
TOWARDS ENERGY-EFFICIENT, FAULT-TOLERANT, AND

LOAD-BALANCED MOBILE CLOUD

A Dissertation

by

CHIEN-AN CHEN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Radu Stoleru
Committee Members, Anxiao Jiang

Jyh-Charn Liu
Narasimha Reddy

Head of Department, Dilma Da Silva

December 2015

Major Subject: Computer Engineering

Copyright 2015 Chien-An Chen

ABSTRACT

Recent advances in mobile technologies have enabled a new computing paradigm

in which large amounts of data are generated and accessed from mobile devices.

However, running resource-intensive applications (e.g., video/image storage and pro-

cessing or map-reduce type) on a single mobile device still remains off bounds since

it requires large computation and storage capabilities. Computer scientists overcome

this issue by exploiting the abundant computation and storage resources from tra-

ditional cloud to enhance the capabilities of end-user mobile devices. Nevertheless,

the designs that rely on remote cloud services sometimes underlook the available

resources (e.g., storage, communication, and processing) on mobile devices. In par-

ticular, when the remote cloud services are unavailable (due to service provider or

network issues) these smart devices become unusable. For mobile devices deployed

in an infrastructureless network where nodes can move, join, or leave the network

dynamically, the challenges on energy-efficiency, reliability, and load-balance are still

largely unexplored.

This research investigates challenges and proposes solutions for deploying mobile

application in such environments. In particular, we focus on a distributed data stor-

age and data processing framework for mobile cloud. The proposed mobile cloud

computing (MCC) framework provides data storage and data processing services to

MCC applications such as video storage and processing or map-reduce type. These

services ensure the mobile cloud is energy-efficient, fault-tolerant, and load-balanced

by intelligently allocating and managing the stored data and processing tasks ac-

counting for the limited resources on mobile devices. When considering the load-

balance, the framework also incorporates the heterogeneous characteristics of mobile

ii

cloud in which nodes may have various energy, communication, and processing capa-

bilities. All the designs are built on the k-out-of-n computing theoretical foundation.

The novel formulations produce a reliability-compliant, energy-efficient data storage

solution and a deadline-compliant, energy-efficient job scheduler. From the promising

outcomes of this research, a future where mobile cloud offers real-time computation

capabilities in complex environments such as disaster relief or warzone is certainly

not far.

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vii

LIST OF TABLES . xii

1. INTRODUCTION . 1

1.1 Motivation and Challenges . 1
1.2 Dissertation Statement . 3
1.3 Main Contributions . 4
1.4 Organization . 6

2. LITERATURE REVIEW . 7

2.1 Distributed Data Storage . 7
2.2 Distributed Data Processing . 11
2.3 Mobile Cloud . 16

3. SYSTEM ARCHITECTURE . 21

3.1 Operations in the k-out-of-n Computing Framework 23
3.1.1 Network Maintenance and Topology Change Event 24
3.1.2 Data Creation Event . 25
3.1.3 Data Retrieval Event . 26
3.1.4 Data Processing Event . 27

4. DISTRIBUTED DATA STORAGE* . 28

4.1 Formulation of the k-out-of-n Data Storage Problem 29
4.2 Energy-Efficient and Fault-Tolerant Data Allocation 31

4.2.1 Topology Discovery . 31
4.2.2 Failure Probability Estimation 31
4.2.3 Expected Transmission Time Computation 33
4.2.4 The k-out-of-n Data Allocation 35
4.2.5 Distributed Network Monitoring 37

iv

4.3 Reliability-Compliant and Energy-Aware Data Replication 39
4.3.1 Fragment Parameter and Storage Parameter 39
4.3.2 Estimating Data Storage Reliability from (ks, ns) 40
4.3.3 Determining (ks, ns) . 42
4.3.4 Determining (kf , nf) . 44
4.3.5 Fragment Re-allocation . 47

4.4 Caching for the k-out-of-n Distributed Storage 49
4.4.1 Cache Placement Formulation 50
4.4.2 Distributed Caching Framework 52

4.5 Evaluation . 55
4.5.1 Real-World Implementation 55
4.5.2 The k-out-of-n Data Storage Simulation 60
4.5.3 Reliability-Compliant Data Replication Evaluation 64
4.5.4 Caching Algorithm Evaluation 70

5. DISTRIBUTED DATA PROCESSING* 73

5.1 Formulation of the k-out-of-n Data Processing Problem 74
5.2 Energy-Efficient and Fault-Tolerant Data Processing 76
5.3 Deadline-Compliant Energy-Aware Task Scheduling 80

5.3.1 Energy-Efficient and Load-Balanced Task Allocation 81
5.3.2 Fault-Tolerant and Minimal Expected Makespan Task Allocation 84
5.3.3 Computation of Expected Retrieval Time and Expected Job

Makespan . 84
5.4 Tabu Search Solver . 87
5.5 Hadoop MapReduce Integration . 89

5.5.1 MDFS Hadoop Component 90
5.5.2 Mobile Hadoop Architecture 91
5.5.3 Energy-Aware Task Scheduling 92

5.6 Evaluation . 94
5.6.1 The k-out-of-n Data Processing Simulation 94
5.6.2 Effect of Scheduling . 97
5.6.3 Deadline-Aware Task Scheduling Simulation 98
5.6.4 Mobile Hadoop . 105
5.6.5 Energy-Aware Task Scheduling v.s. Random Task Scheduling 106
5.6.6 Effect of Node Failures on MDFS and HDFS 106

6. HETEROGENEOUS MOBILE CLOUD 108

6.1 MSPS Architecture and Problem Formulation 109
6.2 MSPS Design . 113

6.2.1 Data Creation . 113
6.2.2 Data Retrieval . 115

v

6.2.3 Data Processing . 116
6.2.4 Load Balancing . 117
6.2.5 Reliability Estimation . 119
6.2.6 Energy Profile . 120

6.3 Request Dissemination . 120
6.3.1 Agent-Based Search . 121

6.4 Evaluation . 125
6.4.1 Energy Consumption of Data Operations 126
6.4.2 Effects of Communication Interfaces 128
6.4.3 Performance of the Load-Balance Algorithm 129
6.4.4 Performance of the Agent-Based Search Algorithm 130
6.4.5 Hardware Implementation . 132

7. CONCLUSIONS . 134

7.1 Conclusions . 134
7.2 Future Work . 135

REFERENCES . 137

vi

LIST OF FIGURES

FIGURE Page

3.1 A cross-layer mobile cloud computing framework for distributed data
storage and data processing. 22

3.2 System architecture of the mobile cloud computing framework. The
framework runs on all nodes and it provides data storage and data
processing services to applications, e.g., fault-tolerant storage, video
processing, Hadoop Map-Reduce applications. 23

3.3 The operations supported by the k-out-of-n computing framework.
The maintenance component continuously runs at the background
while all other components are triggered only when specific events oc-
cur. Each event triggers a sequence of operations that are completed
by a set of nodes. 24

3.4 Data creation event (top) and data retrieval/processing event (bot-
tom). A big file is split into blocks, encoded into data fragments, and
distributed to the network. During the data retrieval or data process-
ing events, each block can be retrieved and recovered independently.
As a result, blocks of a file can be processed concurrently on multiple
processors. 26

4.1 (a) Root Mean Square Error (RMSE) of each iteration of Monte Carlo
Simulation. (b) A simple graph of 4 nodes. The number above each
node indicates the failure probability of the node. 36

4.2 The Minimum-cost flow problem formulation 48

4.3 An example of cache placement in distributed caching framework. The
number in the square indicates the frqReq counter for a specific frag-
ment. Black circles are fragment requesters. 53

vii

4.4 System architecture of cross-layer design for proposed distributed caching
framework. 1) fileReq: broadcast a file request; 2) fileRep: unicast
a file reply (may require a route discovery); 3) fragReq: unicasting a
fragment request (may require a route discovery); 4) data transmission
via TCP; 5) cache placement: broadcast an exchange request (exReq)
to one-hop neighbors, unicast an exchange reply (exRep), and unicast
an exchange confirmation (exCfm); 6) cache replacement. 54

4.5 An overview of our Mobile Distributed File System (MDFS). 56

4.6 (a) Energy measurement setting. (b) Current consumption on Smart-
phone in different states. 57

4.7 (a) A file of 4.1 MB is encoded with n fixed to 8 and k swept from
1 to 8. (b) Reliability with respect to different k/n ratio and failure
probability. 58

4.8 Execution time of different components with respect to various net-
work size. 59

4.9 Effect of mobility on energy consumption. We compare the three
different allocation algorithms under different mobility models. 62

4.10 (a) Effect of k/n ratio on data retrieval rate when n = 7. (b) Effect
of k/n ratio on energy efficiency when n = 7. 62

4.11 (a) Effect of τ2 and node speed on data retrieval rate. (b) Effect of τ2
and node speed on energy efficiency. 64

4.12 (a) The error of system reliability estimation in different network sizes.
(b) The effect of (ks, ns) on the system reliability and data redundancy. 65

4.13 (a) Performance comparison of unsplit storage parameter, i.e. (ks, ns) =
(kf , nf), and splitting storage parameter. (b) Compare the energy
consumption of random reallocation and min-cost flow reallocation. . 66

4.14 The effectiveness of the maintenance algorithm. The data retrieval
energy increases as the time elapses, but the system reliability remains
almost constant due to the updated storage parameter. 67

4.15 Maintenance energy of Dartmouth dataset at different times. 69

4.16 Comparison of our storage system (MDFS) with HDFS. (a) Mean data
retrieval energy from each node in the network at different times. (b)
Data retrieval rate – the percentage of nodes that can recover the data. 70

viii

4.17 Effect of nodes number on (a) Energy Consumption; (b) Retrieval
Rate; (c) Prefetching Overhead; (d) Total Caches. The test scenario
is based on 12 files, 600 requests, and the buffer size is set to be holding
up to 24 fragments. 71

5.1 The k-out-of-n data processing example with N = 9, np = 5, kp = 3.
(a) and (c) are two different task allocations and (b) and (d) are their
tasks scheduling respectively. In both cases, node 3, 4, 6, 8, 9 are se-
lected as processor nodes and each task is replicated to 3 different
processor nodes. (e) shows that shifting tasks reduce the job comple-
tion time from 6 to 5. 77

5.2 (a) The network has N nodes and each task has q replications. t1-1
is the first instance of task 1 and tM -q is the last instance of task M.
(b) (kp,np) is selected as (4,6). Nodes 1, 2, 3, 4, 6, and 9 are selected
as processor nodes by the task scheduling algorithm and each task is
assigned to (np-kp+1=3) different processor nodes. 82

5.3 An example of task schedule S. The job has M = 8 tasks, and each
task has 3 replicated instances. Schedule S has 3 levels and each level
contains 8 unique tasks. 85

5.4 The flow chart describes how the 2-stages Tabu Search solves the k-
out-of-n data processing problem. The first TS procedure explores the
number of processor nodes np and the possible subset of np nodes; the
second TS procedure explores the possible task allocation and task
scheduling. 88

5.5 Distributed Mobile Hadoop architecture. 91

5.6 (a) Effect of node failure on energy efficiency with fail-slow. (b) Effect
of node failure on energy efficiency with fail-fast. 95

5.7 (a) Effect of node failure on completion ratio with fail-slow. (b) Effect
of node failure on completion ratio with fail-fast. 96

5.8 (a) Effect of node failure on completion time with fail-slow. (b) Effect
of node failure on completion time with fail-fast. 97

5.9 (a) Comparison of performance before and after scheduling algorithm
on job completion time. (b) Comparison of performance before and
after scheduling algorithm on job consumed energy. 98

ix

5.10 The number of allowed processor nodes versus processing energy and
job makespan. (a) Processing energy (b) Job makespan 100

5.11 Effect of node failures on processing energy and job makespan. (a)
Processing energy (b) Job makespan (second) 101

5.12 Effect of deadline constraint on: (a) Processing energy (b) Job makespan
102

5.13 Performance evaluation of data processing on Dartmouth Outdoor
Dataset. (a) Processing energy (b) Job makespan 104

5.14 (a) Job Completion time versus Input dataset size (b) Cluster size on
Job Completion Time . 106

5.15 (a) Comparison of new task scheduling algorithm versus Random (b)
Comparison of job completion rate between HDFS and MDFS 107

6.1 Mobile Storage & Processing System (MSPS) System Architecture . 110

6.2 Data Creation & Data Retrieval. Node 11 creates a file with (k,n)=(3,5).
Dash line indicates storage request and reply messages; solid arrow line
represents data distribution flow. Nodes 2, 3, 9, 10, 11 are selected
as storage nodes. Node 12 retrieves the file. Dotted line indicates
data request messages; dash arrow line represents data retrieval flow.
2 fragments are retrieved through Wi-Fi network from node 10 and
node 11, and 1 fragment is retrieved through cellular network from
node 9. 121

6.3 (a) Data operations in MSPS. (b) Data operation with random allo-
cation. 126

6.4 (a) Comparison of using WiFi only, LTE only, or both for data pro-
cessing. (b) Energy consumption of different components. 128

6.5 (a) Energy consumption versus number of tasks assigned on processor
nodes with different energy capacities. (b) Same as (a), but without
using standardized energy. 129

6.6 (a) Energy consumption and Load Imbalance on different types of
nodes. (b) Load Imbalance and percentage of functional nodes. 131

6.7 (a) Number of resources discovered by a search agent. (b) Packets
sent during a searching procedure. 131

x

6.8 (a) Running time of data operations under different (k,n) settings. (b)
Data processing time in different network size. 132

xi

LIST OF TABLES

TABLE Page

4.1 Reliability Lookup Table. A 2-D slice of a 3-D lookup table. The
reliability r in this 2-D table is 0.8 42

5.1 Statistics of Network Trace. Average node to node distance (hop-
count), average degree of nodes, size of the maximal connected com-
ponent, and number of failed nodes. 103

6.1 MSPS Evaluation Settings. 125

xii

1. INTRODUCTION

In this section, we describe the problems that motivate this research. We then

introduce the research challenges and how these challenges are addressed, followed

by a list of main contributions.

1.1 Motivation and Challenges

In the traditional cloud computing, clients (personal computer, laptop, smart-

phone, etc.) offload computation or data to remote service providers such as Google

or Amazon to perform computation-intensive tasks that are infeasible on the local

devices. One important characteristic of the traditional cloud computing is that it

relies on an infrastructural network between the remote server and the clients, so

the performance of the Internet has great impacts on the service quality. Clients

suffer from random disruption or long delay that occur in the middle of the route or

at the remote servers. In remote areas where the Internet is unavailable, the cloud

applications relying on remote servers are simply impossible to operate.

Recent advances in the design and the deployment of mobile cloud systems tap

into the increasingly abundant sensing, storage, processing, and communication ca-

pabilities available on smart devices. In particular, a class of mobile cloud systems

consisting entirely of intermittently connected mobile devices has been conceived

and prototyped by researchers [49] [46] [91] [75]. Such infrastructureless and au-

tonomous mobile cloud systems are not only interesting from a theoretical point of

view, as they pose the most challenging design settings, but also important in en-

abling real-world applications. The applications, including, but not limited to, 1)

Tactical cloud systems for military operation; there is currently an effort by the U.S.

military to equip soldiers with commodity smartphones or tablets [31, 73]). 2) Dis-

1

aster relief situations where the network infrastructure is damaged by water, fire, or

wind [33,70]. 3) Crowded events like football game or New Year’s celebration where

the cellular network is overloaded and congested [11,90]. 4) Situations when cellular

communication or cloud service is expensive; if data are only to be shared locally, it

is unnecessary to relay data to remote cloud, which incurs multiple layers of extra

cost. For computation-intensive tasks such as video encoding/decoding and big data

processing that are infeasible on a single mobile device [31, 82], autonomous mobile

cloud provides a platform where a collection of mobile devices cooperate to complete

these complicated tasks.

There are many challenges in bringing the computation-intensive tasks to mobile

environments. Mobile devices are resource-constrained in terms of communication

bandwidth, processing power, reliability, and energy. While conserving the resources

on mobile devices is imperative, system performance should not be overlooked. This

research aims to realize a distributed data storage and data processing system in an

infrastructureless mobile cloud in which the services provided by the mobile devices

must be energy-efficient, fault-tolerant, and load-balanced. Since most mobile devices

are battery-powered, energy consumption for data distribution, data retrieval, and

data processing must be minimized. Reliability is a major challenge in mobile cloud;

unstable wireless links can make a node unreachable or cause network partitions, and

device failures may occur due to energy depletion or physical damage. As mobile

cloud is highly heterogeneous and mobile devices have various processing power,

communication technologies, energy capacities, and operating systems, efficiently

integrating and utilizing these resources is challenging. Specifically, the services need

to consider load-balance, ensuring that no node is overloaded with tasks beyond its

capability or becomes a hot-spot that bottlenecks the system performance. Finally,

security is also a concern as the stored data often contain sensitive information and

2

they should not be compromised if the devices are captured or stolen [45] [104]. To

address the aforementioned issues, the k-out-of-n mobile cloud computing framework

is proposed.

The framework was evaluated through both simulation and real-world implemen-

tations. We participated in the disaster response exercises and military technology

conference host by Texas A&M Engineering Extension Service (TEEX) [89] and

and Naval Post Graduate School respectively to demonstrate our development. The

framework is implemented as a Service in Android operating system and it provides

mobile applications data storage or data processing services. We implemented an

application Media Share for the disaster response exercises. During the exercise,

responders used this application to store and share media files (pictures or videos).

The stored media files can later be processed upon request to identify and extract

frames that contain human figures. Instead of manually searching through hundreds

of images and videos, Media Share completes the job in minutes using our MCC

framework. The feedback from real responders and military personals validates the

usefulness of this application and guides the development of the k-out-of-n computing

framework.

1.2 Dissertation Statement

Mobile devices are resources-constrained in terms of energy, processing, band-

width, and reliability. To extend the usability of mobile devices, most existing so-

lutions rely on the Internet to access resources from remote cloud. However, in

situations when remote cloud is unavailable (e.g., due to congested network, cloud

outage, or natural disaster), these mobile devices become useless. To address these

issues, this research proposes a mobile cloud computing (MCC) framework aimed

at an infrastructureless network where all participating nodes are mobile devices.

3

The mobile cloud framework provides distributed data storage and data processing

services to mobile applications and ensures the services are energy-efficient, fault-

tolerant, and load-balanced.

This study investigates the potentials and challenges of big data services in mo-

bile environments. The proposed framework minimizes the energy consumption and

enables computation-intensive data processing jobs in a mobile cloud consisting of

only mobile devices. Exploiting this MCC framework, applications requiring data

storage or data processing services can be migrated to and deployed in a mobile

environment quickly.

1.3 Main Contributions

The contributions of this research are outlined as follows:

A distributed data storage framework (the k-out-of-n storage) in an in-

frastructureless mobile cloud.

• It presents a mathematical model for both optimizing energy efficiency and

fulfilling the fault-tolerant requirements of data storage.

• It presents an efficient algorithm for estimating the communication cost in a

mobile ad-hoc network where nodes can leave, join, or move freely.

• It presents a simple and distributed protocol to monitor the mobile ad-hoc

network topology.

• It formulates a data caching problem that is designed considering the file access

pattern and user mobility to improve the energy efficiency and data availability.

• It presents a centralized solution and a distributed solution for solving the data

caching problem; the centralized solution obtains an optimal solution and the

distributed solution obtains an approximated solution in shorter time.

4

• It presents a parameter selection algorithm that chooses/adjusts parameter

(k, n) dynamically to maintain the system optimality (energy-efficiency, relia-

bility, and load-balance).

• It presents a mechanism for interpreting parameter (k, n) such that the data

reliability and the data redundancy can be considered separately. The mecha-

nism allows better flexibility and energy-efficiency when maintaining the stor-

age system.

A distributed data processing framework (the k-out-of-n data process-

ing) over the k-out-of-n storage in an infrastructureless mobile cloud.

• It formulates an optimization problem for task allocation and task scheduling.

The solution ensures that the data processing job is energy-efficient and fault-

tolerant.

• It presents a heuristic solver based on the Tabu Search technique to efficiently

obtain an approximated a solution.

• It implements the Hadoop generic file system interface such that Hadoop-

MapReduce can process the data stored in our k-out-of-n storage. With this

interface, any existing MapReduce application can be ported to mobile envi-

ronments quickly.

• It implements a new scheduling algorithm for Hadoop jobTracker to minimize

the data transferring energy when taskTrackers retrieve data blocks from the

k-out-of-n storage.

A distributed data storage and data processing framework in a hetero-

geneous mobile cloud.

5

• It presents a lightweight distributed framework for data storage & data pro-

cessing in a heterogeneous mobile cloud. The framework is scalable to larger

networks and the degree of heterogeneity.

• It presents a distributed and low-overhead load-balancing algorithm that

heuristically reduces the system-wide load imbalance.

• It presents an energy-efficient agent-based search algorithm that explores and

discovers resources such as data fragments and free processors in a mobile cloud.

• It implements a media sharing and processing Android application based on

the heterogeneous MCC framework.

1.4 Organization

This dissertation is organized as follows. In Section 2, the state of the art and

prior works related to this dissertation are reviewed. In Section 3, the high-level ar-

chitecture and the main operations of this MCC framework are introduced. Section 4

describes the k-out-of-n distributed data storage framework, Section 5 describes the

k-out-of-n distributed data processing framework, and Section 6 presents the inte-

grated k-out-of-n data storage and data processing framework in a heterogeneous

mobile cloud. Finally, Section 7 concludes this dissertation and illustrates its future

perspective.

6

2. LITERATURE REVIEW

In this section, we review the backgrounds and the related works of this research.

Three major topics, distributed data storage, distributed data processing, and mobile

cloud are discussed.

2.1 Distributed Data Storage

A distributed file system (DFS) is a file system constructed of a collection of

network-connected nodes. The purpose of DFS is to support the same kind of file

sharing when users are physically dispersed in a distributed system [66]. This topic

has long been studied and most challenges were considered [34,41,62,76,88,94,101].

In early 1990, the research and development focused on file system deployed in data

center where nodes are servers connected with high bandwidth LAN, which is also

the most common architecture adopted in industry today. A different type of dis-

tributed file system, Peer-to-Peer (P2P) file system, which targets on millions of

PCs connected with the Internet, was introduced in 2000. P2P is a class of appli-

cations that take advantage of resources – storage, cycles, content, human presence

– available at the edge of the Internet [93]. Conventional client-server systems are

asymmetric in which servers are usually more powerful than the clients, while in P2P

system, each peer may be both client or server and hardware specifications can be

highly nonuniform. Also, most conventional distributed file system requires a cen-

tralized node that coordinates all nodes, stores the meta data, and maintains the file

directory. Many P2P file systems, however, are completely decentralized and do not

need a centralized node. Some famous P2P file systems are [9, 39, 40, 77, 83, 85, 95].

In the past decade, due to the need of retaining “Big Files” in long-term storage

devices, big companies Google and Yahoo developed distributed file systems that

7

can handle terabyte of files efficiently and relievablely. Google designed and im-

plemented Google File System (GFS) [34] in early 2002. GFS was designed to be

fault-tolerant on inexpensive commodity hardware serving a large number of clients.

On top of GFS, Google developed BigTable in 2005 aimed to store and manage

structured data that may be petabytes large across hundreds or thousands of ma-

chines. Although not a relational database, BigTable resembles a high-performance

and scalable database that stores data in a multi-dimensional sorted map [12]. Ya-

hoo developed a distributed, scalable, and fault-tolerant file system called Hadoop

Distributed File System (HDFS) in 2005. Similar to GFS, HDFS aims to store ter-

abyte of data across hundreds or thousands of commodity hardware [94]. HDFS was

originally designed to store search engine data, but was quickly improved to support

analytic for various production applications. Many Hadoop-related projects are still

being actively developed on top of HDFS. E.g., HBase, Hive, ZooKeeper, etc.

Different from GFS or HDFS which are designed for traditional computers de-

ployed in a static network with high bandwidth, our mobile distributed file system

(MDFS) runs on resource-constrained mobile devices in which the battery capacity

is limited, the memory is small, and the communication bandwidth is low. Fur-

thermore, the mobile network is dynamic, meaning the topology changes constantly

when the mobile nodes move. P2P file system is similar to our MDFS in a sense that

MDFS is also decentralized and it can be deployed in a network with nonuniform

nodes. However, P2P file system operates over the Internet while MDFS primarily

operates in an mobile ad-hoc network. Also, nodes in P2P file systems generally have

constant energy source and are not mobile. All these differences pose new research

challenges to MDFS.

Erasure coding has always been a popular fault-tolerant technique in distributed

data storage system. Researchers proposed solutions for achieving higher reliability

8

in dynamic networks. Comparing to another common method for improving the data

reliability, data replication, erasure coding achieves higher mean time to failure and

lower bandwidth requirement (network traffic) [100]. Although erasure coding tech-

nique outperforms replication technique in many aspects, due the simplicity of repli-

cation technique and low cost storage medias, replication technique are still widely

adopted (e.g., GFS and HDFS). Dimakis et al. proposed several erasure coding al-

gorithms for maintaining a distributed storage system in a dynamic network [23–25].

They encode a file into segments and allocate segments to storage nodes to maximize

the probability of successfully recover a file. A different allocation scheme can also

minimize the expected data recovery delay. Leong et al. proposed an algorithm for

optimal data allocation that maximizes the recovery probability [65,65]. Aguilera et

al. proposed a protocol to efficiently adopt erasure code for better reliability with

low data redundancy [1]. Their solution achieves efficient concurrent data update.

Ali et al. proposed Raptor codes based distributed storage algorithms for collecting

data in a wireless sensor network in which k nodes sense data and distribute the data

to n nodes (k ≤ n) [3]. Cooley et al. proposed Lincoln Erasure Code (LEC) that

is applicable to large-scale distributed storage across thousands of nodes. LEC was

shown to provide higher performance in terms of encoding/decoding throughput and

network scalability [3]. Rashmi et al. proposed Minimum Bandwidth Regenerating

code and Minimum Storage Regenerating code based on a common product-matrix

framework [84]. MDFS adopts the similar Maximum Distance Separable (MDS)

code as these prior works, but our objective function, minimizing the system-wide

communication energy, was never considered before. Furthermore, MDFS considers

a dynamic network while most prior works consider a static network with stable

network connectivity.

MDFS conservers data transferring energy by placing data fragments in selected

9

storage nodes such that the data can be retrieved with the lowest communication en-

ergy. Data allocation problem in distributed storage system had been well studied in

the traditional cloud. Several works also optimized latency and communication costs.

Alicherry and Lakshman proposed a 2-approximation algorithm for selecting optimal

data centers in a distributed cloud with the objective to minimize the maximum dis-

tance, or latency, between the selected data centers. The same algorithm is also used

to select rack in each data center [2]. Beloglazov et al. It presents an architectural

framework and principles for energy-efficient cloud computing for data centers. It

solved the problem by applying their Modified Best Fit Decreasing algorithm. Their

scheduling algorithm considers quality of service and energy consumption character-

istics of the devices [8]. Liu et al. proposed an Energy-Efficient Scheduling (DEES)

algorithm for data grid that supports real-time and data-intensive application. DEES

integrates the process of scheduling tasks and data placement considering data lo-

cations and application properties. It saves energy by reducing data replications

and task transfer [68]. [92] proposed cloudlet seeding, a strategic placement of high

performance computing assets in wireless ad-hoc network such that computational

load is balanced. CAROM (Cache A Replica On Modification) is an ensemble of

replication and erasure codes to provide efficient and reliable distributed file system.

CAROM ensures a low bandwidth, low redundancy, and low latency file system [69].

Most of these solutions, however, are designed for high performance servers in a static

network. Our solution focuses on resource-constrained mobile devices in a dynamic

network.

Distributed data storage on mobile devices in an infrastructureless network have

also been looked at. For example, STACEE [78] creates a peer to peer storage system

from connected laptops and mobile devices, with an explicit goal to minimize the

total energy consumption while maximizing user satisfaction. WhereStore [96] is a

10

location-based data storage for smart devices interacting with the cloud. It uses each

device’s location history to determine what data to replicate locally. Phoenix [81]

is a distributed communication and storage protocol aiming to make efficient use

of storage space and communication bandwidth while maximizing the longevity of

stored data. PP2db is a privacy-preserving and scalable distributed file system tar-

geted at mobile network. It supports the anonymous but trusted exchange of Quality

of Experience (QoE) information [20]. Anderson et al. investigates a mobile P2P ar-

chitecture that can reconcile the decentralized operation of P2P file sharing with the

interests of network operators such as traffic control [4]. Huchton et al. [46] proposed

a k-Resilient Mobile Distributed File System for mobile devices targeted primarily

for military operations. Using the Reed Solomon code and Shamir’s key sharing

algorithm, the file system stores file fragments securely on the smartphones. Neither

the data reliability or data maintenance are explicitly considered in these works.

Our MDFS considers the data reliability and energy-efficiency in an integrated man-

ner, which was never attempted before. MDFS also studies the storage maintenance

problem and propose an algorithm to continuously monitor and maintain the system

optimality.

2.2 Distributed Data Processing

The volume and the velocity of data generation has never stopped growing. Re-

searchers and computer scientists have developed different techniques to store, pro-

cess, and maintain these data. In order to adapt to such fast-growing technology,

one of the objectives is to leverage low-cost commodity hardware as computation

platform instead of using expensive supercomputers. The computation capability

of a cluster built upon commodity hardware can be scaled up or upgraded much

easier than a supercomputer. With this low cost computation platform, companies

11

can afford to build their in-house data center consisting of hundreds or thousands of

processors. Three most popular distributed data processing frameworks at the time

this dissertation is written are Hadoop [29], Storm [97], and Spark [106], all licensed

under Apache Software Foundation [5]. Hadoop is designed for batch data processing

in which each job processes a fixed size file stored in the Hadoop Distributed File

System; Storm is designed for real-time stream data processing in which it continu-

ously processes an unbounded stream of data generated from sources such as social

network feed or video stream; Spark is a more general data processing framework

that can handle both batch processing and steam data processing. Spark Streaming

receives live input data streams and divides the data into batches, which are then

processed by the Spark engine to generate the final stream of results in batches [30].

As commodity hardware are not designed for high reliability or long Mean Time

To Failure, Hadoop, Storm, and Spark are all built with fault-tolerant mechanisms to

recover from node failures. When a cluster consists of thousands of commodity hard-

ware such as hard drives, memory, power supply, and processors, component failures

become the norm rather than the exception [34]. Here we briefly introduce the fault-

tolerance mechanism used by different frameworks. In Hadoop, a jobTracker on the

NameNode continuously monitors each deployed job that is concurrently executed

by many taskTrackers on different processor nodes. If any of the taskTracker fails

to respond the heartbeat message for a period of time, the jobTracker considers this

processor fails and reschedules the unfinished tasks to other taskTrackers. In case

a jobTracker node (NameNode) dies, all the running jobs are lost (Single point of

failure). Recent improvement on Hadoop has allowed a Checkpoint node to peri-

odically backups the NameNode’s meta data information. In Strom, each worker is

monitored by both the node’s Supervisor and the Nimbus; Supervisor can restart a

worker if it dies, and Nimbus can reassign a worker to other nodes in case the node

12

fails. Nimbus is similar to the JobTracker in Hadoop and is responsible for assigning

tasks to nodes and monitoring for failures. Each node runs a Supervisor daemon

that listens for tasks assigned to this node and monitors the local worker processes.

In case Nimbus or Supervisor dies, they can be safely restarted without affecting the

ongoing workers, meaning that the topology can continue executing without Nimbus

or Supervisors’ presence. Nimbus or Supervisor can be restarted using the states

kept in ZooKeeper. However, if any worker also dies during this period, there is no

way to restart or reassign the lost task. Sparks’s fault-tolerance mechanism relies

on Resilient Distributed Dataset (RDD), which is an immutable, deterministically

re-computable, and distributed dataset. In case a worker node fails, a lost RDD can

be reconstructed using the lineage information. A transformation applied to a RDD

produces another RDD, and the lineage information records how a RDD was derived.

However, in case the driver node (master) running the Spark Streaming application

fails, all workers and their in-memory data are lost. The major differences between

our k-out-of-n data processing framework and these existing works are that they

are designed to operate in static and stable network environment in which data are

transferred though high-bandwidth LAN and nodes are powered by constant energy

source. Most importantly, they all face the single point of failure problem to some

degree.

We now look at various techniques used to achieve fault-tolerance in distributed

computing. In general, fault-tolerance includes “fault-detection” step and “fault-

recovery” step. In this dissertation, we assume a fail-fast model meaning that once

an error occurs on a node, it fails immediately and does not attempt to repair it-

self. The detection of fail-fast fault is simple and straightforward. There are three

most common fault-tolerant techniques in modern distributed computing systems,

checkpointing, replication, and rescheduling. Checkpointing is the process of peri-

13

odically storing the states of a running process on a reliable storage. The stored

data, naming checkpoint, allows the system to recover to an earlier state in case of

a failure [10, 38, 50, 53, 86]. One of the challenge in ensuring the correctness of a

checkpoint is Synchronization. If a checkpoint occurs when there are still in-transit

messages, the saved states may be inconsistent. [27] describes three checkpointing

strategies, coordinated checkpointing, uncoordinated checkpoint, and communication-

induced checkpointing. In coordinated checkpointing, processes synchronize with

each other and save states at the same time to ensure the consistency. In uncoor-

dinated checkpointing, each process can schedule to save state independently. This

strategy is more efficient, but has the risk of inconsistency. Communication-induced

checkpointing reduces the overhead in process synchronization by only coordinating

several critical checkpoints.

Replication technique achieves fault-tolerance by duplicating a task to multiple

instances and concurrently running these instances on multiple processors. It ensures

that the task can complete successfully as long as one of the processor finishes its

assigned tasks [63, 67, 98, 99, 107]. How to place the replicas and how to ensure the

consistency between replicas have great impacts on the overall reliability and system

performance. Task replication incurs communication delay and network traffic. A

large portion of this dissertation focuses on optimizing data allocation and task

allocation to improve the reliability, energy-efficiency, and load-balance performance.

Rescheduling technique reassigns a failed task to another available processor. It does

not incur extra storage or computation resources like checkpointing or replication, but

it takes longer for recovering a time-consuming task. As a result, this strategy is not

suitable for jobs that consist of long-running processes. If processes are synchronized,

then the entire job may pause in order to wait for the failed process to restart [47,

48,51,103]. Depending on the available resources and the types of applications, one

14

fault-tolerant technique may be better than another. Hadoop and Storm belong

to rescheduling, and Spark belongs to checkpointing. The fault-tolerance technique

in our k-out-of-n data processing framework is a combination of checkpointing and

rescheduling; when a node fails, the unfinished tasks on this node are reassigned to

other processors nodes. This schedule is predetermined before the processing starts

to ensure the energy-efficiency and load-balance. During the job execution, each

processor node performs checkpointing by announcing its execution state (the tasks

that it has completed) so that other nodes know what to restart if this node fails.

Distributed data processing in mobile cloud has also been studied. In 2009,

Marinelli introduced a Hadoop based platform Hyrax [71] for distributed data pro-

cessing on smartphones. In particular, the Hadoop taskTracker and DataNode pro-

cesses were ported to Android phones. The jobTrakcker and NameNode still run on a

regular computer. Hyrax runs in an infrastructural network where all nodes connect

to a single access point router. Another MapReduce framework based on Python,

Misco [54] was implemented on Nokia mobile phones. It has a similar server-client

model where the server keeps track of various user jobs and assigns them to workers

on demand. Yet another server-client model based MapReduce system was proposed

over a cluster of mobile devices [26] where the mobile client implements MapReduce

logic to retrieve work and produce results from the master node. Similar to Hyrax,

the server of Misco also runs on a regular computer. P2P-MapReduce [72] describes

a prototype implementation of a MapReduce framework which uses a peer-to-peer

model for parallel data processing in dynamic cloud topologies. It exploits p2p model

to manage node churn, node failure, and job recovery in a distributed manner. At

each time, a small subset of nodes are assigned as master nodes and others are as-

signed as master nodes. The role may change dynamically depending on the network

condition and to ensure the desired master/slave ratio.

15

Several prior works had attempted to deploy mobile clouds in wireless ad-hoc net-

works. Huerta-Canepa and Lee proposed a virtual cloud computing framework [49]

targeting at an ad-hoc network consisting of mobile phones. The framework detects

nearby nodes that have the same movement pattern, and creates a virtual resource

provider on the fly among these nearby nodes. MobiCloud [42] treats mobile devices

in an ad-hoc network as service nodes to provide traditional cloud computing ser-

vices. To build a trustworthy MANET communication, MobiCloud addresses trust

management, secure routing, and risk management in the network. It supports in-

formation dissemination, routing, and localization functions in MANET. Continuing

the MobiCloud work, Huang et al. [43] proposes data processing framework in mo-

bile cloud through trust management and private data isolation. In this work, the

mobile cloud has tree virtual domains, the cloud mobile and sensing domain, the

cloud trusted domain, and the cloud public service and storage domain. Finally,

Scavenger [61] is a cyber-foraging system that eases the development of distributed

processing applications in a mobile cloud setting. It intelligently schedules and al-

locates tasks considering data locality, device capability, and task complexity. The

previous research focused only on the parallel processing of tasks on mobile devices

using the MapReduce framework without addressing the real challenges that occur

when these devices are deployed in the mobile environment. Different from most

of the existing works, our distributed data processing algorithm aims to achieve

energy-efficiency, load-balance, and fault-tolerance in mobile cloud.

2.3 Mobile Cloud

Cloud computing is an aggregation of computation resources such as storage,

computation, and software in which clients request services over the internet. Based

on the model of the service, it can generally be categorized into three types, Infras-

16

tructure as a service (IaaS), Platform as a service (PaaS), and Software as a service

(SaaS). Mobile cloud Computing (MCC) can be defined as an integration of cloud

computing technology with mobile devices to make the mobile devices resource-full

in terms of computational power, memory, storage, energy, and context awareness.

Mobile cloud computing is the outcome of interdisciplinary approaches comprising

mobile computing and cloud computing [28, 56]. A mobile cloud may or may not

consist of the traditional cloud services; in an infrastructural mobile cloud, mobile

devices usually access service from or offload computation to remote servers over the

Internet; in an infrastructural-less or ad-hoc mobile cloud, a group of mobile devices

and computing nodes form a self-sustained cloud in a local network. The mobile

cloud studied in this work belongs to the ad-hoc mobile cloud. Mobile cloud com-

puting is similar to conventional cloud computing because they both enable resource

sharing between physically separated service providers and clients. In mobile cloud

computing, however, mobile devices face more limitations such as computation, stor-

age, connectivity, energy, and mobility, which incurs more problems that do not exist

in traditional cloud.

The architecture of MCC application can be classified into 3 types, remote cloud

server, virtual resource cloud, and cloudlet [28]. Most of the commercial mobile

applications use the remote cloud server architecture in which mobile applications

completely offload computations and data storage to remote servers hosted in data

centers. E.g., Google Map, Gmail, Facebook App, SoundHound, Yelp, etc. This type

of MCC is similar to traditional cloud computing because mobile devices simply

act as a thin client connecting to remote servers over the Internet. The major

disadvantage of this architecture is that the mobile applications become unusable

when there is no Internet or the remote server is down. In virtual resource cloud,

a collection of mobile devices form a peer-to-peer network and each mobile device

17

provides services to or request services from other mobile nodes. This type of MCC

does not rely on the Internet or remote servers, and it can function in infrastructural

or infrastructureless local network. However, because all services (e.g., storage and

computation) are provided by resources-constrained mobile devices, the complexity of

the tasks that virtual resource cloud can perform still lags behind remote cloud server.

E.g., Hyrax [71], Scavenger [61], MobiCloud [42], and Serendipity [91]. Cloudlet

MCC combines the architecture from both remote cloud and virtual resource cloud.

Mobile devices offload workload to the nearby computing nodes (cloudlet) such as

routers or PC, and these stationary computing nodes have stable connection to the

Internet or remote cloud. Cloudlet itself can also provide services to mobile devices,

and computation or data intensive tasks are offloaded to remote servers. In such

architecture, MCC can function in a local network without the Internet, and it can

reach the more powerful remote cloud if the Internet is available. The mobile devices

in cloudlet again act as a thin client connecting to the cloudlet. E.g. Cloudlet [87],

PocketCloudlet [60], and Cloudlet Seeding [92].

In MCC, mobile nodes offload data or computation to cloud. Depending on

the MCC architecture and the types of applications, different offloading strategies

have been proposed. The most common offloading strategies in current research are

Client-Server Communication, Virtualization, and Mobile Code [28]. For applica-

tions using Client-server communication strategy, mobile clients use remote proce-

dure call (RPC) or remote method invocation (RMI) to offload tasks to servers in the

cloud. This offloading method is similar to the service provision in traditional cloud

in which a remote cloud server provides a unique API to service all mobile clients

from different platforms. Most commercialized mobile applications adopt this simple

method. It is also used in many academic works such as Hyrax [71], Huerta-Canepa’s

work [49], Cuckoo [55], and Carmen [57]. Virtualization method abstracts virtual

18

resources such as hardware, operating system, or application in a VM-layer. Mobile

clients offload tasks through memory page migration, which provides a seamless and

non-interrupted vision of task execution. Identical codes can be executed on both

servers and clients over the VM-layer, and developers have the finest control of what

to offload and what not to offload [15,80]. Virtualization solution is the most compre-

hensive solution, but its realization is usually complicated, error-prone, and causes

significant overhead. Some example projects are CloneCloud [14], ThinkAir [58],

and Clone2Clone [59]. The third offloading strategy Mobile Code allows a client to

transfer a piece of code to server and server can run the code directly. Some existing

Internet browser technologies such as JavaScript and ActiveX have used this method

for decade. Example projects in MCC are MAUI [21], Balan’s work [6], Zhang’s

work [108], and Scavenger [61].

A MCC framework is usually designed under a specific objective according to

its applications. Due to the limited resources on mobile devices, performance ob-

jectives such as energy, security, latency, or system lifetime, are often being opti-

mized. In some cases, a framework may try to achieve multiple objectives simulta-

neously. Here we briefly describe several prior works with different design objectives.

CloneCloud [14] uses a combination of static analysis and dynamic profiling to de-

termine whether offloading a thread can reduce the execution time or energy use for

a target computation and communication environment. Scavenger [61] proposes a

mobile code approach to ease the development of cyber foraging (MCC) applications.

Developers can easily create highly mobile, distributed, and parallel mobile applica-

tions on Scavenger system. MobiCloud [42] proposes a MCC computation framework

in mobile ad-hoc network that provides a fundamental trust model including iden-

tity management, key management, and security data access policy. MAUI [21]

supports fine-grained code offload (mobile code) to maximize energy savings. It de-

19

cides at runtime whether to execute a method remotely or locally under the real-time

networking and CPU conditions. Carmen [57] manages the connectivity of a set of

mobile nodes and enables mobile users to coordinate system resources (computa-

tion) across a mobile cloud. ThinkAir [58] exploits the smartphone virtualization

technique to provide method-level computation offloading. ThinkAir provides on-

demand resource allocation to reduce execution time and energy consumption on

mobile devices.

20

3. SYSTEM ARCHITECTURE

This section describes the architecture of our Mobile Cloud Computing (MCC)

framework in high level. As shown in Fig. 3.1, the k-out-of-n MCC framework

is built across network layer, transport layer, and application layer. The major-

ity of the functions are implemented above the transport layer, but the framework

accesses routing information and link quality information from the network layer.

The expected outcome of this framework is an energy-efficient, fault-tolerant, and

load-balanced distributed data storage & processing system for a dynamic network.

Figure 3.2 shows how the framework interacts with applications. The framework runs

on all nodes in the mobile cloud and provides services to applications that aim to:

(1) store data in mobile cloud reliably such that the energy consumption for trans-

ferring the data is minimized (the k-out-of-n data storage); (2) reliably process the

stored data such that energy consumption for processing the data is minimized (the

k-out-of-n data processing); and (3) support heterogeneous network that consists of

nodes of different hardware capabilities. As an example, an application running in

a mobile ad-hoc network generates many media files and these files must be stored

reliably resilient to device failures, i.e. the files are recoverable even if one or several

devices in the network fail. At later time, the application may query for information

like the number of an object appearing in a set of video files. Without loss of gen-

erality, we assume a stored data object immutable, meaning that it is stored once,

and will be retrieved or accessed for processing multiple times later.

As shown in Figure 3.2, applications generate data and our framework stores

data in a set of mobile nodes. For higher data reliability and availability, each data

is encoded and partitioned into fragments ; the fragments are distributed to a set of

21

Transport

Network

MAC

Physical

Applications

Distributed Data Storage

E
n
e
rg
y

K-out-of-n MCC Framework

Distributed Data Processing

R
e
lia
b
ility

Lo
a
d
-

B
a
la
n
ce

Figure 3.1: A cross-layer mobile cloud computing framework for distributed data
storage and data processing.

storage nodes and any subset of k different fragments can recover the original file.

There are two options for processing the stored data, either using our k-out-of-n

Data Processing component or using the Hadoop MapReduce component. For k-

out-of-n data processing component, applications provide processing functions and

each function is instantiated to multiple tasks that process a set of data concur-

rently on multiple nodes. We call a set of tasks instantiated from one function a job

and nodes executing the tasks are processor nodes. For Hadoop MapReduce compo-

nent, our framework provides the same interface as Hadoop Distributed File System

(HDFS) such that any existing MapReduce application can directly access and pro-

cess files stored in the k-out-of-n data storage. Client nodes are the nodes requesting

data allocation or processing operations. A node can have any combination of roles

from storage node, processor node, or client node, and any node can retrieve data

fragments from any storage node.

22

Dynamic Network

Applications data3

data2

data1

func3

func2

func1

Network

Maintenance

k-out-of-n Data

Processing

AllocateData() ProcessData()

k-out-of-n Computing Framework

k-out-of-n Data

Storage

Processor StorageClient

Map-Reduce

Figure 3.2: System architecture of the mobile cloud computing framework. The
framework runs on all nodes and it provides data storage and data processing services
to applications, e.g., fault-tolerant storage, video processing, Hadoop Map-Reduce
applications.

3.1 Operations in the k-out-of-n Computing Framework

Topology Change, Data Creation, Data Retrieval, and Data Processing are the four

primary operations in the k-out-of-n computing framework. An operation is triggered

by requests from the applications and each operation consists of a set of components.

Figure 3.3 shows the main operations and their corresponding components. Network

Maintenance Component continuously monitors the network topology, including the

reliability (or failure probability) of each node, and the neighbors of each node.

Upon a significant change of network condition, network maintenance component

notifies the framework and the framework reevaluates the system parameters and

optimal data allocation. Except for the network maintenance component, all other

components are triggered only when specific events occur. In the rest of this section,

23

Initialization

Event Event Event Event

Data
Creation

Split Data

Encode Data

Distribute Data

Topology
Change

Data
Retrieval

Block-Retrieval

Decode Data

Coalesce Data

Data
Processing

Task Allocation,
Scheduling, and

Execution

Complete

Network

Maintenance

Reliability
Estimation

k-out-of-n computing framework

Topology Discovery

Parameter Selection

Data Re-allocation

Exp. Dist. Estimation

Figure 3.3: The operations supported by the k-out-of-n computing framework. The
maintenance component continuously runs at the background while all other compo-
nents are triggered only when specific events occur. Each event triggers a sequence
of operations that are completed by a set of nodes.

we briefly introduce these four data operations. More detail will be covered in the

later section.

3.1.1 Network Maintenance and Topology Change Event

When the network maintenance component detects a significant change of net-

work condition due to mobility, node failures, or depleted energy, it initiates a se-

quence of procedures to reexamine the network. Topology Discovery Component

floods a discovery packet to the network and each node replies with its neighbor ta-

ble and estimated reliability. Similar to traditional distributed computing settings,

reliability is defined as the probability that a stored data object can be recovered

successfully or a processing job completes within a predefined time period. Reliability

Estimation component on each node estimates its own reliability based on the resid-

ual energy, mobility, and application-specific factors assigned by the administrator.

24

A node is considered failed if other nodes in the network cannot communicate with

it, which may be caused by hardware/software failure, depleted battery, or physical

damage. Once a node fails, its stored data or assigned tasks are no longer accessi-

ble. Based on the reliability of nodes and network topology, Expected Transmission

Estimation component computes the expected distance matrix D, in which each

element Dij indicates the expected energy consumption for node i to send a unit

packet to node j. Parameter Selection component then searches for parameter (k, n)

that can achieve data reliability requirement and load-balance requirement. Finally,

Data Reallocation component tries to restore the system optimality by reallocating

data fragments. It computes the most energy-efficient strategy for reallocating data

fragments if possible. In situations when too many fragments and storage nodes fail,

Data Redistribution is necessary, which invokes a Data Retrieval followed by a Data

Creation. The purpose is to recover the original data, regenerate the data fragments,

and redistribute the data fragments.

3.1.2 Data Creation Event

Data Creation event is triggered when a client node requests to store a file. A

file is first split into blocks and each block is encrypted and encoded into multiple

data fragments. Splitting a file into blocks allows a file to be recovered partially

and thus allows multiple blocks of a file to be recovered/processed concurrently on

different processor nodes. We use Shamir’s key sharing algorithm and Reed-Solomon

error correction code to encrypt and encode each data block. The top of Figure 3.4

illustrates how a file is split into blocks and encoded into fragments. Once all the key

and data fragments are ready, they are sent to and stored on a set of selected storage

nodes such that the stored data are reliable and can be accessed energy-efficiently.

25

1

2

3

s

File

Block

1
2

3
n

1
2

3
n

Fragments

Encode

Split

1

2

3

4

1

2

3

4

65

5

6

Block

File

Block

Figure 3.4: Data creation event (top) and data retrieval/processing event (bottom).
A big file is split into blocks, encoded into data fragments, and distributed to the
network. During the data retrieval or data processing events, each block can be
retrieved and recovered independently. As a result, blocks of a file can be processed
concurrently on multiple processors.

3.1.3 Data Retrieval Event

Data Retrieval event is triggered when a client requests for either a file read

operation or a data processing operation. Given the data blocks of a file, Block

Retrieval component locates and retrieves data and key fragments from the storage

nodes. Once all the required fragments are successfully retrieved, Data Decoding

component decodes and decrypts the fragments, and recovers the data blocks. The

original file can be reconstructed by coalescing all the recovered data blocks.

26

3.1.4 Data Processing Event

Data processing event is triggered when a client requests to process one or multiple

files stored in the distributed storage. A processing job can have one or multiple

tasks and each task is assigned to one of the selected processor nodes. Specifically,

each task corresponds to one data block that is to be retrieved and processed on a

processor node. The k-out-of-n data processing component achieves fault-tolerance

by replicating each task to multiple task instances such that the job can complete

successfully as long as k or more of the processor nodes finish their assigned tasks.

To reduce the energy consumption for retrieving and processing the tasks, tasks

are allocated and scheduled to processor nodes in a way to minimize the expected

data transmission & data processing energy. In addition, when an optional deadline

constraint is provided, the framework ensures that the expected job makeSpan meets

the deadline.

27

4. DISTRIBUTED DATA STORAGE*

In this section, we present the k-out-of-n data storage framework that supports

fault-tolerant and energy-efficient remote storage under a dynamic network topol-

ogy, i.e., mobile cloud. Note that part of this section is reprinted from the previously

published papers.∗ Without loss of generality, in this section, we assume that the

mobile cloud consists of only homogeneous mobile nodes where all nodes have iden-

tical hardware capability and form a mobile ad-hoc network. The more complicated

heterogeneous network will be studied in the later section. Each node can move, join,

or leave the network freely. The mobility of the nodes is primarily due to human

movements, e.g., that of soldiers or disaster responders. The network provides mo-

bile cloud services for applications that need energy-efficient and reliable distributed

storage. We assume all nodes can be used for storing data, and any node can be a

client node that requests storage services from the mobile cloud.

We integrate the k-out-of-n reliability mechanism into the mobile cloud. k-out-

of-n is a well-studied topic in reliability control [16] that ensures a system of n com-

ponents operates correctly as long as k or more components work. More specifically,

we investigate how to store data in a mobile cloud with the k-out-of-n reliability such

that: 1) the system-wide communication energy for distributing and retrieving the

∗Reprinted with permission from “Resource allocation for energy efficient k-out-of-n system in
mobile ad hoc networks” by Chien-An Chen, Myounggyu Won, Radu Stoleru, and Geoffrey Xie,
International Conference on Computer Communications and Networks, 2013, Copyright c© 2013,
IEEE.
Reprinted with permission from “Energy-Efficient, Fault-Tolerant Data Storage & Processing in
Dynamic Networks” by Chien-An Chen, Myounggyu Won, Radu Stoleru, and Geoffrey Xie, In-
ternational Symposium on Mobile Ad Hoc Networking and Computing, 2013, Copyright c© 2013,
Association for Computing Machinery, Inc.
Reprinted with permission from “Energy-Efficient, Fault-Tolerant Data Storage & Processing in
Mobile Cloud” by Chien-An Chen, Myounggyu Won, Radu Stoleru, and Geoffrey Xie, IEEE Trans-

actions on Cloud Computing, 2015, Copyright c© 2015, IEEE.

28

stored data is minimized; and 2) the stored data meets the data reliability require-

ment during a predefined mission completion time. In this proposed framework, a

data object is encoded and partitioned into n fragments, and then stored on n dif-

ferent storage nodes. As long as k or more of the n nodes are available, the data

object can be successfully recovered. The parameters k and n determine the degree

of reliability. Smaller k/n ratio achieves higher reliability with the cost of higher

data redundancy. System administrator may select these parameters depending on

the data reliability requirements and storage capacity. The framework also provides

an adaptive Parameter Selection algorithm that adjusts the parameters based on the

reliability requirement and the network condition.

In the rest of the section, we first formulate the k-out-of-n data storage problem.

We explain in detail how each component in the k-out-of-n data storage framework

works. A variation of the data storage problem that uses splitting (k, n) parameters

is then present. To further improve the performance, we propose a caching algorithm

designed specifically for the k-out-of-n data storage. Finally, we show the evaluation

results.

4.1 Formulation of the k-out-of-n Data Storage Problem

We consider a dynamic network with N nodes denoted by a set V =

{v1, v2, ..., vN}. We assume nodes are time synchronized. For security purpose, only

a set of n selected storage nodes can store data and other nodes cannot cache any

retrieved data, i.e., a client deletes the retrieved file immediately after reading it. Be-

fore the application-predefined mission completion time T , each client accesses each

created file once. For convenience, we will use i and vi interchangeably hereafter. The

network is modeled as a graph G = (V,E), where E is a set of edges indicating the

communication links among nodes. Each node has an associated failure probability

29

P [fi] where fi is the event that causes node vi to fail.

Relationship Matrix R is a N×N matrix defining the relationship between nodes

and storage nodes. More precisely, each element Rij is a binary variable – if Rij is

0, node i will not retrieve data from storage node j; if Rij is 1, node i will retrieve

fragment from storage node j. Storage node list X is a binary vector containing

storage nodes, i.e., Xi = 1 indicates that vi is a storage node.

The Expected Transmission Time Matrix D is defined as a N ×N matrix where

element Dij corresponds to the ETT for transmitting a fixed size packet from node i

to node j considering the failure probabilities of nodes in the network, i.e., multiple

possible paths between node i and node j. The ETT metric [18] has been widely used

for estimating transmission time between two nodes in one hop. We assign each edge

of graph G a positive estimated transmission time. Then, the path with the shortest

transmission time between any two nodes can be found. However, the shortest

path for any pair of nodes may change over time because of the dynamic topology.

ETT, considering multiple paths due to nodes failures, represents the “expected”

transmission time, or “expected” transmission energy between two nodes.

Ropt = arg min
R

N∑

i=1

N∑

j=1

DijRij (4.1)

Subject to:

N∑

j=1

Xj = n (4.2)

N∑

j=1

Rij = k ∀i (4.3)

Xj − Rij ≥ 0 ∀i (4.4)

Xj and Rij ∈ {0, 1} ∀i, j (4.5)

30

Equations 4.1 - 4.5 formulate the data allocation problem as an ILP. In this prob-

lem, we are interested in finding n storage nodes denoted by S = {s1, s2, ...sn} , S ⊆ V

such that the total expected transmission cost from any node to its k closest storage

nodes – in terms of ETT – is minimized (Eq. 4.1). The first constraint (Eq. 4.2)

selects exactly n nodes as storage nodes; the second constraint (Eq. 4.3) indicates

that each node has access to k storage nodes; the third constraint (Equation 4.4)

ensures that jth column of R can have a non-zero element if only if Xj is 1; and

constraints (Equation 4.5) are binary requirements for the decision variables.

4.2 Energy-Efficient and Fault-Tolerant Data Allocation

This section describes the main components in the k-out-of-n data allocation

framework.

4.2.1 Topology Discovery

Topology Discovery is executed during the network initialization phase or when-

ever a significant change of the network topology is detected (as detected by the

Network Monitoring component). During Topology Discovery, one delegated node

floods a request packet throughout the network. Upon receiving the request packet,

nodes reply with their neighbor tables and failure probabilities. Consequently, the

delegated node obtains global connectivity information and failure probabilities of

all nodes. This topology information can later be queried by any node.

4.2.2 Failure Probability Estimation

We assume a fault model in which faults caused only by node failures and

a node is inaccessible and cannot provide any service once it fails. The failure

probability of a node estimated at time t is the probability that the node fails

by the mission completion time T . We define the effective time Te = T − t as

31

the time interval during which the estimated failure probability is effective. A

node estimates its failure probability based on the following events/causes: en-

ergy depletion, temporary disconnection from a network (e.g., due to mobility), and

application-specific factors. We assume that these events happen independently.

Let fi be the event that node i fails and let fB
i , fC

i , and fA
i be the events that

node i fails due to energy depletion, temporary disconnection from a network, and

application-specific factors respectively. The failure probability of a node is as fol-

lows: P [fi] = 1−
(
1− P

[
fB
i

]) (
1− P

[
fC
i

]) (
1− P

[
fA
i

])
. We now present how to

estimate P [fB
i], P [fC

i], and P [fA
i].

4.2.2.1 Failure by Energy Depletion

Estimating the remaining energy of a battery-powered device is a well-researched

problem [102]. We adopt the remaining energy estimation algorithm in [102] because

of its simplicity and low overhead. The algorithm uses the history of periodic battery

voltage readings to predict the battery remaining time. Considering that the error

for estimating the battery remaining time follows a normal distribution [64], we find

the probability that the battery remaining time is less than Te by calculating the

cumulative distributed function (CDF) at Te. Consequently, the predicted battery

remaining time x is a random variable following a normal distribution with mean

µ and standard deviation σ. µ is simply the estimated battery remaining time at

current time t, and σ is obtained from historical data.

P
[
fB
i

]
= P [Rem. time < Te | Current Energy]

=

∫ Te

−∞

f(x;µ; σ2)dx, f(x;µ; σ2) =
1

σ
√

2π
e−

1

2
(x−µ

σ
)2

32

4.2.2.2 Failure by Temporary Disconnection

Nodes can be temporarily disconnected from a network, e.g., because of the mobil-

ity of nodes, or simply when users turn off the devices. The probability of temporary

disconnection differs from application to application, but this information can be in-

ferred from the history: a node gradually learns its behavior of disconnection and cu-

mulatively creates a probability distribution of its disconnection. Then, given the cur-

rent time t, we can estimate the probability that a node is disconnected from the net-

work by the time T as follows: P
[
fC
i

]
= P [Node i disconnected between t and T].

4.2.2.3 Failure by Application-dependent Factors

Some applications require nodes to have different roles. In a military appli-

cation for example, some nodes are equipped with better defense capabilities and

some nodes may be placed in high-risk areas, rendering different failure probabilities

among nodes. Thus, we define the failure probability P [fA
i] for application-dependent

factors. This type of failure is, however, usually explicitly known prior to the de-

ployment.

4.2.3 Expected Transmission Time Computation

It is known that a path with minimal hop-count does not necessarily have minimal

end-to-end delay because a path with lower hop-count may have noisy links, resulting

in higher end-to-end delay. Longer delay implies higher transmission energy. As a

result, when distributing data or processing the distributed data, we consider the

most energy-efficient paths – paths with minimal transmission time. When we say

path p is the shortest path from node i to node j, we imply that path p has the

lowest transmission time (equivalently, lowest energy consumption) for transmitting

a packet from node i to node j. The shortest distance then implies the lowest

33

transmission time.

Given the failure probability of all nodes, we calculate the ETT matrix D. How-

ever, if failure probabilities of all nodes are taken into account, the number of possible

graphs is extremely large, e.g., a total of 2N possible graphs, as each node can be

either in failure or non-failure state. Thus, it is infeasible to deterministically calcu-

late ETT matrix when the network size is large. To address this issue, we adopt the

Importance Sampling technique, one of the Monte Carlo methods, to approximate

ETT. The Importance Sampling allows us to approximate the value of a function

by evaluating multiple samples drawn from a sample space with known probability

distribution. In our scenario, the probability distribution is found from the failure

probabilities calculated previously and samples used for simulation are snapshots

of the network graph with each node either fails or survives. The function to be

approximated is the ETT matrix, D.

A sample graph is obtained by considering each node as an independent Bernoulli

trial, where the success probability for node i is defined as: pXi
(x) = (1 −

P [fi])
xP [fi]

1−x, where x ∈ {0, 1}. Then, a set of sample graphs can be defined

as a multivariate Bernoulli random variable B with a probability mass function

pg (b) = P [X1 = x1, X2 = x2, ..., Xn = xn] =
∏N

i=1 pXi
(x). x1, x2, ..., xn are the bi-

nary outcomes of Bernoulli experiment on each node. b is an 1×N vector representing

one sample graph and b [i] in binary indicating whether node i survives or fails in

sample b.

Having defined our sample, we determine the number of required Bernoulli sam-

ples by checking the variance of the ETT matrix denoted by V ar (E [D (B)]) , where

the ETT matrix E [D (B)] is defined as follows: E [D (B)] =
(∑K

j=1 bjpg (bj)
)

where

K is the number of samples and j is the index of each sample graph.

In Monte Carlo Simulation, the true E [D (B)] is usually unknown, so we use

34

the ETT matrix estimator, D̃ (B), to calculate the variance estimator, denoted

by V̂ ar
(
D̃ (B)

)
. The expected value estimator and variance estimator below are

written in a recursive form and can be computed efficiently at each iteration:

D̃ (BK) =
1

K

(
(K − 1) D̃ (BK−1) + bK

)

V̂ ar
(
D̃ (BK)

)
=

1

K (K − 1)

K∑

i=1

(
bj − D̃ (BK)

)2

=
1

K

(
1

K − 1

K∑

j=1

(bi)
2 − K

K − 1

(
D̃ (BK)

)2
)

Here, the Monte Carlo estimator D̃ (B) is an unbiased estimator of E [D (B)], and K

is the number of samples used in the Monte Carlo Simulation. The simulation con-

tinues until V̂ ar
(
D̃ (B)

)
is less than dist varth, a user defined threshold depending

on how accurate the approximation has to be. We chose dist varth to be 10% of the

smallest node-to-node distance in D̃ (B).

Figure 4.1 compares the ETT found by Importance Sampling with the true ETT

found by a brute force method in a network of 16 nodes. The Root Mean Square

Error (RMSE) is computed between the true ETT matrix and the approximated

ETT matrix at each iteration. It is shown that the error quickly drops below 4.5%

after the 200th iteration.

4.2.4 The k-out-of-n Data Allocation

After the ETT matrix is computed, the k-out-of-n data allocation is solved by

ILP solver. A simple example of how the ILP problem is formulated and solved

is shown here. Considering Figure 4.1(b), distance Matrix D is a 4 × 4 symmetric

matrix with each component Dij indicating the expected distance between node i

35

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600

R
M

S
E

Number of Samples

X:50,Y:1.17

X:150,Y:0.64
X:250,Y:0.42

X:350,Y:0.37

(a) (b)

Figure 4.1: (a) Root Mean Square Error (RMSE) of each iteration of Monte Carlo
Simulation. (b) A simple graph of 4 nodes. The number above each node indicates
the failure probability of the node.

and node j. Let’s assume the expected transmissions time on all edges are equal to

1. As an example, D23 is calculated by finding the probability of two possible paths:

2→ 1→ 3 or 2→ 4→ 3. The probability of 2→ 1→ 3 is 0.8×0.8×0.9×0.4 = 0.23

and the probability of 2 → 4 → 3 is 0.8 × 0.6 × 0.9 × 0.2 = 0.08. Another possible

case is when all nodes survive and either path may be taken. This probability is

0.8 × 0.8 × 0.6 × 0.9 = 0.34. The probability that no path exists between node 2

and node 3 is (1-0.23-0.08-0.34=0.35). We assign the longest possible ETT=3, to the

case when two nodes are disconnected. D23 is then calculated as 0.23 × 2 + 0.08 ×

2 + 0.34× 2 + 0.35× 3 = 2.33. Once the ILP problem is solved, the binary variables

X and R give the allocation of data fragments. In our solution, X shows that nodes

1 − 3 are selected as storage nodes; each row of R indicates where the client nodes

should retrieve the data fragments from. E.g., the first row of R shows that node 1

should retrieve data fragments from node 1 and node 3.

36

D =




0.6 1.72 1.56 2.04

1.72 0.6 2.33 2.04

1.56 2.33 0.3 1.92

2.04 2.04 1.92 1.2




R =




1 0 1 0

1 1 0 0

1 0 1 0

0 1 1 0




X = (1 1 1 0)

4.2.5 Distributed Network Monitoring

The Network Monitoring component monitors the network topology as well as

each nodes’ reliability continuously on each node. Whenever a client node needs

to create a file, the Network Monitoring component provides the client with the

most recent topology information immediately. When there is a significant topology

change, it notifies the framework to update the current solution. We first give several

notations. A term s refers to a state of a node, which can be either U and NU . The

state becomes U when a node finds that its neighbor table has drastically changed

or its reliability has dropped significantly; otherwise, a node keeps the state as NU .

We let p be the percentage of entries in the neighbor table that has changed, rest be

the estimated reliability when the last data allocation problem was solved, and rcur

be the current estimated reliability. A set ID contains the node IDs with p greater

than τ1 or rest− rcur greater than τr. τ1 and τr are thresholds indicating a significant

topology change or reliability change.

37

Algorithm 1: Distributed Network Monitoring

At each beacon interval:
if (p > τ1 or rest − rcur > τr) and s 6= U then

s← U
Put +ID to a beacon message

end
if p ≤ τ1 and rest − rcur ≤ τr and s = U then

s← NU
Put −ID to a beacon message

end

Upon receiving a beacon message on Vi

for each ID in the received beacon message do
if ID > 0 then
ID ← ID⋃{ID}

else
ID ← ID \ {ID}

end

end
if |{ID}| > τ2 then

Notify Vdel and Vdel initiate topology discovery
end
Add the ID in V ′

i s beacon message

The Network Monitoring component is simple yet energy-efficient as it does not

incur significant communication overhead – it simply piggybacks node ID on a bea-

con message. The protocol is depicted in Algorithm 1. We predefine one node as

a topology delegate Vdel who is responsible for maintaining the global network infor-

mation. When a node’s neighbour table or reliability changes significantly, the node

changes its state to U and piggybacks its ID on a beacon message. Upon receiving

a beacon message, nodes check the IDs in it. For each ID, nodes add the ID to set

ID if the ID is positive; otherwise, remove the ID. If a client node finds that the

size of set ID becomes greater than τ2, a threshold for “significant” global network

38

condition change, the node notifies Vdel; and Vdel executes the Topology Discovery

protocol. To reduce the amount of traffic, client nodes request the global network

information from Vdel, instead of running the topology discovery by themselves. Af-

ter Vdel completes the topology update, all nodes reset their status variables back to

NU , set p = 0, rest = rcur.

4.3 Reliability-Compliant and Energy-Aware Data Replication

In a traditional k-out-of-n storage system, files are encoded using a single (k, n)

parameter for both data encoding and fragment placement or storage: each file is

encoded as n data fragments and each fragment is distributed to a unique storage

node. This simple scheme, however, is not always suitable for the mobile cloud

setting, where both the network topology and the failure probabilities of individual

nodes may change rapidly and unpredictably. In other words, the system’s reliability

and its energy performance will fluctuate. Consequently, a single assignment of the

(k, n) parameter is unlikely to be sufficient, and adjusting (k, n) on-demand requires

a full cycle of data retrieval, data recovery, data encoding, and fragment placement,

which has a major impact on the energy performance. Instead, we propose a proac-

tive approach using two separate (k, n) parameters for data replication and fragment

storage, respectively, so that the system can remain energy-efficient and reliable with

minimal maintenance cost as nodes join and leave the mobile cloud. The mainte-

nance cost here includes the energy for reallocating, regenerating, and redistributing

the data fragments. The details are described below.

4.3.1 Fragment Parameter and Storage Parameter

We formally define (kf , nf) and (ks, ns) as the fragment parameter and storage

parameter, respectively. nf is the number of data fragments that a data block is

encoded into, while ns is the total number of storage nodes for placing these frag-

39

ments. kf is the minimal number of data fragments required for recovering the data

object and ks is the minimal number of storage nodes that a client needs to contact

in order to recover a data object. ks should meet a feasibility requirement in that

any subset of ks storage nodes provide kf or more distinct data fragments. As an

example, in Figure 3.4 where (ks, ns) = (3, 4) and (kf , nf) = (4, 6), the yellow block

is encoded into nf = 6 data fragments and these fragments are stored on ns = 4

different storage nodes. To recover the yellow block, a client needs to retrieve at least

kf = 4 distinct data fragments. Our algorithm ensures that any ks = 3 storage nodes

contains kf = 4 distinct fragments. Note that for the security purpose, we assume

that data fragments can not be cached on clients and retrieve fragments have to be

deleted once clients finish using the file.

In this manner, the reliability of data retrieval depends entirely on the storage

parameter and the failure probabilities of the storage nodes.(This claim is substan-

tiated in the next subsection.) In other words, we can determine a starting value of

(ks, ns) from the application data reliability requirement and only need to adjust this

parameter (and/or select a different set of storage nodes) to adapt to the changing

network topology. As such, we then carefully choose a single fragment parameter

(kf , nf) for which a range of expected (ks, ns) values is feasible, so that when the

storage parameter or the set of storage nodes changes, the system simply reallocates

the existing fragments and thus avoids going through the full cycle of decoding and

re-encoding the data object.

4.3.2 Estimating Data Storage Reliability from (ks, ns)

Given the storage parameter (ks, ns), the locations of the storage nodes, and the

reliability of each storage node, we can estimate the reliability of the data object.

Suppose n is the set of ns selected storage nodes, c is the subset of functional nodes

40

in n, and c̄ = c \ n is the subset of failed nodes in n. We consider the probability

that ks or more storage nodes remain functional (ks ≤ |c| ≤ ns).

For each size of |c|, there are
(
ns

|c|

)
combinations that need to be considered.

Equation 4.6 evaluates the reliability of a system with parameter (ks, ns). Si is the

reliability of a system of exactly i functional nodes; Rl is the reliability of the lth

node in c; Qm is the failure probability of the mth node in c̄. Although this is a

straightforward computation, its time complexity is O(n!) because the combinations

of subset c in Equation 4.7 can be large. Furthermore, because we are to search for

a single storage parameter in Equation 4.6 that satisfies the reliability requirement,

there are
∑N

n n possible (ks, ns) pairs that need to be considered (N is the network

size). To account for this computation infeasibility on mobile devices, we propose an

approximation algorithm to pre-compute the reliability offline and perform a table-

lookup at run time. More specifically, we discretize all the variables in Equation 4.6

and Equation 4.7, and build a table of reliability with respect to different (ks, ns)

and nodes reliability.

We first approximate Rl and Qm by the mean reliability r and the mean failure

probability (1 − r). We then discretize parameters ks, ns, and r so that a set of

reliabilities can be pre-computed and stored in a table. The reliability calculation in

Equation 4.6 is thus simplified to R(ks, ns) =
∑ns

i=ks

(
ns

i

)
ri(1− r)ns−i. This simplified

reliability computation can further be written recursively as R(ks, ns) = R(i, j) =

(1− r)R(i, j − 1) + rR(i− 1, j − 1). The recursive form allows the table to be built

efficiently with dynamic programming. Table 4.1 is an example. We will show in the

evaluation section (Figure 4.12a) that this approximation can accurately guide the

searching procedure to derive a good storage parameter.

41

ns=5 ns=6 ns=7 ns=8 ns=9
ks=1 0.92 0.95 0.99 0.999 0.999
ks=2 0.82 0.85 0.87 0.89 0.92
ks=3 0.72 0.79 0.82 0.84 0.85

Table 4.1: Reliability Lookup Table. A 2-D slice of a 3-D lookup table. The reliability
r in this 2-D table is 0.8

R(ks, ns) =

ns∑

i=ks

Si (4.6)

Si =

(ns
i)∑

j=1

∏

l∈c

Rl

∏

m∈c̄

Qm (4.7)

where ∀c ⊂ n and |c| = i

4.3.3 Determining (ks, ns)

Storage parameter (ks, ns) and the allocation of ns storage nodes are obtained by

solving the k-out-of-n storage allocation problem (Eq. 4.8-4.12). A set of Candidate

Storage Parameters is first selected from the table lookup, and a single storage pa-

rameter is then found by solving the optimization problem. Suppose the reliability

requirement is 0.8. By checking Table 4.1, we find a set of (ks, ns) that meets the

reliability requirement (values ≥ 0.8). Although multiple ks in each column may

satisfy the reliability requirement, only the one with the highest ks is selected, as

using lower ks incurs higher data redundancy and maintenance cost. We call these

shaded cells in Table 4.1 as candidate storage parameters ((2, 5), (2, 6), (3, 7)...).

To select a single storage parameter, we consider how the storage parameter

42

affects the load distribution. Assume a data object of size s bytes is stored into a

system of N nodes and each node requests the data object once during the effective

time period Te. The total number of fragments transmitted during Te is Nkf (each

node downloads kf fragments) and each storage node delivers on average Nkf/ns

fragments, or equivalently Nkf/ns × s/kf = Ns/ns bytes (each data fragment is

approximately s/kf bytes). To limit the traffic on each storage node, each storage

should not transmit more than M bytes within Te. This bandwidth constraint is

then written as Ns/ns ≤M or ns ≥ Ns/M .

We now describe how a new k-out-of-n storage allocation problem using split

parameters is formulated. The objective function, Equation 4.8, minimizes the data

retrieval time. Note that the “transmission time” here indicates the “transmission

energy” as the RF energy consumption is proportional to the radio transmitting

time [13]. Hereafter, we use the terms transmission energy and transmission time

interchangeably when referring to the energy. In Equation 4.8, Dij is the expected

transmission time for node j to send a byte to node i, index c is the file creator,

Rij is a decision variable indicating whether client node i retrieves data from storage

node j, and Xj is a decision variable indicating whether node j is selected as a

storage node. The expected transmission time matrix D is estimated based on [22].

DijRij indicates total data retrieval cost, DjcXj indicates the data creation cost,

and s/fk(
∑N

j=1Xj) is the size of each data fragment. Constraint 1 (Equation 4.9)

enforces a lower bound on ns according to the bandwidth constraint; constraint 2

(Equation 4.10) ensures that each client is assigned enough storages nodes (ks or

more); function fk(ns) returns the corresponding ks of the given ns in the candidate

storage parameters; constraint 3 (Equation 4.11) ensures that Xj is 1 if and only if

jth column of R has non-zero values.

The solution for the optimization problem gives a single storage parameter (ks, ns)

43

and the allocation of the storage nodes (Xi) such that the system minimizes the

transmission energy while meeting the reliability requirement. This combinatorial

optimization problem is solved by a Tabu Search heuristic [35]. The detail of how

we formulate the Tabu Search will be described in Section 5.4.

Ropt = arg min
R

s/fk(
N∑

j=1

Xj)× (
N∑

i=1

N∑

j=1

DijRij +
N∑

j=1

DjcXj) (4.8)

Subject to:

N∑

j=1

Xj ≥ Ns/M (4.9)

N∑

j=1

Rij ≥ fk(
N∑

j=1

Xj) ∀i (4.10)

NXj ≥
N∑

i=1

Rij ≥ Xj ∀j (4.11)

Xj and Rij ∈ {0, 1} ∀i, j (4.12)

4.3.4 Determining (kf , nf)

Fragment parameter (kf , nf) controls how a data object is encoded and the level

of data redundancy. We aim to reduce the data maintenance cost when selecting the

fragment parameter. Recall that a storage parameter is deemed feasible if the nf

data fragments can be distributed to the ns selected storage nodes and any subset

of ks storage nodes contains at least kf data fragments. When a topology change

occurs, the number of available fragments nf may change (nodes fail or leave the

network) or the storage parameter may be updated. If the current (kf , nf) still has a

44

Algorithm 2: FeasibilityTest

Input: (ks, ns, kf , nf)
Output: feasible
feasible = false
uf = ns − (nf mod ns)
if uf ≥ ks then

if ⌊nf

ns
⌋ks ≥ kf then

feasible = true
end

else
if ⌊nf

ns
⌋uf + ⌈nf

ns
⌉(ks − uf) ≥ kf then

feasible = true
end

end
return feasible

feasible allocation, then the system can be repaired by reallocating data fragments.

If no feasible allocation is possible, the data object needs to be re-distributed. Note

that an infeasible allocation does not mean the data is lost; it simply indicates that

the reliability requirement imposed by the storage parameter cannot be satisfied by

the current parameter settings. The data can still be recovered as long as kf data

fragments are available.

We derive a simple feasibility test to check whether a feasible allocation exists

for the given (ks, ns) and (kf , nf). Algorithm 2 tries to distribute nf data fragments

uniformly to ns storage nodes. Once all nf fragments have been allocated, we find the

subset of ks storage nodes with the least number of fragments ; if this subset contains

nf or more fragments, the current parameter settings have at least one feasible

allocation. Otherwise, there is no feasible allocation. uf indicates the number of

“under-filled nodes”, in which each node has ⌊nf

ns
⌋ fragments (assume nf ≥ ns). uf

helps identify the ks storage nodes that has the fewest data fragments.

45

uf = ns − (nf mod ns)

kf ≤
{ ⌊nf

ns
⌋ks if uf ≥ ks

⌊nf

ns
⌋uf + (ks − uf)⌈nf

ns
⌉ otherwise

(4.13)

n̂s + αn̂s ≥ ns ≥ n̂s − αn̂s ≥ 0

r̂ ≥ r ≥ r̂ − βr̂ ≥ Rreq (4.14)

α, β ≥ 0; ns ∈ integer

Similar to the feasibility test, Equation 4.13 finds the largest feasible kf when

given the storage parameter and nf . The rationale is that the subset of ks storage

nodes with the fewest data fragments must have at least kf fragments in order to

have a feasible allocation.

Overall, we prefer a fragment parameter that can support multiple possible stor-

age parameters. The fragment parameter must be carefully selected to adapt to the

most possible storage parameters while keeping the data redundancy low. Naturally,

the possible storage parameters are those in the candidate storage parameters. Sup-

pose (k̂s, n̂s) is the selected storage parameters and r̂ is the mean reliability of the

selected storage nodes. We select a (kf , nf) that can adapt to the storage parameters

in the range specified in Equation 4.14. α determines the range of storage parame-

ters that (kf , nf) can support, and β determines the mean reliability reduction that

(kf , nf) can tolerate. Rreq is the minimum reliability requirement of the application.

For example, if we refer to Table 4.1 and set (k̂s, n̂s) = (3, 7), r̂ = 0.8, α = 0.2,

and β = 0.1. Assume the table contains 21 discrete reliability uniformly spread

in [0, 1]. The mean reliability that the fragment parameter needs to support is

46

r = 0.8 and r = 0.75 because these are the only two discrete reliability within range

0.8 ≥ r ≥ 0.72. For r = 0.8, the storage parameters in the range are (2, 6), (3, 7)

and (3, 8) (by table lookup); for r = 0.75, another three storage parameters (2, 6),

(2, 7) and (3, 8) are in the range. The selected fragment parameter needs to support

all these storage parameters.

To determine a single fragment parameter (k̂f , n̂f), n̂f is set to the maximum ns

in Equation 4.14, i.e., n̂f = ⌈(1 + α)n̂s⌉. Using this n̂f and Equation 4.13, we find

the feasible fragment parameters for each candidate storage parameter. E.g, given

(ks, ns) = (3, 7) and n̂f = 8, the feasible kf are 1, 2, and 3. In this manner, we obtain

an intersection of all the feasible fragment parameters. In the intersection set, the

one with the highest kf is selected. This selected (k̂f , n̂f) is feasible to all storage

parameters in the range specified by Equation 4.14.

4.3.5 Fragment Re-allocation

When the topology maintenance component detects a significant topology change,

the system re-evaluates the storage and fragment parameters, and the allocations of

the data fragments. If there are still sufficient data fragments, the system simply

moves the fragments from the old storage nodes to the new storage nodes. In this sec-

tion, we present an algorithm based on the minimum-cost flow problem to reallocate

the fragments with minimal transmission energy.

The problem is formulated as a directed graph shown in Figure 4.2 where the left

side is the set of current storage nodes and the right side is the set of newly selected

storage nodes. All current nodes are connected to a virtual source node and all new

nodes are connected to a virtual destination node.

Each arc is associated with a cost aij and a capacity cij , represented by (aij , cij);

the arcs between the current nodes and the new nodes are assigned infinite capacity

47

1

4

3

6

3

7

4

8

Src Dest

(10, ∞)

(15, ∞)

(8, ∞)

(5, ∞)

(0,2)

(0,1)

(0,1)

(0,2)

(Cost, Capacity)

(0,1)

(0,2)

(0,1)

(0,2)
Supply=6 Demand=6

Figure 4.2: The Minimum-cost flow problem formulation

and their costs are set to the Dij; the arcs from the virtual source to the current nodes

are assigned zero cost and their capacities are equal to the number of fragments on

the current node; the arcs from the new storage nodes to the virtual destination are

assigned zero cost and their capacities are equal to the number of required fragments

on the new node. The supply of the virtual source and the demand of the virtual

destination are both set to the total number of fragments to be transferred.

The optimization problem is expressed as a Linear Programming problem in

Equations 4.15-4.17; the objective function (Equation 4.15) minimizes the cost for

sending supply from the source to the destination; xij is the decision variable indi-

cating the number of fragments node i sends to node j. Equation 4.16 ensures that

the flow conservation property on all nodes except the source and the destination;

V is the magnitude of supply/demand; Equation 4.17 ensures the flow on each arc

does not exceed the capacity. This particular linear programming problem is solved

efficiently in polynomial time by the network simplex algorithm [79].

48

xopt = arg min
x

ns∑

i=1

ns∑

j=1

aijxij (4.15)

Subject to:

∑

j

xji −
∑

j

xij =




V, i = src,
0, i 6= src, dest,
−V, i = dest.

∀i (4.16)

0 ≤ xij ≤ cij (4.17)

4.4 Caching for the k-out-of-n Distributed Storage

In this section, we explore data caching for k-out-of-n computing in mobile cloud

environments, with the goal of distributing data in a way that the expected future

energy consumption for nodes to retrieve data is minimized, while preserving reliabil-

ity. More specifically, we propose to place data caches (in addition to the originally

stored data) based on the actual data access patterns and the network topology.

We formulate the cache placement optimization problem and propose a centralized

caching framework (CC) that optimally solves the problem and a distributed so-

lution that approximates the optimal solution. The distributed caching framework

(DC) learns data access patterns by sniffing packets and informing a resident cache

daemon about popular data items.

The k-out-of-n distributed storage system so far assumes the network is homoge-

neous and all nodes have equal probability to request each file. However, in reality,

not all nodes request all files and some files may be requested only by a small portion

of nodes. For instance, given a network of rectangle shape, if the files are requested

only by client nodes located at the shorter edges of the rectangle, it will be extremely

energy inefficient to place storage node at the center of the network. Additionally, for

49

security concerns, client nodes are not allowed to keep the decoded files locally and

nodes always need to retrieve the file fragments from the storage nodes whenever a

file is needed for reading. This security constraint causes an unavoidable high energy

consumption and heavy network traffics. To address these challenges, we propose to

cache some “popular” data fragments in the network and allow client nodes to re-

trieve file fragments from nearby caching nodes instead of always going to the farther

storage nodes.

Our caching strategy is designed based on two observations: temporal locality

of file access and the group mobility exhibited by nodes. Temporal locality of file

access means that a file recently accessed by a node is likely to be accessed again

by the same node in the near future. Thus collecting statistics, i.e., how files were

accessed by nodes in the past, lays ground for predicting the future. Group mobility

exhibited by nodes indicates that nodes often move as a group instead of moving

individually. As a result, placing cached data within a group of nodes that tend to

move together can also greatly improve the performance.

4.4.1 Cache Placement Formulation

Now we are ready to formulate the cache placement optimization problem. The

objective of the problem is to minimize the total expected distance from every po-

tential user to its k cache agents. For convenience, we omit the file index w and

represent the file as F in the problem formulation. Based on the previous definition,

two mapping variables are defined: xl
i is a binary variable indicating whether node

vi is a cache agent for fragment fl, and yl
ij is a binary variable indicating whether

node vj is assigned to node vi for retrieving fragment fl. The following Integer Linear

Program (ILP) expresses our cache placement problem.

The first constraint (Equation 4.19) indicates that up to K fragment copies will

50

Minimize
∑

l∈F

∑

i∈V

∑

j∈U

Dijy
l
ijrj (4.18)

s.t.
∑

l∈F

∑

i∈V

xl
i ≤ K (4.19)

∑

l∈F

∑

i∈V

ylij ≥ k, ∀j ∈ U (4.20)

xl
i ≥ ylij, ∀i ∈ V, ∀j ∈ U, ∀l ∈ F (4.21)

xl
sl

= 1, ∀l ∈ F (4.22)
∑

l∈F

xl
i ≤ min{k − 1, Li − Ai}, ∀i ∈ V (4.23)

xl
i, y

l
ij ∈ {0, 1}, ∀i ∈ V, ∀j ∈ U, ∀l ∈ F (4.24)

be placed on the cache agents for this file. Parameter K is determined based on the

file popularity and buffer size. How it is calculated is described in Equation 4.25

and Equation 4.26. The second constraint (Equation 4.20) ensures that each poten-

tial user has accesses to at least k different fragment caches. The k parameter is

configured by the application depending on the reliability requirement. The third

constraint (Equation 4.21) makes sure that if a potential user is assigned to a node

for a particular fragment, then the node must be a cache agent for that fragment.

Equation 4.22 ensures that the service centers are also cache agents. Equation 4.23

creates a buffer limit on each cache agent. Also, for security purposes, less than k

cached fragments can be created for each file. The last constraint (Equation 4.24) is

the binary requirement for the decision variables.

We adopt the findings from [52] to help determine the number of caches for each

file, Kw, given the file’s popularity and the nodes’ buffer size. In Equation 4.25 below,

n is the number of service centers selected when a file is created, φ represents the

correlation between a file’s popularity and the total number of its cached fragments,

51

and rw is the request frequency of file Fw. The minimum number of caches for

each file is n because each file is encoded and distributed to n service centers at the

creation time. Equation 4.26 defines a user-configured variable η to represent the

percentage of occupancy allowed on cache agents’ buffer. Combining Equation 4.25

with Equation 4.26 and configuring a proper η, we can then solve for φ.

Kw = max
{
n, φ ·

(∑
i∈U ri

)2/3}
(4.25)

η = total # of fragment copies of all files
overall buffer size of all nodes

=
∑

w Kw∑
i Li

(4.26)

Based on this, files with higher popularity are given higher priority when selecting

the cache placement. In specific, given a collection of files {Fw}, the cache placements

for each file is determined one by one based on its Kw value. The process repeats

until all files are associated with a specific Kw.

4.4.2 Distributed Caching Framework

The goal of distributed caching framework (DC) is to allow each individual node

to make its own caching decision without the need of global information. The dis-

tributed algorithm does not collect the topology information or all files’ access pat-

tern, and is robust to node failures.

To learn the file access pattern, the network layer sniffs the passing-by packets

and delivers the packets of interest to the middleware. In this way, Cache Daemon

(CDaemon) learns the file request frequency and by whom the file is requested. Once

nodes have identified the popular fragments needed to be cached, DC algorithm needs

to determine where to place the cache fragments to maximize the energy saving. The

intuition is to select the nodes that are closest to the file requestors in terms of hop

52

V1

V2

V3 2V4 3

V5 3

V6
V7

V8 1

V9

V10 3

V11 V12

Figure 4.3: An example of cache placement in distributed caching framework. The
number in the square indicates the frqReq counter for a specific fragment. Black
circles are fragment requesters.

count. Following the logic of our framework, we anticipate the node that first observes

the popular fragment to be the closest one to the users group. All the intermediate

nodes on the route cooperate to determine the best cache agent. An example is

illustrated in Figure 4.3.

4.4.2.1 When to create a cache fragment?

A new fragment cache is added when we find the counter associated with the

fragment exceeds a predefined threshold θ. Suppose θ is set to 3 in Figure 4.3. After

v1, v2, and v12 make the same fragReq destined for v10, v4, v5, and v10 will update

their counter of the requested fragment to 3. This will trigger DC to add a new

fragment cache. Parameter θ has a great impact on the system performance as it

affects the frequency that the cached fragments are updated. We determine θ by

estimating the average number of requests that each fragment cache will serve. If

the number of actual requests exceeds the predefined value, then an extra fragment

cache is necessary.

53

... Hadoop MDFS

Application Layer

Cache Daemon - Middleware

Transport Layer

Network Layer

cachedId/refs

Vertical Layer

(Cross-layer Info)

reqId

Cache

Placement

Cache

Replacement

Application Layer

...HadoopMDFS

Vertical Layer

Cache Daemon - Middleware

Transport Layer

Network Layer

(Cross-layer Info)

cachedId/refs

reqId

Cache

Placement

Cache

Replacement

B (Destination / Intermediate) A (Requester)

Figure 4.4: System architecture of cross-layer design for proposed distributed caching
framework. 1) fileReq: broadcast a file request; 2) fileRep: unicast a file reply (may
require a route discovery); 3) fragReq: unicasting a fragment request (may require
a route discovery); 4) data transmission via TCP; 5) cache placement: broadcast an
exchange request (exReq) to one-hop neighbors, unicast an exchange reply (exRep),
and unicast an exchange confirmation (exCfm); 6) cache replacement.

In the previous example, when v4, v5 and v10 all reach the threshold defined by θ,

only one of them should initiate its cache placement module. Since our objective is

to minimize the distance from the file requestors to the fragment cache, v4 seems to

be the best candidate among the three. From the observation that the node closest

to the file requestors reaches the threshold earlier than other candidate nodes (v5

and v10), v4 can actively notify other candidates NOT to cache the fragment.

54

4.4.2.2 How to select a cache agent

Although only v4 will initiate its cache placement module, any node in its vicin-

ity has a chance to be selected as the cache agent. v4 coordinates with all its 1-

hop neighbors and determines the best cache agent by comparing their qualification

scores, defined in Equation 4.27.

score(i) = I(i) ·
{
α · (1− Pfi) + (1− α) · Li − Ai

Li

}
(4.27)

In Equation 4.27, I(i) is an indicator variable showing whether adding the new

fragment cache will violate the security constraint on vi, Pfi is the failure probability

of node vi, Li is the buffer capacity of node vi, Ai is the number of cached items on

vi, and α is a weight parameter in the range (0, 1). We define the score in such a way

to eliminate the nodes that may violate the security constraint, and give the nodes

with lower failure probability or more buffer space higher score.

4.5 Evaluation

In this section, we first present the hardware implementation results on Android

smartphones. More extensive simulation results in larger-scale network are then

shown.

4.5.1 Real-World Implementation

This section investigates the feasibility of running our framework on real hard-

ware. We compare the performance of our framework with a random data allocation

and processing scheme (Random), which randomly selects storage/processor nodes.

Specifically, to evaluate the k-out-of-n data allocation on real hardware, we imple-

mented a Mobile Distributed File System (MDFS) on top of our k-out-of-n comput-

55

Plain File

Encrypted

Encrypted AES

AES

Erasure Coding Secret Sharing

Figure 4.5: An overview of our Mobile Distributed File System (MDFS).

ing framework. We also test our k-out-of-n data processing by implementing a face

recognition application that uses our MDFS.

Figure 4.5 shows an overview of our MDFS. Each file is encrypted and encoded by

erasure coding into n1 data fragments, and the secret key for the file is decomposed

into n2 key fragments by key sharing algorithm. Any maximum distance separable

code can may be used to encoded the data and the key; in our experiment, we adopt

the well-developed Reed-Solomon code and Shamir’s Secret Sharing algorithm. The

n1 data fragments and n2 key fragments are then distributed to nodes in the network.

When a node needs to access a file, it must retrieve at least k1 file fragments and

k2 key fragments. Our k-out-of-n data allocation allocates file and key fragments

optimally when compared with the state-of-art [46] that distributes fragments uni-

formly to the network. Consequently, our MDFS achieves higher reliability (since our

framework considers the possible failures of nodes when determining storage nodes)

and higher energy efficiency (since storage nodes are selected such that the energy

consumption for retrieving data by any node is minimized).

56

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200

C
u

rr
e

n
t

(A
m

p
)

Time (Sec)

Sending

WiFi off

WiFi on

Receiving

(b)

Figure 4.6: (a) Energy measurement setting. (b) Current consumption on Smart-
phone in different states.

We implemented our system on HTC Evo 4G Smartphone, which runs Android

2.3 operating system using 1G Scorpion CPU, 512MB RAM, and a Wi-Fi 802.11 b/g

interface. To enable the Wi-Fi AdHoc mode, we rooted the device and modified a

config file – wpa supplicant.conf. The Wi-Fi communication range on HTC Evo 4G

is 80-100m. Our data allocation was programmed with 6,000 lines of Java and C++

code.

The experiment was conducted by 8 students who carry smartphones and move

randomly in an open space. These smartphones formed an Ad-Hoc network and the

longest node to node distance was 3 hops. Students took pictures and stored in our

MDFS. To evaluate the k-out-of-n data processing, we designed an application that

searches for human faces appearing in all stored images. One client node initiates

the processing request and all selected processor nodes retrieve, decode, decrypt, and

analyze a set of images. In average, it took about 3− 4 seconds to process an image

of size 2MB. Processing a sequence of images, e.g., a video stream, the time may

57

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 2 3 4 5 6 7 8
 0

 100

 200

 300

 400

 500

 600

 700
F

ra
g

m
e

n
t

S
iz

e
 (

K
 B

y
te

s
)

E
n

c
o

d
in

g
 O

v
e

rh
e

a
d

 (
%

)

Parameter k

Fragment Size
Encoding Overhead

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

R
e
lia

b
ili

ty

Parameter k

p=0.4

p=0.3

p=0.2

p=0.1

(b)

Figure 4.7: (a) A file of 4.1 MB is encoded with n fixed to 8 and k swept from 1 to
8. (b) Reliability with respect to different k/n ratio and failure probability.

increase in an order of magnitude. The peak memory usage of our application was

around 3MB. In addition, for a realistic energy consumption model in simulations,

we profiled the energy consumption of our application (e.g., WiFi-idle, transmission,

reception, and 100%-cpu-utilization). Figure 4.6a shows our experimental setting

and Figure 4.6b shows the energy profile of our smartphone in different operating

states. It shows that Wi-Fi component draws significant current during the commu-

nication(sending/receiving packets) and the consumed current stays constantly high

during the transmission regardless the link quality.

Figure 4.7a shows the overhead induced by encoding data. Given a file of 4.1MB,

we encoded it with different k values while keeping parameter n = 8. The left y-

axis is the size of each encoded fragment and the right y-axis is the percentage of

the overhead. Figure 4.7b shows the system reliability with respect to different k

while n is constant. As expected, smaller k/n ratio achieves higher reliability while

incurring more storage overhead. An interesting observation is that the change of

system reliability slows down at k = 5 and reducing k further does not improve the

58

 0

 5000

 10000

 15000

 20000

 25000

4 6 8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
e

c
)

Network size

Topo Discovery

Encryption

Encoding

MC Simulation

ILP Solver

File Distribution

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

4 6 8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
e

c
)

Network size

ILP Solver

Decoding

Decryption

File Retrieval-Random

File Retrieval-KNF

(b)

Figure 4.8: Execution time of different components with respect to various network
size.

reliability much. Hence, k = 5 is a reasonable choice where overhead is low (≈ 60%

of overhead) and the reliability is high(≈ 99% of the highest possible reliability).

To validate the feasibility of running our framework on a commercial smartphone,

we measured the execution time of our MDFS application in Figure 4.8a. For this

experiment we varied network size N and set n = ⌈0.6N⌉, k = ⌈0.6n⌉, k1 = k2 = k,

and n1 = n2 = n. As shown, nodes spent much longer time in distributing/retrieving

fragments than other components such as data encoding/decoding. We also observe

that the time for distributing/retrieving fragments increased with the network size.

This is because fragments are more sparsely distributed, resulting in longer paths

to distribute/retrieve fragments. We then compared the data retrieval time of our

algorithm with the data retrieval time of random placement. Figure 4.8b shows

that our framework achieved 15% to 25% lower data retrieval time than Random.

To validate the performance of our k-out-of-n data processing, we measured the

completion rate of our face-recognition job by varying the number of failure node.

The face recognition job had an average completion rate of 95% in our experimental

59

setting.

4.5.2 The k-out-of-n Data Storage Simulation

We conducted simulations to evaluate the performance of our k-out-of-n frame-

work (denoted by KNF) in larger scale networks. We consider a network of 400×400m2

where up to 45 mobile nodes are randomly deployed. The communication range of a

node is 130m, which is measured on our smartphones. Two different mobility mod-

els are tested – Markovian Waypoint Model and Reference Point Group Mobility

(RPGM). Markovian Waypoint is similar to Random Waypoint Model, which ran-

domly selects the waypoint of a node, but it accounts for the current waypoint when

it determines the next waypoint. RPGM is a group mobility model where a subset

of leaders are selected; each leader moves based on Markovian Waypoint model and

other non-leader nodes follow the closest leader. Each mobility trace contains 4 hours

of data with 1Hz sampling rate. Nodes beacon every 30 seconds.

We compare our KNF with two other schemes – a greedy algorithm (Greedy)

and a random placement algorithm (Random). Greedy selects nodes with the largest

number of neighbors as storage/processor nodes because nodes with more neighbors

are better candidates for cluster heads and thus serve good facility nodes. Random

selects storage or processor nodes randomly. The goal is to evaluate how the selected

storage nodes impact the performance. We measure the following metrics: consumed

energy for retrieving data, consumed energy for processing a job, data retrieval rate,

completion time of a job, and completion rate of a job. We are interested in the

effects of the following parameters – mobility model, node speed, k/n ratio, τ2, and

number of failed nodes, and scheduling. The default values for the parameters are:

N = 26, n = 7, k = 4, τ1 = 3, τ2 = 20; our default mobility model is RPGM with

node-speed 1m/s. A node may fail due to two independent factors: depleted energy

60

or an application-dependent failure probability; specifically, the energy associated

with a node decreases as the time elapses, and thus increases the failure probability.

Each node is assigned a constant application-dependent failure probability.

We first perform simulations for the k-out-of-n data allocation by varying the

first four parameters and then simulate the k-out-of-n data processing with different

number of failed nodes. We evaluate the performance of data processing only with

the number of node failures because data processing relies on data retrieval and the

performance of data allocation directly impacts the performance of data processing.

If the performance of data allocation is already bad, we can expect the performance

of data processing will not be any better.

The simulation is performed in Matlab. The energy profile is taken from our

real measurements on smartphones; the mobility trace is generated according to

RPGM mobility model; and the linear programming problem is solved by the Matlab

optimization toolbox.

4.5.2.1 Effect of Mobility

In this section, we investigate how mobility models affect different data allocation

schemes. Figure 4.9 depicts the results. An immediate observation is that mobility

causes nodes to spend higher energy in retrieving data compared with the static

network. It also shows that the energy consumption for RPGM is smaller than

that for Markov. The reason is that a storage node usually serves the nodes in its

proximity; thus when nodes move in a group, the impact of mobility is less severe

than when all nodes move randomly. In all scenarios, KNF consumes lower energy

than others.

61

 0

 5

 10

 15

 20

Markov RPGM Static

C
o

n
s
u

m
e

d
 E

n
e

rg
y
 (

J
o

u
le

)

Random Greedy KNF

Figure 4.9: Effect of mobility on energy consumption. We compare the three different
allocation algorithms under different mobility models.

 0.3

 0.45

 0.6

 0.75

 0.9

 1 2 3 4 5 6 7

R
e
tr

ie
v
a
l
R

a
te

 (
%

)

k

KNF
Greedy

 Random

(a)

 5

 15

 25

 35

 45

 1 2 3 4 5 6 7

C
o
n
s
u
m

e
d
 E

n
e
rg

y
 (

J
o
u
le

)

k

KNF
Greedy

 Random

(b)

Figure 4.10: (a) Effect of k/n ratio on data retrieval rate when n = 7. (b) Effect of
k/n ratio on energy efficiency when n = 7.

4.5.2.2 Effect of k/n Ratio

Parameters k and n, set by applications, determine the degree of reliability. Al-

though lower k/n ratio provides higher reliability, it also incurs higher data redun-

62

dancy. In this section, we investigate how the k/n ratio (by varying k) influences

different resource allocation schemes. Figure 4.10a depicts the results. The data

retrieval rate decreases for all three schemes when k is increased. It is because, with

larger k, nodes have to access more storage nodes, increasing the chances of failing

to retrieve data fragments from all storage nodes. However, since our solution copes

with dynamic topology changes, it still yields 15% to 25% better retrieval rate than

the other two schemes.

Figure 4.10b shows that when we increase k, all three schemes consume more

energy. One observation is that the consumed energy for Random does not increase

much compared with the other two schemes. Unlike KNF and Greedy, for Random,

storage nodes are randomly selected and nodes choose storage nodes randomly to

retrieve data; therefore, when we run the experiments multiple times with different

random selections of storage nodes, we eventually obtain a similar average energy

consumption. In contrast, KNF and Greedy select storage nodes based on their

specific rules; thus, when k becomes larger, client nodes have to communicate with

some storage nodes farther away, leading to higher energy consumption. Although

lower k/n is beneficial for both retrieval rate and energy efficiency, it requires more

storage and longer data distribution time. A 1MB file with k/n = 0.6 in a network

of 8 nodes may take 10 seconds or longer to be distributed (as shown in Figure4.8b).

4.5.2.3 Effect of τ2 and Node Speed

Figure 4.11a shows the average retrieval rates of KNF for different τ2. We can see

that smaller τ2 allows for higher retrieval rates. The main reason is that smaller τ2

causes KNF to update the placement more frequently. We are aware that smaller τ2

incurs overhead for relocating data fragments, but as shown in Figure 4.11b, energy

consumption for smaller τ2 is still lower than that for larger τ2. The reasons are, first,

63

 0.6

 0.65

 0.7

 0.75

 0.8

 1 2 3 4 5 6

R
e
tr

ie
v
a
l
R

a
te

 (
%

)

Node Speed (m/s)

τ2 = 18
τ2 = 26
τ2 = 34

(a)

 15

 25

 35

 45

 55

 1 2 3 4 5 6

C
o
n
s
u
m

e
d
 E

n
e
rg

y
 (

J
o
u
le

)

Node Speed (m/s)

τ2 = 18
τ2 = 26
τ2 = 34

(b)

Figure 4.11: (a) Effect of τ2 and node speed on data retrieval rate. (b) Effect of τ2
and node speed on energy efficiency.

energy consumed for relocating data fragments is much smaller than energy consumed

for inefficient data retrieval; second, not all data fragments need to be relocated.

Another interesting observation is that, despite higher node speed, both retrieval

rates and consumed energy do not increase much. The results confirm that our

network monitoring component works correctly: although nodes move with different

speeds, our component reallocates the storage nodes such that the performance does

not degrade much.

4.5.3 Reliability-Compliant Data Replication Evaluation

In this section, we employ both synthetic traces and a Dartmouth Network

Trace [37]. Specifically, we are interested in the accuracy of reliability estimation

and data maintenance/reallocation energy. These metrics are measured for differ-

ent network sizes, number of storage/processor nodes, and number of failure nodes.

We first evaluate the performance of our solution for data storage and maintenance.

Given an application reliability requirement, we compare the energy consumption for

data storage and maintenance using either the traditional single (k, n) parameter, or

64

0*10
0

2*10
-3

4*10
-3

6*10
-3

8*10
-3

10*10
-3

12*10
-3

(2,4)

(4,8)

(6,12)

(8,16)

(10,20)

E
rr

o
r

P
e

rc
e

n
ta

g
e

(ks, ns)

26 nodes

38 nodes

45 nodes

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 6 8 10 12 14 16
-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

S
y
s
te

m
 R

e
lia

b
ili

ty

D
a
ta

 R
e
d
u
n
d
a
n
c
y
 R

a
ti
o
 (

%
)

Parameter ns

mean=0.1
mean=0.5
mean=0.9
Overhead

(b)

Figure 4.12: (a) The error of system reliability estimation in different network sizes.
(b) The effect of (ks, ns) on the system reliability and data redundancy.

our proposed variable data fragmentation. When evaluating our framework on the

real network trace, we also compare the performance with Hadoop Distributed File

System (HDFS).

4.5.3.1 Synthetic Network Trace

Figure 4.12a depicts the accuracy of the table-lookup reliability estimation. Given

the storage parameter (ks, ns), we compare the true reliability computed with Equa-

tion 4.6 and the approximated reliability estimated by table lookup. The results

show that the error is less than 1% and decreases as ns increases. When more than

half of the nodes in the network are selected, the error drops to below 0.1%. The

error decreases with ns because a larger selected subset is better approximated by

the mean network reliability.

Figure 4.12b shows the effects of storage parameter (ks, ns) on the system reli-

ability and data redundancy. In this experiment, the network size is 16, ks is fixed

at 4, (kf , nf)=(ks, ns), and ns varies from 4 to 16. Four networks with different

mean reliabilities are evaluated. Data redundancy is defined as the increase in size

65

 10

 20

 30

 40

 50

 60

 70

 80

 90

10 14 18 22 26 32 38 45

M
a

in
te

n
a

n
c
e

 E
n

e
rg

y
(J

o
u

le
)

Network Size

Cost 1(Split (k,n))

Cost 2(Single (k,n))

(a)

 4

 6

 8

 10

 12

 14

 16

10 14 18 22 26 32 38 45

R
e

a
llo

c
a

ti
o

n
 E

n
e

rg
y
(J

o
u

le
)

Network Size

Min. Cost Flow

Random

(b)

Figure 4.13: (a) Performance comparison of unsplit storage parameter, i.e. (ks, ns) =
(kf , nf), and splitting storage parameter. (b) Compare the energy consumption of
random reallocation and min-cost flow reallocation.

after a data object is encoded by erasure coding. It is obvious that both the system

reliability and the data redundancy increase with ns. Data redundancy is essentially

the price of higher system reliability. Assume the reliability requirement is 0.9. The

network with 0.9 mean reliability needs only 50% redundancy while the network with

0.5 mean reliability needs 200% redundancy in order to achieve the same reliability

requirement.

The purpose of having split storage and fragment parameters is to provide more

flexibility and reduce the maintenance cost. If a single fragment parameter can

adapt to several storage parameters, the chance of expensive data re-encoding and

re-distribution will be lower. The maintenance cost here includes the energy con-

sumption for data reallocation, data retrieval, data encoding, and data redistribution.

We estimate the energy consumption based on the energy profile measured from a

real smartphone (HTC Evo). Figure 4.13a shows that split scheme reduces the overall

maintenance energy by around 50%. Figure 4.13b considers only the “data reallo-

cation energy” from the total maintenance energy and compares the performance

66

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5
 0.8

 0.85

 0.9

 0.95

 1

 1.05

D
a

ta
 R

e
tr

ie
v
a

l
E

n
e

rg
y

S
y
s
te

m
 R

e
lia

b
ili

ty

Time

(4,6) (4,7) (5,8) (6,9) (5,9) (6,10)

Energy-Random

Energy-Opt

Reliability-Random

Reliability-Opt

Figure 4.14: The effectiveness of the maintenance algorithm. The data retrieval en-
ergy increases as the time elapses, but the system reliability remains almost constant
due to the updated storage parameter.

between minimum-cost flow reallocation and Random reallocation. Random scheme

randomly pairs up the new storage node and the old storage node when reallocating

fragments. An interesting observation is that network size 10 and 14 have relatively

high reallocation energy. The reason is that these two networks have higher data

redundancy and more topology changes; when the network size is small, the ratio

ns/ks is usually higher in order to achieve the system reliability requirement, caus-

ing higher redundancy ratio nf/kf . More redundant data thus increases the overall

reallocation cost.

In our network trace, each node’s reliability gradually decreases as time elapsed.

Upon a topology change event, the maintenance algorithm may update the storage

parameter or data allocation to maintain the system optimality. Figure 4.14 com-

pares the data retrieval energy of our solution and Random solution. In Random,

67

ns storage nodes are randomly selected and clients access data from their closest ks

storage nodes. The x-axis represents the time the maintenance algorithm is triggered

and the updated storage parameter is shown at the top of the plot; the left and the

right y-axis represent the overall data retrieval energy and system reliability at each

time point respectively. The energy efficiency of both schemes degrade as the time

elapses because routes between clients and storage nodes become less reliable and the

average retrieval time becomes longer. One interesting observation that the system

reliability remains almost constant in both schemes. This is because the updated

storage parameter keeps the system reliability high regardless of the data allocation.

4.5.3.2 Dartmouth Network Trace

The Dartmouth Outdoor Dataset [37] includes the GPS locations and routing

tables of 41 laptops moving in a 255×365m2 athletic field for 1.5 hours. During the

experiment, 7 laptops failed to generate any data, and another 8 laptops became

inactive after 30-40 minutes. Less than 26 nodes completed the entire experiment,

as most of the laptops reached the end of battery life. This realistic trace serves as

a good model for evaluating our solutions.

A set of files are created at the beginning of the experiment, and each file is

split into 4MB data blocks. We then evaluate the average maintenance energy

(reallocation, retrieval, and redistribution) of each data block. Figure 4.15 shows the

maintenance energy at three different times.

Similar to Figure 4.13, we compare the maintenance cost of single and of split

storage parameter solutions. We then compare the energy consumption of the min-

cost flow reallocation and Random reallocation. At the beginning of the experiment,

all nodes have high reliability and the network has good connectivity. As a result,

very low data redundancy is necessary to achieve the reliability requirement and the

68

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

10 min . 40 min . 70 min .

E
n
e
rg

y
(J

o
u
le

)

Maintenance Time

Split (k,n)

Single (k,n)

Min-cost Realloc.

Rnd. Realloc.

Figure 4.15: Maintenance energy of Dartmouth dataset at different times.

overall maintenance cost is low. As the time elapses, nodes move towards wider

area, some nodes become inactive, and most nodes’ reliability drop. These cause

higher data redundancy, unstable connectivity, and thus higher maintenance energy.

When data re-distribution is inevitable, e.g., at 40 and 70 minutes, the performance

of split storage parameter becomes close to the single storage parameter. Overall,

the min-cost flow fragment reallocation achieves 20-50% lower energy than random

fragment reallocation.

Figure 4.16 compares the performance of our storage system and the Hadoop

Distributed File System (HDFS) in Dartmouth Network Trace. In our storage sys-

tem (MDFS), a file is encoded, distributed, and maintained based on the framework

presented in Sec. 4.3. HDFS replicates each data block 3 times to 3 different nodes.

Figure 4.16a evaluates the energy consumption for each node to retrieve the file at

different times. The y-axis is the mean retrieval energy of all nodes in the network,

69

 0

 5

 10

 15

 20

1 min 20 min 40 min 60 min

D
a

ta
 R

e
tr

ie
v
a

l
E

n
e

rg
y
 (

J
o

u
le

)

Time

MDFS Energy

HDFS Energy

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 min 15 min 30 min 45 min 60 min 75 min

%
 o

f
s
u

c
c
e

s
s
fu

l
n

o
d

e
s

Time

MDFS Ret. Rate

HDFS Ret. Rate

(b)

Figure 4.16: Comparison of our storage system (MDFS) with HDFS. (a) Mean data
retrieval energy from each node in the network at different times. (b) Data retrieval
rate – the percentage of nodes that can recover the data.

and the error bar indicates the standard deviation of data retrieval energy among all

nodes. It can be seen that our storage framework achieves better energy efficiency,

and the variance of data retrieval energy among clients nodes is also much lower than

HDFS. This is because our framework allocates data considering the energy efficiency

and the data fragments are more evenly distributed in the network. Figure 4.16b

estimates the number of nodes that can successfully retrieve the stored data at dif-

ferent times. The y-axis is the percentage of nodes that can successfully retrieve the

stored data. In HDFS, the data becomes unavailable if all 3 nodes fail or if a client

node can not access any of the 3 storage nodes. Because our framework continuously

maintains the stored data, client nodes in MDFS have much higher probability to

successfully recover a file than HDFS.

4.5.4 Caching Algorithm Evaluation

Figure 4.17 depicts the performance metrics of running NC, CC, DC and IC

algorithms with varying number of nodes in the network. An immediate observa-

70

 0

 1000

 2000

 3000

 4000

 5000

 14 16 18 20 22 24 26

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Number of Nodes

NC

CC

DC

IC

(a)

 70

 75

 80

 85

 90

 95

 100

 14 16 18 20 22 24 26

R
e
tr

ie
v
a
l
R

a
te

Number of Nodes

NC

CC

DC

IC

(b)

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 14 16 18 20 22 24 26

P
re

fe
tc

h
in

g
 O

v
e
rh

e
a
d

Number of Nodes

CC

DC

(c)

 300

 350

 400

 450

 500

 550

 600

 650

 14 16 18 20 22 24 26

T
o
ta

l
C

a
c
h
e
s

Number of Nodes

CC

DC

(d)

Figure 4.17: Effect of nodes number on (a) Energy Consumption; (b) Retrieval Rate;
(c) Prefetching Overhead; (d) Total Caches. The test scenario is based on 12 files,
600 requests, and the buffer size is set to be holding up to 24 fragments.

tion is that the performance of NC is highly subjective to the number of nodes and

their movements. For energy consumption, more nodes usually implies more hops,

therefore more energy consumption. When there are not enough nodes in the area

and the network density is relatively low (below 22 in our simulation), adding more

nodes to the network only forms paths with more hops, thus slightly increasing the

energy consumption for retrieving the data. After the network density has reached

a “saturated” point (22 in our simulation), the chance of nodes finding better or

shorter paths to cache agents increases and thus the total energy consumption starts

71

to decrease. As for the retrieval rate, higher number of nodes generally provides more

candidate cache agents and thus improves the data availability. Another interesting

observation is that with caching enabled, the fluctuation of both energy and retrieval

rate reduces because the file requests become more likely to be fulfilled by the nearby

cache agents rather than the service centers farther away. As there are always cached

fragments somewhere in the network, the failures of the service centers do not sig-

nificantly bring down the performance of the system. After examining CC, DC and

IC, it is clear that our proposed DC is much more effective under all circumstances.

We consider network size up to 26 nodes in this simulation because: 1) a mobile

cloud of 26 nodes is realistic in a real-world environment; 2) in order to compare

the performance between the centralized solution (CC) and the distributed solution

(DC), 26 is close to the largest network size that the CC problem can be solved

effectively by the Matlab optimization toolbox; 3) given the fixed network dimensions

(400 m2) and the file access pattern, the energy consumption and the data retrieval

rate already reach steady state at 22 nodes. Thus, adding more nodes does not affect

the result much.

72

5. DISTRIBUTED DATA PROCESSING*

In this section, we present the k-out-of-n data processing framework that is built

on top of the k-out-of-n data storage framework in section 4. Note that part of this

section is reprinted from the previously published papers.∗ The objective is to pro-

vide applications a fault-tolerant and energy-efficient data processing service that can

process the files stored in our distributed storage. We again assume a homogeneous

mobile cloud in which all nodes have identical hardware capability and form a mobile

ad-hoc network. The more complicated heterogeneous network will be studied in the

next section. Similar to the data allocation problem, a set of np processor nodes

are selected for processing the stored data and all tasks can be completed as long as

kp or more of the np processor nodes can finish the assigned tasks. The tasks are

assigned to and scheduled on processor nodes considering the data transfer energy

and node’s reliability. The parameters kp and np determine the degree of reliability

of a processing job (different from the (k, n) used for data storage). System admin-

istrator may select these parameters depending on the reliability requirement. The

framework also provides an adaptive Parameter Selection algorithm that adjusts the

parameters based on the reliability requirement and the network condition.

In the rest of the section, we first formulate the k-out-of-n data processing prob-

lem. The task allocation problem and the task scheduling problem are then explained

∗Reprinted with permission from “Energy-Efficient, Fault-Tolerant Data Storage & Processing
in Dynamic Networks” by Chien-An Chen, Myounggyu Won, Radu Stoleru, and Geoffrey Xie, In-
ternational Symposium on Mobile Ad Hoc Networking and Computing, 2013, Copyright c© 2013,
Association for Computing Machinery, Inc.
Reprinted with permission from “HadoopMapReduce for Tactical Clouds” by Johnu George, Chien-
An Chen, Radu Stoleru, Geoffrey Xie, Tamim Sookoor, and David Bruno, International Conference
on Cloud Networking, 2014, Copyright c© 2014, IEEE.
Reprinted with permission from “Energy-Efficient, Fault-Tolerant Data Storage & Processing in
Mobile Cloud” by Chien-An Chen, Myounggyu Won, Radu Stoleru, Geoffrey Xie, IEEE Transac-

tions on Cloud Computing, 2015, Copyright c© 2015, IEEE.

73

in detail. The 2-level Tabu-Search solver is present to solve these optimization prob-

lems. After understanding our k-out-of-n data processing framework, we explain how

the Hadoop MapReduce component is integrated into our framework. The section

finishes with the evaluation results.

5.1 Formulation of the k-out-of-n Data Processing Problem

We consider a dynamic network of N nodes denoted by a set V = {v1, v2, ..., vN}.

The problem formulation shares the same settings and notations used in section 4.1.

In addition, here we define several new notations used for modeling the task schedul-

ing. Scheduling Matrix S is an L×N ×M matrix where element Slij = 1 indicates

that task j is scheduled at time l on node i; otherwise, Slij = 0. l is a relative

time referenced to the starting time of a job. Since all tasks are instantiated from

the same function, we assume they spend approximately the same CPU time on

any node. Given the terms and notations, we are ready to formally describe the

k-out-of-n data processing problems.

The objective of this problem is to find np nodes in V as processor nodes such

that energy consumption for processing a job of M tasks is minimized. In addition,

it ensures that the job can be completed as long as kp or more processors nodes

finish the assigned tasks. Before a processor node starts processing a data object,

assuming the correctness of erasure coding, it first needs to retrieve and decode k

data fragments because nodes can only process the decoded plain data object, but

not the encoded data fragment. Because the network is homogeneous, each task

consumes the same CPU time and CPU energy on any processor node. However, a

task still has different data retrieval energy on different processor nodes. The data

retrieval energy depends on the data fragments location and network topology. We

will model a more general case in which both CPU energy and communication energy

74

are considered in the next section.

Before formulating the problem, we define some functions: (1) f1(i) returns 1

if node i in S has at least one task; otherwise, it returns 0; (2) f2(j) returns the

number of instances of task j in S; and (3) f3(z, j) returns the transmission cost of

task j when it is scheduled for the zth time. We now formulate the k-out-of-n data

processing problem as shown in Equation 5.1 - 5.6.

The objective function (Eq. 5.1) minimizes the total transmission cost for all

processor nodes to retrieve their tasks. l represents the time slot of executing a task;

i is the index of nodes in the network; j is the index of the task of a job. We note

here that T r, the Data Retrieval Time Matrix, is a N×M matrix, where the element

T r
ij corresponds to the estimated time for node i to retrieve task j. T r is computed

by summing the transmission time (in terms of ETT available in D) from node i to

its k closest storage nodes of the task.

minimize

L∑

l=1

N∑

i=1

M∑

j=1

SlijT
r
ij (5.1)

Subject to:

N∑

i

f1(i) = n (5.2)

f2(j) = np − kp + 1 ∀j (5.3)
L∑

l=1

Slij ≤ 1 ∀i, j (5.4)

N∑

i=1

Slij ≤ 1 ∀l, j (5.5)

M∑

j=1

f3(z1, j) ≤
M∑

j=1

f3(z2, j) ∀z1 ≤ z2 (5.6)

The first constraint (Eq. 5.2) ensures that n nodes in the network are selected as

75

processor nodes. The second constraint (Eq. 5.3) indicates that each task is replicated

np-kp+1 times in the schedule such that any subset of k processor nodes must contain

at least one instance of each task. The third constraint (Eq. 5.4) states that each task

is replicated at most once to each processor node. The fourth constraint (Eq. 5.5)

ensures that no duplicate instances of a task execute at the same time on different

nodes. The fifth constraint (Eq. 5.6) ensures that a set of all tasks completed at

earlier time should consume lower energy than a set of all tasks completed at later

time. In other words, if no processor node fails and each task completes at the

earliest possible time, these tasks should consume the least energy.

5.2 Energy-Efficient and Fault-Tolerant Data Processing

The k-out-of-n data processing problem is solved in two stages – Task Allocation

and Task Scheduling. In the Task Allocation stage, np nodes are selected as processor

nodes ; each processor node is assigned one or more tasks; each task is replicated to

np-kp+1 different processor nodes. An example is shown in Figure 5.1a. However,

not all instances of a task will be executed – once an instance of the task completes,

all other instances will be canceled. The task allocation can be formulated as an ILP

as shown in Equations 5.7 - 5.11. In the formulation, Rij is a N ×M matrix which

predefines the relationship between processor nodes and tasks; each element Rij is

a binary variable indicating whether task j is assigned to processor node i. X is a

binary vector containing processor nodes, i.e., Xi = 1 indicates that vi is a processor

node. The objective function minimizes the transmission time for n processor nodes

to retrieve all their tasks. The first constraint (Eq. 5.8) indicates that n of the N

nodes will be selected as processor nodes. The second constraint (Eq. 5.9) replicates

each task to (np-kp+1) different processor nodes. The third constraint (Eq. 5.10)

ensures that the jth column of R can have a non-zero element if only if Xj is 1; and

76

3 4 6 8

TTTT1 TTTT1

TTTT2

TTTT2 TTTT1 TTTT1TTTT2

TTTT3 TTTT3

9

TTTT1TTTT2

TTTT3

4

3

2

1

5

6

78

9

(a)

3 4 6 8

TTTT1

9

TTTT1

TTTT2

TTTT2

TTTT1

TTTT3

TTTT3

TTTT1TTTT2

TTTT3

Time

1

2

3

4

5

(b)

3 4 6 8

TTTT1 TTTT1

TTTT2

TTTT2TTTT1

TTTT3

9

TTTT1TTTT2

TTTT3

TTTT1

TTTT2

TTTT3

(c)

3 4 6 8

TTTT1

9

TTTT3

Time

1

2

3

4

5

TTTT2

TTTT1TTTT3

TTTT2

TTTT1 TTTT2

6 TTTT3

(d)

3 4 6 8

TTTT1

9

TTTT3

Time

1

2

3

4

5

TTTT2 TTTT1

TTTT3 TTTT2

TTTT2

6

TTTT3

TTTT1

(e)

Figure 5.1: The k-out-of-n data processing example with N = 9, np = 5, kp = 3. (a)
and (c) are two different task allocations and (b) and (d) are their tasks scheduling
respectively. In both cases, node 3, 4, 6, 8, 9 are selected as processor nodes and each
task is replicated to 3 different processor nodes. (e) shows that shifting tasks reduce
the job completion time from 6 to 5.

the constraints (Eq. 5.11) are binary requirements for the decision variables.

Once processor nodes are determined, we proceed to the Task Scheduling stage.

In this stage, the tasks assigned to each processor node are scheduled such that

the energy and time for finishing at least M distinct tasks is minimized, meaning

that we try to shorten the job completion time while minimizing the overall energy

consumption. The problem is solved in three steps. First, we find the minimal energy

for executing M distinct tasks in Rij . Second, we find a schedule with the minimal

energy that has the shortest completion time. As shown in Figure 5.1b, tasks 1 to 3

77

Ropt = arg min
R

N∑

i=1

M∑

j=1

T r
ijRij (5.7)

Subject to:
N∑

i=1

Xi = n (5.8)

N∑

i=1

Rij = np − kp + 1 ∀j (5.9)

Xi −Rij ≥ 0 ∀i (5.10)

Xj and Rij ∈ {0, 1} ∀i, j (5.11)

are scheduled on different nodes at time slot 1; however, it is also possible that tasks

1 through 3 are allocated on the same node, but are scheduled in different time slots,

as shown in Figure 5.1c and 5.1d. These two steps are repeated n-k+1 times and M

distinct tasks are scheduled upon each iteration. The third step is to shift tasks to

earlier time slots. A task can be moved to an earlier time slot as long as no duplicate

task is running at the same time, e.g., in Figure 5.1d, task 1 on node 6 can be safely

moved to time slot 2 because there is no task 1 scheduled at time slot 2.

The ILP problem shown in Equations 5.12 - 5.15 finds M unique tasks from Rij

that have the minimal transmission cost. The decision variable W is an N × M

matrix where Rij = 1 indicates that task j is selected to be executed on processor

node i. The first constraint (Eq. 5.13) ensures that each task is scheduled exactly

one time. The second constraint (Eq. 5.14) indicates that Wij can be set only if task

j is allocated to node i in Rij . The last constraint (Eq. 5.15) is a binary requirement

for decision matrix W .

Once the minimal energy for executing M tasks is found, among all possible

schedules satisfying the minimal energy budget, we are interested in the one that

78

WE = arg min
W

N∑

i=1

M∑

j=1

TijRijWij (5.12)

Subject to:
N∑

i=1

Wij = 1 ∀j (5.13)

Rij −Wij ≥ 0 ∀i, j (5.14)

Wij ∈ {0, 1} ∀i, j (5.15)

minimize Y
Y

(5.16)

Subject to:

N∑

i=1

M∑

j=1

Tij × Rij×Wij ≤ Emin (5.17)

N∑

i=1

Wij = 1 ∀j (5.18)

Rij −Wij ≥ 0 ∀i, j (5.19)

Y −
M∑

j=1

Wij ≥ 0 ∀i (5.20)

Wij ∈ {0, 1} ∀i, j (5.21)

has the minimal completion time. Therefore, the minimal energy found previously,

Emin =
∑N

i=1

∑M
j=1 TijRijWE , is used as the “upper bound” for searching a task

schedule.

If we define Li =
∑M

j=1Wij as the number of tasks assigned to node i, Li indicates

the completion time of node i. Then, our objective becomes to minimize the largest

number of tasks in one node, written as min
{

maxi∈[1,N] {Li}
}

. To solve this min-max

problem, we formulate the problem as shown in Equations 21 - 26.

The objective function minimizes integer variable Y , which is the largest number

79

Algorithm 3: Schedule Re-arrangement

L=last time slot in the schedule
for time t = 2→ L do

for each scheduled task J in time t do
n← processor node of task J
while n is idle at t− 1 AND
J is NOT scheduled on any node at t− 1 do

Move J from t to t− 1
t = t− 1

end

end

end

of tasks on one node. Wij is a decision variable similar to Wij defined previously.

The first constraint (Eq. 5.17) ensures that the schedule cannot consume more energy

that the Emin calculated previously. The second constraint (Eq. 5.18) schedules each

task exactly once. The third constraint (Eq. 5.20) forces Y to be the largest number

of tasks on one node. The last constraint (Eq. 5.21) is a binary requirement for

decision matrix W . Once tasks are scheduled, we then rearrange tasks – tasks are

moved to earlier time slots as long as there is free time slot and no same task is

executed on other node simultaneously. Algorithm 3 depicts the procedure. Note

that the k-out-of-n data processing framework guarantees that kp or more functional

processor nodes can complete all M tasks of a job. In general, it is also possible that

a subset of processor nodes of size less than kp complete all M tasks.

5.3 Deadline-Compliant Energy-Aware Task Scheduling

We now study a different and more complicated problem formulation where a

soft job deadline is added as a constraint and the (kp, np) parameter is selected by

the problem solver based on the reliability requirement. The rationale behind the

“soft deadline” is that we ensure “expected job makespan” meets a given deadline.

80

Although meeting a hard deadline is also possible, considering that the type of job

is not extremely time-critical, a soft deadline allows a more energy-efficient solu-

tion (task schedule). Similar tradeoff of soft or hard deadline was studied in prior

works [74, 105]. Clients submit jobs to process the stored files, e.g., object recogni-

tion or statistical analysis. A job is partitioned into multiple tasks, where each task

processes one data block. The objective is to assign and schedule these tasks to a set

of np selected processor nodes such that the job is fault-tolerant, energy-efficient, and

completes within a deadline. Similar to storage parameter (ks, ns) in section 4.3.1,

a processor parameter (kp, np) determines the reliability of a job; a job succeeds if

kp or more processors complete their assigned tasks. To ensure the k-out-of-n relia-

bility, each task is replicated to (np-kp+1) task instances and each task instance is

assigned to a processor node. In this manner, at least one instance of a task will

execute as long as no more than np-kp processor nodes fail. (kp, np) is selected by

the same procedure as selecting (ks, ns); given the reliability requirement of a job, a

set of Candidate Processor Parameters is found by table lookup (Table 4.1), and a

single processor parameter in this set is then selected by solving the data processing

optimization problem. The solution of the problem selects a single processor param-

eter (kp, np), selects nP processor nodes, and creates a schedule S. The following

subsections describe how the problem is formulated and solved.

5.3.1 Energy-Efficient and Load-Balanced Task Allocation

Each task involves retrieving and processing a data block. Assuming that the net-

work is homogeneous and a task requires the same CPU processing time on any node,

we minimize only the transmission time (thus, energy) for retrieving tasks. Although

each task is replicated multiple times, most task instances are simply standby and

will not retrieve or process data objects – once an instance of the task completes, all

81

t1

t2

tM

t1-1

t2-1

tM-1

t1-2

t2-2

tM-2

t1-q

t2-q

tM-q

1

6

2

7

3

8

4

9

5

N

(a)

t1

t2

tM

1 42 3 6 9

1 3 6

2 3 9

1 3 6

(b)

Figure 5.2: (a) The network has N nodes and each task has q replications. t1-1
is the first instance of task 1 and tM -q is the last instance of task M. (b) (kp,np) is
selected as (4,6). Nodes 1, 2, 3, 4, 6, and 9 are selected as processor nodes by the task
scheduling algorithm and each task is assigned to (np-kp+1=3) different processor
nodes.

other instances of the task are canceled. Figure 5.2a and 5.2b illustrate an example

of task allocation where M tasks are to be processed and each task has q replicated

instances (q = np − kp + 1).

Equations 5.22-5.31 formulate the data processing optimization problem that

finds a minimal energy solution constrained on a soft job deadline. Assume the

network has N nodes and the job has M tasks. X and S are the decision variables.

X is a binary vector containing the selected processor nodes, i.e., Xi=1 indicates

that node i is selected as a processor node. Schedule matrix S is a N × M × N

matrix which defines how the task instances are allocated and scheduled, i.e., Sijl=1

indicates that task j is assigned to processor node i at level l. A level is a time slot

in which each task is scheduled once. Each level is represented by a (N ×M) matrix

(the first two dimensions of S) where each row is a processor and each column is a

task.

The objective function (Equation 5.22) minimizes the Expected Retrieval Time

82

Sopt = arg min
S

ERet(S) (5.22)

Subject to: np ≤ nmax (5.23)

N∑

i=1

N∑

l=1

Sijl = q ∀j (5.24)

N∑

i=1

Sijl = 1 ∀j, ∀l ≤ q (5.25)

N∑

l=1

Sijl ≤ 1 ∀i, ∀l ≤ q (5.26)

N∑

i=1

M∑

j=1

N∑

l=q+1

Sijl = 0 (5.27)

EMakespan(S) ≤ deadline (5.28)

MXi ≥
M∑

j=1

Sijl ≥ Xi

∀i, ∀l ≤ q (5.29)

np =

N∑

i=1

Xi ; kp = fk(np);

q = np − kp + 1 (5.30)

Xi and Sijl ∈ {0, 1} ∀i, j, l (5.31)

of the job. Function ERet(S) takes a schedule matrix S as the input and evaluates

the total expected time for retrieving the job; how ERet(S) is evaluated will be

described in section 5.3.3. Constraint 1 (Equation 5.23) allows at most nmax nodes

to be selected as the processor nodes. Constraint 2 (Equation 5.24) replicates each

task q times (q = np − kp + 1). Constraint 3 (Equation 5.25) ensures that each task

is scheduled exactly once in each level. Constraint 4 (Equation 5.27) indicates that

the tasks are only scheduled in the first np − kp + 1 levels, and level np − kp + 2

83

to level N are all zeros. Note that np and kp are unknown variables. Constraint 5

(Equation 5.28) ensures that the expected job completion time is within the deadline.

Function EMakespan(S) returns the expected job makespan of the job; how it is

evaluated will be explained in section 5.3.3. Constraint 6 (Equation 5.29) ensures

that Xi = 1 if and only if there is at least one task assigned to processor i in each

level. Constraint 7 (Equation 5.30) defines the helping variables np and kp; np is the

number of the selected processor nodes and it is equal to the number of 1 appearing

in X ; function fk(np) returns the corresponding kp of the given np by checking the

candidate processor parameters.

5.3.2 Fault-Tolerant and Minimal Expected Makespan Task Allocation

The data processing problem can be slightly modified to find either the minimal-

energy solution or minimal job makespan solution. If the deadline in Equation 5.28

is set to infinity, the solution achieves minimal energy. If we change the objective

function (Equation 5.22) to EMakespan(S) and remove the deadline constraint,

the solution achieves minimal expected makespan. Specifically, the new objective

function becomes Sopt = arg minS EMakespan(S).

5.3.3 Computation of Expected Retrieval Time and Expected Job Makespan

The rationale behind the “expected time” is that a task may execute on one of the

(np-kp+1) assigned processor nodes and each task instance has certain probability to

complete the job depending on the scheduled time and the reliability of its processor

node. Before explaining the expected retrieval time, we first explain how the tasks

are scheduled in S. The tasks are scheduled according to the following rules: 1) each

processor node may have multiple task instances, but no more than one instance

of a same task can be scheduled on a single processor node; 2) each task should

be scheduled exactly once in each level. Task instances in lower levels have higher

84

1 42 3 6 9

t1
t2 t8

t3

t5t4 t6

t7

t1

t2

t8t5

t4 t3t7 t6

t1

t2 t8

t5 t4t3 t7t6

T
im

e
 (

E
x
e

cu
ti

o
n

 o
rd

e
r)

L
e

v
e

l 1
L
e

v
e

l 2
L
e

v
e

l 3

Figure 5.3: An example of task schedule S. The job has M = 8 tasks, and each task
has 3 replicated instances. Schedule S has 3 levels and each level contains 8 unique
tasks.

priority to task instances in higher levels, and a task instance in a higher level may

execute only if all instances of the same task in lower levels have failed. As shown in

Figure 5.3, a task instance in level 2 may start only if the processor node of the same

task fails in level 1; a task instance in level 3 may start only if the processor nodes of

the same task fail in both level 1 and level 2. We now define few notations: ECT(S,

t) and ERT(S, t) are the Expected Completion Time and the Expected Retrieval Time

of task t in schedule S respectively. Ri and Ri represent the reliability and the failure

probability of each processor node, where i is the node index.

Using task 1 in Figure 5.3 as an example, task 1 has three instances (t11, t
2
1 and

t31), and they are assigned to node 3, node 4, and node 1 in level 1, level 2, and level

3 respectively. The probability that task 1 finishes at level 1 is R3, the reliability of

node 3. The probability that task 1 finishes at level 2 is R3R4, the probability that

node 3 fails and node 4 successfully completes the assigned tasks. The probability

85

that task 1 finishes at level 3 is R3R4R1, the probability that both node 3 and

node 4 fail while node 1 succeeds. We denote RetT(t) as the retrieval time of the

task instance t, which is evaluated based on the size and the locations of the data

fragments.

Assume that instances of task 1 have the lowest priority and always execute

after other tasks in the same processor. The completion time of task 1 in node 3

at level 1 is RetT(t11)+RetT(t13), the completion time of task 1 in node 4 at level

2 is RetT(t23)+RetT(t21), and the completion time of task 1 in node 1 at level 3 is

RetT(t31). Note that when considering the completion time of a task in one level,

the retrieval time of all other tasks on the same processor need to be considered.

The time wasted by the failed task instances also need to be considered. Finally, the

expected completion time of task 1 is:

ECT(S, t1) = R3(RetT (t1 − 3) + RetT (t3 − 1))

+ R3R4(RetT (t1 − 3) + RetT (t3 − 1)

+ RetT (t3 − 2) + RetT (t1 − 2))

+ R3R4R1(RetT (t1 − 3) + RetT (t3 − 1)+

RetT (t3 − 2) + RetT (t1 − 2) + RetT (t1 − 1))

In this manner, we compute the expected completion time of all tasks. The

Expected Job Makespan is the longest expected completion time among all tasks,

i.e., EMakespan(S) = maxiECT(S, ti).

The Expected Retrieval Time is computed similarly, except that we do not need

to consider the retrieval time spent by other tasks in the same processor. E.g.,

86

when calculating the retrieval time of task 1 in level 2, only RetT(t1-2) needs to be

considered. The expected retrieval time of task 1 in Figure 5.3 is:

ERC(S, t1) = R3(RetC(t11)) + R3R4(RetC(t11) + RetC(t21))

+ R3R4(RetC(t11) + RetC(t21) + RetC(t31))

In this manner, we compute the expected retrieval time of each task, and the

Expected Retrieval Time of the job is the summation of the expected retrieval time

of all tasks, i.e., ERet(S) =
∑

iERT(S, ti).

5.4 Tabu Search Solver

As the conventional optimization toolbox cannot efficiently solve our integer con-

straint programming problem, we adopt Tabu Search(TS) heuristic for solving our

optimization problems. Tabu search was first proposed by Glover in 1986 to solve

various combinatorial problem that appeared in operations research [36], and was

later shown to perform well in solving facility location problem and job shop schedul-

ing problem in many literatures [35] [17]. In this section, we briefly describe how the

k-out-of-n data processing problem is solved by tabu search heuristic. We skip the

k-out-of-n data allocation problem in the previous section as it is a simpler version

of the data processing problem and the solver works similarly.

We proposed a 2-stages TS search algorithm in which two TS procedures coop-

erate to explore two decision variables, X and S. The first TS procedure explores

the number of processor nodes (np) in the candidate processor parameters and the

possible subset of np processor nodes among all N nodes in the network; the sec-

ond TS procedure takes the selected np processor node in the first procedure and

87

Inputs:

Nodes Rel.,

Rel. Requirement,

Set of tasks

Find Candidate
Processor Parameters

Pick one (kp,np)

Explore neighbors of (kp,np),
any subset of np processors

Pick a subset of np
processors

Explore possible
task allocation/schedule of
the selected np processors

Pick a task schedule S

Evaluate ERet(S) and
EMakespan(S)

Meet deadline?

Yes

Finish exploring the selected
np processors?

No

No

Yes

Finish exploring all possible
subset of np processors ?

Yes

Finish exploring all candidate
processor parameters?

No

No

Yes

Return optimal S

Figure 5.4: The flow chart describes how the 2-stages Tabu Search solves the k-
out-of-n data processing problem. The first TS procedure explores the number of
processor nodes np and the possible subset of np nodes; the second TS procedure
explores the possible task allocation and task scheduling.

explores the possible task allocation and task scheduling; when the lowest energy

schedule that satisfies the deadline constraint is found, the second procedure returns

88

the schedule S back to the first procedure. This cycle repeats until the stopping

criteria is reached. The stopping criteria is either all the feasible solutions have been

explored or an stable optimal solution is reached. The flowchart in Fig. 5.4 outlines

the TS search procedure. The solution of this heuristic approach is “near optimal”

and may just be a local minimal. However, our evaluation shows that a near optimal

solution with the quality 5% worse than the true optimal can be reached with only

1% of the computation time.

5.5 Hadoop MapReduce Integration

Hadoop is a scalable platform that provides distributed storage and computa-

tional capabilities on clusters of commodity hardware. Hadoop MapReduce is a

popular open source programming framework for cloud computing [29]. The frame-

work splits the user job into smaller tasks and runs these tasks in parallel on different

nodes, thus reducing the overall execution time when compared with a sequential ex-

ecution on a single node. This architecture however, fails in the absence of external

network connectivity, as it is the case in military or disaster response operations. This

architecture is also avoided in emergency response scenarios where there is limited

connectivity to cloud, leading to expensive data upload and download operations. In

such situations, wireless mobile ad-hoc networks are typically deployed [32].

Building Hadoop on a mobile network enables the devices to run data intensive

computing applications without direct knowledge of underlying distributed systems

complexities. We developed the Hadoop MapReduce framework over MDFS and

studied its performance in a real heterogeneous mobile cluster. The Hadoop MapRe-

duce cloud computing framework meets our processing requirements for several rea-

sons: 1) in the MapReduce framework, as the tasks are run in parallel, no single

mobile device becomes a bottleneck for overall system performance; 2) the MapRe-

89

duce framework handles resource management, task scheduling and task execution

in an efficient fault tolerant manner. It also considers the available disk space and

memory of each node before tasks are assigned to any node; 3) Hadoop MapRe-

duce has been extensively tested and used by large number of organizations for big

data processing over many years. We implement the generic file system interface of

Hadoop for MDFS which makes our system inter-operable with other Hadoop frame-

works like HBase. There are no changes required for existing HDFS applications to

be deployed over MDFS.

5.5.1 MDFS Hadoop Component

The file system functionality of each cluster node is split across three layers-

MDFS Client, Data processing layer and Network communication layer. User appli-

cations invoke file system operations using the MDFS client, a built-in library that

implements the MDFS file system interface. The MDFS client provides file system

abstraction to upper layers. The user does not need to be aware of file metadata or

the storage locations of file fragments. Data Processing layer manages the data and

control flow of file system operations. The functionality of this layer is split across

two daemons- Name Server and Data Server. MDFS Name Server is a lightweight

MDFS daemon that stores the hierarchical file organization or the namespace of the

file system. All file system metadata including the mapping of a file to its list of

blocks is also stored in the MDFS Name Server. The Name Server has the same

functionality as Hadoop NameNode. The Name Server is always updated with any

change in the file system namespace. MDFS Data Server is a lightweight MDFS

daemon instantiated on each node in the cluster. It coordinates with other MDFS

Data Server daemons to handle MDFS communication tasks like neighbor discovery,

file creation, file retrieval and file deletion. On startup, it starts a local RPC server

90

MapReduce Program

Job Client

Submit Job

Hadoop JobTracker

MDFS Client

Commun.

Server

Fragment

Mapper

Block 1 Frag A,

Frag B

Block 2
Frag C,

Frag D

Name Server

File.txt
Block 1

Block 2

 Data Server
A C

Hadoop TaskTracker

MDFS Client

Commun.

Server

M R

Client Node

Assign

Task

Metadata

Operations
Data Read/

Write

Data Read/Write

Network

Name Server

File.txt
Block 1

Block 2

Fragment

Mapper

Block 1
Frag A,

Frag B

Block 2
Frag C,

Frag D

 Data Server
B D

Metadata

Operations

M

R

A B

C D

Map Task

Reduce Task

File Fragments

Fragment

Operations

Fragment

Operations

Figure 5.5: Distributed Mobile Hadoop architecture.

listening on the port defined by mdfs.dataservice.rpc-port in the configuration file.

When the user invokes any file system operation, the MDFS client connects to the

local Data Server at the specified port and talks to it using the MDFS Data Pro-

tocol. Network communication layer handles the communication between the nodes

in the network. It exchanges control and data packets for various file operations.

This layer abstracts the network interactions and hides the complexities involved in

routing packets to various nodes in case of dynamic topologies like in MANETs.

5.5.2 Mobile Hadoop Architecture

We propose a distributed Mobile Hadoop architecture where there is no central

entity to manage the cluster. As shown in Figure 5.5, every participating node

runs a Name Server and a Fragment Mapper. After every file system operation,

the update is broadcasted in the network so that the local caches of all nodes are

synchronized. Moreover, each node periodically syncs with other nodes by sending

91

broadcast messages. Any new node entering the network receives these broadcast

messages and creates a local cache for further operations. This architecture has no

single point of failure and no constraint is imposed on the network topology. Each

node can operate independently, as each node stores a separate copy of the namespace

and fragment mapping. The load is evenly distributed across the cluster in terms of

metadata storage when compared to the centralized architecture. However, network

bandwidth is wasted due to the messages broadcast by each node for updating the

local cache of every other node in the network. As the number of nodes involved in

processing increases, this problem becomes more severe, leading to higher response

time for each user operation.

5.5.3 Energy-Aware Task Scheduling

There are many challenges in bringing data locality to MDFS. Unlike native

Hadoop, no single node running MDFS has a complete data block; each node has

at most one fragment of a block due to security reasons. Consequently, the default

MapReduce scheduling algorithm that allocates processing tasks closer to data blocks

does not apply. MDFS, however, could find a processor node (taskTracker) that

is closest to the fragments of a data block. In particular, we consider hop count

as an estimator for the transmission cost between nodes. Knowing the network

topology (from the topology maintenance component in MDFS) and the locations of

each fragment (from the fragments mapper), we could estimate the total hop count

for each node to retrieve the closest k fragments of the block. Smaller total hop

count indicates lower transmission time, lower transmission energy, and shorter job

completion time.

We now describe how to find the minimal cost (hop-count) for fetching a block

from a taskTracker. C⋆
i (b) is defined as the minimal cost of fetching block b at node

92

Algorithm 4: Task Scheduling

Input: Sb, Fb, d, k, i
Output: X,C⋆

i

C⋆
i = 0

X ←− A new 1×N array initialized to 0
D ←− A new 1×N array
for j=1 to N do

D[j].node=j
D[j].cost=dij × Fb(j)× (Sb/k)
if D[j].cost == 0 then

D[j].cost=N2 // Just assign a big number

end

end
D ←− Sort D in increasing order by D.cost
for i=1 to k do

X[D[i].node]=1
C⋆

i += D[i].cost
end
return X,C⋆

i

i. Let Fb be a 1×N binary vector where each element Fb(i) indicates whether node

i contains a fragment of block b (note that
∑N

i=1 Fb(i) = n ∀b); Sb is the size of

block b; di,j is the distance (hop count) between node i and node j; X is a 1 × N

binary decision variable where Xj = 1 indicates that node j sends a data fragment

to node i.

C⋆
i (b) = min

N∑

j=1

(Sb/k)Fb(j)di,jXj, s.t.

N∑

j=1

Xj = k

C⋆
i (b) can be solved by algorithm 4. Once C⋆

i (b) for each node is found, the

processing task for block b is then assigned to node p where p = arg mini C
⋆
i (b).

93

5.6 Evaluation

In this section, we first present the evaluation results for the k-out-of-n Data

Processing framework. The simulations are conduced on both synthetic data trace

and realistic data trace. We then show the system implementation results for mobile

Hadoop.

5.6.1 The k-out-of-n Data Processing Simulation

The simulation environment for the k-out-of-n data processing is identical to the

environment for the k-out-of-n data storage. For readers’ convenience, we repeat

the setting again here. We consider a network of 400×400m2 where up to 45 mo-

bile nodes are randomly deployed. The communication range of a node is 130m,

which is measured on our smartphones. Two different mobility models are tested –

Markovian Waypoint Model and Reference Point Group Mobility (RPGM). Marko-

vian Waypoint is similar to Random Waypoint Model, which randomly selects the

waypoint of a node, but it accounts for the current waypoint when it determines the

next waypoint. RPGM is a group mobility model where a subset of leaders are se-

lected; each leader moves based on Markovian Waypoint model and other non-leader

nodes follow the closest leader. Each mobility trace contains 4 hours of data with

1Hz sampling rate. Nodes beacon every 30 seconds.

5.6.1.1 Effect of node failures in the k-out-of-n data processing

This section investigates how the failures of processor nodes affect the energy

efficiency, job completion time, and job completion rate. We first define how Greedy

and Random work for data processing. In Greedy, each task is replicated to n-k+1

processor nodes that have the lowest energy consumption for retrieving the task, and

given a task, nodes that require lower energy for retrieving the task are scheduled

94

 300

 320

 340

 360

 380

 400

 420

 440

 0 2 4 6 8

C
o
n
s
u
m

e
d
 E

n
e
rg

y
 (

J
o
u
le

)

Number of Node Failures

KNF

Greedy

Random

(a)

 280

 300

 320

 340

 360

 380

 400

 420

 440

 0 1 2 3 4 5 6 7 8

C
o
n
s
u
m

e
d
 E

n
e
rg

y
 (

J
o
u
le

)

Number of Node Failures

KNF
Greedy

Random

(b)

Figure 5.6: (a) Effect of node failure on energy efficiency with fail-slow. (b) Effect
of node failure on energy efficiency with fail-fast.

earlier. In Random, the processor nodes are selected randomly and each task is also

replicated to np-kp+1 processor nodes randomly. We consider two failure models:

fail-fast and fail-slow. In the fail-fast model, a node fails at the first time slot and

cannot complete any task, while in the fail-slow model, a node may fail at any time

slot, thus being able to complete some of its assigned tasks before the failure.

Figure 5.6a and Figure 5.6b show that KNF consumes 10% to 30% lower energy

than Greedy and Random. We observe that the energy consumption is not sensitive

to the number of node failures. When there is a node failure, a task may be executed

on a less optimal processor node and causes higher energy consumption. However,

this difference is small due to the following reasons. First, given a task, because it

is replicated to np-kp+1 processor nodes, failing an arbitrary processor may have no

effect on the execution time of this task at all. Second, even if a processor node

with the task fails, this task might have completed before the time of failure. As a

result, the energy difference caused by failing an additional node is very small. In

the fail-fast model, a failure always affects all the tasks on a processor node, so its

95

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10

C
o
m

p
le

ti
o
n
 R

a
ti
o
 (

%
)

Number of Node Failures

KNF
Greedy

Random

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
o
m

p
le

ti
o
n
 R

a
ti
o
 (

%
)

Number of Node Failures

KNF
Greedy

Random

(b)

Figure 5.7: (a) Effect of node failure on completion ratio with fail-slow. (b) Effect
of node failure on completion ratio with fail-fast.

energy consumption increases faster than the fail-slow model.

In Figure 5.7a and Figure 5.7b, we see that the completion ratio is 1 when no

more than np−kp nodes fail. Even when more than np−kp nodes fail, due to the same

reasons explained previously, there is still chance that all M tasks complete (tasks

may have completed before the time the node fails). In general, for any scheme,

the completion ratio of the fail-slow model is higher than the completion ratio of the

fail-fast model. An interesting observation is that Greedy has the highest completion

ratio. In Greedy, the load on each node is highly uneven, i.e., some processor nodes

may have many tasks but some may not have any task. This allocation strategy

achieves high completion ratio because all tasks can complete as long as one such

high load processor nodes can finish all its assigned tasks. In our simulation, about

30% of processor nodes in Greedy are assigned all M tasks. Analytically, if three of

the ten processor nodes contain all M tasks, the probability of completion when 9

processor nodes fail is 1−
(
7
6

)
/
(
10
9

)
= 0.3. Note that load-balancing is not an objective

in this problem formulation as main objectives is energy-efficiency. We will consider

96

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

Number of Node Failures

KNF

Greedy

Random

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

Number of Node Failures

KNF

Greedy

Random

(b)

Figure 5.8: (a) Effect of node failure on completion time with fail-slow. (b) Effect of
node failure on completion time with fail-fast.

the more complicated load-balancing problem in the later section.

In Figure 5.8a and Figure 5.8b, we observe that completion time of Random is

lower than both Greedy and KNF. The reason is that both Greedy and KNF try to

minimize the energy at the cost of longer completion time. Some processor nodes may

need to execute much more tasks because they consume lower energy for retrieving

those tasks compared to others. On the other hand, Random spreads tasks to all

processor nodes evenly and thus results in lowest completion time.

5.6.2 Effect of Scheduling

Figure 5.9a and Figure 5.9b evaluate the performance of KNF before and after

applying the scheduling algorithms to the k-out-of-n data processing. When the tasks

are not scheduled, all processing nodes try to execute the assigned tasks immediately.

Since each task is replicated to np-kp+1 times, multiple instances of a same task may

execute simultaneously on different nodes. Although concurrent execution of a same

task wastes energy, it achieves lower job completion time. This is because when there

is node failure, the failed task still has a chance to be completed on other processing

97

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 1 2 3 4 5 6 7 8

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

Number of Node Failures

Unscheduled,fail-fast

Scheduled,fail-fast

(a)

 180

 200

 220

 240

 260

 280

 300

 320

 0 1 2 3 4 5 6 7 8

C
o
n
s
u
m

e
d
 E

n
e
rg

y
 (

J
o
u
le

)

Number of Node Failures

Unscheduled,fail-fast
Scheduled,fail-fast

(b)

Figure 5.9: (a) Comparison of performance before and after scheduling algorithm
on job completion time. (b) Comparison of performance before and after scheduling
algorithm on job consumed energy.

node in the same time slot, without affecting the job completion time. On the other

hand, because our scheduling algorithm avoids executing same instances of a task

concurrently, the completion time will always be delayed whenever there is a task

failure. Therefore, scheduled tasks always achieve minimal energy consumption while

unscheduled tasks complete the job in shorter time. The system reliability, or the

completion ratio, however, is not affected by the scheduling algorithm.

5.6.3 Deadline-Aware Task Scheduling Simulation

In this section, we employ both synthetic traces and a Dartmouth Network

Trace [37]. Specifically, we are interested in the data processing energy and data

processing makespan. These metrics are measured for different network sizes, num-

ber of storage/processor nodes, and number of failure nodes. We first evaluate the

performance of our solution for data processing in mobile cloud. We measure the

overall energy consumption and job makespan for completing a job, and compare

the performance of the minimal-makespan and minimal-energy solutions, when the

98

application has a given processing deadline requirement (e.g., constraint in Equa-

tion 5.28). It is worth noting that the performance of data allocation (Section 4.2

– 4.3) directly impacts the performance of data processing as data processing requires

accessing the stored data (as we discuss in the Conclusions section, we leave the joint

optimization of data storage and data processing in mobile cloud for future work).

We use a Greedy data processing algorithm for performance comparison. The idea

of Greedy is to first select nmax nodes that potentially have the lowest task retrieval

time, and then schedule tasks in a round-robin manner to achieve both load-balance

and energy efficiency. The Greedy selects nmax nodes that contain the largest number

of data fragments as the processor nodes. To achieve fault-tolerance, each task is also

replicated np-kp+1 times. At each level, processor nodes choose the tasks to execute

in round-robin manner; each processor node always picks an unscheduled task that

has the lowest retrieval energy.

5.6.3.1 Synthetic Network Trace

Throughout the data processing evaluations, we use a job consisting of 50 tasks

(and thus 50 data blocks). The size of each data block is between 4MB-8MB, and is

created at different times by our proposed data storage algorithm for mobile cloud.

During the data processing operation, if a processor node fails, task instances sched-

uled before the failure time can still complete, but all later task instances fail.

Figures. 5.10a and 5.10b depict the effects of the number of allowed processors on

the processing energy and job makespan in a 26 nodes network. The max number of

allowed processors is determined by nmax in Equation 5.23. The solver finds a subset

of processors and schedules tasks on these nodes. We compare the solutions of two

different objective functions, minimal-energy and minimal-makespan. The greedy

solution is also included. As shown, and expected, the optimal energy schedule has

99

 320

 340

 360

 380

 400

 420

 440

 5 10 15 20 25

P
ro

c
e

s
s
in

g
 E

n
e

rg
y
(J

o
u

le
)

Number of allowed processor nodes

Opt. Makespan Sche.

Opt. Energy Sche.

Greedy Sche.

(a)

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25

J
o

b
 M

a
k
e

s
p

a
n

Number of allowed processor nodes

Opt. Makespan Sche.

Opt. Energy Sche.

Greedy Sche.

(b)

Figure 5.10: The number of allowed processor nodes versus processing energy and
job makespan. (a) Processing energy (b) Job makespan

the lowest energy and the optimal makespan solution has the lowest job makespan.

However, the optimal energy schedule also has the worst job makespan, ∼4x higher

than optimal makespan.

An interesting observation is that the optimal energy solution is not affected by

the number of allowed processor nodes, as shown in both figures. This is because

it only selects a few “most energy-efficient” processor nodes, regardless of the nmax

constraint. As a result, its energy and job makespan remain almost constant once

the optimal subset of processors is found. The tradeoff of minimizing the energy is

the highly unbalanced task allocation and long job makespan. A similar behavior is

also shown in minimal job makespan solution. The job makespan decreases gradually

as nmax increases, but the improvement is not proportional to the number of added

processor nodes. Again, although more processor nodes are available, the solver may

choose only a small subset of nodes as processors. Besides, due to the dynamic nature

of Mobile Cloud, distributing tasks to more nodes instead of clustering tasks on few

highly reliable processors may cause more failures and unstable links.

100

 380

 390

 400

 410

 420

 430

 440

 450

 0 1 2 3 4 5 6

P
ro

c
e

s
s
in

g
 E

n
e

rg
y
(J

o
u

le
)

Number of failed processors

at most 10 processors

at most 14 processors

at most 18 processors

at most 22 processors

at most 26 processors

(a)

 35

 40

 45

 50

 55

 0 1 2 3 4 5 6

J
o

b
 M

a
k
e

s
p

a
n

Number of failed processors

at most 10 processors

at most 14 processors

at most 18 processors

at most 22 processors

at most 26 processors

(b)

Figure 5.11: Effect of node failures on processing energy and job makespan. (a)
Processing energy (b) Job makespan (second)

Figures. 5.11a and 5.11b show how the processing energy and job makespan are

affected by processor failures. The experiment uses 26 nodes and solutions for six

different number of allowed processor nodes (nmax) are presented. Note that the

x-axis shows only the number of failed processors, but other non-processor nodes

may also fail and affect the overall performance. Both processing energy and job

makespan increase when processor nodes fail because the tasks on failed processor

nodes need to be retrieved and executed again on other processors. Also, node

failures cause unstable links, so they increase both energy and time for retrieving

tasks. The increment of energy and makespan grows faster as the number of failed

processors increase. However, when comparing the solutions of different nmax, we see

a more stable and resilient behaviour of solution with more processor nodes.

In Figures. 5.12a and 5.12b, we plot the processing energy and job makespan using

minimal-energy constrained on the deadline. Numbers on the x-axis are the ratios

between the deadline and the minimal job makespan (minMakespan); i.e., ratio

1.4 corresponds to “deadline = 1.4×minMakespan”. minMakespan is first found

101

 320

 330

 340

 350

 360

 370

 380

 390

 400

1 1.6 3 4 6 Inf.

P
ro

c
e

s
s
in

g
 E

n
e

rg
y
(J

o
u

le
)

Deadline Ratios

at most 10 processors

at most 18 processors

at most 22 processors

at most 26 processors

(a)

 0

 50

 100

 150

 200

 250

 300

1 1.6 3 4 6 Inf.

J
o

b
 M

a
k
e

s
p

a
n

Deadline Ratios

at most 10 processors

at most 18 processors

at most 22 processors

at most 26 processors

(b)

Figure 5.12: Effect of deadline constraint on: (a) Processing energy (b) Job makespan

by solving the minimal-makespan problem. The last index Inf. indicates infinite

deadline constraint, which is essentially the minimal energy solution. Again, we use

26 nodes and compare the solutions of four different number of allowed processor

nodes.

An interesting observation is that the processing energy drops significantly when

the deadline ratio increases from 1 to 1.1, and it then slowly approaches the minimal

energy solution. From the minimal makespan solution at x=1 to the minimal energy

solution at x=Inf., around 40% of the energy drop occurs in x=[1, 1.1]. This result

has two important implications: 1) a slight increment of the deadline constraint from

the minMakespan can significantly reduce the processing energy; 2) our minimal-

energy solution is effective and is insensitive to the deadline constraint when the

deadline ratio is above 1.1. As for the job makespan, it gradually increases with the

deadline ratio and approaches a constant value when the processing energy reaches

the minimal.

102

5 min. 20 min. 30 min. 40 min.
Avg. N2N dist. 1.84 2.51 3.22 3.27

Avg.Degree 6.97 4.86 4.63 4.11
MCC 20 29 28 26

of failures 3 3 5 8

Table 5.1: Statistics of Network Trace. Average node to node distance (hop-count),
average degree of nodes, size of the maximal connected component, and number of
failed nodes.

5.6.3.2 Dartmouth Network Trace

The Dartmouth Outdoor Dataset [37] includes the GPS locations and routing

tables of 41 laptops moving in a 255×365m2 athletic field for 1.5 hours. During the

experiment, 7 laptops failed to generate any data, and another 8 laptops became

inactive after 30-40 minutes. Less than 26 nodes completed the entire experiment,

as most of the laptops reached the end of battery life. This realistic trace serves as

a good model for evaluating our solutions.

A file of 50 blocks is stored in the mobile cloud at the beginning of the experiment

and an identical processing job is performed at four different times, 5, 10, 30, and

40 minutes. The mobility of nodes is given by the Dartmouth Outdoor Dataset [37].

Three different solutions, minimal-energy, minimal-makespan, and Greedy are com-

pared in Figure 5.13, at different times. Some important network statistics at each

processing time are summarized in Table 5.1. It shows the average node to node dis-

tance in terms of hop-count, the average degree of each node, the size of the maximal

connected component (MCC), and the number of failed nodes.

Node failures are expected in Mobile Cloud (e.g., data loss, broken links, task

re-execution, unstable links, and network partition). Also, when the physical size

of the network increases due to mobility, the average node to node distance (hop-

103

 0

 200

 400

 600

 800

 1000

 1200

5 min 20 min 30 min 40 min

P
ro

c
e

s
s
in

g
 E

n
e

rg
y
(J

o
u

le
)

Processing Time

Opt. Energy Sche.

Opt. Makespan Sche.

Greedy Sche.

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 min 20 min 30 min 40 min

J
o

b
 M

a
k
e

s
p

a
n

Processing Time

Opt. Energy Sche.

Opt. Makespan Sche.

Greedy Sche.

(b)

Figure 5.13: Performance evaluation of data processing on Dartmouth Outdoor
Dataset. (a) Processing energy (b) Job makespan

count) increases and the number of reachable nodes in the network decreases (some

nodes may leave the network). All these changes make the data retrieval and data

processing in Mobile Cloud more difficult, and thus impair the data processing energy

as well as job makespan. When all 35 nodes are operational, close to each other, and

have good network connectivity at the beginning of the experiment, both processing

energy and job makespan achieve the minimal. However, as the network topology

changes with time, the performance of all three solutions degrades. One interesting

result is that all three solutions have very close data processing energy. A possible

explanation is that the network spreads very uniformly and node to node distance

has low variance, so the data allocation does not have significant impact on the

data retrieval energy. As for the job makespan, minimal-energy solution again has

the worst job makespan, and the Greedy has slightly longer job makespan than the

minimal-makespan solution.

104

5.6.4 Mobile Hadoop

To measure the performance of mobile Hadoop on mobile devices, we ran Hadoop

benchmarks on a heterogeneous 10 node mobile wireless cluster consisting of 1 per-

sonal desktop computer (Intel Core 2 Duo 3 GHz processor, 4 GB memory), 10

netbooks (Intel Atom 1.60 GHz processor, 1 GB memory, Wi-Fi 802.11 b/g inter-

face) and 3 HTC Evo 4G smartphones running Android 2.3 OS (Scorpion 1Ghz

processor, 512 MB RAM, Wi-Fi 802.11 b/g interface). We used TeraSort, a well-

known benchmarking tool that is included in the Apache Hadoop distribution. Our

benchmark run consists of generating a random input data set using TeraGen and

then sorting the generated data using TeraSort.

5.6.4.1 Effect of dataset size and cluster size

Figure 5.14a shows that processing time is 70% smaller than the network trans-

mission time for TeraSort benchmark. So, tasks have to be sufficiently long enough

to compensate the overhead in task setup and data transfer for maximum through-

put. For real world clusters, the optimal value of block size will be experimentally

obtained.

The cluster size determines the level of possible parallelization in the cluster. As

the cluster size increases, more tasks can be run in parallel, thus reducing the job

completion time. Figure 5.14b shows the effect of cluster size on job completion

time. For larger files, there are several map tasks that can be operated in parallel

depending on the configured block size. So the performance is improved significantly

with increase in cluster size as in the figure. For smaller files, the performance is

not affected much by the cluster size, as the performance gain obtained as part of

parallelism is comparable to the additional cost incurred in the task setup.

105

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

10 20 30 40 50

H
a
d
o
o
p
 J

o
b
 T

im
e
 (

s
e
c
)

Size of Input Dataset (MB)

Network Transfer Time (sec)
I/O Time (sec)

(a)

 300

 320

 340

 360

 380

 400

 4 5 6 7 8 9 10

H
a
d
o
o
p
 J

o
b
 T

im
e
 (

s
e
c
)

Cluster Size

TeraSort of 50 MB DataSet

(b)

Figure 5.14: (a) Job Completion time versus Input dataset size (b) Cluster size on
Job Completion Time

5.6.5 Energy-Aware Task Scheduling v.s. Random Task Scheduling

As mentioned in Section 5.5.3, our energy-aware task scheduling assigns tasks to

taskTrackers considering the locations of data fragments. The default task scheduling

algorithm in Map-Reduce component is ineffective in mobile ad-hoc network as the

network topology in a traditional data center is completely different from a mobile

network. Figure 5.15a compares the job completion time between our energy-ware

scheduling algorithm and a random task scheduling. The default Map-Reduce task

scheduling in a mobile ad-hoc network is essentially a random task allocation. In both

TeraGen and TeraSort experiments, our scheduling algorithm effectively reduces the

job completion time by more than 100%. Lower job completion time indicates lower

data retrieval time and lower data retrieval energy of each taskTracker.

5.6.6 Effect of Node Failures on MDFS and HDFS

In this section, we compare the fault-tolerance capability between MDFS and

HDFS. We consider a simple failure model in which a task fails with its processor

node and a taskTracker can not be restarted once it fails. In HDFS, each data block

106

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

H
a
d
o
o
p
 J

o
b
 T

im
e
 (

s
e
c
)

Size of Input Dataset (MB)

TeraGen-EnergyUnaware

TeraGen-EnergyAware

TeraSort-EnergyUnaware

TeraSort-EnergyAware

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

J
o

b
 C

o
m

p
le

ti
o

n
 r

a
te

Number of node failures

HDFS (1,3)

MDFS (3,9)

(b)

Figure 5.15: (a) Comparison of new task scheduling algorithm versus Random (b)
Comparison of job completion rate between HDFS and MDFS

is replicated to 3 different nodes, and HDFS can tolerate to lose at most 3 data nodes;

in MDFS, each data block is encoded and stored to 9 different nodes (k = 3, n = 9),

and MDFS can tolerate to lose up to 6 data nodes. There are total 12 nodes in the

network. Note that although HDFS can tolerate to lose at most 3 data nodes, it

does not mean that the job would fail if more than 3 nodes fail; if the failed node

does not carry the data block of the current job, it does not affect the taskTracker;

as a result, we see completion rate gradually drops from 1 after more than 3 nodes

fail. Figure 5.15b shows that MDFS clearly achieves better fault-tolerance when 3

or more nodes fail.

107

6. HETEROGENEOUS MOBILE CLOUD

In this section, we study and design an energy-efficient, fault-tolerant, and load-

balanced distributed data storage and data processing framework for Heterogeneous

Mobile Cloud (HMC). Different from the previous sections, mobile nodes now can

have various hardware specifications in terms of communication interfaces, process-

ing capabilities, and energy capacities. We will look at the k-out-of-n data storage

and data processing frameworks in an integrated manner and propose a decentral-

ized algorithm that allocates data, computation, and communication resources in

a mobile cloud. The framework is scalable to larger network and can adapt to

heterogeneous network. With the same requirements as the previous sections, fault-

tolerance ensures that the stored data are resilient to node failures, energy-efficiency

ensures that the framework minimizes the system-wide energy consumption, and

load-balance ensures that each node is allocated proper workload according to its

available communication, processing, and energy resources. We refer to this Mobile

Storage & Processing System as MSPS.

MSPS greedily minimizes the standardized energy consumption while upholding

the system-wide load imbalance. Standardized energy is a value in (0,1) defined as the

ratio between the consumed energy and the energy capacity. Consumed energy is the

energy consumed by radio communication or data processing since the application

starts; energy capacity is the amount of energy that the mobile device can store. The

rationale is that each node may have different energy capacity and nodes with higher

energy capacity should be able to contribute more. E.g., a generator-powered tablet

has much higher energy capacity than a battery-powered tablet; when both tablets

process the same task, the standardized energy of the first tablet is much lower than

108

the standardized energy of the second tablet. In other words, two nodes consuming

the same amount of standardized energy may have very different workloads, but they

both run out of energy when their standardized energy reaches 1. MSPS keeps the

rate of standardized energy usage roughly equal among all nodes and balances the

energy consumption in a way such that all nodes have approximately equal opera-

tional time. The load of a node is defined as the standardized energy consumption in

a short period of time, and the load imbalance indicates how different the load of all

nodes in the network is. MSPS heuristically reduces the load imbalance to prolong

the system lifetime. Furthermore, the utilization rate of the wireless communica-

tion and CPUs are also considered when allocating tasks, to avoid deteriorating the

performance while conserving energy.

In the rest of the section, we first illustrate the architecture of the heterogeneous

Mobile Storage & Processing System, followed by its design and details. We then

present the agent-based search algorithm used for efficient request dissemination.

Finally, the evaluation results of MSPS are shown.

6.1 MSPS Architecture and Problem Formulation

We consider a heterogeneous mobile cloud of N nodes, where each node may

have different hardware capabilities or energy capacity. Nodes communicate with

each other using any available wireless interface. MSPS supports three major data

operations: data creation, data retrieval and data processing. When creating a new

file, the file creator encodes a file using erasure coding in which a file is encoded into n

data fragments, and any subset of k data fragments together can recover the original

file; each data fragment is then sent to a different storage node. When another

node needs to read the file, it searches and retrieves k of the n data fragments from

the network to recover the file. Any node can submit a job to process a subset of

109

LTE

Ad-Hoc Routing LTE Routing

Data
Creation

Data
Retrieval

Data
Processing

MSPS

Applications
App1 App2 App3 Hadoop

Load Balance

Energy
Estimation

Wi-Fi

Reliability
Estimation

Request
Dissemination

Figure 6.1: Mobile Storage & Processing System (MSPS) System Architecture

stored files. A processing job consists of multiple independent tasks, where each task

corresponds to processing a single file on a selected processor node.

We make the following assumptions when designing MSPS. Nodes are mobile, and

can depart or join a network freely. Each node’s hardware capabilities are profiled

so that the data transferring and data processing energy are known. All processing

functions are also profiled so that the number of instructions of a processing task

can be estimated. A system-wise distributed directory service allows nodes to know

the available files. Files stored in MSPS are shared by all nodes in the network, and

every node can create, retrieve, or process the stored files. Files are immutable –

once created, they can be deleted, but can not be modified.

Figure 6.1 illustrates the system architecture. MSPS serves as a middleware that

provides applications data storage and data processing services. MSPS accesses the

routing information and the link quality information from the network layer and

110

MAC layer. The three major data operations, data creation, data retrieval, and data

processing, access this cross-layer information when allocating communication and

processing tasks. As an example, we assume WiFi and LTE are the only two commu-

nication interfaces. The Energy Estimation component estimates the energy from

communication and processing; communication part includes the energy for send-

ing/receiving a packet through various wireless interfaces based on the current link

quality and the hardware specification of the node; processing energy is estimated

from the processing speed and hardware specification of the node. The Reliability

Estimation component estimates the reliability of a node based on the current re-

maining energy, connectivity, and mobility. The Load-balance component monitors

the utilization rate of communication, CPU, and energy resources on each node.

Data operations use this information to avoid overloading when allocating tasks.

The Request Dissemination component disseminates request messages to discover

storage nodes, file fragments, or processor nodes in the network. The Agent-based

search algorithm is implemented in this component.

We now formulate MSPS in Equations (6.1)–(6.4) as an optimization problem.

The energy load Li(t) of node i at time t is defined as the standardized energy

consumed during time [t − TLB, t). TLB is the time period in which the load is of

interest. The Load Imbalance LI(t) at time t is defined in Equation 6.5 where L15(t)

is the mean load of the nodes in top 15%, and Lµ(t) is the mean load of all nodes.

The objective is to minimize the standardized energy consumption constrained on

the utilization rate of energy (Eq. 6.2), communication (Eq. 6.3), and CPU resources

(Eq. 6.4). This optimization problem is solved for each data operation. Given a data

operation request, the objective function (Eq. 6.1) finds a subset of nodes X ⊂ N

to perform the task such that the cumulative standardized energy Estd
i (task, t) of all

participating nodes at time t is minimized. Using the data creation task shown in

111

Xopt = arg min
X

∑

i∈X

Estd
i (task, t) (6.1)

Subject to:

Li(t)

Lµ(t)
− 1 ≤ SLI ∀i ∈ X (6.2)

U com
i (t) ≤ Scom ∀i ∈ X (6.3)

U cpu
i (t) ≤ Scpu ∀i ∈ X (6.4)

Figure 6.2, as an example, node 11 selects nodes 2, 3, 9, 10, and 11 to participate

in the data creation task. Note that this optimization problem is considered in a

local sense, meaning that it may not consider all nodes in the network when selecting

Xopt. Because MSPS does not assume or acquire global information, the subset X

is selected only from the nodes discovered by the request dissemination procedure.

A task may require nodes to transfer data, store data, or process data. SLI ,

Scom, and Scpu are the predefined thresholds for energy, communication, and CPU

resource utilization rates. Equation 6.2 indicates that a selected node should not have

an energy load higher than the network average by ratio of SLI . U com
i (t) is a value in

[0, 1] representing the average utilization rate of a communication interface on node

i during time [t − TLB, t). Depending on the available wireless interfaces of a node,

U com
i (t) may be WiFi, LTE, or other possible interfaces. Similar to U com

i (t), U cpu
i (t)

represents the CPU average utilization rate on node i. Equations 6.3 and 6.4 ensure

that a node will not be assigned more tasks than its communication or processing

capabilities.

LI(t) =
L15(t)

Lµ(t)
− 1 (6.5)

112

6.2 MSPS Design

This section presents the details of each data operation (i.e., data creation, data

retrieval, and data processing). We then present the load-balance algorithm and

explain how it is integrated with the data operations to make MSPS both energy-

efficient and load-balanced.

6.2.1 Data Creation

A node starts the Data Creation operation when it needs to store or share a file in

MSPS. We refer to this node as File Creator. Here we assume the storage parameter

(k, n) is specified by the application based on its reliability requirement. A file is

encoded into n data fragments, and each fragment is sent to a selected storage node.

The file creator first uses the request dissemination component to discover nodes that

can store data fragments. A node receiving the request replies with its routing table,

reliability, and the current energy profile. The energy profile contains Li(t), U
com
i (t),

U cpu
i (t) and the standardized energy for transferring data using various wireless in-

terfaces available on the node. The details of request dissemination procedure and

energy profile are explained in later sections.

One additional requirement for data creation is ensuring that the stored files are

reliable and have high availability. Without reliable data, the entire MSPS is useless.

The Data creator needs to choose storages nodes that are more reliable, i.e., nodes

that are less likely to fail in the near future. Data Reliability of a file can be estimated

from the reliability of its storage nodes. Rx(t) indicates the reliability of node x at

time t. Assume X = {x1, x2, ..., xn} is a set of n nodes and c is a subset of X that

contains i nodes. Equation 6.6 calculates the probability of exactly i functioning

nodes and (n − i) malfunctioning nodes in X ; it considers all possible subsets c in

X . Equation 6.7 calculates the probability of k or more functioning nodes in X ,

113

i.e., it is the reliability of a file stored in X . This reliability estimation has time

complexity O(n!) due to the combination
(
n
i

)
term in Equation 6.6. Note that the

time parameter t is ignored for clarity.

Si =

(n
i)∑

j=1

∏

l∈c

Rl

∏

m∈c̄

(1− Rm) (6.6)

where c ⊂ X, c̄ = X\c, ‖X‖ = n, and ‖c‖ = i

R(k,n)(X) =

n∑

i=k

Si (6.7)

Using the routing information and the energy profile, the file creator accumu-

lates information about the standardized energy of nodes on the path and estimates

the total standardized energy for delivering a fragment to a potential storage node.

When a node is reachable through multiple wireless interfaces, the file creator always

chooses the interface that has the lowest cumulative standardized data transferring

energy. Assume Estd
creator(xi, t) gives the minimal standardized energy when sending a

fragment from the file creator to node i. Equation (6.8) describes a simplified opti-

mization problem for data creation without considering the load balance constraints

(Equations 4.2–4.4). The additional constraint ensures that the created data meets

the reliability requirement rreq.

Xsto = arg min
X

∑

x∈X

Estd
creator(x) (6.8)

s.t.: R(k,n)(X) ≥ rreq , ‖X‖ = n

Solving this problem, however, is very challenging due to the complexity of relia-

114

bility estimation R(k,n)(·). In order to quickly find a feasible solution, we propose an

approximated solution. Instead of exhaustively searching for a set of storage nodes

X from the network and evaluating its data reliability R(k,n)(X), we consider only

nodes with reliability no less than rmin such that any subset of n nodes guarantees

to satisfy the data reliability constraint. rmin enforces a minimal reliability to the

selected storage nodes and effectively eliminates the reliability constraint. The ob-

jective function (Equation 6.8) now only needs to choose n nodes with the lowest

Estd
creator(x).

To find rmin, we solve the equation R(k,n)(X) = rreq in which the reliability of

each node Rx(·) is substituted with rmin. This equation can be solved efficiently

using root-finding methods such as bisection, interpolation, or Newton’s method.

Since R(k,n)(X) is a continuous function that monotonically increases with Rx(·),

any subset X with all nodes’ reliability higher than rmin must have R(k,n)(X) higher

than rreq. The data creation procedure is described in these three steps:

1. Solve R(k,n)(X) = rreq where Rx(·) = rmin

2. Find all x such that Rx(·) ≥ rmin. These nodes are candidate storage nodes.

3. Sort all candidate storage nodes in increasing order with respect to Estd
creator(x).

The first n nodes are then selected as storage nodes.

6.2.2 Data Retrieval

A node needs k data fragments of a file in order to decode and recover the

original file. Although any subset of k fragments can recover the file, the file re-

quester tries to minimize the standardized energy for retrieving k data fragments.

The Request Dissemination component discovers the available data fragments and

collects information from nearby nodes. Nodes receiving the request reply informa-

115

tion about the fragments they carry, the routing tables, and their energy profiles.

Similar to data creation, the file requester uses the collected information to estimate

the total standardized energy for retrieving a data fragment from a potential storage

node. Each fragment again may be sent through multiple wireless links between

the file requester and the storage node, but the file requester considers only the

link with minimal standardized energy. Estd
request(x) represents the minimal standard-

ized energy for downloading a data fragment from node x to file requester. Assume

F = {f1, f2, ..., fk} represents a set of fragments that the file requester chooses to

retrieve, and xsto(f) gives the storage node of fragment f . Equation 6.9 describes a

simplified data retrieval optimization problem without the load balance constraints.

Essentially, the k fragments with the lowest Estd
request(xsto(f)) are retrieved. To help

improve data availability and data reliability, the retrieved data fragments are cached

on the file requestor. These cached fragments can later serve other file requesters.

Fopt = arg min
F

∑

f∈F

Estd
request(xsto(f)) (6.9)

s.t.: ‖F‖ = k

6.2.3 Data Processing

Any node can submit a data processing job to process/analyze a set of files.

T = τ1, τ2, ..., τM indicates a set of M tasks that the job requester submits. Each

task is assigned a selected processor node. This processor node retrieves, recovers,

and then processes the file. Similar to other data operations, the job creator uses

request dissemination component to announce a job. A node receiving the job request

estimates its standardized energy for retrieving and processing a task and sends this

116

information to the job requester. A node has 0 file retrieval energy if it has k or

more cached fragments. If a node has no cached fragments of a task, it estimates

the task retrieval energy using the most expensive communication interface. Let

Estd
proc(x, τ) represent the minimal standardized energy for node x to retrieve and

process task τ . Y is a 1 ×M decision variable in which Yi indicates the processor

node for task τi. Equation 6.10 describes a simplified data processing optimization

problem without the load balance constraints. Each task τi is essentially assigned to

the node Yi = arg minxE
std
proc(x, τi).

Yopt = arg min
Y

M∑

i=0

Estd
proc(Yi, τi) (6.10)

6.2.4 Load Balancing

To avoid overloading a small number of nodes or causing performance bottleneck,

MSPS considers load-balancing when allocating data operation tasks. In this section,

we explain how MSPS detects load imbalance and reduces load imbalance. The

system-wide load imbalance LI(t) is formally defined in Equation 6.5. LI(t) = 0 if

a system is perfectly balanced, and LI(t) increases towards positive infinity when

a system becomes more imbalanced. Our goal is to keep each individual load Li(t)

as close to the mean load Lµ(t) as possible. Specifically, MSPS avoids assigning

more tasks to a node if its current load is much greater than the system mean

load. The load balancing algorithm is integrated into each data operation such that

the decisions made not only minimize the standardized energy, but also lower the

system-wise load imbalance.

The mean load Lµ(t), however, cannot be evaluated exactly because MSPS does

117

not have global information. Instead, a sample mean load ˆLµ(t) estimated from local

information is used to approximate the population mean Lµ(t). ˆLµ(t) is calculated

for each data operation using the information that the search agent discovered. Since

nodes can move freely and a data operation can be initiated from any region of the

network, ˆLµ(t) estimation is not biased to any subset of nodes.

When describing the data operations in previous sections, we focused only on

minimizing the standardized energy (Equation 6.8 – Equation 6.10). The load bal-

ance constraints Equation (4.2) – Equation (4.4) were neglected for clarity. To solve

the complete optimization problem with load balance constraints, we first transform

the constrained optimization problem into an unconstrained optimization problem

using a penalty method. The constraints are combined into a penalty function g(i, t)

multiplied to the objective function, as shown in Equation 6.11. Specifically, g(i, t)

is multiplied to the simplified objectives functions (Equation 6.8 – Equation 6.10).

The new solution avoids assigning tasks to nodes with high utilization rate (com-

munication, processing, or energy), and thus gradually alleviates the load on nodes

with Li(t) > Lµ(t).

The characteristic of the penalty function is that it is zero if all the constraints

in Equation (4.2) – Equation (4.4) are satisfied, and grows exponentially if any

constraint is violated. α is a positive real value that controls how fast the penalty

function grows and H(·) is the Heaviside step function that limits the domain of

interest. For example, assume the communication utilization and the CPU utilization

constraints are satisfied, but the load on node i is slightly higher than the mean

load (Li(t) = 0.6, Lµ(t) = 0.5, SLI = 1, α = 1). The objective function will

be penalized by a factor of 1 + 1
5
e

5

4 . The rationale behind this transformation is

that it relaxes the hard constraints and allows a solution to violate slightly if the

advantages of violation (energy saving) is considerably higher than the disadvantage

118

Xopt = arg min
X

∑

i∈X

Estd
i (task, t)× (1 + g(i, t)) (6.11)

g(i, t) = (L̃)e
α

|1−L̃| (H(L̃− SLI)−H(L̃− 1)) (6.12)

+ (Ũ1 − Scom)e
α

|1−Ũ1| (H(Ũ1 − Scom)−H(Ũ1 − 1))

+ (Ũ2 − Scpu)e
α

|1−Ũ2| (H(Ũ2 − Scpu)−H(Ũ2 − 1))

L̃ =
Li(t)− Lµ(t)

Lµ(t)
, Ũ1 = U com

i (t), Ũ2 = U cpu
i (t)

of violation (load imbalance). Furthermore, the solution of the optimization problem

can be obtained quickly using greedy search. However, there is an unavoidable

tradeoff between energy saving and load balancing because load balance constraints

(or penalty function) may prevent a task from being assigned to the most energy

efficient node. The level of load imbalance that an application can tolerate and how

fast MSPS moves towards a balanced state are all controlled by the parameters in

g(i, t).
6.2.5 Reliability Estimation

The reliability of each node is estimated based on the failure probability model

proposed in section 4.2.2. Three main factors, energy depletion, temporary departure

from the network (e.g., due to mobility), and application-specific factors, are used

to to determine the reliability of a node at a given time. The reliability of a node at

time t is defined as the probability that the node remains functional from time t to

time t+ Trel. Trel is the time period in which the stored data or the processing tasks

are effective, i.e., the stored data or a processing job meets the application reliability

requirement only in time [t, t+ Trel] . As a result, the reliability of a node generally

119

decreases with time.

6.2.6 Energy Profile

Each node keeps an energy profile that tracks the node’s energy capacity, re-

maining energy, and power consumption of each wireless interface. When receiving

a request, a node estimates its standardized energy for transferring the requested

data using the energy model proposed in [44]. The power of each wireless link, e.g.,

Bluetooth, Wi-Fi, 3G, or LTE, is modeled by P = αutu + αdtd + β. tu and td are

uplink throughput (Mbps) and downlink throughput respectively; αu, αd, and β are

experimentally obtained fitting coefficients (mW/Mbps). For data processing en-

ergy, the CPU of each node is profiled in advance so that the energy consumption

for processing a file can be estimated from the processing function and the file size.

6.3 Request Dissemination

All three primary operations, data creation, data retrieval, and data processing,

send request messages to explore the network. Data creation sends storage request to

discover suitable storage nodes, data retrieval sends file request to find fragments of a

file, and data processing sends job request to find processor nodes for processing a set

of files. The simplest solution is broadcasting a request through the LTE network,

but it affects all nodes in the network and is too costly. Another naive solution

is flooding a request through the Wi-Fi network. However, flooding a message in

a multi-hop Wi-Fi network incurs traffic burst (broadcast storm problem) if the

messages traverse too many hops, or may fail to find sufficient resources (storage

nodes or fragments) if the messages are not transmitted far enough. In this section,

we propose an agent-based search algorithm that explores resources using mobile

agents such that the desired resources can be found with high probability without

causing too much overhead.

120

Storage Req.

Data Distribution

Data Req.

Data Retrieval

1

2

3

4

7

6

17

10

9

8

5

11

18

16

19
20

12

13

1514

21

Figure 6.2: Data Creation & Data Retrieval. Node 11 creates a file with (k,n)=(3,5).
Dash line indicates storage request and reply messages; solid arrow line represents
data distribution flow. Nodes 2, 3, 9, 10, 11 are selected as storage nodes. Node
12 retrieves the file. Dotted line indicates data request messages; dash arrow line
represents data retrieval flow. 2 fragments are retrieved through Wi-Fi network from
node 10 and node 11, and 1 fragment is retrieved through cellular network from node
9.

6.3.1 Agent-Based Search

The goal of the search algorithm is to explore resources in the network as well as

collect information such as routing table and energy profile from other nodes. The

Search Initiator is the node that starts a search task; it dispatchs one or multiple

agents that explore in different regions of the network to discover the desired re-

sources. Each agent is assigned a target resource value that indicates the quantity of

the resource it needs to find. When an agent finds sufficient resources or reaches a

node that has no more unexplored neighbors, the agent replies its collected informa-

tion back to the search initiator. One agent can fork into multiple children agents

which share the target resource of the parent agent. Each child agent is then dis-

patched to different regions of the network to accomplish the parent agent’s search

121

Algorithm 5: Agent-based Search

agent arrives node :
/* agent and node exchange information */

agent.collectInfo(node)
node.collectInfo(agent)
if node.resource ≥ agent.targetRsc then

node.resource -= agent.targetRsc
agent.targetRsc = 0

else
agent.targetRsc -= node.resources
node.resource = 0

end
if TargetRsc == 0 ‖ node.unexploredNeib.isEmpty() then

reply(agent, requester)
else

agent.targetRsc = agent.targetRsc
unexploredNeib.size()

for n ∈ node.unexploredNeib do
send(agent, n)

end

end

task. The update function updates information on both the search agent and the

node that the agent visits; whenever an agent visits a node, it tells the node the

upstream nodes that it has visited; the node also tells the agent its information such

as the data transferring energy or data processing energy of the requested task. If

a search agent needs to continue (because target resource has not been completely

found and there is still unexplored neighbors), it transfers the target resource to

each child search agent. The number of the child agents is determined by the num-

ber of unexplored neighbor nodes. The agent-based search procedure is depicted in

Algorithm 5.

The search algorithm, however, does not guarantee to find sufficient resources

in one pass. If the network topology is sparse or the resources are distributed very

122

non-uniformly, some agents may reply and terminate without finding enough target

resources. If the search initiator fails to find enough resources, it starts another

search iteration. Knowing the amount of deficient resources and the boundary of

the previous search (where the search agents terminated), the search initiator simply

starts a new search from the boundary nodes. The search continues until sufficient

resources have been found or the entire network has been explored. The procedure

is outlined as follows:

1. Search initiator starts the Agent-based Search.

2. Search initiator waits for replies from the terminated agents.

3. Search completes when enough resources are found; otherwise, if there are still

unexplored nodes, the search initiator starts a new Agent-based search from

the boundary nodes.

4. Repeat steps 2 – 3 until sufficient target resources are found or the entire

network has been explored.

Using storage request as an example, we now present a simple agent-based search

in Figure 6.2. Assume all nodes in the network are valid potential storage nodes.

Node 11 is the file creator (search initiator) that needs to find 7 storage nodes.

It creates a search agent with target resource 7. Since node 11 itself is also a valid

“resource” for storing fragments, the update function immediately updates the target

resource to 7− 1 = 6, meaning one unit of the target resource has been found. The

update function than forks the agent into 4 children agents destined to nodes 3, 4, 9

and 10 respectively; each child agent’s target resource is set to 6/4 as they share the

parent agent’s target resource. When the children agents reach their destined nodes,

the target resource of each agent is updated to 3/2−1 = 1/2, indicating nodes 3, 4, 9

123

and 10 are all valid resources (storage nodes). At node 9, the agent again forks into 2

child agents with target resource set to 1/2
2

= 1/4; these two agents are sent to node

1 and node 13. Agents at node 3 and node 10 proceed to node 2 and 8 respectively

with their updated target resource 1/2. The agent at node 4 terminates because it

has no more new nodes to explore. When the children agents reach nodes 1, 2, 8,

and 13, their target resources are updated to negative values, indicating that they

have found the desired target resources and no longer need to proceed. In this simple

example, the search initiator successfully finds 9 resources (11, 3, 4, 9, 10, 2, 1, 13, 8),

satisfying the initial target resource of 7.

We now describe in more detail how the agent-based search is used by the storage

discovery, file discovery and processor discovery procedures.

Storage discovery : Given a file encoded with parameter (k, n), the target

resource is n storage nodes that satisfy the reliability constraint rmin. When an

agent arrives at a node, the collectInfo() function exchanges information between

the search agent and the visited node. In particular, the search agent needs to know

if the resource on this node has been claimed by other agents of the same search

task. The node also learns from the search agent the upstream nodes that this agent

has visited. Other search agents arriving this node later will not dispatch children

agents to those visited nodes again.

File discovery : Given a file encoded with parameter (k, n), the target resource

is k data fragments. A node can provide a fragment resource only if this fragment

belongs to the requested file, and the same fragment has not been discovered by this

or other search agents in the upstream nodes. Because the same fragments may be

cached on multiple nodes, each fragment should only be counted once towards the

target resource. Processor discovery : Given a job of M files to process, the goal

is to find at least one processor node for each task. A node may process one or

124

Simulator
Phy. Interfaces:WiFi, LTE Comm. Range: WiFi(≤ 160m), LTE(≤ 1500m)
Mobility: Rnd Waypoing Moving Speed: 0-4m / sec. Size: 50 nodes
Routing: AODV File size: 2MB, (k,n)=(3,9) Field: 800m2

Hardware Implementation
Devices: Nexus 5, HTC One, Note 2, Galaxy S3... Size: ≤12 nodes
Picture file ≤ 3MB, Video file ≤ 30MB Field 300m2

Table 6.1: MSPS Evaluation Settings.

more files depending on its state and capabilities. The target resource is M , and a

node can provide a processing resource if it can retrieve and process a task without

overloading itself. Besides giving the number of processing resource this node can

provide, each node also informs the search agent the cached fragments it carry for

the requested tasks. A node with cached fragments can have significantly lower task

retrieval energy.

6.4 Evaluation

We evaluate our MSPS through extensive simulations on Jist/Swans [7] network

simulator and through a real-world implementation on Android phones. In simu-

lation, we are interested in the energy efficiency, system-wide load imbalance, and

the system lifetime under various heterogeneous networks; in hardware-based eval-

uation, we want to know the feasibility of our algorithm and understand how it

performs on modern smartphones. The default settings for simulator and hardware

implementation are listed in Table 6.1.

We first look at the overall energy consumption of data operations (creation, re-

trieval, and processing) for different network sizes. The performance of MSPS is

compared with a simple Random algorithm that selects storage nodes or processor

nodes in a random manner. We then show how MSPS saves communication energy

125

 0

 20

 40

 60

 80

 100

 120

 140

20 50 60 75

E
n

e
rg

y
(J

o
u

le
)

p
e

r
o

p
e

ra
ti
o

n

Network Size

creation

retrieval

processing

(a)

 0

 50

 100

 150

 200

20 50 60 75

E
n

e
rg

y
(J

o
u

le
)

p
e

r
o

p
e

ra
ti
o

n

Network Size

creation

retrieval

processing

(b)

Figure 6.3: (a) Data operations in MSPS. (b) Data operation with random allocation.

by utilizing multiple wireless interfaces (Wi-Fi and LTE). The load balance perfor-

mance of MSPS is then studied under different heterogeneous networks that consist of

nodes with different processing capabilities and battery capacities. The agent-based

search algorithm is then benchmarked by measuring the number of resources that

the search agent successfully finds and the number of packets the search algorithm

sends during a resource discovery procedure. Finally, we demonstrate the feasibil-

ity of our algorithm by implementing an Android application MediaShare based on

MSPS that shares and processes multimedia files (pictures and videos) on a group of

smartphones. We evaluate and collect data of this application during 2015 Summer

Institute on Flooding [19].

6.4.1 Energy Consumption of Data Operations

We first look at the energy consumption for each data operation for different

network sizes. The energy is measured by the wireless interfaces on/off states in

the MAC layer, so it includes the overhead for the entire network stack. Each node

has two wireless interfaces, Wi-Fi and LTE, that can operate alternatively, but not

simultaneously. Three types of nodes are considered: the high performance nodes

126

(HPC) have the largest battery capacity (10,000 mAh), CPU power (2 Watt), and

processing throughput (1 MB/sec); the low performance nodes (LPC) have the lowest

battery capacity (2,100 mAh), CPU power (0.5 Watt), and processing throughput

(0.75 MB/sec); and the medium performance nodes (MPC) have all the hardware

capabilities in-between HPC and LPC. In Figure 6.3, the Y-axis shows the cumulative

energy of all nodes in the network for conducting a single data operation. Each 2MB

file is encoded with (k, n) = (3, 9), so a file creator needs to find at least 9 storage

nodes and a file requester needs to find at least 3 data fragments. Each processing

job processes 5 files stored in MSPS.

The energy consumption of data operations increases with the network size due to

the energy overhead from the additional nodes. When the network density increases,

the radio interference also causes lower throughput and thus higher communication

consumption. In general, data creation consumes higher energy than data retrieval

because each creation distributes 9 fragments while each retrieval downloads only

3 fragments. However, since data creator usually finds storage nodes in its nearby

neighbors while data requester may retrieve fragments from storage nodes far away,

their energy consumption difference is small. The performance of data processing is

expected to be the highest because each task involves retrieve a file and process a

file. We observe that the energy consumption of all three data operations increase

almost linearly with the network size, which demonstrates the scalability of MSPS

in larger networks. We also compare MSPS (Figure 6.3a) with a random allocation

scheme (Figure 6.3b) in which storage nodes and processor nodes are selected in a

random manner. MSPS outperforms the random scheme by at least 20-40%.

127

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60

C
o

m
m

u
n

ic
a

ti
o

n
 E

n
e

rg
y
 (

J
o

u
le

)

Job size

Wifi Only
LTE Only
Wifi+LTE

(a)

 0

 100

 200

 300

 400

 500

 600

 700

10 20 30 40 50 60

E
n

e
rg

y
 (

J
o

u
le

)

Job Size

Wifi

LTE

CPU

(b)

Figure 6.4: (a) Comparison of using WiFi only, LTE only, or both for data processing.
(b) Energy consumption of different components.

6.4.2 Effects of Communication Interfaces

In this section, we study the energy savings gained from using multiple commu-

nication interfaces. Figure 6.4 depicts the communication energy of various job sizes

when using different communication interfaces. LTE consumes approximately 4− 6

times higher power than WiFi, but LTE takes advantages of longer communication

range, more stable links, and higher throughput. Since our primary objective is to

minimize energy consumption, MSPS prioritizes Wi-Fi when nodes are within short

range. However, when two nodes are multiple hops away, the cumulative energy for

sending, relaying, and receiving a packet in the Wi-Fi network may exceed the energy

of using LTE network. Figure 6.4a shows that on average, using only Wi-Fi is the

least energy efficient option. It is because in a network of 50 nodes spread across

800m2 area, the hop-count distance between two nodes can be as high as 7 hops. It is

also likely that the Wi-Fi network disconnects temporarily and some nodes become

unreachable from others. Figure 6.4b shows the breakdown of energy consumption

for processing a job. The fact that each individual energy consumption increases

128

 0

 100

 200

 300

 400

 500

 600

 700

 800

 20 40 60 80 100 120 140 160 180 200 220
 0

 50

 100

 150

 200

 250

 300

 350

 400

T
o

ta
l
E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
(J

o
u

le
)

N
u

m
b

e
r

o
f

d
a

ta
 o

p
e

ra
ti
o

n
s
 p

e
rf

o
rm

e
d

Time (min.)

high_capacity_nodes
low_capacity_nodes
high_capacity_operation_count
low_capacity_operation_count

(a)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 20 40 60 80 100 120 140 160 180 200 220
 0

 50

 100

 150

 200

 250

 300

T
o

ta
l
E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
(J

o
u

le
)

N
u

m
b

e
r

o
f

d
a

ta
 o

p
e

ra
ti
o

n
s
 p

e
rf

o
rm

e
d

Time (min.)

high_capacity_nodes
low_capacity_nodes
high_capacity_operation_count
low_capacity_operation_count

(b)

Figure 6.5: (a) Energy consumption versus number of tasks assigned on processor
nodes with different energy capacities. (b) Same as (a), but without using standard-
ized energy.

almost linearly with the job size shows that MSPS highly scalable.

6.4.3 Performance of the Load-Balance Algorithm

Figure 6.5 shows how MSPS allocates communication and processing tasks con-

sidering the energy capacities of each node. 50 nodes of three different types HPC,

MPC, and LPC are deployed. Figure 6.5a shows the energy consumption and the

number of tasks (send/receive fragments or process files) assigned to different types

of nodes. The result shows that HPC nodes receive about 2 times more tasks and

consume 3 − 4 times more energy than the LPC nodes during the entire operation.

This is our desired behavior as more tasks are pushed to nodes with higher energy

or processing resources. Figure 6.5b shows the results from the same experiment

without using standardized energy. This way, MSPS neglects the differences of en-

ergy capacities and evenly allocates tasks to each node. Note that the load-balance

algorithm still ensures each node receives approximately the same workload.

Figure 6.6 evaluates performance of the load-balancing algorithm. When allo-

129

cating a communication or processing task, MSPS considers the energy load (Equa-

tion 4.2), communication utilization (Equation 4.3), and CPU utilization (Equa-

tion 4.4). A node should not receive more tasks than it can handle, which causes

system bottleneck and high delay; neither should a node be much busier than other

nodes, which causes a network hotspot and harms the system lifetime. Figure 6.6a

shows the load imbalance of high performance nodes (HPC) and low performance

nodes (LPC) at different times. The thresholds values SLI , Scom, and Scpu values

are all set to 0.5, meaning that MSPS tries to keep the communication utilization

and CPU utilization around 50%. The load imbalance values of both HPC and LPC

nodes stay around 1 most of the times.

In Figure 6.6b, we compare the load imbalance and the system lifetime between

turning on and turning off the load-imbalance algorithm (set g(i, t) = 0 in Equa-

tion 6.12). We declare a system failed when more than 50% nodes have failed due

to depleted energy. The figure shows that our load-imbalance algorithm not only re-

duces the system-wide load imbalance by 30-50%, but that it also extends the system

lifetime by 30%.

6.4.4 Performance of the Agent-Based Search Algorithm

Agent-based search is used for disseminating data operation requests and explor-

ing the storage nodes, data fragments, and processor nodes. Although LTE broadcast

can immediately reach all nodes in the field, the purpose of the agent-based search

is to limit the scale of search requests and reduces the impact on network traffic and

communication energy. When (k, n) = (3, 6), a storage discovery searches for at least

6 storages node and a file discovery needs to find at least 3 data fragments. The

Y-axis of Figure 6.7a shows the number of resources that a search agent found at the

end of a searching procedure. For data creation, the number of discovered resources

130

 0

 1

 2

 3

 4

 0 50 100 150 200 250
 0

 200

 400

 600

 800

 1000

L
o

a
d

 I
m

b
a

la
n

c
e

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
(J

o
u

le
)

time(min.)

HPC LI
LPC LI
HPC Energy
LPC Energy

(a)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

L
o

a
d

 I
m

b
a

la
n

c
e

%
 o

f
fu

n
c
ti
o

n
a

l
n

o
d

e
s

time(min.)

LI alg.
No LI alg.
Failure % with LI alg.
Failure % without LI alg.

(b)

Figure 6.6: (a) Energy consumption and Load Imbalance on different types of nodes.
(b) Load Imbalance and percentage of functional nodes.

 5

 10

 15

 20

 25

 30

 20 30 40 50 60

N
o

d
e

s
 V

is
it
e

d

Network Size

Creation-(k,n)=(3,6)
Retrieval-(k,n)=(3,6)
Creation-(k,n)=(6,12)
Retrieval-(k,n)=(6,12)

(a)

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60

U
n

ic
a

s
t

P
a

c
k
e

ts
 S

e
n

t

Network Size

Creation-(k,n)=(3,6)
Retrieval-(k,n)=(3,6)
Creation-(k,n)=(6,12)
Retrieval-(k,n)=(6,12)

(b)

Figure 6.7: (a) Number of resources discovered by a search agent. (b) Packets sent
during a searching procedure.

is about two times that of the n value because we increase the target resource by a

scale of two so that the creator can choose more reliable storage from a larger group

of nodes. Figure 6.7b shows the total number of unicast packets sent during a search

request, i.e., the number of search agents dispatched from all nodes. Data creation

induces much less traffic because it simply discovers the nodes around the file creator.

131

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

(1,2) (2,4) (3,6) (4,8)

T
im

e
 (

s
e

c
.)

(k,n)

creation

retrieval

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

2 4 6 8

T
im

e
 (

s
e

c
.)

Network Size

retrieval

processing

(b)

Figure 6.8: (a) Running time of data operations under different (k,n) settings. (b)
Data processing time in different network size.

Data retrieval agent, however, needs to explore further in order to find the desired

fragments. The result shows that the number of packets sent is approximately linear

to the network size, which indicates the agent-based search algorithm is scalable to

larger or denser network.

6.4.5 Hardware Implementation

To understand the feasibility and performance of our algorithm in real hardware,

we implemented MSPS on Android smartphones and created a MediaShare appli-

cation that uses the MSPS framework to share and process multimedia files. The

processing function of MediaShare extracts image frames from the stored videos and

pictures that contain human faces. The processing function needs to decode video,

extracts video frames, and performs facial recognition on each frame. Each video

is sampled at 2Hz (extract 2 frames per second). The facial recognition library can

process one image frame in 0.5–1.5 seconds depending on the processor speed. The

MSPS framework and MediaShare application each contains about 9,000 and 2,000

lines of Java code, respectively. Both projects were developed on Android SDK 4.2.2

132

.

During 2015 Summer Institute on Flooding [19], 10 participants used MediaShare

App to share and process media files in a simulated disaster environment. The App

was installed on at least 5 different Android smartphones as listed in Table 6.1. Fig-

ure 6.8a shows the average time for creating and retrieving a 3MB file using different

(k, n) settings. The value n here also indicates the network size. As expected, data

creation takes longer than data retrieval because a file creator needs to distribute

more data fragments that a file requester needs to retrieve. Figure 6.8b shows the

data retrieval time and CPU processing time for analyzing eleven 30 seconds 3MB

video files. Note that the data retrieval time is extremely low in 2 nodes network

because each node can simply recover the files directly from its local stored fragment

when (k, n) = (1, 2). The overall data processing time reduces as more nodes join

and provide processing resources. From the user feedback and these performance

results, we are confident that MSPS is efficient and practical on real hardware.

133

7. CONCLUSIONS

In this section, we present the conclusions of this dissertation and propose ideas

for future work.

7.1 Conclusions

This research investigates the challenges and solutions for deploying a cloud com-

puting platform consisting of entirely mobile devices. Different from the traditional

cloud computing in which clients access services, software, or infrastructure from

remote servers, this type of cloud (i.e., Mobile Cloud) does not rely on the network

infrastructure (Internet) or remote servers. The infrastructureless and autonomous

characteristics make this type of mobile cloud attractive to applications operating

in environments where the network infrastructure is unavailable, e.g., disaster relief,

battlefield, or crowded event. Specifically, we are interested in bringing big data

services (data storage and data processing) to mobile clouds to enable data sharing

applications, video/image processing applications, or map-reduce type applications.

Potentially, existing data storage and data processing applications can be quickly

migrated to mobile environments using this mobile cloud computing (MCC) frame-

work.

Although mobile technologies are advancing in every aspect, there are still many

challenges in realizing big data services in such mobile cloud. In particular, limited

energy, low reliability, and heterogeneity are the challenges that we need to overcome.

This research proposes the k-out-of-n MCC framework that provides distributed data

storage and data processing services to applications in an energy-efficient, fault-

tolerant, and load-balanced manner. By intelligently allocating data and schedul-

ing the processing tasks, the algorithm minimizes the system-wide communication

134

energy and processing energy while meeting the fault-tolerant and load-balanced

requirements. Through extensive simulations and real-world implementations, we

show that the k-out-of-n MCC framework effectively meet all the expectations and

is feasible on real hardware.

7.2 Future Work

In this section, we present several potential research directions, as follows:

Stream data processing. This research has focused on the batch data processing.

There is, however, a trend and need for real-time stream data processing, e.g.,

Apache Storm [97], Apache Spark [106]. A stream data processing framework

allows continuous data source such as video, audio, or sensor readings to be

processed in real-time.

Secure communication and processing. The k-out-of-n MCC framework assumes

all the participating nodes are trustworthy and allows any node to retrieve and

process any data block. Because the data needs to be decoded and decrypted

before processing, it poses security concern if malicious nodes intentionally

temper or steal the data. A security mechanism that allows only authorized

applications/users to decode the data while still allowing unauthorized users

to contribute the computation/storage resources is necessary.

Delay-tolerant network. All the data operations in the k-out-of-n MCC frame-

work fail if the required data fragments or processors are not immediately

available through the network. As a result, unstable wireless links are the ma-

jor causes of the unsuccessful data operations. Making the data operations

and the underlying routing protocol delay-tolerant can further improve the

energy-efficiency and reliability of the framework.

135

Mutable k-out-of-n storage. The current k-out-of-n storage supports only im-

mutable data, i.e., once a file is created, it can no longer be modified. A mutable

data storage framework enables a new class of applications such as document

collaboration tools. One major challenge is to ensure data consistency across

all nodes in the mobile cloud. Each data block has multiple fragments and

caches are stored in different locations. Consequently, any update from a client

needs to be propagated to all these fragments.

Cooperative communication. In a heterogeneous mobile cloud, nodes may have

different cost or throughput on a specific wireless interface. For example, sup-

pose node A has high download throughput but low upload throughput on

cellular provider X while node B has low download throughput but high upload

throughput on cellular provider Y. If node A and node B also have stable Wi-

Fi or Bluetooth communication channel, they can cooperate to improve each

individual’s performance. An algorithm that considers the link quality and

queuing effect of the communication tasks is necessary.

Mobile code task offloading. The current k-out-of-n data processing relies on re-

mote procedure call (RPC) or remote method invocation (RMI). It is incon-

venient because processing functions need to be pre-installed on the processor

nodes, which makes the framework less flexible. We can exploit the mobile code

technique to allow clients to send processors executable code at runtime. In

such manner, processor nodes do not need to keep all the processing functions

and any node can provide data processing services to any mobile application.

136

REFERENCES

[1] M.K. Aguilera, R. Janakiraman, and L. Xu. Using erasure codes efficiently for

storage in a distributed system. In Proc. of DSN, 2005.

[2] M. Alicherry and T.V. Lakshman. Network aware resource allocation in dis-

tributed clouds. In Proc. of INFOCOM, 2012.

[3] Salah Aly, Zhenning Kong, Emina Soljanin, et al. Raptor codes based dis-

tributed storage algorithms for wireless sensor networks. In Information The-

ory, 2008. ISIT 2008. IEEE International Symposium on, pages 2051–2055.

IEEE, 2008.

[4] Frank-Uwe Andersen, Hermann de Meer, Ivan Dedinski, Cornelia Kappler, An-

dreas Mäder, Jens O Oberender, and Kurt Tutschku. An architecture concept

for mobile p2p file sharing services. GI Jahrestagung (2), 51:229–233, 2004.

[5] UIMA Apache. Apache software foundation. URL http://java. apache. org,

2011.

[6] Rajesh Krishna Balan, Darren Gergle, Mahadev Satyanarayanan, and James

Herbsleb. Simplifying cyber foraging for mobile devices. In Proceedings of

the 5th international conference on Mobile systems, applications and services,

pages 272–285. ACM, 2007.

[7] Rimon Barr, Zygmunt J Haas, and Robbert van Renesse. Jist: An efficient

approach to simulation using virtual machines. Software: Practice and Expe-

rience, 2005.

[8] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware re-

source allocation heuristics for efficient management of data centers for cloud

137

computing. Future Generation Computer Systems, 28:755 – 768, 2012.

[9] William J Bolosky, John R Douceur, David Ely, and Marvin Theimer. Feasibil-

ity of a serverless distributed file system deployed on an existing set of desktop

pcs. In ACM SIGMETRICS Performance Evaluation Review, volume 28, pages

34–43. ACM, 2000.

[10] Greg Bronevetsky, Rohit Fernandes, Daniel Marques, Keshav Pingali, and

Paul Stodghill. Recent advances in checkpoint/recovery systems. In Parallel

and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International,

pages 8–pp. IEEE, 2006.

[11] Francesco Calabrese, Francisco C Pereira, Giusy Di Lorenzo, Liang Liu, and

Carlo Ratti. The geography of taste: analyzing cell-phone mobility and social

events. In Pervasive computing, pages 22–37. Springer, 2010.

[12] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber.

Bigtable: A distributed storage system for structured data. ACM Transactions

on Computer Systems (TOCS), 26(2):4, 2008.

[13] Chien An Chen, Myounggyu Won, R. Stoleru, and G.G. Xie. Resource alloca-

tion for energy efficient k-out-of-n system in mobile ad hoc networks. In Proc.

ICCCN, 2013.

[14] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin

Patti. CloneCloud: elastic execution between mobile device and cloud. In

Proc. of EuroSys, 2011.

[15] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,

Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual

138

machines. In Proceedings of the 2nd conference on Symposium on Networked

Systems Design & Implementation-Volume 2, pages 273–286. USENIX Associ-

ation, 2005.

[16] David W. Coit and Jiachen Liu. System reliability optimization with k-out-of-n

subsystems. International Journal of Reliability, Quality and Safety Engineer-

ing, 7(2):129–142, 2000.

[17] Maria João Cortinhal and Maria Eugenia Captivo. Upper and lower bounds

for the single source capacitated location problem. European Journal of Oper-

ational Research, 151, 2003.

[18] Douglas S. J. De Couto. High-Throughput Routing for Multi-Hop Wireless

Networks. PhD dissertation, MIT, 2004.

[19] CRASAR. 2015 summer institute on flooding. hidden for blind review, July

2015.

[20] Manuel Crotti, Diego Ferri, Francesco Gringoli, Manuel Peli, and Luca Sal-

garelli. Pp2db: A privacy-preserving, p2p-based scalable storage system for

mobile networks. In Security and Privacy in Communication Networks, pages

533–542. Springer, 2012.

[21] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan

Saroiu, Ranveer Chandra, and Paramvir Bahl. MAUI: making smartphones

last longer with code offload. In Proc. of MobiSys, 2010.

[22] Douglas SJ De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A

high-throughput path metric for multi-hop wireless routing. Wrless Netws.,

11, 2005.

139

[23] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Su. A survey on network

codes for distributed storage. Proc. of the IEEE, 99(3):476–489, 2010.

[24] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran. Decentralized erasure

codes for distributed networked storage. Information Theory, IEEE Transac-

tions on, june 2006.

[25] A.G. Dimakis and K. Ramchandran. Network coding for distributed storage

in wireless networks. In Networked Sensing Information and Control, pages

115–136. Springer, New York, 2008.

[26] PeterR. Elespuru, Sagun Shakya, and Shivakant Mishra. Mapreduce system

over heterogeneous mobile devices. In Software Technologies for Embedded and

Ubiquitous Systems. Springer, 2009.

[27] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B

Johnson. A survey of rollback-recovery protocols in message-passing systems.

ACM Computing Surveys (CSUR), 34(3):375–408, 2002.

[28] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile cloud com-

puting: A survey. Future Generation Computer Systems, 29(1):84–106, 2013.

[29] Apache Software Foundation. Apache hadoop. http://hadoop.apache.org/.

[30] Apache Software Foundation. Spark streaming programming guide. Accessed:

09/24/2015.

[31] Johnu George, Chien-An Chen, Radu Stoleru, Geoffrey G Xie, Tamim Sookoor,

and David Bruno. Hadoop mapreduce for tactical clouds. In Proc. of CloudNet,

2014.

[32] S.M. George, Wei Zhou, H. Chenji, Myounggyu Won, Yong Oh Lee, A. Pazar-

loglou, R. Stoleru, and P. Barooah. Distressnet: a wireless ad hoc and sensor

140

network architecture for situation management in disaster response. Commu-

nications Magazine, IEEE, 2010.

[33] Stephen M George et. al. Distressnet: a wireless ad hoc and sensor network

architecture for situation management in disaster response. Communications

Magazine, IEEE, 2010.

[34] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file

system. In Proc of SOSP, 2003.

[35] Diptesh Ghosh. Neighborhood search heuristics for the uncapacitated facility

location problem. EJOR, 150, 2003.

[36] Fred Glover. Future paths for integer programming and links to artificial in-

telligence. Computers & Operations Research, 13, 1986. Tabu Search first

paper.

[37] Robert S. Gray et. al. CRAWDAD data set dartmouth/outdoor. Downloaded

from http://crawdad.org/dartmouth/outdoor/, November 2006.

[38] JIN Hai, Weizhong QIANG, and ZOU Deqing. Dric: dependable grid comput-

ing framework. IEICE transactions on information and systems, 89(2):612–

623, 2006.

[39] Oliver Heckmann and Axel Bock. The edonkey 2000 protocol. Rapport tech-

nique, Multimedia Communications Lab, Darmstadt University of Technology,

13, 2002.

[40] N Hemming. Kazaa. Web Site-www. kazaa. com, 2001.

[41] John H Howard, Michael L Kazar, Sherri G Menees, David A Nichols, Mahadev

Satyanarayanan, Robert N Sidebotham, and Michael J West. Scale and perfor-

141

mance in a distributed file system. ACM Transactions on Computer Systems

(TOCS), 6(1):51–81, 1988.

[42] Dijiang Huang, Xinwen Zhang, Myong Kang, and Jim Luo. MobiCloud: Build-

ing secure cloud framework for mobile computing andcommunication. In Proc.

of SOSE, 2010.

[43] Dijiang Huang, Zhibin Zhou, Le Xu, Tianyi Xing, and Yunji Zhong. Secure

data processing framework for mobile cloud computing. In INFOCOM WK-

SHPS, 2011.

[44] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata

Sen, and Oliver Spatscheck. A close examination of performance and power

characteristics of 4g lte networks. In Proceedings of the 10th international

conference on Mobile systems, applications, and services, pages 225–238. ACM,

2012.

[45] Jean-Pierre Hubaux, Levente Buttyán, and Srdan Capkun. The quest for

security in mobile ad hoc networks. In Proc. of MobiHoc, 2001.

[46] Scott Huchton, Geoffrey Xie, and Robert Beverly. Building and evaluating a

k-resilient mobile distributed file system resistant to device compromise. In

Proc. of MILCOM, 2011.

[47] Eduardo Huedo, Ruben S Montero, and Ignacio M Llorente. A framework for

adaptive execution in grids. Software-Practice and Experience, 34(7):631–652,

2004.

[48] Eduardo Huedo, Rubén S Montero, and Ignacio M Llorente. Evaluating the

reliability of computational grids from the end users point of view. Journal of

Systems Architecture, 52(12):727–736, 2006.

142

[49] Gonzalo Huerta-Canepa and Dongman Lee. A virtual cloud computing

provider for mobile devices. In Proc. of the Workshop on MCS, 2010.

[50] Soonwook Hwang and Carl Kesselman. A flexible framework for fault tolerance

in the grid. Journal of Grid Computing, 1(3):251–272, 2003.

[51] Jang-uk In, Paul Avery, Richard Cavanaugh, Laukik Chitnis, Mandar Kulka-

rni, and Sanjay Ranka. Sphinx: A fault-tolerant system for scheduling in dy-

namic grid environments. In Parallel and Distributed Processing Symposium,

2005. Proceedings. 19th IEEE International, pages 12b–12b. IEEE, 2005.

[52] Shudong Jin and Limin Wang. Content and service replication strategies in

multi-hop wireless mesh networks. In Proceedings of the 8th ACM interna-

tional symposium on Modeling, analysis and simulation of wireless and mobile

systems, pages 79–86, 2005.

[53] Hideyuki Jitsumoto, Toshio Endo, and Satoshi Matsuoka. Abaris: An adapt-

able fault detection/recovery component framework for mpis. In Parallel and

Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International,

pages 1–8. IEEE, 2007.

[54] T. Kakantousis, I. Boutsis, V. Kalogeraki, D. Gunopulos, G. Gasparis, and

A. Dou. Misco: A system for data analysis applications on networks of smart-

phones using mapreduce. In Proc. Mobile Data Management, 2012.

[55] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. Cuckoo: a

computation offloading framework for smartphones. In Mobile Computing,

Applications, and Services, pages 59–79. Springer, 2012.

[56] Ab Rouf Khan, Marini Othman, Sajjad Ahmad Madani, and Samee U Khan.

A survey of mobile cloud computing application models. Communications

143

Surveys & Tutorials, IEEE, 16(1):393–413, 2014.

[57] Kyu-Han Kim, Sung-Ju Lee, and Paul Congdon. On cloud-centric network

architecture for multi-dimensional mobility. ACM SIGCOMM Computer Com-

munication Review, 42(4):509–514, 2012.

[58] S. Kosta, A. Aucinas, Pan Hui, R. Mortier, and Xinwen Zhang. ThinkAir:

Dynamic resource allocation and parallel execution in the cloud for mobile

code offloading. In Proc. of INFOCOM, 2012.

[59] Sokol Kosta, Vasile Claudiu Perta, Julinda Stefa, Pan Hui, and Alessandro

Mei. Clone2clone (c2c): Peer-to-peer networking of smartphones on the cloud.

In 5th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud13),

2013.

[60] Emmanouil Koukoumidis, Dimitrios Lymberopoulos, Karin Strauss, Jie Liu,

and Doug Burger. Pocket cloudlets. ACM SIGARCH Computer Architecture

News, 39(1):171–184, 2011.

[61] Mads Darø Kristensen. Scavenger: Transparent development of efficient cyber

foraging applications. In PerCom, 2010.

[62] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,

Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weatherspoon,

Westley Weimer, et al. Oceanstore: An architecture for global-scale persis-

tent storage. ACM Sigplan Notices, 35(11):190–201, 2000.

[63] Ming Lei, Susan V Vrbsky, and Q Zijie. Online grid replication optimizers to

improve system reliability. In Parallel and Distributed Processing Symposium,

2007. IPDPS 2007. IEEE International, pages 1–8. IEEE, 2007.

144

[64] A. Leon-Garcia. Probability, Statistics, and Random Processes for Electrical

Engineering. Prentice Hall, 2008.

[65] D. Leong, A. G. Dimakis, and T. Ho. Distributed storage allocation for high

reliability. In Proc. of ICC, 2010.

[66] Eliezer Levy and Abraham Silberschatz. Distributed file systems: Concepts

and examples. ACM Computing Surveys (CSUR), 22(4):321–374, 1990.

[67] Antonios Litke, Dimitrios Skoutas, Konstantinos Tserpes, and Theodora Var-

varigou. Efficient task replication and management for adaptive fault tolerance

in mobile grid environments. Future Generation Computer Systems, 23(2):163–

178, 2007.

[68] Cong Liu, Xiao Qin, S. Kulkarni, Chengjun Wang, Shuang Li, A. Manzanares,

and S. Baskiyar. Distributed energy-efficient scheduling for data-intensive ap-

plications with deadline constraints on data grids. In Proc. of IPCCC, 2008.

[69] Yadi Ma, Thyaga Nandagopal, Krishna PN Puttaswamy, and Suman Banerjee.

An ensemble of replication and erasure codes for cloud file systems. In Pro-

ceedings of the IEEE International Conference on Computer Communications,

pages 1276–1284, 2013.

[70] Balakrishan S Manoj and Alexandra Hubenko Baker. Communication chal-

lenges in emergency response. Communications of the ACM, 50(3):51–53, 2007.

[71] Eugene E Marinelli. Hyrax: cloud computing on mobile devices using mapre-

duce. Technical report, CMU DTIC Document, 2009.

[72] Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. P2p-mapreduce: Par-

allel data processing in dynamic cloud environments. J. Comput. Syst. Sci.,

2012.

145

[73] Brendan McGarry. Army set to introduce smartphones into combat.

http://www.military.com/, March 2013.

[74] Alex F Mills and James H Anderson. A stochastic framework for multipro-

cessor soft real-time scheduling. In Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2010 16th IEEE, pages 311–320. IEEE, 2010.

[75] Abderrahmen Mtibaa, Afnan Fahim, Khaled A Harras, and Mostafa H Am-

mar. Towards resource sharing in mobile device clouds: Power balancing across

mobile devices. In Proc. of ACM SIGCOMM workshop, 2013.

[76] David Nagle, Denis Serenyi, and Abbie Matthews. The panasas activescale

storage cluster: Delivering scalable high bandwidth storage. In Proceedings of

the 2004 ACM/IEEE conference on Supercomputing, page 53. IEEE Computer

Society, 2004.

[77] LLC Napster. Napster. URL: http://www. napster. com, 2001.

[78] Dirk Neumann, Christian Bodenstein, Omer F Rana, and Ruby Krishnaswamy.

STACEE: enhancing storage clouds using edge devices. In WACE, 2011.

[79] JamesB. Orlin. A polynomial time primal network simplex algorithm for min-

imum cost flows. Mathematical Programming, 78, 1997.

[80] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The design and

implementation of zap: A system for migrating computing environments. ACM

SIGOPS Operating Systems Review, 36(SI):361–376, 2002.

[81] Rajesh Krishna Panta, Rittwik Jana, Fan Cheng, Yih-Farn Robin Chen, and

Vinay A Vaishampayan. Phoenix: Storage using an autonomous mobile infras-

tructure. TPDS, 2013.

146

[82] Rafael Pereira, Marcello Azambuja, Karin Breitman, and Markus Endler. An

architecture for distributed high performance video processing in the cloud. In

Proc. of CLOUD, 2010.

[83] Johan Pouwelse, Pawe l Garbacki, Dick Epema, and Henk Sips. The bittorrent

p2p file-sharing system: Measurements and analysis. In Peer-to-Peer Systems

IV, pages 205–216. Springer, 2005.

[84] Korlakai Vinayak Rashmi, Nihar B Shah, and P Vijay Kumar. Optimal exact-

regenerating codes for distributed storage at the msr and mbr points via a

product-matrix construction. Information Theory, IEEE Transactions on,

57(8):5227–5239, 2011.

[85] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. In

Peer-to-Peer Computing, 2001. Proceedings. First International Conference on,

pages 99–100. IEEE, 2001.

[86] S Siva Sathya, S Kuppuswami, and K Syam Babu. Fault tolerance by check-

pointing mechanisms in grid computing. In Proceedings of the International

Conference on Global Software Development, Coimbatore, pages 26–28, 2007.

[87] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for VM-

based cloudlets in mobile computing. Pervasive Computing, IEEE, 8:14–23,

2009.

[88] Mahadev Satyanarayanan, James J Kistler, Puneet Kumar, Maria E Okasaki,

Ellen H Siegel, and David C Steere. Coda: A highly available file system for

a distributed workstation environment. Computers, IEEE Transactions on,

39(4):447–459, 1990.

147

[89] Texas A&M Engineering Extension Service. Disaster preparedness and re-

sponse. Accessed: 26/10/2012.

[90] Muhammad Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, Shobha

Venkataraman, and Jia Wang. A first look at cellular network performance

during crowded events. In ACM SIGMETRICS Performance Evaluation Re-

view, volume 41, pages 17–28. ACM, 2013.

[91] Cong Shi, Vasileios Lakafosis, Mostafa H. Ammar, and Ellen W. Zegura.

Serendipity: enabling remote computing among intermittently connected mo-

bile devices. In Proc. of MobiHoc, 2012.

[92] D Shires, B Henz, S Park, and J Clarke. Cloudlet seeding: Spatial deployment

for high performance tactical clouds. In Proc. of WorldComp, 2012.

[93] Clay Shirky, Kelly Truelove, Rael Dornfest, L Gonze, and D Dougherty. P2p

networking overview. The Emergent P2P Platform of Presence, Identity, and

Edge Resources. O’Reilly & Associates, 2001.

[94] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

The hadoop distributed file system. In Proc of MSST, 2010.

[95] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.

ACM SIGCOMM Computer Communication Review, 31(4):149–160, 2001.

[96] Patrick Stuedi, Iqbal Mohomed, and Doug Terry. WhereStore: location-based

data storage for mobile devices interacting with the cloud. In MCS, 2010.

[97] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jig-

nesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu,

Jake Donham, et al. Storm@ twitter. In Proceedings of the 2014 ACM SIG-

148

MOD international conference on Management of data, pages 147–156. ACM,

2014.

[98] Paul Townend and Jie Xu. Replication-based fault tolerance in a grid environ-

ment. In UK e-Science 3rd All-Hands Meeting, 2004.

[99] Luca Valcarenghi and Piero Castoldi. Qos-aware connection resilience for

network-aware grid computing fault tolerance. In Transparent Optical Net-

works, 2005, Proceedings of 2005 7th International Conference, volume 1, pages

417–422. IEEE, 2005.

[100] Hakim Weatherspoon and John D Kubiatowicz. Erasure coding vs. replication:

A quantitative comparison. In Peer-to-Peer Systems, pages 328–337. Springer,

2002.

[101] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos

Maltzahn. Ceph: A scalable, high-performance distributed file system. In

Proceedings of the 7th symposium on Operating systems design and implemen-

tation, pages 307–320. USENIX Association, 2006.

[102] Ye Wen, Rich Wolski, and Chandra Krintz. Online prediction of battery life-

time for embedded and mobile devices. In Power-Aware Computer Systems.

Springer Berlin Heidelberg, 2005.

[103] Gosia Wrzesińska, Rob V Van Nieuwpoort, Jason Maassen, Thilo Kielmann,

and Henri E Bal. Fault-tolerant scheduling of fine-grained tasks in grid envi-

ronments. International Journal of High Performance Computing Applications,

20(1):103–114, 2006.

[104] Hao Yang, Haiyun Luo, Fan Ye, Songwu Lu, and Lixia Zhang. Security in

mobile ad hoc networks: challenges and solutions. Wireless Communications,

149

IEEE, 2004.

[105] Wanghong Yuan and Klara Nahrstedt. Energy-efficient soft real-time cpu

scheduling for mobile multimedia systems. ACM SIGOPS Operating Systems

Review, 37, 2003.

[106] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and

Ion Stoica. Spark: cluster computing with working sets. In Proceedings of the

2nd USENIX conference on Hot topics in cloud computing, volume 10, page 10,

2010.

[107] Xianan Zhang, Flavio Junqueira, Keith Marzullo, Richard D Schlichting, and

Richard D Schlichting. Replicating nondeterministic services on grid environ-

ments. In High Performance Distributed Computing, 2006 15th IEEE Interna-

tional Symposium on, pages 105–116. IEEE, 2006.

[108] Zehua Zhang and Xuejie Zhang. Realization of open cloud computing federa-

tion based on mobile agent. In Intelligent Computing and Intelligent Systems,

2009. ICIS 2009. IEEE International Conference on, volume 3, pages 642–646.

IEEE, 2009.

150

