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ABSTRACT 

 

The purpose of this literature review is to examine whether Pavlovian eye blink 

conditioning in the rabbit consists solely of a specific motor reflex or involves other 

extracerebellar control systems.  Castiglioni et al. (2009) utilized a transfer design in 

which retention of learning in different environments and the expression of the original 

learning was not limited to a single motor reflex measure. Subjects were trained in a 

traditional  Pavlovian stock to differentiate between an S+ signal of a brief tone paired 

with an unconditioned stimulus (US) of cutaneous shock. Then, subjects were tested for 

what they had learned in a different environment.  

The results showed that the presentation of the S+ produced completely different 

behavior in the open environment as compared to the Pavlovian stock. In the restricted 

environment of the Pavlovian stock, presentation of the S+ produced eye blink responses 

without any additional motor or emotional reactions. In the transfer environment, 

reaction to the S+ produced: (a) a prolonged disruption of ongoing behavior, (b) a wide 

range of complex emotional responses, and (c) a complete absence of eye blink 

response. Reaction to the S- in the Pavlovian stock or in the open environment, did not 

elicit an eye blink response. These findings provide strong evidence that Pavlovian 

conditioning is not just a specific motor reflex, but instead involves a difference in 

meaning and significance of the S+ for the subjects when presented in two discrete 

environments. This is observed in the subjects’ different response patterns which 

unmasked a significant emotional component of the conditioning. This lead to the 
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conclusion that nictitating membrane (NM) conditioning consists of more than an 

invariant, discrete cerebellar oculomotor reflex. The clear emotional component to the 

conditioning indicates the involvement of extracerebellar control mechanisms, 

potentially a widespread cerebral network in addition to the microcerebellar control of 

the specific motor reflex, a contradiction to current neuromodels.  
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NOMENCLATURE 

 

CPT continuous performance task 

NM nictitating membrane 

S+ conditioned stimulus, reinforced with shock 

S- unreinforced stimulus 

SST sensory salience test 

ITI  intertrial interval 

US unconditioned stimulus 
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INTRODUCTION  

 

With current advancements in medicine and healthcare, the average lifespan 

grows steadily longer. Concurrent with this is a steady increase in diagnoses of ocular 

disorders and visual impairment which are common in the elderly. Similarly, the growth 

rate of chronic and comorbid conditions related to increased age increases every year. 

This is in part due to the spread of the obesity epidemic, particularly in first world 

nations. Currently, 66% of adults in the United States are classified as overweight to 

obese (Wang & Beydoun, 2007). The obesity epidemic in particular, provides a strong 

addition to visual impairment through comorbid diabetic retinopathy, glaucoma, and 

cataract - all common complication of diabetes mellitus. A CDC study revealed that 

elderly people with visual impairment experienced a higher comorbidity with other 

conditions than elderly people without visual impairment (Crews, Jones, & Kim, 2006).  

In vision research, animal models are a critical part of experiments to investigate 

disease mechanisms, their progression, and the development of treatments. The majority 

of vision studies are conducted with the rat optic model (Williams, 2002). Rat models 

are used to study various visual aspects, from eye development to visual disorders. These 

rat models are popular due to their low cost of purchase, maintenance, and upkeep, their 

sparse living space requirements, and quick gestation period compared to other non-

rodent animals. However, the accuracy of rat optic models is suspect, as the limitations 

of their vision is far inferior to other mammals (Bawa et al., 2013; Zhou, Bedggood & 

Metha 2012) and calls into question the ability of the rat optic model research to 
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accurately act as a model for human vision. Rat vision has been called poor since as 

early as 1903 (Watson, 1903). A more suitable alternative to the rat model would be an 

animal with superior visual abilities and in possession of visual acuity. The rabbit is such 

a suitable subject. Their superior visual capabilities compared to the rat are outlined in 

Table 1 below (I. Steele-Russell, Functional Neuroanatomy, 1/3/2013).  

 

Table 1. Comparative visual anatomy.  

 

 

As seen in Table 1, rabbits’ superior visual capabilities lie in their nature and 

anatomically in their larger optic nerve. Rabbits have crepuscular vision whereas rats are 

nocturnal creatures. Low light and low visibility at night, their active periods, suggest 



 

3 

 

rats rely on an integration of many other developed senses to navigate, such as vibrissal 

input, hearing, and smell (Favaro et al., 2011; Cardenas, Lamprea & Morato 2001; 

Carvell & Simons 1990) in conjunction with their visual capabilities. Rats have on 

average, 0.3 cycles/⁰ acuity, which is especially low when compared to the average 

human or primate acuity of 64 cycles/⁰ (Hughes, 1977). High visual acuity is necessary 

in rabbits to locate predators, potential threats, and sustenance.  

Visual pursuit movements has been confirmed in rabbits and studied by 

Collewijn (1977); these voluntary shifts in gaze are designed to keep the visual stimulus 

focused on the fovea of the retina - the only area of the retina capable of high visual 

acuity. Rats lack the retinal structure analogous to a fovea (Euler & Wӓssle, 1995), this 

drastically diminishing their visual acuity capabilities. Research has confirmed this low 

visual acuity in rats (Douglas et al., 2005) and also their lack of any significant capacity 

for visual accommodation (Hughes, 1976). 

Rabbits also possess stereoscopic vision (van Sluyters & Stewart, 1974; van Hof 

& Steele-Russell, 1977) but this has not been confirmed in rats (Wallace et al., 2013). 

The strength of the visual abilities in rabbits make their use as an animal model a better 

candidate to translate vision research to human and primate visual capabilities than 

comparison to a rat’s ability.  
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PAVLOVIAN CONDITIONING PARADIGM 

 

Nictitating membrane (NM) eye blink Pavlovian conditioning in rabbits is 

regarded as the most powerful animal model to study the cerebellum’s role and neural 

pathways of Pavlovian conditioning and associative learning (G rmenzano, 1966). 

Before Pavlovian conditioning occurs, the NM eye blink in rabbits only naturally occurs 

in response to external stimulation such as physical contact or irritation. The eye blink 

does not occur spontaneously nor is it mediated by any instrumental behavior of the 

animal. This allows Pavlovian conditioning to be standardized across all animals and 

individual differences are minimized in both acquisition and performance of associative 

learning of the eye blink. As such, the experimenter has almost complete control over 

factors during associative learning.  

The role of the cerebellar cortex in Pavlovian conditioning derives from the 

neural models of Marr (1969) and Albus (1971), who were the first to draw attention to 

the unique features of the cerebellar cortex's architecture - specifically the identical 

network connections throughout all cerebellar folia. They hypothesized that the 

cerebellar cortex played a major role in simple attentional learning such as Pavlovian 

conditioning. These neural models were further explored by Thompson (2005) and 

Thompson & Krupa (1994).  

A critical axiom of current research on the cerebellar mechanisms of Pavlovian 

conditioning and learning is that there is a complete isomorphism between learning and 

the changes in the NM eye blink response (Thompson, 2005; Attwell et al., 2006; 
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Hesslow & Yeo, 2002). Lesions of the lobus simplex in the vermis of the cerebellum 

have long been reported to interfere with eye blink conditioning (Thompson & Krupa, 

1994) due to purkinje cell activation in the lobus simplex during smooth pursuit eye 

movements indicating participation of the folium in oculomotor control (Suzuki, Koda, 

& Kase, 1981). Accordingly, the lobus simplex has been regarded not only as a region 

involved in attentional ocular movement control, but is also believed to be the storage 

site for Pavlovian conditioning.  

This project literature survey will examine whether or not NM eye blink 

conditioning consists solely of cerebellar motor learning as indicated by the current 

Pavlovian neural models, in light of evidence indicating doubt on the cerebellum as the 

sole responsible cortical structure in NM eye blink reflex associate learning (Steele-

Russell et al., 2008). The focus of this thesis project was the critical evaluation of 

evidence for an isomorphism between NM eye blink learning and changes in the 

significance and meaning of the NM eye blink response during Pavlovian conditioning 

across two discrete environments. 
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DESIGN 

 

A repeated measures design was frequently employed where all subjects were 

exposed to the same battery of behavioral tests. In standard Pavlovian conditioning 

experiments, subjects are tightly confined within a Pavlovian stock (Figure 1) – an 

apparatus that permits very little behavior save the eye blink movement. It is very 

possible that this highly restrictive confinement is insensitive to the measurement and 

assessment of any additional changes in the subjects’ behavior other than the expected 

eye blink during conditioning. For this reason, a transfer design was utilized wherein the 

S+ and S- signals were first presented in a Pavlovian stock, subsequently, the signals 

were then presented within an open environment to observe changes of behavior in 

reaction to the same signal presentations.  

An operant conditioning chamber (Figure 2) served as the open environment and 

was utilized during the testing battery for continuous performance task testing 

(Castiglioni et al., 2009). The range of the subjects’ reactions to presentations of the S+ 

or S- signals in the non-restrained open environment were recorded using a digital 

camcorder.  
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Figure 1. Pavlovian conditioning environment with restraining stock inside to restrain 

subject during conditioning. 

 

 

Figure 2. Testing chamber for continuous performance task that served as open 

environment. Speakers located to the right and above the tunnel, transmit the S+ and S- 

signals. Tunnel with lever press located in the bottom left hand corner. Food cup located 

to the right of the tunnel distributed pellets after successful behavior. 
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Subjects were evaluated using an ordered behavioral test battery (Figure 3) to 

observing recordings of the subjects’ behavioral reactions to presentations of the S+ and 

S- signals both before and after Pavlovian conditioning had occurred. The test battery 

included six test phases. The first, a continuous performance task (CPT), second, 

preconditioning sensory salience test (SST1), third, Pavlovian Conditioning (PavCond), 

fourth, an eye blink retention test (RT1), fifth, a postconditioning sensory salience test 

(SST2), and last, a second eye blink retention test (RT2).  

 

 

 

 

 

 

Figure 3. Sequence of experimental test phases in the testing battery. 

CPT: Continuous Performance Task  SST1: preconditioning Sensory Salience Test  

PavCond: Pavlovian Conditioning phase  RT1: first eye blink Retention Test  SST2: 

postconditioning Sensory Salience Test  RT2  second eye blink Retention Test 

 

  

      

CPT SST1

T 

 CPT 

SST2 PavCond 

 

RT2 

 

RT1 
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CONTINUOUS PERFORMANCE TASK 

 

All subjects were first trained in a continuous performance task (CPT) 

(Castiglioni et al., 2009), which was designed to measure changes in the salience of 

stimuli in open, non-restricted conditions before and after conditioning took place. At 

the same time, the task was designed to ensure rigorous psychophysical standards of 

sensory stimulation without denying the subject freedom of movement. The CPT is the 

most commonly used measure of attention in research, (Riccio et al., 2002) and is a free 

operant conditioned suppression task. 

 Subjects were placed into an open chamber and trained to perform a panel press 

response 15 consecutive times without delay to receive a food reward. Photosensors 

placed along the tunnel wall recorded the subjects’ movements during their behavior to 

monitor any withdrawal when the distracting signals were presented and the response 

counter monitored any delay between panel presses (Castiglioni et al., 2009).  

The CPT apparatus (see Figure 2), was first described by Werka et al. (1982) and 

Oakley & Russell (1977) and later modified per (Castiglioni et al., 2009) to include a 

push panel with an 8 cm tunnel projecting outward from the chamber’s right wall. Every 

trial, subjects were required to press the panel 15 times rapidly in a row to terminate the 

trial and receive a food pellets as a reward. Both the initiation and termination of each 

trial was signaled by the tunnel light’s onset and offset. A 1 second blackout period 

signaled the end of the trial. At stimuli presentation, subject distraction time were 

detected and recorded via the tunnel’s infrared photosensors located laterally along both 
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tunnel walls. The photosensors measured subjects’ retreat from the tunnel and reset the 

response counter to zero. Additionally, distraction times longer than 1 second, while 

subjects remained in the tunnel also reset the response counter to zero. The onset tunnel 

light presented after the previous trial’s 1 second blackout, and remained on throughout 

the trial until subjects completed 15 panel presses to be rewarded with food pellet 

delivery.  

Each testing session consisted of 100 responses. Subjects were trained until 

criterion was met – consisting of 5 continuous sessions with minimal spontaneous 

pauses, between each response cycles.  

 The modified apparatus’ tunnel provided unique advantages over traditional CPT 

experiments. Firstly, it enabled rigorous psychophysical control over any background 

sensory stimuli outside of the S+ and S- . These background stimuli are typically 

unaccounted for and uncontrolled in CPT studies. All subjects had identical head and 

body orientations as they entered the tunnel to begin the panel presses where the speaker 

projected auditory stimuli from the same location towards the subjects’ head and ears. 

The subjects’ constant head positioning relative to the chamber’s speakers controlled 

against any sound wave distortion. 

 Secondly, utilization of the light source – a panel located within the tunnel, 

ensured that visual stimuli indication for the trial beginning and termination, at which 

point in time the subject could then retrieve the food reward. The light panel was 

independent of the condition as it was a self-indexing stimulus. Thirdly, the tone and 

white noise signals utilized in the CPT were the same stimuli utilized during the 
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Pavlovian conditioning phase, ensuring the auditory signals across the testing battery 

were uniform.  

 Fourthly, throughout both SST phases, additional body movements by the 

subjects irrelevant to the learned behavior had no effect on the recorded distraction times 

as these were outside the tunnel and thus away from the panel. Often in free operant 

conditioning, such innocuous movements could mistakenly trigger the behavior for that 

particular conditioning. Lastly, the utilization of tunnel photosensors allowed precise 

recording of the subjects’ withdrawal when presented with distracting signals during the 

performance of the CPT.  
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PRECONDITIONING SENSORY SALIENCE TEST (SST1) 

 

 Once subjects have mastered this operant conditioning behavior, subjects moved 

to the second phase in the testing battery, the Preconditioning sensory salience test or 

SST1. The SST1 utilized the CPT as a measure for the sensory salience of the S+ and S- 

auditory signals before Pavlovian conditioning occurred. At this stage, the signals hold 

no significance to the subjects as these are novel stimuli previously not encountered. For 

all subjects, the S+ or S- signals served as the distracting signals and were presented at 

the start of the thirtieth trail with the first panel press response over two sessions. Both 

the S+ and S-consisted of either a pure tone or white noise signal both at identical sound 

pressure levels. Both stimuli from onset remained on until subjects actively terminated 

either stimuli with the 15 panel press, also terminating the trial and producing the food 

reward and extinguishing the tunnel light. The duration of time between the signal onset 

and the period it took for subjects to complete the panel press were recorded as 

distraction times (Castiglioni et al., 2009). 
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PAVLOVIAN EYE BLINK CONDITIONING 

 

 Third in the test battery, subjects received Pavlovian conditioning in a separate 

sound insulated chamber, as described by Steele-Russell et al. (2006) and Castiglioni, et 

al. (2009). This chamber contained a restraining stock, with a head restraining device 

which was used to ensure that the subjects’ position to the sound source was constant 

throughout the testing period. The subject in the stock was oriented such that they faced 

the front of the chamber, towards the speakers and light panels. Along this front wall, 

two audio speakers mounted vertically, and two light panels mounted horizontally. Two 

transdermal electrodes were placed within the periorbital cutaneous receptive field of the 

trigeminal nerve.  

 Using a different Pavlovian conditioning paradigm, the auditory S+ tone was 

paired with a cutaneous shock, the unconditioned stimulus (US). The S- white noise was 

not paired with the US. The auditory S+/S- stimuli sounded from a speaker placed along 

the end wall of the conditioning chamber 2 cm above the lateral visual.  

 Finally, the use of attached dermal electrodes in combination with a computer 

controlled shock (US) source ensured that all subjects received identical stimulation to 

the same location on their cutaneous receptive field of the trigeminal nerve. Each tonal 

S+ and S- signal, was 500 ms in duration. For S+ and US paired presentations, the US 

consisted of a 1.0 mA 50 Hz shock administered to periorbital receptive field for the 

remaining 200 ms of the CS. The end of the trial was signaled by the co-termination of 

the S+ and the US. This degree of psychophysical control is currently not available with 
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conventional foot shock apparatuses utilized in other conditioned suppression 

paradigms.  

 All subjects had to be first habituated within the restraining stock over four days 

without S+ or S- presentation, to habituation to the sensation of being restrained in the 

stock and to ambient sounds, electrode attachment, and ambient cues from within the 

chamber. Following habituation, subjects were trained daily in 40 minute sessions. The 

first and third of these sessions were sit-control treatments and the second and fourth 

sessions were conditioning treatments. In each sit-control session subjects were given 

identical treatment to the conditioning sessions with the exception hat no S+ signals 

were presented. The sit-control treatments exposed subjects to any background stimuli 

inherent to the test chamber with no US presentations to direct subjects’ attention to 

subsequent conditioning pairing with the S+. A total of ten presentations of the S- white 

noise signal were randomly presented throughout both sit-control sessions.  

 In each conditioning session, five S+ and US paired presentations occurred at 

variable intertrial intervals (ITI) of an average 180 seconds. The five S- signals had the 

same presentation time as the S+ signals, but were not paired with the US. For all 

subjects, the Pavlovian conditioning used the S+, a pure tone of 257 Hz, signal paired 

with the US, and the S-, white noise signal, not paired with the US. Both the S+ and S- 

signals were 75 dB to control against sound intensity differences. Across both training 

sessions, 10 S+ and US pairings were given with a variable ITI (180 seconds) to control 

against temporal condition. Subjects met criterion after five consecutive sessions when 

80% or more of eye blink responses were conditioned responses. 
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EYE BLINK RETENTION TEST 1 

 

On the day following the last conditioning session, all subjects were given a 

retention test of the conditioned eye blink response. This took place in the Pavlovian 

stock under identical conditions to the Pavlovian conditioning (dermal electrode 

placement, any ambient sounds, etc.). The tonal stimuli used were identical to the 

Pavlovian conditioning and previous Continuing Performance Task. The retention test 

consisted of a random mixture of 10 S+ and 10 S- signals presented singly on any trial 

under extinction conditions. Thus both S+ and S- signals were each presented alone 

without any pairing with the US. For both signals, behavior to the S+ and S- were 

recorded as the number of Hits: eye blink response to S+ presentation, or the number of 

False Alarms: eye blink response to S- presentation.  
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POSTCONDITIONING SENSORY SALIENCE TEST (SST2) 

 

The fourth phase in the testing battery, again utilized the CPT as an independent 

measure of significance to the S+ and S- Pavlovian retention test. Subjects were 

retrained on the CPT for three sessions before the sensory salience tests (SST) were 

administered. After which, the same S+ and S- signals used in the Pavlovian 

Conditioning phase were presented as either a pure tone or white noise signals with 

identical sound pressure levels of 75 dB respectively. During this phase, there was no 

pairing of the US shock with the S+ or S-. On the beginning of the thirtieth trial, the S+ 

or S- signal was triggered by the first panel press and continuously played until subjects 

actively extinguished stimuli presentation with the 15 consecutive panel presses. This 

resulted in a food reward and also extinguished the tunnel light. The duration of time 

between the signal onset and the period it took for subjects to complete the panel press 

were recorded as distraction times.  

Distraction times recorded after subjects completed Pavlovian conditioning 

during this salience test was referenced to the subjects’ performance on the first SST 

(SST1) to the same stimuli. Any increase in distraction times can be attributed to 

conditioning altering the subjects’ meaning and significance of the S+ and S- stimuli 

(Castiglioni et al., 2009).  
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EYE BLINK RETENTION TEST 2 

 

 Following the completing of the SST2, all animals were returned to the 

Pavlovian stock and tested for retention of the eye blink condition with only S+ 

presentations not paired with the US. This extinction procedures used after the second 

sensory salience test in the SST2 phase were identical to the procedure used in the first 

eye blink retention test. Eye blink responses to the S+ presentation were recorded as 

Hits, and eye blink responses to the S- presentation were recorded as False alarms. 
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RESULTS 

 

 Review of the video records revealed a typical subject response pattern to the S+ 

and S- signal presentation in the open environment after Pavlovian conditioning 

occurred. During Pavlovian conditioning, subjects only displayed the eye blink 

conditioned response to S+ signal presentation. After Pavlovian conditioning, during the 

SST2, subjects responded to the S+ onset with a significant distraction time, and copious 

emotional reactions (Castiglioni et al., 2009). The S- presentations in the Pavlovian stock 

produced no signs of any conditioning. S- presentations during the SST2 typically 

included a brief orientation to the source of the S- without any emotional reactions 

before continuing with the CPT. 
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DISCUSSION 

 

The present review indicates that Pavlovian eye blink conditioning is more 

complex than the simple motor reflex learning that is central to current theoretical 

models of conditioning (Thompson, 2005; Hesslow & Yeo, 2002). The vast majority of 

Pavlovian work was only measured conditioning, which corresponds in our model to the 

second eye blink retention test during which the restricted conditions are applied and the 

subjects’ overt behavioral repertoire is limited to an eye blink. To our knowledge, the 

present experiment is the first to have examined the effects of differential eye blink 

conditionings using both restraint and non-restraint test conditions. Furthermore, use of 

an intramodel auditory discrimination where the S+ tone and S- white noise had identical 

sound pressure levels energy levels to prevent any tempering of learning due to stimuli 

differences. This is an improvement on earlier studies by Oatley and Steele-Russell 

(1975, 1977) using extramodel stimuli of S+ light and S- sound where the differing 

energy levels give inherent salient differences between light and sound modalities.  

 The typical reaction of subjects when confronted with the S+ in the non-

restrained environment of the CPT, was a hasty retreat withdrawing from the tunnel to 

the furthest wall of the CPT chamber. Subjects also responded to the stimuli presentation 

with bruxing, or teeth grinding, a typical aggression response in rabbits. After rapidly 

retreating, subjects made several attempts at reentering the tunnel, with several slight 

advancements and retreats from the tunnel. Returning to the tunnel was generally a slow 

and cautious approach, whereas all retreats were hasty withdrawals out of the tunnel. All 
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subjects displayed this same behavioral response with minor variation in the distraction 

times between subjects. No eye blink responses were seen in subjects when presented 

with the S+ only variations of the dominant reaction pattern of rapid withdrawal and 

aggressive responses. Yet, during the Pavlovian conditioning within the restrictive 

environment, the only observable behavior to UR and the S+ was the Nm eye blink 

response. There were no signs of emotional behavior such as struggling, vocalization, or 

bruxing.  

 Distraction times to the S+ and S- presentation in the SST1 were low to 

minimum as expected of novel stimuli in the preconditioning phase. After Pavlovian 

conditioning occurs, we see distraction times significantly rise for only the S+ 

presentations. The subjects have now learned to differentiate between the two signals, 

and displayed an emotionally charged retreat previously unseen in the Pavlovian stock. 

Distraction times to the S- signal in the SST2 (postconditioning) remained unchanged, 

and are identical from SST1 (preconditioning).  

 The first eye-blink retention test (RT1), given immediately following Pavlovian 

eye-blink conditioning showed that 78% of conditioned responses occurred to the S+ 

trials and 22% to the S- trials, which is evidence for specific conditioning to the S+ tone. 

The second eye-blink retention test was given after SST2 and results show both the S+ 

and S- signals were presented twice under extinction conditions where each subject was 

exposed to each signal until they actively terminated the signal by resuming work on the 

CPT.  
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In the second eye-blink retention test, both the S+ and S- signals had been 

exposed to extinction in the previous SST2 phase. When tested on the second eye-blink 

retention test of conditioning, there was a complete extinction of the former S+ 

responding. These findings indicate that there is bidirectional transfer of learning from 

the Pavlovian training to the SST, and from the SST to the Pavlovian environment. 

At the conclusion of the testing battery, subjects underwent additional Pavlovian 

conditioning to examine any preferential conditioning to the usage of tone as the S+ in 

the experimental testing battery. Subjects were retrained in the Pavlovian stock with the 

same stimuli and shock parameters. Conditioning began with the tone stimuli paired with 

the US shock. Once criterion was met, a stimuli reversal was implemented. The white 

noise signal became the S+ paired with the US shock, and the tone signal became the S- 

paired with nothing. Subjects were again conditioned until criterion was met. A second 

reversal was then implemented, wherein the tone became S+, and the white noise 

became S-. These reversals served to indicate no inherent properties of the tone and 

white noise stimuli contributed no bias to the subjects’ conditioning for the previously 

mentioned experimental testing battery as regardless of which auditory signal used 

(white noise or tone) as the S+, subjects conditioned. This suggests the experimental 

testing battery could alternatively have used the white noise as S+ and tone as S- and 

receive the same results.  
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CONCLUDING COMMENTS 

 

 In addition to the role of the cerebellum in retention of Pavlovian conditioning as 

a motor reflex controlled by cerebellar folia (Lavond, et al., 1981; McCormick, et al., 

1981; McCormick, et al., 1982), this review provides a strong argument that Pavlovian 

conditioning involves the acquisition of a change in the meaning and emotional 

significance of the S+ stimulus. This is expressed in different situations by markedly 

different response patterns which unmasked a significant emotional component of the 

conditioning. Further, these results established that the emotional changes were 

exchanged bidirectionally between the very different test environments, seen in the 

subjects’ changed responses to the S+ and S- in RT1 to RT2.  

NM eye blink conditioning consists of more than a change in a single discrete 

cerebellar oculomotor reflex as shown by the Thompson (2005) and Hesslow and Yeo 

(2002) models. The clear emotional component to the conditioning indicates the 

involvement of extracerebellar control mechanisms in possibly the frontal cortex and 

amygdala.  

Separate pathways to the cerebellar cortex are identified for the US and S+ 

inputs. The US pathway goes from the trigeminal nucleus to the inferior olivary nucleus 

via climbing fibers to the eye blink microzones in the lobus simplex. Different S+ 

pathways are used for the different senses of vision, audition, or tactile modalities. The 

S+ information is conveyed via mossy fibers from the appropriate precerebellar nucleus 

– in the present experiment the pontine nucleus for the auditory S+ channel – via parallel 
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fibers to Purkinje cells. A critical element in all cerebellar models of associative learning 

is that the cerebellum plasticity changes mediating condition are restricted solely in an 

invariant eye blink response.  

It is important to note that the great majority of eye blink conditioning research 

uses such a single CS training paradigm. This has resulted in widespread failure to 

control for both the specificity of the CS learning for pseudoconditioning. Steele-Russell 

et al. (2006) showed that such single stimulus conditioning can be completely non 

specific with subjects responding to any stimulus change in the testing situation. The 

standard control to preclude the occurrence of pseudoconditioning is to use a differential 

conditioning paradigm. Previous studies (Oatley & Steele-Russell 1977) have used 

crossmodal comparisons confounded with salience as well as modality such as tone 

versus light stimuli. For example, a nocturnal animal would have greater sensitivity 

tuning for auditory signals than visual ones. Therefore, the present experiment used 

auditory intramodal comparisons between pure tone versus white noise matched for 

equal sound pressure levels. 

Continued research will be needed to further investigate and isolate the role of 

extracerebellar structures in the emotional changes and learning in Pavlovian 

conditioning. Uncovering the neural pathways of Pavlovian conditioning in rabbits is a 

positive step in completing mapping of neural networks of the rabbit brain for learning 

and towards further developments of a rabbit animal model.   
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