
PAINTERLY SHADING OCEAN SURFACE

A Thesis

by

ZHAO YAN

Submitted to the O�ce of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Ergun Akleman
Committee Members, John Keyser

Philip Galanter
Head of Department, Timothy McLaughlin

December 2015

Major Subject: Visualization

Copyright 2015 Zhao Yan

ABSTRACT

In this research study we explored the topic of bringing aesthetic characteristics

from a seascape oil painting into 3D computer graphics. By applying the idea of

barycentric shaders, we proposed a new shading workflow that guarantees to obtain

the desired look-and-feel with a streamlined process.

We used the artwork from the renowned romantic artist Ivan Aivazovsky as our

primary visual reference. First, we implemented a simulation tool with artistic con-

trol on the platform of a commercial software package to create a procedural ocean

animation that matches visual storytelling. We then analyzed the characteristics of

Aivazovsky’s seascape paintings, which were then used as the guidelines for recreating

animation in 3D computer graphics.

In the shading stage, we implemented a rendering architecture based on the idea

of barycentric algebra. We redefine shader functions as parametric functions that sat-

isfy the partition of unity, a concept that is widely used in geometric modeling. Our

new framework allows computation separately on the front-end shader and back-end

shader. The front-end shader is only used to compute color based on the incoming

illumination. The back-end shader is barycentric shader which use the images gen-

erated by front-end shader as control parameters. Regardless of how illumination

is computed, this framework guarantees a consistent style. As a result, a short an-

imation with style consistent with Aviazovsky’s seascape oil painting is created to

demonstrate the artistic intention.

ii

ACKNOWLEDGEMENTS

I would like to thank Dr.Ergun Akleman, my committee chair, for providing me

continuous guidance and support while I was working on my thesis. I would also like

to thank the rest of my committee, Prof. Philip Galanter and Dr. John Keyser for

their expertise and wise guidance they have put into this thesis.

I would like to thank my parents for their support, trust and encouragement

through the years. Most of all, their unconditional love gives me the opportunity to

allow this curious heart to explore the new worlds.

iii

NOMENCLATURE

2D Two-dimensional

3D Three-dimensional

CG Computer Graphics

NPR Non-Photorealistic Render

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

NOMENCLATURE . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Goals in Stylistic Rendering of Ocean Surface 1
1.3 Complexity in Matching Traditional Art Work 4

2. PREVIOUS WORK . 6

2.1 Ocean Surface Simulation . 6
2.1.1 Functionally Based Methods 6
2.1.2 Physically Based Methods . 7

2.2 Ocean Surface Shading and Rendering 9

3. METHODOLOGY . 11

3.1 Visual Analysis . 11
3.1.1 Wave Shape and Form . 12
3.1.2 Shading Components . 13
3.1.3 Color Distribution . 15

3.2 Methodology . 17
3.2.1 Gestner Wave Model . 17
3.2.2 Shading Architecture . 22
3.2.3 Front-End Shader . 25
3.2.4 Back-End Shader . 32

4. IMPLEMENTATION AND PROCESS . 40

4.1 Simulation and Control . 40

v

4.2 Ship Modeling and Layout . 40
4.3 Shader Implementation and Management 41
4.4 Result . 42

5. CONCLUSION AND FUTURE WORK 44

5.1 Future Work . 44

REFERENCES . 46

vi

LIST OF FIGURES

FIGURE Page

1.1 Example of tradtional art works depicting ocean scene: “The Great
Wave at Kanagawa” is a Japanese woodcut print by Katsushika Hokusai 3

1.2 Primary visual reference “Stormy Sea” by Aivazovsky 3

1.3 Examples of animation feature films with ocean scene: “Cars 2” is
produced by Pixar Animation Studios and released by Walt Disney
Pictures. 4

1.4 Oil painting that demonstrates conceptually inconsistency 5

3.1 An preliminary sketch from Aivazovsky to demonstrate how wave crest
in his drawing resemble a sine trochoid curve in shape [13] 12

3.2 An illustration of trochoid curve . 13

3.3 An example from Aivazovsky to demonstrate color variation from wave
trough to crest, highlight specular and translucency e↵ect 13

3.4 An illustration shows shading component of Aviazovsky’s painting
“Stormy Sea” . 14

3.5 Color distribution analysis for oil painting “Stormy Sea” 16

3.6 Two image showing how can we obtain the same look-and-feel by
combining color ramps with the same color distribution 17

3.7 An illustration show di↵erent shapes of Gerstner wave according to
di↵erent s values . 18

3.8 Wave parameters . 19

3.9 User interface design of wave simulator 21

3.10 Distribution of wave length . 22

3.11 Result of using di↵erent wave number 23

vii

3.12 Shading architecture . 25

3.13 An illustration demonstrating how to compute a standard reflection
ray R for an incoming ray I. 26

3.14 The rendering result of specular reflection shader using one spotlight
as light source . 27

3.15 An illustration showing the relationship between shading point P ,
light source P

L

, surface normal ~N and outgoing light ray ~N
L

. 28

3.16 Non-Specular shader result . 29

3.17 Remap function . 29

3.18 An illustration showing relevant parameters in Schlick Approximation 30

3.19 Render result of fresnel front-end shader 30

3.20 A depth pass example for a specific 3D scene. 31

3.21 Rendering result of depth shader for ocean surface 31

3.22 An illustration shows how depth value is computed 32

3.23 Barycentric coordinate system . 33

3.24 A visual demonstration of bilinear interpolation. Here in the depth
direction, we interpolate the value of green channel between color C0

and C3, similarly in X-Axis, red channel is interpolated between color
C0 and C1. 35

3.25 Rendering result of assigning texture on ocean 36

3.26 An example demonstrating the concept of control and weight images.
I0 and I1 are control images, ⌦0 and ⌦1 are weight images that satisfy
partition of unity. I = I0⌦0 + I1⌦1 is the final rendering obtained by
weighted average of two control images. 37

3.27 Spray rendering result . 38

3.28 Figure shows two groups of cloud rendering results 39

4.1 3D scene layout . 41

4.2 Comparison between original art work and our final rendering 43

viii

1. INTRODUCTION

1.1 Motivation

The motivation of this research comes from the simulation of mesmerizing beauty

that waves exhibit in nature. As an important subject for painting and illustra-

tions, waves have been depicted by many artists. In this thesis, we focus on one of

the seascape paintings of the Russian Romantic painter Ivan Konstantinovich Aiva-

zovsky, who created more than 3000 seascape paintings through his lifetime and is

considered one of the most prominent marine artists of the 19th century [1].

Another important motivation comes from the critical need for an e↵ective work-

flow to match computer-generated imagery with traditional artwork. In the industry

of computer animation and visual e↵ects, the look development phase of a project

will typically rely on artists who use hand drawn images to convey their visual con-

cepts. Thus, the real art direction problem is very close to that of matching the style

of a painting.

1.2 Goals in Stylistic Rendering of Ocean Surface

In this work, we are interested in the stylistic rendering of ocean waves. As we

mentioned earlier, ocean waves have always been an important subject in paintings

and illustrations. There also exists a wide varity of styles in depicting waves. Con-

sider, for example, one of the most famous woodprint paintings, ”The Great Wave

O↵ Kanagawa” by Japanese artist Katsushika Hokusai (see figure 1.1). The Great

Wave O↵ Kanagawa demonstrates four types of stylization that exist in depicting

waves.

1

1. Stylized Wave Shape: As shown in the image(see figure 1.1), artists stylize

the wave shapes to obtain a new aesthetic. There has been existing work on

stylizing wave shapes. For instance, Jay Allen Faulkner developed a method

for creating stylized wave shapes using Bezier curves [6].

2. Stylized Wave Motion: This particular still image(see figure 1.1) does not

demonstrate motion; however, the stylized wave motion needs to correspond

to stylized shapes. If there is no consistency between stylized characters and

animation, the resulting animations will not look visually coherent. To solve

this problem, Sarah Beth Eisinger recently implemented the principles of hand-

drawn animation to create artistic e↵ects motion [4].

3. Stylized Perspective: Artists almost never use correct perspective [17]. Even

correct looking perspective can only be correct locally. Katsushika Hokusai’s

image(see figure 1.1) also demonstrates such perspective irregularities that was

studied by Jonathan H. Kiker. He also developed a method to composite 3D

digital work in traditional paintings using local perspective.

4. Stylized Colors & Look-and-Feel: This image(see figure 1.1) also demon-

strates that colors do not have to be realistic to obtain an interesting result. As

far as we know there exists no formalized way to obtain stylized colors & look-

and-feel to create a stylized depiction of ocean waves. In this thesis, therefore,

we focus on the creation of stylized color and tone. We develop a scientific ap-

proach to bring the visual characteristics from Aviazovsky’s seascape paintings

into 3D digital works (see figure 1.2).

2

(a) The Great Wave O↵ Kanagawa [14].

Figure 1.1: Example of tradtional art works depicting ocean scene: “The Great Wave
at Kanagawa” is a Japanese woodcut print by Katsushika Hokusai

Figure 1.2: Primary visual reference “Stormy Sea” by Aivazovsky

3

Figure 1.3: Examples of animation feature films with ocean scene: “Cars 2” is pro-
duced by Pixar Animation Studios and released by Walt Disney Pictures.

1.3 Complexity in Matching Traditional Art Work

In recent years, many works have been done in the industry of computer animation

and visual e↵ects to create ocean scenes through computer algorithms. Such works

include animation feather film ”Cars 2” by Pixar Animation Studios (see figure 1.3).

That film included a computer generated ocean animation with a realistic shading

and rendering. However from my point of view, the artistic style of the ship character

and the realistic ocean rendering are not visually coherent. This also motivates us

to propose a more e↵ective workflow into the process of rendering CG ocean.

Although a large number of public-shared shaders are available in di↵erent com-

mercial software packages, matching the style of traditional artworks is still a di�cult

task. The complexity is brought by the physical concept that is rooted in traditional

shader development. However in production, the decision-making process of artist

creation is purely based on an artist’s personal preference; thus it is likely that an

inconsistency exists between artworks and physical laws. For instance, in the oil

painting ”Shadow Dance”(see figure 1.4), the blue channel of the region in shadow

4

Figure 1.4: Oil painting that demonstrates conceptually inconsistency

is brighter than that under full illumination which is not logically expected.

In this case, ad-hoc solutions will be introduced to circumvent problems by highly

qualified technical directors as an accepted practice. However, such ”one-o↵” solu-

tions are usually time-consuming and hard to be streamlined. Therefore, it is still

not an easy task for artists to quickly go through simulations and rendering iterations

and converge on the desired result.

The rest of the thesis is organized as follows. Section 2 summarizes previous

research related to ocean simulation and rendering technology. Section 3 presents

an artistic analysis of the visual reference, and then discusses the shading methods

to match the visual characteristics in computer graphics. Section 4 presents our

approach of simulating a procedural ocean surface, as well as the implementation of

shading methods. Section 5 presents the conclusion and potential future works.

5

2. PREVIOUS WORK

In this chapter, we will review some of the previous works related to the ocean

surface simulations and renderings in computer graphics.

2.1 Ocean Surface Simulation

In the field of computer grahics, the previous methods of simulating ocean sur-

faces can be classified into two main categories: functionally based approaches and

physically based approaches.

2.1.1 Functionally Based Methods

Simulating the ocean surface through functionally based approaches has been

studies with a long history; generally these approaches can be classified into two

main categories.

The first category is to model the surface of water by parametric functions in

order to simulate the transportation of waves. Fournier and Reeves [9] first present

their method based on Gerstner Wave Model [10] in which particles of water move

in a circular or elliptical stationary orbit. The Gerstner Wave Model was originally

developed long before computer graphics to model ocean water in oceanography.

Parallelled by Fournier’s work, Peachey [23] uses a height field to compute waves

without breaking crests. Through his method, foam and spray can also be gener-

ated by integrating with a particle system. Ts’o and Barsky [28] later use Gerstner

Wave Model combined with wave-tracing to simulate refracting waves, but they ap-

proximated the appearance of wave crest using the tension property of beta-spline.

Hinsinger et al. [12] compute deep water surface waves at interactive frame rates.

They compute surface points on an adaptive mesh defined by a projection from the

6

camera position which is then transformed into screen space. This allows them to

filter waves that would not be visible and to focus sampling on any area of the

computed surface for enhanced image quality in that region.

The second category of the functionally based approaches include works by Mastin [19]

and Tessendorf [27]. The basic idea is to synthesize ocean waves as cyclical height

field using the data derived from oceanography observation.

Mastin [19] uses Fourier synthesis to model the ocean surface. This approach

is e�cient in modeling still waves; However, the main drawback is that it does

not support the wave animation very well since this model doesn’t embed a time

parameter to describe the propagation of the wave trains.

Tessendorf [27] presents a method to produce the wave surface animation through

calculating the evolution of the spectrum in the frequency domain. This model sums

up a large numbers of sinusoidal curves and is solved by Fast Fourier Transformation

(FFT). The user can adjust the area of the synthesized surface region by connecting

wave tiles since FFT is cyclical.

2.1.2 Physically Based Methods

Most of the physically based approaches in simulating motion of fluids are achieved

by solving the non-linear, inviscid, and incompressible Navier-Stokes equations.

2.1.2.1 Simulation of Liquids

One of the most commonly used approach to simulate liquids is called Smoothed

Particle Hydrodynamics(SPH) [21]. This method considers the volume of fluid con-

sists of discrete regions; in the center of each region lies a particle with momentum

and mass. Particles are moving inside of the fluid due to both external and internal

forces such as pressure, strain and gravity. By using SPH, the problem of simulating

liquids is converted to solve Navior-Stokes Equations for discrete particles. SPH is

7

very useful in the situation where there is significant splashes or explosions.

Foster and Metaxas [8] modify the classic marker and cell (MAC) [11] method and

apply in solving full 3D Navier-Stokes Equation to obtain realistic fluids behavior.

Stam [26] presents the stable semi-Lagrangian methods for solving the Navier-Stokes

Equations at a decent computational price. By combining particles and implicit

surfaces, Foster et al. [7] introduce a hybrid liquid model for simulating liquids.

Enright et al. [5] modify the hybrid liquid model by applying the particle level-set

approach. Their solution is most commonly used to produce highly realistic motion of

complex water surface. However, the drawback of this method is lacking in small scale

features and expensive in computation. More recently, Yuksel et al. [29] introduce a

novel concept of wave particles to approximate the solution of the wave equation by

storing wave trains on 2D particles.

2.1.2.2 Simulation of Breaking Waves

By using a linear approximation to solve the N-S equations, Kass and Miller [16]

construct a height field to simulate a water surface without breaking crests. An

interesting work on simulating breaking waves is done by Mihalef et al. [20]. Their

approach involves computing a full 3D N-S solution on multiple 2D slices of a breaking

wave and then combining the slices to form a 3D wave form. The initial conditions

for their 2D crest shapes can be defined by an animator from a pre-computed library,

therefore eliminating the computations for wave propagation to the point of breaking.

Work on interactive frame rates also comes into focus when Miller et al. [22] uses

SPH(as cited before) to simulate fluids. Using particles allows them to neglect mass

conservation and the convection terms of the N-S equations, which greatly simplified

their computations and increases their frame rate. More recently, Irving et al. [15]

uses fluid cells to simulate large bodies of liquids by coupling a 3D N-S solution

8

for the air-water boundary while using a simpler 2D height field approach for the

remaining volume.

2.2 Ocean Surface Shading and Rendering

The optical phenomenon of the ocean surface has been well studied. Fundamen-

tally, the color of the ocean has mainly been contributed by several basic optical

properties of water. These properties include specular reflection, refraction, fresnel

reflectivity and transmissivity. Besides, light is also scattered and absorbed by the

water volume below the surface due to water molecules and organic matter.

One of the earliest e↵orts to render ocean surface in computer graphics is from

Fournier et al. [9]. They present a method based on the assumption that the final

color of ocean is mainly derived from the reflection of the skydome. They use an

environment map and ray-tracing render scheme to compute water reflections and

combine highlight specular in post compositing processes.

Peachey et al. [23] presents a novel method to render water spray using the

particle system. Particles are simulated by a separated program which uses the same

procedural wave surface model in the final result as input. Each of the particles are

allocated a data structure to store their positions, velocities and mass information.

Then the information of the particles is written into the same scene description file

which contains all the other surfaces in the scene and use Z-depth information to

decide whether the particles are obscured or not during rendering time.

Ts’o and Barsky [28] presents an optimized algorithm for rendering the ocean

surface by using texture maps and Fresnel reflection. Based on the Fresnel’s Law

and surface normal, a ratio parameter is calculated to determine what fractions of

refracted and reflected color should be assigned to a shading point in the rendering

phase. They also used an approximation of Fresnel’s Law to reduce computational

9

cost.

10

3. METHODOLOGY

In this chapter, we present our simulation and shading approach in creating

our final animation. First, we conduct a visual analysis to abstract the essential

characteristics in Aivazovsky’s seascape paintings for us to match in digital work.

Based on our analysis, we propose the detailed simulation and shading approach to

match each of the characteristics.

3.1 Visual Analysis

The purpose of visual analysis is to provide guidelines for creating digital work

in CG that conveys the same look-and-feel of Aivazovsky’s seascape paintings. The

result of this analysis yields a list of essential characteristics from Aivazovsky’s paint-

ings, which can be categorized as follows:

• Wave Shape and Form

• Water Shading Components

• Color Distribution

For each aspect, we choose one specific painting from Aivazovsky for analysis;

based on the analysis, we present a solution for each of the characteristics. Since the

goal of this research is to explore the possibility of bringing aesthetic characteristic

from oil painting into 3D computer graphics, the analysis only emphasizes the artis-

tic style of Aivazovsky’s paintings rather than proposes a physically accurate wave

model.

11

Figure 3.1: An preliminary sketch from Aivazovsky to demonstrate how wave crest
in his drawing resemble a sine trochoid curve in shape [13]

.

3.1.1 Wave Shape and Form

First analysis is based on wave shape and form. We use Aivazovsky’s preliminary

sketches as our primary visual reference(see Figure 3.1). The reason we choose sketch

work instead of oil painting works for analysis is that sketches emphasize more on

the overall composition of image rather than detailed application of color. The shape

of wave can be better revealed by using sketch works.

// The complexity of Aivazovsky’s wave shape cannot easily be summarized by

one simple model. The shape we found that can best represent Aivazovsky’s painting

is called ”trochoid”(see Figure 3.2). Trochoid shape is derived from sinusoidal curve

and is described by the trail of a fixed point on a circle as it rolls along a straight

line. The di↵erence is that trochoid curve has a narrowing in peaks compared to the

sinusoid. This narrowing or steepening of the peak becomes more pronounced as the

wave amplitude increases(see Figure 3.1).

12

Figure 3.2: An illustration of trochoid curve

Figure 3.3: An example from Aivazovsky to demonstrate color variation from wave
trough to crest, highlight specular and translucency e↵ect

3.1.2 Shading Components

In the early idea of shade tree [2], which has evolved into modern industry stan-

dard, a complete procedural shader is described as a network of separate shading

modules. Each shading module or component in that network should generate con-

trol parametric for its down-stream function component as input. This subsection is

about dissecting procedural ocean shader into potential shading components. This

analysis is related to how the artist applied color and tones to depict the translucent

wave appearance. The purpose of this analysis is to identify the essential charac-

teristics in order to match them respectively in the production stage. We choose

Aivazovsky’s oil painting ”Stormy Sea”(see figure 3.3) as our visual reference.

13

Figure 3.4: An illustration shows shading component of Aviazovsky’s painting
“Stormy Sea”

In the painting ”Storm Sea”(see figure 3.3), we can divide the sea into three

regions as foreground, mid-ground and background based on the distance from point

position in 3D space to the viewer. Each region displays a di↵erent color distribution.

Therefore, a control image of depth information will be needed to create separate

color distribution. Besides, bright sunlight comes through a foggy atmosphere and

casts a very strong specular reflection on the water surface. This transparent look

of waves against sunlight is caused by subsurface scattering e↵ect. Moreover, di↵use

color of wave varies from dark green at wave trough to a light green at crest which

brings the need to generate wave height information as control parameters in order

to achieve color variation in vertical direction.

Based on the above analysis, we can summarize shading components into the

following four categories, they are

• Non-Specular Component: Non-Specular component provides a single param-

14

eter that is a sum of all non-specular reflected light that is reaching to a given

point. This component should take a sum of illumination as input and return

a real number color value as output.

• Fresnel Component: Fresnel component is used to compute the Fresnel re-

flection/refraction contributions of a certain shading point given incident ray

direction and surface normal as input.

• Specular Component: Specular component is to handle all specular reflected

illumination for a given view direction. In our case, specular component should

only consider the mirror reflection of sun light.

• Depth Component: Depth Component provides depth information about the

distance from a view-point to the shading point. In our case, depth component

should also provide the distance information of a shading point to its rest point

before the simulation.

3.1.3 Color Distribution

In this subsection, we will discuss color and tones of Aivazovsky’s painting. As is

discussed before, in our primary reference waves can be divided into three separate

regions according to their distance to the viewer in the 3D space. In this analysis,

we will extract the darkest and brightest color from each region and create a color

ramp for each region using the color values we sampled correspondingly.

15

Figure 3.5: Color distribution analysis for oil painting “Stormy Sea”

As is shown in figure 3.5, if we cut the original painting into di↵erent layers and

do a rough layout in 3D space, we can discover the fact that in the depth direction,

color of the sea tends to grow darker and bluer as its depth value become larger.

Similarly, color value also grows larger in the blue channel along the X-Axis for all

three layers.

From left to right in 2D painting or along the X-Axis in 3D space, the darkest

and brightest color for each layer still has a subtle change, however, we can ignore

those changes for now as we focus on the analysis of overall color distribution. The

brightest and darkest colors we detected from foreground is (131, 145, 5) and (39,

78, 83) respectively. Similarly, for the background the brightest and darkest colors is

(67, 99, 110) and (32, 69, 88). We created color ramps based on those values on the

right side of figure 3.5. By combining ramp layers and blurring the sharp transaction

between layers, we can roughly obtain an image that shares the same look-and-feel

with the original painting. This phenomenon of obtaining the same look-and-feel by

pasting color ramps together is actually one of the most important inspirations for

our shading approach (see figure 3.6).

16

(a) (b)

Figure 3.6: Two image showing how can we obtain the same look-and-feel by com-
bining color ramps with the same color distribution

3.2 Methodology

In this section, we will discuss in detail on the simulation and shading approach

in creating our final animation. By applying barycentric algebra on texture images,

our new approach guarantees the style of resulting images is consistent with original

painting.

3.2.1 Gestner Wave Model

The method we use to simulate wave surface is called Gerstner Wave Model [9].

The original Gerstner Wave Model is defined in two dimensional space. Let us orient

our 2D world coordinates so that X-Axis represents the level of sea at rest while

Y-Axis is pointing upwards.

Gerstner model assumes wave is a parametric surface defined by a set of particles.

The trail of each particle forms a circle shape around its rest position(x0, y0).

The equations of motion for such a point is

x = x0 + a⇥ sin(kx0 � wt)

y = y0 + a⇥ cos(kx0 � wt)

17

Looking at equations above as function for 2D point (x0, y0) for a given t. The

shape of this function is a trochoid. This trochoid curve can be viewed as the trail

generated by a point P at a distance a from the center of a circle of radius 1
k

rolling

along the X-Axis. P = (x0, y0) denotes point rest position, t is current time. The

variable k represents the number of cycles per unit time, therefore is related to the

period variable T , by w = 2 ⇤ ⇡/T . The term in the parenthesis represents the wave

phase, ✓ = kx0� wt.

Here the product s = ka provides a measure of the sharpness of crest peaks(see

figure 3.8), when s = 0, trochoid curve completely resembles a sinusoid curve while

s = 1 gives the sharpest trochoid curve in a reasonable limit. After s exceeds 1,

parametric curve will be self-intersected. Only at low values of s does the function

give a wave form comparable to that of a sinusoid(see figure 3.7).

Figure 3.7: An illustration show di↵erent shapes of Gerstner wave according to
di↵erent s values

18

The original Gerstner Wave is defined in two dimensional space which is su�cient

for the use of 2D animation. However, in our case we need to transform the equation

into three dimensional space. Another drawback of Gerstner Wave Model is that

control parameters are not very intuitive, therefore it is not an easy task for an artist

who may not have mathematical training to obtain desired simulation results very

quickly. For our simulation software, we want to give the artist full control over the

following parameters: (see figure 3.8):

• a: Amplitude

• l: Wave Length

• ~d: Transportation Direction

• v: Velocity

• s: Sharpness

• n: Simulation Cost

Figure 3.8: Wave parameters

19

First, we need to transform Gerstner Wave equation from two dimensional space

to three dimensional space . We use right-hand coordinate system, so that the plane

defined by X-Axis and Z-Axis represents the parametric sea surface at rest while the

Y-Axis is pointing upwards. For a given point on the surface as P0 = (x0, y0, z0),

Gerstner Wave Model is transformed to the following 3D equations:

D0(t) = s⇥ a⇥ sin(
2⇡

L
(~d · p0)�

2⇡t

v
)

D1(t) = s⇥ a⇥ cos(
2⇡

L
(~d · p0)�

2⇡t

v
)

Where function D0(t) represents the displacement amount projected onto XZ

plane given the time t, D1(t) is the displacement amount in Y-Axis. In the above

function, v is a non-negative real number that denotes the speed of wave train, a is

a scalar controls the amplitude of wave, s is the parameter controls the sharpness of

wave. In the above function, we define the direction of wave as vector ~d = (d0, d1, d2).

Then we denote the new position after displacement as a triple of real numbers

P 0 = (x, y, z) where

x = x0 +D0(t)⇥ d0

y = y0 +D1(t)⇥ d1

z = z0 +D0(t)⇥ d2

For the design of an intuitive user interface, we expose control of parameters

directly to the user. These parameters include direction d, amplitude a, sharpness s,

wave length l and velocity v. We use system clock for the time input(see Figure 3.9).

20

Figure 3.9: User interface design of wave simulator

The next step is to add multiple waves with di↵erent wave lengths and velocities

to get our final simulation. The reason to use multiple waves instead of one is that

one single wave shape cannot give us enough randomness and complexity that we

observed in nature. Let us denote the final displacement as:

D(t) =
MX

i=0

!
i

D
i

(t)

where d
s

is a single wave displacement amount with the given amplitude, wave

length, velocity and sharpness. !
i

’s displace weight that satisfy partition of unity,

i.e:

MX

i=0

!
i

= 1

.

Since our method does not require physical accuracy, we don’t need to use oceano-

graphical data to drive our simulation. Instead, to simplify our computation, we set

sharpness parameter s to a same constant value for every simulation and define am-

plitude parameter a to be directly proportional to wave length parameter l. The

distribution of wave length in one simulation roughly resembles a log-normal distri-

21

bution where the wave length value specified by user is used as mean value.

Figure 3.10: Distribution of wave length

The computing cost of simulation is directly proportional to the wave number.

The increase in wave number can improve the wave’s look significantly by adding

more details, however, as an expected trade-o↵, the simulation will be more time-

consuming. In our case, we used 1000 Gerstner waves for our final simulation(see

figure 3.11).

In the next subsections, we will introduce our render architecture based on the

concept of barycentric algebra.

3.2.2 Shading Architecture

In visual narrative, the term look-and-feel refers to the unique expressive style

for defining the world and its characters in the story. In the initial stage of CG

production process, one of the most important tasks is to identify the desired look-

and-feel of final result based on artistic reference.

From our point of view, the complexity of obtaining desired look-and-feel with

traditional shading framework comes from two facts. Firstly, color in traditional

22

(a) wave number = 16 (b) wave number = 300

(c) wave number = 1000

Figure 3.11: Result of using di↵erent wave number

shade tree frameworks is represented by n-tuples positive real number. However,

multiplication and addition operation to create new color are closed over all real

numbers, not only positive real numbers. Because of this mismatch, shader network

does not guarantee mathematical consistency.

Another reason is that for most o↵-the-shelf shading tools, colors is computed

under a physically based framework. Within this framework, for instance, the color

obtains under full illumination should always be larger than lack of illumination.

However, when it comes to artistic creation, an artist’s decision is made purely based

on personal preference, therefore it is likely that inconsistency exist between physical

concept and hand drawn images.

A shader designer’s job is to replicate these inconsistencies in order to obtain

the desired look-and-feel. In pracice, fully qualified technical director regularly need

to employ ad-hoc solutions to meet special requirements. However, making those

”one-o↵” solution is time-consuming and hard to be streamlined. Ad-hoc solutions,

on the other hand, often create more problems than they solve, so we end-up with a

23

partial yet complicated solution to a very simple problem.

For mathematical consistency, we need a formal algebra that guarantees that,

when operating on n-tuples of positive real number, we produce only n-tuple of

positive real number. Fortunately, such algebras exist and are known as barycentric

algebra [24] [3]. These are already familiar in computer graphics, as they are widely

used in geometric modeling applications as barycentric coordinates.

However, with barycentric operators alone, we cannot obtain non-polynominal

functions such as exponential, logarithm or cosine. These functions are needed for

shader implementations that are related to geometry and are used to compute global

or local illumination. On the other hand, the combination of colors can be handled

entirely by barycentric operations. Therefore, we separate shaders into two types, as

front-end shaders to do illumination calculation, and back-end shaders to mix colors,

we will have a shading architecture that provides the best of both worlds.

• Front-End Shader: These are vector algebraic shaders that are used to compute

and manipulate geometry related information such as displacement, normal

vector or cos✓. These shaders can be constructed like classical shaders using

any function or operation. In other words, we can use the full power of shade

trees concept in this level and allow manipulation with negative and complex

numbers. These shaders only produces parameters to back-end shaders to

compute colors.

• Back-End Shader: These are barycentric shaders that are constructed only by

barycentric operations therefore guarantee that from color we can only obtain

colors. These shaders are used to compute colors based on parameters that are

passed from front-end shaders. Regardless of how parameters are computed

in front-end shader, a given back-end shader guarantees to provide the same

24

style.

In the next subsection, we will discuss the five types of front-end shaders we

designed.

3.2.3 Front-End Shader

We developed five di↵erent types of front-end shaders as shown in figure 3.12,

they are

• Specular Shader

• Non-Specular Shader

• Spray Shader

• Fresnel Shader

• Depth Shader

All of the front-end shaders listed above are responsible for generating render

passes which will be used as control parameters for back-end shading.

Figure 3.12: Shading architecture

25

Figure 3.13: An illustration demonstrating how to compute a standard reflection ray
R for an incoming ray I.

3.2.3.1 Specular Reflection Shader

The first front-end shader is specular reflection. The purpose of creating specular

reflection shader is to mimic the e↵ects of mirror reflection of sunlight in the original

painting. According to the law of reflection, as shown in figure 3.13 the angle between

incidence ray and the surface normal equals that between reflected ray and the surface

normal. The incident, surface normal and reflected rays are on the same plane. The

reflected ray R for an incoming ray I is computed as (see Figure 3.13):

~R = ~I � 2 ~N(~N · ~I)

In the production stage, virtual spotlight is placed to cast reflections on ocean

surface to emulate the light source from sky in the painting. The result of specular

front-end shader is shown in figure 3.14.

26

Figure 3.14: The rendering result of specular reflection shader using one spotlight as
light source

3.2.3.2 Non-Specular Shader

Non-specular reflection describes the optical phenomenon that a light ray from a

light source hits a surface and is reflected in all directions as is opposed to specular

reflection. Non-specular reflection shader calculates the color given the lump sum of

illumination from the scene. In optics, Lambert’s cosine law says that the luminous

intensity from an ideal di↵use reflective surface is directly proportional to the cosine

of the angle between the surface normal and incident light ray [18]. We adapted

Lambert’s law to measure the intensity of illumination that reaches a certain point.

In order to estimate illumination intensity from an incoming light source, we uses

the parameter cos(✓). For every shading point P on a 3D surface. cos(✓) is calculated

as: (see Figure 3.15):

cos(✓) = ~N · ~N
L

where ~N is the surface normal at P and ~N
L

is the outgoing light ray direction.

27

Figure 3.15: An illustration showing the relationship between shading point P , light
source P

L

, surface normal ~N and outgoing light ray ~N
L

.

However cos(✓) is a number between �1.0 and 1.0. So instead of using cos(✓)

directly, we use shading parameter C = cos(✓)+1
2 to remap cos(✓) from the range [�1, 1]

to [0, 1]. The next step is to create a color ramp using the brightest and darkest

color we detected from water regions in the painting(see figure 3.17). Without loss

of generality, we use a real number to represent color value instead of n-tuples. When

we compute non-specular color for the surface point P , we first caculate its shading

parameter C, then the shading parameter C to the color value by using color ramp. In

practice, we realized that more than two colors can be used when construct the color

ramp in order to better match our reference. Other modifications of parameter C is

also acceptable, such as using C2 instead of C to increase contrast in the rendering.

The result of the non-specular front-end shader is shown in figure 3.16.

3.2.3.3 Fresnel Shader

Fresnel e↵ect describes the observation that the amount of reflectance you see on

a surface depends on the viewing angle. In computer graphics, fresnel shader allows

28

Figure 3.16: Non-Specular shader result

Figure 3.17: Remap function

reflection, specularity and other attributes to vary according to the viewing angle of

the 3D surface. In practice, we used Schlick Approximation to compute fresnel.

According to Schlick’s model, the specular reflection coe�cient F can be approx-

imated by:

F (✓) = F0 + (1� F0)(1� cos(✓))5

F0 = (
⌘1 � ⌘2
⌘1 + ⌘2

)2

where ✓ is the angle between the viewing direction ~V and the half-angle direction

~H, which is halfway between the incident light direction ~L and the viewing direction

~V , hence cos ✓ = (~H · ~V). And ⌘1, ⌘2 are the indices of refraction of the two medias at

the interface, and F0 is the reflection coe�cient [25]. One of the interfaces is usually

air, meaning that ⌘1 can be very well approximated as 1. Rendering result using

29

Figure 3.18: An illustration showing relevant parameters in Schlick Approximation

Figure 3.19: Render result of fresnel front-end shader

fresnel front-end shader is shown in figure 3.19.

3.2.3.4 Depth Shader

Depth front-end shader is used to generate depth control images for back-end

shading. Depth image contains the distance information of how far object in 3D

scene is away from the camera(see Figure 3.20).

30

(a) A screenshot of the 3D scene. (b) How the Z-Depth pass looks.

Figure 3.20: A depth pass example for a specific 3D scene.

Figure 3.21: Rendering result of depth shader for ocean surface

The method we use to generate depth pass is illustrated in figure 3.22, where Z
s

is the distance between a specific shading point P and the camera, which is computed

as:

Z
s

= (0, 0, 1) · (P � P
C

)

where P is the location of the current shading point. P
C

is the location of the virtual

camera from which we render the scene. And (0, 0, 1) is a unit vector facing the

Z-Axis of the camera (see Figure 3.22).

The range of Z
s

is [0,+1]; therefore, we need to remap Z
s

to [0, 1] in order to

display it properly in image space. We use Clamp function to achieve this remapping

which will be discussed in the next chapter.

31

Figure 3.22: An illustration shows how depth value is computed

3.2.4 Back-End Shader

Our rendering architecture allows computation of color separately on front-end

shader and back-end shader. Front-end shader is used to generate control parameters

while back-end shader is based on barycentric algebra to preserve mathematical

consistency.

3.2.4.1 Barycentric Algebra

Barycentric algebra is defined by a set of operations as

(x, y) ! t0x+ t1y where t0 � 0, t1 � 0, t0 + t1 = 1

.

The property t0+t1 = 1 is called partition of unity. One application of barycentric

algebra in geometry is barycentric coordinates system(see figure 3.23). Consider a

triangle T defined by its three vertices, P0, P1, and P2. For every point P located

inside this triangle can be represented as a unique combination of the three vertices.

In other words, for each P there is a unique sequence of three numbers, t0,t1,t2 such

32

Figure 3.23: Barycentric coordinate system

that

t0 + t1 + t2 = 1

and

P = t0P0 + t1P1 + t2P2

Here t0 + t1 + t2 = 1 satisfies the restriction of partition of unity. If t0, t1, t2 > 0,

we say point P is inside the convex hull defined by P0, P1, and P2. Please note that

barycentric operation doesn’t restrict the operands to the number of three, in fact

we can use any number of operand in barycentric operation as long as they satisfies

partition of unity.

3.2.4.2 Barycentric Shader

Using a Barycentric algebra in shaders does not require a significant conceptual

change. In fact, we view barycentric shaders as if they are barycentric operations on

texture images. We restrict shader operations only to the form

C =
MX

i=0

!
i

C
i

where
MX

i=0

!
i

= 1 and !
i

� 0

33

where the C and C
i

’s are colors, i.e. n-tuples of positive real numbers. Partition of

unity is satisfied by the property that the weights !
i

are all positive and sum to 1,

which guarantees that result color C stay inside of the convex hull defined by the

colors C
i

.

In our case, barycentric shader starts with non-specular color. We assume result-

ing non-specular colors are computed as a weight average of control colors. In the

stage of back-end shading, the original non-specular color is directly used as weight

parameter ! . We need to define control parameter C based on the depth parameter

in order to carry out computation.

Here we need to further restrict both control parameters and weight parameters of

color as n-tuple of positive real numbers between 0 and 1 for conceptual simplicity.

The restriction of maximum number to 1 is not a problem since any set of real

numbers can always be mapped into [0, 1]. For our purpose we use Clamp function

to re-map parameters, which is defined as follows:

Clamp(t,max,min) =

8
>>>><

>>>>:

1 if max  t

t�min

max�min
if min  t  max

0 otherwise.

We define the barycentric operation Mix on colors by linear bezier interpolation as

Mix(C0, C1, t) = C0(1� t) + C1t where 0  t  1

Control colors for barycentric shader is obtained by assigning textures onto ocean

surface. For instance, the texture representing bright tone of ocean is created as in

figure 3.24, where C0, C1, C2 and C3 is the brightest color sampled from four corners

in the painting. As is mentioned in the section of Visual Analysis, these colors are

34

Figure 3.24: A visual demonstration of bilinear interpolation. Here in the depth
direction, we interpolate the value of green channel between color C0 and C3, similarly
in X-Axis, red channel is interpolated between color C0 and C1.

(131, 145, 145), (139, 154, 161), (37, 74, 100) and (32, 69, 88). For each shading

point P , we map it from the global space to uv space as P : (x, y, z) ! (t0, t1) by

the depth value generated by depth front-end shader. Here t0, t1 are remapped to

the range of [0, 1] by

t0 = Clamp(x, x
max

, x
min

)

t1 = Clamp(z, z
max

, z
min

)

where x
max

is the largest value detected in X-Axis, x
min

is the smallest value in X-

Axis. Similarly, z
max

is the largest value detected in Z-Axis while z
min

is the smallest

value in Z-Axis. The final color in control image I for shading point P is obtained

by bilinear interpolation as

C01 = Mix(C0, C1, t0)

C23 = Mix(C2, C3, t0)

C
final

= Mix(C01, C23, t1)

Since Mix operation is closed only in positive real numbers, our approach guar-

35

(a) bright tone (b) dark tone

Figure 3.25: Rendering result of assigning texture on ocean

antees the elimination of mathematical inconsistency. We applied the same method

to create the control image for the dark tone of ocean rendering. The result of bright

tone and dark tone of ocean surface is shown in figure 3.25

3.2.4.3 Application on Texture Image

We assume the resulting non-specular color are computed as a weight average of

control colors. Therefore, a function that describes shading can simply be given as

a weight average of a set of control images as I =
MX

i=0

⌦
i

I
i

where I
i

’s are control

images and ⌦
i

’s weight images that satisfy partition of unity, i.e
MX

i=0

⌦
i

= 1, where

1 is a white image and I is the final rendering (see figure 3.26).

Figure 3.26 provides an illustration demonstrates how the final non-specular color

of foreground water is computed as weighted average of control images provided by

front-end shaders as I = I0⌦0 + I1⌦1. Note in our case, we choose the non-specular

color from front-end shader as control parameter to simplify our computation, de-

noted as weight image ⌦0. The other one is well defined as ⌦1 = 1 � ⌦0 since

partition of unity ⌦0 + ⌦1 = 1 must be satisfied for a legal operation. In this case,

obtaining 1 � ⌦0 is easy, which is just the inverse image of ⌦0. Image I0 and I1 is

the color gradient obtained in the previous subsection.

36

Figure 3.26: An example demonstrating the concept of control and weight images.
I0 and I1 are control images, ⌦0 and ⌦1 are weight images that satisfy partition of
unity. I = I0⌦0 + I1⌦1 is the final rendering obtained by weighted average of two
control images.

3.2.4.4 Hierarchy for Handling Multiple Parameters

As we have discussed earlier, we can obtain five control parameters from front-end

shaders. They are non-specular, specular, fresnel, spray and depth. Among them, the

depth parameter is used to create texture images while other control parameters will

be used to obtain our final water color. In order to manage these control parameters,

we need to create a hierarchy of barycentric operations. In practice, this hierarchy

starts from the most important parameter, non-specular color. As an intermediate

result, image I1 is obtained as a weighted average of non-specular and specular. The

weighted image for mixing specular reflection and non-specular color is the fresnel

parameter since fresnel describes the ratio of specular reflection that can be received

by the viewer. Therefore, our first layer of barycentric operation can be described as

I1 = (1� ⌦
fresnel

)I
diffuse

+ ⌦
fresnel

I
specular

On top of I1, we mix between spray parameter and I1 to get the final water color.

Hence the equation of final image is extended into the form

37

(a) front-end shading result (b) back-end shading result

Figure 3.27: Spray rendering result

I = (1� ⌦
spray

)((1� ⌦
fresnel

)I
diffuse

+ ⌦
fresnel

I
specular

) + ⌦
spray

I
spray

where ⌦
spray

is the alpha channel of spray rendering.

3.2.4.5 Spray

The spray e↵ect is simulated through a customised particle system. To mimic

brush strokes as shown in the painting, we pre-model several brush geometries and

stamp each of the geometries to a certain particle when that particle is created. The

front-end shader of particle geometries is a contant white shader while in the back-

end, a similar strategy is applied as we sample both brightest and darkest colors from

the water spray in the painting and use those colors as control colors to obtain the

final spray color. The result of water spray rendering is shown in figure 3.27

3.2.4.6 Cloud

In our production, we use the default volumetric rendering tool in the commercial

software package to obtain the front-end shading result of the cloud. Our final sky

background is obtained by combining di↵erent layers of cloud rendering. Each piece

38

(a) front-end shading (b) back-end shading result

(c) front-end shading result (d) back-end shading result

Figure 3.28: Figure shows two groups of cloud rendering results

of cloud rendering is passed into back-end shaders to be processed with the corre-

sponding bright and dark colors according to its position in image space. Figure 3.28

shows the rendering result of cloud.

39

4. IMPLEMENTATION AND PROCESS

In this chapter, we will talk about how we implement the wave simulation and

shading architecture by using commercial software packages.

4.1 Simulation and Control

We first implement a 2D Gerstner wave simulator for a prototyping test. We use

Java and Processing as our platform for this purpose. The display and user interface

is rather primitive, since our main goal is to test sharpness coe�cient s = ka. The

sharpness coe�cient has valid ranges between 0 and 1 and for values exceeding 1,

our simulator generates a self-intersected wave curve.

The 3D wave simulator is coded in C++ with Houdini Development Kit and we

use GCC as our standard compiler. The architecture of software respects the prin-

ciples of object-oriented design(OOD), with one class devoted as a pure interface to

communicate with Houdini and another class responsible for wave pose computa-

tion. In order to boost our simulation speed, the Intel TBB library is employed for

multi-treading capability. For the design of the user interface, we do not specify any

scene description format since each parameter is treated as data input directly from

the default Houdini UI.

4.2 Ship Modeling and Layout

Our 3D ship model is provided by the Nautical Archaeology Program at Texas

A&M University. The original model is built in the commercial 3D package of Au-

todesk Maya. A simple texture is created and assigned to the ship model to improve

the look. In order to match the feel of depth as shown in Aivazovsky’s painting, we

place two separate pieces of ocean surface into 3D scene(see figure 4.1). However,

40

(a) Layout

Figure 4.1: 3D scene layout

for the depth of front-end shader, we compress the depth information of two pieces

of parametric surfaces into a single image to simplify the process of managing data

files.

4.3 Shader Implementation and Management

Our front-end shader is implemented using the Houdini VEX Shading language.

For each front-end shader, we create a di↵erent set of virtual CG lights to illuminate

the ocean surface according to our needs. The product of each front-end shader is an

image file that only contains information produced by that shader. Multiple render

passes created during the front-end shading stage also give us a lot of flexibilty in

the back-end shading process.

Back-end shaders are implemented in Foundry Nuke. Foundry Nuke is a digi-

tal compositing software and assembles all the control parameters together by using

barycentric operations over texture images. At this stage, the user will still have

artistic control over the final result by adjusting parameters in 2D image process-

41

ing algorithms. Another reason we choose to use Nuke for implementing back-end

shaders is that Nuke is a node-based digital compositing software. It is straightfor-

ward to construct a tree-style back-end shader in Nuke as discussed in the previous

chapter.

4.4 Result

The final result of this thesis is a short animation with the style consistent with

our primary reference. Figure 4.2 shows a comparison between the original artwork

and our final animation.

42

(a) reference painting

(b) rendering result

Figure 4.2: Comparison between original art work and our final rendering

43

5. CONCLUSION AND FUTURE WORK

The main goal of this research lies in two aspects. First is to provide a tool for

creating procedural ocean wave animation that can simulate wave shapes observed in

both nature and artwork. Second is to propose a shading architecture that addresses

the issues of mathematical inconsistency and conceptual inconsistency which are

brought by the practical problem of matching digital work with traditional art.

We spanned 2D Gerstner wave equation to three dimensional space and re-

designed the representation of parameters in wave equation. Wave shape is governed

by poses given wavelength, time, amplitude and sharpness parameters. The final dis-

placement is represented as a weighted sum of independent waves in order to bring

randomness and complexity into the wave simulation.

The shading architecture that is developed for matching traditional artwork is

proved to be e↵ective in handling inconsistencies. We first created several indepen-

dent front-end shaders based on our need of shading components. This allows for

a great deal of control, however it can be slow at times. The resulting colors of

back-end shaders are more predictable than using the classical shading approach

since barycentric operations are closed in positive real numbers. The illumination

has proved to be irrelevant to our shading approach. Even if we use a weight image

which is completely irrelevant to the geometry, our final result will still be acceptable

by using the correct control colors.

5.1 Future Work

Opportunities for future works could include using a better model to depict wave

shapes. In this research study, we use the Gerstner Wave model. It is flexible and

44

relatively easy to implement, but Gestner Wave Model is not capable of simulating

breaking waves that are often observed in seascape paintings.

Another line of research could be spanned to advanced rendering techniques, such

as using brush stroke e↵ects to express water sprays in the oil painting. Currently

in this thesis, we use a particle system to mimic water spray.

45

REFERENCES

[1] Ivan Konstantinovich Aivazovsky and Hovhannes Aivazian. Biography of ivan

aivazovsky. 1881.

[2] Robert L Cook. Shade trees. ACM Siggraph Computer Graphics, 18(3):223–231,

1984.

[3] Gábor Czédli and Anna B Romanowska. An algebraic closure for barycentric

algebras and convex sets. Algebra Universalis, 68(1-2):111–143, 2012.

[4] Sarah Beth Eisinger. Applying hand-drawn e↵ects design principles to the cre-

ation of 3d e↵ects. Master’s thesis, Texas A&M University, College Station,

2013.

[5] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. A hybrid

particle level set method for improved interface capturing. Journal of Compu-

tational Physics, 183(1):83–116, 2002.

[6] Jay Allen Faulkner. Beauty waves: an artistic representation of ocean waves

using bezier curves. Master’s thesis, Texas A&M University, College Station,

2007.

[7] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In Proceedings of

the 28th Annual Conference on Computer Graphics and Interactive Techniques,

pages 23–30. ACM, 2001.

[8] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graphical

Models And Image Processing, 58(5):471–483, 1996.

[9] Alain Fournier and William T Reeves. A simple model of ocean waves. In ACM

Siggraph Computer Graphics, volume 20, pages 75–84. ACM, 1986.

46

[10] Franz Gerstner. Theorie der wellen. Annalen der Physik, 32(8):412–445, 1809.

[11] Francis H Harlow, J Eddie Welch, et al. Numerical calculation of time-

dependent viscous incompressible flow of fluid with free surface. Physics of

fluids, 8(12):2182, 1965.

[12] Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. Interactive animation

of ocean waves. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 161–166. ACM, 2002.

[13] K. Hokusai. The great wave at kanagawa (from a series of thirty- six views

from mount fuji). Polychrome Woodblock Print, Ink and Color on Paper, ca.

1830-32. H. O. Havemeyer Collection (JP1847), Accessed October 7, 2006 from

http://www.metmuseum.org/Works of Art.

[14] K. Hokusai. The great wave at kanagawa (from a series of thirty- six views

from mount fuji). Polychrome Woodblock Print, Ink and Color on Paper, ca.

1830-32. H. O. Havemeyer Collection (JP1847), Accessed October 7, 2006 from

http://www.metmuseum.org/Works of Art.

[15] Geo↵rey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw. E�-

cient simulation of large bodies of water by coupling two and three dimensional

techniques. ACM Transactions on Graphics (TOG), 25(3):805–811, 2006.

[16] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer

graphics. In ACM SIGGRAPH Computer Graphics, volume 24, pages 49–57.

ACM, 1990.

[17] Jonathan Kiker. Using local information for compositing cg into traditional art.

Master’s thesis, Texas A&M University, College Station, 2009.

47

[18] Klett, Eberhard Witwe, Detle↵sen, Christoph Peter, et al. IH Lambert... Pho-

tometria sive de mensura et gradibus luminis, colorum et umbrae. sumptibus

viduae Eberhardi Klett, 1760.

[19] Gary A Mastin, Peter A Watterberg, and John F Mareda. Fourier synthesis of

ocean scenes. Computer Graphics and Applications, IEEE, 7(3):16–23, 1987.

[20] Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. Animation and control

of breaking waves. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 315–324. Eurographics Association,

2004.

[21] Joe J Monaghan. Smoothed particle hydrodynamics. Annual Review of Astron-

omy and Astrophysics, 30:543–574, 1992.

[22] Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid

simulation for interactive applications. In Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 154–159. Eu-

rographics Association, 2003.

[23] Darwyn R Peachey. Modeling waves and surf. In ACM SIGGRAPH Computer

Graphics, volume 20, pages 65–74. ACM, 1986.

[24] AB Romanowska and JDH Smith. On the structure of barycentric algebras.

Houston Journal of Mathematics, 16(3):431–448, 1990.

[25] Christophe Schlick. An inexpensive brdf model for physically-based rendering.

In Computer Graphics Forum, volume 13, pages 233–246, 1994.

[26] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference on Com-

puter graphics and interactive techniques, pages 121–128. ACM Press/Addison-

Wesley Publishing Co., 1999.

48

[27] Jerry Tessendorf et al. Simulating ocean water. Simulating Nature: Realistic

and Interactive Techniques. SIGGRAPH, 1, 2001.

[28] Pauline Y Ts’o and Brian A Barsky. Modeling and rendering waves: wave-

tracing using beta-splines and reflective and refractive texture mapping. ACM

Transactions on Graphics (TOG), 6(3):191–214, 1987.

[29] Cem Yuksel, Donald H House, and John Keyser. Wave particles. In ACM

Transactions on Graphics (TOG), volume 26, page 99. ACM, 2007.

49

