚 on network 𝑛 (note that message propagation through the same 

social network is considered when  𝑛 = 𝑛′). Message transmission delay, which 

represents the digital transmission time between devices, is used to reflect network 

conditions (e.g., known outages, intentional hacks, etc.). Transmission delay is assumed 

to be specific to the network, and is denoted by matrix 𝐷𝑀, in which 𝑑𝑚𝑛 ∈ 𝐷𝑀 

represents the transmission delay on network 𝑛. This delay could be non-negligible in 

emergency events due to cell phone tower damages and/or excessive load within a short 

period that prevents a given message’s delivery. A user node 𝑖 is considered active after 

receiving all messages (a message can be received on any of the networks), and the 

message dissemination outcome is defined as the weighted sum of the activation status 

of all individual nodes over the planning horizon, which essentially encourages wider 

and sooner message reception on the networks. 

Now the MM-SMMDP can be formally stated as follows: Given social media 

networks 𝐺𝑛 = (𝐼,𝐴𝑛), 𝑛 ∈ 𝑁, message set 𝑀, planning horizon 𝑇, source messaging 

capacity matrix 𝑃(𝑀), source reset time matrix 𝐿(𝑀), user delay matrix 𝐷(𝐼,𝑀,𝑁,𝑁), 

and message transmission delay matrix 𝐷𝑀(𝑁), MM-SMMDP optimizes the message 
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dissemination outcome by determining a sequence of subsets, each containing at most 

𝑝𝑚 nodes, to be targeted for each message 𝑚 on each network 𝑛. Problem formulation is 

presented in section 5.2. 

5.2. Problem Formulation 

5.2.1. Sets and parameters 

𝐼 =  the set of user nodes 

𝑀 = the set of messages 

𝑁 = the set of social media networks 

𝑇 = the set of time periods 

𝑇𝑚′ = the set of time periods eligible for the source of 𝑚 to send messages 

𝑁𝑛𝑖 = the set of nodes 𝑗 such that ⟨𝑗, 𝑖⟩ ∈ 𝐴𝑛 

𝑤𝑖𝑡 = the reward for node 𝑖 being active at time 𝑡 

𝑝𝑚 = the source messaging capacity for message 𝑚 

𝑑𝑖𝑚𝑛𝑛′  = the share delay of node 𝑖 for message 𝑚 on network 𝑛 if 𝑛 = 𝑛. Otherwise, 

           the transfer delay of node 𝑖 for message 𝑚 from network 𝑛 to network 𝑛′. 

𝑑𝑚𝑛 = the message transmission delay on network 𝑛 

5.2.2. Decision variables 

𝑧𝑖𝑡 = 1  if node 𝑖 is active at time 𝑡, 0 otherwise 

𝑥𝑖𝑚𝑛𝑡 = 1  if node 𝑖 is targeted for message 𝑚 on network 𝑛 at time 𝑡, 0 otherwise 

𝑦𝑖𝑚𝑛𝑡 = 1  if node 𝑖 is active for message 𝑚 on network 𝑛 at time 𝑡, 0 otherwise 
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5.2.3. Formulation 

       𝑚𝑎𝑥   ∑ ∑ 𝑤𝑖𝑡𝑧𝑖𝑡𝑡∈𝑇𝑖∈𝐼 .              (5.1) 
 
s.t.  
 
∑ 𝑥𝑖𝑚𝑛𝑡𝑖∈𝐼 ≤ 𝑝𝑚,    ∀ 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇𝑚′ .          (5.2) 

𝑦𝑖𝑚𝑛𝑡 ≤ ∑ 𝑥𝑙≤𝑡 𝑖𝑚𝑛𝑙 + ∑ 𝑦𝑗𝑚𝑛�𝑡−𝑑𝑚𝑛−𝑑𝑗𝑚𝑛𝑛�𝑗∈𝑁𝑛𝑖   

+∑ ∑ 𝑦𝑗𝑚𝑛′�𝑡−𝑑𝑚𝑛−𝑑𝑗𝑚𝑛′𝑛�𝑛′∈𝑁\{𝑛}𝑗∈𝑁𝑛𝑖 , ∀ 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀,𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇      (5.3) 

𝑧𝑖𝑡 ≤ ∑ 𝑦𝑖𝑚𝑛𝑡𝑛∈𝑁 ,   ∀ 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇.                    (5.4) 

𝑦𝑖𝑚𝑛𝑡 ≤ 𝑦𝑖𝑚𝑛,𝑡+1,  ∀ 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀,𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇.         (5.5) 

𝑧𝑖𝑡 ≤ 𝑧𝑖,𝑡+1,  ∀ 𝑖 ∈ 𝐼,  𝑡 ∈ 𝑇.              (5.6) 

𝑥𝑖𝑚𝑛𝑡 ,𝑦𝑖𝑚𝑛𝑡, 𝑧𝑖𝑡 ∈ {0,1}, ∀ 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀,𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇.       (5.7) 

 

 

The objective function (5.1) optimizes the message dissemination outcome (i.e., 

maximizing the total reward for message reception over all user nodes within the 

planning horizon). For each node 𝑖, the weight 𝑤𝑖𝑡 is a decreasing function of time 𝑡, 

which serves to encouraging early reception. In this way, the ultimate goal of the 

objective is to encourage wider and earlier message reception on the networks. 

Constraint (5.2) enforces the messaging capacity of the sources on each network. Note 

that for any message 𝑚, set 𝑇𝑚′  is developed based on 𝑇 and 𝑙𝑚. Constraint (5.3) states 

that, node 𝑖 is active for message 𝑚 on network 𝑛 at time 𝑡, if it received the message 

either from the source node on network 𝑛 prior to 𝑡, or from a friend node 𝑗 on network 
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𝑛 who shared the message previously on network 𝑛, from a friend node 𝑗 on network 𝑛 

who transferred the message previously from some network 𝑛’ to network 𝑛. The lead 

times for the sharing and transferring are 𝑑𝑗𝑚𝑛𝑛 plus 𝑑𝑚𝑛 and 𝑑𝑗𝑚𝑛′𝑛 plus 𝑑𝑚𝑛, 

respectively. Constraint (5.4) enforces a message aggregation effect at the user end (i.e., 

a node has to receive all the messages to become active). Note that message reception is 

not network-dependent, so it does not matter which social media network the user 

receives content from. Constraints (5.5) and (5.6) preserve node status over time, and 

Constraint (5.7) imposes binary restriction on all decision variables.  

5.3. Computational Experiments 

In this section, we present the computational experimentation on MM-SMMDP. In 

particular, this analysis illustrates how decision parameters affect computational 

performance, message dissemination outcomes and targeting decisions. The factors 

being tested include length of planning horizon (|𝑇|), source messaging capacity (𝑃), 

source messaging interval (𝐿), network structure (density), and network condition (𝐷𝑀). 

We use 100-node networks in these computational experiments and consider three 

unique messages and two social media networks (i.e., |𝐼| = 100, |𝑀| = 3, |𝑁| = 2). In 

order to obtain networks that are more representative of social media networks, we 

generate four sub-networks from the social media site Twitter and use their 

combinations as test networks. These Twitter sub-networks are generated through a 

Metropolis-Hastings Random Walk (MHRW) on Twitter, each using a different, 

randomly selected Twitter user as Node 0 in the random walk. All networks are treated 
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as undirected where two nodes are connected with an edge if they have a friend/follower 

relationship originally or they have at least one common friend/follower. The summary 

of these Twitter sub-networks and visualizations of them can be found in Table 4.1 and 

Figure 4.4 respectively.  

5.3.1. Experimental design 

Table 5.1 provides the factors and levels for the implemented experimental design. For 

the purposes of our experimentation, we assume the basic time unit to be hours (we note 

that such an assumption may easily be changed to adapt the MM-SMMDP for different 

extreme event circumstances/scenarios).  

Source messaging capacity and messaging interval are assumed to be identical 

for all message sources on each network (i.e., 𝑝1 = 𝑝2 = 𝑝3 = 𝑝 and 𝑙1 = 𝑙2 = 𝑙3 = 𝑙, 

though this is not a requirement of the model). Message transmission delay is assumed to 

be constant, as discussed in section 5.1. Individual’s share and transfer delays are 

assumed to be independent, so the delay matrix 𝐷 is randomly generated, in which each 

element 𝑑𝑖𝑚𝑛𝑛′ ∈ 𝐷 is an integer sampled from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1,10). The reward coefficient 

𝑤𝑖𝑡 in the objective function is assumed to be 𝑤𝑖𝑡 = 1/𝑡 for any node 𝑖 ∈ 𝐼 and 𝑡 ∈ 𝑇. 

We define a problem scenario as a combination of decision parameters 

(𝑝, 𝑙, |𝑇|, (𝑁1,𝑁2), (𝐷𝑀1,𝐷𝑀2)), in which (𝑝, 𝑙, |𝑇|) can represent an emergency 

manager’s considerations and ((𝑁1,𝑁2), (𝐷𝑀1,𝐷𝑀2)) reflects network structure and 

conditions. Based on the factors and levels given in Table 5.1, there are 1,280 unique 
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Table 5.1 Experimental factors and levels for MM-SMMDP 

Factors Levels 

Networks (𝑁1,𝑁2) (0.09,0.11), (0.11,0.14), (0.09,0.22), (0.14,0.22) 

Messaging capacity (𝑝) 1, 2, 3, 4, 5 

Planning horizon (|𝑇|) 1, 2, 3, 4, 5, 6 ,7 ,8 

Messaging interval (𝑙) 1, 2 

Transmission delay (𝐷𝑀1,𝐷𝑀2) (1,1), (1,3), (3,1), (3,3) 

problem scenarios. To better capture the impact of random user behavior, we generate 10 

replications for each scenario in terms of the delay matrix 𝐷 to capture the variations. 

This results in 12,800 test instances in total. Given that MM-SMMDP introduces some 

new features that haven’t been studied in SS- and SM-SMMDP (i.e., multiple networks 

and message transfer between networks), we create different cases to get some insights 

into their impact on message dissemination outcomes and model performance through 

comparisons. Specifically, in each test instance, we consider 4 cases, including a case 

without message transfer, a case without message transfer and two single-network multi-

message cases, which are denoted as 𝑁1 + 𝑁2 𝑤/𝑜 𝑇𝐹, 𝑁1 + 𝑁2 𝑤/ 𝑇𝐹, 𝑁1 𝑂𝑛𝑙𝑦, and 

𝑁2 𝑂𝑛𝑙𝑦 in the following analysis.  

All the test instances are solved using ILOG Concert Technology with 

C++/CPLEX 12.4 on a Dell OptiPlex 755 computer (Inter Core 2 Duo E8500 3.17GHz, 

4GB RAM and Windows 7 System), and the solution time are capped at 1,800 seconds 

for each test instance. Computational results and analysis are presented in the following. 
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5.3.2. Results and analysis on CPU time 

Table 5.2 provides a summary of CPU time of all the test instances in the experiments, 

listed by Networks (𝑁1,𝑁2). In the table, % 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 gives the percentage of instances 

solved to optimality in 1,800 sec solution time. 𝐴𝑉𝐺, 𝑆𝑡𝐷𝑒𝑣, 𝑀𝐼𝑁, and 𝑀𝐴𝑋 mean the 

average, standard deviation, minimum and maximum of the CPU times of instances. 

With 𝐴𝑉𝐺 reflecting the average levels and 𝑆𝑡𝐷𝑒𝑣 reflecting the variations, 𝑅𝑆𝐷, 

relative standard deviation which is given by 𝑅𝑆𝐷 = 𝑆𝑡𝐷𝑒𝑣/𝐴𝑉𝐺, can reflect the degree 

of variation in respect to the average level of each case.  

Given that 100% of CPU times are within 1,800 sec and about 40 sec on average, 

we can conclude that the MM-SMMDP model is tractable for 100-node Twitter sub- 

networks, although in some extreme case(s) it may take 1,116 sec to solve. Overall, 𝐴𝑉𝐺 

and 𝑆𝑡𝐷𝑒𝑣 increase by 26% and 31% respectively when considering message 

transfer ,which indicates the introduction of message transfer on the multiple-network 

scenario will cause more difficulties in getting the optimal solutions (probably because 

there are more decision variables).  We also observe an overall decreasing trend in 

computational difficulty as the total density of networks increases, as shown in Figure 

5.2, in which the columns and bars represent 𝐴𝑉𝐺 and 𝑆𝑡𝐷𝑒𝑣 respectively. It is clear 

Table 5.2 A summary of CPU times in the MM-SMMDP experiments 

AVG StDev MIN MAX RSD AVG StDev MIN MAX RSD
(0.09,0.11) 3,200 100.00% 36.910 61.584 0.047 917.630 1.668 100.00% 48.236 78.264 0.047 1115.800 1.623
(0.11,0.14) 3,200 100.00% 29.665 41.221 0.047 789.800 1.390 100.00% 42.325 63.580 0.016 869.300 1.502
(0.09,0.22) 3,200 100.00% 25.021 33.788 0.047 496.270 1.350 100.00% 28.547 39.413 0.047 969.340 1.381
(0.14,0.22) 3,200 100.00% 23.332 31.130 0.047 808.900 1.334 100.00% 25.275 33.635 0.031 582.600 1.331
Overall 12,800 100.00% 28.732 43.912 0.047 917.630 1.528 100.00% 36.096 57.473 0.016 1115.800 1.592

Networks Instances % Optimal
N1+ N2 w/o TF

% Optimal
N1+ N2 w/ TF



87 

Figure 5.2 CPU time by networks (N1, N2) 

that increasing network density can help reduce the average and variation observed in 

CPU time, and that it may also reduce the gap observed between problems that allow 

message transfer and problems that prohibit message transfer (by comparing the columns 

of (0.09,0.22) and (0.14,0.22) to (0.09,0.11) and (0.11,0.14) ). This property should be 

noticed and potentially utilized by emergency managers in the planning phase (e.g., 

encouraging people in a community or neighborhood to use social media and connect to 

each other).      

 It is noticeable from Table 5.2 and Figure 5.2 that in each set of networks, 𝑆𝑡𝐷𝑒𝑣 

is much larger than 𝐴𝑉𝐺 (𝑅𝑆𝐷 is higher than 1.52 on average and is almost 1.67 in some 

case(s)), which means some other factors also affect the computational performance 

significantly. Figure 5.3 shows the impacts of length of planning horizon, source 

messaging capacity, network condition (transmission delay) as well as source messaging 

interval. Overall, the length of planning horizon has the most significant impact on CPU 

time among all the factors being considered. On one hand, 𝐴𝑉𝐺 grows exponentially as 

the increase of |𝑇|, which is true for both cases (𝑤/𝑜 𝑇𝐹and 𝑤/𝑇𝐹). One the other hand, 
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Figure 5.3 CPU time by factors 
 

 

𝑅𝑆𝐷 < 1 holds for each planning horizon length |𝑇|, which cannot be observed for any 

realization of other factors. Compared to length of planning horizon, other factors’ 

impact on overall computational performance is much less significant. As for source 

messaging capacity, largest 𝐴𝑉𝐺 is observed at 𝑝 = 4 and 𝑝 = 3 for two cases, 

respectively, but the gaps between them and the others are not significant. Regarding 

network condition, larger 𝐴𝑉𝐺 and 𝑆𝑡𝐷𝑒𝑣 can be observed when the condition of the 

second network (the one with higher density in (𝑁1,𝑁2)) is bad (i.e., 𝐷𝑀2 = 3), which 

is also true for both cases. As for source messaging interval, larger 𝐴𝑉𝐺 and 𝑆𝑡𝐷𝑒𝑣 are 

observed at 𝑙 = 1 for both cases. When the messaging interval is short (i.e., 𝑙 = 1), 

message sources are able to send more waves of messages (i.e., this leads to more active 
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decision variables and constraints in the model) and therefore causing more difficulty in 

obtaining the solutions. But as mentioned previously, the gaps are not significant from 

the overall scale.  

  Figure 5.4 shows the combined effects of length of planning horizon |𝑇|, source 

messaging capacity 𝑝 as well as network density (𝑁1,𝑁2) on average CPU time 𝐴𝑉𝐺. In 

particular, we are interested in the changes of 𝐴𝑉𝐺 as 𝑝 increases and how (𝑁1,𝑁2) and 

|𝑇| affect these changes. Here we just show |𝑇| = 5, … ,8 because the lines are flat and 

overlapping with each other when the planning horizon is short. First, we see that it takes 

much longer time (at least twice) to solve multi-network instances than single-network 

instances, and we might expect larger gaps between them for networks of larger size. 

The CPU times of the single-network instances are also insensitive to the increase of 𝑝, 

compared to those of the multi-network instances. Second, the CPU times of both multi-

network cases fluctuate more drastically as the increase of 𝑝 when the networks are 

sparse and the planning horizon is long (i.e., (𝑁1,𝑁2) = (0.09,0.11) and |𝑇| = 8), as 

shown in the bottom right corner, while the opposite can be seen in the top left corner, 

where (𝑁1,𝑁2) = (0.14,0.22) and |𝑇| = 5. The implication here for the emergency 

managers is that when they are dealing with sparse social media networks (which is the 

case in reality oftentimes), they should be expecting large variations in the 

computational efforts required to examine different alternatives in terms of how many 

nodes they target at a time. And from the other way, encouraging more connections 

between social media users of a certain area may allow the emergency organizations and 

agencies to evaluate more message targeting alternatives in their planning phase. 
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Figure 5.4 CPU time by 𝑝 under combinations of (𝑁1,𝑁2) and |𝑇| 
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5.3.3. Results and analysis on objective values 

The objective function for the MM-SMMDP is defined as the weighted sum of the 

activation status of all individual nodes over the planning horizon, which essentially 

encourages wider and earlier message reception on the networks. It is worth noticing that 

the maximum objective value possible depends on the length of planning horizon |𝑇|, as 

the way the objective function is set. Given any specific |𝑇|, a larger objective value 

implies a better overall message dissemination outcome, and the maximum objective 

value is reached when every node becomes active in the first time period. As a baseline 

for interpreting the objective, here we first provide these values in Figure 5.5. In the 

following analysis, we use 𝐴𝑉𝐺, 𝑆𝑡𝐷𝑒𝑣, and 𝑅𝑆𝐷 = 𝑆𝑡𝐷𝑒𝑣/𝐴𝑉𝐺 to represent the 

average, standard deviation, and relative standard deviation of objective values of 

instances, respectively.  

 

 

Figure 5.5 Maximum objective values possible 
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5.3.3.1. Objective values at the overall scale 

Figure 5.6 provides a comparison of average objective values between the 4 cases we 

developed in the experiments. Same as before, the columns and bars represent 𝐴𝑉𝐺 and 

𝑆𝑡𝐷𝑒𝑣, respectively. Although the comparison is about overall average for each case, the 

increase in 𝐴𝑉𝐺 from one-network cases to two-network cases is significant. For 

example, the percentage of increase is 57% from 𝑁2 𝑂𝑛𝑙𝑦 to 𝑁1 + 𝑁2 𝑤/𝑜 𝑇𝐹 and is as 

large as 133% from 𝑁1 𝑂𝑛𝑙𝑦 to 𝑁1 + 𝑁2 𝑤/ 𝑇𝐹, which is much larger than the 13% 

increase in two-network cases by introducing message transfer. The implication here for 

emergency management organizations and agencies is that they should set up accounts 

on multiple social media sites, especially on those most popular ones including 

Facebook and Twitter, in order to improve the overall message dissemination outcome.  

As the impact of length of planning horizon on objective value is dominating, the 

impact of other factors still needs to be examined. Figure 5.7 shows 𝐴𝑉𝐺 and 𝑆𝑡𝐷𝑒𝑣 

versus source messaging capacity 𝑝, network condition (𝐷𝑀1,𝐷𝑀2), network density 

(𝑁1,𝑁2) as well as source messaging interval 𝑙. Among these four factors, 𝑝 and  

Figure 5.6 Average objective values 
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(𝐷𝑀1,𝐷𝑀2) have more significant impact than (𝑁1,𝑁2) and 𝑙. As source messaging 

capacity 𝑝 increases, the objective values tend to increase linearly, and the degree of 

variations decreases. From a strategic standpoint, emergency management organizations 

and agencies could achieve better and more robust message dissemination outcomes by 

increasing the number of nodes they are able to target each time. Similar observation can 

be made for network condition as well. When the condition of both networks is good 

(i.e., (𝐷𝑀1,𝐷𝑀2) = (1, 1)), the dissemination outcomes tend to be good and robust, 

while  the condition of both networks is bad (i.e., (𝐷𝑀1,𝐷𝑀2) = (3, 3)), the outcomes 

appear the opposite. Therefore, emergency managers should be fully aware of these 

effects when assessing situations and making decisions for social media message 

dissemination in disasters and extreme events. Message dissemination outcomes tend to 

get better on denser networks, however, the improvement is mild. Same thing for source 

messaging interval, which we are not going to mention again. Note that here we analyze 

the impact of individual factors on 𝐴𝑉𝐺 and 𝑆𝑡𝐷𝑒𝑣 at the overall scale, and we are 

aware that such impact may vary in specific problem scenarios. Therefore, we provide 

Table 5.3, which contains detailed selected results from selected problem scenarios and 

cases, and present analysis based on problem scenarios in section 5.3.3.2. 

5.3.3.2. Objective values by problem scenarios 

As discussed previously, we define a problem scenario as a combination of decision 

parameters (𝑝, 𝑙, |𝑇|, (𝑁1,𝑁2), (𝐷𝑀1,𝐷𝑀2)), in which (𝑝, 𝑙, |𝑇|) can represent an 

emergency manager’s considerations and ((𝑁1,𝑁2), (𝐷𝑀1,𝐷𝑀2)) reflects network 
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structure and conditions. Here we further define the maximum messages possible 

(𝑀𝑀𝑃) for the message sources, as the maximum number of messages a source can send 

within the planning horizon. It is given by 𝑀𝑀𝑃 = ⌈|𝑇|/(𝑙 + 1)⌉ × 𝑝 and reflects the 

maximum messaging (targeting) capability given their choice of (𝑝, 𝑙, |𝑇|). Now we are 

interested in the relationship between this capability and message dissemination outcome 

of each problem scenario (i.e., 𝐴𝑉𝐺 and 𝑆𝑡𝐷𝑒𝑣 of the objective values over 10 

replications). 𝐴𝑉𝐺 can reflect the average level of message dissemination outcomes in a 

problem scenario, while 𝑆𝑡𝐷𝑒𝑣 can reflect the degree of variation (stability) of the 

outcomes under the variations in user information sharing behaviors.   

 

 

 

Figure 5.7 Objective values by factors 
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Table 5.3 Selected objective values from MM-SMMDP experiments 

Figure 5.8 provides the objective values versus 𝑀𝑀𝑃 for multi-network case 

without message transfer (left) and with message transfer (right), respectively. Each dot 

in the charts shows the average of objective values of a specific problem scenario, 

reflecting the average level of message dissemination outcomes in that scenario. The 

AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev
1 4 1 1 1 22.692 2.754 24.808 4.507 30.108 3.252 32.875 3.502 25.442 2.273 31.717 2.675 39.283 4.122 40.475 2.974
1 4 1 1 3 14.517 2.550 17.892 2.602 13.142 2.622 17.875 4.233 19.408 2.473 21.800 2.367 19.517 2.330 26.625 4.518
1 4 1 3 1 16.750 3.555 17.667 4.044 25.742 5.276 21.742 4.514 22.892 1.314 25.550 3.781 41.000 4.458 35.650 4.546
1 4 1 3 3 5.333 0.000 5.333 0.000 5.333 0.000 5.333 0.000 5.333 0.000 5.333 0.000 5.333 0.000 5.333 0.000
1 4 2 1 1 20.200 2.869 25.983 3.408 28.583 4.143 32.042 3.913 23.208 1.999 29.483 4.222 38.575 4.658 39.617 3.953
1 4 2 1 3 11.742 2.342 15.092 3.483 12.508 2.820 16.417 1.813 17.508 1.573 20.658 2.525 18.308 2.476 24.675 3.596
1 4 2 3 1 14.700 2.674 16.408 2.899 25.325 7.262 20.034 5.009 20.808 2.609 24.533 3.236 38.667 4.190 36.725 5.397
1 4 2 3 3 4.667 0.000 4.667 0.000 4.667 0.000 4.667 0.000 4.667 0.000 4.667 0.000 4.667 0.000 4.667 0.000
1 8 1 1 1 62.379 5.059 73.887 6.136 85.398 5.566 90.988 4.753 77.268 4.636 87.180 3.600 102.300 4.667 102.373 5.157
1 8 1 1 3 47.161 4.431 55.771 3.765 53.886 5.477 62.985 5.038 61.073 4.181 64.460 4.564 63.615 3.465 76.041 4.587
1 8 1 3 1 52.384 3.869 61.920 5.612 75.629 9.397 73.981 5.243 61.520 3.547 73.942 6.580 93.380 6.366 94.861 6.481
1 8 1 3 3 30.088 2.511 35.572 3.259 38.020 4.176 45.162 4.106 36.490 2.280 38.741 2.483 49.288 2.620 52.193 3.925
1 8 2 1 1 57.210 4.343 69.181 4.239 74.610 6.482 82.808 8.044 72.954 2.744 81.945 2.048 97.388 6.103 99.278 3.755
1 8 2 1 3 41.832 3.970 47.127 4.240 48.866 2.797 56.936 5.087 52.509 3.471 58.735 3.878 57.959 2.265 71.612 4.614
1 8 2 3 1 45.278 5.582 53.956 6.877 69.971 7.445 74.682 7.488 56.406 3.885 67.065 6.335 93.024 6.658 95.697 4.150
1 8 2 3 3 26.098 2.466 31.162 3.322 35.133 2.618 37.472 3.567 31.074 1.607 36.764 1.768 47.250 2.813 45.108 3.435
3 4 1 1 1 41.650 2.815 47.150 2.547 53.892 1.910 57.033 1.780 48.883 1.771 53.742 2.265 61.275 1.003 62.208 0.815
3 4 1 1 3 32.475 1.165 33.167 2.334 33.758 2.494 39.167 4.470 39.733 1.643 40.725 3.147 39.725 1.360 46.800 2.816
3 4 1 3 1 33.433 2.221 36.550 4.147 48.517 2.910 48.717 4.045 40.875 2.132 45.225 2.134 58.675 1.600 57.258 2.031
3 4 1 3 3 16.000 0.000 16.000 0.000 16.000 0.000 16.000 0.000 16.000 0.000 16.000 0.000 16.000 0.000 16.000 0.000
3 4 2 1 1 36.600 3.611 40.725 4.029 51.525 3.312 51.642 3.271 43.083 1.378 48.067 2.464 57.808 1.289 56.942 1.846
3 4 2 1 3 26.342 3.645 30.758 3.924 27.708 3.473 35.608 3.134 34.175 3.089 37.642 2.800 33.817 2.695 42.317 1.852
3 4 2 3 1 30.133 2.743 34.542 3.440 46.133 5.686 46.808 3.743 35.700 1.583 42.033 2.747 54.600 2.063 54.967 1.629
3 4 2 3 3 14.000 0.000 14.000 0.000 14.000 0.000 14.000 0.000 14.000 0.000 14.000 0.000 14.000 0.000 14.000 0.000
3 8 1 1 1 97.983 4.386 103.666 2.408 116.079 4.437 122.416 2.557 111.016 2.411 115.181 2.399 124.045 1.484 126.103 1.359
3 8 1 1 3 81.956 5.503 88.009 2.823 85.992 4.017 96.479 3.305 95.886 3.749 97.996 2.043 96.061 3.296 107.289 2.908
3 8 1 3 1 83.539 4.103 95.806 4.976 110.868 6.820 114.163 3.023 96.709 3.254 106.023 2.244 121.887 1.690 122.631 1.504
3 8 1 3 3 58.827 1.573 64.946 2.838 71.235 3.165 72.917 2.123 66.226 1.843 70.667 1.878 76.891 1.010 77.326 1.014
3 8 2 1 1 90.415 4.752 98.135 3.420 113.798 5.549 112.162 5.439 105.240 3.202 109.051 2.738 121.554 2.348 121.517 1.292
3 8 2 1 3 71.365 3.768 78.533 3.413 81.771 2.768 88.189 2.912 87.584 1.905 92.896 1.900 90.997 3.016 97.374 2.030
3 8 2 3 1 73.683 4.531 83.261 4.348 107.035 6.917 105.541 5.410 87.931 3.871 96.825 2.638 116.110 3.072 116.222 2.074
3 8 2 3 3 52.032 2.268 57.037 2.808 65.704 2.334 66.790 2.676 59.383 1.610 62.894 3.013 71.158 1.630 72.166 1.703
5 4 1 1 1 55.725 3.062 60.750 2.807 68.400 1.746 69.308 1.635 64.858 0.494 66.808 0.713 72.925 0.633 73.133 0.427
5 4 1 1 3 47.858 2.359 48.092 2.985 44.608 5.082 53.917 2.517 53.817 2.845 55.192 2.521 54.967 2.728 61.200 2.134
5 4 1 3 1 47.908 2.348 54.933 2.791 63.350 4.937 64.667 3.372 55.992 1.898 61.958 1.353 70.900 1.308 71.433 1.571
5 4 1 3 3 26.667 0.000 26.667 0.000 26.667 0.000 26.667 0.000 26.667 0.000 26.667 0.000 26.667 0.000 26.667 0.000
5 4 2 1 1 50.567 3.082 55.567 2.372 63.650 2.858 62.933 2.415 58.367 2.372 62.275 1.010 69.217 1.379 69.042 0.819
5 4 2 1 3 39.383 2.486 41.433 2.876 39.750 1.585 47.100 3.269 47.167 2.990 48.717 3.226 47.392 1.500 53.725 2.029
5 4 2 3 1 42.633 2.352 48.458 3.330 59.867 4.020 58.325 4.066 48.317 1.870 55.992 1.819 65.500 3.275 65.617 2.052
5 4 2 3 3 23.333 0.000 23.333 0.000 23.333 0.000 23.333 0.000 23.333 0.000 23.333 0.000 23.333 0.000 23.333 0.000
5 8 1 1 1 118.920 2.934 124.961 3.209 132.021 2.605 134.271 1.740 127.295 2.223 130.895 2.779 136.215 0.708 136.690 0.300
5 8 1 1 3 105.489 3.296 108.377 3.775 107.598 3.544 115.588 3.330 116.952 2.539 119.044 1.916 118.948 2.494 124.591 2.268
5 8 1 3 1 106.799 4.198 115.834 2.395 127.132 3.653 130.225 2.985 117.730 3.311 124.733 1.790 134.405 1.230 135.154 1.335
5 8 1 3 3 83.394 1.722 86.145 1.728 88.729 1.518 89.692 0.757 88.099 1.180 89.286 1.004 90.119 0.000 90.119 0.000
5 8 2 1 1 110.595 1.843 115.797 3.238 127.089 3.034 127.626 2.708 120.673 1.327 124.988 1.978 132.169 1.791 132.336 1.251
5 8 2 1 3 92.541 3.963 96.904 2.692 97.952 2.463 107.281 2.138 107.258 3.184 109.237 3.031 108.894 2.678 115.178 1.915
5 8 2 3 1 95.354 3.835 105.985 2.633 122.600 2.098 122.750 4.372 107.146 3.420 115.416 2.895 128.687 2.257 128.779 2.223
5 8 2 3 3 71.455 3.786 74.628 2.833 83.719 1.501 82.639 1.328 78.706 2.425 81.506 1.433 86.361 0.457 86.248 0.499

N1+N2 w/o TF
(0.09,0.11) (0.11,0.14) (0.09,0.22) (0.14,0.22)

N1+N2 w/ TF
(0.09,0.11) (0.11,0.14) (0.09,0.22) (0.14,0.22)p |T| l DM1 DM2
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best and worst message dissemination outcomes (i.e., highest and lowest average 

objective values) are plotted for each of the capability levels, denoted as 𝑀𝐴𝑋 and 𝑀𝐼𝑁 

in the figure. It is interesting to see the best and worst outcomes can be fitted well using 

logarithm functions and linear functions respectively, which is true for both cases. If we 

further examine these dots, we can find the 𝑀𝐴𝑋 and 𝑀𝐼𝑁 points are typically 

associated with largest and smallest possible |𝑇| for each capability level, which 

suggests that the length of planning horizon is a strong determinant for message 

dissemination outcome. From the perspective of the networks, we can find the 𝑀𝐴𝑋 

points are typically associated with (𝐷𝑀1,𝐷𝑀2) = (1, 1) and (𝑁1,𝑁2) = (0.14, 0.22), 

and the 𝑀𝐼𝑁 points with (𝐷𝑀1,𝐷𝑀2) = (3, 3) and (𝑁1,𝑁2) = (0.09, 0.11). This 

shows network structure and condition also affect the message dissemination outcomes 

when the messaging capability of the sources is set. Such observations and relationships 

could be potentially utilized by emergency managers in evaluating and assessing 

message dissemination outcomes on the networks. Given a choice of (𝑝, 𝑙, |𝑇|), they 

could get the estimated best and worst message dissemination performances, which 

could provide a powerful support in their social media messaging decision making 

process.  

Figure 5.9 provides the relative standard deviation values versus 𝑀𝑀𝑃 for multi-

network case without message transfer (left) and with message transfer (right), 

respectively. Each dot in the charts shows the 𝑅𝑆𝐷 of a specific problem scenario, 

reflecting the stability of message dissemination outcomes under the variations in user 

information sharing behaviors in that scenario. All the problem scenarios are plotted in  
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Figure 5.8 Objective value vs. 𝑀𝑀𝑃 
 

 

 

Figure 5.9 Relative standard deviation (𝑅𝑆𝐷) vs. 𝑀𝑀𝑃 
 

 

 

the figure. Generally speaking, increasing source messaging capability within the 

planning horizon is helpful to reduce the degree of variation, which can be seen in both 

cases. In particular, larger messaging capability tends to result in smaller range of the 

degree of variation (i.e., smaller gap between largest and smallest values corresponding 

to each capability level). Moreover, comparing the dots for two cases, the largest degree 

of variation corresponding to each source capability level is significantly reduced as a 
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result of introducing message transfer, especially when source messaging capability is 

low (e.g., 0.34 to 0.18 at 𝑀𝑀𝑃 = 1). In both cases, the largest degree of variation for 

each messaging capability level can be fitted well using a logarithm function (with 

𝑅2 > 0.9), as shown in Figure 5.10 and Figure 5.11. As a summary, increasing source 

messaging capability within the planning horizon contributes to stabilize the message 

dissemination outcomes under the variations in user behaviors, and message transferring 

behavior can further strengthen such effect. Therefore, to achieve more robust message 

dissemination outcomes, emergency management organizations and agencies should try 

to target as many nodes as possible within the planning horizon by planning early, 

building more reliable connections with the population, and/or applying more powerful 

technologies. At the same time, they should also encourage users’ message transfer 

behaviors between networks and adapt their messages to make the transfer operation 

more convenient for them.  

Now we move the attention to the most unstable problem scenarios, each of 

which has the largest 𝑅𝑆𝐷 value for a specific messaging capability level. In particular, 

we are interested in how network condition and network density affect the instability. 

Figure 5.10 and Figure 5.11 show the 𝑅𝑆𝐷 versus 𝑀𝑀𝑃, grouped by network condition 

and density respectively. For a given messaging capability level, each dot gives the 

largest 𝑅𝑆𝐷 over the problem scenarios of a specific group, and the dot 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 circles 

the largest 𝑅𝑆𝐷 for that messaging capability level. From Figure 5.10, it is clear that the 

highest instability is always associated with the scenarios with (𝐷𝑀1,𝐷𝑀2) = (1, 3) or 

(3, 1) (with only one exception in the right-hand-side chart at 𝑀𝑀𝑃 = 8, where the 
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largest 𝑅𝑆𝐷 is from (𝐷𝑀1,𝐷𝑀2) = (3, 3), but its value very close to (1, 3)). This 

implies that the message dissemination outcomes are most influenced by the variations 

in user behaviors when the conditions of the two networks are different (i.e., one’s 

condition is good and the other’s is bad). And when the conditions are both good or both 

bad, the message dissemination outcomes are not likely to be affected significantly by 

user behaviors.  

Similar observation can be made for the impact of network density, as shown in 

Figure 5.11. Networks with lower density tend to create more ground for the highest 

instability given a specific messaging capability level, since largest 𝑅𝑆𝐷 is found 

associated with (𝑁1,𝑁2) = (0.09, 0.11) in 38% of the capability levels (5 out of 13 

capability levels), same for both cases. On the other way, networks with higher density 

are less likely to lead to highest instability. That is, 8% (1 out of 13) and 23% (3 out of 

13) of the largest 𝑅𝑆𝐷 is found associated with (𝑁1,𝑁2) = (0.14, 0.22) for the case 

without message transfer and with message transfer, respectively. As an implication, the 

emergency managers should be fully aware that network density and condition can 

significantly affect the stability of the message dissemination outcomes given that the 

users’ information sharing behaviors on social media are unpredictable and subject to 

changes in disasters and extreme events, and they could reduce such instability by 

increasing their messaging capability within the planning horizon and taking measures to 

encourage users’ message transfer behaviors between networks. 
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Figure 5.10 𝑅𝑆𝐷 vs. 𝑀𝑀𝑃 grouped by network condition 
 

 

 

Figure 5.11 𝑅𝑆𝐷 vs. 𝑀𝑀𝑃 grouped by network density 
 

 

5.3.4. Results and analysis on node activation 

Based on the analysis from Chapter IV, node degree has a major impact on individual 

node’s activation (i.e., message reception). In general, nodes with higher degree are 

more likely to be active at the end of the planning horizon, and they tend to become 

active sooner in the planning horizon. Here we explore such relationships in the presence 

of multiple networks and message transfer. 
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5.3.4.1. Node activation at the overall scale 

We are interested in the relationships between node degree and activation status at the 

end of the planning horizon/the activation time in the planning horizon. Note that in the 

presence of multiple networks (two networks in the experiments here), there are multiple 

degree values (two degree values here) associated with each node, so we consider the 

min, max, and sum of these degree values for each node in this analysis. To study the 

relationship between node activation status and node degree, we count the times that a 

specific node is active at the end of the planning horizon over all test instances and 

define the probability of activation (𝑃𝑂𝐴) of a node 𝑖 as  

 

𝑃𝑂𝐴𝑖 =
# 𝑎𝑐𝑡𝑖𝑣𝑒

# 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

 

where # 𝑎𝑐𝑡𝑖𝑣𝑒 is the number of times node 𝑖 is active at the end of the planning horizon 

and # 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 the total number of instances that node 𝑖 is involved in. To study the 

relationship between node activation time and node degree, we sum up all the time 

periods at with a specific node becomes active over all test instances and define the 

average activation time (𝐴𝐴𝑇) of a node 𝑖 as  

 

𝐴𝐴𝑇𝑖 =
𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡 𝑡𝑖𝑚𝑒

# 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
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where 𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡 𝑡𝑖𝑚𝑒 is the sum of activation times for node 𝑖 and # 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 the total 

number of instances in which node 𝑖 is active eventually. With 𝑃𝑂𝐴𝑖 and 𝐴𝐴𝑇𝑖 defined, 

we calculate the values for each node in each of the four sets of networks accordingly, 

and this results in 400 𝑃𝑂𝐴 and 𝐴𝐴𝑇 values respectively for each case. The detailed 

analysis is presented in the following. 

  We create scatterplots for 𝑃𝑂𝐴 and 𝐴𝐴𝑇 values versus min, max and sum of 

node degree in two networks to explore their relationships. Interestingly, these 

relationships can be fitted well with logarithm functions, compared to linear, 

exponential, power and polynomial functions. And among these logarithm functions, 

largest 𝑅2 values can be observed when versus sum of degree, which indicates an 

individual’s activation status at the end of the planning horizon and activation time in the 

planning horizon are significantly more dependent on the total number of connections 

she has on both networks rather than a single one of them. The fitted lines are given in 

Figure 5.12, which shows activation status on the left and activation time on the right. 

These results are inspiring in that they would potentially empower emergency 

organizations and agencies to predict message reception as well as message delivery 

time in a given population solely based on node degree information, which is easily 

accessible through collaborations with social media service providers like Facebook and 

Twitter.       
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5.3.4.2. Node activation by network density 

Here we examine the relationships discussed in section 5.3.4.1 more carefully by 

dividing the nodes based on the network density. Specifically, we fit the 𝑃𝑂𝐴 and 𝐴𝐴𝑇 

values versus sum of degrees for two cases on each of the four sets of networks and 

examine the 𝑅2 values associated with the fitting. The results are plotted in Figure 5.13.  

 

 

 

Figure 5.12 Node activation status (left) and activation time (right) vs. sum of degree 
 

 

 

Figure 5.13 𝑅2 values of the fittings by networks 
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We can see that the case with message transfer always has higher 𝑅2 values. When 

messages can be transferred between networks, the nodes actually have more virtual 

connections (that are not directly reflected in their node degree), so the activation status 

and activation time are less dependent on their degree on the networks. For activation 

status, larger 𝑅2 values can be found associated with networks with low density for both 

cases, which indicates a stronger dependency of activation on degree when the networks 

involved are relatively sparse. For activation time, smallest 𝑅2 values can be found 

associated with (𝑁1,𝑁2) = (0.09, 0.22) for both cases. This implies that activation time 

may have more variations and thus becomes less predictable when the networks 

involved are unbalanced in terms of density. In summary, these results could help 

emergency managers predict message reception and delivery in the population at risk in 

real-world applications, which has been a major challenge they have been facing, and the 

implications could be considered to improve social media messaging decisions.   

5.3.5. Results and analysis on node targeting 

As discussed previously in this dissertation, a social media messaging strategy with node 

targeting could help emergency management organizations and agencies significantly 

improve their communication efficiency by delivering their messages to the population 

at risk in a wide and timely manner. On the other way, the nodes targeted by these 

organizations and agencies should possess some features (compared to untargeted nodes) 

that contribute to wider and faster message dissemination in disasters and extreme 

events. Therefore, we examine the subset of targeted nodes in the experiments here in 
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order to find how and to what degree decision parameters, including length of planning 

horizon, network density as well as network conditions, affect node targeting decisions. 

We are particularly interested in the role that node degree information can play in 

helping emergency managers identify the subsets of nodes to target. The reason we 

choose node degree information is that it is easily accessible to these organizations and 

agencies and the characteristics of node degree are relatively stable in emergency 

settings, compared to user behaviors that are more unstable and unpredictable. The 

results and findings are presented below. 

  Recall that there are two degree values associated with each node in our 

experiments. When a node is targeted by any of the message sources, we consider the 

degree on the network where it is targeted (target network) as well as the sum of degree 

on both networks. Figure 5.14 shows the weighted average of degree on target network 

and sum of degree on both networks respectively for all the targeted nodes in the 

experiments. In particular, we divide these targeted nodes by the wave they belong to. 

Wave 1 includes the nodes targeted in the first time period and Wave 2 in the second or 

third time period (based on messaging interval 𝑙). The weights are given by frequency 

(i.e., the number of times a node is targeted in a certain wave). The lines called 𝑚𝑒𝑎𝑛 

and 𝑚𝑒𝑑𝑖𝑎𝑛 represent the mean and median of node degree values based one (left) or 

two (right) networks, added as baseline information. In both charts, Wave 1 nodes are 

highly distinct from others for their higher-than-average degree values, which cannot be 

observed for nodes in other waves. And from the comparison of Wave 1 columns 

between the left and right charts, it appears that the nodes targeted in Wave 1 are  
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Figure 5.14 Overall degree characteristics of targeted nodes 
 

 

associated with high sum of degree, in the presence of message transfer. As an general 

implication for emergency managers, they could consider targeting the high-degree 

nodes on the network especially in the initial period of the planning horizon to achieve a 

good message dissemination outcome, and when message transfer behavior is common 

among the users, the degree on both networks (potentially all networks involved) should 

be considered. 

From here we move the attention to the nodes targeted in Wave 1 and examine 

these nodes by specific problem scenarios. Specifically, we calculate the weighted 

average of degree and sum of degree values for all the targeted nodes in each problem 

scenario, and aggregate these results by decision parameters including length of planning 

horizon and network condition. We observe the average (𝐴𝑉𝐺) and standard deviation 

(𝑆𝑡𝐷𝑒𝑣) of these aggregated values in order to examine the targeting decisions under 

different decision parameters. Figure 5.15 and Figure 5.16 give the characteristics of the 
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targeted nodes in Wave 1 by planning horizon length and network condition, 

respectively. Through the comparison between left-hand side and right-hand side, it is 

still the case that sum of degree values is more important in the presence of message 

transfer behavior. When |𝑇| = 5, … ,8, the degree characteristics (𝐴𝑉𝐺 and 𝑆𝑡𝐷𝑒𝑣) of 

the two cases, red columns/bars on left-hand side and green columns/bars on right-hand 

side, are almost the same on each set of networks. This may imply that when the 

planning horizon is relatively long, the targeting decisions could be more stable and 

robust (i.e., such decisions don’t have to be changed significantly as planning horizon 

gets longer). Considering the size of such Wave 1 nodes is relatively small, emergency 

management organizations and agencies could manage them with less effort. Same 

findings can be made in Figure 5.16 as well, in which the red columns/bars on left-hand 

side (reflecting the targeting decisions for the case without message transfer) and green 

columns/bars on right-hand side (reflecting the targeting decisions for the case with 

message transfer) do not exhibit any significant differences when network conditions 

change. As a summary and a general implication, the degree characteristics of the 

targeted nodes in the initial period of the planning horizon are relatively stable under the 

changes of planning horizon length as well as network condition and insensitive to 

network density, therefore emergency managers could potentially identify and maintain 

a core subset of users and make sure they receive (and share) messages timely in order to 

achieve good dissemination outcomes under the changes of network structure, density as 

well as condition in disasters and extreme events.          
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Figure 5.15 Degree characteristics by problem scenarios and planning horizon length 
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Figure 5.16 Degree characteristics by problem scenarios and network condition 
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5.4. Closing Remarks for MM-SMMDP 

In this chapter, we examine the message dissemination application scenario in which 

multiple messages need to be disseminated to a population within a predefined planning 

horizon in the presence of multiple social media networks. In addition to sharing 

messages on a social media network, individual nodes could also transfer messages from 

the current network to other networks, subject to some delay constraints. These new 

features are captured in the MM-SMMDP model. Computational experiments are 

performed using small-scale Twitter sub-networks and on different cases to study this 

new dissemination scenario. We consider decision parameters, including length of 

planning horizon, source messaging capacity, source messaging interval, network 

density as well as network conditions, and examine their impacts on CPU time, objective 

values, node activation as well as node targeting decisions.  

We find that planning horizon length affects CPU time significantly, compared to 

other factors, and the CPU time fluctuates more drastically as the increase of messaging 

capacity when the networks are sparse and the planning horizon is long. The objective 

value reflects the outcome of message dissemination in a specific problem scenario. We 

show that the best and worst-case outcomes can be predicted using the maximum 

targeting capability of the message sources in the whole planning horizon. We also 

demonstrate that network density and condition can significantly affect the stability of 

the message dissemination outcomes under the variations in users messaging behaviors 

on social media networks. In the presence of two networks, we find node activation 

status at the end of the planning horizon and activation time in the planning horizon are 
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highly correlated to the sum of degree values on both networks, and the relationships can 

be fitted well using logarithms functions. We also show the performance of these 

functions depends on the density of the networks involved. For node targeting, we find 

that the nodes targeted in the first wave are associated with high degree. In particular, in 

the absence of message transfer, they have high degree on the network where they are 

targeted, while when message transfer is present, they exhibit high sum of degree values 

on both networks. We also find the degree characteristics of the targeted nodes in the 

initial period of the planning horizon are relatively stable under the changes of planning 

horizon length as well as network condition and insensitive to network density. 

There are some limitations in this work that need to be addressed in order for a 

better use of the results and implications. First, we perform all the experiments on 100-

node Twitter sub-networks. More studies needs to be done in the future on large-scale 

networks as well as different types of social media network to compare with the current 

results and trends. Second, we assume here individual’s sharing and transferring 

behaviors are totally independent. However, such an assumption needs to be revisited 

whenever new research progress on that is available. Third, efficient algorithms need to 

be developed and tested for problems of real-world size, and effective heuristics may be 

considered for that purpose.  
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CHAPTER VI  

CONCLUSIONS AND FUTURE RESEARCH  

 

There has been an increasing use of social media in disseminating emergency messages 

by various governmental and non-governmental emergency management organizations 

and agencies in recent year. However, the knowledge about the impact of social media 

message propagation on individual message reception as well as the identification of 

strategies to facilitate message dissemination is too little under the complex 

environments in disasters and extreme events.  

This research was motivated by these facts and takes a first step to conduct 

quantitative analysis on social media messaging strategies for emergency management 

organizations and agencies. We capture the message propagation process on social 

media networks by considering user information sharing behaviors and explore message 

targeting strategies under the constraints of the length of planning horizon, source 

messaging capability as well as network structure and conditions. We examine three 

message dissemination application scenarios, including a single-network single-message 

scenario, a single-network multi-message scenario, and a multi-network multi-message 

scenario, and perform computational experiments on smaller-scale random and Twitter 

networks. 

We show the impacts of these factors on computational performance, message 

dissemination outcomes as well as node targeting decisions based on the computational 

results. All the factors are found to have some impact on the message dissemination 
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outcome, but the degree of the impact varies over different application and problem 

scenarios. We also look into the combined effect of these factors and put them into two 

categories, one reflecting emergency managers’ considerations (i.e., planning horizon 

length, source messaging capacity and interval as well as maximum source messaging 

capability), and the other reflecting network characteristics (i.e., network density and 

condition). The findings can provide valuable insights for emergency management 

organizations and agencies in developing social media messaging strategies under 

different scenarios and situations. 

We particularly examine node degree characteristics for their potential to be used 

to predict message reception and message delivery time and to identify influential users 

to be targeted by message sources. The results are promising, although limited by the 

scale and range of the experiments. Compared to user information sharing behaviors, 

these characteristics are easily accessible to the emergency management organizations 

and agencies and relatively stable in emergency settings, so we expect the implications 

and strategies developed based on them to be more reliable for applications in disasters 

and extreme events.       

Although inspired by the results and implications, we are aware of the limitations 

of this work that need to be addressed in future work. An immediate area of emphasis is 

on diversifying experimentation on social media networks of different sizes (e.g., 500, 

1000, 5000, 10000, 50000, 100000-node networks and so on) as well as social media 

networks of different types (other than Twitter) to see whether the trends observed and 

implications derived in this research are still true. To do this, effective tools to acquire 
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these large-scale networks are needed. Another future direction of this research is to 

revisit some of the assumptions we made in this research. In particular, we assume 

individual user’s information sharing behaviors are independent and sample them 

randomly from some common distributions. This may not be true in reality. For 

example, a user’s information sharing behaviors for different messages on a social media 

site might be correlated, and these behaviors for a specific message on different social 

media sites might be correlated too. This is a very complex problem, so more efforts are 

needed to get a better understanding. Also, we assume the message sources, FEMA, 

NWS, NOAA, etc. are independent in this research, while in reality they have been 

observed to have some kind of interactions between each other on major social media 

sites. While the scale and frequency of such interactions are unclear, their impact on 

message dissemination as well as targeting strategy making is worth noticing and 

examining.  

Despite the limitations of this research, it conceptualizes the major components 

in the identification of social media messaging strategies in disasters and extreme events 

and develops a feasible solution framework to obtain such strategies with length of 

planning horizon, source messaging capability as well as network structure and 

conditions taken into account. This framework is adaptive, in that new research results 

(such as those on user information sharing behaviors) can be integrated very easily, and 

therefore it has the potential to assist emergency managers’ social media messaging 

decision making in the short and  long run. It is our hope that this research could 

motivate more research efforts into social media use in emergency communication 
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especially into social media messaging strategies to improve dissemination performance 

of emergency messages. In some cases, this performance means life or death. 
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