
HIGH PERFORMANCE ON-CHIP INTERCONNECTS DESIGN FOR FUTURE

MANY-CORE ARCHITECTURES

A Dissertation

by

HYUNJUN JANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Eun Jung Kim
Committee Members, Paul Gratz

Rabi Mahapatra
Duncan M. Walker

Head of Department, Dilma Da Silva

December 2015

Major Subject: Computer Engineering

Copyright 2015 Hyunjun Jang



ABSTRACT

Switch-based Network-on-Chip (NoC) is a widely accepted inter-core communi-

cation infrastructure for Chip Multiprocessors (CMPs). With the continued advance

of CMOS technology, the number of cores on a single chip keeps increasing at a rapid

pace. It is highly expected that many-core architectures with more than hundreds of

processor cores will be commercialized in the near future. In such a large scale CMP

system, NoC overheads are more dominant than computation power in determining

overall system performance. Also, for modern computational workloads requiring

abundant thread level parallelism (TLP), NoC design for highly-parallel, many-core

accelerators such as General Purpose Graphics Processing Units (GPGPUs) is of

primary importance in harnessing the potential of massive thread- and data-level

parallelism. In these contexts, it is critical that NoC provides both low latency and

high bandwidth within limited on-chip power and area budgets.

In this dissertation, we explore various design issues inherent in future many-core

architectures, CMPs and GPGPUs, to achieve both high performance and power

efficiency. First, we deal with issues in using a promising next generation mem-

ory technology, Spin-Transfer Torque Magnetic RAM (STT-MRAM), for NoC input

buffers in CMPs. Using a high density and low leakage memory offers more buffer

capacities with the same die footprint, thus helping increase network throughput

in NoC routers. However, its long latency and high power consumption in write

operations still need to be addressed. Thus, we propose a hybrid design of input

buffers using both SRAM and STT-MRAM to hide the long write latency efficiently.

Considering that simple data migration in the hybrid buffer consumes more dynamic

power compared to SRAM, we provide a lazy migration scheme that reduces the

ii



dynamic power consumption of the hybrid buffer.

Second, we propose the first NoC router design that uses only STT-MRAM,

providing much larger buffer space with less power consumption, while preserving

data integrity. To hide the multicycle writes, we employ a multibank STT-MRAM

buffer, a virtual channel with multiple banks where every incoming flit is seamlessly

pipelined to each bank alternately. Our STT-MRAM design has aggressively reduced

the retention time, resulting in a significant reduction in the latency and power

overheads of write operations. To ensure data integrity against inadvertent bit flips

from the thermal fluctuation during the given retention time, we propose a cost-

efficient dynamic buffer refresh scheme combined with Error Correcting Codes (ECC)

to detect and correct data corruption.

Third, we present schemes for bandwidth-efficient on-chip interconnects in GPG-

PUs. GPGPUs place a heavy demand on the on-chip interconnect between the many

cores and a few memory controllers (MCs). Thus, traffic is highly asymmetric, im-

pacting on-chip resource utilization and system performance. Here, we analyze the

communication demands of typical GPGPU applications, and propose efficient NoC

designs to meet those demands.

iii



ACKNOWLEDGEMENTS

First of all, I would like to thank my adviser, Dr. Eun Jung Kim, for her consistent

and careful guidance. Her advice made it possible to complete my PhD study. I am

truly grateful for her encouragement and constant motivation throughout this work.

Also, I would like to thank my committee members, Dr. Paul Gratz, Dr. Rabi

Mahapatra, and Dr. Duncan M. Walker. Many thanks also go to Dr. Ki Hwan

Yum for his support throughout my PhD study, especially for his careful feedback

on research papers. Second, I would like to thank all of the previous and current

members of the High Performance Computing Laboratory, especially Minseon Ahn,

Baiksong An, Lei Wang, Rahul Boyapati, Jagadish Chandar Jayabalan, Wen Yuan,

Rohan Kansal, Nikhil Kulkarni, Sagar Narayanan, Kyunghoon Kim, and Jiayi Huang

for supporting and helping my research. Last but not least, I am especially grateful

to my wife, Ara Cho, and parents for their incredible support, patience and trust for

me. Without their dedication and belief, I couldn't have completed this study.

iv



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. HYBRID BUFFER DESIGNWITH STT-MRAM FOR ON-CHIP INTER-
CONNECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 STT-MRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Utilizing NVMs in Processors and Memories . . . . . . . . . . 8

2.3 Performance and Power Model of STT-MRAM . . . . . . . . . . . . . 9
2.4 An On-Chip Router Architecture with Hybrid Buffer Design . . . . . 11

2.4.1 Generic Baseline Router Architecture . . . . . . . . . . . . . . 11
2.4.2 An On-Chip Router Architecture with Hybrid Buffer Design . 13

2.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Performance Analysis with Synthetic Workloads and Bench-

marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3. DESIGN ANDANALYSIS OF STT-MRAMROUTER: TOWARDS POWER-
EFFICIENT AND RELIABLE ON-CHIP INTERCONNECTS . . . . . . . 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 STT-MRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 STT-MRAM Design Considerations . . . . . . . . . . . . . . . 31

v



3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 STT-MRAM for NoC Routers . . . . . . . . . . . . . . . . . . 35
3.3.2 Determining Proper Retention and Switching Times . . . . . . 36
3.3.3 Avoiding Flit Losses . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Performance Impact Analysis . . . . . . . . . . . . . . . . . . 39

3.4 STT-MRAM Router Architecture . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Baseline Router Architecture . . . . . . . . . . . . . . . . . . 43
3.4.2 STT-MRAM Router Design . . . . . . . . . . . . . . . . . . . 43
3.4.3 Nonvolatility-Relaxed STT-MRAM Buffer . . . . . . . . . . . 54

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.2 Performance and Power Analysis . . . . . . . . . . . . . . . . 65
3.5.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.6.1 Impact of Write Delays of STT-MRAM . . . . . . . . . . . . . 71
3.6.2 Comparison with Other NoC Techniques . . . . . . . . . . . . 72
3.6.3 Impact of End-to-End and Per-Hop Error Protection . . . . . 74

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8 Other Applications and Future Work . . . . . . . . . . . . . . . . . . 76
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4. BANDWIDTH-EFFICIENT ON-CHIP INTERCONNECT DESIGNS FOR
GPGPUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Baseline GPGPU Architecture . . . . . . . . . . . . . . . . . . 79
4.2.2 Baseline NoC Router Architecture . . . . . . . . . . . . . . . . 80

4.3 Designing Bandwidth-Efficient NoCs in GPGPUs . . . . . . . . . . . 81
4.3.1 GPGPU On-Chip Traffic Analysis . . . . . . . . . . . . . . . . 81
4.3.2 Proposed Design . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.3 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 Related Work and Conclusions . . . . . . . . . . . . . . . . . . . . . . 112

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

vi



LIST OF FIGURES

FIGURE Page

2.1 The Two States of an MTJ Module . . . . . . . . . . . . . . . . . . . 7

2.2 Maximum Intra-Router Latency of an On-Chip Router (SRAM#:
SRAM Buffer Size per VC) . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Generic Router Architecture . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 A Generic SRAM Input Buffer (a) and a Hybrid Input Buffer (b) . . 12

2.5 Simple Flit Migration Scheme in Hybrid Buffer Design . . . . . . . . 12

2.6 CMP Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Performance Comparison with Synthetic Workloads . . . . . . . . . . 18

2.8 Performance Comparison with O1TURN Routing Algorithm . . . . . 18

2.9 Performance Comparison with Different Topologies . . . . . . . . . . 19

2.10 Performance Comparsion with Various STT-MRAM Write Latencies . 19

2.11 Throughput with Different STT-MRAM Write Latencies . . . . . . . 22

2.12 SPLASH-2 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . 22

2.13 Comparison of Power Efficiency . . . . . . . . . . . . . . . . . . . . . 24

3.1 Per-Application Intra-Router Latency Distribution (canneal in PAR-
SEC Benchmarks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 STT-MRAM Cell Structure . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The Relationship between Switching Current and Switching Time for
Different MTJ Retention Times . . . . . . . . . . . . . . . . . . . . . 32

3.4 BCH ECC Decoder Block Diagram . . . . . . . . . . . . . . . . . . . 33

vii



3.5 Performance Comparison between SRAM and STT-MRAM Routers
under the Same Area Budget . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Various Factors Affecting the Number of Flits Dropped . . . . . . . . 38

3.7 Baseline Router Architecture . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Multibank STT-MRAM Buffer . . . . . . . . . . . . . . . . . . . . . 45

3.9 Dual-Bank STT-MRAM Buffer Example (Sequence of Operations: 1©
∼ 5©) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Timing Diagram Corresponding to Figure 3.9 . . . . . . . . . . . . . 47

3.11 A Baseline SRAM Input Buffer (a) and a Dual-Bank STT-MRAM
Input Buffer (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.12 A General Multibank STT-MRAM Buffer (k: Total Number of Flits
Buffered, To Hide n-cycle Write Latencies, n-1 Latches and n Banks
Are Needed.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.13 Circular Queue for Dual-Bank STT-MRAM Buffer (Assuming all er-
rors are correctable / Sequence: (a) ∼(d)) . . . . . . . . . . . . . . . . 52

3.14 Probability of the Number of Bits Flipped (Note that the sum of error
probabilities under a specific residence time is 100 % ) . . . . . . . . . 56

3.15 An Example of a 2-bit Global Counter (GC) Refresh Logic (Assuming
refresh time is 80 cycles (40 ns in 2 GHz)) . . . . . . . . . . . . . . . 59

3.16 Concurrent Error Protection Example . . . . . . . . . . . . . . . . . . 59

3.17 Two-Phase ECC for Concurrent Error Protection . . . . . . . . . . . 60

3.18 Timing Diagram of Concurrent Error Protection based on Two-Phase
ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.19 Performance Comparison with Different Synthetic Workloads . . . . . 60

3.20 Performance Comparison with Different Topologies . . . . . . . . . . 61

3.21 Normalized Power Consumption - SRAM/Hybrid/STT-MRAM with
Different Refresh Rates (Low-ECC: Low Refresh Rate (80ns) / Opt-
ECC: Optimal Refresh Rate (40ns), See Section 3.4.3.1 for details.) . 62

3.22 PARSEC Benchmark Results (Power and Performance Graphs) . . . 62

viii



3.23 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.24 Normalized STT-MRAM Density under the Same Per-Router Area
Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.25 Comparisons with BLESS [48] and WPF [45] (UR) . . . . . . . . . . 72

3.26 Comparisons between Different ECC Schemes (End-to-End vs. Per-
Hop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.27 Normalized Number of Packets Retransmitted under Different ECC
Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 GPGPU NoC Layout and Router Microarchitecture. (The NoC layout
consists of many SMs and a few MCs, each of which contains an NoC
router.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 GPGPU Microarchitecture and Streaming Multiprocessor (SM) . . . 80

4.3 Normalized Traffic Volumes Between Cores and MCs. . . . . . . . . . 82

4.4 Packet Type Distribution for GPGPU Benchmarks . . . . . . . . . . 82

4.5 Network Traffic Example with XY Routing. (Note that request (a)
and reply (b) traffic take different paths, thus traffic does not mix on
horizontal and vertical links.) . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Different MC Placements. (Shaded tiles represent MCs co-located with
GPGPU cores.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Network Traffic Example with Top-Bottom MC and XY Routing. . . 95

4.8 Network Traffic Example with Edge MC and XY Routing. . . . . . . 96

4.9 Network Traffic Example with Diamond MC and XY Routing. . . . . 97

4.10 Network Traffic Example with XY-YX Routing. (Note, request/reply
traffic is mixed on horizontal links.) . . . . . . . . . . . . . . . . . . . 98

4.11 Speed-up with Routing Algorithms (Normalized to baseline XY) . . . 101

4.12 Normalized Packet Latency under Different Routing Algorithms . . . 101

4.13 Normalized Execution Time under Different Routing Algorithms . . . 101

4.14 Normalized Packet Latency under VC Monopolizing Scheme . . . . . 102

ix



4.15 Normalized Execution Time under VC Monopolizing Scheme . . . . . 103

4.16 Speed-up with VC Monopolized Scheme (Normalized to XY routing
with VC separated for each traffic) . . . . . . . . . . . . . . . . . . . 104

4.17 Speed-up with Different MC Placements with Routing Algorithms
(PM: Partial Monopolizing, FM: Full Monopolizing, Normalized to
bottom MC+XY routing) . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.18 Speed-up with Asymmetric VC Partitioning (Request:Reply = 1:3) . . 106

4.19 Distribution of Power Consumption in NoC . . . . . . . . . . . . . . 106

4.20 Network Power Breakdown under 2 Physical vs. 1 Physical Network . 107

4.21 Detailed Network Power Breakdown (MUM benchmark) under 2 Phys-
ical vs. 1 Physical Network . . . . . . . . . . . . . . . . . . . . . . . . 107

4.22 NoC Static vs. Dynamic Ratio . . . . . . . . . . . . . . . . . . . . . . 108

4.23 Normalized IPC under Different Arbitration Policy (RR vs. Age) . . 110

4.24 Normalized IPC under Different Buffer Depth . . . . . . . . . . . . . 111

4.25 Normalized IPC under Different Router Pipeline Latencies . . . . . . 111

x



LIST OF TABLES

TABLE Page

2.1 CMP System Configuration . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 SRAM and STT-MRAM Parameters . . . . . . . . . . . . . . . . . . 17

3.1 CMP System Configuration . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 SRAM and STT-MRAM Parameters with Different Retention Times
(The Hybrid Buffer [33] utilizes 10 ms.) . . . . . . . . . . . . . . . . 65

4.1 The Average Number of Vertical/Horizontal Hops under Different MC
Placements in an (N xN ) Mesh . . . . . . . . . . . . . . . . . . . . . 91

4.2 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



1. INTRODUCTION

The ever-increasing power consumption and diminishing returns in the perfor-

mance of unicore processor have led to the advent of many-core architectures. This

many-core trend may lead to hundreds of cores integrated on a single chip. As the

number of core counts increases, a scalable, flexible, and high bandwidth on-chip

communication fabric becomes critically important. In this context, switch-based

Network-on-Chip (NoC) are fast replacing buses and crossbars as the pervasive com-

munication fabric for many-core chips. In such an NoC, an on-chip router is attached

to every node and adjacent nodes are connected via local on-chip wiring. This NoC-

based many-core architecture has been prevalent in Chip Multiprocessors (CMPs)

domains. Also, especially for modern computational workloads such as graphics and

data-intensive scientific applications necessitating abundant thread level parallelism

(TLP), NoC designs for highly-parallel, many-core accelerators such as General Pur-

pose Graphics Processing Units (GPGPUs) have emerged as an important field of

research. For high performance many-core architectures, it is critical that NoC sup-

plies high bandwidth at ultra-low latencies within a tight power and area budgets.

This dissertation addresses a number of design challenges regarding high per-

formance NoCs for many-core architectures to achieve high performance and power

efficiency. First, we present a new design of NoC router based on a next-generation

memory technology, Spin-Transfer Torque Magnetic RAM (STT-MRAM) in CMPs.

STT-MRAM has high density and near-zero leakage power, thus adopting STT-

MRAM in NoC has significant merits in improving throughput with less power con-

sumption. However, its long latency and high power consumption in write operations

compared to those of SRAM need to be addressed. Thus, we propose a hybrid de-

1



sign of input buffers combining both SRAM and STT-MRAM to hide the long write

latency. Also, considering that simple data migration in the hybrid buffer consumes

more dynamic power compared to SRAM, we design a lazy migration scheme allow-

ing the flit migration only when the network load exceeds a certain threshold, which

helps to reduce the dynamic power consumption significantly. Simulation results

show that the proposed scheme enhances the throughput by 21% on average.

Second, we propose the first NoC router design that uses only STT-MRAM in

buffers, while preserving data integrity. By eliminating SRAM, it offers much larger

buffer space with less power consumptions. To hide the multicycle write latencies of

STT-MRAM, we propose a novel pipelined input buffer design, a multibank STT-

MRAM buffer, which is a Virtual Channel (VC) with multiple banks where every

incoming flit is delivered to each bank alternately via a simple latch inside a router.

Through this, we can avoid performance degradation while consuming less area and

power. Our STT-MRAM design also has aggressively reduced the retention time,

resulting in a significant reduction in the latency and power overheads of write opera-

tions. To ensure data integrity under the limited retention time and random bit flips

of STT-MRAM, we employ cost-efficient dynamic buffer refresh schemes combined

with Error Correcting Codes (ECC) that are extensively used in memories and stor-

age devices to tolerate both transient and static errors. Simulation results show that

the proposed STT-MRAM NoC router improves throughput by 20.7% and achieves

17% savings in the total router power with minimum hardware overheads compared

with an SRAM based NoC router.

Third, we present bandwidth-efficient on-chip interconnects designs for GPGPUs.

Unlike CMP systems, where traffic tends to be uniform across the cores communicat-

ing with distributed on-chip caches, the communication in GPGPUs is highly asym-

metric, mainly between many compute cores and a few memory controllers (MCs).

2



Thus the MCs often become hot spots, leading to skewed usage of the NoC resources

and network bottlenecks. We quantitatively analyze the impact of network traffic

patterns in GPGPUs with different MC placements and dimension order routings.

Then, based on this analysis, we suggest VC monopolizing and partitioning schemes

which dramatically improve NoC resource utilization without causing protocol dead-

locks. We also investigate the impact of XY, YX, and XY-YX routing algorithms

under diverse MC placements. Simulation results show the proposed NoC schemes

improve overall GPGPU performance by up to 64.7% over baseline. Compared to the

top performing prior work, our VC monopolizing and partitioning schemes achieve

a performance gain of 25% with a simple MC placement policy.

3



2. HYBRID BUFFER DESIGN WITH STT-MRAM FOR ON-CHIP

INTERCONNECTS *

2.1 Introduction

With the continued advance of CMOS technology, the number of cores on a single

chip keeps increasing at a rapid pace. And it is highly expected that many-core ar-

chitectures with more than hundreds of processor cores will be commercialized in the

near future. In a large-scale chip multiprocessor (CMP) system, network overheads

are more dominant than computation power in determining overall system perfor-

mance. While shared buses provide networking performance enough for a small

number of CMP nodes, they cannot be good solutions for many-core systems due

to the limitation on scalability. Accordingly, switch-based networks-on-chip (NoCs)

are being adopted as an emerging design trend in many-core CMP environments.

Since all components in a chip including processors, caches and interconnects must

compete for limited area and power budgets, resources available for NoCs are tightly

constrained compared to off-chip interconnects. Moreover, network performance be-

comes more significant with the increasing scale of CMP systems. Therefore, a new

and innovative NoC design that can guarantee better performance with limited re-

sources is necessary for many-core systems.

The advance of memory technology has ushered in new non-volatile memory

(NVM) designs that overcome the drawbacks of existing memories such as SRAM or

DRAM. Among them, Spin-Torque Transfer Magnetic RAM (STT-MRAM) is being

regarded as a promising technology for a number of advantages over the conventional

* c©2012 IEEE. Reprinted, with permission, from Hybrid Buffer Design with STT-MRAM for
On-Chip Interconnects by Hyunjun Jang, Baik Song An, Nikhil Kulkarni, Ki Hwan Yum and Eun
Jung Kim, in Networks on Chip (NoCS), May 2012

4



RAMs. STT-MRAM is a next-generation memory that uses magnetic materials as

the main information carrier. It achieves lower leakage power and higher density

compared to the existing SRAM. Also, STT-MRAM shows higher endurance com-

pared to other NVM techniques such as Phase Change Memory (PCM) or Flash,

which makes STT-MRAM more attractive for on-chip memories that must tolerate

much more frequent write accesses compared to off-chip memories. However, one of

the biggest weaknesses of STT-MRAM is long write latency compared to SRAM.

Since the fast access time of memories on a chip must be guaranteed and cannot

be negotiable, the slow write operations of STT-MRAM limit its popularity, even

though it shows competitive read performance. Another serious drawback of STT-

MRAM is high power consumption in write operations. This issue of high power

consumption in STT-MRAM must be resolved in NoCs due to the limited power

budgets.

Despite these weaknesses, using STT-MRAM in the NoC design has significant

merits since an on-chip router can incorporate larger input buffers compared to

SRAM with the same area budget because of the higher density of STT-MRAM.

Larger input buffers contribute to improving the throughput of NoC, which results

in the enhancement of overall system performance. However, the aforementioned

challenges must be addressed first to exploit the benefit of STT-MRAM in NoC.

Since the input buffer of an on-chip router must handle arriving flits on time, it is

impossible in reality to use STT-MRAM without additional technique to hide the

long write latency. Moreover, addressing the high write power issue of STT-MRAM

is mandated in NoC environments.

In this study, we explore the design issues of adopting STT-MRAM in on-chip

interconnects. First, by relaxing the non-volatility of STT-MRAM, the latency as

well as the power consumption in write operations can be reduced at the sacrifice of

5



the retention time [34, 59]. Based on the observation of intra-router latency of flits, we

find out that the retention time needed for input buffers in NoC can be significantly

shortened. We exploit the write latency reducing technique [34] in the input buffers

of on-chip routers, and decrease the latency to less than 2ns that corresponds to 6

cycles in 3GHz clock frequency. Then we propose a hybrid design of input buffers

combining both SRAM and STT-MRAM. By allowing each arriving flit to be stored

in the SRAM buffer first and then migrated to STT-MRAM, the write latency of

STT-MRAM is effectively hidden, thus increasing network throughput.

Simply migrating each flit from SRAM to STT-MRAM buffer causes significant

power consumption due to the high write power of STT-MRAM, compared to existing

SRAM-based input buffers. So we design a lazy migration scheme that allows the flit

migration only when the network load exceeds a certain threshold, which helps to

reduce the power consumption significantly. Simulation results show that the hybrid

input buffers improve the network throughput by 21% in synthetic workloads and

14% in SPLASH-2 parallel benchmarks on average compared to pure SRAM-based

buffers with the same area overheads. Also, the lazy migration scheme contributes to

power reduction by 61% on average compared to the simple migration scheme that

always migrates flits from SRAM to STT-MRAM.

The remainder of this study is organized as follows. We discuss related work

in Section 2.2, followed by the performance and power model of STT-MRAM in

Section 3.2.2. In Section 3.4, we explain the hybrid buffer design using STT-MRAM

in detail. Section 3.5 presents simulation results and analysis, and finally Section 3.9

summarizes our work and makes conclusions.

6



!"##$%&'#"$ !"##$%&'#"$

!()#*$%&'#"$ !()#*$%&'#"$

+,--#.$/&""(#"$ +,--#.$/&""(#"$

%0123#4(45&-6#$ 7(8923#4(45&-6#$

Figure 2.1: The Two States of an MTJ Module

2.2 Related Work

Since there has been no prior work using STT-MRAM in NoC design, we only

summarize the relevant studies of STT-MRAM technologies as well as the application

of NVM to diverse system domains such as processors and memories.

2.2.1 STT-MRAM

STT-MRAM is a next generation memory technology that takes advantage of

magnetoresistance for storing data. It uses a Magnetic Tunnel Junction (MTJ), the

fundamental building block, as a binary storage. An MTJ comprises a three-layered

stack: two ferromagnetic layers and an MgO tunnel barrier in the middle. Among

them, the fixed layer located at the bottom has a static magnetic spin, the spin of

the electrons in the free layer at the top is influenced by applying adequate current

through the fixed layer to polarize the current, and the current is passed to the free

layer. Depending on the current, the spin polarity of the free layer changes either

parallel or anti-parallel to that of the fixed layer. The parallel indicates a zero state,

and the anti-parallel a one state. Figure 2.1 depicts the two parallel and anti-parallel

states of an MTJ module. A single MTJ module is coupled with a transistor to form

a basic memory cell of STT-MRAM called a 1T-1MTJ cell.

7



2.2.2 Utilizing NVMs in Processors and Memories

Several schemes have been proposed to provide architectural support for apply-

ing NVMs to system components. Jog et al. [34] proposed to achieve better write

performance and energy consumption of STT-MRAM-based L2 cache through ad-

justing data retention time of STT-MRAM. Similarly, Smullen et al. [59] reduced the

write latencies as well as dynamic energy of STT-MRAM by lowering the retention

time for designing on-chip caches. In [47], they integrated STT-MRAM into on-chip

caches in a 3D CMP environment and proposed a mechanism of delaying cache ac-

cesses to busy STT-MRAM banks to hide long write latency. Prior to that, Sun

et al. [61] stacked MRAM-based L2 caches on top of CMPs and reduced overheads

through read-preemptive write buffer and hybrid cache design using both SRAM

and MRAM. Guo et al. [26] resolved the design issues of microprocessors using STT-

MRAM in detail for more power-efficient CMP systems.

PCM also has been constantly explored to replace existing SRAM or DRAM-

based memory systems. Due to its lower endurance compared to SRAM or STT-

MRAM, PCM is mainly adopted for off-chip memories rather than on-chip caches.

Several designs of PCM-based main memory were discussed in [73, 53, 42]. In [52],

adaptive write cancellation and write pausing policies were proposed to reduce energy

and improve performance. Zhou et al. [72] suggested a new memory scheduling

scheme that allows Quality-of-Service (QoS) tuning through request preemption and

row buffer utilization.

8



2.3 Performance and Power Model of STT-MRAM

As an area model of STT-MRAM, we use ITRS 2009 projections [32] as well as

the model used in [26], where a 1T-1MTJ cell size is 30F2 in the 32nm technology.

When we assume that an SRAM cell size is approximately 146F2 with the same

technology, one SRAM cell can be substituted by at least four STT-MRAM cells

under the same area budget. Also, about 3.2ns of write latency can be achieved

with 30F2 STT-MRAM cell size [26]. It corresponds to 10 cycles in 3GHz clock

frequency, which is quite long for on-chip routers compared to SRAM that completes

both read and write accesses in a single cycle. Reducing retention time from 10 years

to 10ms guarantees the same write latency with one third of original write current

needed [34]. Using lower current is beneficial in terms of area overheads because it

facilitates to implement STT-MRAM cells with smaller transistors, which reduces

actual cell area.

In this study, we slightly increase write current to reduce this write latency of

STT-MRAM further. The write latency reduces from 3.2ns to 1.8ns through increas-

ing the write current from 50µA to 75µA under 125 ◦C of a temperature. Note that

even this increased current is far less than the original current needed for 10 years

of retention time, while maintaining the same STT-MRAM cell size, 30F2. Also, the

increased current does not hurt write energy consumption since the MTJ switching

time decreases accordingly [26]. As a result, the write latency decreases from 10 to

6 cycles in 3GHz clock frequency. The increased write current may hurt the per-

formance in terms of read latency. However, we verify that the reduction of write

latency from 3 to 1.8ns affects the read latency to only a small extent [59]. Therefore,

we can assume that the increased read latency can still be covered by a single cycle,

considering the original read delay of 122ps [26], which is far shorter than 333ps, a

9



!"

#"

$!"

$#"

%!"

!&$" !&%" !&'" !&'%"!&'("!&')"!&'*" !&(" !&#" !&)" !&+"

,-
./
0
12
"3
12
14
/
56
"

708/19:0";-./"3<=.5>0:?/>1214/6"

@;AB%" @;AB'" @;AB(" @;AB#" @;AB)"

Figure 2.2: Maximum Intra-Router Latency of an On-Chip Router (SRAM#: SRAM
Buffer Size per VC)

cycle time in 3GHz clock frequency.

The relaxed retention time of 10ms may hurt the reliability of data stored in an

STT-MRAM buffer, if the retention time is shorter than the intra-router delay of a

flit, defined by the time difference between arrival time at the buffer and departure

time in a router. Figure 2.2 depicts maximum intra-router latency for different

injection rates ranging from 0.1 to 0.7 with various SRAM buffer sizes per VC, under

uniform random synthetic workloads. We observe that the latency does not go up

beyond 16 cycles, and it is almost negligible compared to 10ms, which corresponds

to more than 30 million cycles in 3GHz clock frequency 1. Hence, it is confirmed

that even the reduced retention time is completely enough to hold a flit in STT-

MRAM buffers safely. For the read and write energy model of STT-MRAM, we

conservatively adopt the same parameters from [26], 0.01pJ and 0.31pJ per bit for

read and write, respectively. Note that these are based on 3.2ns of write latency, so

actual write energy becomes smaller after decreasing the latency to 1.8ns.

1Note that in deadlock situations, packets can stay in the network forever. In this study, we
adopt deadlock-free routing algorithms, thus avoiding such situations.

10



Routing Computation 
(RC)

VC Allocator (VA)

Switch Arbiter (SA)

VC Identifier
Input Port (East)

Crossbar Switch

Processing Element

Input Port (North)

Input Port (South)

Input Port (West)

Injection Port

Output Link

Figure 2.3: Generic Router Architecture

2.4 An On-Chip Router Architecture with Hybrid Buffer Design

In this section, we describe a generic router architecture and a buffer structure

in NoC and present our hybrid buffer design that maximizes the mutually comple-

mentary features of the two different memory technologies, SRAM and STT-MRAM,

while minimizing the drawbacks of STT-MRAM, the long latency and high power

consumption in write operations.

2.4.1 Generic Baseline Router Architecture

The generic NoC router architecture is depicted in Figure 2.3. It is based on the

state-of-the-art speculative router architecture [51]. Each arriving flit goes through

2 pipeline stages in the router: routing computation (RC), VC allocation (VA) and

switch arbitration (SA) at the first cycle, and switch traversal (ST) at the second cy-

cle. A lookahead routing scheme [23] is adopted, which generates routing information

of the downstream router for an incoming flit prior to the buffer write, thus removing

the RC stage from the critical path. Each router has multiple VCs per input port

and uses flit-based wormhole switching [14]. Credit-based VC flow control [13] is

11



VC Identifier

Input Port

VC

CrossbarInput
Channel

Flit K

�

Flit 1

Hybrid Parallel 
FIFO Buffer

Flit 1-1
�

Write
Pointer

Read
Pointer

SRAM

STT-MRAM

Migration Link

Flit 2
Flit 1

Generic SRAM
Parallel FIFO Buffer

Flit K-1

Read
Pointer

Flit K

�

Write
Pointer

(a)

(b)

SRAM

Control Logic
(SRAM Write/

SRAM&STT-MRAM 
Read Pointers)

Control Logic
(Write/Read 

Pointers)

Migration 
Controller

�

�

�

�

Flit K-1

Flit K-m

�

Flit 1-m

�

Figure 2.4: A Generic SRAM Input Buffer (a) and a Hybrid Input Buffer (b)

SRAM STT-MRAM

VC Identifier

Input Port

VC

Input
Channel

1

12

124 36 5

23 15 4A 6

34 2 16 5B A

Crossbar

Incoming Flit 
Write direction

Buffered Flit 
Migration Direction

Time 
Flow

Hybrid Input Buffer

�

�

�

�

Figure 2.5: Simple Flit Migration Scheme in Hybrid Buffer Design

12



adopted to provide the back-pressure from downstream to upstream routers, thus

controlling flit transmission rate to prevent packet loss due to buffer overflow.

Due to the limited area and power resources and ultra-low latency requirements,

on-chip routers rely on very simple buffer structure. VC-based NoC routers consist

of a number of FIFO buffers per input port where each FIFO corresponds to a VC

as illustrated in Figure 2.4(a). Each input port has v VCs, each of which has a k -flit

FIFO buffer. Current on-chip routers have small buffers to minimize area overheads,

thus v and k are much smaller than in macro networks. The necessity for ultra-low

latency leads to a parallel FIFO buffer design as shown in Figure 2.4. Contrary to a

serial FIFO implementation, the parallel structure eliminates unnecessary interme-

diate processes for a flit to traverse all buffer entries until it leaves the buffer [70].

This fine-grained control requires more complex logic, which manages read and write

pointers to keep the FIFO order. The read and write pointers in the parallel FIFO

registers control an input demultiplexer and an output multiplexer. The write pointer

points to the tail of the queue, and the read pointer points to the head of the queue.

For a read operation, the flit pointed by the head is selected and transmitted to a

crossbar input port. Similarly, write operation leads the incoming flit to be written

to the location pointed by the tail pointer. The pointers are promptly updated after

each read or write operation. After a read operation, once the head is overlapped

with the tail, the buffer becomes empty. After a write operation, likewise, if the tail

moves to the same position pointed by the head, the buffer is full.

2.4.2 An On-Chip Router Architecture with Hybrid Buffer Design

In this section, we show an on-chip router architecture with hybrid buffer de-

sign that combines SRAM and STT-MRAM. The hybrid design aims to maximize

advantages inherent in different memory technologies in a synergistic fashion for per-

13



formance improvement while consuming power economically. The key idea is inspired

by the nature of STT-MRAM that provides 4 times more buffer space than SRAM

under the same area constraint due to its higher density characteristics [26, 74].

The increased buffer size contributes to making on-chip routers have spacious rooms

for buffering, thus boosting the overall network throughput with no additional area

overheads compared to a pure SRAM-based input buffer.

Figure 2.4(b) depicts the proposed hybrid input buffer of a VC. Compared to

the pure SRAM buffer shown in Figure 2.4(a), the STT-MRAM is attached to each

VC in parallel with the SRAM buffer. Each SRAM buffer entry is connected to m

dedicated STT-MRAM buffer entries through separate migration links. The hybrid

parallel FIFO buffer maintains read/write pointers. An incoming flit is first written

to the SRAM buffer, thus the write pointer points to SRAM buffer entries only. But

an outgoing flit may leave from either SRAM or STT-MRAM and the read pointer

covers the entire buffer, both SRAM and STT-MRAM buffer entries.

A migration controller triggers the flit migration and determines if a certain flit

is ready to be migrated to STT-MRAM. VC flow control is performed based on the

availability of SRAM in downstream routers, meaning that the availability of STT-

MRAM is not considered, because a write operation to STT-MRAM cannot finish

in a single cycle.

2.4.2.1 Simple Flit Migration Scheme

The key design goal of the hybrid input buffer is to guarantee seamless read and

write operations in every cycle to achieve higher throughput with an increased buffer

size. To serve this purpose, we devise a flit migration scheme, which seamlessly

migrates buffered flits from SRAM to STT-MRAM to secure more SRAM buffer

space for incoming flits, while hiding the long write latency of STT-MRAM.

14



!"

#"

!" !"!" !" !" !" !"

#" #"#" #" #" #" #"

!"

#"

!" !"!" !" !" !" !"

#" #"#" #" #" #" #"

!"

#"

!" !"!" !" !" !" !"

#" #"#" #" #" #" #"

!"

#"

!" !"!" !" !" !" !"

#" #"#" #" #" #" #"

Figure 2.6: CMP Layout

Figure 2.5 depicts an example of the migration scheme, where each VC consists of

6 SRAM and 12 STT-MRAM buffer entries. The STT-MRAM buffer write latency

is assumed to be 6 cycles. When an incoming flit arrives, it is written to the SRAM

buffer first, and the migration from SRAM to STT-MRAM begins immediately. Sup-

posing that a new flit arrives every cycle, the SRAM buffer becomes full eventually

in the 6th cycle. At the same time, the first flit is migrated to STT-MRAM success-

fully and one SRAM buffer entry becomes available. Then a subsequent incoming flit

occupies the released SRAM buffer entry with no additional timing delay. Note that

Figure 2.5 illustrates the concept in a logical way, and no physical shift occurs except

the migration from SRAM to STT-MRAM. The placement of flits in STT-MRAM

is logical and is not the physical placement described in Figure 2.4(b).

2.4.2.2 Power-Efficient Lazy Migration

In the simple migration scheme explained in the previous section, the migration

begins immediately as soon as an incoming flit arrives at the SRAM buffer. The

simple migration wastes lots of power in a low network load because most of the flits

15



initially written to SRAM leave the buffer in the middle of migration to STT-MRAM.

Based on this observation, we propose a lazy migration scheme, which selec-

tively triggers the migration of a flit based on the estimated network load per VC in

the on-chip router. The network load is indirectly estimated by tracking the number

of flits in the SRAM buffer. If the ratio of the number of flits in the SRAM buffer

to the total SRAM buffer size exceeds a certain predefined threshold level, the flit

migration is performed for every subsequent incoming flit as long as the the ratio

exceeds the threshold. In this way, we can save total write power associated with

the migration operation.

To implement the lazy migration scheme, the migration controller is augmented

to keep track of the flits in the SRAM buffer and triggers the migration adaptively.

The write power is reduced by up to 79% in a low network load compared to the

simple migration, which will be discussed in detail in Secton 3.5.

16



Table 2.1: CMP System Configuration
System Parameters Details

Clock frequency 3GHz

# of processors 32

L1 I and D caches direct-mapped 32KB (L1I)
4-way 32KB (L1D), 1 cycle

L2 cache 16-way 16MB, 20 cycles
32 banks, 512 KB/bank

Cache block size 64B

Coherence protocol Directory-based MSI

Memory latency 300 cycles

Flit size 16B

1 flit (Benchmark-control)
Packet size 5 flits (Benchmark-data)

4 flits (Synthetic)

Table 2.2: SRAM and STT-MRAM Parameters
Parameter SRAM STT-MRAM

Read Energy (pJ/flit) 5.25 3.826

Write Energy (pJ/flit) 5.25 40.0

Leakage Power (mW) 0.028 0.005

2.5 Performance Evaluation

In this section, we evaluate the proposed hybrid on-chip router to examine how

much it improves the overall network performance while reducing the power con-

sumption in NoC, using several benchmarks and synthetic workloads.

2.5.1 System Configuration

A cycle-accurate NoC simulator is used to conduct the detailed evaluation of

the proposed scheme. It implements the pipelined router architecture with VCs, a

VC arbiter, a switch arbiter and a crossbar. Under the 32nm process technology,

all simulations are performed in an 8x8 network having 32 out-of-order processors

and 32 L2 cache banks on a single chip as shown in Figure 2.6. The network is

17



!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($"

*+
,-
.
/0
"1
/0
/2
-
34
"

5.6-/78."9+,-"1:;,3<.8=-</0/2-4 

(a) UR

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()"

*+
,-
.
/0
"1
/0
/2
-
34
 

5.6-/78."9+,-"1:;,3<.8=-</0/2-4 

(b) BC

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($" !(*" !(%" !(+" !(&" !(,"

-.
/0
1
23
"4
23
25
0
67
 

81902:;1"<./0"4=>/6?1;@0?232507 

(c) NN

Figure 2.7: Performance Comparison with Synthetic Workloads

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($"

*+
,-
.
/0
"1
/0
/2
-
34
 

5.6-/78."9+,-"1:;,3<.8=-</0/2-4 

Figure 2.8: Performance Comparison with O1TURN Routing Algorithm

18



!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($" !(*" !(%"

+,
-.
/
01
"2
01
03
.
45
 

6/7.089/":,-."2;<-4=/9>.=0103.5 

(a) 2D-Torus

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()"

*+
,-
.
/0
"1
/0
/2
-
34
 

5.6-/78."9+,-"1:;,3<.8=-</0/2-4 

(b) Flattened Butterfly

Figure 2.9: Performance Comparison with Different Topologies

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($"

*+
,-
.
/0
"1
/0
/2
-
34
 

5.6-/78."9+,-"1:;,3<.8=-</0/2-4 

(a) 30 cycles

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($"

*+
,-
.
/0
"1
/0
/2
-
34
 

5.6-/78."9+,-"1:;,3<.8=-</0/2-4 

(b) 10 cycles

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($"

*+
,-
.
/0
"1
/0
/2
-
34
 

5.6-/78."9+,-"1:;,3<.8=-</0/2-4 

(c) 6 cycles

Figure 2.10: Performance Comparsion with Various STT-MRAM Write Latencies

19



equipped with 2-stage speculative routers with lookahead routing [23]. The router

has a set of v VCs per input port. Each VC contains a k -flit buffer with 16B flit

size. In our evaluation, we assume that v is 4, and k may vary with different buffer

configurations. A dimension order routing algorithm, XY, and O1TURN [58] are

used with wormhole switching flow control.

A variety of synthetic workloads are used to measure the effectiveness of the

hybrid on-chip router: uniform random (UR), bit complement (BC) and nearest

neighbor (NN). To evaluate the proposed schemes under realistic environments, we

also use SPLASH-2 [57] parallel benchmark traces. The traces are obtained using

Simics [46], a full system simulation platform. Table 3.1 specifies the detailed CMP

configuration we use to run benchmarks.

We use Orion 2.0 [35] to estimate router power consumption. In addition, param-

eters shown in Table 3.2 are cited from [32, 26], for both SRAM and STT-MRAM.

The unit of parameter for the leakage power is mW per 1-flit buffer. Throughout

this study, the size of SRAM and STT-MRAM buffers are denoted by SRAM# and

STT#, respectively. As stated in Section 2.4.2, STT-MRAM provides 4 times more

buffer space compared to SRAM under the same area budget, thus SRAM1 is equal

to STT4. Unless otherwise stated, the write latency of STT-MRAM is 6 cycles based

on the analysis in Section 3.2.2.

2.5.2 Performance Analysis with Synthetic Workloads and Benchmarks

Figure 2.7 shows performance improvement for various hybrid input buffer config-

urations compared to the pure SRAM buffer, under UR, BC and NN traffic patterns.

All results are measured under the same area budget, SRAM6 per VC, for input

buffers. In all cases, the hybrid design shows throughput improvement by 18% for

UR, 28% for BC, and 17% for NN on average. These results indicate that although

20



the STT-MRAM write latency is longer than that of SRAM, the performance loss

is offset by the increased buffer size due to the high density of STT-MRAM, thus

resulting in performance improvement.

We also evaluate the hybrid design using O1TURN [58] routing algorithm as

well as various topologies: 2D-torus and flattened butterfly [38]. Figure 2.8 shows

the performance with O1TURN in the 8x8 2D-mesh topology, where the overall

throughput increases by 15% on average, while Figure 2.9 shows that the throughput

is increased in 2D-torus and flattened butterfly by 13% and 15%, respectively.

To examine the impact of different write latencies of STT-MRAM on network

performance, we conduct experiments under 2D-mesh and XY routing algorithm.

Figure 2.10 shows the performance in terms of packet latency with 3 different write

latencies of STT-MRAM: 30, 10, and 6 cycles. It clearly indicates that the overall

network performance is affected by the duration of STT-MRAM write operation.

Among the different hybrid configurations, SRAM2 STT16 shows the worst perfor-

mance. This is because the SRAM buffer space is too small to retain the incoming

flits for sufficient period of time for migration, 6 cycles, which makes the simple flit

migration scheme less efficient. Thus, the long write latency of STT-MRAM is not

effectively hidden, resulting in the early saturation of the network. As shown in

Figure 2.2, every flit stays in the buffer for at least 3 cycles. So the SRAM buffer

size should be greater than or equal to 3 to run the migration scheme seamlessly.

If the write latency is long, 30 cycles, the performance is mostly determined by

the SRAM size. This is because the long write latency lowers the possibility for

flits to be migrated to the STT-MRAM buffer before network saturation. Therefore,

SRAM5 STT4 shows the best throughput improvement. On the contrary, if the write

latency is sufficiently short, 6 cycles, the performance is greatly impacted by the total

buffer size including both SRAM and STT-MRAM except the SRAM2 STT16 case.

21



!"#!$

!"%!$

&"!!$

&"&!$

&"'!$

&"(!$

$(!$)*)+,-$ $&!$)*)+,-$ ./$)*)+,-$

0
1
23

4
+5
6,
7
$$
8
9
21
:
;
9
<
:
=$

>25=,$?4=,@)*$1A$B88CDEFD$

BEFD/$ BEFD'GB88&/$ BEFD(GB88&'$ BEFDHGB88#$ BEFDIGB88H$

Figure 2.11: Throughput with Different STT-MRAM Write Latencies

!"

#!"

$!"

%!"

&!"

'(
)*
+
,-
".
,-
,/
*
01
"

2345&" 2345%6277&"

Figure 2.12: SPLASH-2 Benchmark Results

Thus, SRAM3 STT12 shows the highest throughput compared to other configura-

tions.

To make a clear quantitative comparison of relative performance of the 3 dif-

ferent write latencies, we show network throughput normalized to the SRAM6 in

Figure 2.11, based on the results in Figure 2.10. Figure 2.11 confirms the afore-

mentioned analysis. In case of a relatively long write latency, 30 cycles, the hybrid

input buffer having the largest SRAM buffer outperforms the others by up to 11%

compared to the pure SRAM6 buffer. Likewise, in case of a low write latency, 6

22



cycles, except the SRAM2 STT16 case, the one having the largest total buffer size,

SRAM3 STT12 beats the other configurations by up to 18% in terms of network

throughput.

Figure 2.12 shows the average network latency with SPLASH-2 benchmark traces.

We assume SRAM4 per VC as an area budget, the same as a cache block size. In

general, the hybrid input buffer outperforms the pure SRAM-based one, by approxi-

mately 14% on average. Specifically, water-nsquared shows the best improvement by

34.5% while ocean shows the least improvement by 3.2%. The amount of improve-

ment varies depending on the traffic patterns. We observe that in the benchmarks

showing higher improvement, hot spots exist in their communication, whereas in the

benchmarks with slight performance improvement, communication is evenly spread

across the whole network.

Finally, we make a sensitivity analysis of the number of buffer entries in NoC

routers. Under two different area budgets, SRAM4 and SRAM6, we compare the

throughput of the pure SRAM-based buffer and the hybrid buffer that shows the

best performance. As the budget decreases from SRAM6 to SRAM4, the amount of

improvement coming from the hybrid buffer increases by approximately 5.5%. This

trend indicates that the hybrid buffer is more beneficial as the area budget in CMP

environments becomes tighter.

2.5.3 Power Analysis

Since power is one of the main issues in the NoC router design, we evaluate power

consumption of the hybrid input buffer and compare the effect of the two migration

schemes explained in Section 3.4. Figure 2.13a compares the dynamic buffer power

consumption of 4 different migration schemes in SRAM3 STT12 : simple and lazy

with 3 different thresholds (0.25/0.5/0.75). All results are normalized to that of the

23



!"

!#$"

%"

%#$"

&"

&#$"

'"

!#%" !#%$" !#&" !#&$" !#'" !#'$" !#("

)
*
+,

-
./
01
2
"3
*
4
1
+"

5
*
6
78
,
9
:
*
6
" 

;6<1=:*6">-?1"@A/?7B6*21B=C=.1D"

E>FG" E;G3HI" HFJK"@!#&$D" HFJK"@!#$D" HFJK"@!#L$D"

(a) Dynamic Power Consumption of Input Buffers

!"

!#$"

%"

%#$"

!#%" !#%$" !#&" !#&$" !#'" !#'$" !#("

)
*
+,

-
./
01
2
"3
*
4
1
+"

5
*
6
78
,
9
:
*
6
 

;6<1=:*6">-?1"@A/?7B6*21B=C=.1D"

E>FG" E;G3HI" HFJK"@!#&$D" HFJK"@!#$D" HFJK"@!#L$D"

(b) Total Power Consumption of Routers

Figure 2.13: Comparison of Power Efficiency

pure SRAM-based buffer, SRAM6. The lazy migration scheme with the threshold

0.75 consumes significantly less amount of power, by 53% on average, compared to

the simple migration scheme. In a low network load (0.1), the power consumption of

the lazy migration scheme with the threshold 0.75 is almost equivalent to that of the

baseline SRAM. In a high network load (0.4), however, the flit migration occurs more

frequently in the hybrid buffer due to the highly congested network. Accordingly,

the migration lowers the possibility of reducing the dynamic power, thus increasing

the power consumption of the lazy migration by up to 1.7x more than the baseline

SRAM.

Figure 2.13b compares the total router power consumption of the 4 migration

schemes that includes both leakage and dynamic power consumption of all routers

across the network. In a low network load (0.1), the total power consumption of

routers with the hybrid buffer is less than that of routers with the pure SRAM

buffer by 16%. This is due to much less leakage power consumption of STT-MRAM

compared to SRAM as shown in Table 3.2. As the network gets more congested,

however, the hybrid buffer consumes more power compared to the baseline SRAM

buffer. In a high network load (0.4), for instance, the lazy migration scheme with the

threshold 0.75 consumes more power by up to 4% compared to the baseline SRAM.

24



2.6 Conclusions

In the deep sub-micron era, NoC has surfaced as a promising solution to reduce

wiring delays and provide significant scalability in future many-core architecture.

The NoC performance is heavily affected by the routers’ buffer size and their efficient

utilization. In this study, we have proposed a hybrid input buffer design using STT-

MRAM with SRAM to achieve better network throughput with marginal power

overheads in on-chip interconnection networks. The high density of STT-MRAM

facilitates to accommodate larger buffer compared to the conventional SRAM under

the same area budgets. Through the flit migration schemes, the long write latency

of STT-MRAM is effectively hidden while minimizing the power overheads.

Simulation results indicate performance improvement of around 21% and 14% on

average under the synthetic workloads and benchmarks, respectively, compared to

the conventional on-chip router with the SRAM input buffer.

For future work, we intend to devise an STT-MRAM-aware routing algorithm

and provide an architectural support to reduce the overall power consumption and

latency further.

25



3. DESIGN AND ANALYSIS OF STT-MRAM ROUTER: TOWARDS

POWER-EFFICIENT AND RELIABLE ON-CHIP INTERCONNECTS

3.1 Introduction

Switch-based Network-on-Chip (NoC) has become a popular architecture orches-

trating chip-wide communication in Chip Multiprocessors (CMPs). NoC should be

carefully designed due to its inherent constraints of the restricted power and area

budgets in a chip. NoC consumes up to 28% of the chip power, and among the

different components comprising on-chip interconnects, buffers are the largest leak-

age power consumers in NoC routers, consuming about 68% of the total router

leakage power [18]. Buffers also consume significant dynamic power [65], and this

consumption increases rapidly as data flow rates increase. Consequently, designing

an innovative buffer structure plays a crucial role in architecting high performance

and low power on-chip interconnects.

Spin-Transfer Torque Magnetic RAM (STT-MRAM) [59, 62] is a promising next

generation memory technology that can replace conventional RAMs due to its near-

zero leakage power and high density. Adopting STT-MRAM in NoC has significant

merits since an on-chip router can provide larger input buffers under the same area

budget compared with conventional SRAM routers. Thus, STT-MRAM input buffers

contribute to improving throughput, which results in enhanced system performance

with less power consumption. STT-MRAM is CMOS-compatible, and provides vir-

tually infinite write endurance [26] compared with other memory technologies such

as Phase Change Memory (PCM), Flash, and Memristor. This makes STT-MRAM

a more viable solution as an on-chip memory that should tolerate frequent write

accesses. Besides, STT-MRAM is immune to the radiation induced soft errors, thus

26



providing robust cell storages, and can scale beyond 10 nm technology [21]. However,

the weaknesses of STT-MRAM, long latency and high power consumption in write

operations and thermal fluctuation-induced random bit flips, should be properly ad-

dressed because fast accesses to on-chip memories that guarantee data integrity must

be assured for high performance and reliable NoCs.

For addressing the write speed and energy limitations of STT-MRAM, several

studies have been performed in designing caches and NoC routers. An adaptive

block placement and migration policy for hybrid STT-RAM and SRAM last level

caches has been proposed in [66]. A region-based hybrid cache [69] with small

fast SRAM and large slow MRAM mitigates performance degradation and energy

overheads. For NoC routers, an SRAM/STT-MRAM hybrid buffer [33] shows sub-

stantial throughput improvements across various workloads. However, the inevitable

use of SRAM to hide the multicycle writes of STT-MRAM sacrifices area, and wastes

significant dynamic power in migrating data between the disparate memories. The

leakage power overhead due to SRAM also increases as network scale grows and

technology scales down.

Thermal stability is another key issue of STT-MRAM, determining how much sta-

bility STT-MRAM can provide against thermal fluctuation, thus directly impacting

data integrity [16]. Even under a high thermal stability, however, we cannot totally

avoid the occurrence of bit flips because of the stochastic nature of STT-MRAM [49].

Therefore to ensure data integrity we need to provide proper measures for detecting

and correcting such transient errors in STT-MRAM. Prior approaches have evalu-

ated the impacts of thermal fluctuation on STT-MRAM reliability, and proposed

schemes ensuring data integrity for caches and off-chip storages [16, 12]. Their

schemes, however, cannot be directly applicable to NoCs since they are designed for

memories having longer data residence time and larger capacities compared to those

27



of latency-sensitive, area- and power-limited buffers in NoCs.

In this study, we propose the first NoC router design that uses only STT-MRAM

in buffers, while preserving data integrity. By eliminating SRAM, it offers much

larger buffer space with less power consumptions. To hide the multicycle write

latencies of STT-MRAM, we propose a novel pipelined input buffer design, a multi-

bank STT-MRAM buffer, which is a virtual channel (VC) with multiple banks where

every incoming flit is delivered to each bank alternately via a simple latch inside a

router. Through this, we can avoid performance degradation while consuming less

area and power.

We use the write latency reduction technique [62], which sacrifices the data reten-

tion time of an Magnetic Tunnel Junction (MTJ), a bit storage of STT-MRAM. This

can be possible due to the short intra-router latency1 of a flit in on-chip routers. In

our simulation, the average intra-router latency in PARSEC benchmarks in an (8x8)

mesh network is less than 3 cycles2. However, for applications that exhibit bursty

communication and heavy loads, we observe that flits are staying in STT-MRAM

buffers longer than a given retention time, increasing the possibilities of flit losses

due to the expired retention period. This is because some flits have fairly high

intra-router latencies while most of the flits are clustered around low intra-router

latencies less than 10 cycles as shown in Figure 3.1. These lost flits incur notice-

able performance losses especially when the flits are parts of control packets carrying

critical cache coherence information. On average, 78.7% of traffic is such single-flit

control packets in PARSEC benchmarks [45]. Therefore, to ensure data integrity

under the limited retention time and random bit flips of STT-MRAM, we propose

cost-efficient dynamic buffer refresh schemes, the processes in which cells’ values are

1An intra-router latency is the time interval between the arrival of a flit at an input buffer and
the departure from a router through a crossbar.

2See Section 3.5 for detailed system configuration.

28



5
5

9
7

8
8

 

2
8

4
7

3
3

 

1
5

3
9

3
5

 

8
7

0
4

9
 

6
7

3
9

7
 

3
8

4
8

0
 

1
3

9
9

5
 

1
0

1
8

7
 

8
4

4
7

 

5
0

3
2

 

3
0

7
2

 

2
4

6
2

 

1
9

8
5

 

1
9

4
6

 

3
9

2
1

 

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

<
 1

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

>
 3

2
0

N
u

m
b

e
r o

f F
lits R

a
ti

o
 o

f 
F

li
ts

 (
%

) 

Intra-Router Latency (Cycles) 

Ratio of Flits (%) Number of Flits
(98.5) 

Figure 3.1: Per-Application Intra-Router Latency Distribution (canneal in PARSEC
Benchmarks)

kept valid by triggering refreshes in a timely manner. Note that refreshes are per-

formed in tandem with Error Correcting Codes (ECC) that are extensively used in

memories and storage devices to tolerate both transient and static errors [60]. ECCs

detect and correct data corruption, thus mitigating the impacts of random bit flips

on NoCs.

The main contributions of this study are as follows:

• We present a detailed analysis on design tradeoffs of an MTJ especially in terms

of write performance, write power, and retention time, which are suitable for

performance- and power-efficient NoCs.

• We propose a novel multibank input buffer design, which is implemented en-

tirely with STT-MRAM and delivers optimal power saving (17%) and perfor-

mance improvement (20.7%) compared to a conventional SRAM router.

• We suggest a cost-efficient buffer refresh scheme combined with ECC: a global

counter refresh scheme, which periodically checks and restores data integrity

in buffers, maintaining the validity of flits.

29



Free Layer

Tunnel Barrier (MgO)

Fixed Layer

Bit Line

Source Line

MTJ

NMOS 

Transistor

W
o

rd
 L

in
e

Tunnel Barrier (MgO)

Tunnel Barrier (MgO)

(a) Parallel (0)

(b) Anti-Parallel (1)

Figure 3.2: STT-MRAM Cell Structure

3.2 Background

In this section, we review key features of STT-MRAM and analyze design trade-

offs of an MTJ cell in terms of switching time (the time taken for completing a write

operation in an MTJ cell, namely write latency), switching current (the power re-

quired to change an MTJ cell value, namely write power), and data retention time.

3.2.1 STT-MRAM

STT-MRAM is a next generation memory technology that exploits magnetore-

sistance for storing data. In STT-MRAM, each data bit is stored in an MTJ, a

fundamental building block. An MTJ consists of three layers: two ferromagnetic

layers and a Magnesium Oxide (MgO) tunnel barrier layer in the middle as shown in

Figure 3.2. Depending on the current that propagates through the fixed layer, the

spin polarity of the free layer changes to either parallel (zero) or anti-parallel (one)

to that of the fixed layer. A single MTJ module is coupled with an NMOS transistor

30



to form a basic memory cell of STT-MRAM, called a 1T-1MTJ.

3.2.2 STT-MRAM Design Considerations

3.2.2.1 Retention Time

The nonvolatility of an MTJ is quantitatively measured by the data retention

time, which is the maximum time duration for which stored data can remain in an

MTJ [34, 59]. The data retention time, Tret, of an MTJ is defined as follows [56].

Tret = 1ns · e∆ (3.1)

∆ is the thermal stability factor of an MTJ, and it is proportional to the saturation

magnetization (Ms), the in-plane anisotropy field (Hk), and the volume of the free

layer (V ) in an MTJ as follows [17]. T denotes the working temperature.

∆ ∝
MsHkV

T
(3.2)

We decrease the thermal stability factor by reducing the MTJ area while adjusting

Ms and the thickness of the free layer, as mentioned in [50], leading to reduced

retention-time STT-MRAM [59].

3.2.2.2 Switching Current and Switching Time

In a precessional switching mode [55] where an MTJ switching time (Ts) is short

(< 3 ns), the required current density, Jc(Ts), is determined as follows.

Jc(Ts) ∝ Jc0 +
C

Ts ,

(3.3)

where Jc0 is a switching threshold current density that also depends on Ms and Hk

like the thermal stability factor (∆). C is a constant affected by the initial angle

31



Figure 3.3: The Relationship between Switching Current and Switching Time for
Different MTJ Retention Times

between the magnetization vector of the free layer and the easy axis [62]. Reducing

the retention time causes the thermal stability factor to decrease, which reduces Ms

and Hk, and eventually decreases Jc0. Therefore, with smaller Jc0, we can achieve a

shorter switching time with the reduced current density, Jc(Ts).

Figure 3.3 depicts the inverse relationship between the switching current (Jc(Ts))

and the switching time (Ts) under four different MTJ retention times ranging from 10

years to 10 µs. The retention time curves in Figure 3.3 are plotted based on previous

studies [34, 59, 62], where the retention time is reduced up to tens ofms level, and for

our STT-MRAM buffer design, we further reduce the retention time to 10 µs (proven

to be feasible in [15]) based on MTJ device equations [34] and simulation with the

PTM model [8] under 32 nm technology. As we further reduce the retention time,

the required MTJ switching time and switching current get decreased accordingly,

leading to better write performance and less write power overhead. When fixing the

switching time at 1.0 ns, for instance, we can reduce the write current by 45.2% by

relaxing the retention time from 10 ms to 10 µs. Based on this analysis, we integrate

the buffer-level SRAM and STT-MRAM models in NVsim [20] and simulation results

32



Figure 3.4: BCH ECC Decoder Block Diagram

are shown in Table 3.2.

3.2.2.3 Cell Area

As an area model of STT-MRAM, we refer to ITRS projections [32] as well as

the model used in [26], where a 1T-1MTJ size is 30 F 2. When we assume that an

SRAM cell size is approximately 146 F 2 under 32 nm technology, one SRAM cell

can be substituted by at least four STT-MRAM cells under the same area budget.

An STT-MRAM cell area is mostly determined by the NMOS transistor size since

the MTJ cell is much smaller than the transistor.

3.2.2.4 Impact of Process Technology

Applying different process technologies can affect the overall STT-MRAM power-

performance cost. As process technologies scale down, the future STT-MRAM is pre-

dicted to achieve a significantly smaller cell size, faster read/write with lower power

consumption while maintaining the non-volatility property [21, 63]. For advanced

technologies such as 22 nm, NVsim circuit-level simulation shows that the cell area

is decreased by 48.4%, the read/write dynamic power by 13%, and the leakage power

by 41.4% compared to those of 32 nm. The write delay can also be decreased fur-

ther due to the smaller cell size and less current required for bit-flips. These trends

indicate that STT-MRAM will become a more viable option for cost-efficient NoC

routers.

33



3.2.2.5 Retention Failure and Error Protection

As we relax the nonvolatility of STT-MRAM and as STT-MRAM scales, the

thermal stability factor (∆) scales down linearly, thus increasing the probability of

retention failure (random bit flips during the given retention time) accordingly. As

technology scales, the retention failure is also expected to be dominant in STT-

MRAM [49]. The retention failure rate (PretFail) shown in Equation 3.4 [16] is ex-

ponentially dependent on the thermal stability factor (∆) and is also increasing

proportional to the data residence time (tr) (the duration for which a flit stays inside

a buffer).

PretFail = 1− e
−tr

τ0
e−∆

, (3.4)

where τ0 is the attempt period representing how frequently reversal attempts occur,

and the longer tr is, the more likely errors are. Note that although the retention

failure rate can be reduced by increasing ∆, the increased ∆ inevitably increases

both MTJ cell area [16] and performance/power overheads in STT-MRAM write

operations. Such a stochastic retention failure in STT-MRAM can flip bits with

no warning, if no proper detection/correction measures are employed. Thus, to

ensure data integrity in buffers, we propose a dynamic buffer refresh scheme through

which flits are periodically refreshed in tandem with ECC detecting and correcting

errors occurred during the retention time (Section 3.4.3 details the proposed error

protection scheme). For data protection, the binary Bose-Chaudhuri-Hocquenghem

(BCH), a class of ECCs constructed with finite fields, is suited for NoCs because of

its fast bit-parallel decoder and multi-bit error correcting capability [60]. We also

consider the overheads accompanied with BCH, negatively affecting NoC power and

performance; that is, the corresponding latency, power and area overheads of BCH

increase as we employ higher error correcting capabilities.

34



0

10

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

La
te

n
cy

 (
C

yc
le

s)
 

Injection Rate (flits/node/cycle) 

SRAM4 STT16 (baseline) STT16 (no-lat)

Figure 3.5: Performance Comparison between SRAM and STT-MRAM Routers un-
der the Same Area Budget

3.3 Motivation

In this section, we present key motivations that drive us to STT-MRAM based

NoC routers for power and performance co-optimization.

3.3.1 STT-MRAM for NoC Routers

Figure 3.5 compares the performance of an NoC router equipped with SRAM,

STT-MRAM, and ideal STT-MRAM buffers having no write delays. Under the

same area budget, STT-MRAM provides 4 times more buffer space as described in

Section 3.2.2. Due to the long write delay of STT-MRAM, STT16 (baseline), the

SRAM based router shows far better performance, but once we completely hide the

write delay of STT-MRAM, STT16 (no-lat), the overall throughput is increased by

20% compared with that of SRAM with no zero-load penalty. Also, STT-MRAM

has near-zero leakage power, thus consuming much less total power compared with

SRAM as described in Section 3.5.2. SRAM appears to be much more power hungry

than STT-MRAM, and consequently gives STT-MRAM performance leeway in a

power constrained NoCs. This motivates us to adopt STT-MRAM for NoC routers

35



for better performance with less power consumption.

3.3.2 Determining Proper Retention and Switching Times

Based on Figure 3.3, for power- and performance-efficient NoC routers, it is im-

portant to identify what the ideal/feasible retention time should be. This is because

significant retention time reduction will make the STT-MRAM buffer highly volatile

and increase the probability of retention failure (as described in Section 3.2), lead-

ing to performance degradation due to flits corrupted, while increasing the retention

time will negatively affect write performance and energy. Considering these trade-

offs, to locate the sweetspot of the retention time for the STT-MRAM buffer, we

measure the average intra-router latency of CMP applications because it is the main

factor affecting flits’ lifetime. Once flits stay in the STT-MRAM buffer longer than

a given retention time, they get invalidated. We conduct experiments with PARSEC

benchmarks, where all results are measured under the same area budget, 6 SRAM

slots per VC, for input buffers. The average intra-router latency across PARSEC

benchmarks is less than 3 cycles, and thus based on such a short residence time,

it is reasonable to further reduce the retention time to microseconds, rather than

milliseconds which is widely used in designing caches with STT-MRAM [34, 59, 62],

thus leading to the least write and power overheads among four different retention

times in Figure 3.3.

Note that the random bit flip probability causing retention failure should also to

be considered for proper estimation of flits’ lifetime, which is detailed in Section 3.4.3.

In an ideal case, STT-MRAM write latency should be equal to that of SRAM,

thus writing to STT-MRAM must be done in a single cycle, which corresponds to

less than 0.5 ns in 2 GHz clock frequency. Such fast write times of less than 0.5 ns

have proved possible [15, 63], but as shown in Figure 3.3, it requires rather strong

36



currents3, and is far from the optimal efficiency [64]. Even with the shortest retention

time, therefore, we conclude that it is inevitable to have more than 1-cycle latency

for a write operation in the STT-MRAM buffer.

Our proposed scheme exploits these observations to accelerate STT-MRAM write

speeds with less power consumption. In Section 3.4.2, we propose router architectures

that effectively hide the multicycle write latencies of STT-MRAM.

In summary, for power-performance co-optimized STT-MRAM buffer design, as

detailed in Section 3.2.2, we reduce the retention time to 10 µs, and through this,

2-cycle write latency, corresponding to 1 ns in 2 GHz clock frequency, is achieved

with 71.35 µA of switching current (See the point where 10 µs retention and 1.0 ns

switching time intersect in Figure 3.3) with 30 F 2 of STT-MRAM cell size.

3.3.3 Avoiding Flit Losses

A key challenge incurred by the retention time reduction is to overcome the

potential flit losses occurring when flits overstay a given retention time in STT-

MRAM buffers. We observe three main NoC factors (Applications, Retention Times,

and Network Scales) affecting the validity of flits in an STT-MRAM router. As

shown in Figure 3.6(a), under the retention time of 100 ns, overstayed flits get

dropped. Each benchmark application has different traffic patterns over its lifetime,

thus showing different number of flits dropped. In particular, canneal, fluidanimate,

and dedup show higher flit dropping rates than others due to their bursty traffic

characteristics. Figure 3.6(b) shows that, under uniform random (UR) traffic, as

the retention time of STT-MRAM gets decreased, maintaining the validity of flits in

3MTJ switching time(ns) is determined by the amount of supplied switching current(uA) which
is not a discrete single value, but a continuous stream. Therefore, to get STT-MRAM writes done
in a single cycle, the supplied current (uA) could be exponentially increased to keep the switching
time (ns) stay within the range between 0.0 and 0.5. Thus, 1-cycle latency is not affordable for
STT-MRAM buffers.

37



0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

N
u

m
b

e
r 

o
f 

fl
it

s 
d

ro
p

p
e

d
 

Injection Rate (flits/node/cycle) 

10ns(20cycles) 50ns(100cycles) 100ns(200cycles) 

150ns(300 cycles) 200ns(400cycles) 

(a) Different Retention Times

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

N
u

m
b

e
r 

o
f 

fl
it

s 
d

ro
p

p
e

d
 

Injection Rate (flits/node/cycle) 

mesh16_16(STT) mesh12_12(STT) mesh8_8(STT) 

mesh16_16(Hybrid) mesh12_12(Hybrid) mesh8_8(Hybrid) 

(b) Different Network Scales

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 N
u

m
b

e
r 

o
f 

F
li

ts
 D

ro
p

p
e

d
 

Injection Rate (flits/node/cycle) 

RR-STT24 RR-STT18 RR-STT12 RR-STT6 

Age-STT24 Age-STT18 Age-STT12 Age-STT6 

(c) Different SA and Buffer Sizes (#flits/VC)

Figure 3.6: Various Factors Affecting the Number of Flits Dropped

the STT-MRAM buffer gets difficult, especially when networks become congested.

Increased network scale also affects the number of flits dropped due to increased

network contention as shown in Figure 3.6(c). At the same injection rate, under

UR, 3.3 times more flits get dropped in a (16x16) mesh, on average, compared with

those of an (8x8) mesh. From these observations, hence, it is imperative to take

appropriate actions applicable to NoCs to prevent such flit losses.

There are several studies addressing these data losses in STT-MRAM through

various refresh techniques [34, 59, 62], but their application domains are only limited

to caches, which are totally different from buffers in an NoC router. Caches have

relatively large capacities and require longer data retention times compared with

small-sized FIFO input buffers. Multiple retransmission schemes [22, 28] minimizing

38



Routing Computation 
(RC)

VC Allocator (VA)

Switch Arbiter (SA)

VC Identifier

Input Port (North)

Crossbar Switch

Processing Element

Input Port (West)

Input Port (East)

Input Port (South)

Injection Port

Output 
Link

Figure 3.7: Baseline Router Architecture

buffering requirements have been proposed for bufferless routing. They cannot be

directly applicable, since unlike bufferless routers, our work requires much larger

outside buffering (for injection and reassembly) to hold all the packets in-fly in the

network. This is because the number of packets in-fly are significantly greater in

our scheme due to the larger buffer space available in the network by virtue of STT-

MRAM. In Section 3.4.3, we propose cost-efficient dynamic buffer refresh schemes

eliminating flit dropping with less refresh overheads.

3.3.4 Performance Impact Analysis

Here we quantitatively analyze the impact of our scheme in views of saturation

throughput and latency in NoCs. For simplicity, we assume a 2D mesh network with

a dimension-ordered routing algorithm.

39



3.3.4.1 Impact on Saturation Throughput

Our STT-MRAM scheme is effective in improving network saturation throughput,

which is the data rate in bits per second which the network can accept prior to

saturation. Ideally, the network throughput is maximized under perfect flow control

and perfect load balancing from a routing algorithm. In reality, however, actual

network throughput is affected by NoC factors such as the efficiency of a switch

arbitration (matching between requests and available resources), the depth of buffers

per VC, and the number of VCs per PC including the number of banks per VC

proposed in our scheme.

To achieve a high throughput, we can inject/eject packets at a high rate while

holding more packets under such a high packet injection/ejection rate. In our scheme,

we provide extra buffering spaces holding more packets in routers, thus even at higher

injection rates, network can accept additional packets, maintaining a high network

throughput.

We characterize the saturation network throughput (throughputsat), as being

proportional to the buffer depth per each VC (Bc), the number of VCs per each

input port (Nvc), the number of banks per VC (nbnks), the packet length (pktln), the

efficiency of switch arbitration (SWeff) and the factor of imperfect load balancing

(Phtspt) that quantify the probability of network hotspots.

throughputsat ∝
Bc · SWeff ·N

α
vc

nbnks · pktln · Phtspt

(3.5)

where network throughput is directly proportional to Bc due to additional buffer-

ing allowing for higher injection rates. Increasing Nvc improves the throughput not

only by increasing the buffering capacity but by alleviating head-of-line (HoL) block-

ing, which is quantified by the factor α, where α is equal to 1, in an ideal NoC where

40



no HoL blocking occurs. Under such an ideal NoC, throughput is directly propor-

tional to Nvc. Network throughput is also improved by boosting the efficiency of

SWeff and balancing loads across network, reducing the probablity of occurrence of

hot spots, Phtspt. The number of banks per VC (nbnks) is adjusted accordingly consid-

ering the given write latency of STT MRAM; Higher write latency needs more banks,

reducing the available buffering capacity due to the increased logic area overheads,

thus negatively impacting network throughput. As the length of the packet (pktln)

increases, flits are more likely to spread across multiple routers under congested

network, impeding subsequent packets from proceeding to their destinations, thus

degrading the network throughput. Providing deeper buffer spaces (Bc), however, we

can offset such negative impact on throughput. The throughput impacts of aforeme-

tioned factors (Bc, Nvc, nbnks, and pktln) are empirically shown in Section 3.5.2 and

Section 3.5.3.

3.3.4.2 Impact on Latency

We quantify the impact of our proposed scheme on write latency, based on NoC

model [3]. Average packet latency is defined as the average time taken for a packet

to reach its destination. The equation below quantifies the packet latency (Ts−>d)

from source (s) to destination (d).

Ts−>d = tnode−>s +
∑

vc

ts−>d,vc + tserial (3.6)

where tnode−>s denotes the time a packet waits prior to its header flit injection into

its router attached to a processor, ts−>d,vc is the time a packet waits inside VCs across

intermediate routers (propagation delay) prior to being transmitted to downstream

routers, and tserial signifies serialization delay of a packet, which is affected by the

length of a packet. Since our scheme related to the latency of a buffer (VC) write,

41



we quantify ts−>d,vc (router latency at a VC) like below.

ts−>d,vc = waitvc+1 +
∑

ṽc

tlink,ṽc + ttransfer (3.7)

ttransfer =











1 : SRAMbuffer

nstt : STT −MRAMbuffer
(3.8)

where waitvc+1 indicates the time taken for a packet to be allocated to a specific

VC (vc+1) in a downstream router, tlink,ṽc denotes the impact of multiple VCs (rep-

resented by summation over ṽc) competing for a same physical link, , and ttransfer

is the time required for a flit to be transferred to a downstream router (the write

latency of the input buffers). As shown in equation 3.8, under SRAM, it takes 1 cy-

cle (transfer time), but for nstt-cycle STT-MRAM, the ttransfer of the packet latency

increases accordingly as nstt increases. A chosen STT-MRAM technology affects

nstt-cycle write latency, possibly increasing overall network latency, which can be

handled by schemes proposed in Section 3.4.

42



3.4 STT-MRAM Router Architecture

In this section, we describe a baseline router architecture with its buffer structure

and present an STT-MRAM based router in detail. The key design goal of the

proposed scheme is to enable flits to be written into buffers with no additional time

delay.

3.4.1 Baseline Router Architecture

The baseline NoC router architecture is depicted in Figure 3.7, which is similar

to that used by Kumar et al. [41] employing several features for latency reduction,

including speculation [68] and lookahead routing. Each arriving flit goes through 2

pipeline stages in the router: routing computation (RC), VC allocation (VA), and

switch arbitration (SA) during the first cycle, and switch traversal (ST) during the

second cycle. Each router has multiple VCs per input port and uses flit-based

wormhole switching. Credit-based VC flow control is adopted to provide the back-

pressure from downstream to upstream routers. The necessity for ultra-low latency

leads to a parallel FIFO buffer shown in Figure 3.11(a), where the parallel structure

eliminates unnecessary intermediate processes making a flit traverse all buffer entries

until it leaves the buffer. The read and write pointers in the parallel FIFO regulate

the operations of the input and output MUXes, and the two pointers are controlled

by a VC control logic.

3.4.2 STT-MRAM Router Design

For conventional SRAM buffers, incoming flits are written to their designated

buffers with no delay due to the short SRAM write latency. On the contrary, when

we replace SRAM with STT-MRAM, only a single flit can be written to a buffer

every n cycles, which causes subsequent incoming flits to be delayed. To guarantee

43



seamless traversal of flits across the network, we propose a multibank STT-MRAM

buffer that hides the long write latency inherent in STT-MRAM.

3.4.2.1 Multibank STT-MRAM Buffer

The multibank buffer scheme can be used to hide n-cycle write latency of STT-

MRAM. For example, to hide 2-cycle write delay of STT-MRAM buffer, we divide

each VC into two banks where every incoming flit is seamlessly pipelined to each

bank alternately via a simple latch inside a router. Note that prior studies [18, 19]

explore the latch-based NoC pipeline design, where latches along the link are utilized

as temporary buffers that can hold and release data when necessary. The simple

latch in this study is controlled by a control block (as in the Channel buffer [19])

interfaced with the NoC clock, having the dual function of switching between storing

and transmitting data. Let us refer to the two banks as Odd and Even banks,

respectively, and incoming flits from upstream routers as Odd and Even flits as shown

in Figure 3.8(a). Every odd numbered flit is sent to the Odd bank of a downstream

router, and similarly, an even numbered flit to the Even bank through a Multibank

Buffer Arbiter (MBA) that has one input port and two splitted output ports.

The goal of this multibank buffer scheme is to enable the incoming consecutive

flits to be written to different banks simultaneously to effectively hide the multicycle

write latencies of STT-MRAM. To achieve this goal, two MUXes and one simple

latch are used for the MBA as shown in Figure 3.8(b). Each MUX has two inputs:

one input is connected to the communication link from the upstream router, and

another to the simple latch inside the router. The simple latch is located at the

front of the input buffer and functions as a temporary buffer. It holds an incoming

flit for a cycle and dispatches the latched flit to its original target bank at the very

next cycle. Iclk and M clk are control signals originating from the control block in

44



Multibank

Buffer Arbiter

Incoming Flits from

Upstream Router

F
li

t 
6

F
li

t 
3

F
li

t 
1

F
li

t 
4

F
li

t 
2

Input Buffer of 

Downstream Router

Multibank

STT-MRAM Buffer

F
li

t 
5

F
li

t 
3

F
li

t 
6

F
li

t 
2

F
li

t 
4

F
li

t 
5 F

li
t 

1

Flit Stream

(a) Multibank Buffer Arbiter that Hides 2-Cycle Write Latency

Incoming Flits from 

Upstream Router Input Buffer of 

Downstream Router

IN0

IN1

IN0

IN1

�F
li

t 
K

F
li

t 
3

F
li

t 
1

F
li

t 
4

F
li

t 
2

MUX0

MUX1

IN0 : Input from Latch

IN1 : Input from Link

Latch

IN0 : Input from Link

IN1 : Input from Latch

MUX0

MUX1

� F
li

t 
3

� F
li

t 
2

F
li

t 
4

F
li

t 
1

F
li

t 
K

-1
F

li
t 

K

MCLk

ICLK

(b) Multibank Buffer Arbiter Internal Structure

Figure 3.8: Multibank STT-MRAM Buffer

45



Incoming Flits from

Upstream Router Input Buffer of 

Downstream Router

IN0

IN1

IN0

IN1

IN0

IN1

IN0

IN1

IN0

IN1

IN0

IN1

(a) Cycle 0 

MUX Input (IN1) is set

(b) Cycle 1

MUX Input (IN0) is set

(c) Cycle 2

MUX Input (IN1) is set

�F
li

t 
K

F
li

t 
3

F
li

t 
4

F
li

t 
2

�

F
li

t 
K

F
li

t 
3

F
li

t 
4

�F
li

t 
K

F
li

t 
4

F
li

t 
1

F
li

t 
2

F
li

t 
3

F
li

t 
2

MUX0

MUX1

MUX0

MUX1

MUX0

MUX1

F
li

t 
1

F
li

t 
2

F
li

t 
3

IN1 : Input from Link

IN1 : Input from Latch

MUX1

MUX0

F
li

t 
1

IN0 : Input from Latch

MUX0

IN0 : Input from Link

MUX1

IN1 : Input from Link

MUX0

IN1 : Input from Latch

MUX1

Flit1 is latched 

and written to 

Odd bank

Flit2 is latched 

and written to 

Even bank

Latched Flit1 is 

written to 

Odd bank

Flit3 is latched 

and written to 

Odd bank

Latched Flit2 is 

written to 

Even bankMCLK

ICLK

MCLK

ICLK

MCLK

ICLK

F
li

t 
1

F
li

t 
1

F
li

t 
2

F
li

t 
1

F
li

t 
1

F
li

t 
2

Incoming Flits from

Upstream Router Incoming Flits from

Upstream Router

Input Buffer of 

Downstream Router

Input Buffer of 

Downstream Router

Figure 3.9: Dual-Bank STT-MRAM Buffer Example (Sequence of Operations: 1© ∼ 5©)

46



IN1 IN0 IN1 IN0 IN1 IN0

Flit 1 Flit 5Flit 3

Flit 4 Flit 6Flit 2

ICLK

MCLK

MUX0/MUX1 

OUT

Odd Bank

Even Bank

CYCLE Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Clock Stream

Figure 3.10: Timing Diagram Corresponding to Figure 3.9

the input buffer, which represent the hold/release signals for the latch and the select

signal for the MUXes, respectively. Note that the area overhead for this logic is

negligible as compared to the buffer, and already added to the logic area controlling

refresh/read/write pointers. An incoming Odd flit, for instance, is directly written to

the Odd bank during the first cycle, and then during the next cycle, the latched flit

is sent to the same Odd bank, thus completing its 2-cycle write process4. Similarly,

a subsequent incoming Even flit follows the same process, but uses the other bank.

Through this, without the need of any additional SRAM buffer as in the Hybrid

buffer [33], we can seamlessly pipeline incoming consecutive flits to the input buffers

of a downstream router.

Note that, in case of very light loads, an incoming flit might experience write

delays in the STT-MRAM buffer, increasing zero-load latency, which results in

degraded NoC performance. To avoid this, we incorporate the buffer bypassing

logic [65] widely used in NoCs for power-performance efficiency. Accordingly, when

a flit arrives at an empty buffer, the flit heads straight to switch arbitration and gets

4Since it takes multicycles to write a single flit to a target buffer, there could be a potential glitch
due to a momentary transient pulse (noise), or clock skew between communicating elements. These
issues can be addressed by sizing the MUX, overlapping clock or duplicating input signal [27].

47



Write
Pointer

Read
Pointer

SRAM

Control Logic
(Write/Read Pointers)

Flit 3

Flit 2

�

Flit K-1

Flit K

Flit 4

VC 
Identifier

SA 
Control

Flit 1

Read
PointerControl Logic

(Dual Writes/Single 
Read Pointers)

Flit 3

Flit 1

Flit K-1

...

Refresh Logic
(Refresh Pointer)

Flit 4

Flit 2

Flit K

...

VC 
Identifier

SA 
Control

Write
Pointers

(a) (b)

STT-MRAM

MclkIclk

Multibank
Buffer Arbiter

Figure 3.11: A Baseline SRAM Input Buffer (a) and a Dual-Bank STT-MRAM Input
Buffer (b)

sent directly to the crossbar switch, thus circumventing STT-MRAM input buffers.

The latch inside a router serves as a bypass latch for the consecutive pipelining be-

tween the flit arrival and crossbar traversal. Therefore, the zero-load latency of the

STT-MRAM router becomes comparable to that of the SRAM router.

In general, to hide n-cycle write latency, the STT-MRAM buffer scheme requires n

MUXes for n splitted banks with n−1 latches inside a router as shown in Figure 3.12.

The increase of n can negatively affect the performance and area overheads of the

STT-MRAM buffer. Note that n is the ratio of the STT-MRAM write latency to

the clock cycle time of the NoC clock. As technology advances, we expect the write

latency to be reduced as described in Section 3.2.2, while at the same time the NoC

clock frequency increases. Therefore we do not expect n to increase drastically in

the near future, hence keeping the proposed scheme feasible. In our analysis, when

n stays within 5, we observe negligible performance degradation (less than 1%) with

48



increased extra logic area. The detailed analysis of the impact of large n is discussed

in Section 3.6.3.

Figure 3.9 shows an example data flow for flits from an upstream router during

3 consecutive clock cycles. Initially, the control of both MUXes, denoted as MUX0

and MUX1, is assumed to be set to 0, and all VCs are empty. It is also assumed that

the interconnect clock period is long enough to satisfy the setup and hold constraints

of a simple CMOS MUX.

• Cycle 0: The input signal of both MUXes is set to 1 (IN1). This is the first

write cycle for an incoming flit, F lit1. F lit1 is sent to the Odd bank input

buffer of the downstream router through IN1 of MUX0, and at the same time,

F lit1 is stored in the simple latch( 1©).

• Cycle 1: The input signal of both MUXes has changed to 0 (IN0). The output

of MUX0 is F lit1 which was previously latched, and F lit1 is dispatched from

the latch to its original target bank (Odd bank), and thus completing its second

write cycle( 2©). Also, this is the first write cycle for a subsequent incoming flit,

F lit2, to the Even bank input buffer. While F lit2 is transferred to the Even

bank through IN0 of MUX1, it is simultaneously stored in the simple latch( 3©).

• Cycle 2: The input signal of both MUXes is switched back to 1 (IN1). Like

the previous logic, this is the second write cycle of F lit2 from the latch to the

Even bank( 4©), and the first write cycle for the incoming flit, F lit3( 5©).

Note that, at low loads, flits arrive at the input buffer intermittently. In this case, the

arriving flit bypasses the input buffer, or unless the buffer is empty, the STT-MRAM

buffer directs the flit to either Odd or Even bank based on a one-bit flag indicating

the next bank. This ensures that incoming flits are placed in a VC without leaving

49



unused buffer slots in banks. This also ensures sequential reads by maintaining the

FIFO properties of input buffers.

• Timing Diagram: Figure 3.10 shows a timing diagram corresponding to the

Dual-Bank STT-MRAM buffer example in Figure 3.9. Iclk indicates the interconnect

clock synchronized with the simple latch, and M clk indicates the MUX clock syn-

chronized with each MUX. The two MUXes are controlled by a common select signal

that changes once every cycle, and have a clock of half the frequency of Iclk. The

input signal of MUX0 and MUX1 is alternating on a cycle-by-cycle basis as shown

in Cycle 0 to Cycle 5. During Cycle 0, half of F lit1 is first written to the Odd bank,

and then during the next cycle, F lit1 completes its write process. The consecutive

arriving flits go through the same write process to each bank.

3.4.2.2 Read/Write and Refresh Logic

Unlike the conventional SRAM input buffer that requires a read and a write

pointer for read and write operations per VC (Figure 3.11(a)), the proposed multi-

bank STT-MRAM buffer, assuming 2-cycle write latency, requires dual write point-

ers, Wr ptr (Odd) and Wr ptr (Even), and a single read pointer, Rd ptr, per VC

as shown in Figure 3.11(b). The corresponding VC control logic generates proper

read and write pointer values for handling flits in a timely manner. To be specific,

initially, as shown in Figure 3.13(a), one of the write pointers, Wr ptr (Odd), points

to the tail of the Odd bank, and Wr ptr (Even) points to the tail of the Even bank,

and the read pointer, Rd ptr, points to the head of the buffer. For a write opera-

tion (Figure 3.13(b)), the incoming flit is written to the location pointed by the tail

pointer in one of the banks. For a read operation (Figure 3.13(c)), the flit pointed

by Rd ptr is read out and dispatched to the crossbar. Note that STT-MRAM read

latency is comparable to that of SRAM and thus no delay occurs for the read oper-

50



Read
Pointer

Control Logic 
(Multiple(n) Writes

/Single Read Pointers)

Flit n+2

Flit 2

Flit k-n+2

...

Refresh Logic

Flit 2n

Flit n

Flit k

...

VC 
Identifier

SA 
Control

STT-MRAM

Write
Pointers

. . .

. . .

...

...

Flit n+1

Flit 1

Flit k-n+1

...

MclkIclk

Multibank
Buffer Arbiter

...
...

...
. . .

Figure 3.12: A General Multibank STT-MRAM Buffer (k: Total Number of Flits
Buffered, To Hide n-cycle Write Latencies, n-1 Latches and n Banks Are Needed.)

51



Figure 3.13: Circular Queue for Dual-Bank STT-MRAM Buffer (Assuming all errors
are correctable / Sequence: (a) ∼(d))

ation. The refresh pointer, Refresh ptr, shown in Figure 3.13(d), moves according to

the refresh logic which is described in Section 3.4.3.

3.4.2.3 Handling Uncorrectable Errors in Refresh Operations

In the read/write and refresh logics above, for simplicity, we assume all transient

errors are correctable via ECC, thus read/write and refresh pointers keep proceeding

without being interrupted by any uncorrectable errors. Actually, however, we need

to consider such uncorrectable errors in the logics, because otherwise read operations

might end up reading already-corrupted flits due to the uncorrected errors in flits;

For instance, such an issue could arise in Figure 3.13(d) where read operations follow

right after refreshes.

Single-flit control packets are dominant in PARSEC benchmarks (78.7% on av-

52



erage) [45], thus taking significant fraction of errors, while data packets (consisting

of a single head/tail and multiple body flits) take less fraction of errors compared to

that of control packets. Note that the relative ratio of correctable packets to uncor-

rectable packets can be controlled by adopting a proper refresh policy through which

we can minimize overall uncorrectable packets, which is described in Section 3.4.3.1.

Once parts of control or data packets get corrupted beyond ECC capability (un-

correctable), nodes need to nullify corresponding packets to make room for incoming

flits while triggering retransmission of corrupted packets for recovery. For single-flit

control packets, it is relatively easy to handle the recovery because they always stay

inside a single router. However, for data packets consisting of multiple flits, such re-

covery processes need to be handled carefully because data packets can span multiple

nodes as network gets congested. In such a case, we need to notify corresponding

nodes of the corruption, and thus the corrupted packets are to be nullified inside

each router. To handle aforementioned cases, we add two status bits to VCs inside

a router for monitoring each flit: a valid-bit indicating the validity of a flit and a

in-order-bit indicating temporal write order of flits, and thus we can properly guide

read and write pointers; to be specific, initially, when a flit is written into a buffer,

valid-bit and in-order-bit are set to one (1), and the refresh pointer set the valid-bit

to zero (0) once a flit becomes uncorrectable. If the valid-bit is zero (0), read pointer

skips reading the flit and write pointer overwrite the invalid flit with an incoming

flit. For nullifying flits residing in a neighbor router, a dummy tail flit is sent and

release VC reservation made by the corrupted packet, and thus another packet can

use the VC. The virtual channel may also include pointers to the flits of the packet

that are ”buffered on the current node” and ”the number of flit buffers available on

the next node”.

53



3.4.3 Nonvolatility-Relaxed STT-MRAM Buffer

In this section, we propose cost-efficient dynamic buffer refresh schemes in con-

junction with ECC for error check and correction, which jointly ensures the validity

of flits in buffers.

3.4.3.1 Refresh with ECC Scheme

A conventional DRAM-style refresh, which is triggered based on the retention

time, is not enough for securing the reliability of STT-MRAM due to the retention

failure detailed in Section 3.2.2. Thus, it is required to take counter measures in-

tegrated with proper architectural techniques such as ECC to ensure reliability in

NoCs. Therefore we trigger refresh in tandem with ECC through which each flit

stored in a buffer is read periodically and checked for errors. Once ECC detects cor-

rectable errors, the errors are corrected and the refresh operation writes the restored

flit back into the buffer 5. If the errors exceed a given ECC correction capability and

thus uncorrectable, a nack signal is transmitted back to the source along the reverse

direction to indicate the need for a retransmission. Note that we assume each source

node has a network interface (NI) with an ECC encoder that appends parity bits

to each generated flit. Thus we avoid redundant ECC encoding for incoming flits at

each router. The parity bits are carried along with the flit and utilized at each hop

to detect and correct erroneous bits through the ECC decoder (Figure 3.4) inside a

router.

•Refresh Periodicity and ECC Capability: Regarding such an ECC supported

refresh operation, there are two key factors impacting power, performance, and area

in NoCs: Refresh periodicity and ECC capability. First, refresh periodicity is impor-

5For STT-MRAM, we assume it takes two cycles for a write operation. Such a write delay can
be hidden by either ERB or IRB scheme detailed in Section 3.4.3.2.

54



tant because excessive refreshes contribute to significant power consumption. Thus,

it is necessary to set proper refresh periodicity to achieve a low power NoC while

seamlessly checking and restoring data in buffers. Second, ECC capability also

affects performance and area overheads in NoCs; that is, strong ECC takes a rel-

atively longer time for multi-bit error detection and correction, and requires extra

storages holding parity bits compared to those of simple ECC such as single-error

correction and double-error detection (SECDED). The area of ECC decoder grows

exponentially with the ECC error-correcting capability [60]. Basically, SECDED is

sufficient to mask any single bit error, thus fitting in the 8-bit parity field6 for a

128-bit flit [68], however, a strong ECC requires more parity bits, possibly increasing

the total number of flits per packet due to the reduced space left for the payload

holding the actual data of a packet, thus contributing to degrade NoC performance.

•Hitting the Sweetspot: To determine the sweetspot in both refresh periodicity

and ECC capability that help achieve power- and performance-efficient NoCs, we

consider both the average residence time of a flit in a buffer and the corresponding

error probability for a flit across varying residence time. This is because the error

probability due to MTJ free layer reversal (bit-flip) is linearly dependent on the

average residence time (tr) of the bit-cells as shown in Equation 3.4 in Section 3.2.2.

First, in PARSEC benchmarks, most of the flits tend to stay short inside buffers;

for example, 99.4 % flits stay within 40 ns (Figure 3.1). Second, for quantifying

the error probability, we capture the average number of bits flipped for a 128-bit

flit across PARSEC benchmarks using the probabilities derived from Equation 3.4

under varying residence time. And the result graph is shown in Figure 3.14, where

flits are more likely to exhibit low error probability under a short residence time;

for example, under a 40 ns residence time the probability of having more than 2-

6An SECDED can protect an n bit memory using log2(n) + 1 parity bits.

55



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6

E
rr

o
r 

P
ro

b
a

b
il

it
y

 

# of Bits  Flipped (out of 128-bit flit) 

10 20 40 80 160residence time (ns): 

Figure 3.14: Probability of the Number of Bits Flipped (Note that the sum of error
probabilities under a specific residence time is 100 % )

bit failure is less than 1 %. This empirical result is practically in line with the

error probability (Equation 3.4) in that the shorter residence time leads to the less

probability of a bit failure.

Based on our observations above, when the ECC supported refresh is triggered

within the range of 40 ns, we can maintain the bit failure probability low and thus

single-bit error correction via SECDED is sufficient to cover most of the bit failures

without hurting the performance and power in NoCs, which is detailed in Section 3.5.

3.4.3.2 Dynamic Buffer Refresh Schemes

To mask errors in STT-MRAM, it is necessary to periodically sweep the memory

by reading each location and correcting any single-bit error. Detecting and correcting

errors soon after they occur reduces the possibility of the accumulation of errors

in a flit. Thus, we employ a refresh scheme through which refresh operations are

adaptively triggered for flits which almost reach the end of a given refresh period.

Basically, these refresh schemes require an n flit-deep refresh buffer per each physical

56



channel (PC) to make up for n-cycle write latency. During a refresh operation,

the target flit is read out from the input buffer into the refresh buffer, checked for

correctness using ECC, and then written back to its original FIFO buffer. If a read

request comes before refresh finishes, the flit is directly returned from the refresh

buffer, thus the refresh buffer is also used as a read buffer compensating for n-cycle

write latency of STT-MRAM, and the refreshes are seamlessly pipelined to allow for

consecutive refreshes.

•Global Counter (GC) Refresh Scheme: This scheme selectively triggers the

refresh based on the estimated age of an individual flit per VC. To monitor the

age of each flit, we add a refresh pointer, Refresh-ptr, shown in Figure 3.13, which

is controlled by a VC refresh logic shown in Figure 3.11(b). Initially, the refresh

scheduler makes the refresh pointer point to the flit queued in the head of a VC and

moves it toward the tail of a VC one flit at a time whenever the pointed flit gets

refreshed as shown in Figure 3.13(d). To decide the refresh timepoint, we adopt a

per-router GC, which serves as a reference point for the refresh logic to determine if

it needs to trigger refreshes. In this scheme, refresh time is divided into N periods,

and each period is T cycles long. The per-router GC is used for the countdown to T

cycles, and GC value indicates a specific period. At the end of every T cycles, the

GC value is increased by 1, and loops over after the given refresh time. Figure 3.15

shows an example of 2-bit GC refresh scheme, where the GC value is updated at the

end of every T cycles (T = 20), and when a flit arrives at a buffer, the value of the

current GC (00, 01, 10, 11) is copied to the flit’s Arrival Timestamp (AT). At the

end of T cycles, the AT value of each flit is compared with GC value to see if the

flit needs to be refreshed. When GC value is 01, for example, all flits having AT

equal to 10 get refreshed one by one per cycle. This is equivalent to refreshing flits

that stay at the buffer for around 60 to 80 cycles. Note that AT value is assigned

57



only when a flit arrives at a buffer, and unchanged until the flit gets dispatched.

Also, as the interval of a period gets decreased (by assigning more bits to the GC),

less refresh operations are performed since a refresh is triggered based on a more

fine-grained clock counter, thus saving more dynamic power. A larger bit counter

allows more time for a flit to stay in the buffer before applying any refresh. Our

experimental results show that the GC suffices to detect the expiration time of the

given refresh period without significantly affecting performance, which is described

in Section 3.5.2.

•Refresh Buffer: Refresh buffer can be made using either an external refresh buffer

(ERB) of SRAM, or an internal refresh buffer (IRB) of STT-MRAM. The ERB

requires two writes: an initial write to the ERB and another subsequent write to the

original FIFO buffer. To decrease such redundant write overheads in the ERB, we

can relocate the refresh buffer inside the FIFO buffer and when a flit needs to get

refreshed, the flit is moved to the IRB, and the IRBs keep progressing through the

FIFO buffer as flits get refreshed. Note that the IRB is hidden from the upstream

router to prevent the VA stage in the upstream router from allocating these buffers to

flits. It is also noted that the impact of refresh overheads on the network throughput

is negligible due to such seamless refresh operations. Also, since flits arrive at VCs

at different points of time, no two flits have the same timestamp across all VCs in

the same PC. Accordingly, we only need a single refresh buffer per PC for the refresh

operation, and we assume a single flit can be refreshed per cycle in each PC.

•Refresh Coverage: As a means of keeping the integrity of data, prior study [49]

also suggests to periodically sweep the memory for error correction, but they refresh

only data turned out to be corrupted (Selective Refresh) while letting a majority

of un-refreshed data keep on aging in place. This is because their target is a large

scale memory (e.g. off-chip memory) or on-chip caches that can tolerate cache misses

58



0 20 40 60 80

00 01 10 11

1
st

 period 2
nd

 period 3
rd

 period 4
th 

period

GC value :

Cycles :

 Tref : Refresh Time (cycle)

 T      : Refresh Check Interval (cycle)

2-bit GC  (n=2)

Figure 3.15: An Example of a 2-bit Global Counter (GC) Refresh Logic (Assuming
refresh time is 80 cycles (40 ns in 2 GHz))

Figure 3.16: Concurrent Error Protection Example

due to invalid data. However, such a selective refresh does not completely prevent

the accumulation of errors because of the increasing probability of multi-bit error oc-

currence as detailed in Section 3.4.3.1 based on Figure 3.14. Thus, to maintain low

error probability in NoCs, we propose to trigger refresh even for currently valid flits

in a buffer (Enforced Refresh), resetting the lifetime of flits, thus avoiding perfor-

mance and power overheads originated from uncorrectable burst multi-bit errors that

trigger multiple retransmissions for data recovery. Note that flits mostly stay short

inside buffers, leaving buffers prior to refresh operations, thus refresh overheads are

relatively low compared to those of caches having longer data residence time. The

detailed power and performance impacts of refreshes are described in Section 3.5.

59



Figure 3.17: Two-Phase ECC for Concurrent Error Protection

Figure 3.18: Timing Diagram of Concurrent Error Protection based on Two-Phase
ECC

0

50

100

150

200

250

300

350

400

450

500

0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

n
cy

 (
C

yc
le

s)
 

Injection Rate (flits/node/cycle) 

SRAM Hybrid STT Ideal-STT

(a) UR

0

50

100

150

200

250

300

350

400

450

500

0.1 0.15 0.2 0.25

La
te

n
cy

 (
C

yc
le

s)
 

Injection Rate (flits/node/cycle) 

SRAM Hybrid STT Ideal-STT

(b) BC

0

50

100

150

200

250

300

350

400

450

500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

La
te

n
cy

 (
C

yc
le

s)
 

Injection Rate (flits/node/cycle) 

SRAM Hybrid STT Ideal-STT

(c) NN

Figure 3.19: Performance Comparison with Different Synthetic Workloads

60



0

50

100

150

200

250

300

350

400

450

500

0.1 0.15 0.2

La
te

n
cy

 (
C

yc
le

s)
 

Injection Rate (flits/node/cycle) 

SRAM Hybrid STT Ideal-STT

(a) CMesh

0

50

100

150

200

250

300

350

400

450

500

0.1 0.2 0.3 0.4 0.5 0.6

La
te

n
cy

 (
C

yc
le

s)
 

Injection Rate (flits/node/cycle) 

SRAM Hybrid STT Ideal-STT

(b) 2D-Torus

0

50

100

150

200

250

300

350

400

450

500

0.1 0.15 0.2 0.25

La
te

n
cy

 (
C

yc
le

s)
 

Injection Rate (flits/node/cycle) 

SRAM Hybrid STT Ideal-STT

(c) Flattened Butterfly

Figure 3.20: Performance Comparison with Different Topologies

3.4.3.3 Two-Phase ECC for Concurrent Error Protection

To ensure data integrity in NoCs, it is not only necessary to periodically refresh

flits as detailed in Section 3.4.3.1, but flits also need to be checked for corruption

and corrected if necessary before crossbar traversal in ST stage. This is because

transferred flits which turn out to be uncorrectable in a downstream router, consume

unnecessary power for crossbar and link traversal from an upstream router while oc-

cupying buffer spaces till next refresh interval in the downstream router. In avoiding

such negative effects, we observe cases where concurrent error check and corrections

are necessary at the same cycle; for instance, as shown in Figure 3.16, a flit, a winner

in SA stage gets ready for error checks prior to crossbar traversal, while at the same

time another flit in a buffer gets ready to be refreshed according to the refresh logic

described in Section 3.4.3.2. To handle this, simply adopting two separate ECC

61



0.6

0.8

1

1.2

1.4

1.6

1.8

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
o

rm
a

li
ze

d
 P

o
w

e
r 

C
o

n
su

m
p

ti
o

n
  

Injection Rate (flits/node/cycle) 

SRAM Hybrid Low-ECC Opt-ECC

(1.89) (2.01) (1.80) 

STT-MRAM 

(a) Dynamic Buffer Power Consumption

0.6

0.7

0.8

0.9

1

1.1

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
o

rm
a

li
ze

d
 P

o
w

e
r 

C
o

n
su

m
p

ti
o

n
 

Injection Rate (flits/node/cycle) 

SRAM Hybrid Low-ECC Opt-ECC
(1.15) (1.23) 

STT-MRAM 

(b) Total Router Power Consumption

Figure 3.21: Normalized Power Consumption - SRAM/Hybrid/STT-MRAM with
Different Refresh Rates (Low-ECC: Low Refresh Rate (80ns) / Opt-ECC: Optimal
Refresh Rate (40ns), See Section 3.4.3.1 for details.)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.8

0.84

0.88

0.92

0.96

1

1.04

1.08

1.12

1.16

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

blackscholesbodytrack canneal dedup vips x264

P
o

w
e

r E
fficie

n
cy

 

N
o

rm
a

li
ze

d
 S

p
e

e
d

u
p

 

Normalized Speedup Power Efficiency (1/watt)

Figure 3.22: PARSEC Benchmark Results (Power and Performance Graphs)

62



modules per input port is disadvantageous in that each individual ECC sacrifices

buffer spaces while incurring additional power overheads. Thus, we propose a two-

phase ECC enabling a single ECC per input port to deal with concurrent error

protection while avoiding potential network delay caused when sequentially checking

for errors in multiple flits. In the two-phase ECC, ECC decoding logics are logically

divided into two phases (detection and correction) using an intermediate latch as

shown in Figure 3.17 and each phase is seamlessly pipelined and runs in parallel for

different flits. Specifically, as shown in Figure 3.18, each phase is utilized in parallel

by two flits. Once a flit 1 (SA winner) finishes a detection and enters a correction

phase, the detection phase is immediately available and utilized by a subsequent flit,

flit 2. According to our timing analysis, the proposed concurrent error protection can

be done in a single cycle in 2GHz clock frequency, incurring no performance penalty.

Note that the intermediate latch serves as a temporal storage holding the subse-

quent flit and once the flit (SA winner) is detected as error-free and thus no need

for correction, the subsequent flit seamlessly enter the correction phase, if necessary,

without being latched. It is also noted that if a flit is turned out to be uncorrectable

through the detection phase, we drop the corresponding packet from the network

and send a retransmission request to a source. For packet dropping, if a part of a

packet had already been transmitted, a dummy tail is sent, nullifying the packet in

the downstream router.

63



3.5 Evaluation

3.5.1 System Configuration

A cycle-accurate NoC simulator is used to conduct the detailed evaluation of the

proposed schemes. It implements the pipelined router architecture with VCs, a VC

allocator (VA), a switch arbiter (SA) and a crossbar. The network is equipped with

2-stage speculative routers with lookahead routing. The router has a set of v VCs per

input port. Each VC contains a k-flit buffer with 16B flit size. In our evaluation, we

assume that v is 4, while k may vary with different buffer configurations. A dimension

order routing, XY, is used with wormhole switching flow control in an (8x8) 2D-mesh.

A variety of synthetic workloads are used to measure the effectiveness of the STT-

MRAM buffer schemes: uniform random (UR), bit complement (BC) and nearest

neighbor (NN). To evaluate the proposed schemes under realistic environments, we

also run PARSEC parallel benchmarks via Netrace [30] incorporated into our NoC

simulator. Table 3.1 specifies the detailed CMP configuration. To estimate

the power, area, and timing of SRAM/STT-MRAM routers operating with 1 V

supply voltage in 2 GHz clock frequency, we modified an open source NoC router

RTL model [7] and synthesized in Synopsys Design Compiler with a TSMC 45 nm

technology library. SRAM/STT-MRAM parameter values in Table 3.2 are obtained

through the STT-MRAM analyses described in Section 3.2.2 and based on relevant

literatures [26, 33]. Note that the unit of the leakage power is mW per 1-flit buffer.

Throughout this study, the sizes of the SRAM and STT-MRAM buffers, defined by

the number of flits per VC, are denoted by SRAM# and STT#, respectively. As

stated in Section 3.2, STT-MRAM basically provides 4 times more buffer capacity

compared with SRAM under the same area budget (SRAM4 is equal to STT16). For

the STT-MRAM buffer schemes, however, due to the extra area overheads incurred

64



Table 3.1: CMP System Configuration
System Parameters Details

Clock frequency 5 GHz / 2 GHz (Core / NoC)

# of processors 64, In-order, Alpha ISA

L1 I and D caches Direct-mapped 32KB (L1I)
4-way 32KB (L1D), 3 cycles

L2 cache 8-way 16MB, 8 cycles
64 banks SNUCA, 256 KB/bank

Cache block size 64B

Coherence protocol MESI

Memory latency 150 cycles

Flit size 16B

Packet size 1 Flit (Control), 5 Flits (Data)

10 ms 10 

Read Energy (pJ /flit) 5.25 3.8 2.7

Write Energy (pJ /flit) 5.25 40.0 13.7

Leakage Power (mW ) 0.028 0.005 0.003

STT-MRAM
SRAMParameters

Table 3.2: SRAM and STT-MRAM Parameters with Different Retention Times (The
Hybrid Buffer [33] utilizes 10 ms.)

by additional circuitry for the MBA shown in Figure 3.8 and the ECC modules,

2.95% of buffer spaces get sacrificed under 2-cycle write latency. Thus, STT-MRAM

can provide approximately 3.5 times more buffer capacities than the conventional

SRAM buffer (SRAM4 is equal to STT14). The detailed area analysis is given in

Section 3.6.3.

3.5.2 Performance and Power Analysis

Figure 3.19 shows performance results of four different buffer configurations: the

SRAM buffer, the Hybrid buffer, the proposed STT-MRAM buffer, and an ideal

STT-MRAM buffer having no write delays with significantly large buffer spaces un-

65



der UR, BC, and NN traffic patterns. Note that the Ideal-STT is presented to show

the theoretical upper bound of network throughput in NoCs, and for the SRAM

and Hybrid buffers, we do not consider soft errors inherent in SRAM, thus perfor-

mance and power graphs plotted here represent theoretically optimistic values for the

SRAM and Hybrid designs. All results except the Ideal-STT are measured under

the same area budget, SRAM4 per VC, for input buffers. The Hybrid buffer can

accommodate 7 flits per VC, consisting of SRAM3 and STT4, which is an optimal

hybrid design suggested in [33], while the STT-MRAM buffer accommodates 14 flits

per VC. In all cases, on average, the STT-MRAM buffer shows better throughput by

19.3% for UR, 23.2% for BC, and 19.8% for NN compared with the SRAM buffer,

and 5.0% compared with the Hybrid buffer across different traffic patterns. These

results indicate that the potential performance degradation caused by the multicy-

cle write latencies of STT-MRAM can be offset by the increased buffer size and

the proposed multibank buffer scheme, thus resulting in significant performance im-

provement. Note that the throughput of the Ideal-STT is almost comparable with

the STT-MRAM across different traffics. This is mainly because of Head-of-Line

(HoL) blocking caused by packet contention (Section 3.5.3 details this HoL effect on

network throughput).

We also evaluate the STT-MRAM buffer under various topologies: Concentrated

Mesh (CMesh), 2D-Torus, and Flattened Butterfly. Figure 3.20 shows that the

STT-MRAM buffer helps increase throughput in CMesh, 2D-Torus, and Flattened

Butterfly by 25.2%, 19.4%, and 9.5% compared with the SRAM buffer, and 5.2%,

8.9%, and 4.9% compared with the Hybrid buffer, respectively.

Power is one of the critical issues in designing NoC. We also measure the power

consumption of the proposed multibank STT-MRAM buffer scheme against the

SRAM and Hybrid buffers.

66



Figure 3.21(a) compares the dynamic power consumption of the SRAM, Hybrid,

and STT-MRAM buffers with different packet injection rates under UR traffic. All

results are normalized to that of the SRAM buffer. The first and second bars in-

dicate the SRAM and Hybrid buffers and, in particular, the STT-MRAM buffer is

evaluated based on different refresh rates (low / optimal refresh rate with ECC) to

quantitatively measure their effectiveness in reducing overall power overheads, and

find out the most power-efficient combination. Note that the refresh power overheads

affect the dynamic power consumption in NoCs, and are increasing proportionally to

the number of packet retransmissions and ECC refresh operations performed. Thus,

to achieve a power-efficient NoC, it is necessary to employ a buffer refresh scheme

that triggers less refreshes and packet retransmissions. In Figure 3.21(a), the base-

line SRAM consumes the least normalized dynamic power because the Hybrid and

STT-MRAM buffers require higher write energy compared to that of the SRAM (see

Table 3.2). The Hybrid buffer consumes 1.7 times and 1.4 times more dynamic power,

on average, compared with the SRAM and STT-MRAM buffers each. This is mostly

due to the frequent migrations from SRAM to STT-MRAM inside the Hybrid buffer,

and a higher write energy associated with a high retention STT-MRAM, 10 ms, in

the Hybrid buffer, compared to that of the multibank STT-MRAM buffer. For the

STT-MRAM buffer, Opt-ECC based refresh scheme consumes less dynamic power

by 12.9% compared to Low-ECC. This is because Opt-ECC incurs less packet losses,

thus consuming much less power in checking and correcting bits in STT-MRAM than

its counterpart. And in a low network load, most of flits stay in the buffer only a

short period of time, triggering less error correction logics in ECC, thus incurring

less refresh power overheads. As injection rate increases, however, flits stay longer in

buffers due to network congestion, increasing the possibility of flit losses as described

in Section 3.4.3.1, thus consuming more energy for error correction via ECC.

67



0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

SRAM STT SRAM STT SRAM STT SRAM STT

PKT_4 PKT_8 PKT_12 PKT_16

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t 

Packet Length (Flits/Packet) 

(a) Different Packet Lengths

0.95

1.00

1.05

1.10

1.15

1.20

1.25

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

SRAM3 SRAM4 SRAM5 SRAM6 SRAM7

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t 

Area Budget (SRAM per VC) 

(b) Different Area Budgets

0.95

1.00

1.05

1.10

1.15

1.20

1.25

SRAM STT SRAM STT SRAM STT

VC_4 VC_6 VC_8

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t 

Number of VCs (per PC) 

(c) Different Number of VCs

Figure 3.23: Sensitivity Analysis

Figure 3.21(b) compares the total power consumption of routers with different

buffer schemes. The total router power includes dynamic and leakage power of all

routers across the network. On average, there is 17% improvement in total router

power going from baseline SRAM to STT-MRAM buffer design. With our pro-

posed buffer refresh schemes, although there is an increase in the dynamic power,

we consistently observe efficiency in total router power consumption of the proposed

STT-MRAM buffer. This is attributed to the fact that the fraction of dynamic power

to the total power is not significant compared to the very high leakage power [34, 69].

In this context, due to the power hungry nature of SRAM, the SRAM and Hybrid

buffers consume significantly more power than the STT-MRAM buffer. The Hybrid

scheme consumes 9.8% and 32.5% more total router power, on average, especially

68



at high injection rates (> 0.3), compared to the SRAM and STT-MRAM schemes.

This is because of the migration power overheads, high STT-MRAM write energy,

and high SRAM leakage power in the Hybrid buffer.

Figure 3.22 shows speedups and router power efficiency (the inverse of the total

power consumption) relative to the SRAM baseline with PARSEC benchmarks. We

assume SRAM4 per VC as an area budget, the same as a cache block size. The av-

erage network load in PARSEC benchmarks is low, but because they exhibit bursty

communication and have congestion periods (the time period when the average ratio

of buffer occupancy in injection ports is above a threshold, which is set to 75% in

our study), our scheme contributes to improve NoC performance. In Figure 3.22,

the relative performance improvement of the proposed scheme over the SRAM base-

line is not comparable to those shown in Figure 3.19 (vips gets 11.0% improvement

while blackscholes gets 9.3% and dedup gets 6.7%), and the STT-MRAM and Hy-

brid buffers show similar performance. However, when we analyze the performance

during the congestion periods, the STT-MRAM buffer outperforms the SRAM and

Hybrid buffers by 15.0% and 9.1%, on average, respectively. Also, among the three

different schemes, the STT-MRAM router is the most power-efficient, consuming

18.7% and 44.9% less power compared with the SRAM and Hybrid routers, respec-

tively. Blackscholes consumes the least total power in the STT-MRAM router by

20.7% and 46.4% compared with the SRAM and Hybrid routers.

3.5.3 Sensitivity Analysis

We perform sensitivity analysis by varying packet lengths, area budgets, and

number of VCs as shown in Figure 3.23 to examine their effects on NoC throughput.

Figure 3.23(a) shows the normalized throughput improvement with different packet

lengths: 4, 8, 12, and 16 flits per packet. All results are normalized to that of base-

69



line SRAM buffer with 4 buffer slots per VC. It clearly shows that the STT-MRAM

buffer works better as packet length increases. The longest packet consisting of 16

flits (PKT 16 ), shows the biggest performance improvement up to 30% in the STT-

MRAM buffer over baseline SRAM. This is because when the buffer capacity is not

big enough to accommodate a whole packet, the packets in transit tend to spread

across multiple nodes, thus impeding subsequent packets from proceeding to their

destination, which results in significant performance degradation. NoC throughput

is also mutually affected by two important factors: buffer depth and number of VCs

per PC. Figure 3.23(b) shows the impact of buffer depth on throughput improve-

ment with five different area budgets: SRAM3, SRAM4, SRAM5, SRAM6, and

SRAM7. The more we increase default area budget, the deeper buffer depth we

can provide, thus improving network throughput. Across the given budgets, the

STT-MRAM buffer shows the highest throughput improvement. Under the small-

est budget (SRAM3), the STT-MRAM buffer enhances throughput by 22.7% and

10.7% over the SRAM and Hybrid buffers, respectively. However, deepening the

buffer depth does not always yield tangible throughput improvement as shown in the

largest budget (SRAM7). This is mainly because HoL blocking occurs when many

packets contend for router resources (limited number of VCs), but the increased

buffer depth does not alleviate this problem. As shown in Figure 3.23(c), increasing

the number of VCs per PC is an effective way of improving network throughput

further because it allows more packets to share the same PC, thus reducing HoL

blocking.

70



0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9

N
o

rm
a

li
ze

d
  

S
T

T
-M

R
A

M
 D

e
n

si
ty

 

STT-MRAM Write Latency 

SRAM STT-MRAM

Figure 3.24: Normalized STT-MRAM Density under the Same Per-Router Area
Budget

3.6 Discussion

In this section, we evaluate our STT-MRAM buffer scheme under different write

latencies of STT-MRAM. We also compare the scheme with other on-chip network

techniques, such as Bufferless Routing (BLESS) [48], and Whole Packet Forwarding

(WPF) [45].

3.6.1 Impact of Write Delays of STT-MRAM

For our scheme, STT-MRAM write latency is an important factor affecting the

overall NoC area and performance. Till now, in our experiments, we assume STT-

MRAM has 2-cycle write delay with a density of 3.5 times SRAM, but as we increase

the write latency further, the extra logics, such as MUXes and latches, hiding the

multicycle writes need to be added. Due to such additional spaces taken up by the

extra logics in the STT-MRAM buffer, STT-MRAM is given relatively less area in

the given buffer space. Specifically, when n (write delay) equals 2, initial single

router area, its buffer area (per input port), and extra logic area (per buffer) are

106,709 µm2, 14,762 µm2 (A), and 689 µm2 (B), respectively, where the effective

71



0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

n
cy

 (
C

yc
le

s)
 

Injection Rate (flits/node/cycle) 

BLESS SRAM WPF STT

Figure 3.25: Comparisons with BLESS [48] and WPF [45] (UR)

buffer area is 14,073 µm2 (A-B). As we increase n, while keeping per router area

budget intact, extra logic area increases by approximately 7.5% per additional write

latency, thus leading to decreased effective buffer space per input port (Figure 3.24).

Across the different write latencies of STT-MRAM (3, 4, and 5), we observe neg-

ligible performance degradation (less than 1%) under UR traffic. This is because

STT-MRAM still provides enough buffer space to sustain the network bandwidth.

However, the performance becomes equal to or less than that of SRAM baseline

when the STT-MRAM buffer has similar capacities with the SRAM buffer due to

the reduced density. In our configuration, this occurs when the STT-MRAM write

latency is 9 or more cycles.

3.6.2 Comparison with Other NoC Techniques

There have been a few studies to improve performance with limited buffer re-

sources in NoC design [48, 45]. We compare the power and performance benefits

of our scheme with them. BLESS [48] reduces buffer power and area overheads by

eliminating router buffers, and handles network contention by deflecting contending

flits to any free output port. In our evaluation, the performance overheads of BLESS

72



0

50

100

150

200

250

300

350

400

450

500

0.2 0.25 0.3 0.35 0.4

La
te

n
cy

 (
C

yc
le

s)
 

Injection Rate (flits/node/cycle) 

SRAM Hybrid End (ECC-4)

End (ECC-16) End (ECC-32) Per-Hop (ECC-1)

Figure 3.26: Comparisons between Different ECC Schemes (End-to-End vs. Per-
Hop)

outweigh its gains due to the increased allocator complexities that avoid livelocks,

and the extra packet overheads, where flits in a packet contains routing information

to be independently routed to the destination. BLESS saves significant router area

by eliminating buffer spaces, but the frequent deflections of BLESS at high loads

consume significant dynamic power, and leads to early network saturation as shown

in Figure 3.25. On the other hand, the STT-MRAM router provides higher through-

put by 54.1% than that of BLESS, and is more power-efficient at flit injection rates

greater than 22% compared to BLESS. WPF [45] proposes a bandwidth-efficient,

fully adaptive routing scheme in VC-limited NoCs where short packets dominate.

WPF makes packets traverse all minimal paths, thus enhancing routing flexibility,

and provides deadlock avoidance techniques which allow non-empty VCs to be re-

allocated, achieving high VC utilization. Under the same area budget, as shown in

Figure 3.25, under UR traffic, the STT-MRAM router shows better performance by

8.5% than that of WPF due to the high density buffer properties of STT-MRAM.

73



UR = 0.4, end_cycle = 50000

Number of RetransmissioNormalized

No-ECC 264998

ECC_2 235421

End-to-End ECC-4 192102 1

ECC_8 94754 0.493248

ECC-16 56152 0.292303

ECC-32 6722 0.034992

Per-Hop ECC-1 3446 // equivalent 0.017938

End-to-End ECC-4 1

ECC_8 0.493248

ECC-16 0.292303

ECC-32 0.034992

Per-Hop ECC-1 0.017938

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ECC-4 ECC_8 ECC-16 ECC-32 ECC-1

End-to-End Per-Hop

N
o

rm
a

li
ze

d
 #

 o
f 

 

P
a

ck
e

ts
 R

e
tr

a
n

sm
it

te
d

 

Figure 3.27: Normalized Number of Packets Retransmitted under Different ECC
Schemes

3.6.3 Impact of End-to-End and Per-Hop Error Protection

Selecting the location at which error protection schemes should be implemented

is another critical issue because it can affect overall NoC throughput and average

packet latency due to transient errors in STT-MRAM. Till now, throughout this

study, we focus on per-hop error protection (as detailed in Section 3.4.3), where

each node checks flits of an incoming packet and requests retransmission once flits

are turned out to be uncorrectable. Alternatively, end-to-end data protection is also

a viable alternative, where error protection is performed at the destination node

and requests retransmission once a packet is in uncorrectable error. However, for

end-to-end, as a packet travels long distances, the probability of the packet being

received in error (beyond given ECC correction capability) increases accordingly,

thus possibly resulting in degraded NoC throughput and average packet latency.

Figure 3.26 empirically compares NoC performance under different ECC schemes

(end-to-end and per-hop) with various ECC capabilities (ECC-1 to ECC-32), where

ECC-n refers to ECC correction capability. Even under the highest ECC correction

capability (ECC-32), end-to-end scheme shows less throughput compared to that of

74



per-hop with simplest ECC (ECC-1). This is mainly because of the increased number

of packets retransmitted in end-to-end scheme as shown in Figure 3.27. For end-to-

end, employing strong ECC helps to reduce the number of retransmissions, however,

strong ECC requires more parity bits, increasing the total number of flits per packet

due to decreased payload space left, thus leading to degraded NoC performance.

This clearly shows the benefits of our scheme (detailed in Section 3.4.3) over the

counterpart (end-to-end).

3.7 Related Work

Guo et al. [26] detailed STT-MRAM based architectural techniques to offer power-

efficient and scalable microprocessors. Goswami et al. [24] proposed STT-MRAM

based GPGPU architectures and hybrid shared memory for power-performance opti-

mizations. In [34, 59, 62], the data retention time of STT-MRAM has been carefully

adjusted to achieve better write performance and reduced write energy for caches

in CMPs. However, the cache based schemes cannot be directly applicable to NoCs

since they are designed for memories having longer data residence time and larger

capacity compared to FIFO buffers.

There are also prior studies exploring power-efficient architectural supports for

NoCs. Power-gating is a circuit-level technique mitigating the static power con-

sumption of NoCs by cutting off power temporarily. However, due to frequent state

transitions and unavoidable wakeup time delays, as described in [10], power-gating

rather consumes more power at high load, and has higher average packet latency at

both low and high load compared to a non-power-gated NoC, and such overheads

increase as network scale grows. Bufferless NoC eliminates buffers, thus the peak

network throughput is reduced, and as stated in [22], it has higher packet latency

overall, resulting in degraded performance.

75



3.8 Other Applications and Future Work

The multibank STT-MRAM buffer scheme can be used in multiple domains such

as instruction queue, reorder buffer, and prefetch buffer. Since instructions are gener-

ally used up quickly, large instruction queues allow for better instruction level paral-

lelism [54]. In this context, we will explore using our scheme as a worthy prospective

in terms of power consumption and queue length. There are several studies dealing

with the efficiency of reorder buffers [40, 39], and exploring the lifetimes of variables

in programs [44], which show that a large portion of the variables whose values are

held in the reorder buffers are short lived. This leads to a mixture of variables with

irregular lifetimes. We plan to examine a hybrid SRAM/STT-MRAM buffer scheme

which accounts for the variation in retention times required. We will explore uti-

lizing STT-MRAM buffers as an attractive alternative to prefetch buffers [11] for

saving power and providing larger buffer space since prefetched data do not need

to be cached for a long time. We also plan on tackling the challenges of having

data retention times tuned to the timeliness of prefetching so as to make our design

feasible.

3.9 Conclusions

In this study, we propose a novel pipelined input buffer design with STT-MRAM

for NoC routers. To overcome the weakness of STT-MRAM, the long latency and

high power consumption in write operations, we design a multibank STT-MRAM

buffer which is a virtual channel with multiple banks. Through this, we avoid perfor-

mance degradation while consuming less area and power. Also, we address the issue

of random data corruption in STT-MRAM by proposing cost-efficient buffer refresh

schemes combined with Error Correcting Codes (ECC). Our simulation results show

significant performance improvement with less total router power consumption.

76



4. BANDWIDTH-EFFICIENT ON-CHIP INTERCONNECT DESIGNS FOR

GPGPUS *

4.1 Introduction

General Purpose Graphics Processing Units (GPGPUs) have emerged as a cost-

effective approach for a wide range of high performance computing workloads which

have a high thread level parallelism (TLP) [36]. GPGPUs are characterized by nu-

merous programmable computational cores which allow for thousands of simultane-

ous active threads to execute in parallel. The advent of parallel programming models,

such as CUDA and OpenCL, makes it easier to program graphics/non-graphics appli-

cations, making GPGPUs an excellent computing platform. The growing quantity

of parallelism and the fast scaling of GPGPUs have fueled an increasing demand

for performance-efficient on-chip fabrics finely tuned for GPGPU cores and memory

systems [4, 37].

Ideally, the interconnect should minimize blocking by efficiently exploiting limited

network resources such as virtual channels (VCs) and physical channels (PCs) while

ensuring deadlock freedom. Networks-on-Chip (NoCs) have been useful in chip-

multiprocessor (CMP) environments due to their scalability and flexibility. Although

NoC design has matured in this domain [31, 67], NoC design for GPGPUs is still

in its infancy. Only a handful of works have examined the impact of NoC design in

GPGPU systems [4, 37, 43, 71].

Unlike CMP systems, where traffic tends to be uniform across the cores commu-

nicating with distributed on-chip caches, the communication in GPGPUs is highly

* c©2015 IEEE. Reprinted, with permission, from Bandwidth-Efficient On-Chip Interconnect
Designs for GPGPUs by Hyunjun Jang, Jinchun Kim, Paul Gratz, Ki Hwan Yum, and Eun Jung
Kim, in Design Automation Conference (DAC), June 2015

77



asymmetric, mainly between many compute cores and a few memory controllers

(MCs). Thus the MCs often become hot spots [4], leading to skewed usage of the

NoC resources such as wires and buffers. Specifically, heavy reply traffic from MCs

to cores potentially causes a network bottleneck, degrading the overall system per-

formance. Therefore, when we design a bandwidth-efficient NoC, the asymmetry of

its on-chip traffic must be considered. In prior work [4, 5, 37], the on-chip network is

partitioned into two independent, equally divided (logical or physical) subnetworks

between different types of packets to avoid cyclic dependencies that might cause pro-

tocol deadlocks. Due to the asymmetric traffic in GPGPUs skewed heavily towards

reply packets, however, such partitioning can lead to imbalanced use of NoC re-

sources given in each subnetwork. Thus, it fails to maximize the system throughput,

particularly for memory-bound applications requiring a high network bandwidth to

accommodate many data requests. The throughput-effectiveness is a crucial met-

ric for improving the overall performance in throughput-oriented architectures, thus

designing a high bandwidth NoC in GPGPUs is of primary importance. In the

GPGPU domain, this is the first study evaluating and analyzing the mutual impacts

of different MC placements and routing algorithms on system-wide performance. We

observe that the interference from disparate types of GPGPU traffic can be avoided

by adopting the bottom MC placement with proper routing algorithms, obviating the

need of physically partitioned networks.

The contributions of this work are as follows: First, we quantitatively analyze

the impact of network traffic patterns in GPGPUs with different MC placements

and dimension order routing algorithms. Then, motivated by this detailed analysis,

we propose VC monopolizing and partitioning schemes which dramatically improve

NoC resource utilization without causing protocol deadlocks. We also investigate the

impact of XY, YX, and XY-YX routing algorithms under diverse MC placements.

78



Routing 
Computation (RC)

VC Allocator (VA)

Switch Arbiter (SA)

Input Port (North)

Input Port (West)

Input Port (East)

Input Port (South)

Router Microarchitecture

Streaming Multiprocessor (SM)

Injection Port 

Memory Controller (MC)

Figure 4.1: GPGPU NoC Layout and Router Microarchitecture. (The NoC layout
consists of many SMs and a few MCs, each of which contains an NoC router.)

4.2 Background

In this section, we describe the baseline GPGPU architecture and NoC router

microarchitecture in detail.

4.2.1 Baseline GPGPU Architecture

A GPGPU consists of many simple cores called streaming multiprocessors (SMs),

each of which has a SIMT width of 8. The baseline GPGPU architecture consists

of 56 SMs and 8 MCs as shown in Figure 4.1. Also, as shown in Figure 4.2, each

SM is associated with a private L1 data cache, read-only texture/constant caches,

and register files along with a low latency shared memory. Every MC is associated

with a slice of the shared L2 cache for faster access to the cached data. We assume

write-back polices for both L1 and L2 caches [5], and minimum L2 miss latency is

assumed to be 120 cycles. We assume a 2D mesh to connect cores and MCs as in

Figure 4.1 due to its advantages of scalability, simplicity and regularity [4].

79



SM SM SM SM . . . SM

Interconnection Network

L2 L2 L2 L2. . .

Memory 

Controller

Memory 

Controller

Memory 

Controller

Memory 

Controller
. . .

DRAM DRAM DRAM DRAM. . .

On-Chip Area

Off-Chip Area

Streaming Multiprocessor (SM)

Warp Scheduler Texture Cache

Constant CacheInstruction Cache

Register

File

L1-D 

Cache/

Shared

Memory

SP SP
. . .

SP

SP SP
. . .

SP

SP SP
. . .

SP

SP . .

SP SP. . .SP

. . . . . .

Figure 4.2: GPGPU Microarchitecture and Streaming Multiprocessor (SM)

4.2.2 Baseline NoC Router Architecture

Figure 4.1 shows the baseline NoC router, which has 5 I/O ports to connect the

SMs to L2 cache and MCs in a GPGPU. The router is similar to that used by Kumar

et al. [41] employing several features for latency reduction, including speculation and

lookahead routing. Each arriving flit goes through 2 pipeline stages in the router:

routing computation (RC), VC allocation (VA), and switch arbitration (SA) during

the first cycle, and switch traversal (ST) during the second cycle. Each router has

multiple VCs per input port and uses flit-based wormhole switching. Credit-based

VC flow control is adopted to provide the backpressure from downstream to upstream

routers, which controls flit transmission rate to avoid buffer overflows.

80



4.3 Designing Bandwidth-Efficient NoCs in GPGPUs

Here, we analyze the GPGPU workload NoC traffic characteristics and their

impact on system behavior. Based on this analysis, we propose VC monopolization

and asymmetric VC partitioning to achieve higher effective bandwidth.

4.3.1 GPGPU On-Chip Traffic Analysis

4.3.1.1 Request and Reply Traffic

Prior work shows on-chip data access patterns to be more performance critical

than data stream size in GPGPUs [25]. Further, these traffic patterns are inherently

many-to-few (in the request network, from the many cores to the few MCs) and

few-to-many (in the reply network, from the MCs back to the cores) [4]. As shown

in Figure 4.3 MC-to-core, the reply network sees much heavier traffic loads than

core-to-MC, the request network. This is because the request network consists of

many short packets (read requests) mapped into a single flit and fewer long packets

(write requests) mapped into 3∼5 flits. The reply network consists of many long

packets (read reply) mapped into 5 flits and relatively a few short packets (write

reply) mapped into a single flit. Figure 4.4 shows that on average around 63% of

packets are read replies. Exceptionally, RAY, contains more request packets than

reply packets, due to a write demand in this application.

In general, the ratio between request and reply traffic can be derived as follows.

Considering the overall injection rate as λ at each node, we denote the ratio of read

and write requests by r and w, respectively, and the sum of r and w equals one

because request consists of only two types: read and write. The length of each

packet can be divided into two groups: a short packet (Ls) representing read request

and write reply, and a long packet (Ll) including read reply and write request. The

amount of request traffic Trqs is the sum of read and write requests and likewise, the

81



0

1

2

3

4

5

6
C

P

LI
B

LP
S

N
N

N
Q

U

R
A

Y

S
T

O

F
W

T

H
S

T

S
C

L

B
F

S

H
O

T

LU
D

N
W

S
R

A
D

K
M

N

M
M

P
V

C

P
V

R S
S

S
M

W
C

M
U

M

R
E

D

G
e

o
m

e
a

n

N
o

rm
a

li
ze

d
 #

 o
f 

F
li

ts
 

Core-to-MC (Request) MC-to-Core (Reply)

Figure 4.3: Normalized Traffic Volumes Between Cores and MCs.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

READ-REQUEST WRITE-REQUEST READ-REPLY WRITE-REPLY

core-to-MC (Request ) MC-to-core (Reply) 

Figure 4.4: Packet Type Distribution for GPGPU Benchmarks

82



amount of reply traffic Trep is the sum of read and write replies.

Trqs = λ · r · Ls + λ · w · Ll

Trep = λ · r′ · Ll + λ · w′ · Ls (4.1)

where r′ and w′ denote ratios of replies for read (r) and write (w) requests, respec-

tively. Since a single request is always followed by a single reply, the ratio between

r and w is identical to that of r′ and w′. Here, the ratio of reply to request (R) is

derived by dividing Trep by Trqs. Thus, according to Figure 4.3, R equals around

two since the traffic volume of reply packets is two times higher than that of request

packets.

Figure 4.5 illustrates the traffic, Trqs and Trep, in an (N xN ) mesh network with

k MCs. In this figure, we take an example of N = k = 4, and XY routing with

the bottom MC placement. Each arrow represents the direction of traffic and the

associated coefficient number denotes the link utilization toward that direction. By

multiplying the coefficient with either Trqs or Trep, we can approximate the amount of

traffic towards a specific direction. For vertical links, a coefficient value is determined

by the row location. For example, each core located at the 1st row (i=1 ) uses its

south output port 4 times. If a core sends request packets to N MCs at the bottom

row, the south port of a router associated with the core is utilized by N times. Thus,

for a core located at the ith row in an (N xN ) mesh, the request coefficient towards

south direction becomes N · i. Similarly, we can utilize the core’s column in deriving

coefficient values for horizontal links. If a core j is located at the jth column in the

mesh network, N − j MCs are on the east side of this core. To access these N − j

MCs, all cores located from the 1st to the jth columns must use the east output port

of core j. Therefore, the coefficient for east port of jth core is set by j · (N − j). In

83



a similar way, we analyze the coefficient values for all directions as follows.

Csouth = N · i

Cnorth = N · (i− 1)

Ceast = j · (N − j)

Cwest = (N − j + 1) · (j − 1) (4.2)

The quantitative analysis above proves three important facts about the charac-

teristics of GPGPU network traffic. First, reply traffic is much heavier than request

traffic as empirically shown in Figures 4.3 and 4.4. Second, both request and reply

traffic get congested as they approach to the MCs located at the bottom. The grow-

ing coefficient values of Csouth and Cnorth from Equation 4.2 support this argument.

Third, request and reply traffic do not get mixed on horizontal or vertical links as

shown in Figures 4.5(a) and 4.5(b).

4.3.1.2 Memory Controller Placement

One way of alleviating traffic congestion is to move the MCs. Different MC

placements help improve network latency and bandwidth by spreading the processor-

memory traffic, balancing the NoC load. While prior work on MC placement shows

the performance improvement to be gained from MCs placement in CMPs [2], this

work does not analyze how MC placement affects the average hop count for GPGPUs.

Here, we conduct a detailed quantitative analysis of GPGPU MC placement policies

and show how distributed MC location can improve the NoC efficiency in GPGPUs.

The most clear advantage of distributed MC placement is the reduced average

number of hops from cores to MCs, as shown in Figure 4.6. Comparing with other

MC placements, specifically, the diamond MC placement shown in Figure 4.6(d)

84



allows more cores to access MCs with fewer hops. Since we are using dimension

order routing, there is only one unique path from each core to a given MC. The row

and column number of ith MC are assumed to be rowm,i and colm,i, respectively. In

the same way, the row and column number of jth core are rowc,j and colc,j. With

this notation, for an (N xN ) mesh network with N number of MCs and (N2 − N)

cores, the average number of hops from cores to MCs can be estimated as follows:

Havg =

∑

(Vertical + Horizontal hops)

Total number of paths
=

Hvert +Hhori

(N2 −N)N

=

N2
−N
∑

j=1

N
∑

i=1

|rowm,i − rowc,j|+ |colm,i − colc,j|

N2(N − 1)
(4.3)

Note that Equation 4.3 is a general form of the equation applicable to any MC

placement. Hvert and Hhori represent the aggregated number of hops for vertical and

horizontal directions. We summarize Hvert and Hhori of different MC placements in

Table 4.1.

Based on Table 4.1, we find that sorting the MC placement diagrams in the order

of decreasing average number of hops yields the following order: bottom, edge, top-

bottom, and diamond. This analysis also corresponds with results from prior work [2],

which reported the best performance improvement with diamond MC placement.

Although the diamond placement shows the least number of hops, we show that

other MC placement policies can outperform the diamond placement by adopting

VC monopolizing and different routing algorithms in Section 4.4.2.

4.3.1.3 Traffic Analysis for Different MC Placements

In this section, we show numerical traffic analysis for different MC placements.

For simplicity, we do traffic analysis for XY request traffic only. Also, we assume

85



that the number of MCs is a multiple of four (i.e., N = 4k). The same analysis can

be applied to other routing algorithms and reply traffic.

Bottom MC - Horizontal Traffic. Since we use XY routing, the horizontal

movement occurs before the vertical movement. Therefore, the cores located at the

same row affect the amount of horizontal traffic. Let’s take an example of arbitrary

core located at the ith row and jth column and name it as core (i,j ). For the bottom

MC placement, Figure 4.6a shows that there are (N-b) MCs placed at the east side of

core (i,j ) and j cores are placed at the west side including core (i,j ) itself. Therefore,

core (i,j )’s east port will be used (N-j )j times. Similarly, there are (j-1 ) MCs on

the west side of core (i,j ) and (N-j+1 ) cores are placed at the west side including

core (i,j ) itself. Therefore, core (i,j )’s west port will be used (b-1 )(N-b+1 ) times.

To summarize, the overall horizontal traffic of a core (i,j ) is

(N − j)j + (j − 1)(N − j + 1) (4.4)

Since there are N number of cores on each row, each row has the following amount

of horizontal traffic.

N
∑

j=1

(N − j)j + (j − 1)(N − j + 1)

=
N
∑

j=1

−2j2 + 2j(N + 1)− (N + 1)

=− 2 ∗
N(N + 1)(2N + 1)

6
+ 2(N + 1) ∗

N(N + 1)

2
−N(N + 1)

=
N(N + 1)(N − 1)

3
(4.5)

86



The bottom MC placement has (N-1) core rows and a single MC row. Since there

is no horizontal request traffic between MCs, the total amount of horizontal traffic

is

N(N + 1)(N − 1)

3
∗ (N − 1)rows

=
N(N + 1)(N − 1)2

3
(4.6)

Bottom MC - Vertical Traffic. In XY routing, the vertical movement occurs after

the horizontal movement. Therefore, the amount of vertical traffic is also relevant to

the cores located at the other rows in the network. Let’s take another example with

core (i,j ). Since each row has N number of cores and each column has one MC at

the bottom, N number of vertical requests will pass the south port of core (i,j ). In

addition, each row above core (i,j ) also generates same N vertical requests towards

south. Therefore, each core at the i(th) row has Ni amount of vertical traffic. Since

we have N columns in the network, the total amount of vertical traffic is

N ∗
N
∑

i=1

Ni

=N2 ∗

N
∑

i=1

i

=N2 ∗
N(N − 1)

2

=
N3(N − 1)

2
(4.7)

Top-Bottom MC - Horizontal Traffic. All MC’s horizontal location is same as

the bottom MC placement. Therefore, the total amount of horizontal traffic remains

87



same as Equation 4.6.

Top-Bottom MC - Vertical Traffic. Unlike the bottom MC placement, there are

N number of cores whose horizontal location is same as that of MCs. These cores are

located at the 1st row and ith row. Since N/2 of MCs are located at the same row,

these cores generate N/2 amount of vertical traffic. Other cores located between the

2ndnd row and (i− 1)th row have same amount of vertical traffic as the bottom MC

placement. Therefore, the total amount of vertical traffic is

N ∗
(

N−1
∑

i=1

N

2
+N(i− 1)

)

=
N2(N − 1)

2
+N2 ∗

N−1
∑

i=1

(i− 1)

=
N2(N − 1)

2
+N2 ∗

(N − 1)(N − 2)

2

=
N2(N − 1)2

2
(4.8)

Comparing Equation 4.7 and Equation 4.8 shows that the top-bottom MC place-

ment has less amount of vertical traffic than that of bottom MC placement. There-

fore, we can expect higher performance for the top-bottom MC placement.

Edge MC - Horizontal Traffic. Unlike previous MC placements, the horizontal

location of MCs is different in the edge MC placement. Figure 4.6b shows that

there are N/2 MCs from 1st to N/4th column and another pair of N/2 MCs from

(N−N/4 + 1)th column to N th column. The 1st row and the N th row have different

amount of horizontal traffic compared to other rows (2nd∼(N −1)th row) since those

two rows have N/4 MCs at each side of the edge. Considering these facts, the 1st

and N st rows have following horizontal traffic.

88



(

N−
N

2
∑

j=1

Nj +

N

4
∑

j=1

2 ∗ (
N

4
− j) ∗ (N −

N

2
)
)

∗ 2rows =
3

8
N3 (4.9)

From the 2nd to N − 1th row, each row has following horizontal traffic.

(

N−
N

4
∑

j=1

Nj +

N

4
∑

j=1

4 ∗ (
N

4
− j) +

N
∑

j=(N−
N

4
+1)

4 ∗ (N − j)j
)

=
N(19N2 − 16)

48
N3 (4.10)

Therefore, the total amount of horizontal traffic is

3

8
N3 +

N(19N2 − 16)

48
N3 ∗ (N − 2)rows

=
N(19N3 − 20N2 − 16N + 32)

48
(4.11)

Since subtracting Equation 4.11 from Equation 4.5 is always larger than zero, we

can conclude that the edge MC placement has larger amount of horizontal traffic.

In addition, the amount of vertical traffic is same for both edge and top-bottom

placements, we can expect that the top-bottom MC placement will have less amount

of XY-request traffic and better performance improvement.

Edge MC - Vertical Traffic. All MC’s vertical location is same as the top-bottom

MC placement. Therefore, the total amount of horizontal traffic remains same as

Equation 4.8.

Diamond MC - Horizontal and Vertical Traffic. The main advantage of the

Diamond MC placement is that total traffic is well distributed across the GPU net-

89



work by distributing MCs in each quadrant. The Diamond MC placement allows

each quadrant to have same number of MCs. However, we found that it is difficult

to do traffic analysis for the Diamond MC placement since there are many different

ways to place MCs inside of each quadrant. Rather than deriving a definite set of

traffic analysis, we approximate both horizontal and vertical traffic of Diamond MC

placement by half of the vertical traffic of Top-Bottom MC placement. This is a rea-

sonable approximation since each quadrant of Top-Bottom MC placement also has

the same number of MCs. The major difference is that the Diamond MC placement

distributes network traffic by locating MCs at the center of the quadrant. In other

words, the Diamond MC placement is a special case of Top-Bottom MC placement

where MCs are located at the center of the quadrant rather than the top or bottom

of the quadrant. Based on this observation and simulation results, we summarize

the traffic analysis in Table 4.1.

4.3.2 Proposed Design

4.3.2.1 VC Monopolizing and Asymmetric VC Partitioning

Request and reply packets in GPGPUs compete for NoC resources such as VCs

and PCs. When the resources are näıvely shared by both packets, avoiding protocol

deadlock requires that reply packets must not compete for the same resources as re-

quest packets. To avoid this, prior studies [5, 4, 37] suggest partitioning NoCs equally

into two parts for the different types of traffic: one network carries request packets

and the other network reply packets. Creating two parallel physical networks [37]

incurs significant hardware overheads due to the twofold increase in the number of

routers and wire resources. To this overhead, we employ a virtual network partition-

ing, where the network is divided virtually by two separate sets of VCs dedicated for

request-reply traffic under one physical network.

90



MC placement Hvert Hhori

Bottom
N3(N − 1)

2

N(N + 1)(N − 1)2

3

Edge
N2(N − 1)2

2

N(19N3 − 20N2 − 16N + 32)

48

Top-Bottom
N2(N − 1)2

2

N(N + 1)(N − 1)2

3

Diamond ≈
N2(N − 1)2

4
≈

N2(N − 1)2

4

Table 4.1: The Average Number of Vertical/Horizontal Hops under Different MC
Placements in an (N xN ) Mesh

However, when all MCs are located at the bottom, request and reply traffic are

not overlapped with dimension ordered routing as shown in Figure 4.5. Therefore,

there is no need to split networks to avoid protocol deadlock. Thus, all the VCs

can be fully monopolized by either request or reply packets, providing more buffer

resources for each type of traffic, thus helping improve overall system performance.

On the other hand, VC monopolizing is not feasible when VCs have mixed request

and reply traffic, as shown in Figure 4.10(c). These mixed VCs must be partitioned

into request and reply packets to avoid protocol deadlock. In this case, we propose

asymmetric VC partitioning which assigns more VCs to reply traffic. Since reply

traffic generally requires much more network bandwidth than request traffic, moving

91



VC resources from the request to the reply improves the overall system performance

while maintaining the same overall NoC area and power budget. The detailed eval-

uation is described in Section 4.4.2.

4.3.2.2 Routing Algorithms

A routing algorithm is one of the critical factors in achieving bandwidth-efficient

NoC, influencing the amount of traffic each link will carry. Routing contributes to

the reduction in network contention (hot spots) when combined with an appropriate

MC placement. To find the performance-optimal combination of a routing algorithm

and an MC placement, we analyze the impact of different dimension order routing

algorithms (XY, YX, and XY-YX [2]) under the different MC placements shown in

Figure 4.6. For example, under our baseline MC placement, bottom MC, shown in

Figure 4.6(a), XY routing incurs increased network contention mainly due to the high

volume of reply traffic between MCs, thus degrading overall system performance. Al-

ternatively, XY-YX routing which leads request packets to follow XY routing, while

reply packets to follow YX routing, helps achieve significant performance improve-

ment because heavy traffic between MCs due to reply packets is entirely eliminated

as shown in Figure 4.10. Since the request traffic in YX routing still generates con-

tention between MCs, the performance improvement of YX routing is less than that

of XY-YX routing. However, the reply traffic in YX routing does not cause any com-

munication between MCs since the reply traffic always traverses to the Y direction

first. Therefore, XY-YX or YX routing is effective in load-balancing the processor-

memory traffic in a 2D mesh topology with the bottom MC placement scheme1. On

other MC placement schemes, we find routing algorithms have little impact on overall

performance. Relevant simulation results are detailed in Section 4.4.

1we do not consider adaptive routing because of the increased critical path delays in a router [2]
and degraded row buffer locality caused by not preserving the order of request packets to MCs [71].

92



!"#$"%&'(!"#$)

i = *

i = +

i = ,

i = -

j = - j = * j = ,j = +

. . . .

+ , +

+ , +

+ , +

, , , ,

/ / / /

-* -* -* -*

(a) XY Request

!"#$%&'!"#$(

i = )

i = *

i = +

i = ,

j = , j = ) j = +j = *

- - - -. ,) .

+ + + +

/ / / /

,) ,) ,) ,)

(b) XY Reply

!"#$"%&'(!"#$) !"*+,'(!"%&)

i = -

i = .

i = /

i = 0

j = 0 j = - j = /j = .

1 1 1 1

. / .

. / .

. / .

2 0- 2

/ / / /

3 3 3 3

0- 0- 0- 0-

(c) XY Request + XY Reply

Figure 4.5: Network Traffic Example with XY Routing. (Note that request (a) and
reply (b) traffic take different paths, thus traffic does not mix on horizontal and
vertical links.)

93



Figure 4.6: Different MC Placements. (Shaded tiles represent MCs co-located with
GPGPU cores.)

94



MM

M M

Request (Trqs)

i = 2

i = 3

i = 4

i = 1

j = 1 j = 2 j = 4j = 3

2

2

1

3 4 3

3 4 3

2 2

6 6

10 10

3

3

2

2

6 6

2 2

10 10

1

(a) XY Request

M M

M M

Reply (Trep)

i = 2

i = 3

i = 4

i = 1

j = 1 j = 2 j = 4j = 3

6

6

9

2 2

2

4 6 4 6

3

9

6

6

3

6

2

4

4 4 2 2 4

6

2

4

4

2

M M

M M

Reply (Trep)

i = 2

i = 3

i = 4

i = 1

j = 1 j = 2 j = 4j = 3

6

6

9

2 2

6 4 6

3

9

6

6

3

6 4

4 2 2 4

6

2

4

4

2

(b) XY Reply

i = 2

i = 3

i = 4

i = 1

j = 1 j = 2 j = 4j = 3

Request (Trqs) Reply (Trep) Mixed

MM

M M

5

5

7

3 4 3

3 4 3

6 6

8 8

10 10

3

3

8

8

8 8

6 6

10 10

7

4

2

6

9

2

6

4

6

4

2

2

6

4

9

(c) XY Request + XY Reply

Figure 4.7: Network Traffic Example with Top-Bottom MC and XY Routing.

95



Request (Trqs)

i = 2

i = 3

i = 4

i = 1

j = 1 j = 2 j = 4j = 3

M M

4 2 4

2

M M

4 2 4

6 6

10

6

2

4

4

210

102 102

2

6

2

6

6

2

(a) XY Request

Reply (Trep)

i = 2

i = 3

i = 4

i = 1

j = 1 j = 2 j = 4j = 3

M M

2 10

2

4

M M

10 2

6

2 10

10 2

6

4

2

4

4

4 4

62 62

26 26

(b) XY Reply

i = 2

i = 3

i = 4

i = 1

j = 1 j = 2 j = 4j = 3

Request (Trqs) Reply (Trep) Mixed

M M

6

8

6

6

M M

6

8

6

8 8

10

6

2

4

4

610

106 106

2

6

2

6

6

2

4 4

62 62

26 26

10

10

10

10

(c) XY Request + XY Reply

Figure 4.8: Network Traffic Example with Edge MC and XY Routing.

96



!

!

!

!

"#$%#&'()!"#$*

i = +

i = ,

i = -

i = .

j = . j = + j = -j = ,

, + +

,-+

, - ,

++

, - ,

++

, -

+ ,+

,

/

, ,

/

0

0

/

, ,

/

,

,

(a) XY Request

!

!

!

!

"#$%&'(!"#$)

i = *

i = +

i = ,

i = -

j = - j = * j = ,j = +

+.

+

/.+

+./

+

.+

+

,

+

*

*

+

*

*

*

,

++ *

*

+

,

+

*

**

,

+

(b) XY Reply

i = !

i = "

i = #

i = $

j = $ j = ! j = #j = "

%&'(&)*+,!"#$- %&./0+,!"%&- 123&4

1

1

1

1

" 5 6

"#6

" # "

56

" # "

65

" #

5 "6

6

5

6 6

5

7

7

5

6 6

5

6

6

"

#

"

"

#

"

#

""

#

"

7

7

"

(c) XY Request + XY Reply

Figure 4.9: Network Traffic Example with Diamond MC and XY Routing.

97



!"#$"%&'(!"#$)

i = *

i = +

i = ,

i = -

j = - j = * j = ,j = +

. . . .

+ , +

+ , +

+ , +

, , , ,

/ / / /

-* -* -* -*

(a) XY Request

!"#$%&'!"#$(

i = )

i = *

i = +

i = ,

j = , j = ) j = +j = *

- - - -

+ + + +

. . . .

,) ,) ,) ,)

* + *

* + *

* + *

(b) YX Reply

i = !

i = "

i = #

i = $

j = $ j = ! j = #j = "

% % % %

& ' &

& ' &

& ' &

()*+),-./!"#$0 ()123./!"%&0 %45)6

# # # #

' ' ' '

$! $! $! $!

(c) XY-YX Routing

Figure 4.10: Network Traffic Example with XY-YX Routing. (Note, request/reply
traffic is mixed on horizontal links.)

98



4.4 Performance Evaluation

In this section, we evaluate schemes proposed in Section 4.3 with the aim of

developing a high performance NoC, optimized for use in GPGPUs. We also analyze

simulation results in detail using a wide variety of GPGPU benchmarks.

4.4.1 Methodology

The NoC designs and MC placement schemes examined here are implemented in

GPGPU-Sim [6]. The simulator is flexible enough to capture the internal design of

GPGPU and our target architecture has similarities to NVIDIA’s FermiGTX 480.

Figure 4.1 shows the NoC router microarchitectures modeled in GPGPU-Sim. A

2D mesh network is used to connect SMs, caches, and MCs. To prevent protocol

deadlock, the baseline NoC (Table 4.2) is built with a single physical network with

two separate VCs for handling request and reply traffic. We evaluate our schemes

with a wide range of GPGPU workloads such as CUDA SDK [1], ISPASS [5], Ro-

dinia [9], and MapReduce [29]. Each benchmark suite is structured to span a range

of parallelism and compute patterns, providing feature options that help identify

architectural bottlenecks and fine tune system designs.

4.4.2 Performance Analysis

4.4.2.1 Impact of Network Division

As described in Section 4.3.2.1, we advocate for a single physical network with

separate virtual networks for request and reply packets. To avoid protocol deadlock,

we increase the number of VCs per port, where different types of packets traverse

on-chip networks via different VCs. It is noted that additional VCs employed to

avoid a protocol deadlock can affect the critical path of a router since VC allocation

is the bottleneck in the router pipeline [37]. However, we observe that two separate

99



System Parameters Details

Shader Core 56 Cores, 1400 MHz, SIMT width = 8
Memory Model 8 MCs, 924 MHz
Interconnect 8 x 8 2D Mesh, 1400 MHz, XY Routing

Virtual Channel 2 VCs per Port
VC Depth 4

Warp Scheduler Greedy-then-oldest (GTO)
MC placement Bottom
Shared Memory 48KB
L1 Inst. Cache 2KB (4 sets/4 ways LRU)
L1 Data Cache 16KB (32 sets/4 ways LRU)

L2 Cache 64KB per MC (8-way LRU)
Min. L2 / DRAM Latency 120 / 220 cycles

Table 4.2: System Configuration

VCs under a single physical network degrades system performance less than 0.03%

in geometric mean across 25 benchmarks. This observation leads us to use separate

VCs with a single physical network instead of two physical networks requiring more

hardware resources.

4.4.2.2 Impact of Routing Algorithms

While maintaining the same number of VCs with reduced network resources,

we observe that alternative routing algorithms can significantly improve the overall

system performance. Figure 4.11 shows the speed-up obtained with YX and XY-

YX, normalized against the baseline XY. YX and XY-YX with the bottom MC

placement scheme achieve a speedup of 39.3% and 64.7%, respectively. As discussed

in Section 4.3.2.2, the improvement mainly comes from mitigated traffic congestions

between MCs. The heavy reply traffic generated from MCs is the main factor causing

performance bottlenecks in NoCs. In this context, XY-YX routing outperforms YX

routing by more than 25%. This is because unlike YX routing, XY-YX completely

100



1
.3

9
3

 
1

.6
4

7
 

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce
 (

IP
C

) 

XY (Baseline) YX XY-YX

Figure 4.11: Speed-up with Routing Algorithms (Normalized to baseline XY)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
P

LI
B

LP
S

M
U

M

N
N

N
Q

U

R
A

Y

S
T

O

F
W

T

H
S

T

R
E

D

B
P

R

B
F

S

H
O

T

LU
D

N
W

S
R

A
D

K
M

N

M
M

P
V

C

P
V

R

W
C S
S

G
e

o
m

e
a

nN
o

rm
a

li
ze

d
 P

a
ck

e
t 

La
te

n
cy

 

XY YX XY-YX

Figure 4.12: Normalized Packet Latency under Different Routing Algorithms

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
P

L
IB

L
P

S

M
U

M

N
N

N
Q

U

R
A

Y

S
T

O

F
W

T

H
S

T

R
E

D

B
P

R

B
F

S

H
O

T

L
U

D

N
W

S
R

A
D

K
M

N

M
M

P
V

C

P
V

R

W
C

S
S

G
e

o
m

e
a

nN
o

rm
a

li
ze

d
 E

x
e

c
u

ti
o

n
 T

im
e

 

XY YX XY-YX

Figure 4.13: Normalized Execution Time under Different Routing Algorithms

101



0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
P

LI
B

LP
S

M
U

M

N
N

N
Q

U

R
A

Y

S
T

O

F
W

T

H
S

T

R
E

D

S
C

L

B
P

R

B
F

S

H
O

T

LU
D

N
W

S
R

A
D

K
M

N

M
M

P
V

C

P
V

R S
S

W
C

G
e

o
m

e
a

n

N
o

rm
a

li
ze

d
 P

a
ck

e
t 

La
te

n
cy

  

VC Separated VC Monopolized

Figure 4.14: Normalized Packet Latency under VC Monopolizing Scheme

removes the resource contention between MCs by providing different routing paths

for request and reply packets as illustrated in Figure 4.10. In the context of NoC,

Figure 4.12 shows the overall network latency under different routing algorithms

normalized to the baseline XY routing. On average, XY-YX routing shows less packet

latency compared to that of XY and YX routings by 27% and 10.9%, respectively.

This is mainly due to the absence of network contention between MCs. Figure 4.13

shows the comparison of total execution time that is normalized to that of XY routing

algorithm for each benchmark application. It is interesting to note that YX and XY-

YX routing show comparable total execution time even under the difference in their

respective NoC characteristics such as packet latencies shown in Figure 4.12.

4.4.2.3 VC Monopolizing

As illustrated in Figure 4.5, request and reply packets never overlap with each

other in any dimension under XY or YX routing with the bottom MC placement, al-

lowing VC monopolization as described in Section 4.3.2.1. Figure 4.16 shows the im-

pact of VC monopolizing on system performance under different routing algorithms.

102



0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
P

LI
B

LP
S

M
U

M

N
N

N
Q

U

R
A

Y

S
T

O

F
W

T

H
S

T

R
E

D

S
C

L

B
P

R

B
F

S

H
O

T

LU
D

N
W

S
R

A
D

K
M

N

M
M

P
V

C

P
V

R S
S

W
C

G
e

o
m

e
a

nN
o

rm
a

li
ze

d
 E

xe
cu

ti
o

n
 T

im
e

 

VC Separated VC Monopolized

Figure 4.15: Normalized Execution Time under VC Monopolizing Scheme

Monopolized VCs lead XY and YX to achieve 43.8% and 88.9% (= 39.3% from YX +

49.6% from monopolization) of speed-up in geometric mean, respectively. Note that

unlike XY and YX routing, XY-YX routing still requires separate VCs in horizontal

links to prevent protocol deadlock because different types of packets get potentially

mixed while moving along the horizontal links as illustrated in Figure 4.10. This lim-

its the number of VCs that can be monopolized (partial monopolizing) because only

the VCs located in the vertical links can be fully monopolized in XY-YX routing.

Accordingly, partially monopolized XY-YX routing shows less performance improve-

ment at 85.4% (= 64.7% from XY-YX + 20.7% from monopolization), compared to

that of the fully monopolized scheme with YX routing. Furthermore, across differ-

ent MC placements (edge, top-bottom, and diamond), VC monopolizing is effective in

achieving better performance improvement, as detailed below. In terms of NoC, VC

monopolizing scheme is also effective in reducing the network packet latency com-

pared to that of VCs separated for disparate traffic as shown in Figure 4.14 where VC

monopolizing reduces packet latency by 19.7% on average. Accordingly, as shown in

103



1
.4

3
8

 
1

.8
8

9
 

1
.8

5
4

 

0

0.5

1

1.5

2

2.5

3

3.5

4

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce
 (

IP
C

) 

XY (Baseline) XY (Monopolized) YX (Monopolized) XY-YX (Partially Monopolized)

Figure 4.16: Speed-up with VC Monopolized Scheme (Normalized to XY routing
with VC separated for each traffic)

0

0.5

1

1.5

2

2.5

3

3.5

4

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce
 (

IP
C

) 

Edge (XY) Diamond (XY) Top-Bottom (XY) Bottom (XY)

Edge (XY-YX PM) Diamond (XY PM) Top-Bottom (XY-YX PM) Bottom (YX FM)

1
.6

5
 

1
.7

6
 

1
.8

7
 

1
.8

9
 

Figure 4.17: Speed-up with Different MC Placements with Routing Algorithms (PM:
Partial Monopolizing, FM: Full Monopolizing, Normalized to bottom MC+XY rout-
ing)

Figure 4.15, the overall execution time for each benchmark is also reduced by 19.2%,

on average, when applying VC monopolizing scheme.

4.4.2.4 Impact of MC Placement Scheme

In our baseline, we simply put all MCs at the bottom row in 8× 8 2D mesh. As

the network traffic in GPGPUs gets skewed towards the MCs in this scheme, the

bottom MC placement causes high network congestion near the MCs, thus degrad-

ing performance. One way to alleviating such traffic congestion is to locate MCs

104



sparsely across the network. Figure 4.17 shows the impact of different MC place-

ments on overall system performance. Note that each MC placement is simulated

with three different routing algorithms (XY, YX, and XY-YX). In Figure 4.17, we

pick the routing algorithm showing the highest performance improvement for each

MC placement scheme. In the figure we see that MC location has a significant im-

pact on performance. This is because, with distributed MC placements, request and

reply packets are spread across multiple locations of the on-chip network rather than

converging to the bottom row. Compared to the bottom MC placement, the average

performance speedup is 37.3%, 64.4%, and 40.4% for the edge, diamond, and top-

bottom placements, respectively. And when applying the VC monopolizing scheme

in combination with different MC placements, additional 28.3%, 12%, and 47.3%

performance improvement (65.6%, 76.4%, and 87.7% in total) are achieved with the

edge, diamond, and top-bottom placements, respectively. Here it is worthwhile to

note that our baseline bottom MC placement combined with YX routing and fully

monopolized VCs shows the highest performance improvement (89.4%) and even out-

performs the prior top-performing work, diamond MC placement, by 25% (= 89.4%

- 64.4%), even though the diamond has the least number of hops as analyzed in

Section 4.3.1.2. This proves the performance effectiveness of the VC monopolizing

scheme described earlier in Section 4.3.2.1.

4.4.2.5 Asymmetric VC Partitioning

Mixed request and reply traffic limits the possibility of using the VC monopoliz-

ing scheme. Different routing algorithms such as XY-YX routing or dispersed MC

placements like diamond cause the mix of traffic in the middle of the links. In such

network configurations, we apply asymmetric VC partitioning between request and

reply packets as we detailed in Section 4.3.2.1. To show the impact of asymmet-

105



0.6

0.8

1.0

1.2

1.4

C
P

LI
B

LP
S

M
U

M

N
N

N
Q

U

R
A

Y

S
T

O

F
W

T

H
S

T

R
E

D

S
C

L

B
P

R

B
F

S

H
O

T

LU
D

N
W

S
R

A
D

K
M

N

M
M

P
V

C

P
V

R S
S

W
C

G
e

o
m

e
a

n

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce
 (

IP
C

) 

Baseline (2:2) VC Partitioned (1:3)

Figure 4.18: Speed-up with Asymmetric VC Partitioning (Request:Reply = 1:3)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
P

LI
B

LP
S

M
U

M

N
N

N
Q

U

R
A

Y

S
T

O

F
W

T

H
S

T

S
C

L

B
P

R

B
F

S

H
O

T

LU
D

S
R

A
D

K
M

N

M
M

P
V

C S
S

W
C

G
e

o
m

e
a

n

D
is

tr
ib

u
ti

o
n

 o
f 

P
o

w
e

r 
C

o
n

su
m

p
ti

o
n

 

BUFFER_leak SW_leak XBAR_leak CLK_leak Dynamic

Figure 4.19: Distribution of Power Consumption in NoC

ric VC partitioning, we assume the number of VCs per port are four. Figure 4.18

shows a speed-up with asymmetric VC partitioning, where only one VC is assigned

to request packets and other VCs are assigned to reply packets. For XY-YX routing,

the asymmetric partitioning improves the performance by 3.9% in geometric mean.

Since reply packets are usually heavier than request packets, assigning more VCs to

reply packets is beneficial assuming enough VCs already exist. Note that asymmetric

VC partitioning is effective in enhancing performance across all MC placements.

106



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 Physical 1 Physical 2 Physical 1 Physical 2 Physical 1 Physical 2 Physical 1 Physical

CP LPS MUM BFS

P
o

w
e

r 
C

o
n

su
m

p
ti

o
n

 (
K

w
a

tt
) 

Dynamic Leakage

Figure 4.20: Network Power Breakdown under 2 Physical vs. 1 Physical Network

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dynamic Leakage Dynamic Leakage Dynamic Leakage

Request Reply Req/Reply

2physical  N/W 1 physical N/W

P
o

w
e

r 
co

n
su

m
p

ti
o

n
 (

k
w

a
tt

) 

Figure 4.21: Detailed Network Power Breakdown (MUM benchmark) under 2 Phys-
ical vs. 1 Physical Network

107



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
P

LI
B

LP
S

M
U

M N
N

N
Q

U

R
A

Y

S
T

O

F
W

T

H
S

T

R
E

D

S
C

L

B
P

R

B
F

S

H
O

T

LU
D

N
W

S
R

A
D

K
M

N

M
M

P
V

C

P
V

R S
S

W
C

G
e

o
m

e
a

n

N
o

C
 R

a
ti

o
 (

%
) 

Static Dynamic

Figure 4.22: NoC Static vs. Dynamic Ratio

4.4.3 Power Analysis

Power is one of the critical metrics that should be considered in designing power-

efficient NoCs in GPGPUs. In this section, we analyze the impact of different physical

channel configurations, routing algorithms, and VC monopolizing scheme on NoC

power consumption.

4.4.3.1 Distribution of Power Consumption

Figure 4.19 shows the detailed distribution of power consumption in NoC. Most of

the power is consumed by leakage power (72%) aside from dynamic power. On-chip

router buffer and crossbar are the major leakage power consumer for NoC, consuming

37% and 25% leakage power, respectively.

4.4.3.2 Impact of Network Division

As detailed in Section 4.4.2, a single physical channel having multiple VCs is more

effective in reducing the total power consumption in NoCs compared to that of a sepa-

rate physical channel. Figure 4.20 shows the total power consumption when adopting

108



different physical channel configurations. The separate physical channel contributes

to increasing the leakage power due to the redundant use of physical channels and

on-chip routers, thus consuming almost doubled leakage power compared to that

of the single physical channel. The amount of dynamic power consumption varies

across different benchmarks due to different network loads inherent in each bench-

mark. Specifically, for benchmarks showing high degree of network dynamicity in

NoC such as LPS and MUM, more dynamic power are consumed than other bench-

marks. (Figure 4.22 shows such network dynamic characteristics unique for each

benchmark.) Figure 4.21 shows detailed network power consumption under different

physical channel configurations. Since the single physical channel configuration use

only 2 VCs for request and reply traffic, the individual dynamic power consumption

is higher than that of the separate physical network. However, due to the significant

leakage power consumption and higher total dynamic power consumption of the sep-

arate physical network, the overall power consumption is much higher than that of

a single physical network.

4.4.4 Sensitivity Analysis

4.4.4.1 Impact of Arbitration Policy (VA/SA)

Different arbitration policy in on-chip routers affect the performance of GPGPUs.

Figure 4.23 shows the different performance when applying different arbitration pol-

icy in VA and SA stage in on-chip routers. Overall, age-based VA and SA shows

higher performance than that of RR because of the priority given to the oldest flit

waiting in buffers in on-chip routers.

4.4.4.2 Impact of Router Buffer Depths

Increasing network buffering capacity is effective in enhancing performance in

GPGPUs. Figure 4.24 shows the performance results under three different buffer

109



0.85

0.9

0.95

1

1.05

1.1

1.15

C
P

LI
B

LP
S

M
U

M

N
N

N
Q

U

R
A

Y

S
T

O

F
W

T

H
S

T

R
E

D

S
C

L

B
P

R

B
F

S

H
O

T

LU
D

N
W

S
R

A
D

K
M

N

M
M

P
V

C

P
V

R S
S

W
C

G
e

o
m

e
a

n

N
o

rm
a

li
ze

d
 I

P
C

 

RR Age

Figure 4.23: Normalized IPC under Different Arbitration Policy (RR vs. Age)

depths such as 4 flits, 8 flits, and 16 flits per VC. Increasing buffer depth helps

to increase the amount of traffic retained in NoC, thus helping to increase overall

network throughput, leading to better performance in terms of IPC for each bench-

mark. Specifically, on average, increasing the buffer depth by 4 times, BUF4 to

BUF16, leads to 11.3% performance improvement .

4.4.4.3 Impact of Router Pipeline Latencies

In a conventional on-chip router, a flit goes through 4 stages pipeline consisting

of RC, VA, SA, and ST as mentioined in Section 4.2, where each stage takes a

single clock cycle. Such a pipeline stage delay impacts the overall NoC overheads in

GPGPUs. To hide the multiple pipeline stage delays, we employ schemes such as

lookahead routing and speculation, thus the total delay can be reduced from 4 to 2

cycles. Figure 4.25 shows the impact of different pipeline stage delays on the overall

GPGPU performance for each benchmark. As a flit goes through less pipeline stage

delays, the overall performance gets improved such that 2 cycle pipelines improve

performance by 9.7% on average, compared to that of 4 cycle pipelines.

110



0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

C
P

L
IB

L
P

S

M
U

M

N
N

N
Q

U

R
A

Y

S
T

O

F
W

T

H
S

T

R
E

D

S
C

L

B
P

R

B
F

S

H
O

T

L
U

D

N
W

S
R

A
D

K
M

N

M
M

P
V

C

P
V

R S
S

W
C

�
�
�
�
�
�

N
o

rm
a

li
ze

d
 I

P
C

 
BUF4 BUF8 BUF16

1
.6

1
 

1
.5

8
 

Figure 4.24: Normalized IPC under Different Buffer Depth

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

C
P

L
IB

L
P

S

M
U

M

N
N

N
Q

U

R
A

Y

S
T

O

F
W

T

H
S

T

R
E

D

S
C

L

B
P

R

B
F

S

H
O

T

L
U

D

N
W

S
R

A
D

K
M

N

M
M

P
V

C

P
V

R S
S

W
C

G
e

o
m

e
a

n

N
o

rm
a

li
ze

d
 I

P
C

 

Lat4 Lat3 Lat2

Figure 4.25: Normalized IPC under Different Router Pipeline Latencies

111



4.5 Related Work and Conclusions

Yuan et al. [71] proposed a complexity-effective memory scheduler for GPU ar-

chitectures. NoC routers of the proposed mechanism reorder packets to increase

row-buffer locality in the memory controllers. As a result, a simple in-order mem-

ory scheduler can perform similar to a much more complex out-of-order scheduler.

Bakhoda et al. [4] proposed a throughput-effective NoC for GPU architectures. Due

to many cores with a smaller number of memory controllers, a many-to-few traffic

pattern is dominant in GPUs. To optimize such traffic, they used a half router, which

disallows turns, to reduce the complexity of the network while increasing the injec-

tion bandwidth from the memory controllers to provide burst data read. Kim et al.

propose [37] lightweight high frequency NoC router architectures, which reduces the

pipeline delay in routers, achieving high on-chip network bandwidth, and reducing

energy consumption due to the simplified architecture. In a heterogeneous system,

Lee et al. [43] propose feedback based VC partitioning between CPU and GPU appli-

cations. The proposed technique dedicates a few VCs to CPU and GPU applications

with separate injection queue. VC partitioning in heterogeneous architectures is ef-

fective at preventing interference between the CPU and GPU applications. However,

it requires a feedback mechanism to dynamically partition VCs on each router which

might be additional overhead in a heavily loaded network such as GPGPUs.

In this study, we analyze the unique characteristics of on-chip communication

within GPGPUs under a variety of benchmark applications. We find that the many-

to-few and few-to-many traffic between cores and MCs create a significant bottleneck,

leading to the inefficient use of NoC resources in on-chip interconnects. We show

the improved system performance based on VC monopolizing and asymmetric VC

partitioning under diverse MC placements and dimension ordered routing algorithms.

112



5. CONCLUSIONS

On-chip interconnects for CMPs and GPGPUs have brought new challenges of

overcoming the inherent constraints of the restricted power and area budgets in a

chip. To address such challenges, three schemes have been proposed to design high

performance, power-efficient, and reliable NoCs.

First, we propose a hybrid input buffer design using STT-MRAM with SRAM to

achieve better network throughput with marginal power overheads in onchip inter-

connection networks. The high density of STT-MRAM facilitates to accommodate

larger buffer compared to the conventional SRAM under the same area budgets.

Through the flit migration schemes, the long write latency of STT-MRAM is effec-

tively hidden while minimizing the power overheads.

Second, we present a novel pipelined input buffer design with STT-MRAM for

NoC routers. To overcome the weakness of STT-MRAM, the long latency and high

power consumption in write operations, we design a multibank STT-MRAM buffer

which is a virtual channel withmultiple banks. Through this, we avoid performance

degradation while consuming less area and power. Also, we address the issue of

random data corruption in STT-MRAM by proposing cost-efficient buffer refresh

schemes combined with Error Correcting Codes (ECC). Our simulation results show

significant performance improvement with less total router power consumption.

Third, we analyze the unique characteristics of on-chip communication within

GPGPUs under a wide range of benchmark applications. We find that the many-

to-few and few-to-many traffic patterns between cores and MCs create a severe bot-

tleneck, leading to the inefficient use of NoC resources in on-chip interconnects. We

show significant improvements in GPGPUs based on the proposed schemes.

113



REFERENCES

[1] NVIDIA CUDA SDK. https://developer.nvidia.com/gpu-computing-sdk.

[2] Dennis Abts, Natalie D. Enright Jerger, John Kim, Dan Gibson, and Mikko H.

Lipasti. Achieving Predictable Performance Through Better Memory Controller

Placement in Many-Core CMPs. In Proceedings of ISCA, 2009.

[3] Vikram S. Adve and Mary K. Vernon. Performance Analysis of Mesh Intercon-

nection Networks with Deterministic Routing. IEEE Transactions on PDS, 5,

1994.

[4] Ali Bakhoda, John Kim, and Tor M. Aamodt. Throughput-effective on-chip

networks for manycore accelerators. In Proceedings of MICRO, 2010.

[5] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.

Aamodt. Analyzing CUDA Workloads Using a Detailed GPU Simulator. In

ISPASS, pages 163–174, 2009.

[6] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.

Aamodt. Analyzing CUDA Workloads Using a Detailed GPU Simulator. In

Proceedings of ISPASS, 2009.

[7] Daniel U. Becker. Efficient Microarchitecture for Network-on-Chip Routers.

Ph.D. Dissertation, 2012.

[8] Yu Cao, Takashi Sato, Michael Orshansky, Dennis Sylvester, and Chenming Hu.

New Paradigm of Predictive MOSFET and Interconnect Modeling for Early Cir-

cuit Simulation. In Proceedings of IEEE Custom Integrated Circuits Conference,

2000.

114



[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,

Sang-Ha Lee, and Kevin Skadron. Rodinia: A Benchmark Suite for Heteroge-

neous Computing. In Proceedings of IISWC, 2009.

[10] Lizhong Chen and Timothy M. Pinkston. NoRD: Node-Router Decoupling for

Effective Power-gating of On-Chip Routers. In Proceedings of MICRO, 2012.

[11] Tien-Fu Chen and Jean-Loup Baer. Effective Hardware-Based Data Prefetching

for High-Performance Processors. IEEE Transactions on Computers, 44:609–

623, 1995.

[12] Yu Cao Chengen Yang, Yunus Emre and Chaitali Chakrabarti. Improving Reli-

ability of Non-Volatile Memory Technologies Through Circuit Level Techniques

and Error Control Coding. EURASIP Journal on ASP, 2012, 2012.

[13] W. J. Dally. Virtual-Channel Flow Control. IEEE Trans. Parallel Distrib. Syst.,

3:194–205, March 1992.

[14] W. J. Dally and C. L. Seitz. Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks. IEEE Trans. Comput., 36:547–553, May 1987.

[15] D.Bedau, H.Liu, J.-J.Bouzaglou, A.D.Kent, J.Z.Sun, J.A.Katine, E.E.Fullerton,

and S.Mangin. Ultrafast Spin-Transfer Switching in Spin Valve Nanopillars with

Perpendicular Anisotropy. Applied Physics Letters, 96:022514, 2010.

[16] B. Del Bel, Jongyeon Kim, C.H. Kim, and S.S. Sapatnekar. Improving STT-

MRAM Density Through Multibit Error Correction. In Proceedings of DATE,

2014.

[17] Zhitao Diao, Zhanjie Li, Shengyuang Wang, and Yunfei Ding. Spin-Transfer

Torque Switching in Magnetic Tunnel Junctions and Spin-Transfer Torque Ran-

dom Access Memory. Journal of Physics:Condensed Matter, 19:165209, 2007.

115



[18] D. DiTomaso, A Kodi, and A Louri. QORE: A Fault Tolerant Network-on-Chip

Architecture with Power-Efficient Quad-Function Channel Buffers. In Proceed-

ings of HPCA, 2014.

[19] D. DiTomaso, R. Morris, AK. Kodi, A Sarathy, and A Louri. Extending the En-

ergy Efficiency and Performance With Channel Buffers, Crossbars, and Topol-

ogy Analysis for Network-on-Chips. IEEE Transactions on VLSI, 21:2141–2154,

2013.

[20] Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P. Jouppi. NVSim: A Circuit-

Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory.

In IEEE Transactions on CAD, 2012.

[21] A. Driskill-Smith, D. Apalkov, V. Nikitin, X. Tang, S. Watts, D. Lottis,

K. Moon, A. Khvalkovskiy, R. Kawakami, X. Luo, A. Ong, E. Chen, and

M. Krounbi. Latest Advances and Roadmap for In-Plane and Perpendicular

STT-RAM. In Proceedings of IMW, 2011.

[22] Chris Fallin, Chris Craik, and Onur Mutlu. CHIPPER: A Low-complexity

Bufferless Deflection Router. In Proceedings of HPCA, 2011.

[23] M Galles. Scalable Pipelined Interconnect for Distributed Endpoint Routing:

The SGI SPIDER Chip. In Proceedings of Hot Interconnect 4, 2009.

[24] Nilanjan Goswami, Bingyi Cao, and Tao Li. Power-performance Co-

optimization of Throughput Core Architecture using Resistive Memory. In Pro-

ceedings of HPCA, 2013.

[25] Nilanjan Goswami, Ramkumar Shankar, Madhura Joshi, and Tao Li. Exploring

GPGPU Workloads: Characterization Methodology, Analysis and Microarchi-

tecture Evaluation Implications. In Proceedings of IISWC, 2010.

116



[26] Xiaochen Guo, Engin Ipek, and Tolga Soyata. Resistive Computation: Avoiding

the Power Wall with Low-Leakage, STT-MRAM Based Computing. In Proceed-

ings of ISCA, 2010.

[27] David Harris. Skew-Tolerant Circuit Design. Morgan Kaufmann, 2000.

[28] Mitchell Hayenga, Natalie Enright Jerger, and Mikko Lipasti. SCARAB: A Sin-

gle Cycle Adaptive Routing and Bufferless Network. In Proceedings of MICRO,

2009.

[29] Bingsheng He, Wenbin Fang, and Qiong Luo. Mars: A MapReduce Framework

on Graphics Processors. In Proceedings of PACT, 2008.

[30] Joel Hestness, Boris Grot, and Stephen W. Keckler. Netrace: Dependency-

Driven Trace-Based Network-on-Chip Simulation. In Proceedings of NoCArc,

2010.

[31] Yatin Hoskote, Sriram Vangal, Arvind Singh, Nitin Borkar, and Shekhar Borkar.

A 5-GHz Mesh Interconnect for a Teraflops Processor. IEEE Micro, 27:51–61,

2007.

[32] ITRS. International Technology Roadmap for Semiconductors: 2009 Executive

Summary. http://www.itrs.net/Links/2009ITRS/Home2009.htm.

[33] Hyunjun Jang, Baik Song An, Nikhil Kulkarni, Ki Hwan Yum, and Eun Jung

Kim. A Hybrid Buffer Design with STT-MRAM for On-Chip Interconnects. In

Proceedings of NOCS, 2012.

[34] Adwait Jog, Asit K Mishra, Cong Xu, Yuan Xie, N. Vijaykrishnan, Ravishankar

Iyer, and Chita R. Das. Cache Revive: Architecting Volatile STT-RAM Caches

for Enhanced Performance in CMPs. Technical Report CSE-11-010, The Penn-

sylvania State University CSE Dept., June 2011.

117



[35] Andrew B. Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. ORION 2.0: A

Fast and Accurate NoC Power and Area Model for Early-Stage Design Space

Exploration. In Proceedings of DATE, 2009.

[36] Onur Kayiran, Adwait Jog, Mahmut T. Kandemir, and Chita R. Das. Neither

More Nor Less: Optimizing Thread-level Parallelism for GPGPUs. In Proceed-

ings of PACT, 2013.

[37] Hanjoon Kim, John Kim, Woong Seo, Yeongon Cho, and Soojung Ryu. Pro-

viding Cost-effective On-Chip Network Bandwidth in GPGPUs. In Proceedings

of ICCD, 2012.

[38] John Kim, James Balfour, and William Dally. Flattened Butterfly Topology for

On-Chip Networks. In Proceedings of MICRO, 2007.

[39] Gurhan Kucuk, Dmitry Ponomarev, Oguz Ergin, and Kanad Ghose. Reducing

Reorder Buffer Complexity Through Selective Operand Caching. In Proceedings

of ISLPED, 2003.

[40] Gurhan Kucuk, Dmitry Ponomarev, and Kanad Ghose. Low- Complexity Re-

order Buffer Architecture. In Proceedings of ICS, 2002.

[41] A Kumar, Li-Shiuan Peh, and N.K. Jha. Token Flow Control. In Proceedings

of MICRO, 2008.

[42] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting

Phase Change Memory as a Scalable DRAM Alternative. In Proceedings of

ISCA, 2009.

[43] Jaekyu Lee, Si Li, Hyesoon Kim, and Sudhakar Yalamanchili. Adaptive virtual

channel partitioning for network-on-chip in heterogeneous architectures. ACM

Trans. Des. Autom. Electron. Syst., 18:48:1–48:28, 2013.

118



[44] Luis A. Lozano C. and Guang R. Gao. Exploiting Short-Lived Variables in

Superscalar Processors. In Proceedings of MICRO, 1995.

[45] Sheng Ma, Natalie Enright Jerger, and Zhiying Wang. Whole Packet Forward-

ing: Efficient Design of Fully Adaptive Routing Algorithms for Networks-on-

chip. In Proceedings of HPCA, 2012.

[46] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-

berg, F. Larsson, A. Moestedt, B. Werner, and B. Werner. Simics: A Full System

Simulation Platform. Computer, 35(2):50–58, 2002.

[47] Asit K. Mishra, Xiangyu Dong, Guangyu Sun, Yuan Xie, N. Vijaykrishnan, and

Chita R. Das. Architecting On-Chip Interconnects for Stacked 3D STT-RAM

Caches in CMPs. In Proceedings of ISCA, 2011.

[48] Thomas Moscibroda and Onur Mutlu. A Case for Bufferless Routing in On-chip

Networks. In Proceedings of ISCA, 2009.

[49] Helia Naeimi, Charles Augustine, Arijit Raychowdhury, Shih-Lien Lu, and

James Tschanz. STTRAM Scaling and Retention Failure. Intel Technology

Journal, 17, 2013.

[50] A. Nigam, C.W. Smullen, V. Mohan, E. Chen, S. Gurumurthi, and M.R. Stan.

Delivering on the Promise of Universal Memory for Spin-Transfer Torque RAM

(STT-RAM). In Proceedings of ISLPED, 2011.

[51] Li-Shiuan Peh and William J. Dally. A Delay Model and Speculative Architec-

ture for Pipelined Routers. In Proceedings of HPCA, 2001.

[52] Moinuddin K. Qureshi, Michele M. Franceschini, and Luis A. Lastras-montao.

Improving Read Performance of Phase Change Memories via Write Cancellation

and Write Pausing. In Proceedings of HPCA, 2010.

119



[53] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable

High Performance Main Memory System Using Phase-Change Memory Tech-

nology. In Proceedings of ISCA, 2009.

[54] Steven E. Raasch, Nathan L. Binkert, and Steven K. Reinhardt. A Scalable

Instruction Queue Design Using Dependence Chains. In Proceedings of ISCA,

2002.

[55] Arijit Raychowdhury, Dinesh Somasekhar, and Tanay Karnik. Design Space

and Scalability Exploration of 1T-1STT MTJ Memory Arrays in the Presence

of Variability and Disturbances. In Proceedings of IEDM, 2009.

[56] N. D. Rizzo, M. DeHerrera, J. Janesky, B. Engel, J. Slaughter, and S. Tehrani.

Thermally Activated Magnetization Reversal in Submicron Magnetic Tunnel

Junctions for Magnetoresistive Random Access Memory. Applied Physics Let-

ters, 80:2335, 2002.

[57] S.C.Woo, M.Ohara, E.Torrie, J.P.Singh, and A.Gupta. The SPLASH-2 Pro-

grams: Characterization and Methodological Considerations. In Proceedings of

ISCA, 1995.

[58] Daeho Seo, Akif Ali, Won-Taek Lim, Nauman Rafique, and Mithuna Thot-

tethodi. Near-Optimal Worst-Case Throughput Routing for Two-Dimensional

Mesh Networks. In Proceedings of ISCA, 2005.

[59] Clinton W. Smullen, Vidyabhushan Mohan, Anurag Nigam, Sudhanva Guru-

murthi, and Mircea R. Stan. Relaxing Non-Volatility for Fast and Energy-

Efficient STT-RAM Caches. In Proceedings of HPCA, 2011.

[60] D. Strukov. The Area and Latency Tradeoffs of Binary Bit-Parallel BCH De-

coders for Prospective Nanoelectronic Memories. In Proceedings of ACSSC,

120



2006.

[61] Guangyu Sun, Xiangyu Dong, Yuan Xie, Jian Li, and Yiran Chen. A Novel

Architecture of the 3D Stacked MRAM L2 Cache for CMPs. In Proceedings of

HPCA, 2009.

[62] Zhenyu Sun, Xiuyuan Bi, Hai (Helen) Li, Weng-Fai Wong, Zhong-Liang Ong,

Xiaochun Zhu, and Wenqing Wu. Multi Retention Level STT-RAM Cache

Designs with a Dynamic Refresh Scheme. In Proceedings of MICRO, 2011.

[63] Karthik Swaminathany, Ravindhiran Mukundrajany, Niranjan Soundararajan,

and Vijaykrishnan Narayanan. Towards Resilient Micro-Architectures: Data-

path Reliability Enhancement using STT-MRAM. In Proceedings of ISVLSI,

2011.

[64] T.Dunn and A.Kamenev. Optimization of the Current Pulse for Spin-Torque

Switches. Applied Physics Letters, 98:143109, 2011.

[65] Hangsheng Wang, Li-Shiuan Peh, and Sharad Malik. Power-driven Design of

Router Microarchitectures in On-chip Networks. In Proceedings of MICRO,

2003.

[66] Zhe Wang, Daniel A. Jimenez, Cong Xu, Guangyu Sun, and Yuan Xie. Adaptive

Placement and Migration Policy for an STT-RAM-Based Hybrid Cache. In

Proceedings of HPCA, 2014.

[67] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,

Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and

Anant Agarwal. On-Chip Interconnection Architecture of the Tile Processor.

IEEE Micro, 27:15–31, 2007.

121



[68] W.J.Dally and B.Towles. Principles and Practices of Interconnection Networks.

Morgan Kaufmann, 2003.

[69] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan Xie.

Hybrid Cache Architecture with Disparate Memory Technologies. In Proceedings

of ISCA, 2009.

[70] Alexandre V. Yakovlev, Albert M. Koelmans, and Luciano Lavagno. High-Level

Modeling and Design of Asynchronous Interface Logic. IEEE Design and Test

of Computers, 12:32–40, 1995.

[71] George L. Yuan, Ali Bakhoda, and Tor M. Aamodt. Complexity Effective Mem-

ory Access Scheduling for Many-core Accelerator Architectures. In Proceedings

of MICRO, 2009.

[72] Ping Zhou, Yu Du, Youtao Zhang, and Jun Yang. Fine-Grained QoS Scheduling

for PCM-based Main Memory Systems. In Proceedings of IPDPS, 2010.

[73] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A Durable and Energy

Efficient Main Memory Using Phase Change Memory Technology. In Proceedings

of ISCA, 2009.

[74] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. Energy Reduction for

STT-RAM Using Early Write Termination. In Proceedings of ICCAD, 2009.

122


