
PROXIMITY OPTIMIZATION FOR ADAPTIVE CIRCUIT DESIGN

A Thesis

by

ANG LU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jiang Hu
Committee Members, Peng Li

Anxiao Jiang
Head of Department, Miroslav M. Begovic

December 2015

Major Subject: Computer Engineering

Copyright 2015 Ang Lu

ABSTRACT

The performance growth of conventional VLSI circuits is seriously hampered by

various variation effects and the fundamental limit of chip power density. Adaptive

circuit design is recognized as a power-efficient approach to tackling the variation

challenge. However, it tends to entail large area overhead if not carefully designed.

This work studies how to reduce the overhead by forming adaptivity blocks consider-

ing both timing and physical proximity among logic cells. The proximity optimiza-

tion consists of timing and location aware cell clustering and incremental placement

enforcing the clusters. Experiments are performed on the ICCAD 2014 benchmark

circuits, which include case of near one million cells. The experiment results prove

that during clustering, location proximity among logic cells are equally important

as the timing proximity among logic cells. Compared to alternative methods, our

approach achieves 25% to 75% area overhead reduction with an average of 0.6% wire-

length overhead, while retains about the same timing yield and power consumption.

ii

TABLE OF CONTENTS

Page

ABSTRACT . ii

TABLE OF CONTENTS . iii

LIST OF FIGURES . iv

LIST OF TABLES . v

1. INTRODUCTION AND OVERVIEW . 1

1.1 Introduction . 1
1.2 Overview of our design flow . 5

2. METHODOLOGY . 7

2.1 Generate a general placement and perform timing analysis on the
placement. 7
2.1.1 Perform global placement using CAPO placement tool 7
2.1.2 Perform statistical static timing analysis 8

2.2 K-means clustering and incremental placement 9
2.2.1 Timing and location aware cell clustering 9
2.2.2 Cluster driven incremental placement 12

2.3 Gate sizing and adaptivity assignment 17

3. EXPERIMENTS . 18

3.1 Experiment design and setup . 18
3.2 Experimental results . 19

4. CONCLUSION . 25

REFERENCES . 26

iii

LIST OF FIGURES

FIGURE Page

1.1 A scratch of a most basic adaptive circuit. 2

1.2 A scratch of a most basic adaptive circuit, but grouped into two clus-
ters. 3

1.3 Overview of proposed design flow. 6

2.1 An example for clustering. 10

2.2 An example of cell placement after clustering. The white regions are
empty. 13

2.3 Network of max flow min cost problem 15

3.1 Power/area - timing trade-off for mgc matrix mult with FBB. 22

iv

LIST OF TABLES

TABLE Page

3.1 Runtime of the first set of comparison with only forward body bias
(FBB) . 20

3.2 Impact of weight factors in clustering distance (Equation (2.3))for
circuit mgc matrix mult with FBB. Adaptive power is denoted by AP. 21

3.3 Experimental results with only forward body bias (FBB). Total area
overhead, power overhead, and wire-length increase are denoted by
∆A, ∆Pwr, and ∆Wire, respectively. 23

3.4 Experimental results with Adaptive Body bias (ABB). Total area over-
head, power overhead, and wire-length increase are denoted by ∆A,
∆Pwr, and ∆Wire, respectively. 24

v

1. INTRODUCTION AND OVERVIEW

1.1 Introduction

Variability, such as process variations and device aging, and power are notorious

barriers to the progress of VLSI technology. Process variations are introduced during

the fabrication of die. Two dies, though they are designed to be the same, but during

fabrication, there will be some differences, these differences are categorized as inter-

die variation. Also, on the same die, even two MOSFETs are designed to be the same,

there will be some differences in their gate width, length, and oxide thickness. These

differences are categorized as intra-die variation. As technology aggressively scaled

and size of die grows, circuits has been increasingly susceptible to process variations.

On the other hand, aging degradation has become a major reliability issue in sub-

130nm technologies. Negative Bias Temperature Instability (NBTI) manifests itself

as a temporal increase in the threshold voltage of a PMOS transistor, thereby causing

circuit delays to degrade over time and exceed their specifications [4]. A dual effect

is Negative Bias Temperature Instability (NBTI) for NMOS transistor.

The compound effect of process variations and device aging is even more diffi-

cult to deal with. Variations demand extra power for timing margins and therefore

exacerbate power dissipation. On the other hand, increasingly tight power budget

seriously hinders design techniques for variation tolerance. Adaptive circuit design

is an approach to getting out of this difficult situation.

An adaptive circuit, as the Figure 1.1 shows, contains sensors that detect timing

variations. Broadly speaking, there are two kinds of sensors: critical path replica [6]

and canary flip-flop [8]. The sensor outputs control certain tuning knobs, such as

body bias [9] and supply voltage change [5], such that timing variations are corrected.

1

Figure 1.1: A scratch of a most basic adaptive circuit.

Unlike conventional methods, which allocate extra power and timing margins accord-

ing to the worst case variations, an adaptive circuit spends additional power only

when timing variation is actually observed. Adaptive design is conceptually more

power-efficient than conventional designs, however, it entails area overhead on sen-

sors, tuning circuits and control wires. If not carefully designed, the overhead can be

quite significant. For example, a näıve implementation of the voltage interpolation

technique [5] can double chip power grid.

There are two mainstream tuning methods, adaptive body bias (ABB), and adap-

tive supply voltage (ASV). ABB takes advantage of the body effect phenomenon to

modulate the Vth of a MOSFET. It is composed by forward body bias (FBB) and

reverse body bias (RBB). FBB lowers the Vth. It increases the speed of the MOSFET

but increases leakage power. On the contrary, RBB reduces leakage power at the

cost of an increase delay. The idea of ASV is also easy to understand. Instead of one

VDD to be the supply voltage of the whole circuit like conventional circuits do, there

will be two VDD’s, one high VDD and one low VDD. High VDD means more power dis-

2

Figure 1.2: A scratch of a most basic adaptive circuit, but grouped into two clusters.

sipation and better performance, while low VDD means less power and longer delay.

Both methods are trade-off between power and performance.

Indeed, the overhead issue is a key reason that prevents a wide application of

adaptive design techniques. The efficiency of an adaptive design highly depends on

how its adaptivity blocks are formed. The circuit cells within one block share the

same sensors, control and tuning knobs. Ideally, one prefers to put cells that need

similar tuning actions into the same block. As such, a small number of sensors and

knobs can cover a large circuit and the amortized overhead is relatively low. At

the same time, cells in a block need to be physically close to each other or form a

contiguous region. As the Figure 1.2 shows, each orange area represents a cluster.

In this figure, there are two clusters, and compare to Figure 1.1, there are much less

sensors and knobs needed. Separating cells of the same block far apart would at least

cause unnecessarily large control wire overhead. Overall, adaptivity blocks should

be formed according to both timing proximity and spatial proximity of cells.

3

The adaptivity block generation problem is studied in [2] for adaptive body bias.

It estimates timing proximity among cells by Monte Carlo simulation of body bias

assignment. The assignment assumes that the body of each cell can be individually

controlled and is implemented by quadratic programming. After the simulation, the

probability distribution of body bias tuning for each cell is obtained. Then, cells

with similar distributions and are highly correlated are clustered to form a block.

It is observed that the spatial correlation among tuning actions of different cells is

similar as physical proximity among the cells. To ensure that cells in the same block

are located in a contiguous region, incremental placement change is performed using

the CAPO placer [7]. This is a pioneer work that demonstrates the importance

of adaptivity clustering. However, it has a few drawbacks. First, Monte Carlo

simulation of quadratic programming is very time consuming and difficult to scale

to large cases. For example, a 32K-cell case, which is fairly small from the point of

view of modern IC design, costs nearly four and half hours runtime in [2]. Second,

it is not described how Capo [7] enforces spatial continuity among cells in a cluster.

Third, although timing and spatial proximity are correlated, the difference between

them cannot be neglected. For example, the timing-only clustering [2] results in 3%

wirelength overhead, which is not trivial. The clustering method of [2] is integrated

with cell sizing in [10].

In this work, we propose a balanced approach: cell clustering with consideration

of both timing and spatial proximity. To make the clustering more scalable, the

consideration of timing is based on timing analysis result instead of Monte Carlo

simulation of quadratic programming. The clustering is followed by an incremental

placement that enforces the spatial continuity of cells in a cluster. The placement

is formulated and solved by min-cost network flow model that minimizes total cell

movement. Experiments are performed on the ICCAD 2014 incremental timing-

4

driven placement contest benchmark suites, which include circuit of near one million

cells. Compared to timing-only and location-only clustering, our approach achieves

1
4

to 3
4

area overhead reduction with an average of 0.6% wirelength overhead. At the

same time, it retains about the same timing yield and power consumption.

1.2 Overview of our design flow

The input to our method is a combinational logic circuit, timing constraints, and

adaptivity policy. An overview of this design flow is sketched in Figure 1.3. As shown

in the figure, the design flow is composed by three stages.

In stage 1, cell placement (including detailed placement) and timing analysis

are performed. It is represented by a graph G = (V,E), where the node set V

indicates cells and edges E imply fanin/fanout among cells. Stage 2 is the main part

of our project. It is composed by two phases: phase I: Timing and location aware

cell clustering and phase II: cluster driven incremental placement. The clustering

algorithm partitions cells into blocks, where cells in a block have similar timing

and location characteristics. The incremental placement further forces cells of each

cluster to form a contiguous region. After detailed placement, we check the increase

in wire-length, if the wire-length increases over τ%, then we re-run the clustering

and incremental placement algorithm. Then in stage 3, the result of our method is

fed to the adaptive circuit optimization [11], which decides if to assign adaptivity to

each block and simultaneously performs gate sizing.

5

Figure 1.3: Overview of proposed design flow.

6

2. METHODOLOGY

Our design flow compose of a three-stage optimization flow to determine the clus-

ters to which gates are assigned as well as the specific adaptivities for gates. In this

chapter, I will describe each stage in detail. But since stage 2 is the main stage in

our design flow, I will explain it more specifically.

2.1 Generate a general placement and perform timing analysis on the placement

This is stage I in our design flow. First, perform a global placement on the

benchmark circuits. The placement tool we used in this paper is CAPO. The global

placement will then be used to provide placement information for timing analysis.

The timing analysis tool will collect timing information, which will then be used in

later stages.

2.1.1 Perform global placement using CAPO placement tool

In this sub-step, we perform global placement using CAPO placement tool [7].

CAPO is chosen in our design flow due to the fact that it is a fast and high-quality

routability-driven placer for standard-cell ASICs. It reads the LEF/DEF format of

the benchmark suites we use. It performs global placement with recursive bisection

using leading-edge multi-level partitioner. And perform detailed placement with op-

timal branch-and-bound partitioner and placer to eliminate overlap. After CAPO

is performed, the placement provides the physical location of each gates needed for

timing analysis and clustering. Moreover, the placement is legal and routable every-

where, which means later when incremental placement is performed in stage 2, no

7

effort will be made in eliminating overlap.

2.1.2 Perform statistical static timing analysis

In this step, statistical Static Timing Analysis (STA) is performed to provides

the timing information needed for k-means clustering, which includes nominal slack

of each gate, criticality of each gate, and critical path delay of the circuit. The

definition of gate’s criticality is: the change of the critical path delay of the circuit

as a result to the change of the gate’s delay. Since adaptivity is operated according

to observed variations, variations need to be taken into consideration in the timing

analysis. Traditional STA techniques lie in their deterministic nature so it is not

suitable for our application. Monte Carlo simulation is the very accurate, however,

the runtime is too long. Statistical STA lies in between STA and Monte Carlo sim-

ulation. It treats delays not as fixed numbers, but as probability density functions

(PDFs), taking the statistical distribution of parametric variation into consideration

while analyzing the circuit. It is accurate enough [3], while the runtime of SSTA is

still acceptable.

The statistical STA tool we applied [3] derived from the timer introduced in [1].

It computes the distribution of circuit delay while considering spatial correlations.

Spatial correlations between gates are modeled by storing them in a grid-based corre-

lation matrix. Process variation we considered including gate length variation, whose

standard deviation σ is 5% of nominal value, and gate width variation with σ begin

2.7% of nominal value. In order to manipulate the complicated correlation structure,

the Principal Component Analysis (PCA) technique is employed to transform the

sets of correlated parameters into sets of uncorrelated ones. The statistical timing

8

computation is then performed with a PERT (Program Evaluation and Review Tech-

nique) -like circuit graph traversal [1]. As tested on ISCAS’85 circuits, errors of the

statistical STA results compare to Monte Carlo simulation results on mean (µ) and

standard deviation (σ) are 0.04% and 5.7% respectively [3], which are acceptable for

our application.

2.2 K-means clustering and incremental placement

This is stage II in our design flow. In this stage, we use an efficient clustering

technique to group gates into a number of clusters. And then, incremental placement

is performed based on the clustering result to move gates within the same cluster

to a contiguous region, so that they could be tuned with an identical adaptivity

configuration.

2.2.1 Timing and location aware cell clustering

We start with an example in Figure 2.1 to illustrate that considering only timing

in clustering like [2] is insufficient. The argument in [2] is that timing correlations

highly depend on spatial correlations. As such, spatial proximity is largely addressed

by considering only timing proximity. This statement is often true, however, it is

not difficult to find counter examples that easily happen in practice. In Figure 2.1,

there are two timing critical paths: one from gate A1 to A2 and the other from B1

and B2. Along path A (B), forward body bias (FBB) of either gate A1 (B1) or A2

(B2) can fix timing error. If FBB of NAND gates is slightly more efficient than FBB

of NOR gates, the quadratic programming in [2] may mostly choose FBB of A1 and

B2 at the same time. Then, the clustering of [2] would put A1 and B2 into the same

cluster although they are spatially far apart. The subsequent incremental placement

9

must move those cells for a long distance to bring them together. Consequently,

wirelength is significantly increased. Moreover, the large cell moves may invalidate

the original timing analysis result. For the example in Figure 2.1, a better solution

is to cluster A1 (A2) with B1 (B2).

Figure 2.1: An example for clustering.

In our clustering, both timing and spatial proximity are considered. Straightfor-

wardly, spatial proximity between two cells are estimated by the Manhattan distance

between them.

Timing proximity is much more complex. Ideally, it should indicate the probabil-

ity that two cells take the same tuning actions. Monte Carlo simulations of quadratic

programming like [2] serves this purpose well, but is too expensive to use. Therefore,

we resort to a simple surrogate metric that include two factors. The first factor is

the timing slacks at cells. If two cells have similar slack, then it is more likely that

they would take the same tuning actions. In the cases where tuning knobs are only

for high performance and not for low power, e.g., only forward body bias, when two

10

cells have huge slack, none of them would take tuning action regardless how large

their slack difference is. Hence, a cell gi is characterized by capped slack defined as

ŝi = min(slacki, θ) (2.1)

where θ is a constant threshold. To further account for timing variability, the slack

here is based on nominal delay plus scaled σ (standard deviation) of the delay. It is

conceivable that a cell with large σ is more likely to be tuned when it has the same

nominal delay as others.

The second factor in the surrogate timing proximity is sensitivity, which is defined

as ratio of slack increase by tuning a cell versus the tuning cost, i.e.,

ψ =
Critical Path Slack Increase

Tuning Cost
(2.2)

where the tuning cost can be power increase or area overhead of adaptivity. When

two cells have similar timing slack, the sensitivity may make a difference on if to

take tuning action. Indeed, it makes sense for tuning policies to favor change on cells

with relatively large sensitivities.

Overall, the distance between gi at (xi, yi) and gj at (xj, yj) in the clustering is

defined as

di,j = α · |ŝi − ŝj|+ β · |ψi − ψj|+ γ · (|xi − xj|+ |yi − yj|) (2.3)

where α, β and γ are constant parameters. Usually, the value of β is much smaller

than α.

Based on the distance defined above, we adopt Lloyd’s K-means algorithm for

the clustering. To make the description complete, we summarize the main steps of

11

this algorithm. It starts with K arbitrary means or centers. Then, each element

is assigned the cluster with nearest center. After the assignment, the centers are

updated with the centroids of the clusters. This assignment and center update pro-

cedure is repeated till the within-cluster sum of distance (WCSD) converges to the

minimum. WCSD is defined by

K∑
i=1

∑
~x∈Ci

|~x− ~µi| (2.4)

where Ci is a cluster, ~x is an element and ~µi is the mean or center for cluster Ci.

Unlike the original Lloyd’s algorithm, which is based on Euclidean distance, we use

Manhattan distance to match the layout convention in VLSI circuits. The value of

K is decided empirically [11]. Moreover, we allow K to be changed according to

clustering results. If two clusters are very near to each other, they are merged and

K is therefore decreased.

2.2.2 Cluster driven incremental placement

After the clustering, a small number of cells are often located away from the

majority cells of their own clusters. For example, in Figure 2.2, where clusters are

indicated by colors, two blue cells and one orange cell are away from their clusters.

We call them alien cells. Due to alien cells, control wires for a cluster must span

a relatively large region. Moreover, tuning overhead, such as extra power lines in

voltage interpolation [5], is also increased by the spreading out of clusters.

The purpose of incremental placement is to move alien cells back to their clusters

such that each cluster forms a compact and contiguous region. An alien cell gki

belonging to cluster Ck can be moved to an empty space among majority cells of Ck.

12

Figure 2.2: An example of cell placement after clustering. The white regions are
empty.

Alternatively, it can be moved to the position of another alien cell glj that belongs to

another cluster Cl but sits within cluster Ck, as glj will be moved out of cluster Ck

sooner or later. For example, the blue cell in top row of Figure 2.2 can be moved to

the location of the orange cell in the middle row. Of course, these moves are allowed

only if the size of empty space or glj is no less than that of gki . In order to retain the

original design as much as possible, the total cell movement needs to be minimized

at the same time.

In essence, the incremental placement is a min-cost assignment problem – as-

signing alien cells to empty or potentially empty space. In general, an assignment

problem can be solved through min-cost network flow model. However, there is a

pitfall. That is, if one attempts to move all alien cells simultaneously in a network

13

flow model, it is difficult to ensure that an alien cell is moved to its own cluster, not

other clusters. In fact, this is a multi-commodity network flow problem, which is

NP-complete. On the other hand, this issue is not difficult to circumvent, simply by

processing one cluster at a time. Specifically, alien cells belonging to one cluster are

collected back using min-cost flow model.

Since the clusters are processed one at a time, we need to find the order for

processing them. The order is based on cluster porosity, i.e., the percentage of space

can be used by its alien cells. A cluster with low porosity is processed first. White

space between two clusters can be claimed by either cluster. Processing low porosity

(high density) clusters first would allow them to have high priority for taking white

space between clusters. Evidently, if the overall placement density is not high, this

order does not matter.

Now we describe the network flow model for moving alien cells belonging to cluster

Ck back to Ck. The network is a directed graph G′ = (V ′, E ′). The node set V ′ is

composed by the following types of nodes:

• Source node: Each source node corresponds to an alien cell gki that needs to be

moved to cluster Ck.

• Sink node: Each sink node indicates (1) a contiguous empty space inside or

adjacent with cluster Ck, or (2) an alien cell glj that sits inside Ck.

• Super source S: This is a virtual node and there is an edge from S to every

source node.

• Super sink T : This is a virtual node and there is an edge from every sink node

to T .

There are three types of edges in E ′.

14

Figure 2.3: Network of max flow min cost problem

• From S to source nodes: Each such edge has capacity equal to the size of

corresponding alien cell, and cost of 0.

• From source to sink node: There is an edge between every pair of source and

sink nodes. Its capacity is infinity and its cost is equal to the distance of moving

the corresponding alien cell to Ck.

• From sink node to T : Each such edge has capacity equal to the size of corre-

sponding empty space or alien cell that does not belong to Ck. The edge cost

is 0.

Figure 2.3 shows the network flow model for moving the two blue alien cells in

Figure 2.2. The flow constraint is equal to the total size of alien cells to be moved.

In practice, placement density is rarely near 100% and the percentage of alien cells is

small. Hence, there is usually plenty of white space accommodating the moves. After

15

the model is formulated, the Edmonds-Karp algorithm [12] is performed to obtain

min-cost flow solution. The algorithm can guarantee to find the optimal solution in

polynomial time. In the solution, the flow on each edge from source to sink node tells

how to move an alien cell. The incremental placement algorithm flow is outlined in

the pseudo code below.

Algorithm 1 Incremental Placement

input : cell placement and clusters C = {C1, C2, ...}
output : cell placement where each cluster forms contiguous region

Sweep each cell row to identify alien cells and empty space
for Each cluster Ci ∈ C do

1. Find alien cells belonging to Ci and usable space in/around Ci

2. Build min-cost network flow model for moving the alien cells back to Ci

3. Solve the min-cost network flow problem using the Edmonds-Karp algorithm
end for

In implementation, we need to identify alien cells, the clusters they belong to

and the empty space within (or adjacent with) clusters. Since circuit designs mostly

use standard cells and cells are placed in rows, the identification is done by scanning

individual rows. By checking if a consecutive set of cells belong to the same cluster,

one can detect potential alien cell. If a cell does not have left or right neighbors from

the same cluster, the rows right above and below it are also examined to see if it

has neighbor above/below that belongs to the same cluster. Also, since in min-cost

problem, the algorithm will not see a cell as a whole, there is a chance a cell ci is

split into multiple pieces. To handle this problem, we simply find which space the

biggest piece of ci is assigned to, and put the whole cell into that place. It doesn’t

necessarily result in an overlap, but if there is one, we will shift the cells around ci to

16

make more room for ci. In this way, we make sure the placement is legal everywhere.

2.3 Gate sizing and adaptivity assignment

This is stage III in our design flow. In this stage, a circuit has been partitioned

into clusters C = {C1, C2, ...}, one needs to decide if to assign adaptivity to each

cluster Ci. By assigning adaptivity, a cluster is able to autonomously detect and

compensate timing variations and therefore has robustness to variations. Adap-

tivity comes with area overhead due to sensor and tuning circuit. The adaptivity

assignment tool we use [11] has the following inputs: circuit G composed by clusters

C = {C1, C2, ...}, timing yield constraint Υ, and adaptivity area constraint Ω. The

algorithm iteratively assigns or de-assigns adaptivity for a cluster. Depending on if

timing yield Y (G) evaluated by an statistical STA satisfies a given constraint Υ, each

iteration may be in either timing mode or overhead mode. The iteration continues

as long as there is still improvement on timing yield, area, or power dissipation. The

output of the algorithm is adaptivity assignment Φ(Ci) for each Ci ∈ C.

In their approach, they arbitrarily partition a circuit by a n ∗n framework, gates

within the same tile are assigned to a cluster. What we do differently is, in our

application, we import the clustering result of timing and location aware clustering

algorithm to assign gates to clusters. In the next chapter, we report results of our

design flow as well as comparison between results gotten using their location-aware

clustering method to show the effectiveness of our method.

17

3. EXPERIMENTS

3.1 Experiment design and setup

The entire flow of Figure 1.3 is evaluated in the experiments. The initial place-

ment (including detailed placement) is done using the Capo placer [7]. All the other

steps in Figure 1.3 are implemented by C++ language. The timing analysis after

the initial placement follows the method of PCA-based statistical static timing anal-

ysis [1]. The wirelength is evaluated according to half-perimeter of net bounding

boxes. The last step gate sizing and adaptivity assignment uses the method of [11].

The timing yield of adaptive designs is estimated by the technique of [3]. All the

implementations run on an AMD Opteron processor with 2.2GHz frequency, 4GB

memory and Linux operating system.

The experiments are performed on ICCAD 2014 Incremental Timing-Driven Place-

ment Contest benchmark suites [13]. Adaptive body bias is employed as platform of

adaptive circuit design. Please note that our method can be applied to other types

of adaptive design, such as voltage interpolation [5]. We assume canary flip-flop [8]

based delay variation sensors. The control signals incur only several dozens of nets,

whose wirelength is negligible in circuits with hundreds of thousands of nets. We did

routing for a few cases and found that the control wirelength accounts for less than

0.1% of total wirelength. In the experiments, we only focus on the wirelength over-

head arising from the clustering and incremental placement. The area overhead from

adaptive circuits mostly includes sensor area and gate area increase due to triple-well

process for body bias. The number of clusters is empirically chosen in a range from

10 to 25. Please note our clustering algorithm can autonomously adjust the number

of clusters. The timing is estimated according to RC switch model and the Elmore

18

model. The power model is the same as that in [2]. Gate length variations with

standard deviation of 5% nominal value are considered.

The following approaches are compared in the experiments.

• Over-design: This is the conventional non-adaptive circuit design. It does

not have sensors, control or tuning circuits, and therefore cannot adapt to

variations. It applies identical amount of power among all chips according to

the worst case variation.

• Location-aware clustering: This is an implementation of the flow in Figure 1.3,

but only spatial proximity is considered in the clustering step. As such, each

cluster forms a contiguous region without the need of incremental placement.

• Timing-aware clustering: This is an implementation of the flow in Figure 1.3,

but only timing proximity is considered in the clustering step, i.e., γ = 0 for

the clustering distance defined in Equation (2.3). This implementation tries to

emulate the approach of [2] in a broad sense, but in a simpler manner.

• Ours: This is our complete flow in Figure 1.3 based on timing and location

aware clustering.

3.2 Experimental results

All methods are tested under several different timing constraints and the average

results are shown in Table 3.3 and 3.4. The results in Table 3.3 are from experiments

with only forward body bias (FBB). One can see that all methods achieve about

the same timing yield and adaptive design can save about 26% power compared to

over-design. Our method results in 26% less area overhead than the location-aware

clustering method. Compared to the timing-aware clustering, our method not only

reduces area overhead by 31% but also incurs much less wirelength overhead. The

19

average wirelength overhead from our method is only 0.6%, which is about 95% less

than that from the timing-aware clustering.

Table 3.4 summarizes results from experiments with both FBB and RBB (Re-

verse Body Bias). The observation is similar to Table 3.3 except that area overhead

reduction from our method is 78% on average compared to location-aware cluster-

ing. For circuit mgc matrix mult, the adaptive design leads to area decrease. This

is because the optimization in the last step of Figure 1.3 may downsize cells.

Flow computing runtime data for different methods with FBB are outlined in

Table 3.1. Even for the largest case netcard, which has near one million cells, our

complete flow takes about 3 hours. This is much faster than the approach of [2], which

spends near 4.5 hours to process a small circuit with 32K cells. The over-design flow

has only the initial placement and timing analysis part of Figure 1.3. By comparing

with the runtime of our complete flow, one can tell that the initial placement and

timing analysis account for about 1/3 of total runtime. The location-aware clustering

method does not include incremental placement. A simple calculation tells that the

incremental placement causes about 1/3 of entire runtime, and the clustering plus

adaptivity optimization also costs about 1/3 of total runtime.

Table 3.1: Runtime of the first set of comparison with only forward body bias (FBB)
Baseline Location-aware clustering Ours

Circuit #gates Rutime (s) Rutime (s) Rutime (s)

mgc edit dist 130674 693 1698 2197

mgc matrix mult 155341 1020 1794 2318

vga lcd 164891 609 1381 3615

b19 219268 1419 3111 3882

leon3mp 649191 2544 4369 7880

leon2 79286 3133 4953 8477

netcard 958792 3729 7363 11307

Average 438920 1878 3524 5754

20

Experiment is performed to investigated the impact of weight factors α, β and γ

in Equation (2.3), which defines the distance for clustering. The experiment is con-

ducted on circuit mgc matrix mult with FBB, and the result is shown in Table 3.2.

In this Table, the column of AP is for adaptive power, which is the average power

increase due to the tuning from zero body bias to forward body bias. The minimum

area overhead ∆Area is 1653, which is significantly lower than that in Table 3.3.

This is because the timing constraint for Table 3.2 is relatively loose while the area

overhead in Table 3.3 is an average from multiple experiments including those with

tight timing constraints. The wirelength overhead ∆Wire is mostly decided by the

ratio between α and γ. Not surprisingly, wirelength overhead is quite remarkable

when this ratio is large. The timing yield results for these different weight factors

are very similar.

Table 3.2: Impact of weight factors in clustering distance (Equation (2.3))for circuit
mgc matrix mult with FBB. Adaptive power is denoted by AP.

α β γ # clusters AP ∆Area ∆Wire

0 1 1 23 3707 4111 0%

5 1 1 24 3500 1851 0.61%

6.5 1 1 22 7764 8538 0.76%

7.2 1 1 22 9582 10585 0.82%

15 1 1 12 10376 10903 6.7%

20 1 1 12 6686 8423 8.5%

1 1 0 20 3771 2533 9.5%

5 0 1 24 3500 1851 0.61%

5 2 1 24 3377 1653 0.60%

5 4 1 24 4330 3673 0.55%

21

Figure 3.1: Power/area - timing trade-off for mgc matrix mult with FBB.

In another experiment, timing constraint is varied to observe the effect on power

and area overhead for circuit mgc matrix mult with FBB. The power here only

includes the adaptive power, which is incurred due to body bias change. The trade-

off curves are depicted in Figure 3.1. It is as expected that power/area increases as

timing constraint is tightened. The optimization and adaptivity tuning are carried

out in a way to obtain similar timing yield.

22

T
ab

le
3.

3:
E

x
p

er
im

en
ta

lr
es

u
lt

s
w

it
h

on
ly

fo
rw

ar
d

b
o
d
y

b
ia

s
(F

B
B

).
T

ot
al

ar
ea

ov
er

h
ea

d
,
p

ow
er

ov
er

h
ea

d
,
an

d
w

ir
e-

le
n
gt

h
in

cr
ea

se
ar

e
d
en

ot
ed

b
y

∆
A

,
∆
P
w
r,

an
d

∆
W
ir
e,

re
sp

ec
ti

ve
ly

.
O

v
er

-d
es

ig
n

L
o
ca

ti
o
n

-a
w

a
re

C
lu

st
er

in
g

T
im

in
g
-a

w
a
re

C
lu

st
er

in
g

O
u

rs

C
ir

cu
it

#
g
a
te

s
Y

ie
ld

P
o
w

er
Y

ie
ld

∆
A

re
a

P
o
w

er
Y

ie
ld

∆
A

re
a

P
o
w

er
∆

W
ir

e
Y

ie
ld

∆
A

re
a

P
o
w

er
∆

W
ir

e

m
g
c

ed
it

d
is

t
1
3
0
6
7
4

9
9
.9

%
8
0
6
8
6
2

9
9
.0

%
1
3
2
0
0

6
7
7
8
1
2

9
9
.1

%
6
4
1
6

6
7
9
5
0
2

8
%

9
9
.2

%
5
2
7
9

6
7
8
0
4
7

0
.0

%

m
g
c

m
a
tr

ix
m

u
lt

1
5
5
3
4
1

9
9
.9

%
1
2
8
0
4
6
0

9
9
.4

%
1
2
5
3
4

9
5
4
7
6
4

9
9
.7

%
1
3
9
8
2

9
5
2
6
0
5

8
%

9
9
.4

%
7
6
0
3

9
4
9
8
9
0

0
.6

%

v
g
a

lc
d

1
6
4
8
9
1

9
9
.9

%
1
0
2
5
1
0
0

9
9
.1

%
7
0
4
8

8
2
1
0
0
1

9
9
.6

%
8
6
3
9

8
2
0
7
4
3

1
1
%

9
9
.3

%
4
7
7
6

8
2
0
0
0
7

0
.6

%

b
1
9

2
1
9
2
6
8

9
9
.9

%
1
9
9
4
5
6
0

9
9
.2

%
1
2
7
9
3

1
5
0
1
7
8
0

9
9
.1

%
7
3
4
3

1
4
9
3
8
8
5

9
%

9
8
.8

%
6
6
9
5

1
4
9
3
9
3
1

0
.6

%

le
o
n

3
m

p
6
4
9
1
9
1

9
9
.9

%
5
2
0
6
5
4
0

9
8
.9

%
2
5
3
5
6

3
7
3
0
1
9
0

9
9
.3

%
2
7
1
2
4

3
7
3
2
4
2
7

1
4
%

9
8
.5

%
2
1
4
0
1

3
7
2
7
8
8
0

0
.9

%

le
o
n

2
7
9
4
2
8
6

9
9
.9

%
6
0
6
3
3
5
8

9
8
.6

%
3
3
5
1
6

4
3
5
1
9
8
6

9
9
.2

%
2
9
3
6
7

4
3
4
9
8
4
4

1
3
%

9
8
.2

%
2
5
9
9
8

4
3
4
7
2
7
3

0
.7

%

n
et

ca
rd

9
5
8
7
9
2

9
9
.9

%
7
0
2
6
2
8
7

9
9
.1

%
5
6
9
9
0

5
3
7
6
3
0
0

9
9
.7

%
7
9
7
3
0

5
3
8
5
1
0
4

1
4
%

9
9
.3

%
4
6
9
0
0

5
3
6
9
7
7
8

0
.9

%

A
v
e
r
a
g
e

4
3
8
9
2
0

9
9
.9

%
3
3
4
3
3
1
0

9
9
.0

%
2
3
0
6
2

2
4
8
7
6
9
1

9
9
.4

%
2
4
6
5
7

2
4
8
7
3
3
0

1
1
%

9
9
.0

%
1
6
9
5
0

2
4
8
3
8
2
9

0
.6

%

N
o
r
m

a
li
z
e
d

1
1
.3

6
0
.7

4
4

1
.4

5
0
.7

4
4

1
1

0
.7

4
3

0
.0

5

23

T
ab

le
3.

4:
E

x
p

er
im

en
ta

l
re

su
lt

s
w

it
h

A
d
ap

ti
ve

B
o
d
y

b
ia

s
(A

B
B

).
T

ot
al

ar
ea

ov
er

h
ea

d
,

p
ow

er
ov

er
h
ea

d
,

an
d

w
ir

e-
le

n
gt

h
in

cr
ea

se
ar

e
d
en

ot
ed

b
y

∆
A

,
∆
P
w
r,

an
d

∆
W
ir
e,

re
sp

ec
ti

ve
ly

.
O

v
er

-d
es

ig
n

L
o
ca

ti
o
n

-a
w

a
re

C
lu

st
er

in
g

T
im

in
g
-a

w
a
re

C
lu

st
er

in
g

O
u

rs

C
ir

cu
it

#
g
a
te

s
Y

ie
ld

P
o
w

er
Y

ie
ld

∆
A

re
a

P
o
w

er
Y

ie
ld

∆
A

re
a

P
o
w

er
∆

W
ir

e
Y

ie
ld

∆
A

re
a

P
o
w

er
∆

W
ir

e

m
g
c

ed
it

d
is

t
1
3
0
6
7
4

9
9
.9

%
8
0
6
8
6
2

9
8
.9

%
1
0
4
8
5

6
7
4
7
1
9

9
8
.8

%
7
2
0
7

6
7
4
9
2
0

8
%

9
8
.9

%
6
0
0
4

6
7
4
5
9
3

0
.0

%

m
g
c

m
a
tr

ix
m

u
lt

1
5
5
3
4
1

9
9
.9

%
1
2
8
0
4
6
0

9
9
.2

%
-1

5
3
2

9
4
1
0
0
4

9
9
.7

%
1
4
7
6

9
4
2
6
8
8

8
%

9
9
.2

%
-1

9
8
2

9
4
0
7
0
0

0
.6

%

v
g
a

lc
d

1
6
4
8
9
1

9
9
.9

%
1
0
2
5
1
0
0

9
9
.0

%
2
4
3
7
9

8
1
7
0
9
1

9
9
.5

%
4
6
7
4

8
1
9
6
5
4

1
1
%

9
9
.0

%
3
4
9
2

8
1
6
8
8
8

0
.6

%

b
1
9

2
1
9
2
6
8

9
9
.9

%
1
9
9
4
5
6
0

9
9
.4

%
3
0
6
4
1

1
4
7
6
5
3
1

9
7
.6

%
7
7
2
0

1
4
8
0
9
0
2

9
%

9
9
.4

%
5
3
1
9

1
4
7
9
1
0
5

0
.6

%

le
o
n

3
m

p
6
4
9
1
9
1

9
9
.9

%
5
2
0
6
5
4
0

9
8
.1

%
5
5
3
8
1

3
6
3
5
0
3
3

9
8
.9

%
2
5
3
4
3

3
6
4
4
0
7
5

1
4
%

9
8
.1

%
1
9
5
0
9

3
6
2
5
0
0
9

0
.9

%

le
o
n

2
7
9
4
2
8
6

9
9
.9

%
6
0
6
3
3
5
8

9
8
.6

%
1
4
9
8
7
3

4
2
6
7
4
8
2

9
8
.3

%
2
6
7
3
5

4
2
4
3
9
2
3

1
3
%

9
8
.6

%
2
3
9
8
6

4
2
6
4
6
5
1

0
.7

%

n
et

ca
rd

9
5
8
7
9
2

9
9
.9

%
7
0
2
6
2
8
7

9
8
.2

%
1
7
4
6
9
8

5
2
8
7
4
7
5

9
9
.7

%
5
8
0
2
1

5
2
9
2
6
2
0

1
4
%

9
9
.0

%
4
0
0
5
6

5
2
7
4
1
9
8

0
.9

%

A
v
e
r
a
g
e

4
3
8
9
2
0

9
9
.9

%
3
3
4
3
3
1
0

9
8
.8

%
6
3
4
1
8

2
4
4
2
7
6
2

9
8
.9

%
1
8
7
3
9

2
4
4
2
6
8
3

1
1
%

9
8
.9

%
1
3
7
6
9

2
4
3
5
0
2
1

0
.6

%

N
o
r
m

a
li
z
e
d

1
4
.6

1
0
.7

3
1

1
.3

6
0
.7

3
1

1
1

0
.7

2
8

0
.0

5

24

4. CONCLUSION

Adaptive circuit design is a well-demonstrated technique for robust VLSI systems.

However, it is rarely applied in realistic products due to the lack of optimization tool

support, especially the tools for managing adaptivity overhead. In this work, we

propose a methodology and algorithmic techniques for clustering and incremental

placement to reduce overhead of adaptive circuit design. In clustering, physical

proximity is not explicitly considered before. Now though our design flow we prove

that during clustering, location is equally important as timing. The clustering con-

siders both timing and spatial proximity, and is much faster than its previous work.

The incremental placement is realized by iterative min-cost network flow algorithm.

Experimental results from benchmark circuits show that our approach significantly

reduces area overhead while maintains the same power and timing performance. Ex-

perimental results from benchmark circuits confirm the effectiveness of our approach,

our approach significantly reduces area overhead while maintains the same power and

timing performance. It incurs 95% less wirelength overhead than the approach of

timing-only clustering.

25

REFERENCES

[1] H. Chang and S. S. Sapatnekar. Statistical timing analysis considering spa-

tial correlations using a single pert-like traversal. In Proceedings of the 2003

IEEE/ACM international conference on Computer-aided design, page 621, 2003.

[2] S. H. Kulkarni, D. M. Sylvester, and D. T. Blaauw. Design-time optimization

of post-silicon tuned circuits using adaptive body bias. IEEE Transactions on

Computer-Aided Design, 27(3):481–494, March 2008.

[3] R. Kumar, B. Li, Y. Shen, U. Schlichtmann, and J. Hu. Timing verification for

adaptive integrated circuits. In Proceedings of the 2015 Design, Automation &

Test in Europe Conference & Exhibition, pages 1587–1590, 2015.

[4] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. Adaptive techniques for over-

coming performance degradation due to aging in digital circuits. In Proceedings

of Asia and South Pacific Design Automation Conference, pages 284–289, 2009.

[5] X. Liang, G. Y. Wei, and D. Brooks. Revival: a variation-tolerant architecture

using voltage interpolation and variable latency. IEEE Micro, 29(1):127–138,

January 2009.

[6] Q. Liu and S. S. Sapatnekar. Capturing post-silicon variations using a represen-

tative critical path. IEEE Transactions on Computer-Aided Design, 29(2):211–

222, February 2010.

[7] J. A. Roy and I. L. Markov. ECO-system: embracing the change in placement.

IEEE Transactions on Computer-Aided Design, 26(12):2173–2185, December

2007.

26

[8] T. Sato and Y. Kunitake. A simple flip-flop circuit for typical-case designs

for DFM. In Proceedings of the IEEE International Symposium on Quality

Electronic Design, pages 539–544, 2007.

[9] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. A. Antoniadis, A. P.

Chandrakasan, and V. De. Adaptive body bias for reducing impacts of die-to-die

and within-die parameter variations on microprocessor frequency and leakage.

IEEE Journal of Solid-State Circuits, 37(11):1396–1402, November 2002.

[10] C. Zhuo, D. Blaauw, and D. Sylvester. Variation-aware gate sizing and clustering

for post-silicon optimized circuits. In Proceedings of the ACM/IEEE Interna-

tional Symposium on Low Power Electronics and Design, pages 105–110, 2008.

[11] H. He, J. Wang, and J. Hu. Collaborative gate implementation selection and

adaptivity assignment for robust combinational circuits. In Proceedings of the

ACM/IEEE International Symposium on Low Power Electronics and Design,

pages 122–127, 2015.

[12] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms,

and applications. Prentice Hall, Upper Saddle River, NJ, 1993.

[13] M. C. Kim, J. Hu, and N. Viswanathan. ICCAD-2014 CAD contest in incre-

mental timing-driven placement and benchmark suite. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pages 361–

366, 2014.

27

