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ABSTRACT

In recent years, there has been an increasing use of social media in disseminating
emergency messages to the public by various governmental and non-governmental
emergency management organizations and agencies. These messages, including alerts,
warnings and updates, carry important event-related information that helps improve
individuals’ situational awareness and decision making before, during and after an event.
Therefore, wide and timely dissemination of these messages among the public especially
the population at risk will be a key for successful emergency preparedness, response, and
recovery. However, there is too little knowledge about the impact of social media
message propagation on individual message reception as well as the identification of
strategies to facilitate message dissemination under the complex environments in
disasters and extreme events.

This research was motivated by these facts and takes a first step to conduct
quantitative analysis on social media messaging strategies for emergency management
organizations and agencies. Specifically, it examines the message propagation process
on social media networks and explores message targeting strategies under the constraints
of the length of planning horizon, source messaging capability as well as network
structure and conditions. Three message dissemination scenarios are studied, including a
single-network single-message scenario, a single-network multi-message scenario, and a
multi-network multi-message scenario. The impacts of various factors on message

dissemination outcomes and targeting decision making are examined through



computational experiments on smaller-scale random and Twitter networks. Results and
implications for real-world applications are discussed.

This research contributes to the theory and application of social media use in
emergency communication mainly in three aspects. First, it summarizes the mainstream
literature on this topic and points out the research need for social media messaging
strategies for emergency management organizations and agencies in disasters and
extreme events. Second, it conceptualizes the problem, develops three message
dissemination application scenarios, and provides discrete optimization models for each
of them. Third, it conducts extensive computational experiments on small-scale random
and Twitter networks to verify the models and study their performance. The implications
derived from the results provide valuable insights for emergency management
organizations and agencies in developing social media messaging strategies in the real-

world applications.
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CHAPTER |

INTRODUCTION

Social media is defined as any online or digital medium that is provided or collected
through a channel that enables the two-way sharing of information, involving multiple
parties. This includes social networking sites, texting, and blogs (DHS, 2014). In recent
years, social media has been receiving significant attentions from various governmental
and non-governmental emergency management organizations and agencies as a viable
and accessible emergency communication platform in disasters and extreme events. In
particular, there has been an increasing use of social media in disseminating emergency
messages to the public. These messages carry important event-related information that
contributes to improve individuals’ situational awareness and decision making in an
event. Hundreds of emergency management organizations and agencies, including
FEMA, NWS, and NOAA, have their own accounts or pages on social media sites like
Twitter and Facebook (Sutton et al., 2012). They broadcast disaster knowledge, safety
instructions for different emergency events and other disaster-related educational
information to the public during normal (day-to-day) conditions (Figure 1.1), and
disseminate alert and warning messages, event updates as well as evacuation information
before, during and after an extreme event (Figure 1.2). More importantly, social media
empowers these organizations and agencies to conduct two-way and many-to-many
communications during an event, greatly improving the scale and efficiency of

communication.



& FEMA

FEMA

Small businesses: learn how to design,
manage & measure your disaster response
capabilities by using exercise plans
go.usa.gov/3KErC.

Figure 1.1 An example of FEMA educational message on Twitter (FEMA, 2015)

FE) U.s. National Weather Service (NWS)
ke i
Severe weather possible from southern Texas southern Great Lakes

The NWS Storm Prediction Center is forecasting a risk of severe
thunderstorms Monday afternoon from southern Texas across the lower
Mississippi. Tennessee and Ohio valleys and into the southern Great
Lakes. The main threats will be damaging wind and large hail, with a
couple tornadoes possible across the southern Great Lakes. Details. .

http://go.usa.goviRvk

Figure 1.2 An example of NWS warning message on Facebook (NWS, 2015)

To obtain timely and accurate event-related information, the public may follow
(Twitter), like (Facebook), or in some other way, connect to official social media
accounts of governmental organizations and agencies at the national and local levels,
such as FEMA or NWS, as well as non-governmental organizations (e.g., The Red
Cross). FEMA has 396,773 followers on Twitter and NWS has 387,589 page likes on
Facebook as of May 13, 2015 (obtained directly from twitter.com and facebook.com).
This ease of accessibility, coupled with real-time (or near real-time) communication
capabilities, enables social media users to actively engage in disaster preparation,
response and recovery by either re-releasing/re-phrasing organization information or

relaying their own observations, experiences, thoughts and actions. In disasters and



extreme events, individuals use social media to express emotional feelings (fear,
concern, etc.), ask for help, check the wellbeing of their family and friends, and/or seek
disaster-related information, among other uses. Responders or any member of the
general public on the scene or near the scene of an extreme event incident are able to
post on-the-ground information, including observations, images, and videos, to social
media using any number of commercially available mobile devices (e.g., smartphone,
iPad, etc.). In certain circumstances, members of the general public are actually serving
in a pseudo-first responder role to help relay important information back to official
emergency responders (Wukich & Mergel, 2014).

Under current situations, the message dissemination process typically starts from
an official source posting a message to its page on one or several social media sites, as
illustrated in Figure 1.3. This message will be automatically shown on the wall of each
user it is connected to (i.e., follower or page liker). The users who received and read the
message may choose to redistribute it by sharing (retweeting) to their friends (followers)
on the same network. They can even “transfer” this message to another social media site
they use. This could happen when there is a link in the original message, which typically
directs them to an article and they will have multiple redistribution options there. This is
illustrated in Figure 1.4. When they do the transfer, they are actually redistributing this
message on another social media site. As message redistribution continues on these sites,
more and more people are potentially exposed to the message (we use the term
potentially exposed as receipt of any social media message requires action on the part of

the receiver to read the message. While a message may have been delivered to a social
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Your phone or tablet can be a resource during disasters. The The New

York Times highlighted a few great apps 1o check out, including apps from
FEMA. the American Red Cross, and National Institutes of Health (NIH)!

Video Feature: Apps to Cope and Help in a Disaster
Apps from FEMA and the American Red Cross can aid in preparedness and in
dealing with the aftermath of disaster.

£ 348 shares

FEMA

The New York Times

View on web

o AREcOARLY

Video Feature: Apps to Cope and Help in a Disaster

Apps from FEMA and the American Red Cross can aid in
preparedness and in dealing with the aftermath of disaster.

+% Follow

Your phone or tablet can be a resource
during disasters - check out the
& others nytimes.com/2015/05/07/tec... hit

Dnytimes

fema app

Figure 1.3 A FEMA message on Facebook (left) and Twitter (right) (FEMA, 2015)
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Figure 1.4 An illustration of message transfer between sites (FEMA, 2015)

media user, there is no guarantee when that message will be read).

As one of the major stakeholders in an event, the official source would likely

hope for the best dissemination outcome from any message distribution, which one

might interpret as delivering the message to as many people as possible within a short

period of time (i.e., within the planning horizon for a specific event). However, the




simple one-to-all, post-and-wait message dissemination strategy typical of most social
media sites and tools may not satisfy such expectation and in practice quite often tends
to fail in delivering key messages to specific audiences in need (CDC, 2012). An
important reason for this failure is the lack of engagement in this process. Only a small
portion of an active social media population (those who ‘follow’ or ‘like’ the official
source) can receive directly from the source, leaving the majority of the population to
receive the message from their friends or some other third-party in the network with
whom they share a connection. While such a “word of mouth” message propagation
mechanism is beneficial in emergency communication contexts due to the fact that
people tend to react more actively when information is provided by family members and
close friends than government officials (Crowe, 2010), the ultimate dissemination
outcome will largely depend on the message’s starting points on the network (followers,
page likers, and/or intended message receivers) and the degree of willingness and
responsiveness of every recipient of the message to pass on the message so that it will be
visible to other friends/users on the social media site (Kempe et al., 2003) . At the same
time, the message dissemination outcome is also affected significantly by the length of
planning horizon for the event or extreme event being discussed as well as the structure
and condition of the underlying social media network during the event (within which we
include consideration to the physical and cyber infrastructure necessary to reliably run
and allow access to the social media site). A social media messaging strategy without
considering these factors and limitations could barely be effective in the complex and

dynamic environments in disasters and extreme events.



Given the aforementioned observations and challenges in distributing time-
sensitive messages through social media, it is necessary to identify ways in which
emergency management organizations and agencies could play a more engaged role in
the message dissemination process, exploiting those well-known and exhibited social
media behaviors to increase message penetration and message retention to influence or
induce derivative action of a population. As an alternative to the current practice of
message ‘blasting’ through social media during extreme events, a social media
messaging strategy that integrates decision environments with an emphasis on node
targeting could be a viable solution for emergency management organizations and
agencies to achieve wide and timely message dissemination in disasters and extreme
events. Specifically, agencies and managers could take into account the major factors
impacting message dissemination outcomes, including length of planning horizon,
source messaging capacity, social media network structure and conditions, and user
behaviors, to target specific groups of users. This selective targeting, as it is reasoned,
would achieve faster message propagation and wider message reception on the social
media sites. This phenomenon is similar traditional message dissemination observed in
evacuation warning: message source and content are two very key indicators of message
reception, retention and subsequent action. By targeting messages towards known users
during an extreme, emergency managers/agencies increase their capability to exploit
these two indicators in extreme event message dissemination. An illustration of such a
strategy is given in Figure 1.5, in which FEMA, NWS and a local agency could target

users in the given way to achieve a better message dissemination outcome.
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Figure 1.5 An illustration of social media messaging strategy with node targeting

In this research, we examine the message propagation process on social media
networks and explore effective message targeting strategies under the constraints of the
length of planning horizon, source messaging capability, user behaviors as well as
network structure and conditions. Three message dissemination application scenarios are
studied, including a single-network single-message scenario, a single-network multi-
message scenario, and a multi-network multi-message scenario. The impacts of various
factors on message dissemination outcomes and targeting decision making are examined
through computational experiments on smaller-scale random and Twitter networks.
Results and implications for real-world applications are discussed.

This research contributes to the theory and application of social media use in
emergency communication mainly in three aspects. First, it summarizes the mainstream
literature on this topic and points out the research need for social media messaging
strategies for emergency management organizations and agencies in disasters and

extreme events. Second, it conceptualizes this problem, develops three message



dissemination application scenarios, and provides discrete optimization models for each
of them. Third, it conducts extensive computational experiments on small-scale random
and Twitter networks to verify the models and study their performance. The implications
derived from the results provide valuable insights for emergency management
organizations and agencies in developing social media messaging strategies in the real-
world applications.

The remainder of this dissertation is organized as follows. Chapter Il provides a
thorough literature review, which summarizes recent research on social media use in
emergency communication and compares the proposed problem with the existing ones
from other fields. Chapter I11 through Chapter V detail three research problems, the
Single-network Single-message Social Media Message Dissemination Problem (SS-
SMMDP), the Single-network Multi-message Social Media Message Dissemination
Problem (SM-SMMDP), and the Multi-network Multi-message Social Media Message
Dissemination Problem (SM-SMMDP), which correspond to three message
dissemination application scenarios. Chapter VI concludes the dissertation and discusses

some directions for future research.



CHAPTER II

LITERATURE REVIEW

2.1. Social Media in Emergency Communication

There has been a wealth of literature put forth in the past few years on social media use
in emergency communication, which is also referred to as disaster communication or
crisis communication in different application contexts. Based on the method used, we
can categorize them as either qualitative or quantitative. Table 2.1 and Table 2.2
summarize the notable literature in recent years for these two categories, respectively.
We can also put the qualitative literature into two categories based on the publication
type, including: (1) agency reports, which were released by governmental and non-
governmental emergency management organizations and agencies, and (2) research
papers, which were typically published on academic journals and conference

proceedings. We elaborate on each of these categories in the following.

2.1.1. A review on agency reports

A large portion of the agency reports is detailing examples, practices as well as
recommendations for social media use in emergency communication. Queensland Police
Service (2011) details a successful use of social media in 2010 Australian Tropical
Cyclone Tasha. They attribute a big part of their success to the capability empowered by
social media that allowed them to push out large volumes of specific information straight
to communities before the mainstream media coverage was available to them, and

9
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suggest social media should be used immediately instead of waiting till a disaster strikes
and be used for both disseminating information and receiving feedback.

Wardell 11 and Su (2011) discuss social media adoption in the emergency
management community, and conclude that social media technologies have been
predominantly used by public information officers (PIOs) to disseminate information to
the public and monitor streams of publicly available information. Lindsay (2011) point
out that the public may increasingly expect emergency management agencies to use
social media to meet their informational needs due to the fact that a significant number
of people will likely choose social media as their main source of information as its
popularity grows. They also suggest a systematic use of social media in disasters and
extreme events including issuing alerts and warnings, receiving requests for assistance,
monitoring user activities to establish situational awareness, and using uploaded images
to create damage estimates.

Mergel (2012a) provide a manager’s guide for using Twitter in government by
detailing relevant Twitter features, such as retweeting, mentioning, hashtagging, direct
messaging and so on, while Mergel (2012b) focus on the metrics to measure government
social media interactions and discuss five potential approaches, including breadth (who
they are reaching and if they are reaching the right audience), depth (how the audience
percept and respond to their information), loyalty (how often citizens return to their
social media sites), sentiments (how is engagement rate of citizens with their social

media content), as well as data (what online and offline data indicate).
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Meanwhile, challenges, considerations and gaps associated with the use of social
media in emergency communication are discussed in detail in these reports as well.
Wardell 111 and Su (2011) point out the gap between the current state and the desired
state of social media usage in emergency communication and recommend one major
focus for the emergency management community is examining social influences on
citizen preparedness and response behavior with inclusion of the effect of social
networks when coupled with various messaging strategies. Mergel (2012a) particularly
mention the need for an effective tool to get an assessment of how many individuals
were reached by the message send from a governmental account on Twitter, instead of
simply looking at the number of followers and retweets. CDC (2012) think social media
and their use on mobile devices is a rapidly changing landscape that requires constant
analysis and proactive planning, and provide a social media communications strategy
worksheet which considers target audience, objectives, resources and capacity, and so
on. DHS (2014) discuss the challenges associated with the integration of social media
data within the information sharing and operational environment as well as the
considerations for better leveraging social media to enhance situational awareness and
decision support. One of these challenges is how to use of social media data to predict

and model potential outcomes and cascading effects.

2.1.2. A review on research papers
Magro (2012) examine the progress of social media policies in emergency management
over time and point out the research need in long-range plans for citizen participation

and involvement as well as strategies associated with that for using social media in e-
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government. Jaeger et al. (2007) and Tyshchuk and Wallace (2013) discuss a similar
topic at the community level. Specifically, Jaeger et al. (2007) explore the concept of
and need for developing community response grid (CRG) for community emergency
response and examine the issues of public policy and technology related to such a
system. Using the case of Del Norte County, CA during 2011 Japan tsunami, Tyshchuk
and Wallace (2013) demonstrate that governmental organizations may successfully
utilize social media during disaster events by closing a feedback loop between first
responders and the public, by monitoring information flow, and by providing regular
updates to the public.

Shklovski et al. (2008), Hughes et al. (2008), and Sutton (2010) study the
phenomenon that geographically dispersed users broadcast local and community-
relevant information in social media during an emergency event. They believe such
interactions via information and communications technology (ICT) not only have
immediate benefits, but also establish emergent practices that prepare for the future.
Sutton et al. (2011) examine the role of social media in information-sharing in disasters
compared to traditional news media, showing that pre-existing networks and community
partnerships are the foundation for information sharing in an emergency event, while
Yates and Paquette (2011) propose to use social media as a knowledge management
system in the dynamic emergency environment by studying the US response to 2010
Haiti Earthquake. Artman et al. (2011) introduce the concepts of dialogical emergency
management and strategic awareness to enhance communication between emergency

management organizations and the public in social media.
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White (2012) and Crowe (2012) conduct systematic and comprehensive studies
on social media, Web 2.0 technology, and leveraging them in emergency management
and emergency communication.

Quantitative research papers include applied or adapted methods that include
data mining, machine learning, statistical analysis and modeling, content analysis,
natural language processing as well as simulation. In these cases, Twitter is often the
main social media venue used due to its popularity as a social networking site as well as
its free accessibility to real-time and archived tweets (through the Firehose or other
streaming/querying methods). A summary of these selected papers which emphasize a
more mathematical or statistical research approach is provided in Table 2.2 previously.

Taking social media users as social sensors, Sakaki et al. (2010) propose an
algorithm to monitor tweets in real-time and detect earthquake event. They show that
96% of the earthquakes with intensity scale 3 or more in Japan can be detected by the
algorithm. By examining a population’s participation in evacuation with the presence of
social network communications using agent-based simulation, Widener et al. (2012) find
social networks with greater geographic dispersion result in more residents evacuating
and suggest that the impact of social network on individuals’ evacuation decisions
should be considered by emergency managers when they develop strategies to encourage
evacuation in extreme events.

Vieweg et al. (2010), Yin et al. (2012), Vieweg (2012), and Vieweg et al. (2014)
examine social media as a critical tool to enhance emergency situational awareness. Yin

et al. (2012) detail the architecture of a system developed for the Crisis Coordination
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Center in Australia, which gathers tweets in real-time and integrates components for
burst detection, text classification, online clustering, geotagging as well as visualization,
while Vieweg et al. (2010), Vieweg (2012), and Vieweg et al. (2014) focus on applying
behavioral and linguistic analysis to the extracted Twitter text stream and
communication data during specific events to help emergency managers understand the
“big picture” in time- and safety-critical situations.

Tweeting/retweeting behaviors and the impact on message propagation in
emergency events are studied in Starbird and Palen (2010), Spiro et al. (2012a), Spiro et
al. (2012b), Lachlan et al. (2014a), Lachlan et al. (2014b), and Sutton et al. (2014).
Specifically, Starbird and Palen (2010) summarize the characteristics of the tweets that
are more likely to be retweeted during an emergency, in terms of the source and content
of the tweets. Spiro et al. (2012a) identify perceived importance and potential to impact
decision-making behavior as influential determinants in informal message dissemination
by examining the case of 2010 Deepwater Horizon oil spill, while Spiro et al. (2012b)
define the time between information dissemination and redistribution on Twitter as the
waiting time of a tweet, and propose a preliminary model for the relationship between
this time and features about the users involved, the external context, and the message
itself.

Lachlan et al. (2014a) examine the volume and content of tweets and
dissemination of tweets in Hurricane Sandy and find tweet rate increased during the
storm but governmental and organizational responses were largely absent, while Lachlan

et al. (2014b) focus on the impact of hashtag use (i.e., localized hashtags vs non-
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localized hashtags) on message dissemination during Snowstorm Nemo, showing that
tweets with localized hashtag tend to provide more useable information and using
appropriate hashtags may contribute to a greater visibility of the tweets in the affected
population. Sutton et al. (2014) examine the retransmission of tweets during 2012 Waldo
Canyon Fire in Colorado and find the tweets containing hazard impact, safety
instructions, and/or links (URL) to protective action guidance (e.g., evacuation) were
more likely to be retweeted than others. They also conclude that in this event officials
utilized Twitter to relay information that is broadly applicable to the entire local public
rather than using Twitter to post timely, focused, warning guidance for populations

under imminent threat.

2.1.3. Alert and warning messages

Alert and warning messages carry critical and time-sensitive information about the event
(e.g., real-time updates, safety instructions, evacuation guidance, etc.) that emergency
management organizations and agencies want to convey to the public. These messages,
helps improve individuals’ situational awareness and decision making before, during and
after an event, so wide and timely dissemination among the public especially the
population at risk will be a key for successful emergency preparedness, response, and
recovery. The content and style of these messages would affect the information
dissemination and communication effectiveness to a large extent. Sorensen (2000)
specify the aspects that warning messages should include in terms of content (nature,
location, guidance, time, and source of the hazard or risk) and style (specificity,

consistency, accuracy, certainty, and clarity) respectively. Lindell et al. (2007), Veil et
17



al. (2011), Vieweg (2012), and CDC (2012) emphasize that emergency managers must
be aware of and take into account the differences among population segments, including
culture diversity, ethnic background, community history, and socioeconomic status,
while developing and distributing emergency warning messages. By Lindell et al.
(2007), Tyshchuk et al. (2012), and Sutton et al. (2014) warnings are most effective
when a credible source provides a message that is clear, consistent, easily understood
and contain information about the potential impacts and risks of the threat, and include
what action should be taken. Several key message components are also identified to
increase the chance of retweet and improve effectiveness of communication. Such
components include localized information and emergency-related terms (Starbird &
Palen, 2010; Spiro et al., 2012a; Lachlan et al., 2014b), pictures/videos from the scene of
event and maps showing the exact locations of evacuation zones and emergency shelters
(Sutton et al., 2011), as well as hashtags, URLSs (shortened or truncated URLS), and
mentions of other users (Mergel, 2012; Spiro et al., 2012b; Lachlan et al., 2014a;

Lachlan et al., 2014b).

2.2. Related Problems from Other Fields

2.2.1. Network flow problems (NFPs)

There are several network flow problems that share some features with the social media
dissemination problems we propose in this dissertation. These problems include the
Minimum Cost Network Flow Problem (MCNFP) and the Shortest Path Problem (SPP),
which can be viewed as a special case of MCNFP. The objective of MCNFP is to ship
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the available supply through the network to satisfy demand at minimum cost by
determining the amount of flow traveling on each available arc in the given
transportation network (Bazaraa et al., 2009). If no arc capacity constraint is enforced,
then MCNFP will become SPP. Another notable variant of MCNFP is called Minimum
Cost Flow Over Time Problem (MCFOTP), which can be viewed as a dynamic version
of the original MCNFP with additional restrictions on arc transit times and a time

horizon (Skutella, 2009).

2.2.2. Gossiping and broadcasting problems (GBPs)

In communications and wireless networks, gossiping and broadcasting (Hedetniem et al.,
1988; Fraigniaud & Vial, 1997; Ravi, 1994) are two well-known problems that have
some overlap with the social media dissemination problems. In the gossiping problem,
every person in the network knows a unique item of information and needs to
communicate it to everyone else, while in the broadcasting problem one individual has
an item of information which needs to be communicated to everyone else. A node is
allowed to communicate to one or several of its neighbors at a time, and the time delay
for message transmission is typically assumed to be one unit of time. The objective is
minimizing node communications or time spent such that every node receives the
message(s), by determining a sequence of pairs each one representing a communication
process to be performed between two nodes (information exchange either one-way or
two-way). Lower bound and/or upper bound of the objective are typically proved as the

main pursuit of the problems.
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2.2.3. Influence maximization problems (IMPs)

The Influence Maximization Problem (IMP) was motivated by the “word of mouth”
effects and the design of viral marketing strategies. IMP aims to find a small subset of
nodes in a social network to maximize the spread of influence over the entire network
(Kempe et al., 2003). Linear Threshold and Independent Cascade Models are two of the
most basic and wildly-studied diffusion models. In Linear Threshold model, a node
becomes active once the total influence from its active neighbors reaches a predefined
threshold, while in Independent Cascade model any active node has a single chance to
activate each of its inactive neighbors with a predefined probability in each step.
Variants of the IMP and algorithmic development can be found in Kimura and Saito

(2006), Leskovec et al. (2007), Chen et al. (2009) and Guo et al. (2013).

2.3. Summary

It has been the practice and dominating trend for governmental and non-governmental
emergency management organizations and agencies to adopt social media as a main
platform for emergency management especially for emergency communication in
disasters and extreme events. Guidelines and considerations for an effective use of social
media to disseminate information, including alerts, warnings and updates are provided
and successful use cases and examples at different levels and under different
backgrounds are studied. However, there is still a gap between the current state and the
desired state of social media usage for effective and reliable emergency message

dissemination. In particular, there is a lack of tools for message dissemination planning
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and outcome assessment as well as strategies integrating all decision parameters to
facilitate message propagation on social media in disasters and extreme events.
Quantitative analysis that combines social media and emergency management
generally focuses on data acquisition, event detection, text processing, geotagging,
visualization, and specifics in the information sharing process (e.g., message content,
format and style) so that fails to provide emergency managers with effective and
actionable social media strategies in the complex decision environments in disasters and
extreme events. Compared to these results, some works from other fields are more
relevant in terms of developing social media messaging strategies to facilitate message
dissemination, but they cannot accurately capture the situations or satisfy the
requirements of emergency communication either. This mainly lies in the following
aspects.
¢ In asocial media message dissemination (SMMD) scenario, the only decision a
source node (e.g., FEMA, NWS, etc.) can make is when and to whom it should
send its direct message. The message propagation after that purely depends on
individual’s decision to pass on or not. However, in NFPs and GBPs the (amount
of) flow on each arc is to be dictated to achieve the best outcome. For example,
in the optimal solution node i should send a message to node j, which is not
realistic in real-world SMMD scenario.
e Typically, alert and warning messages are useful when they are received within a
certain period of time, (i.e., planning horizon), and the length of this time is
specific to disaster (event) type. All the message dissemination outcomes should
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be evaluated based on this planning horizon. At the same time, a message source
may have limited messaging capacity in an emergency situation and may enforce
messaging intervals to avoid message overload. However, such considerations
are generally missing in NFPs, GBPs, and IMPs.

e When a user shares a message in social media, there is typically a delay between
the time she receives the message and when she shares it. This delay generally
varies by users and is related to the content and source of the message as well.
And once she shares, the message goes to all the friends (followers) of her on the
network. Neither the communication mechanism in GBPs (node-to-node, unit
delay) nor the diffusion models in IMPs (accumulated or probabilistic) can
sufficiently capture such behaviors.

e Each user may receive messages from different sources (e.g., FEMA, NWS, etc.)
on multiple social media sites (e.g., Facebook, Twitter, etc.), and it’d be
necessary for individuals to gather as much information as possible before they
make any decisions (Lindsay, 2011). Such a scenario with multiple networks and
multiple messages and considering message aggregation effect at the user end

cannot be addressed using any variants of NFPs, GBPs or IMPs.

This research was motivated by the above facts and observations, and is intended
to provide insights in assessment and decision support on social media messaging for
emergency management organizations and agencies. Specifically, it examines the
message propagation process on social media networks and explore message targeting
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strategies under the constraints of the length of planning horizon, source messaging
capability, user behaviors as well as network structure and conditions. Three message
dissemination application scenarios are studied, including a single-network single-
message scenario, a single-network multi-message scenario, and a multi-network multi-
message scenario. The impacts of various factors on message dissemination outcomes
and targeting decision making are examined through computational experiments on
smaller-scale random and Twitter networks. Results and implications for real-world

applications are discussed. Details are presented in the following chapters.
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CHAPTER Il
SINGLE-NETWORK SINGLE-MESSAGE SOCIAL MEDIA MESSAGE

DISSEMINATION PROBLEM ~

3.1. Problem Description and Definition

The Single-network Single-message Social Media Message Dissemination Problem (SS-
SMMDP) considers the scenario in which one message needs to be disseminated on one
social media network within a predefined planning horizon. The network is represented
by G = (1, A), where each node i € I represents a user in the social media and each arc
(i, j) € A represents the relationship on the network (i.e., friend or follower) between
users i, j € I, through which messages can flow from i to j. The message source is
represented by O (not included in network G). The planning horizon is given by set T,
where each t € T represents a time period in the planning horizon. The last time period
as well as the length of the planning horizon are both represented by |T|.

Message propagation on the network is initiated by the source O through node
targeting (i.e., send direct messages to some nodes in a predefined candidate set M < I)
and continues as individual nodes redistribute the received messages to their friends or
followers, as illustrated in Figure 3.1. The source O can send the message multiple

waves if time allows, with a minimum reset time [ between two consecutive waves and a

* Part of this chapter is reprinted with permission from Ma, X., & Yates, J. (2014). Optimizing social media message
dissemination problem for emergency communication. Computers & Industrial Engineering, 78, 107-126. Copyright
© 2014 Elsevier Ltd.
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capacity p in each wave. Accordingly, a subset of p nodes (i.e., nodes to be targeted)
needs to be determined corresponding to each wave of messages send from 0. This
process is illustrated in Figure 3.2. Message propagation on the network is modeled
using a time delay d;;, which is defined on each (i, j} € A. Under normal conditions, this
delay time may represent the time a message is spent unviewed in the user’s inbox
(maybe the user did not hear the message receipt notification or did not have direct
access to their mobile device or computer immediately). Under conditions experienced
in extreme events, this delay time could also represent the user’s inability to access the
message and/or some elongated transmission delay time due to damage of the underlying
communications system (e.g., cell phone tower damage) or excessive load (i.e., too
many users simultaneously sending messages has jammed the system and prevented
messages from being sent). A user node i is considered active after receiving the
message, and the message dissemination outcome is expressed as a net gain (i.e., the
total gain from activating nodes within the planning horizon minus the total cost of
sending messages from the source), which essentially encourages wider message
reception on the network with minimum targeted nodes.

Now the SS-SMMDP can be formally stated as follows: Given social media
network G = (I, A), candidate set M, planning horizon T, source messaging capacity p,
source reset time [, and delay matrix D(I, 1), SS-SMMDP optimizes the message
dissemination outcome by determining a sequence of subsets, each containing at most p
nodes from the candidate set M, to be targeted by the source. Problem formulation is

presented in section 3.2.
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Figure 3.1 Conceptualization of SS-SMMDP
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Figure 3.2 An illustration of source messaging behavior

3.2. Problem Formulation

3.2.1. Sets and parameters
I = the set of user nodes
0 = the message source
M = the set of candidate nodes for targeting, M < |

T = the set of time periods
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a;j = lifarc (i, ) € A4, 0 otherwise

d;; = the time delay of a message flowing from node i to node j

w; = the reward for node i being active within the planning horizon
c; = the cost of sending a direct message to node i from the source
p = the source messaging capacity

[ = the source reset time

3.2.2. Decision variables
z;; =1 ifnode i is active at time t, O otherwise

x;jr =1 ifamessage flows on arc (i, j) at time ¢, O otherwise

3.2.3. Formulation

max Ye; WiZj | — ZjeM Dter CiXojt

s.t.
Yiem ot xjs <p VteT
Zit — Zipr1 < 0 Viel,teT
Diervo Mter Xije < 1 Vj€el
Zjt = Niervo LseTsst-apXijs <0 VjELEET
Xije — Zit < 0 Vi,j ELtET
xijt(1—a;)=0 VijjeELt €T
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The use of weight and cost parameters makes the objective flexible and adaptive
to different preferences of emergency managers. When w; = ¢; = 1, the objective is
altered to emphasize sending as few messages as possible. When w; = 1 and ¢; = 0, the
objective is altered to emphasize activating the largest set of nodes possible. In this way,
(3.1) can be slightly altered but always focuses on maximizing some prioritized
combination of activated users minus a calculated messaging cost.

Constraint (3.2) limits the source node messaging capability to a maximum value
p and constraint (3.4) ensures no nodes receive redundant messages. We employ
constraint (3.3) to ensure that chronology in user activity is preserved. Constraints (3.5)
and (3.6) control message dissemination through the social network such that messages
are delayed appropriately and that no inactive nodes send a message. Constraint (3.7)
guarantees messages are passed only through existing arcs.

The use of a candidate set for each message is helps managers/agencies yield the
highest versatility from the model. If the model is used in the operational stage of an
extreme event, the candidate set should be established according to the real situation
(i.e., the connections that each government user has at that moment). If the model is used
in the planning stage, then the candidate set can be set equal to the whole user set I. The
implication of such a setting is, assuming all the users in set I could be candidates for
receiving messages directly, which of them should the governmental node target given
the constraint on the number of allowable connections. These users are obviously more
important for the message dissemination purpose, so the government could take

measures to build connections to them in advance.
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3.3. Computational Experiments

We develop two cases upon which to test SS-SMMDP performance. The first is a
computational experimental design testing five key model parameters and resulting in
660 unique problem scenarios. Per scenario, we generate 20 replications and make
observations on the mean, standard deviation, minimum and maximum performance
measures (e.g., objective value, CPU time, etc.). All generated graphs are assumed to be
undirected for this case. The second test case, which will be presented in section 3.3.2,
uses a social network generated by crawling the Twitter user space with 20 replicates
under a smaller number of selected scenario combinations. Some networks areexamined
in both directed and undirected scenarios. Note that the time requirement for message
dissemination varies over different types of events and different levels of emergency.
For example, NWS issues a hurricane watch 24-36 hours in advance of a potential event
and a hurricane warning when the event is expected in 24 hours or less. While for
tornados, the warning time may be only a few minutes or even less. Without loss of
generality, the basic time unit being assumed here is hours. Each test case is now

presented and discussed.

3.3.1. Experiments on random networks

The experimental design tests the following five factors: arc delay (D), source messaging
capacity (p), source messaging interval (1), length of time horizon (|T|) and network size
(I1]). FactorlevelsD = {0,1},p = {1,2,...,7,8}, L = {2,3,4,5,6}, |T| = {2,3,4,5,6}

and |I| = {50,100,150} resulted in 660 unique scenario combinations tested with 20

29



replications. Arc delay (d;;) randomly assigned delay times to arcs using a uniform
distribution between 1 and 10 time units (integer) for D = 0 and set all arc delay times to
1 when D = 1. A randomly generated social network is created at each replication with a
30% probability of connection between any pair of users. All networks generated for a
specific scenario are tested to ensure completeness and uniqueness within the replication
set. Parameters are setas w; = 1 and ¢; = 0.5 for all i € I, which is to emphasize
activating the largest set of users possible. The candidate set M is set equal to set I in all
instances.

Generating our networks randomly and with a uniform connectivity probability
between user pairs has been shown to yield networks that do not share certain
characteristics with online social networks (Butts, 2008). In general, randomly
generated networks are significantly more uniform in their structure and do not possess
the low-frequency of highly connected (i.e., high degree) nodes and high-frequency of
sparsely connected (i.e., low degree) nodes witnessed in online social networks. This
shortcoming leads to lower betweenness and geodesic network measures that can shorten
message dissemination. At the same time, our network generation approach comes with
less computational overhead than is typically observed in generating more representative
online social network structures. Knowing this, we choose to institute the randomly
generated network design for our experimental design in an effort to identify SS-
SMMDP computational trends. Results and observations from this experimentation will
drive parameter selection in the second test case where real-world Twitter user sub-
graphs are used. All the instances are computed using ILOG Concert Technology with
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C++/CPLEX 12.4 on a Dell OptiPlex 755 computer (Inter Core 2 Duo E8500 3.17GHz,
4GB RAM and Windows 7 System), and the solution time are capped at 7,200 seconds.

Table 3.1 introduces results for a selection of scenarios at the D = 0 and |I| = 50
level. The most striking observation from the table is the increase in CPU time from
|T| = 4to|T| = 6 (increased by around 100%). As the time horizon |T| increases, CPU
time becomes more unpredictable. This is not unexpected (a |T| = 4 scenario will have
10,812 variables and 21,164 constraints while |T| = 6 the size increases to 16,218
variables and 31,772 constraints) and is aligned with expected computational
performance in other network-based models. Statistically, the time horizon |T| and the
source messaging capacity p significantly affect CPU time (p-value < 0.05 using single-
factor ANOVA). Aside from CPU time, the other three metrics observed are objective
function value (OBJECTIVE), number of active nodes at time |T| (ACTIVE), and the
number of messages sent by the source (MESSAGES). Of the three active parameters p,
[ and |T| in Table 3.1, only the time horizon |T| significantly affects mean value and
standard deviation in all three metrics statistically, which indicates that the amount of
time allowed for message dissemination is a crucial factor that affects the overall
performance.

The litmus test for SS-SMMDP is that it exhibits behavior that we would
intuitively expect from such a message dissemination model. To this extent, the model
performs quite well, showing better objective performance as |T| increases, a decrease in
messages sent as [ increases, and an increase in the number of active users as p and |T|

increase. Similar trends are indicated in Table 3.2 and Table 3.3, which introduce
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Table 3.1 Selected SS-SMMDP resultsat D = 0 and |I| = 50

OBJECTIVE ACTIVE MESSAGES CPUTIME
P ! m M AVG  StDev MIN MAX AVG  StDev MIN MAX AVG  StDev MIN MAX AVG  StDev MIN MAX
2 2 2 50 8.850 1.236 70 120 9.850 1236 8 13 2.000 0.000 2 2 0.438 0.063 0.33 0.58
2 2 4 50 37.250 3315 30.0 430 39.250 3315 32 45 4.000 0.000 4 4 3519 1312 162 6.58
2 2 6 50 48.875 0.311 480 495 50.000  0.000 50 50 2.250 0.622 1 4 5.379 1.657 293 8.80
2 4 4 50 34.950 4.663 27.0 430 35950  4.663 28 44 2.000 0.000 2 2 4.489 0.636 353 6.12
2 4 6 50 48.925 0.286 48.0 495 50.000 0.000 50 50 2.150 0572 1 4 5.199 1190 3.70 8.60
2 6 6 50 48700 0534 48.0 49.5 49.650 0.477 49 50 1.900 0.300 1 2 5.422 1717 3.24 9.69
4 2 2 50 16.250 1972 130 210 18.250 1.972 15 23 4.000 0.000 4 4 0.532 0.131 041 1.05
4 2 4 50 45.200 1435 430 475 48.950 1161 47 50 7.500 0.866 5 8 3671 0.953 159 5.46
4 2 6 50 48900  0.339 485 495 50.000 0.000 50 50 2.200 0.678 1 3 5.580 1879 320 1112
4 4 4 50 42.800 2135 38.0 46.0 44.800 2135 40 48 4.000 0.000 4 4 3.868 1121 245 6.12
4 4 6 50 48925 0363 48.0 49.5 50.000 0.000 50 50 2150 0.726 1 4 5.135 1585 303 8.92
4 6 6 50 48925  0.286 485 49.5 50.000 0.000 50 50 2.150 0.572 1 3 5.061 1.465 2.93 7.83
6 2 2 50 21.750 2142 190 26.0 24.750 2142 22 29 6.000 0.000 6 6 0.595 0.096 0.44 0.80
6 2 4 50 46.650 0502 455 475 50.000 0.000 50 50 6.700 1.005 5 9 2403 0.685 148 412
6 2 6 50 48975 0192 485 49.5 50.000  0.000 50 50 2,050 0.384 1 3 5.324 1532 3.04 8.77
6 4 4 50 45.850 1226 430 475 48.800 1166 46 50 5.900 0.300 5 6 2984 0.867 161 4.62
6 4 6 50 49.075  0.286 485 49.5 50.000  0.000 50 50 1.850 0.572 1 3 5.451 1.082 429 8.17
6 6 6 50 48925  0.286 48.0 49.5 50.000  0.000 50 50 2.150 0.572 1 4 5.369 1.696 2.92 9.22
8 2 2 50 25.250 2.467 20.0 29.0 29250 2467 24 33 8.000 0.000 8 8 0.463 0.106 033 0.84
8 2 4 50 46.575 0.618 455 475 50.000  0.000 50 50 6.850 1236 5 9 2409 0.767 145 431
8 2 6 50 49.050 0.269 485 495 50.000  0.000 50 50 1.900 0.539 1 3 5071 12717 3.20 872
8 4 4 50 46.400 0.970 44.0 415 49.750 0536 48 50 6.700 1145 5 8 2.349 0.849 125 4.66
8 4 6 50 48.975 0.295 485 495 50.000  0.000 50 50 2.050 0.589 1 3 5.110 2.247 287 9.84
8 6 6 50 48.950 0.150 48.5 49.0 50.000 0.000 50 50 2.100 0.300 2 3 5.003 1514 3.37 8.33
Table 3.2 Selected SS-SMMDP resultsat D = 0 and |/| = 100
OBJECTIVE ACTIVE MESSAGES CPUTIME
P ! m M AVG  StDev MIN MAX AVG  StDev MIN MAX AVG  StDev MIN MAX AVG  StDev MIN MAX
2 2 2 100 15,550 1244 140 180 16.550 1244 15 19 2.000 0.000 2 2 1418 0.325 0.98 2.26
2 2 4 100 92.300 2027 88.0 95.0 94.300 2.027 90 97 4.000 0.000 4 4 17.819 3.391 1284 25.49
2 2 6 100 99.500 0.000 99.5 99.5 100.000  0.000 100 100 1.000 0.000 1 1 32512 6.383 16.91 50.01
2 4 4 100 91.250 2.826 85.0 96.0 92.250 2.826 86 97 2.000 0.000 2 2 18.061 6.559 9.63 37.58
2 4 6 100 99.475 0.109 99.0 99.5 100.000  0.000 100 100 1.050 0.218 1 2 33.568 6.182 2432 4391
2 6 6 100 99.500 0.000 99.5 99.5 100.000  0.000 100 100 1.000 0.000 1 1 30.418 7.487 2331 55.32
4 2 2 100 28150 2151 24.0 330 30.150 2151 26 35 4.000 0.000 4 4 1.000 0.122 0.87 128
4 2 4 100 97.950 0415 97.0 98.5 100.000  0.000 100 100 4.100 0.831 3 6 11.745 1.969 8.89 15.96
4 2 6 100 99.500  0.000 9.5 99.5 100.000  0.000 100 100 1.000 0.000 1 1 32551 6.933 20.45 47.74
4 4 4 100 97.775 1.030 94.0 98.5 99.650 0.963 96 100 3.750 0.433 3 4 13.979 5717 8.64 36.15
4 4 6 100 99.500  0.000 995 99.5 100.000  0.000 100 100 1.000 0.000 1 1 32694 8608 2212 50.09
4 6 6 100 99.500  0.000 99.5 99.5 100.000  0.000 100 100 1.000 0.000 1 1 32640  6.565 2248 46.43
6 2 2 100 37.650 1621 350 40.0 40.650 1621 38 43 6.000 0.000 6 6 1.376 0.305 0.97 226
6 2 4 100 98.025 0334 97.0 98.5 100.000  0.000 100 100 3.950 0.669 3 6 11.749 2416 7.02 17.44
6 2 6 100 99.500  0.000 995 99.5 100.000  0.000 100 100 1.000 0.000 1 1 29,512 5.044 18.80 35.82
6 4 4 100 97.900  0.255 975 98.5 100.000  0.000 100 100 4.200 0510 3 5 11894 3476 819 22.96
6 4 6 100 99.500  0.000 99.5 99.5 100.000  0.000 100 100 1.000 0.000 1 1 31771 9.926 22,50 64.21
6 6 6 100 99.500  0.000 99.5 99.5 100.000  0.000 100 100 1.000 0.000 1 1 30465  7.060 22.00 46.88
8 2 2 100 46450  2.037 44.0 50.0 50.450 2037 48 54 8.000 0.000 8 8 1564 0.396 1.00 262
8 2 4 100 97.975 0.334 97.0 985 100.000  0.000 100 100 4.050 0.669 3 6 12.344 3.541 817 2114
8 2 6 100 99.500 0.000 995 95 100.000  0.000 100 100 1.000 0.000 1 1 28.795 7.365 19.86 57.25
8 4 4 100 97.950 0.269 97.5 985 100.000  0.000 100 100 4.100 0.539 3 5 12.819 3.932 7.16 26.43
8 4 6 100 99.500 0.000 99.5 99.5 100.000  0.000 100 100 1.000 0.000 1 1 28.097 3.246 2151 32,59
8 6 6 100 99.500 0.000 99.5 9.5 100.000  0.000 100 100 1.000 0.000 1 1 27.420 6.121 17.50 43.52
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Table 3.3 Selected SS-SMMDP resultsat D = 0 and || = 150

OBJECTIVE ACTIVE MESSAGES CPUTIME

P ! m M AVG  StDev MIN MAX AVG  StDev MIN MAX AVG  StDev MIN MAX AVG  StDev MIN MAX
2 2 2 150 21250 1639 180 240 22250 1639 19 25 2.000 0.000 2 2 2.560 0.569 168 4.45
2 2 4 150 147.350 1566 1450 149.0 149000 1265 147 150 3.300 0.781 2 4 209969 267.931 2067  954.27
2 2 6 150 149.500  0.000 1495 149.5 150.000  0.000 150 150 1.000 0.000 1 1 125494 23537 8349 175.92
2 4 4 150 146850  1.982 1430 149.0 147850  1.982 144 150 2.000 0.000 2 2 339245 422334 1980  1285.00
2 4 6 150 149500  0.000 1495 1495 150.000  0.000 150 150 1.000 0.000 1 1 131272 43082 4607 20445
2 6 6 150 149.500  0.000 1495 1495 150.000  0.000 150 150 1.000 0.000 1 1 115522 29550  43.03 154.69
4 2 2 150 39200 2293 35.0 440 41200 2293 37 46 4.000 0.000 4 4 2162 0.300 181 293
4 2 4 150 148575  0.238 148.0 149.0 150.000  0.000 150 150 2.850 0477 2 4 42474 16068 1839 89.12
4 2 6 150 149.500  0.000 1495 1495 150.000  0.000 150 150 1.000 0.000 1 1 116654 25703  76.78 182.72
4 4 4 150 148600  0.255 1480 149.0 150.000  0.000 150 150 2.800 0510 2 4 44442 29456 2484 12318
4 4 6 150 149.500  0.000 1495 1495 150.000  0.000 150 150 1.000 0.000 1 1 124295 28509 4527 185.27
4 6 6 150 149500  0.000 1495 149.5 150.000  0.000 150 150 1.000 0.000 1 1 116.837 32968  38.58 164.38

selected experimental results for [I| = 100 and |/| = 150. From Table 3.1 through 3.3,
another notable trend is that the mean value and standard deviation of CPU time increase
significantly from |I| = 50 to |I| = 150 (the maximum CPU time reaches 1,285 seconds
for some instance of |I| = 150), which suggests that fast solving procedures (e.qg.,
heuristics) may be needed to solve large-scale problems efficiently. In light of this, we
designed a standard Tabu Search procedure for SS-SMMDP as an initial study on

heuristic performance, detailed discussions of which will be given in section 3.4.

3.3.2. Experiments on Twitter sub-networks

The results presented in section 3.3.1 are derived from SS-SMMDP applications on
randomly generated networks with a pre-specified connectivity rate (e.g., 30%
connected) and where focus was on computational experimentation. Using random
networks enabled us to create a large body of diverse networks upon which to test SS-
SMMDP performance without significant computational burden. Realistically, however,
randomly generated networks do not closely approximate the structure and properties of

on-line social networks (Butts, 2008). Random networks tend to be significantly more
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uniform in structure and do not exhibit the small-world properties greatly present in
social media (Butts, 2008; Gjoka et al., 2010).

Having demonstrated the computational properties of SS-SMMDP in section
3.3.1, we now apply it to a series of collected, real-world social media networks. Our test
networks are pulled from Twitter using a Python script that implemented a Metropolis-
Hastings Random Walk (MHRW) in the friend and follower directions and initiating at a
randomly generated Twitter user node. We choose MHRW as it has been shown to
generate social sub-networks with properties that are strongly consistent to the large-
scale (Gjoka et al., 2010). Appropriate network approximation is critical in cases of
social network analysis as (1) it is impossible to capture and apply methods to the entire
social network itself, and (2) sampling and approximation techniques introduce inherent
bias to network applications.

For this analysis, we create two separate types of networks from the MHRW and
will refer to them as the RED and GREEN networks. To generate both networks, we
start from an initial randomly generated node in the Twitter network. We apply the
MHRW to trace through the actual Twitter network of users and log both the selected
nodes and the friends/followers of each selected node. The RED network represents a
strong MHRW where only those nodes selected through the random walk are included in
the graph. In the GREEN network, we include all nodes of the RED user nodes and
augment the graph with all common friends/followers. In this way, the GREEN network
can be substantially larger than the RED network. Three separate MHRW were

conducted to the Twitter network in July 2013 with |I| = {50,100, 150}. The resulting
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six networks are presented in Figure 3.3 and Figure 3.4 with RED and GREEN network

statistics provided in Table 3.4.

(@) (b) ©

Figure 3.3 RED networks for (a) |I| = 50, (b) |/| = 100, and (c) |I| = 150

T

(@) (b) (©

Figure 3.4 GREEN networks for (a) |I| = 50, (b) |I| = 100, and (c) |I| = 150
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Table 3.4 Network statistics for the RED and GREEN Twitter cases

Node Degree Statistics

Nodes Arcs Density AVG StDev MIN MAX
50 62 0.051 2480 1024 1 6
8 100 250 0.052 5180  4.801 1 18
150 235 0.021 3133 1711 1 10
50 162 0132 6.480  4.842 0 20
3 100 1088  0.220 21760 14247 1 72
N 150 720 0.064 9.600  7.096 1 36

In testing SS-SMMDP performance on the RED networks, we examine both the
directed and undirected cases noting that Twitter is a directed network of those who
receive your tweets (follower) and those whose tweets you receive (following). We
apply the same experimental design used in section 3.3.1 with 20 replications per factor
combination which randomly generate the arc delay values. Parameters are setas w; = 1
and ¢; = 0.5 for all i € I, which is to emphasize activating the largest set of users
possible. The candidate set M is set equal to set I in all instances. All the computations
are done with AMPL/CPLEX 12.1 on a Dell OptiPlex 755 computer (Inter Core 2 Duo
E6750 2.67GHz, 2GB RAM and Windows 7 System). Tables 3.5 and Table 3.6 provide
summarized results for the undirected and directed networks, respectively.

Table 3.7 gives experimental results for the GREEN network. In this network, we
set the arc delay values between any two nodes i and j to be a function of the common
connections (followers/following) between them. With n representing the number of

common connections, we establish three levels of delay D = {0, 1,2} where D = 0
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represents a reciprocal delay function (d;; = 10/n), D = 1 constant delay (d;; = 1),
and D = 2 exponential delay (d;; = 10e~™/19), Given our definition of arc delay, only

one problem instance is run for each factor combination (i.e., no replications are made

for the GREEN network).

Table 3.5 Selected SS-SMMDP results for D = 0 and undirected RED networks

OBJECTIVE ACTIVE MESSAGES CPUTIME
P ! m i AVG  StDev MIN MAX AVG  StDev MIN MAX AVG  StDev MIN MAX AVG  StDev MIN MAX
2 2 4 50 6.350 0.654 50 8.0 8.350 0.654 7 10 4.000 0.000 4 4 0.128 0.027 0.11 023
2 2 6 50 11.850 1.682 9.0 150 13850 1682 1 7 4.000 0.000 4 4 0.243 0.072 017 0.45
2 4 4 50 5.250 0.698 40 7.0 6.250 0.698 5 8 2.000 0.000 2 2 0.137 0.021 0.12 0.17
2 4 6 50 9.100 1.480 6.0 110 11100  1.480 8 13 4.000 0.000 4 4 0.186 0.048 0.14 0.36
2 6 6 50 8.650 1621 70 130 9.650 1621 8 14 2.000 0.000 2 2 0215 0.039 0.16 028
8 2 4 50 18.750 1512 150 220 26750 1512 23 30 16.000  0.000 16 16 0.069 0.011 0.06 0.09
8 2 6 50 28950 2801 240 35.0 36.950  2.801 32 43 16.000  0.000 16 16 0.117 0.063 0.08 0.36
8 4 4 50 14900 1972 90 180 18900 1972 13 22 8.000 0.000 8 8 0.063 0.014 0.05 012
8 4 6 50 25900 2119 21.0 29.0 33900 2119 29 37 16.000  0.000 16 16 0.197 0.227 0.08 117
8 6 6 50 22000 1897 16.0 25.0 26.000  1.897 20 29 8.000 0.000 8 8 0.142 0.039 0.08 0.2
2 2 4 100 11900 1044 100 14.0 13900 1044 12 16 4.000 0.000 4 4 0.267 0.141 012 0.83
2 2 6 100 25950 2247 23.0 30.0 27950  2.247 25 32 4.000 0.000 4 4 5.644 4.031 108 15.96
2 4 4 100 11200  1.030 9.0 130 12.200 1.030 10 14 2.000 0.000 2 2 2422 2198 0.16 714
2 4 6 100 22750 2567 190 280 24750 2567 21 30 4.000 0.000 4 4 5271 2316 0.76 9.2
2 6 6 100 21550 1627 19.0 240 22.550 1627 20 25 2,000 0.000 2 2 5.558 3.987 1.09 1537
8 2 4 100 31300 1977 270 36.0 39300 1977 35 44 16.000  0.000 16 16 1.005 1147 011 342
8 2 6 100 54050 3471 470 61.0 62050 3471 55 69 16.000  0.000 16 16 23968 35351 176 1282
8 4 4 100 28400 1881 240 31.0 32400 1881 28 35 8.000 0.000 8 8 1.013 1279 011 342
8 4 6 100 50.000 2214 46.0 54.0 58.000 2214 54 62 16.000  0.000 16 16 58.694  167.400 0.7 763.19
8 6 6 100 44600 2973 39.0 52.0 48600 2973 43 56 8.000 0.000 8 8 40.107  83.632 0.75 308.83
2 2 4 150 8.650 0.910 70 100 10650 0910 9 12 4.000 0.000 4 4 4.096 2639 0.17 8.27
2 2 6 150 19.000  2.345 140 24.0 21000 2345 16 26 4.000 0.000 4 4 9.988 3.830 2,06 16.49
2 4 4 150 7.800 1122 6.0 110 8.800 1122 7 12 2.000 0.000 2 2 6.328 3213 193 1143
2 4 6 150 14650 1682 100 17.0 16.650 1682 12 19 4.000 0.000 4 4 7672 3428 0.92 14.01
2 6 6 150 14.450 1431 120 17.0 15450 1431 13 18 2.000 0.000 2 2 6.395 3.710 07 13.87
8 2 4 150 28.200 1.568 250 310 36200 1568 33 39 16,000  0.000 16 16 1698 2683 0.19 10.33
8 2 6 150 50350  2.886 450 57.0 58350  2.886 53 65 16.000  0.000 16 16 426,876  581.582 27 1805.39
8 4 4 150 23700 1819 21.0 270 27.700 1819 25 31 8.000 0.000 8 8 2333 2283 0.14 8.81
8 4 6 150 43200 2502 380 470 51200 2502 46 55 16.000  0.000 16 16 122591 383643 117 1763.72
8 6 6 150 39.950 2479 350 44.0 43950  2.479 39 48 8.000 0.000 8 8 30302  48.073 0.66 228.43
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Table 3.6 Selected SS-SMMDP results for D = 0 and directed RED networks

OBJECTIVE ACTIVE MESSAGES CPUTIME
P ! m M AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX AVG StDev MIN MAX
2 2 4 50 5.450 0.865 40 7.0 7.450 0.865 6 9 4.000 0.000 4 4 0.128 0.028 011 0.23
2 2 6 50 9.550 0.973 8.0 11.0 11.550 0.973 10 13 4,000 0.000 4 4 0.182 0.064 0.12 0.41
2 4 4 50 4,150 0.726 30 50 5.150 0.726 4 6 2.000 0.000 2 2 0.123 0.028 0.09 0.23
2 4 6 50 7.650 0.963 6.0 10.0 9.650 0.963 8 12 4.000 0.000 4 4 0.160 0.023 0.12 0.19
2 6 6 50 6.000 0.775 5.0 7.0 7.000 0.775 6 8 2.000 0.000 2 2 0.168 0.019 0.14 0.2
8 2 4 50 17.850 1.276 16.0 21.0 25.850 1.276 24 29 16.000 0.000 16 16 0.128 0.022 0.11 0.2
8 2 6 50 26.900 2663 22.0 320 34.900 2.663 30 40 16.000 0.000 16 16 0.140 0.020 0.12 0.19
8 4 4 50 14.350 1424 110 18.0 18.350 1424 15 22 8.000 0.000 8 8 0.125 0.014 011 0.16
8 4 6 50 24.200 1.749 21.0 28.0 32.200 1749 29 36 16.000 0.000 16 16 0.135 0.020 0.11 0.19
8 6 6 50 20.100 2.468 16.0 26.0 24.100 2.468 20 30 8.000 0.000 8 8 0.133 0.015 011 0.17
2 2 4 100 11.650 1.195 9.0 130 13.650 1.195 11 15 4.000 0.000 4 4 2.664 1.976 011 6.54
2 2 6 100 23.500 1.775 20.0 26.0 25.500 1775 22 28 4.000 0.000 4 4 3.425 2163 0.59 711
2 4 4 100 11.200 1.249 10.0 140 12.200 1.249 11 15 2.000 0.000 2 2 1772 1.630 0.12 552
2 4 6 100 20.750 1.337 17.0 230 22.750 1.337 19 25 4.000 0.000 4 4 4182 1439 0.84 6.54
2 6 6 100 19.500 0.975 18.0 21.0 20.500 0.975 19 22 2.000 0.000 2 2 4912 0.530 412 6.36
8 2 4 100 30.450 1774 270 34.0 38.450 1.774 35 42 16.000 0.000 16 16 1524 1.389 0.11 32
8 2 6 100 50.550 2,673 450 56.0 58.550 2673 53 64 16.000 0.000 16 16 4.388 3672 0.33 14.74
8 4 4 100 26.400 1715 220 310 30.400 1.715 26 35 8.000 0.000 8 8 1.149 1.203 0.09 334
8 4 6 100 42.400 2.498 38.0 50.0 50.400 2498 46 58 16.000 0.000 16 16 3.942 1.648 0.27 73
8 6 6 100 38.350 2.080 34.0 420 42.350 2.080 38 46 8.000 0.000 8 8 3.237 1618 0.37 6.05
2 2 4 150 8.150 1195 6.0 10.0 10.150 1.195 8 12 4.000 0.000 4 4 3.878 2481 0.2 9.84
2 2 6 150 15.700 1584 13.0 19.0 17.700 1.584 15 21 4.000 0.000 4 4 6.056 3.297 0.83 11.79
2 4 4 150 6.650 1.014 5.0 8.0 7.650 1.014 6 9 2.000 0.000 2 2 5.390 4.097 0.19 16.16
2 4 6 150 12.450 1.322 10.0 15.0 14.450 1.322 12 17 4.000 0.000 4 4 5.050 2408 0.76 10.22
2 6 6 150 10.950 1.465 7.0 14.0 11.950 1.465 8 15 2.000 0.000 2 2 6.223 3.447 2.09 16.08
8 2 4 150 25.450 1.857 220 30.0 33.450 1857 30 38 16.000 0.000 16 16 3517 3.643 0.31 10.31
8 2 6 150 45.300 2283 40.0 50.0 53.300 2.283 48 58 16.000 0.000 16 16 16.327 14.164 058 58.87
8 4 4 150 21.550 1431 19.0 25.0 25.550 1431 23 29 8.000 0.000 8 8 3.284 3.084 012 14.04
8 4 6 150 36.100 2.047 310 39.0 44.100 2.047 39 47 16.000 0.000 16 16 5135 4176 051 18.95
8 6 6 150 33.350 1.851 30.0 38.0 37.350 1.851 34 42 8.000 0.000 8 8 6.495 4.464 128 16.16
Table 3.7 Selected SS-SMMDP results for the GREEN networks

b o | m Il =50 Ii| = 100 Ji|= 150 I = 200

0OBJ ACT MSG CPU 0OBJ ACT MSG CPU 0OBJ ACT MSG CPU 0OBJ ACT MSG CPU
0 2 2 4 220 24 4 0.12 78.0 80 4 13.91 43.0 45 4 25.23 127.0 129 4 22.99
0 2 2 6 250 27 4 123 91.0 93 4 7.94 91.0 93 4 874.88 161.0 163 4 244.38
0 2 4 4 210 22 2 0.19 77.0 78 2 14.98 420 43 2 59.75 126.0 127 2 21.89
0 2 4 6 25.0 27 4 0.38 91.0 93 4 29.22 79.0 81 4 909.65 153.0 155 4 171.66
0 2 6 6 240 25 2 034 90.0 91 2 15.12 78.0 79 2 1460.78 152.0 153 2 187.78
0 8 2 4 29.0 37 16 0.09 91.0 99 16 2.82 91.0 99 16 1806.87 155.0 163 16 13.93
0 8 2 6 35.0 43 16 023 945 100 11 13.63 114.0 122 16 7.89 179.0 187 16 50.43
0 8 4 4 25.0 29 8 0.09 87.0 91 8 6.11 87.0 91 8 1813.98 151.0 155 8 36.54
0 8 4 6 35.0 43 16 0.27 945 100 1 251 1130 121 16 139.48 179.0 187 16 1055.96
0 8 6 6 31.0 35 8 023 93.0 97 8 31.59 109.0 113 8 676.12 175.0 179 8 14.18
1 2 2 4 48.5 50 3 2.50 99.5 100 1 16.65 144.0 146 4 1762.18 198.5 200 3 187.67
1 2 2 6 49.0 50 2 0.72 99.5 100 1 29.73 1495 150 1 38.05 198.5 200 3 1207.92
1 2 4 4 48.0 49 2 254 995 100 1 24.21 143.0 144 2 241.30 198.0 199 2 456.26
1 2 4 6 49.0 50 2 0.56 99.5 100 1 27.52 149.5 150 1 46.86 1945 196 3 1833.87
1 2 6 6 49.0 50 2 112 995 100 1 63.76 149.5 150 1 78.83 198.0 199 2 1551.20
1 8 2 4 485 50 3 0.77 99.5 100 1 16.74 1485 150 3 9.74 1985 200 3 263.17
1 8 2 6 49.0 50 2 0.69 99.5 100 1 33.43 149.5 150 1 60.20 1985 200 3 167354
1 8 4 4 485 50 3 0.23 99.5 100 1 30.98 1485 150 3 6.15 1985 200 3 254.03
1 8 4 6 49.0 50 2 0.58 99.5 100 1 57.64 149.5 150 1 62.48 1985 200 3 1263.91
1 8 6 6 49.0 50 2 0.70 99.5 100 1 80.84 1495 150 1 127.95 198.5 200 3 1350.73
2 2 2 4 16.0 18 4 0.20 55.0 57 4 413 21.0 23 4 1175 68.0 70 4 33.35
2 2 2 6 210 23 4 0.25 70.0 72 4 10.55 41.0 43 4 310.18 100.0 102 4 198.40
2 2 4 4 15.0 16 2 0.08 54.0 55 2 7.88 20.0 21 2 13.35 67.0 68 2 15.60
2 2 4 6 210 23 4 0.20 66.0 68 4 15.10 27.0 29 4 210.82 92.0 94 4 7184
2 2 6 6 20.0 21 2 0.16 65.0 66 2 10.17 26.0 27 2 336.38 91.0 92 2 87.19
2 8 2 4 220 30 16 012 69.0 7 16 2.08 49.0 57 16 227.10 93.0 101 16 1721
2 8 2 6 270 35 16 0.14 83.0 91 16 4.16 74.0 82 16 293.58 125.0 133 16 21.82
2 8 4 4 18.0 22 8 0.09 65.0 69 8 6.97 45.0 49 8 170.04 89.0 93 8 20.12
2 8 4 6 27.0 35 16 0.16 83.0 91 16 43.57 70.0 78 16 1358.71 123.0 131 16 36.91
2 8 6 6 23.0 27 8 0.16 79.0 83 8 6.05 66.0 70 8 1802.55 119.0 123 8 21.14




3.3.3. Observations and discussions

The SS-SMMDP model discussed in this paper is meant to be used as tools to inform
communicators in emergency events and to help illuminate some of the intricacies in
social media communications that may enhance or inhibit message dissemination
through social networks. To this extent, the experimentation has led us to identify a few
key observations that may be of use to practitioners and planners. First, there is a clear
difference in the distribution of messages between the randomly generated networks of
section 3.3.1 and the Twitter sub-networks of section3.3.2. Specifically, randomly
generated networks can be shown through our experimentation to overestimate the
number of active nodes and the cost-modified reach of the message (i.e., the objective
function). This is consistent with our knowledge of social media networks and
illustrates the importance of network connectivity/structure. Social media networks elicit
‘small world’ structures that are not well replicated through random network generation
(Butts, 2008).

We also observe differences in the behavior of the sources in the RED and
GREEN Twitter sub-networks. For the RED network, the source always sends as many
messages as possible. Given a maximum messages possible per scenario MAX =
[1T]/(l + 1)] X p, the mean number of messages sent by the RED sources always
reaches MAX (further indicated by the StDev = 0) as seen in Table 3.5 and Table 3.6
(note that this behavior is also observed in certain cases for the randomly generated
networks for SS-SMMDP in Table 3.1). This behavior is not observed in the GREEN

network is largely due to the structure of the RED networks, which have a more stem-
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and-petal. This structure, often observed in online social networks, makes message
distribution difficult as the single-friend connections through the stem act as a bottleneck
for message movement. To combat this strategy, the source must initiate more message
transmissions in an effort to force a wider distribution.

Table 3.8 looks at the observed correlation of our experimental runs to the timing
of message reception. Here, we focus on the first two waves of messages sent from the
source, call them Wave 1 and Wave 2 which reflect the extent of observed correlation
between node degree and message reception (either first or second wave). Degree and
AV G Delay refer to individual nodes, with observed correlation provided against
message reception (Wave 1 vs. Wave 2). Figure 3.5 and Figure 3.6 illustrate message
reception for each node by frequency (nodes receiving more messages have a larger
radius than nodes receiving fewer messages). From figures and the table, we can see
strong correlations between degree and Wave 1 for both RED networks (undirected and
directed) and note that very strong correlation is present in all but the |I| = 100 case.
This implies that nodes with higher degrees are more likely to receive messages from the
source in Wave 1. The lack of correlation and consistency through the GREEN network
is likely the result of either our arc delay calculations (which were not random but
dependent on common friendships/connections) or on network structure (Table 3.4
showed the increased connectivity/density of GREEN networks compared to RED). The
combination of GREEN and RED |I| = 100 results seems to indicate that network
structure itself plays an important role in message targeting, though further investigation
IS necessary to uncover this relationship. In terms of degree and average delay, the
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Table 3.8 Correlation by network

Networks Wave 1 Wave 2 Degree AVG Delay
RED (50) - Undirected 0.864 -0.357 -0.263 0.593
GREEN (50) -0.162 -0.490 -0.273 0.380
RED (50) - Directed 0.912 0.225 -0.204 0.458
RED (100) - Undirected 0.590 -0.607 -0.465 0.354
GREEN (100) 0.096 -0.433 -0.458 0.581
RED (100) - Directed 0.559 -0.497 -0.443 0.246
RED (150) - Undirected 0.902 -0.047 -0.497 0.283
GREEN (150) 0.459 -0.202 -0.496 0.458
RED (150) - Directed 0.876 -0.026 -0.523 0.305
RED (200) - Undirected 0.891 0.011 -0.469 0.142
GREEN (200) 0.078 -0.371 -0.340 0.551
RED (200) - Directed 0.883 0.206 -0.439 0.329
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Figure 3.5 Wave 1 for RED (a) |I| = 50, (b) |I|] = 100, and (c) |I| = 150
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Figure 3.6 Wave 1 for GREEN (a) |I| = 50, (b) |I| = 100, and (c) |I| = 150
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results are as expected. Nodes with higher degree will receive messages earlier (i.e.,
lower batch number) and are thus negatively correlated with wave number while nodes
with high delay characteristics are less likely to be targeted. Note that this last
relationship is consistent in that average node delay is always positively correlated with
wave number but that it is not a strong or significant correlation (ranging in [0.142 -
0.593] in our samples).

Computationally, the SS-SMMDP model shares similar properties with other
network models. As the network’s size increases (in this case, from |[I| = 50 to |I| =
150), computation time increases. We note that this increase is exponential and is
magnified in the GREEN network case, which inherently more dense than either the
RED or random networks. We also see an expected trend in the effect of the time
horizon |T| on objective performance and message distribution. In all cases, larger |T|
implies a larger mean objective function value and better reach of the message. While
this is not true for comparison of specific replications due to the random arc delay, it is

in general always beneficial, when possible, to increase the time horizon |T]|.

3.4. Implementation of Tabu Search

Looking into the experimental results, we observe that CPU times increased significantly
with the increase of network size |I|, length of time horizon |T| as well as source
messaging capacity p, which motivates us to examine how known heuristics or meta-
heuristics might help improve the computational efficiency. Therefore, we implement a

Tabu Search procedure for SS-SMMDP as an initial test on heuristic performance versus
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the CPLEX strategy implemented to this point. Detailed information of the proposed

Tabu Search procedure is given in the following.

3.4.1. Technical details

3.4.1.1. Encoding of a solution

Given time horizon |T| and source messaging interval [, we fix the time points when the
source node is eligible to send messages in the first place. Literally the set of eligible
time pointsis E = {1,1 + 2,20l + 3,30 + 4, ... ,TL}, where TL is the last time point for
sending message within the planning horizon. Let m be the cardinality of set E. For each
time point, at most p users can receive the message from the source, so we designate p
variables (each one represents a certain user, i.e., node index) for each time point and in
total we have m X p variables. All these variables are then combined in a chronological
order to form a solution X, which can be viewed as a message recipient list as illustrated
in Figure 3.7. It assumes p = 4 and users are indexed from 1 to |I|. Note that O in the

third box means empty (i.e., only 3 nodes are receiving the message at that time point).

targeted nodes in 2nd
wave
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Figure 3.7 An illustration of the structure of an encoded solution X
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3.4.1.2. Neighborhood definition

Given two solutions X and Y, they are defined as neighbors if they are different by only
one variable value. Using the example in Figure 3.8, X = {1,3,6,8,2,10,12,14,7,9,18,0}
and letY = {1,3,6,5,2,10,12,14,7,9,18,0}. Then Y is a neighbor of X because it’s are
different from X only at the 4th position. Given a solution X, a certain number of
neighbors of X are generated by exchanging a node i in X with any node j (j # i) to
form a set of candidate solutions for evaluation. The first exchange that improves the

current objective value will be adopted to form a new solution for next iteration.

3.4.1.3. Evaluation function

Given a solution or message recipient list X, the activation time of each node can be
determined by implementing a shortest path algorithm. That is, the activation time of
node i is the minimum of the accumulated delay from any node j in the recipient list to
node i plus the activation time of node j. In this way, the objective value for X can be
calculated and evaluated. According to the encoding of solutions and the neighborhood
definition, any solution constructed is feasible. Therefore, no punishment is needed and

the objective function can be used as evaluation function directly.

3.4.1.4. Tabu criterion

In each iteration, the node selected to enter the current solution will be recorded in Tabu
list (denoted by TabulList) and forced to stay in the solution for a certain number of
iterations, which is referred to as the Tabu length Lt. The node will be released from

Tabulist after Lt iterations.
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3.4.1.5. Aspiration criterion

In any iteration, if the best exchange is Tabu (i.e., the node selected to enter the current
solution is in the TabulList), then this exchange is not allowed. In this case, aspiration

criterion applies only if the objective value associated with this exchange is better than

the best objective value found so far.

3.4.2. Tabu Search procedure

3.4.2.1. Notations
iter: iteration counter

iterMax: total number of iterations to be performed

Lt: Tabu length
X: the current solution
Y: neighbor of the current solution X

XInit: the initial solution

XBest:  the best known solution

YBest:  the best neighbor of X

objX: the objective value corresponding to X

objY: the objective value corresponding to Y

objXBest:  the objective value corresponding to XBest

objYBest:  the objective value corresponding to YBest

Tabulist:  the Tabu list. When an exchange is adopted (e.g., node i enters the current

solution), the it" value of TabulList will be increased by Lt
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3.4.2.2. Steps

Step 0: Initialization

Initialize p, L, |T|, Tabulist, XInit, XBest, objBest, and let iter:= 1 and
X:= XlInit.

Step 1: Neighborhood construction

Construct a neighbor of X, denoted by Y, by exchanging a node i in X with any
node j (j # i) and calculate the objective value objY.

Step 2: Solution evaluation

If objY is better (greater) than objX, then go to Step 3. Otherwise, go back to
Step 1. If all the neighbors have been examined, then let YBest: =Y and
objYBest: = objY and go to step 4.

Step 3: Tabu check

If node i is in Tabulist, then check aspiration criterion. If aspiration criterion is
met, let YBest: =Y and objYBest: = objY, and then go to Step 4. Otherwise, go
back to Step 1. If node i is not in Tabulist, let YBest: = Y and objYBest: =
objY, and then go to Step 4.

Step 4: Update

Let X: = YBest and objX: = objYBest. Update TabulList. If objX > objBest,
then set objBest: = objX and XBest: = X. Otherwise go to Step 5.

Step 5: Termination check

Let iter: = iter + 1. If iter > iterMax, then stop and output XBest and

objBest. Otherwise go to Step 1.
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3.4.3. Implementation and discussions

We test the performance of the proposed Tabu Search procedure using instances of the
RED Twitter undirected sub-network, in which |I| = 200, |T| = 6 and 10 replications
for each problem scenario. CPLEX results are obtained using AMPL/CPLEX 12.1 and
the Tabu Search procedure is performed using MATLAB R2012B. All computations are
performed on a Dell OptiPlex 755 computer (Inter Core 2 Duo E6750 2.67GHz, 2GB
RAM and Windows 7 System).

Table 3.9 gives the computational results for CPLEX and compares them with
the Tabu Search strategy implemented, in which OBJ and ACT refer to the average of the
best objective values found and the average number of active nodes, respectively. CPU
refers to the average of the time elapsed to get the best objective value. From the table,
we can see that the objective values given by the Tabu Search are very close to the
optimal objective values (i.e., small gaps), which are given by CPLEX, especially for the
instances where | = 4 and [ = 6. Similar trend can also be observed for the number of
active users. Note that the absolute gap of the ACT is exactly the same as that of the
OBJ. The reason is that maximum number of messages are sent from the source in all
instances, so the difference of the OB]J is essentially the difference of the ACT between
CPLEX and Tabu Search (recall that w; = 1 for all i € I). More importantly, these near-
optimal objective values are obtained in a very short time, compared to the time required
by CPLEX. In addition, the CPU time of the Tabu Search procedure appears to be stable

as p increases. All these observations justify our initial idea in designing such an
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Table 3.9 Computational results given by CPLEX and Tabu Search

CPLEX TABU SEARCH GAP of OBJ GAP of ACT
P : m L OBJ ACT CPU OBJ ACT CPU Absolute Percentage Absolute Percentage
4 2 6 200 53.1 57.1 356.31 52.3 56.3 0.88 0.8 1.507% 0.8 1.401%
4 4 6 200 443 483 21.78 44.2 48.2 0.93 0.1 0.226% 0.1 0.207%
4 6 6 200 395 415 48.99 395 415 0.67 0.0 0.000% 0.0 0.000%
6 2 6 200 65.8 718 121211 64.4 704 119 14 2.128% 14 1.950%
6 4 6 200 55.7 61.7 302.99 55.5 61.5 119 0.2 0.359% 0.2 0.324%
6 6 6 200 49.9 52.9 471.83 49.9 52.9 0.77 0.0 0.000% 0.0 0.000%
8 2 6 200 76.3 843 162343 75.1 83.1 144 12 1573% 12 1.423%
8 4 6 200 65.1 73.1 757.86 65.0 73.0 162 0.1 0.154% 0.1 0.137%
8 6 6 200 61.3 65.3 642.87 61.3 65.3 0.96 0.0 0.000% 0.0 0.000%

algorithm and also imply that the proposed Tabu Search procedure is potentially

valuable for solving large-scale SS-SMMDP in the future study.

3.5. Closing Remarks for SS-SMMDP
In this chapter, we examine the single-network single-message application scenario in
which one message needs to be disseminated on one social media network within a
predefined planning horizon. While we anticipate this model being useful in extreme
event scenarios as a planning tool for emergency managers to determine communication
strategies that will promote message dissemination and great situational awareness
among the population at risk, the model and its parameters are flexible enough to be
used in other mass convergence events (e.g., civil violence/rioting, sporting events such
as the Super Bowl, etc.) or in modeling social media communication in general.
Through computational experiments, we show that the length of time horizon |T|
is the most important problem factor in determining the number of active users at the end

of the planning horizon and CPU time of a test instance. Surprisingly, source messaging
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interval [ and source messaging capacity p are not significant, indicating that social
media message dissemination can be effective with very few starting messages given
enough time to work the message through the network.

We observe some significant differences between randomly generated and real-
world sub-networks. As expected, real-world social networks are less densely connected,
leading to an over-estimation of message dissemination in randomly generated networks.
We also see that the arc structure (directed or undirected) did not dramatically alter
objective or computational performance. Lastly, we notice a distinct correlation between
the time a message is received and the degree of the receiving node with higher-degree
nodes consistently targeted earlier in our RED Twitter sub-networks.

It is prudent to note that the SS-SMMDP model derived here is not devoid of
limitation. As mentioned previously, there is a negative computational relationship
between increased parameter values, increased network size and solution time. Although
the proposed Tabu Search procedure works well for the test instances, it still needs to be
examined and improved before larger and more realistic problems can be evaluated.
Additionally, today’s social media networks are not independent but very integrated.
Twitter users can post messages from photo and video social media such as Instagram
and Vine while also sending their Twitter post to their Facebook accounts. To create
more realistic application environments, it would be interesting to examine message
dissemination scenarios which consider multiple message types and/or multiple social

media sites in the future research.
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CHAPTER IV
SINGLE-NETWORK MULTI-MESSAGE SOCIAL MEDIA MESSAGE

DISSEMINATION PROBLEM

4.1. Problem Description and Definition
The Single-network Multi-message Social Media Message Dissemination Problem (SM-
SMMDP) considers the scenario in which multiple messages need to be disseminated on
one social media network within a predefined planning horizon. The network is
represented by G = (1, A), where each node i € I represents a user in the social media
and each arc (i, j) € A represents the relationship on the network (i.e., friend or follower)
between users i, j € I, through which messages can flow from i to j. The messages to be
disseminated are given by set M. Each message m € M is assumed to be independent
from others and corresponds to a unique source (i.e., it can only send its own message to
the user nodes), and the number of unique messages is |M|. The planning horizon is
given by set T. Each t € T represents a time period in the planning horizon and the
length of the planning horizon is |T|.

Message propagation on the network is initiated by the sources through node
targeting (i.e., send direct messages to the selected nodes) and continues as individual
nodes redistribute the received messages to their friends or followers, as illustrated in

Figure 4.1. The source for any message m can send its message multiple waves if time
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"™ Local Agency

Facebook

Figure 4.1 Conceptualization of SM-SMMDP

allows, with a minimum reset time 1,,, between two consecutive waves and a capacity p,,
in each wave. Accordingly, a subset of p,,, nodes (i.e., nodes to be targeted) needs to be
determined corresponding to each wave of message m from its source. This process is
illustrated in Figure 4.2. Individuals’ redistribution behaviors are modeled using a time
delay called user share delay, which represents the time between message arrival at a
user’s device (e.g., PC, cell phone, iPad, etc.) and when the user shares the message. It is
assumed to be specific to individual node, message and the social media network
through which the message is being distributed, and denoted by matrix DS, with

ds;, € DS representing the share delay of node i for message m (We don’t need a
subscript for network since the nodes are on the same network). There is another type of
delay, message transmission delay dm, which reflects the physical transmission time
between devices and is assumed to be specific to the network. This delay could be non-
negligible in emergency events due to cell phone tower damages and/or excessive load
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within a short period. The illustration of delays is given in Figure 4.3. A user node i is
considered active after receiving all messages, and the message dissemination outcome
is defined as the weighted sum of the activation status of all individual nodes over the
planning horizon, which essentially encourages wider and sooner message reception on
the network.

Now the SM-SMMDP can be formally stated as follows: Given social media
network G = (I, A), message set M, planning horizon T, source messaging capacity
matrix P(M), source reset time matrix L(M), user share delay matrix DS(I, M), and
message transmission delay dm, SM-SMMDP optimizes the message dissemination
outcome by determining a sequence of subsets, each containing at most p,,, nodes, to be

targeted for each message m. Problem formulation is presented in section 4.2.

Pm Messages P, messages  pPp, messages

b

| | \ >
-

B o

1st gnd 3rd | |T| time

Figure 4.2 An illustration of source messaging behavior (e.g., message m)

User i Useri User j
Message Received MessageShared MessageReceived
—

|1 |
o ¥ ' time
message

user share dela o
Y transmission delay

Figure 4.3 An illustration of the delays in SM-SMMDP
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4.2. Problem Formulation

4.2.1. Sets and parameters
I = the set of user nodes
M = the set of messages
T = the set of time periods
T,,= the set of time periods eligible for the source of m to send messages
N; = the set of nodes j such that (j, i) € A
w;;: = the reward for node i being active at time t
pm = the source messaging capacity for message m
ds;,, = the share delay of node i for message m

dm = the message transmission delay

4.2.2. Decision variables
z;; =1 ifnode i is active at time t, O otherwise
Xim¢ = 1 1f node i is targeted for message m at time ¢, O otherwise

Yime = 1 1f node i is active for message m at time t, 0 otherwise

4.2.3. Formulation

max Yier Leer WitZit- (4.1)
S.t.
ZiEI Ximt = Pm., VvmeM,te Trln (42)
YVimt = let ximl + ZjeNi ij(t—dm—dsjm)' vielmeM,teT. (4-3)
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Zit < Vimey Yi€ELMEM,tET. (4.4)

Yimt < Yimt+1» VielmeM,teT. (45)
Zit < Zi,t+1' Vie I, teT. (46)
Ximt» Yime» Zit € {0,1},Vi€I,m e M,t € T. 4.7

The objective function (4.1) optimizes the message dissemination outcome (i.e.,
maximizing the total reward for message reception over all user nodes within the
planning horizon). For each node i, the weight w;; is a decreasing function of time t,
which serves to encouraging early reception. In this way, the ultimate goal of the
objective is to encourage wider and sooner message reception on the network. Constraint
(4.2) enforces the messaging capacity of the sources. Note that for any message m, set
T, is developed based on T and L,,,. Constraint (4.3) states that, node i is active for
message m at time ¢, if it received the message either from the source node prior to t or
from a friend node j who shared the message previously. The lead time is node j’s share
delay for message m, ds;j,, plus the transmission delay dm on the network. Constraint
(4.4) ensures the message aggregation effect at the user end (i.e., a node has to receive
all the messages to become active). Constraints (4.5) and (4.6) mean that node status

preserves over time, and Constraint (4.7) imposes that all decision variables are binary.
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4.3. Computational Experiments

In this section, we present the results of computational experimentation on SM-SMMDP.
In particular, this analysis illustrates how decision factors/parameters affect
computational performance as well as message dissemination outcomes. The factors
being tested include length of planning horizon (|T|), source messaging capacity (P),
source messaging interval (L), network type (N), network structure (density), and
network condition (dm). We use 100-node networks in these computational experiments
and consider three unique messages are to be disseminated through the network (i.e., |/|
=100, |M| = 3). Three different network types are examined: complete connectivity,
random connectivity and a Twitter sub-network. The Twitter sub-networks are generated
through a Metropolis-Hastings Random Walk (MHRW) on Twitter, with four such
networks generated (each using a different, randomly selected Twitter user as Node 0 in
the random walk). All networks are treated as undirected where two nodes are connected
with an edge if they have a friend/follower relationship originally or they have at least
one common friend/follower. We use the network density of the MHRW Twitter
networks as the expected density to generate the random networks (in this process, two
nodes are connected with an edge with probability = expected density). Table 4.1
provides a summary of the Twitter sub-networks and Figures 4.4 gives the illustrations

of them.
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Table 4.1 Statistics of the Twitter sub-networks

Node Degree Statistics

Notation ~ Nodes Arcs Density AVG StDev MIN MAX
T1 100 454 0.09 9.08 6.90 2 32
T2 100 545 0.11 10.90 9.47 2 37
T3 100 716 0.14 14.32 12.05 2 51
T4 100 1102 0.22 22.04 14.12 2 72

e
den =0.22 F =" 5 den =0.14
. »
o

Figure 4.4 Twitter sub-networks with 100 nodes generated from MHRW results

4.3.1. Experimental design

Table 4.2 provides the factors and levels for the implemented experimental design. It is
known that the planning horizon for message dissemination varies by extreme event. For
example, NWS issues a hurricane watch 24-36 hours in advance of a potential event and
a hurricane warning when the event is expected in 24 hours or less, while the warning
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time may be only a few minutes or less for a tornado. For the purposes of our
experimentation, we assume the basic time unit to be hours (we note that such an
assumption may easily be changed to adapt the SM-SMMDP for different extreme event
circumstances/scenarios).

Complete network is denoted by C and random networks denoted by R1, R2, R3
and R4 corresponding to the density values of T1, T2, T3 and T4, respectively. Source
messaging capacity and messaging interval are assumed to be identical for all message
sources on each network, i.e., p; = p, = p3 =pand l; =1, = I3 = [. Message
transmission delay dm is assumed to be constant, as discussed in section 4.1.
Individual’s share delay is assumed to be independent over messages, and each element
ds;,, € DS is an integer sampled from Uniform(1,7) or Poisson(4) distribution. The
parameters of the distributions are chosen such that the sampled values are expected to
have same mean and variance. The reward coefficient w;; in the objective function is

assumed to be w;; = 1/t forany node i € I.

Table 4.2 A summary of experimental factors and levels

Factors Levels

Network (N) C,R1,R2,R3,R4,T1, T2, T3, T4
Messaging capacity (p) 1,2,3,4,5

Planning horizon (|T|) 1,2,3,4,5,6,7,8

Messaging interval () 1,2

Transmission delay (dm) 1,2,3

User share delay (DS) 1-Uniform, 2-Poisson
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We define a problem scenario as a combination of decision parameters
(p,L,|T|,N,dm), in which (p, [, |T]) can represent an emergency manager’s
considerations and (N, dm) reflects network structure. Based on all the factors and levels
given in Table 4.2, there are 2,160 unique problem scenarios. Due to the random nature
of user sharing behavior, we use two common distributions (Uniform and Poisson)
and generate 10 replications for each scenario and each distribution in terms of the delay
matrix DS to capture the variations, which results in 43,200 test instances in total (From
the angle of network type, 4,800 instances for complete network, 19,200 for random
network and Twitter network each). All the test instances are computed using ILOG
Concert Technology with C++/CPLEX 12.4 on a Dell OptiPlex 755 computer (Inter
Core 2 Duo E8500 3.17GHz, 4GB RAM and Windows 7 System), and the solution time
are capped at 1,800 seconds for each test instance. Computational results and analysis

are presented in the following

4.3.2. Results and analysis on CPU time

Table 4.3 provides an overall summary of objective gap and CPU time by network type.
We note that nearly all the instances can be solved to optimality within the 1,800-second
solution time cap (exceptions being for the random network). This suggests that the SM-
SMMDP model is tractable for 100-node networks, though disparity exists depending
upon network structure. Complete and Twitter network instances (denoted as

C Instances and T Instances in the following analysis) solve on average within 4-7

CPU seconds with a maximum of 100 CPU seconds observed in our experiments.
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Random network instances (denoted as R Instances in the following analysis),
alternatively, account for all non-optimal solutions (where 1,800 CPU seconds is not
enough to generate an optimal solution) and exhibit significantly larger averages (30
CPU seconds) and more variation (i.e., high standard deviation). These incomplete
instances are typically associated with longer planning horizon (i.e., |T| = 8) and larger
messaging capacity (i.e., p = 4 orp = 5).

Figure 4.5 shows the impact of length of planning horizon |T| on CPU time (i.e.,
AV G and StDev of CPU times) and compares this impact over network type and source
messaging capacity p. In each individual chart, p is fixed and instances are aggregated
and averaged for each planning horizon length (i.e., |T| = 1,..., 8) and each network
type (i.e., complete, random, and Twitter). We denote the lines as C Lines, R Lines and
T Lines for complete, random, and Twitter networks, respectively. It is clear that CPU
time increases as the increase of |T|. This is expected since problem size grows as the
planning horizon gets longer. For a specific planning horizon length, R Lines and
C Lines provide the highest and lowest values respectively while T Lines stay in the
middle (this is particularly obvious when |T| >= 4), which is true for both AV G and

StDev. This actually extends the trend observed in Table 4.3, which considers network

type only.
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Table 4.3 A summary of objective gap and CPU time

Network Numof % of Objective Gap CPU Time
Type Instances Optimal ~ AVG ~ StDev ~ MIN MAX AVG  StDev  MIN MAX
Complete 4,800 100.00%  0.000 0.000 0.000 0.000 4533 3.795 0.000 52.026
Random 19,200 99.97% 0.000 0.000 0.000 0.033 29.339  106.553 0.000 1800.000
Twitter 19,200 100.00%  0.000 0.000 0.000 0.000 6.131 7.606 0.000 99.544
. Average CPU Time for p = 1, ||| = 100 oS sthev of CPU Time for p = 1, |I| = 100
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Figure 4.5 CPU time vs. |T| by p and network type
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Given a source messaging capacity p, all lines appear to grow exponentially with
|T|, but the R Line grows much faster than the T Line and the C Line, which is true for
both AVG and StDev. And as p increases, the R Lines are affected more significantly
than the other two, which is interesting considering that p is not a factor that determines
the problem size. In a word, the characteristics of CPU times for T Instances are very
similar to that for C Instances, as being relatively insensitive to the change of length of
planning horizon |T| and source messaging capacity p. As a general implication, such a
property would potentially enable emergency managers to evaluate more node targeting
alternatives (e.g., develop and compare strategies under different planning horizon
length and messaging capacity) before they make final decisions in real-world
applications.

Figure 4.6 shows the impact of length of planning horizon |T| on CPU time (i.e.,
AV G and StDev of CPU times) and compares this impact over network type, density and
source messaging capacity p. C Lines are added to each chart for comparison, denoted
as den = 1. We may still see AVG increase as the increase of |T| for a given network
type and density, but it is not always the case for StDev (e.g., den = 0.09, p = 5,

R Lines). It is noticeable that for a specific messaging capacity p, the network density
doesn’t show a consistent impact on AVG or CPU time. For example, the line
corresponding to a higher density is not always higher than that to a lower density along
the horizontal axis, or vice versa. However, distinction can still be identified between

R Instances and T Instances. Specifically, higher density tends to imply smaller AVG

and StDev for T Instances, while the opposite trend might be observed for
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R Instances. Lastly, some T Instances appear to be easier to solve than C Instances,
such aswhen |T| <=5forp =1and |T| <= 4 for p = 2 or p = 3. The reason for this
is not clear at this point and this could be an interesting observation to examine in future

studies.

4.3.3. Results and analysis on objective values
The objective function for SM-SMMDP is defined as the weighted sum of the activation
status of all individual nodes over the planning horizon, which essentially encourages
wider and sooner message reception on the networks. Given a specific |T|, a larger
objective value implies a better overall message dissemination outcome. Table 4.4
introduces selected SM-SMMDP computational results, in which the average and
standard deviation of objective values over 10 replications (denoted as AVG and StDev)
are given for each problem scenario (a total of 5,760 test instances are selected to
populate these tables). The networks are listed according to the density, from the
smallest to largest.

Generally speaking, all model parameters impact the objective value, but the
degree of impact varies from case to case. When the planning horizon is very short (i.e.,
|T| = 1), the objective values are totally determined by the source messaging capacity p.
In other words, no one can receive messages from his/her friends in this scenario. The
objective values tend to increase as the increase of planning horizon length |T| and
messaging capacity p. However, they affect the variation of objective values differently.

Specifically, larger |T| tends to lead to larger variations (i.e., higher StDev values),
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Table 4.4 Selected objective values for SM-SMMDP

Random Neworks Twitter Networks
moo dm DS Rl(exp.den=009) R2(exp.den=0.11) R3(exp.den=014) R4 (exp.den =0.22) T1 (den = 0.09) T2 (den = 0.11) T3 (den =0.14) T4 (den =0.22)
AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev
1 1 1 1 1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 1 1 2 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 1 3 1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 1 3 2 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 2 1 1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 2 1 2 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 2 3 1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 1 2 3 2 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1 4 1 1 1 6.325 2517 7.367 2326 9.251 3153 9517 1.992 11058 2238 13916 3134 16.801  3.380 21.827  5.051
1 4 1 1 2 4.867 0.950 5.167 1.025 6.309 1483 8775 2546 9734 2732 11116 3769 15092 349 18983 5290
1 4 1 3 1 2667 0.000 2667 0.000 2667 0.000 2667 0.000 2667 0.000 2667 0.000 2667 0.000 2667 0.000
1 4 1 3 2 2667 0.000 2667 0.000 2667 0.000 2667 0.000 2667 0.000 2684 0.050 3242 1111 3284 1234
1 4 2 1 1 5325 2,097 6.142 2795 6.392 2010 9.041 2419 9516 2516 12717 3683 18575  3.046 22919 3641
1 4 2 1 2 3.908 0.981 5425 3.246 5216 1438 9.267 2351 8133 3.068 9.833 2752 13708 3511 18726 5121
1 4 2 3 1 2333 0.000 2333 0.000 2333 0.000 2333 0.000 2333 0.000 2333 0.000 2333 0.000 2333 0.000
1 4 2 3 2 2333 0.000 2333 0.000 2333 0.000 2425 0275 2333 0.000 2333 0.000 2333 0.000 3.342 1255
1 8 1 1 1 27538  4.612 34659  6.169 49441 8095 60.604 3.484 34626  5.620 43573 5265 55565 5728 77744 7453
1 8 1 1 2 26.064  3.890 31665  4.562 46.033  5.800 60.350  8.696 33472  6.084 40159 4767 47.795 4827 66.882  8.062
1 8 1 3 1 11755 1.460 12223 2.095 13782 1857 18.282  3.060 15601 2333 19593 2472 24.255 4799 30772 3214
1 8 1 3 2 9.280 0913 10921 1.035 12380  3.000 16.627 2491 15117 2170 17493 3474 19316 2215 28906  4.657
1 8 2 1 1 23501  3.808 28811  4.009 39375 4211 56.282  7.006 34433 6610 40945 7674 50338  5.076 69.366  8.265
1 8 2 1 2 25078  5.668 26650 6.792 38.038 6511 56.764  7.440 30055 6.034 38914 8143 47139 10241 66.042 8512
1 8 2 3 1 9.761 2072 10013 1764 11841 2620 15510 2515 13960 2.864 17936 2421 20552 3510 26711 6184
1 8 2 3 2 7.747 1.296 9.056 0.987 10581  1.257 15151  2.899 11650 1844 15121 2786 20735  3.381 26300 3.079
3 1 1 1 1 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 1 1 2 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 1 3 1 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 1 3 2 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 2 1 1 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 2 1 2 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 2 3 1 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 1 2 3 2 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000 3.000 0.000
3 4 1 1 1 15810 1914 17.400 2426 21160  2.252 28416 2,023 22509 3647 26008 2344 28299 2461 43284 3528
3 4 1 1 2 14507  1.032 15526 1467 18842 2137 28743 3931 21.066 3.340 23399 3951 26175 4225 44183  6.798
3 4 1 3 1 8.000 0.000 8.000 0.000 8.000 0.000 8.000 0.000 8.000 0.000 8.000 0.000 8.000 0.000 8.000 0.000
3 4 1 3 2 8.042 0.085 8.108 0.183 8.233 0.266 8.408 0.556 8.000 0.000 8.067 0.139 8125 0.230 9.275 1451
3 4 2 1 1 12233 0747 14.443 2462 17.950 2450 27.041 1805 20525 2226 21567 2578 28833 2490 43141 2.867
3 4 2 1 2 12200 2119 13974 1854 17108 2597 28700 4735 18310 2404 19.809  3.306 26467 3472 37.893 8879
3 4 2 3 1 7.000 0.000 7.000 0.000 7.000 0.000 7.000 0.000 7.000 0.000 7.000 0.000 7.000 0.000 7.000 0.000
3 4 2 3 2 7.300 0.384 7.725 0.607 7.700 0.660 8.500 0.822 7.975 1371 7.775 0.786 7.500 0.512 8.825 1388
3 8 1 1 1 59.082  3.206 65.083  4.447 75916  3.087 90618  3.101 63734 4387 64749 4974 80.005 6311 101415 4.126
3 8 1 1 2 56.589  3.753 61.856  4.137 72410 5174 90465  4.587 60.187  6.731 60.249 6510 73222 8216 98.996  9.431
3 8 1 3 1 26398 2123 30189  3.350 34049  1.266 44074 3549 31838  3.036 35410 2407 40.140 2908 54713 2378
3 8 1 3 2 26604 1730 28484  2.386 32626 2078 42054 3333 32515 2054 35193 3124 38227 3215 53193 3942
3 8 2 1 1 53005 3894 57.561  4.858 66475  3.823 84.800  3.520 57.891 5110 59128 5265 71263 3442 99.078 5450
3 8 2 1 2 49.015  3.815 54436 2,985 67.821  4.908 86.262  5.880 52563 6.171 57.761  6.530 72739 8493 94551  6.296
3 8 2 3 1 23448 3207 25875  3.036 28008 2763 35780  3.454 28594 1700 32130 1814 37554 2372 50.751 2674
3 8 2 3 2 21419 1382 23.639  2.302 26776 2.084 33.042 2.252 26730 2677 29.781 3172 33629 4.806 46.954  4.791
5 1 1 1 1 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 1 1 2 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 1 3 1 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 1 3 2 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 2 1 1 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 2 1 2 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 2 3 1 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 1 2 3 2 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000
5 4 1 1 1 25717 1470 27734 1874 33526  3.360 46425 3262 31600 2.003 33684 1.898 38234 2968 52334 2744
5 4 1 1 2 23468 1975 26491 2512 30.559  4.048 45859  3.821 29.759 3749 29.250 4397 36.799 4130 50.224  6.775
5 4 1 3 1 13330  0.000 13330  0.000 13330  0.000 13330  0.000 13330  0.000 13330  0.000 13330  0.000 13330  0.000
5 4 1 3 2 13473 0212 13724 0298 13923 0518 14340 1203 13814 1452 13372 0126 13914 0668 14822 1861
5 4 2 1 1 23383 2.468 24210  2.502 27901 2873 42751 1.960 29475 2238 31725 1551 37.367 3357 48292 3987
5 4 2 1 2 19451 1159 22643 2409 28291  3.062 41617 7833 25568 2,025 26733 3198 33101 5017 41775 6.541
5 4 2 3 1 11670  0.000 11670  0.000 11670  0.000 11670  0.000 11670  0.000 11670  0.000 11670  0.000 11670  0.000
5 4 2 3 2 12470 0.630 12945 1126 12770 1174 14145  1.839 12495 0448 12.745  0.936 12695 1748 13220 1503
5 8 1 1 1 78513 4377 86250 1711 95571 2,948 111300 2.959 81235 2961 83605  4.087 90.663 2910 114170 2628
5 8 1 1 2 72698 4422 82168  4.841 89.115  5.599 110180 4.140 78185  2.399 79.409 5594 87412 8237 108.887 8.177
5 8 1 3 1 44516 2432 45997  2.948 53174 22711 63629 1315 49147 1732 48308 3101 54324 2191 67.815  2.979
5 8 1 3 2 41.948 1513 44218 1635 49.247 1752 60.325 2142 45013 2278 45238 2673 52411  4.053 64.973  6.088
5 8 2 1 1 70397 2.824 75053  3.037 86.845 3531 104399  3.565 76.076  4.297 73983 4319 85548  5.883 110210 3749
5 8 2 1 2 68.932  5.883 75342 4316 83.863  5.300 104.149 5.465 68.142  4.989 72425 4933 82241  6.100 102682 5.493
5 8 2 3 1 36.444 2574 38518 2727 42536 2174 54.617  1.996 405% 1915 41514 2444 47.048  3.636 60.264 2917
5 8 2 3 2 35664  2.652 36416 1729 40271 2.594 53166  3.185 37.743 3554 42.624  4.562 46.252  3.672 57.374 1717
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while larger p tends to do the opposite. From this perspective, emergency organizations
and agencies could take measures to improve their node targeting capability in order to
reduce the variations in message dissemination outcome due to the changes of user
sharing behaviors in disasters and extreme events.

Compared to |T| and p, source massaging interval [ and message transmission
delay dm have the opposite effect on the objective values. When [ or dm gets larger, the
object values are likely to get smaller. The distribution of share delay DS appears to have
the least impact on the objective values. It seems that the objective values are slightly
larger for DS = 1 than DS = 2, where the delay values are sampled from Uniform(1,7)
and Poisson(4) respectively, but it is not always the case. Such examples can be found
in different problem scenarios from both R Instances and T Instances. Although the
exact characteristics of user information sharing behaviors on social media are not clear
yet, this property is desirable for emergency managers in that otherwise a messaging
strategy could potentially perform poorly due to user behavior changes (i.e., different
from the predicted behaviors at the planning stage) in disasters and extreme events.

Looking at each table horizontally, we may find some interesting trends. For
each problem scenario, the objective values tend to increase as network density
increases, which is true for both R Instances and T Instances. This implies that denser
networks are potentially beneficial for message dissemination. In particular, this increase
tends to be more drastic when source messaging capacity is low (i.e., p = 1). However,
similar trend cannot be identified for StDev, which means that network density itself

may not influence the variation of message dissemination outcomes significantly.
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Another interesting trend to observe is how network type impacts the objective values.
By comparing the R Instances and T Instances with same density, it is obvious that
Twitter networks tend to result in larger objective values and this trend can be identified
in almost all problem scenarios. This means that more nodes may become active and/or
nodes may become active sooner within the planning horizon on a Twitter network than
random network, which motivates us to examine node activation over time and compare
the results between different types of networks. This analysis is presented in section

4.3.4.

4.3.4. Results and analysis on node activation
Here we examine node activation within the planning horizon. In particular, we’re
interested in how the number of active nodes increases over time within the planning
horizon, and how network and model parameters impact this increase. To answer these
questions, we create a chart for each pair of R Instance and T Instance. Results of the
corresponding C Instance are also added for comparison. Each line in the chart
corresponds to a network type for the whole planning horizon and each dot on the line
represents the average number of active nodes (over 10 replications) for a specific time
period. By examining these charts, we are able to identify some key trends across
problem scenarios (we focus specifically on |T| = 4 or |T| = 8 scenarios).

Figure 4.7 and Figure 4.8 introduce some of the scenarios for |T| = 4. Figure 4.7
shows the impact of p and network density on node activation for different networks.

Specifically, charts on the left-hand-side are for p = 1 and charts on the right-hand-side
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for p = 5. Top and bottom charts are based on the networks with density 0.09 and 0.22
respectively. Figure 4.8 illustrates the impact of [ and DS by horizontal and vertical
comparisons in a similar way and all the charts are based on the networks with density
0.22. Figure 4.9 and Figure 4.10 show the same thing as in previous two but for |T| = 8.
We still denote the lines as C Lines, R Lines, and T Lines in the following analysis.

It is obvious that C Lines are highly distinct from the other two. They are
characterized by a sharp increase in a short period of time (e.g., period 2 to 3 in Figure
4.7 and Figure 4.9) and all nodes can become active quickly regardless of the change of
other parameters. Compared to that, R Lines and T Lines appear more stable. They
don’t grow as drastically as the C Lines in general and are more sensitive to the change
of parameters. Specifically, there are more active nodes in each time period for a larger p
or higher density on random and Twitter networks. Also, there tends to be more active
nodes for a smaller [ or DS, especially in the early periods of the planning horizon.

Having seen the similarities between the R Lines and T Lines, we are more
interested in observing how they behave differently. A first trend to notice is that
T Lines grow much faster than R Lines in the initial phase of message dissemination,
which is true for both |[T| = 4 and |T| = 8 scenarios. It appears to be more significant
for some of the scenarios, such as when messaging capacity is relatively small, (i.e.,

p = 1 or p = 3) and share delay are sampled from Uniform distribution (i.e., DS = 1).
Another trend to notice is that, for |T| = 4 the T Lines tend to be higher than the
R Lines (i.e., more nodes are active) in each time period of the planning horizon, while

for |T| = 8 the R Lines run below the T Lines during the first few periods but surpass
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Figure 4.8 Active nodes for |T| = 4 comparing [ and DS
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Figure 4.10 Active nodes for |T| = 8 comparing [ and DS
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them at a later point of the planning horizon, as illustrated in Figure 4.9 and Figure 4.10.
This surpassing point varies over different scenarios, but it tends to come sooner when
the situation is more suitable for message dissemination (e.g., larger p, smaller [, higher
network density, etc.). Given that each of the comparisons is made on networks with the
same density, we are inclined to attribute these trends to the structural difference
between random and Twitter networks. That is, the clustered structure of a Twitter sub-
network may contribute to wide message dissemination within a short period of time.
However, some low-degree nodes (i.e., petal nodes) far from the center of the network

are hard to reach. We further examine this in section 4.3.5.

4.3.5. Further analysis on node activation

Here we are interested in two questions: (1) Which nodes are more likely to become
active within the planning horizon, and (2) Which nodes should be targeted by the
sources to facilitate message dissemination, especially in the initial phase of the planning
horizon. The answers to these questions may help the emergency managers better
understand the nature of the message dissemination process in extreme events, and could
be used as general guidelines when they develop social media message dissemination
strategies in reality.

Social networks are highly distinct from other networks (e.g., random networks)
in that their node degree follows power law distribution. Therefore, we’d like to see how
node degree may impact the activation of individual nodes and whether this impact
varies by network type. To that end, we first examine degree centrality of active and

inactive nodes for random and Twitter networks respectively. The degree centrality of a
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node i is defined as the degree of i divided by the maximum possible degree in the
network. We apply hypothesis test to see whether the active and inactive nodes are
significantly different in terms of degree centrality. Specifically, for each test instance,
we divide the nodes into 2 subsets, active (ACT) and inactive (INACT). If both of them
have a size greater than or equal to 30 (in this case, we call this instance is valid for
testing), we performed a z-test to compare the mean of degree centrality and observed
the p-value. Table 4.5 provides a summary of the z-test results. Overall, we can find that
100% of the valid instances are showing a significant difference (p-value < 0.05) in
degree centrality between active and inactive nodes for Twitter networks, while this
percentage is 61.49% for random networks. It appears that node degree has significantly
stronger impact on message reception in Twitter networks than random networks. More
importantly, such impact exists regardless of network density. Compared to that, the

percentage is showing a decreasing trend as network density increases for random

networks.
Table 4.5 A summary of the z-test results on degree centrality

_Il\_l%vg/ork gg;\/:ﬁ;k :ﬁ\?;hljr;siagtl:g; with Valid Instances Total Instances
0.09 71.78% 1,205 4,800
0.11 66.94% 1,204 4,800

Random 0.14 57.12% 1,152 4,800
0.22 48.13% 1,043 4,800
Overall 61.49% 4,604 19,200
0.09 100.00% 1,846 4,800
0.11 100.00% 2,090 4,800

Twitter 0.14 100.00% 1,977 4,800
0.22 100.00% 885 4,800
Overall 100.00% 6,798 19,200
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To further examine the extent to which node degree may affect message
reception in both types of networks, we create a box plot for each comparing the
distributions of degree centrality between active and inactive nodes as well as the change
from |T| = 4 to |T| = 8, as shown in Figure 4.11. Note that ACT and INACT aggregate
degree centrality of the nodes from all test instances for a specific |T|. For each test
instance, if a node turns out to be active, then we put its node centrality value into ACT,
otherwise into INACT, and we do this for all the test instances. The information given
for each subset of nodes includes min value, max value, first quartile, median and third
quartile of degree centrality.

Not surprisingly, we can observe a larger gap between two subsets of nodes for
both |T| = 4 and |T| = 8 as well as a more obvious change from |T| = 4 to |T| = 8 for
Twitter networks than random networks. Now we focus the attention on Twitter

networks, the results of which can provide more insights for real-world applications.

cl%egree Centrality for Active and Inactive Nodes, Random Network ogvegre_e Centrality for Active and Inactive Nodes, Twitter Network
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Figure 4.11 Distributions of degree centrality for active and inactive nodes
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When |T| = 4, 75% of the active nodes have at least 14 friends (i.e., degree centrality is
about 0.14) while 75% of the inactive nodes have at most 14 friends. Such distinction
appears to be more obvious when |T| = 8. Specifically, 75% of the active nodes have at
least 8 friends and 50% of them have at least 16 friends, while 75% of the inactive nodes
have 5 friends or less. It is also noticeable that when a node has more than 57 friends, it
IS active in any problem scenario (the largest value in INACT is about 0.57). Some nodes
are hard to become active, such as those with 2 - 3 friends, even if the planning horizon
gets longer. When |T| = 8, 50% the inactive nodes have only 2 - 5 friends (between first
and third quartiles). Given all these figures, we can conclude with more confidence that
node degree can significantly impact individuals’ message reception on Twitter sub-
networks. More importantly, node degree has shown its potential to be a strong indicator
of message reception. In other word, the chance a node can receive messages within the
planning horizon might be predicted solely based on its degree on the social network. If
this is true, then it would be really helpful for emergency managers to assess message
reception and manage message dissemination on social media in reality.

Here we move the attention to the nodes targeted by the sources in the planning
horizon and examine their degree centrality and closeness centrality for short and long
planning horizon respectively. The closeness centrality of a node i is defined as the
reciprocal of the sum of the shortest path distances from i to all the other nodes in the
network, and it can be normalized by multiplying it by the sum of minimum possible
distances. In SM-SMMDP, the share delay of a node is specific to message type, so each
node in the network has |M| closeness values, corresponding to |M| message types. Also
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note that the distance (in terms of delay) from node u to node v for message m is given
by (ds,m + dm), while this distance is (ds,,, + dm) for the opposite direction.
Therefore, to calculate the shortest path distances, we have to construct |M| directed
multigraphs based on the original undirected social graph. This process is illustrated in
Figure 4.12. In this way, we can get one degree value (DG) and three closeness values
(CL1, CL2 and CL3) for each node in our experiments. To better characterize the
closeness centrality of each node, we include average closeness (AvgCL) and standard

deviation of closeness (StdCL) in the analysis.

ds,,, + dm
d‘q!lf?f d's‘\'ﬂf i

@@ — © ®

ds, + dm

Figure 4.12 Constructing directed multigraphs

Figure 4.13 introduces the comparisons between targeted nodes in different time
periods of the planning horizon for Twitter networks. Specifically, the targeted nodes are
divided into three categories, including 1st Wave, Later Waves, and Overall. 1st Wave
represents the nodes targeted by the sources in the first time period of the planning
horizon, while Later Waves represents those targeted in later times. Overall includes all
the targeted nodes, which is the union of nodes in the first two categories. We
aggregated the instances for |T| = 4 and |T| = 8 respectively and each value shown in

the figure is the average of DG, AvgCL or StdCL over all nodes in a specific category.
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It is noticeable but not surprising that, the 1st-wave nodes are exhibiting some
properties that make them highly distinct from others. They have significantly larger DG,
AvgCL and StdCL (comparing the blue bar and red bar in each block). Large DG means
they typically have more friends on the network, which can help create more message
outlets in the early periods of the planning horizon. Large AvgCL indicates their
messages can reach other nodes faster in general, while large StdCL implies they may be
particularly helpful in disseminating a certain type of message. Further, when we
compare the blue bars in each chart, we may find the 1st-wave nodes appear to have
more potential for |[T| = 8 than |T| = 4 (i.e., larger DG and AvgCL can be observed for
|T| = 8). These observations prove that degree and closeness centrality can reflect the
potential of individual nodes in facilitating message dissemination to some extent. As a
result, emergency managers could take them into account when making message

targeting decisions, especially for the initial phase of the planning horizon.

Degree Centrality [DG) of Targeted Nodes for Twitter Networks Closeness Centrality [AvgCL) of Targeted Nodes for Twitter Networks Closeness Centrality (StdCL) of Targeted Nodes for Twitter Networks
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Figure 4.13 Comparisons of DG, AvgCL and StdCL for targeted nodes
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4.4. Closing Remarks for SM-SMMDP

In this chapter, we examine the single-network multi-message application scenario in
which multiple messages need to be disseminated on one social media network within a
predefined planning horizon. A discrete optimization model for SM-SMMDRP is
provided and discussed. Through the computational experiments on small-scale test
networks, we show that all model parameters, including network type, network density,
source messaging capacity, length of planning horizon and so on, can impact the
computational performance as well as message dissemination outcomes, but the degree
of their impact varies. We also find that the Twitter networks are more like the complete
network in terms of impacting CPU time, while they show similar trends to random
networks in the way they affect objective values and active nodes.

In addition to observing the trends of CPU time, objective values and number of
active nodes, we further investigate some underlying factors that impact message
reception of individual nodes and that may help emergency managers with message
targeting decisions. We find a clear distinction in degree centrality between active nodes
and inactive nodes in Twitter networks and such distinction appears more significant for
a longer planning horizon. We also find that the nodes targeted in the initial period of the
planning horizon are typically associated with larger degree and closeness centrality.
The method applied in the analysis as well as the findings could potentially be valuable
to emergency management organizations and agencies in developing social media
communication strategies, especially in predicting message reception and generating

message targeting alternatives.
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Some future research directions can be pursued to get a better understanding of
the SM-SMMDP. An first direction is gaining more understanding about message
sharing behaviors in social media, including how users respond to messages received
from difference sources (family members, friends, organizations at different levels, etc.)
and how they behave in different social media (Twitter, Facebook, etc.). This is
extremely helpful in characterizing and modeling delays in the message propagation
process. Another direction is extending the scope of this paper, by studying message
dissemination on large-scale networks and on other popular social networks. The trends
observed here can be examined in these new scenarios and more implications could be

derived potentially from the comparisons for real-world application.
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CHAPTER V
MULTIPLE-NETWORK MULTI-MESSAGE SOCIAL MEDIA MESSAGE

DISSEMINATION PROBLEM

5.1. Problem Description and Definition

The Multi-network Multi-message Social Media Message Dissemination Problem (MM-
SMMDP) considers the scenario in which multiple messages need to be disseminated to
a population within a predefined planning horizon in the presence of multiple social
media networks. The MM-SMMDP extends the previously discussed single-network
message dissemination problems and is meant to illustrate and identify the impacts of
integrated social media use (e.g., Twitter plus Instagram plus Facebook). This model is
motivated by the observation that social messages can easily transfer between social
media sites through users who either replicate or reiterate message content from one
social media site onto another. These networks are represented by G,, = (I,4,,), n € N,
where a set of nodes, I is considered. Each node i € I represents a user and each arc
(i, j) € A, represents the relationship on network n (i.e., friend or follower) between
users i, j € I, through which messages can flow from i to j on the network. The
messages to be disseminated are given by set M. Each message m € M is assumed to be
independent from others and corresponds to a unique source (i.e., it can only send its

own message to the user nodes on each network), and the number of unique messages is
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time periods

Twitter

Facebook

Figure 5.1 Conceptualization of MM-SMMDP

|M|. The planning horizon is given by set T. Each t € T represents a time period in the
planning horizon and the length of the planning horizon is |T|.

Message propagation on each network is initiated by the sources through node
targeting (i.e., send direct messages to the selected nodes) and continues as individual
nodes redistribute the received messages to their friends or followers, as illustrated in
Figure 5.1. Note that the redistribution can be either message sharing on the current
network or message transferring from the current network to other networks. The source
for any message m can send its message in multiple waves on each network n if time
allows, with a minimum reset time 1,,, between two consecutive waves and a capacity p,,
in each wave. Accordingly, a subset of p,,, nodes (i.e., nodes to be targeted) needs to be
determined corresponding to each wave of message m from its source. This process is

the same as in Figure 4.2. Individuals’ redistribution behaviors are modeled using time
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delays called user share delay and user transfer delay for sharing and transferring
messages respectively. User share/transfer delay represents the time between message
arrival at a user’s device (e.g., PC, cell phone, iPad, etc.) and when the user
shares/transfers the message. It is assumed to be specific to the individual node, the
message and the social media network(s) through which the message is being
shared/transferred, and denoted by matrix D, in which d;,,,,.,,v € D represents the delay
of node i for message m on network n (note that message propagation through the same
social network is considered when n = n'). Message transmission delay, which
represents the digital transmission time between devices, is used to reflect network
conditions (e.g., known outages, intentional hacks, etc.). Transmission delay is assumed
to be specific to the network, and is denoted by matrix DM, in which dm,, € DM
represents the transmission delay on network n. This delay could be non-negligible in
emergency events due to cell phone tower damages and/or excessive load within a short
period that prevents a given message’s delivery. A user node i is considered active after
receiving all messages (a message can be received on any of the networks), and the
message dissemination outcome is defined as the weighted sum of the activation status
of all individual nodes over the planning horizon, which essentially encourages wider
and sooner message reception on the networks.

Now the MM-SMMDP can be formally stated as follows: Given social media
networks G, = (I,4,), n € N, message set M, planning horizon T, source messaging
capacity matrix P (M), source reset time matrix L(M), user delay matrix D(I, M, N, N),

and message transmission delay matrix DM (N), MM-SMMDP optimizes the message
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dissemination outcome by determining a sequence of subsets, each containing at most
pm Nodes, to be targeted for each message m on each network n. Problem formulation is

presented in section 5.2.

5.2. Problem Formulation

5.2.1. Sets and parameters
I = the set of user nodes
M = the set of messages
N = the set of social media networks
T = the set of time periods
T,,= the set of time periods eligible for the source of m to send messages
N,,; = the set of nodes j such that (j, i) € A4,
w;;: = the reward for node i being active at time t
pm = the source messaging capacity for message m
dimnn’ = the share delay of node i for message m on network n if n = n. Otherwise,
the transfer delay of node i for message m from network n to network n'.

dm,, = the message transmission delay on network n

5.2.2. Decision variables
zi; =1 ifnode i is active at time t, O otherwise
Ximnt = 1 1f node i is targeted for message m on network n at time ¢, 0 otherwise

Yimne = 1 1f node i is active for message m on network n at time t, 0 otherwise
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5.2.3. Formulation

max Yies Neer WitZie-
s.t.
Yici Ximnt < Pm» YMEM,n€N,t€ET,,.
Yimnt < Dzt Xipyny + ZjeN Yimn(t-dmp-d jmnn)

+ X jeNn Zn'eN\n) Vjmn! (t=dmp-djmnrm)» VL ELMEMNEN,t €T
Zit < YoneNVimnt, VIEILLmMeEM,t €T.
Yimnt < Vimnt+1, VIEILmMEM,neN,teT.

Zit Szi,t+1' Vie I, teT.

Ximnt) Yimnt> Zit € {0,1}, vieIlmeM,neN,teT.

(5.1)

(5.2)

(5.3)
(5.4)
(5.5)
(5.6)

(5.7)

The objective function (5.1) optimizes the message dissemination outcome (i.e.,

maximizing the total reward for message reception over all user nodes within the

planning horizon). For each node i, the weight w;; is a decreasing function of time t,

which serves to encouraging early reception. In this way, the ultimate goal of the

objective is to encourage wider and earlier message reception on the networks.

Constraint (5.2) enforces the messaging capacity of the sources on each network. Note

that for any message m, set T,,, is developed based on T and [,,,. Constraint (5.3) states

that, node i is active for message m on network n at time t, if it received the message

either from the source node on network n prior to t, or from a friend node j on network
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n who shared the message previously on network n, from a friend node j on network n
who transferred the message previously from some network n’ to network n. The lead
times for the sharing and transferring are dj,n,, plus dm,, and d;py,, plus dm,,,
respectively. Constraint (5.4) enforces a message aggregation effect at the user end (i.e.,
a node has to receive all the messages to become active). Note that message reception is
not network-dependent, so it does not matter which social media network the user
receives content from. Constraints (5.5) and (5.6) preserve node status over time, and

Constraint (5.7) imposes binary restriction on all decision variables.

5.3. Computational Experiments

In this section, we present the computational experimentation on MM-SMMDP. In
particular, this analysis illustrates how decision parameters affect computational
performance, message dissemination outcomes and targeting decisions. The factors
being tested include length of planning horizon (|T|), source messaging capacity (P),
source messaging interval (L), network structure (density), and network condition (DM).
We use 100-node networks in these computational experiments and consider three
unique messages and two social media networks (i.e., |I| = 100, |[M| =3, |[N| = 2). In
order to obtain networks that are more representative of social media networks, we
generate four sub-networks from the social media site Twitter and use their
combinations as test networks. These Twitter sub-networks are generated through a
Metropolis-Hastings Random Walk (MHRW) on Twitter, each using a different,

randomly selected Twitter user as Node 0 in the random walk. All networks are treated
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as undirected where two nodes are connected with an edge if they have a friend/follower
relationship originally or they have at least one common friend/follower. The summary
of these Twitter sub-networks and visualizations of them can be found in Table 4.1 and

Figure 4.4 respectively.

5.3.1. Experimental design

Table 5.1 provides the factors and levels for the implemented experimental design. For
the purposes of our experimentation, we assume the basic time unit to be hours (we note
that such an assumption may easily be changed to adapt the MM-SMMDP for different
extreme event circumstances/scenarios).

Source messaging capacity and messaging interval are assumed to be identical
for all message sources on each network (i.e., p; =p, =ps=pand ; =1, =13 =1,
though this is not a requirement of the model). Message transmission delay is assumed to
be constant, as discussed in section 5.1. Individual’s share and transfer delays are
assumed to be independent, so the delay matrix D is randomly generated, in which each
element d;,,,,» € D is an integer sampled from Uniform(1,10). The reward coefficient
w;; In the objective function is assumed to be w;; = 1/t foranynodei e I andt € T.

We define a problem scenario as a combination of decision parameters
(p,L,|T|,(N1,N2),(DM1,DM?2)), in which (p, [, |T|) can represent an emergency
manager’s considerations and (N1, N2), (DM1, DM?2)) reflects network structure and

conditions. Based on the factors and levels given in Table 5.1, there are 1,280 unique
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Table 5.1 Experimental factors and levels for MM-SMMDP

Factors Levels

Networks (N1, N2) (0.09,0.11), (0.11,0.14), (0.09,0.22), (0.14,0.22)
Messaging capacity (p) 1,2,3,4,5

Planning horizon (|T|) 1,2,3,4,56,7,8

Messaging interval (1) 1,2

Transmission delay (DM 1, DM2) (1,2), (1,3), (3,1), (3,3)

problem scenarios. To better capture the impact of random user behavior, we generate 10
replications for each scenario in terms of the delay matrix D to capture the variations.
This results in 12,800 test instances in total. Given that MM-SMMDP introduces some
new features that haven’t been studied in SS- and SM-SMMDP (i.e., multiple networks
and message transfer between networks), we create different cases to get some insights
into their impact on message dissemination outcomes and model performance through
comparisons. Specifically, in each test instance, we consider 4 cases, including a case
without message transfer, a case without message transfer and two single-network multi-
message cases, which are denoted as N1 + N2w/o TF, N1+ N2w/ TF, N1 Only, and
N2 Only in the following analysis.

All the test instances are solved using ILOG Concert Technology with
C++/CPLEX 12.4 on a Dell OptiPlex 755 computer (Inter Core 2 Duo E8500 3.17GHz,
4GB RAM and Windows 7 System), and the solution time are capped at 1,800 seconds

for each test instance. Computational results and analysis are presented in the following.
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5.3.2. Results and analysis on CPU time

Table 5.2 provides a summary of CPU time of all the test instances in the experiments,
listed by Networks (N1, N2). In the table, % Optimal gives the percentage of instances
solved to optimality in 1,800 sec solution time. AV G, StDev, MIN, and MAX mean the
average, standard deviation, minimum and maximum of the CPU times of instances.
With AV G reflecting the average levels and StDev reflecting the variations, RSD,
relative standard deviation which is given by RSD = StDev/AV G, can reflect the degree
of variation in respect to the average level of each case.

Given that 100% of CPU times are within 1,800 sec and about 40 sec on average,
we can conclude that the MM-SMMDP model is tractable for 100-node Twitter sub-
networks, although in some extreme case(s) it may take 1,116 sec to solve. Overall, AVG
and StDev increase by 26% and 31% respectively when considering message
transfer ,which indicates the introduction of message transfer on the multiple-network
scenario will cause more difficulties in getting the optimal solutions (probably because
there are more decision variables). We also observe an overall decreasing trend in
computational difficulty as the total density of networks increases, as shown in Figure

5.2, in which the columns and bars represent AVG and StDev respectively. It is clear

Table 5.2 A summary of CPU times in the MM-SMMDP experiments

i N1+ N2w/o TF i N1+ N2w/ TF

Networks Instances % Optimal % Optimal

AVG StDev MIN MAX RSD AVG StDev MIN MAX RSD
(0.09,0.11) 3,200 100.00%  36.910 61.584  0.047 917.630 1.668 100.00% 48236 78264  0.047 1115800 1.623
(0.11,0.14) 3,200 100.00%  29.665 41.221  0.047 789.800  1.390 100.00% 42325 63580 0016  869.300  1.502
(0.09,0.22) 3,200 100.00%  25.021 33.788  0.047 496.270 1.350 100.00% 28547 39.413  0.047  969.340 1.381
(0.14,0.22) 3,200 100.00% 23332 31.130 0.047 808900 1.334 100.00% 25275 33635 0031 582600 1331
Overall 12,800 100.00%  28.732 43912  0.047 917.630 1.528 100.00% 36.096 57.473 0016 1115800 1.592
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CPU Time by Metwork Density
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Figure 5.2 CPU time by networks (N1, N2)

that increasing network density can help reduce the average and variation observed in
CPU time, and that it may also reduce the gap observed between problems that allow
message transfer and problems that prohibit message transfer (by comparing the columns
of (0.09,0.22) and (0.14,0.22) to (0.09,0.11) and (0.11,0.14) ). This property should be
noticed and potentially utilized by emergency managers in the planning phase (e.qg.,
encouraging people in a community or neighborhood to use social media and connect to
each other).

It is noticeable from Table 5.2 and Figure 5.2 that in each set of networks, StDev
is much larger than AVG (RSD is higher than 1.52 on average and is almost 1.67 in some
case(s)), which means some other factors also affect the computational performance
significantly. Figure 5.3 shows the impacts of length of planning horizon, source
messaging capacity, network condition (transmission delay) as well as source messaging
interval. Overall, the length of planning horizon has the most significant impact on CPU
time among all the factors being considered. On one hand, AV G grows exponentially as
the increase of |T|, which is true for both cases (w/o TFand w/TF). One the other hand,
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Figure 5.3 CPU time by factors

RSD < 1 holds for each planning horizon length |T|, which cannot be observed for any
realization of other factors. Compared to length of planning horizon, other factors’
impact on overall computational performance is much less significant. As for source
messaging capacity, largest AV G is observed at p = 4 and p = 3 for two cases,
respectively, but the gaps between them and the others are not significant. Regarding
network condition, larger AV G and StDev can be observed when the condition of the
second network (the one with higher density in (N1, N2)) is bad (i.e., DM2 = 3), which
is also true for both cases. As for source messaging interval, larger AV G and StDev are
observed at [ = 1 for both cases. When the messaging interval is short (i.e., [ = 1),

message sources are able to send more waves of messages (i.e., this leads to more active

88



decision variables and constraints in the model) and therefore causing more difficulty in
obtaining the solutions. But as mentioned previously, the gaps are not significant from
the overall scale.

Figure 5.4 shows the combined effects of length of planning horizon |T|, source
messaging capacity p as well as network density (N1, N2) on average CPU time AVG. In
particular, we are interested in the changes of AV G as p increases and how (N1, N2) and
|T| affect these changes. Here we just show |T| = 5, ...,8 because the lines are flat and
overlapping with each other when the planning horizon is short. First, we see that it takes
much longer time (at least twice) to solve multi-network instances than single-network
instances, and we might expect larger gaps between them for networks of larger size.
The CPU times of the single-network instances are also insensitive to the increase of p,
compared to those of the multi-network instances. Second, the CPU times of both multi-
network cases fluctuate more drastically as the increase of p when the networks are
sparse and the planning horizon is long (i.e., (N1, N2) = (0.09,0.11) and |T| = 8), as
shown in the bottom right corner, while the opposite can be seen in the top left corner,
where (N1, N2) = (0.14,0.22) and |T| = 5. The implication here for the emergency
managers is that when they are dealing with sparse social media networks (which is the
case in reality oftentimes), they should be expecting large variations in the
computational efforts required to examine different alternatives in terms of how many
nodes they target at a time. And from the other way, encouraging more connections
between social media users of a certain area may allow the emergency organizations and
agencies to evaluate more message targeting alternatives in their planning phase.
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5.3.3. Results and analysis on objective values

The objective function for the MM-SMMDP is defined as the weighted sum of the
activation status of all individual nodes over the planning horizon, which essentially
encourages wider and earlier message reception on the networks. It is worth noticing that
the maximum objective value possible depends on the length of planning horizon |T|, as
the way the objective function is set. Given any specific |T|, a larger objective value
implies a better overall message dissemination outcome, and the maximum objective
value is reached when every node becomes active in the first time period. As a baseline
for interpreting the objective, here we first provide these values in Figure 5.5. In the
following analysis, we use AVG, StDev, and RSD = StDev/AV G to represent the
average, standard deviation, and relative standard deviation of objective values of

instances, respectively.

Maximum Objective Values Possible
350

300 - 250.3 271.8

228.3 245.0
183.3
200
150.0 AVG =205
150 -
100.0
100 -

50

1 2 3 4 5 6 7 8
Length of Planning Horizon (| T|)

Figure 5.5 Maximum objective values possible
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5.3.3.1. Objective values at the overall scale
Figure 5.6 provides a comparison of average objective values between the 4 cases we
developed in the experiments. Same as before, the columns and bars represent AVG and
StDev, respectively. Although the comparison is about overall average for each case, the
increase in AV G from one-network cases to two-network cases is significant. For
example, the percentage of increase is 57% from N2 Only to N1 + N2 w/o TF and is as
large as 133% from N1 Only to N1 + N2 w/ TF, which is much larger than the 13%
increase in two-network cases by introducing message transfer. The implication here for
emergency management organizations and agencies is that they should set up accounts
on multiple social media sites, especially on those most popular ones including
Facebook and Twitter, in order to improve the overall message dissemination outcome.
As the impact of length of planning horizon on objective value is dominating, the
impact of other factors still needs to be examined. Figure 5.7 shows AVG and StDev
Versus source messaging capacity p, network condition (DM1, DM?2), network density

(N1, N2) as well as source messaging interval [. Among these four factors, p and
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Figure 5.6 Average objective values
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(DM1, DM?2) have more significant impact than (N1, N2) and [. As source messaging
capacity p increases, the objective values tend to increase linearly, and the degree of
variations decreases. From a strategic standpoint, emergency management organizations
and agencies could achieve better and more robust message dissemination outcomes by
increasing the number of nodes they are able to target each time. Similar observation can
be made for network condition as well. When the condition of both networks is good
(i.e., (DM1,DM?2) = (1, 1)), the dissemination outcomes tend to be good and robust,
while the condition of both networks is bad (i.e., (DM1,DM2) = (3, 3)), the outcomes
appear the opposite. Therefore, emergency managers should be fully aware of these
effects when assessing situations and making decisions for social media message
dissemination in disasters and extreme events. Message dissemination outcomes tend to
get better on denser networks, however, the improvement is mild. Same thing for source
messaging interval, which we are not going to mention again. Note that here we analyze
the impact of individual factors on AV G and StDev at the overall scale, and we are
aware that such impact may vary in specific problem scenarios. Therefore, we provide
Table 5.3, which contains detailed selected results from selected problem scenarios and

cases, and present analysis based on problem scenarios in section 5.3.3.2.

5.3.3.2. Objective values by problem scenarios
As discussed previously, we define a problem scenario as a combination of decision
parameters (p, [, |T|,(N1,N2),(DM1,DM?2)), in which (p, [, |T|) can represent an

emergency manager’s considerations and (N1, N2), (DM1, DM?2)) reflects network
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structure and conditions. Here we further define the maximum messages possible
(MM P) for the message sources, as the maximum number of messages a source can send
within the planning horizon. It is given by MMP = [|T|/(l + 1)] X p and reflects the
maximum messaging (targeting) capability given their choice of (p, [, |T|). Now we are
interested in the relationship between this capability and message dissemination outcome
of each problem scenario (i.e., AVG and StDev of the objective values over 10
replications). AVG can reflect the average level of message dissemination outcomes in a
problem scenario, while StDev can reflect the degree of variation (stability) of the

outcomes under the variations in user information sharing behaviors.
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Table 5.3 Selected objective values from MM-SMMDP experiments

N1+N2w/o TF N1+N2w/ TF

p m | DM1 DM2 (0.09,0.11) (0.11,0.14) (0.09,0.22) (0.14,0.22) (0.09,0.11) (0.11,0.14) (0.09,0.22) (0.14,0.22)

AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev AVG StDev
1 4 1 1 1 22.692 2754 24.808 4.507 30.108 3.252 32.875 3.502 25.442 2273 31717 2675 39.283 4.122 40.475 2974
1 4 1 1 3 14517 2.550 17.892 2.602 13.142 2622 17875 4233 19.408 2473 21.800 2.367 19517 2330 26.625 4518
1 4 1 3 1 16.750 3.555 17.667 4,044 25.742 5.276 21.742 4514 22.892 1314 25,550 3.781 41.000 4.458 35.650 4.546
1 4 1 3 3 6333 0000 5333 0000 533 0000 5333  0.000 6333 0000 5333 0000 533 0000 5333  0.000
1 4 2 1 1 20.200 2.869 25.983 3.408 28.583 4143 32.042 3913 23.208 1.999 29.483 4222 38,575 4.658 39.617 3.953
1 4 2 1 3 11.742 2342 15.092 3.483 12.508 2820 16.417 1813 17.508 1573 20.658 2525 18.308 2476 24.675 3.596
1 4 2 3 1 14.700 2674 16.408 2.899 25.325 7.262 20.034 5,009 20.808 2,609 24.533 3.236 38.667 4.190 36.725 5.397
1 4 2 3 3 4.667 0.000 4.667 0.000 4.667 0.000 4.667 0.000 4.667 0.000 4.667 0.000 4.667 0.000 4.667 0.000
1 8 1 1 1 62.379 5,059 73.887 6.136 85.398 5.566 90.988 4.753 77.268 4.636 87.180 3600 102300 4667 102373 5157
1 8 1 1 3 47.161 4.431 55.771 3.765 53.886 5477 62.985 5,038 61.073 4.181 64460  4.564 63.615 3.465 76.041 4.587
1 8 1 3 1 52.384 3.869 61.920 5.612 75.629 9.397 73.981 5.243 61.520 3.547 73.942 6.580 93.380 6.366 94.861 6.481
1 8 1 3 3 30.088 2511 35572 3.259 38.020 4.176 45.162 4.106 36.490 2.280 38.741 2483  49.288 2620 52.193 3.925
1 8 2 1 1 57.210 4.343 69.181 4.239 74.610 6.482 82.808 8.044 72.954 2744 81.945 2.048 97.388 6.103 99.278 3.755
1 8 2 1 3 41.832 3.970 47.127 4.240 48.866 2797 56.936 5.087 52.509 3471 58.735 3.878 57.959 2.265 71.612 4614
1 8 2 3 1 45.278 5.582 53.956 6.877 69.971 7.445 74.682 7.488 56.406 3.885 67.065 6.335 93.024 6.658 95.697 4.150
1 8 2 3 3 26.098 2.466 31.162 3.322 35.133 2,618 37.472 3.567 31.074 1.607 36.764 1.768 47.250 2813 45.108 3.435
3 4 1 1 1 41.650 2815 47.150 2547 53.892 1.910 57.033 1780 48.883 1771 53.742 2.265 61.275 1.003 62.208 0.815
3 4 1 1 3 32475 1.165 33.167 2334 33.758 2494 39.167 4.470 39.733 1.643 40.725 3.147 39.725 1360  46.800 2.816
3 4 1 3 1 33433 2221 36.550 4.147 48517 2910 48717 4.045 40.875 2132 45.225 2134 58.675 1.600 57.258 2.031
3 4 1 3 3 16.000 0.000 16.000 0.000 16.000 0.000 16.000 0.000 16.000 0.000 16.000 0.000 16.000 0.000 16.000 0.000
3 4 2 1 1 36.600 3611 40.725 4.029 51.525 3312 51.642 3271 43.083 1378 48.067 2.464 57.808 1.289 56.942 1.846
3 4 2 1 3 26.342 3.645 30.758 3924 27.708 3473 35.608 3134 34.175 3.089 37.642 2.800 33.817 2.695 42317 1.852
3 4 2 3 1 30.133 2743 34.542 3.440 46.133 5.686 46.808 3.743 35.700 1.583 42.033 2.747 54.600 2,063 54.967 1.629
3 4 2 3 3 14.000 0.000 14.000 0.000 14.000 0.000 14.000 0.000 14.000 0.000 14.000 0.000 14.000 0.000 14.000 0.000
3 8 1 1 1 97.983 4386 103666 2408 116.079 4437 122416 2557 111016 2411 115181 2399 124045 1484 126103 1.359
3 8 1 1 3 81.956 5,503 88.009 2.823 85.992 4,017 96.479 3.305 95.886 3.749 97.996 2.043 96.061 3296 107.289  2.908
3 8 1 3 1 83.539 4.103 95.806 4976 110868 6.820 114163  3.023 96.709 3254 106023 2244 121887 1690 122631 1504
3 8 1 3 3 58.827 1573 64.946 2.838 71.235 3.165 72917 2123 66.226 1843 70.667 1878 76.891 1.010 77.326 1.014
3 8 2 1 1 90.415 4.752 98.135 3420 113798 5549 112162 5439 105240 3202 109.051 2738 121554 2348 121517 1292
3 8 2 1 3 71365 3768 78533 3413 8L771 2768 88189 2912 87584 1905 92896 1900 90997 3016  97.374 2030
3 8 2 3 1 73.683 4531 83.261 4348 107035 6917 105541 5410 87.931 3871 96.825 2638 116110 3072 116222 2074
3 8 2 3 3 52.032 2.268 57.037 2.808 65.704 2.334 66.790 2,676 59.383 1.610 62.894 3.013 71.158 1.630 72.166 1.703
5 4 1 1 1 55.725 3.062 60.750 2.807 68.400 1.746 69.308 1.635 64.858 0.494 66.808 0.713 72.925 0.633 73133 0.427
5 4 1 1 3 47.858 2359 48.092 2.985 44.608 5.082 53.917 2517 53817 2845 55.192 2521 54.967 2728 61.200 2134
5 4 1 3 1 47.908 2348 54.933 2791 63.350 4.937 64.667 3372 55.992 1.898 61.958 1.353 70.900 1.308 71.433 1571
5 4 1 3 3 26.667 0.000 26.667 0.000 26.667 0.000 26.667 0.000 26.667 0.000 26.667 0.000 26.667 0.000 26.667 0.000
5 4 2 1 1 50.567 3.082 55.567 2372 63.650 2.858 62.933 2415 58.367 2372 62.275 1.010 69.217 1379 69.042 0.819
5 4 2 1 3 39.383 2486 41433 2.876 39.750 1585 47.100 3.269 47.167 2.990 48.717 3.226 47.392 1.500 53.725 2.029
5 4 2 3 1 42.633 2.352 48.458 3.330 59.867 4.020 58325  4.066 48.317 1870 55.992 1819 65.500 3.275 65.617 2052
5 4 2 3 3 23333 0000 23333 0000 23333 0000 23333  0.000 23333 0000 23333 0000 23333 0000 23333  0.000
5 8 1 1 1 118920 2934 124961 3209 132021 2605 134271 1740 127295 2223 130895 2779 136215 0.708 136.690  0.300
5 8 1 1 3 105489 3296 108377 3775 107598 3544 115588 3330 116952 2539 119044 1916 118948 2494 124501 2.268
5 8 1 3 1 106.799 4198 115834 2395 127132 3653 130.225 2985 117730 3311 124733 1790 134405 1230 135154 1335
5 8 1 3 3 83.394 1722 86.145 1728 88.729 1518 89.692 0.757 88.099 1180 89.286 1.004 90.119 0.000 90.119 0.000
5 8 2 1 1 110595 1843 115797 3238 127.089 3.034 127626 2.708 120673 1327 124988 1978 132169 1791 132336 1.251
5 8 2 1 3 92.541 3.963 96.904 2692 97.952 2463 107.281 2138 107.258 3184 109.237 3031 108894 2678 115178 1915
5 8 2 3 1 95.354 3835 105985 2633 122600 2098 122750 4.372 107.146 3420 115416 2895 128687 2257 128779 2223
5 8 2 3 3 71.455 3.786 74.628 2.833 83.719 1.501 82.639 1.328 78.706 2425 81.506 1433 86.361 0.457 86.248 0.499

Figure 5.8 provides the objective values versus MMP for multi-network case

without message transfer (left) and with message transfer (right), respectively. Each dot

in the charts shows the average of objective values of a specific problem scenario,

reflecting the average level of message dissemination outcomes in that scenario. The
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best and worst message dissemination outcomes (i.e., highest and lowest average
objective values) are plotted for each of the capability levels, denoted as MAX and MIN
in the figure. It is interesting to see the best and worst outcomes can be fitted well using
logarithm functions and linear functions respectively, which is true for both cases. If we
further examine these dots, we can find the MAX and MIN points are typically
associated with largest and smallest possible |T| for each capability level, which
suggests that the length of planning horizon is a strong determinant for message
dissemination outcome. From the perspective of the networks, we can find the MAX
points are typically associated with (DM1,DM2) = (1,1) and (N1, N2) = (0.14,0.22),
and the MIN points with (DM1,DM2) = (3,3) and (N1,N2) = (0.09,0.11). This
shows network structure and condition also affect the message dissemination outcomes
when the messaging capability of the sources is set. Such observations and relationships
could be potentially utilized by emergency managers in evaluating and assessing
message dissemination outcomes on the networks. Given a choice of (p, L, |T|), they
could get the estimated best and worst message dissemination performances, which
could provide a powerful support in their social media messaging decision making
process.

Figure 5.9 provides the relative standard deviation values versus MM P for multi-
network case without message transfer (left) and with message transfer (right),
respectively. Each dot in the charts shows the RSD of a specific problem scenario,
reflecting the stability of message dissemination outcomes under the variations in user

information sharing behaviors in that scenario. All the problem scenarios are plotted in
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Figure 5.9 Relative standard deviation (RSD) vs. MM P

2

the figure. Generally speaking, increasing source messaging capability within the

planning horizon is helpful to reduce the degree of variation, which can be seen in both

cases. In particular, larger messaging capability tends to result in smaller range of the

degree of variation (i.e., smaller gap between largest and smallest values corresponding

to each capability level). Moreover, comparing the dots for two cases, the largest degree

of variation corresponding to each source capability level is significantly reduced as a




result of introducing message transfer, especially when source messaging capability is
low (e.g., 0.34 t0 0.18 at MMP = 1). In both cases, the largest degree of variation for
each messaging capability level can be fitted well using a logarithm function (with

R? > 0.9), as shown in Figure 5.10 and Figure 5.11. As a summary, increasing source
messaging capability within the planning horizon contributes to stabilize the message
dissemination outcomes under the variations in user behaviors, and message transferring
behavior can further strengthen such effect. Therefore, to achieve more robust message
dissemination outcomes, emergency management organizations and agencies should try
to target as many nodes as possible within the planning horizon by planning early,
building more reliable connections with the population, and/or applying more powerful
technologies. At the same time, they should also encourage users’ message transfer
behaviors between networks and adapt their messages to make the transfer operation
more convenient for them.

Now we move the attention to the most unstable problem scenarios, each of
which has the largest RSD value for a specific messaging capability level. In particular,
we are interested in how network condition and network density affect the instability.
Figure 5.10 and Figure 5.11 show the RSD versus MM P, grouped by network condition
and density respectively. For a given messaging capability level, each dot gives the
largest RSD over the problem scenarios of a specific group, and the dot Overall circles
the largest RSD for that messaging capability level. From Figure 5.10, it is clear that the
highest instability is always associated with the scenarios with (DM1,DM2) = (1,3) or
(3,1) (with only one exception in the right-hand-side chart at MMP = 8, where the
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largest RSD is from (DM1,DM?2) = (3, 3), but its value very close to (1, 3)). This
implies that the message dissemination outcomes are most influenced by the variations
in user behaviors when the conditions of the two networks are different (i.e., one’s
condition is good and the other’s is bad). And when the conditions are both good or both
bad, the message dissemination outcomes are not likely to be affected significantly by
user behaviors.

Similar observation can be made for the impact of network density, as shown in
Figure 5.11. Networks with lower density tend to create more ground for the highest
instability given a specific messaging capability level, since largest RSD is found
associated with (N1, N2) = (0.09,0.11) in 38% of the capability levels (5 out of 13
capability levels), same for both cases. On the other way, networks with higher density
are less likely to lead to highest instability. That is, 8% (1 out of 13) and 23% (3 out of
13) of the largest RSD is found associated with (N1, N2) = (0.14, 0.22) for the case
without message transfer and with message transfer, respectively. As an implication, the
emergency managers should be fully aware that network density and condition can
significantly affect the stability of the message dissemination outcomes given that the
users’ information sharing behaviors on social media are unpredictable and subject to
changes in disasters and extreme events, and they could reduce such instability by
increasing their messaging capability within the planning horizon and taking measures to

encourage users’ message transfer behaviors between networks.
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5.3.4. Results and analysis on node activation

(0.14,0.22)

Overall

Based on the analysis from Chapter 1V, node degree has a major impact on individual

node’s activation (i.e., message reception). In general, nodes with higher degree are

more likely to be active at the end of the planning horizon, and they tend to become

active sooner in the planning horizon. Here we explore such relationships in the presence

of multiple networks and message transfer.
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5.3.4.1. Node activation at the overall scale

We are interested in the relationships between node degree and activation status at the
end of the planning horizon/the activation time in the planning horizon. Note that in the
presence of multiple networks (two networks in the experiments here), there are multiple
degree values (two degree values here) associated with each node, so we consider the
min, max, and sum of these degree values for each node in this analysis. To study the
relationship between node activation status and node degree, we count the times that a
specific node is active at the end of the planning horizon over all test instances and

define the probability of activation (POA) of a node i as

POA # active
Y7 # instances

where # active is the number of times node i is active at the end of the planning horizon
and # instances the total number of instances that node i is involved in. To study the
relationship between node activation time and node degree, we sum up all the time
periods at with a specific node becomes active over all test instances and define the

average activation time (AAT) of anode i as

total act time
i =

# instances
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where total act time is the sum of activation times for node i and # instances the total
number of instances in which node i is active eventually. With POA; and AAT; defined,
we calculate the values for each node in each of the four sets of networks accordingly,
and this results in 400 POA and AAT values respectively for each case. The detailed
analysis is presented in the following.

We create scatterplots for POA and AAT values versus min, max and sum of
node degree in two networks to explore their relationships. Interestingly, these
relationships can be fitted well with logarithm functions, compared to linear,
exponential, power and polynomial functions. And among these logarithm functions,
largest R? values can be observed when versus sum of degree, which indicates an
individual’s activation status at the end of the planning horizon and activation time in the
planning horizon are significantly more dependent on the total number of connections
she has on both networks rather than a single one of them. The fitted lines are given in
Figure 5.12, which shows activation status on the left and activation time on the right.
These results are inspiring in that they would potentially empower emergency
organizations and agencies to predict message reception as well as message delivery
time in a given population solely based on node degree information, which is easily
accessible through collaborations with social media service providers like Facebook and

Twitter.
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5.3.4.2. Node activation by network density

Here we examine the relationships discussed in section 5.3.4.1 more carefully by
dividing the nodes based on the network density. Specifically, we fit the POA and AAT
values versus sum of degrees for two cases on each of the four sets of networks and

examine the R? values associated with the fitting. The results are plotted in Figure 5.13.

Node Activation vs. Node Degree Node Activation Time vs. Node Degree
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We can see that the case with message transfer always has higher R? values. When
messages can be transferred between networks, the nodes actually have more virtual
connections (that are not directly reflected in their node degree), so the activation status
and activation time are less dependent on their degree on the networks. For activation
status, larger R? values can be found associated with networks with low density for both
cases, which indicates a stronger dependency of activation on degree when the networks
involved are relatively sparse. For activation time, smallest R? values can be found
associated with (N1, N2) = (0.09, 0.22) for both cases. This implies that activation time
may have more variations and thus becomes less predictable when the networks
involved are unbalanced in terms of density. In summary, these results could help
emergency managers predict message reception and delivery in the population at risk in
real-world applications, which has been a major challenge they have been facing, and the

implications could be considered to improve social media messaging decisions.

5.3.5. Results and analysis on node targeting

As discussed previously in this dissertation, a social media messaging strategy with node
targeting could help emergency management organizations and agencies significantly
improve their communication efficiency by delivering their messages to the population
at risk in a wide and timely manner. On the other way, the nodes targeted by these
organizations and agencies should possess some features (compared to untargeted nodes)
that contribute to wider and faster message dissemination in disasters and extreme

events. Therefore, we examine the subset of targeted nodes in the experiments here in
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order to find how and to what degree decision parameters, including length of planning
horizon, network density as well as network conditions, affect node targeting decisions.
We are particularly interested in the role that node degree information can play in
helping emergency managers identify the subsets of nodes to target. The reason we
choose node degree information is that it is easily accessible to these organizations and
agencies and the characteristics of node degree are relatively stable in emergency
settings, compared to user behaviors that are more unstable and unpredictable. The
results and findings are presented below.

Recall that there are two degree values associated with each node in our
experiments. When a node is targeted by any of the message sources, we consider the
degree on the network where it is targeted (target network) as well as the sum of degree
on both networks. Figure 5.14 shows the weighted average of degree on target network
and sum of degree on both networks respectively for all the targeted nodes in the
experiments. In particular, we divide these targeted nodes by the wave they belong to.
Wave 1 includes the nodes targeted in the first time period and Wave 2 in the second or
third time period (based on messaging interval [). The weights are given by frequency
(i.e., the number of times a node is targeted in a certain wave). The lines called mean
and median represent the mean and median of node degree values based one (left) or
two (right) networks, added as baseline information. In both charts, Wave 1 nodes are
highly distinct from others for their higher-than-average degree values, which cannot be
observed for nodes in other waves. And from the comparison of Wave 1 columns

between the left and right charts, it appears that the nodes targeted in Wave 1 are
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Figure 5.14 Overall degree characteristics of targeted nodes

associated with high sum of degree, in the presence of message transfer. As an general
implication for emergency managers, they could consider targeting the high-degree
nodes on the network especially in the initial period of the planning horizon to achieve a
good message dissemination outcome, and when message transfer behavior is common
among the users, the degree on both networks (potentially all networks involved) should
be considered.

From here we move the attention to the nodes targeted in Wave 1 and examine
these nodes by specific problem scenarios. Specifically, we calculate the weighted
average of degree and sum of degree values for all the targeted nodes in each problem
scenario, and aggregate these results by decision parameters including length of planning
horizon and network condition. We observe the average (AV G) and standard deviation
(StDev) of these aggregated values in order to examine the targeting decisions under

different decision parameters. Figure 5.15 and Figure 5.16 give the characteristics of the
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targeted nodes in Wave 1 by planning horizon length and network condition,
respectively. Through the comparison between left-hand side and right-hand side, it is
still the case that sum of degree values is more important in the presence of message
transfer behavior. When |T| = 5, ...,8, the degree characteristics (AVG and StDev) of
the two cases, red columns/bars on left-hand side and green columns/bars on right-hand
side, are almost the same on each set of networks. This may imply that when the
planning horizon is relatively long, the targeting decisions could be more stable and
robust (i.e., such decisions don’t have to be changed significantly as planning horizon
gets longer). Considering the size of such Wave 1 nodes is relatively small, emergency
management organizations and agencies could manage them with less effort. Same
findings can be made in Figure 5.16 as well, in which the red columns/bars on left-hand
side (reflecting the targeting decisions for the case without message transfer) and green
columns/bars on right-hand side (reflecting the targeting decisions for the case with
message transfer) do not exhibit any significant differences when network conditions
change. As a summary and a general implication, the degree characteristics of the
targeted nodes in the initial period of the planning horizon are relatively stable under the
changes of planning horizon length as well as network condition and insensitive to
network density, therefore emergency managers could potentially identify and maintain
a core subset of users and make sure they receive (and share) messages timely in order to
achieve good dissemination outcomes under the changes of network structure, density as

well as condition in disasters and extreme events.
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Figure 5.15 Degree characteristics by problem scenarios and planning horizon length
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5.4. Closing Remarks for MM-SMMDP

In this chapter, we examine the message dissemination application scenario in which
multiple messages need to be disseminated to a population within a predefined planning
horizon in the presence of multiple social media networks. In addition to sharing
messages on a social media network, individual nodes could also transfer messages from
the current network to other networks, subject to some delay constraints. These new
features are captured in the MM-SMMDP model. Computational experiments are
performed using small-scale Twitter sub-networks and on different cases to study this
new dissemination scenario. We consider decision parameters, including length of
planning horizon, source messaging capacity, source messaging interval, network
density as well as network conditions, and examine their impacts on CPU time, objective
values, node activation as well as node targeting decisions.

We find that planning horizon length affects CPU time significantly, compared to
other factors, and the CPU time fluctuates more drastically as the increase of messaging
capacity when the networks are sparse and the planning horizon is long. The objective
value reflects the outcome of message dissemination in a specific problem scenario. We
show that the best and worst-case outcomes can be predicted using the maximum
targeting capability of the message sources in the whole planning horizon. We also
demonstrate that network density and condition can significantly affect the stability of
the message dissemination outcomes under the variations in users messaging behaviors
on social media networks. In the presence of two networks, we find node activation

status at the end of the planning horizon and activation time in the planning horizon are
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highly correlated to the sum of degree values on both networks, and the relationships can
be fitted well using logarithms functions. We also show the performance of these
functions depends on the density of the networks involved. For node targeting, we find
that the nodes targeted in the first wave are associated with high degree. In particular, in
the absence of message transfer, they have high degree on the network where they are
targeted, while when message transfer is present, they exhibit high sum of degree values
on both networks. We also find the degree characteristics of the targeted nodes in the
initial period of the planning horizon are relatively stable under the changes of planning
horizon length as well as network condition and insensitive to network density.

There are some limitations in this work that need to be addressed in order for a
better use of the results and implications. First, we perform all the experiments on 100-
node Twitter sub-networks. More studies needs to be done in the future on large-scale
networks as well as different types of social media network to compare with the current
results and trends. Second, we assume here individual’s sharing and transferring
behaviors are totally independent. However, such an assumption needs to be revisited
whenever new research progress on that is available. Third, efficient algorithms need to
be developed and tested for problems of real-world size, and effective heuristics may be

considered for that purpose.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

There has been an increasing use of social media in disseminating emergency messages
by various governmental and non-governmental emergency management organizations
and agencies in recent year. However, the knowledge about the impact of social media
message propagation on individual message reception as well as the identification of
strategies to facilitate message dissemination is too little under the complex
environments in disasters and extreme events.

This research was motivated by these facts and takes a first step to conduct
quantitative analysis on social media messaging strategies for emergency management
organizations and agencies. We capture the message propagation process on social
media networks by considering user information sharing behaviors and explore message
targeting strategies under the constraints of the length of planning horizon, source
messaging capability as well as network structure and conditions. We examine three
message dissemination application scenarios, including a single-network single-message
scenario, a single-network multi-message scenario, and a multi-network multi-message
scenario, and perform computational experiments on smaller-scale random and Twitter
networks.

We show the impacts of these factors on computational performance, message
dissemination outcomes as well as node targeting decisions based on the computational

results. All the factors are found to have some impact on the message dissemination
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outcome, but the degree of the impact varies over different application and problem
scenarios. We also look into the combined effect of these factors and put them into two
categories, one reflecting emergency managers’ considerations (i.e., planning horizon
length, source messaging capacity and interval as well as maximum source messaging
capability), and the other reflecting network characteristics (i.e., network density and
condition). The findings can provide valuable insights for emergency management
organizations and agencies in developing social media messaging strategies under
different scenarios and situations.

We particularly examine node degree characteristics for their potential to be used
to predict message reception and message delivery time and to identify influential users
to be targeted by message sources. The results are promising, although limited by the
scale and range of the experiments. Compared to user information sharing behaviors,
these characteristics are easily accessible to the emergency management organizations
and agencies and relatively stable in emergency settings, so we expect the implications
and strategies developed based on them to be more reliable for applications in disasters
and extreme events.

Although inspired by the results and implications, we are aware of the limitations
of this work that need to be addressed in future work. An immediate area of emphasis is
on diversifying experimentation on social media networks of different sizes (e.g., 500,
1000, 5000, 10000, 50000, 100000-node networks and so on) as well as social media
networks of different types (other than Twitter) to see whether the trends observed and

implications derived in this research are still true. To do this, effective tools to acquire
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these large-scale networks are needed. Another future direction of this research is to
revisit some of the assumptions we made in this research. In particular, we assume
individual user’s information sharing behaviors are independent and sample them
randomly from some common distributions. This may not be true in reality. For
example, a user’s information sharing behaviors for different messages on a social media
site might be correlated, and these behaviors for a specific message on different social
media sites might be correlated too. This is a very complex problem, so more efforts are
needed to get a better understanding. Also, we assume the message sources, FEMA,
NWS, NOAA, etc. are independent in this research, while in reality they have been
observed to have some kind of interactions between each other on major social media
sites. While the scale and frequency of such interactions are unclear, their impact on
message dissemination as well as targeting strategy making is worth noticing and
examining.

Despite the limitations of this research, it conceptualizes the major components
in the identification of social media messaging strategies in disasters and extreme events
and develops a feasible solution framework to obtain such strategies with length of
planning horizon, source messaging capability as well as network structure and
conditions taken into account. This framework is adaptive, in that new research results
(such as those on user information sharing behaviors) can be integrated very easily, and
therefore it has the potential to assist emergency managers’ social media messaging
decision making in the short and long run. It is our hope that this research could

motivate more research efforts into social media use in emergency communication
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especially into social media messaging strategies to improve dissemination performance

of emergency messages. In some cases, this performance means life or death.
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