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ABSTRACT 

 

In the last few years a rapid increase in the use of underwater space around the world has 

led to the development of a new field of tourism called “Aquatourism” or “Submerged 

Tourism”. This new field of aquatourism aims at providing a unique and unforgettable 

underwater viewing experience to general public any time of the year and for unlimited 

duration of time. As a part of aquatourism a new category of non-traditional transparent 

pedestrian tunnels is being proposed which are fully submerged in water. These pedestrian 

tunnels are envisioned to promote underwater tourism and recreational activities while at 

the same time act as permanent links across islands or undersea connections between 

specific underwater offshore sites and mainland. 

This study aimed at understanding different floating and fixed bottom concepts for 

submerged tunnels. Using pure bending and coupled bending-torsion models the dynamic 

behavior of tunnel is studied. The use of acrylic plastic in combination with a steel spine 

has been investigated as a primary structural material for tunnel and key insights into the 

behavior of acrylic for circular and elliptical cross-sections have been developed and 

documented in the form of design charts. For evaluating hydrodynamic loads on the tunnel 

taking into account diffraction effects, Ogilvie’s Classical Solution has been used and the 

results compared with more general Morison’s equation. Finally, the response behavior of 

tunnel is simulated using purely analytical Modal Superposition Method and 

analytical/numerical Dynamic Stiffness Method. 



 

iii 

 

Using structural and hydrodynamic models developed several parametric 

investigations have been done. The results of the parametric studies show how different 

structural and environmental parameters control the dynamic behavior of tunnel. The 

illustrative examples used for the numerical case studies show the suitability of different 

tunnel concepts based on site specific conditions and serviceability requirements. The 

numerical examples also show close agreement between the displacement values obtained 

using the modal superposition and the dynamic stiffness approach for response analysis.  

By making use of first principles for model development and structural analysis, 

this study provides key insights into the behavior of submerged tunnels and would be 

useful in deciding important structural properties at the preliminary design assessment 

phase of these structures. 
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1. INTRODUCTION 

The quest to understand the depths of sea and its unique occupants has always 

captured the imagination of mankind. This fascination with unknown has attracted 

millions of people to ocean looking for unique experiences.  Over the period of years ocean 

depths have been explored by people from different fields; militaries around the world 

have used the sea for underwater missions; engineers and scientists have explored the 

ocean depths for minerals, energy, understanding of marine biology, geology and more; 

recreational divers have explored for sports, leisure activities and for getting a panoramic 

view of the marine world underneath. While recreational diving activity has attracted 

number of people all over the world, but owing to the constraints on duration of stay 

underwater, diving equipment and training needs, the opportunity to witness the 

panoramic submerged world is still not available to everyone. Subsequently, a rapid 

increase in the use of underwater space for recreational activities, around the world, has 

led to the development of new field of tourism called "Aquatourism" or "Submerged 

Tourism".  This new field of "Aquatourism" aims at providing a unique and unforgettable 

underwater experience to general public without any space and time constraints [1] 

In the last few years a continued interest in the field of "Submerged Tourism" has 

led to the development of new techniques and structures to experience the underwater 

habitats. These submerged structures provide an excellent tourism opportunity offering a 

variety of unique experiences like underwater dining and underwater observatory for 

getting an unobstructed view of marine flora and fauna. Some of the prominent structures 

constructed in this area are the Red Sea Star Restaurant in Eilat, Israel, ITHAA Hilton 
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Maldives Restaurant, San Sebastian Aquarium, Spain, Guangzhou Ocean World, China, 

Aquarium of the Americas, New Orleans, Greater Cleveland Aquarium, Cleveland, Ohio, 

Georgia Aquarium, Atlanta and Dubai Mall Aquarium. 

The use of submerged structures for underwater restaurants is a relatively new 

concept and hasn't been implemented on a big scale. But the use of underwater tunnel 

aquariums has received great public attention considering the number of underwater 

aquaria's that have come up in the last few years. Most of these aquaria's are located 

onshore and are based on the traditional concept of a massive tank holding large amount 

of water and different forms of marine flora and fauna. The access to different areas of 

these aquariums is provided through underwater acrylic tunnels, giving a 360 degree view 

of the surrounding while walking through them (Figure 1). The hydrostatic pressure acting 

on the tunnel governs the structural design along with other considerations like tunnel span 

length and tunnel layout.  

 

Figure 1 Traditional aquarium tunnels [2] 

Although these underwater acrylic tunnels provide a unique near undersea 

experience, but the feeling of being right there in the middle of the ocean/water body is 
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still missing. Also, the cost of construction and the onshore space required for such 

aquariums is very large.  Keeping this in view a new category of non-traditional aquarium 

tunnels is being proposed which are fully offshore. These offshore tunnels are motivated 

from the concept of a Submerged Floating Tunnel, which has been given a lot of attention 

in the recent years for establishing permanent connectivity across extreme crossings. In a 

way these Offshore Tunnels can be considered as smaller Floating Tunnel Systems 

spanning across a lake or connecting two islands (Figure 2). By using acrylic as structural 

material for these tunnels, they can not only serve as permanent pedestrian crossings but 

can also act as excellent tourist attractions providing a scenic view of the underwater world 

to people walking through them. These floating pedestrian tunnels will exhibit dynamic 

behavior and unlike traditional aquarium tunnels, where only hydrostatic pressure governs 

the structural design, the effect of waves and currents will also need to be accounted for 

in the design of these tunnels.  

 

Figure 2 Non-traditional floating tunnel [3] 

This study aims at understanding different smaller floating tunnels concepts for 

aquatourism and pedestrian application purpose. Use of acrylic as the primary structural 
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material for tunnel and the subsequent behavior of these non-traditional floating acrylic 

tunnels will be studied through simple analytical/numerical models. The study also 

focusses on the use of acrylic-steel combination as primary structural material and the 

resulting coupled bending-torsion behavior of tunnel. For external loading, the effect of 

hydrostatic pressure in selecting a suitable cross-sectional shape for acrylic tunnel will be 

evaluated. Finally, accounting for diffraction effects, environmental loads on the tunnel 

will be studied using Ogilvie’s analytical solution for force on submerged circular 

cylinders and the results compared with force given by Morison’s equation. The dynamic 

response of structure under the effect of regular waves will be studied using different 

analytical/semi-analytical approaches and parametric investigations done to understand 

the effect of key parameters on response behavior. 
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2. SUBMERGED FLOATING TUNNEL CONCEPTS 

A submerged floating tunnel is conceived as a tube type of structure placed at a 

pre-determined depth below the surface of water. The unique feature of a submerged 

floating tunnel is that the buoyancy of water balances the dead load and live load of 

structure. The structure is held in position with the help of suitable anchoring arrangement, 

which essentially depends on the width of crossing and the water depth encountered. The 

anchoring system not only holds the structure in place but also provides the necessary 

stiffness against wave and current action. The concept of a Submerged Floating Tunnel or 

Archimedes Bridge dates back to 1886 when it was first brought by Sir James Reed of 

UK. The concept was further propagated in 1924 by Trygve Olsen Dale of Norway [4]. 

Since then much interest has been shown in the development of different SFT concepts by 

researchers from Norway, Italy, China and Japan. Many feasibility studies have been 

proposed discussing the possibility of SFT for Strait Crossing and crossing of deep and 

wide Fjords ([4], [5], [6], [7]). In Norway Høgsfjord Project was started in 1980’s as the 

first major project for evaluating different SFT concepts. Four pre-qualified Norwegian 

contractors came up with four different SFT concepts. These concepts have been 

illustrated in Figure 3  and Figure 4 and important structural considerations summarized 

in Table 1. 
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Figure 3 SFT concepts for Høgsfjord Crossing [6] 

 

Figure 4 Floating tunnel concepts [6] 

Table 1 SFT concepts and considerations 

Sl No. Anchoring System Important Considerations 

1 Free Floating Tunnel  Tunnel has to be neutrally buoyant 

(BWR=1) 

 No limitation on water depth in 

which the tunnel can be used 

 Stability of tunnel becomes a key 

design issue for very wide 

crossings 

2 Column Supported Tunnel  Tunnel can be negatively buoyant 

(BWR<1) or neutrally buoyant 

(BWR=1)  

 The depth of water limits the use of 

this concept  
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Table 1 Continued 

Sl No. Anchoring System Important Considerations 

3 Tether Supported Tunnel  Tunnel has to be positively buoyant 

(BWR>1) to maintain the tethers in 

tension 

 Tethers can be straight or inclined 

providing horizontal as well as 

vertical stiffness 

 Effective in both shallow water as 

well as deep water 

4 Pontoon Supported Tunnel  Tunnel has to be negatively 

buoyant (BWR<1). 

 Wind and wave considerations 

become important for this concept 

 No limitation on water depth in 

which the tunnel can be used 

 

More recently a Sino-Italian joint venture (SIJLAB: Sino-Italian Joint Laboratory of 

Archimedes Bridge) has carried out the executive design of first SFT prototype to be 

installed in Qiandao Lake, China [8]. 

Over the last few years numerous studies have been done to study the dynamic 

behavior of Submerged Floating Tunnels under environmental loads. Most of these studies 

are numerical in nature and use finite element method for creating fluid-structure 

interaction model. Brancaleoni et al. [9] used a numerical approach to evaluate the 

dynamic behavior of a SFT using a coupled fluid-structure interaction model formulated 

using  Morison’s Equation. Remseth et al. [10] carried out the stochastic dynamic response 

analysis of SFT in time domain and frequency domain. They found that the effect of wave 

directionality, wave spreading and structural as well as hydrodynamic damping is 



 

8 

 

significant on dynamic response. Fogazzi and Perotti [11] carried out the dynamic analysis 

of seabed anchored SFT under seismic excitation. They developed an 'ad hoc' finite 

element for the anchor elements which accounted for geometrical non-linearities. Pilato et 

al. [12] further extended the application of 'ad hoc' finite element to a full 3D dynamic 

analysis of SFT. They took into account directional effects for surface waves and 

considered fully nonlinear form of Morison's equation for hydrodynamic loads. 

Accounting for slenderness and cross-sectional size of tunnel, effect of 

diffraction/radiation on the dynamic response of tunnel has also been studied by few 

researchers. Paik et al. [13] performed the dynamic analysis of SFT considering full 

radiation/diffraction problem. They used the Boundary Element Method to compute the 

wave potentials and further solved the dynamic equations in time domain. Ge et al. [14] 

also considered the radiation/diffraction effects for SFT but they solved the governing 

dynamic equations in frequency domain.   

Apart from these numerical studies few experimental studies have been carried out 

to verify numerical results. In order to determine the best mooring configuration for a SFT 

under wave loading  Kunisu et al. [15] carried out an experimental study and compared 

the results with  numerical studies performed using Boundary Element Method and 

Morison's Equation. The results were in good agreement and showed that inclined tethers 

give better structural performance and the tether tension is directly related to the wave 

height. Long et al. [16] carried out a parametric study to evaluate the effect of different 

structural parameters on SFT response under hydrodynamic loads. Their results showed 
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that buoyancy-to-weight (BWR) ratio of the tunnel is a key parameter which governs the 

structural response. 

The research studies reviewed until now use numerical approach to investigate the 

dynamic behavior. Few analytical studies have also been done for the assessment of 

response behavior. Sato et al. [17, 18] idealized a moored SFT as an Euler-Bernoulli beam 

on continuous elastic foundation. They further extended their work taking into account 

elasticity couplings. Additionally, they investigated a range of applicability within which 

beams on discrete elastic supports can be treated as beams on continuous elastic 

foundations. Tariverdilo et al. [19] idealized the SFT as an Euler-Bernoulli Beam on 

elastic foundation and used potential theory to get analytical expressions for the 

hydrodynamic loads. Dong et al.[20] took into consideration the curvature of the SFT and 

proposed dynamic equations for a spatially curved floating tunnel using Hamilton's 

principle.  

Apart from these analytical studies done specifically for a Submerged Floating 

Tunnel, there is an abundance of literature on analytical models for similar structures like 

Floating Bridges. Fleischer and Park [21] idealized a beam floating on water surface as a 

Rayleigh beam and solved the hydroelastic free vibration and forced vibration problem 

using Fourier series expansion of mode shapes. They did not consider the radiation of 

surface waves while evaluating the hydrodynamic loads. Zhang et al. [22] investigated the 

dynamic behavior of floating bridges using beam theory for formulation of structural 

model and Boundary Element Method for evaluation of hydrodynamic loads. Analytical 

expressions for responses were obtained using Galerkin's Weighted Residual Method. 
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Newman [23] emphasized on the utility of mathematical mode shapes in the form of 

orthogonal polynomials for problems where natural modes shapes are affected by 

hydrodynamic pressure field. 

The objective of most of the previous studies has been to study the global behavior 

of larger submerged floating tunnel systems under environmental and seismic actions. 

This study aimed at understanding smaller floating tunnels concepts for Aquatourism and 

pedestrian application purpose using simplified analytical approaches. Based on this a 

detailed discussion on the possible submerged tunnel concepts for pedestrian crossings, 

form and cross-sectional shape of these tunnels and the desired properties of the 

transparent structural material, has been carried out in detail in subsequent sections. 

2.1. Submerged Tunnel Concepts for Pedestrian Crossings 

The choice of submerged tunnel concept for pedestrian tunnels depends upon the 

geometrical characteristic of site like width of crossing and the water depth. The structures 

may span connecting two islands or span across a lake limiting the length of these tunnels 

between 20m-200m. Also, most of these structures will be located nearshore, hence 

shallow water assumption for water depth can be considered valid for these structures. 

Under these assumptions, the choice of submerged tunnel concepts deemed suitable for 

pedestrian tunnel application are Free Floating Tunnel, Column Supported Tunnel and 

Tethered Supported Tunnel. 

The tunnel maybe in the form of a straight tube or some curvature may also be 

provided depending upon the site characteristic. In this study the case of a straight tunnel 
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has been considered. Possible mathematical formulation for each structural idealization 

has been discussed in detail in Section-3 

2.2. Form and Cross-Sectional Shape 

The form and cross-sectional shape of the tunnel determines its resistance ability 

to hydrostatic pressure.  For some common underwater structures like the Pressure Hulls 

of Submarines, the preferred shape is a thin-walled circular cylinder.  The reason for this 

as noted by Ross [24] is that the curved surface resists the pressure load in the form of 

uniform membrane stress acting all over the surface. For floating tunnels located offshore, 

apart from the hydrostatic pressure of water, additional loads on the structure will be due 

to wave and current action. From hydrodynamics point of view, the cross-sectional shape 

chosen should minimize the effect of wave and current loads on the structure. In addition, 

since the primary purpose of these tunnels is to promote underwater tourism, the choice 

of cross-sectional shape should enable the tunnel users to get an obstructed view of the 

underwater habitat.  

Under these considerations, a circular cylindrical tunnel or an elliptical cylindrical 

cylinder can be considered as the most suitable cross-sectional shape for these floating 

pedestrian tunnels. 

For traditional aquarium tunnels, circular cylindrical shapes are the most common 

ones with constant radius and 180 degrees span. For giving a more complete view of the 

underwater world the tunnels can span beyond 180 degrees sometimes. One disadvantage 

of using a circular cylinder form is that as the width of the cylinder gets wide, the clear 

space between visitors and top of tunnel increases. This leads to a lost feeling of being 
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underwater [25]. Use of elliptical cylindrical forms mitigates this issue giving them a more 

realistic underwater experience.  

2.3. Materials 

According to Ross [24] some of the important considerations to be taken into 

account while selecting a suitable material for underwater structures are ability to resist 

corrosion, strength/weight ratio, good sound absorption qualities, resistance to fire, 

material costs, ease of fabrication, operating life span of the material. 

For submerged tunnel structures in particular, the structural material should 

withstand the external pressure loads and the continuous stress cycles due to action of 

waves and currents. Furthermore, since the tunnel stays in constant vicinity of water 

throughout its service life, the material should be able to withstand the corrosive action of 

water. Additionally, the material should also have good optical properties since the 

primary purpose of tunnels is to provide a complete view of the surrounding underwater 

habitat. 

The use of Acrylic Plastic (Polymethyl Methacrylate, PMMA) as a structural 

material for aquarium glazing's and for window ports of submarine pressure hulls and 

pressure vessels has found a lot of acceptance over the period of years [26].  Owing to its 

structural as well as optical properties, Acrylic Plastic in combination with steel or 

concrete (Figure 5) can be considered as an excellent material for these floating pedestrian 

tunnels. 
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Figure 5 Use of acrylic-steel combination for tunnel cross-section 

Designed properly, acrylic can not only provide excellent visibility but can also 

withstand static and dynamic loads of any magnitude. The key issue in the design of 

structural acrylic components is the choice of a safe design stress level that allows the 

component to function properly without the initiation of fracture. The value of this design 

stress level hasn't been codified until now. Hence, the designers have to rely on the 

published data and technical reports generated over the period of years to get the 

magnitude of safe design stress level [27]. Moreover, acrylic is a viscoelastic material i.e. 

the response of acrylic to stresses is nonlinear, dependent on both the temperature and the 

duration of stress application. Hence, the choice of a safe design stress level should take 

in to account the surrounding temperature and the duration of stress that the structural 

component needs to withstand. Stachiw [26] in his handbook on acrylics for aquaria's and 

semi submersibles summarizes the mechanical properties of acrylic. The summary has 

been presented in Table 3 and Table 4. In addition, the basic design parameters utilized 

for commercial design of acrylic components of underwater aquaria's are summarized in 

Table 2. 
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Table 2 Basic design parameters for acrylic used in aquaria's [28] 

Elastic Modulus 3300 MPa 

Poisson's Ratio 0.37 

Safety Stress Permissible Water Side 3 MPa 

Safety Stress Permissible Air Side 5 MPa 

Density 1190 kg/m3 

 

Table 3 Minimum physical properties of acrylic meeting the requirements of the 

standard [27] 
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Table 4 Maximum allowable working stress levels for acrylic under long term 

loading (10 years) [27] 
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3. MATHEMATICAL FORMULATIONS 

3.1. Structural Bending Models for Free Spanning and Anchored Tunnels 

The simplest configuration of a floating pedestrian tunnel is a freely spanning 

straight tunnel, connected only at the shores. The structure essentially behaves as a simply 

supported neutrally buoyant straight tunnel. For this configuration, under the assumption 

that the length of tunnel is much greater than the cross-sectional dimension, the tunnel can 

be idealized as a simply supported Euler-Bernoulli beam. The governing partial 

differential equation of motion describing the flexure behavior of the tunnel can then be 

expressed as [29] 

 
   

 
4 2

4 2

, ,
,

v x t v x t
EI m F x t

x t

 
 

 
  (1) 

where ( , )v x t  is the displacement of the structure, m  is the mass per unit length of beam 

including the added mass of water, I   is the second moment of beam cross-section about 

the axis through the center of gravity of section, E  is the modulus of elasticity of beam 

material, ( , )F x t is the external force acting on the beam cross-section which includes the 

hydrodynamic forces due to waves and current action.  

For understanding the dynamic behavior of structure it is important to understand 

its natural modes of vibration. Floating Tunnel being a continuous system will have 

infinitely many natural modes of vibration. On excitation by a dynamic loading the 

structure will seek to vibrate in the natural mode having frequency close to the frequency 

of excitation. Hence, an estimate of natural frequency of the structure is required. This is 



 

17 

 

achieved through eigenvalue analysis of Eq.(1) using the method of separation of variable 

(Appendix-A).  

The solution of Eq. (1) for free vibration case gives the analytical expression for 

natural frequencies of the system. The analytical expression as determined in Appendix-

A is given as 

 

4

n

n EI

L m




 
  

 
  (2) 

where n  is the nth natural mode of vibration, m  is the mass per unit length of beam 

including the added mass of water, I   is the second moment of beam cross-section, E  is 

the modulus of elasticity of beam material and L  is the length of beam. 

The natural modes of vibration of beam are given by 

 4( ) sinn

n x
x B

L

 
   

 
  (3) 

where the constant B4 can be evaluated using the property of orthogonality of natural 

modes and normalization of mode shapes.  

The above formulation remains valid for tunnels which are neutrally buoyant. For 

the case of tunnels acted upon by net positive buoyant force (BWR>1), the net upward 

force on the structure can be balanced by providing tethers as shown in Figure 6 
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Figure 6 Tethered floating tunnel 

The tension in tethers depends upon the net buoyant force acting on the tunnel. 

The tether arrangement can be vertical or inclined (Figure 7) depending on the stiffness 

required in horizontal and vertical direction.  

 

Figure 7 Different tether arrangements 

The stiffness provided by tethers depends on several parameters: tether 

arrangement (Vertical/Inclined), angle of inclination in case of inclined tethers (  from 

vertical), pre-tension in tethers ( 0T  ), area of cross-section of tether ( A  ), modulus of 

elasticity of tether material ( E  ), length of tether ( tL  ). Based on these parameters, 

analytical expressions for tether stiffness have been developed for sway and heave motion 

of tunnel (Refer Appendix-B). 

For Vertical Tether Arrangement, 



 

19 

 

Stiffness for Sway Motion of Tunnel    
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For Inclined Tether Arrangement, 

Stiffness for Sway Motion of Tunnel            
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The analytical expressions developed for tether stiffness can further be used to 

create a global structural model for tethered structure, idealizing the floating tunnel as a 

simply supported Euler-Bernoulli beam resting on discrete elastic supports. However, for 

this idealization closed-form analytical expressions for natural frequencies do not exist. 

Hence, a further simplification in the modeling assumption is done and the floating tunnel 

is further reduced as an Euler-Bernoulli beam resting on continuous elastic foundation 

(Figure 8). 
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Figure 8 Structural idealization for tethered tunnel [30] 

The applicability of stated assumption was studied by Sato et al [17, 18]. In the 

study they found that the natural modes and frequency of beam resting on continuous 

elastic foundation and the beam on discrete elastic support are similar for a range of 

parameter 0.05vK  , where vK is the relative stiffness parameter defined as, 
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where sk  is the equivalent spring stiffness for tethers as determined in Appendix-B, i  is 

the spacing between tethers and EI  is the flexural rigidity of tunnel. 

Now once the tunnel has been idealized as a beam resting on continuous elastic foundation, 

the governing partial differential equation of motion can be expressed as [29, 31] 
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The terms of Eq. (9) are similar to those in Eq. (1) with the only addition of sk  term, 

which is the equivalent tether stiffness defined as 

 s
s

K
k

i
  

where sK  is the actual tether stiffness defined by Eq. (4), Eq. (5), Eq. (6), Eq. (7), and i  

is the spacing between the tethers. 

The free vibration analysis of the idealized system gives the closed-form 

expressions for natural frequencies and the corresponding mode shapes of vibration. The 

analytical expression for natural frequency as determined in Appendix-C is given by 
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where n  is the nth natural mode of vibration, m  is the mass per unit length of beam 

including the added mass of water, I   is the second moment of beam cross-section, E  is 

the modulus of elasticity of beam material and L  is the length of beam and sk  is the 

equivalent tether stiffness. 

The corresponding mode shapes of vibration are given as 

 4( ) sinn

n x
x C

L

 
   

 
  (11) 

where again the constant 4C  can be determined using the property of orthogonality of 

modes and normalization of mode shapes. 
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3.2. Dynamic Stiffness Model for Anchored Tunnels 

The mathematical formulations for tethered tunnel discussed in (3.1) is valid only 

for certain range of values of relative stiffness parameter ( 0.05vK  ). For cases when 

tethers cannot be idealized as continuous elastic foundation and have to be treated as 

discrete elastic supports, a separate analysis is required to determine the natural 

frequencies of structure.  

Several methods exist in the literature to carry out eigenvalue analysis of Euler-

Bernoulli beam resting on discrete elastic supports [32-36] 

Rao [36] performed the free vibration analysis of a two span beam supported by 

intermediate elastic spring and clamped at the ends. In his analysis he treated the two spans 

separately and formulated the governing partial differential equation for each span. The 

solution of governing differential equations was carried out using end support boundary 

conditions and continuity condition at intermediate support for beam displacement, slope, 

bending moment and shear force. The method used by Rao resulted in 8x8 matrix of 

coefficients for a two span problem. The determinant of 8x8 matrix is further equated to 

zero to obtain the frequency equation, which is numerically solved to get the eigenvalues 

and the corresponding natural frequencies of system. 

Although Rao's method works very well for a two-span system, but for bigger 

systems with many spans, the approach becomes computationally tedious due to rapid 

increase in the size of coefficient matrix. For solving these multiple span systems a 

computationally efficient approach is required. This leads us to Dynamic Stiffness Matrix 

Formulation [37] 
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Dynamic Stiffness Matrix is a single frequency dependent matrix which accounts 

for both mass and stiffness properties of the system. The element properties used in DSM 

is based on the exact closed form analytical solution of governing partial differential 

equation. Unlike the Finite Element Method, which interpolates displacement using 

natural polynomial shape functions, DSM uses frequency dependent shape functions to 

interpolate displacements. For system composed of multiple elements, the Dynamic 

Stiffness matrix of each element can be assembled together, likewise Finite Element 

Method, to form the global Dynamic Stiffness matrix of the system.  

For Euler-Bernoulli beam shown in Figure 9 the element dynamic stiffness matrix 

relating the harmonically varying nodal forces to nodal displacements is given as [38, 39] 

 

1 1 2 4 5 1
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4 5 1 2 22

5 6 2 3 22

fy d d d d y

m d d d d

d d d d yfy

d d d dm









     
     


     
      
     

    

  (12) 

or simply 

  f K     (13) 

where f  is the nodal force matrix, ( )K   is the frequency dependent dynamic stiffness 

matrix and   is the nodal displacement matrix. 

 

Figure 9 Euler-Bernoulli beam element with end forces and displacements 
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The terms of the dynamic stiffness matrix are given as 
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Using the element dynamic stiffness matrix ( )K  , the global stiffness matrix of a three 

span pedestrian tunnel shown in Figure 10 has been formulated and is given as 
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  (14) 

where sk  is the tether stiffness. 
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Figure 10 Global structural model for three span floating tunnel 

It can be seen from Eq. (14) that even for a three span system the resulting dynamic 

stiffness matrix is a lower order 6x6 matrix. This stiffness matrix contains the mass and 

stiffness properties of the system and can be used to determine infinite number of 

eigenvalues of the system. Although, the case discussed here is for a three span floating 

tunnel system, the dynamic stiffness matrix can easily be expanded for more than three 

span systems without much computational effort. 

The exact formulation of Dynamic Stiffness matrix for a beam element and the 

assembling of element stiffness matrix for a multispan beam has been discussed in detail 

in Appendix-D. 

The natural frequencies of system is further computed by find the values of   for 

which the determinant of global stiffness matrix vanishes. In this study this has been 

achieved by evaluating det[ ( )]K   at many values of   and finding out the   values at 

which the determinant value changes sign. More general algorithms like the Wittrick-

William algorithm [40] can also be used for this purpose.  
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The dynamic stiffness formulation can also be used for pedestrian tunnel resting 

on rigid column supports. A column supported floating tunnel essentially behaves as an 

underwater bridge. The structure can be idealized as Euler-Bernoulli beam resting on 

discrete rigid supports as shown in Figure 11 

 

Figure 11 Structural idealization for a column supported floating tunnel 

For a beam resting on discrete rigid supports, closed form-analytical solutions for natural 

frequency of system do not exist. Hence, a dynamic stiffness formulation is again used to 

carry out the free vibration analysis of the system.  

The dynamic stiffness matrix formulated for a three span tethered SFT as formulated in 

previous section is given as, 

3 5 6

5 1 4 5

6 3 5 6

4 5 1 5

5 6 3 6

5 6 3

0 0 0

2 0 0

0 2 0
[ ( )]

0 2 0

0 0 2

0 0 0

s

global

s

d d d

d d k d d

d d d d
K

d d d k d

d d d d

d d d



 
 
 
 
 

  
  

 
 
  

 

For the case of tunnel resting on rigid column supports, the tether stiffness sk   in the 

global stiffness matrix can be approximated as approaching infinity ( sk  ) to simulate 

a rigid support. For finding out the natural frequencies of system, again the values of  
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are determined at which the global stiffness matrix ( )K  , with the tether stiffness term 

approaching infinity, vanishes. This is again achieved by evaluating det[ ( )]K   at many 

closely spaced values of   within the frequency band of interest and noting the two   

values at which a sign change occurs.  

3.3. Coupled Bending-Torsion Model for Acrylic-Steel Tunnels 

Until now free vibration analysis of different floating tunnel configurations was 

carried for tunnel made of homogenous material with uniform mass distribution. The 

analysis was carried out under the assumption that tunnel is axisymmetric and the center 

of gravity of cross-section coincides with the shear center. This assumption led to a pure 

bending behavior of tunnel with no torsional rotations. However, the assumption of shear 

center and center of gravity coincidence fails for cross-section with only one axis of 

symmetry. This happens for floating tunnel sections made of combination of different 

materials e.g. Acrylic-Steel and Acrylic-Concrete combination as shown in Figure 12. The 

shift in the CG of cross-section away from the Shear Center leads to a coupled bending-

torsion behavior of tunnel for sway and roll modes of vibrations. The axis passing through 

the shear center of cross-section is the elastic axis and through the mass center of cross-

section is the inertial axis. 
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Figure 12 Cross-section with acrylic-steel combination (shear center offset) 

. Depending on the eccentricity introduced and the length of tunnel, the extent of 

coupling on the dynamic behavior of structure is understood. The governing partial 

differential equations are formulated using the Euler-Bernoulli beam theory (for beam 

bending) and St. Venant’s Theory of torsion (for beam torsion) and are expressed as [31] 
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where ( , )v x t  is the displacement of structure in horizontal direction, eff  is the equivalent 

density of material to ensure buoyancy-to-weight ratio as 1, pI  is polar moment of beam 

cross-section about elastic axis of section cross-section, A  is the area of cross-section of 

beam, ( )effGJ  and ( )effEI  are the effective torsional and bending rigidities of cross-
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section about the elastic axis of cross-section,   is the torsion angle, e  is the eccentricity 

introduced, ( , )f x t  is the wave and current force acting in the horizontal direction. 

For finding the mode shapes and natural frequency of vibration of structure, a free 

vibration analysis of structure is carried out using assumed modes method. The details of 

the free vibration analysis can be found in Appendix-E 

The analytical expression for natural frequencies of system as determined in 

Appendix-E is given as 
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with 

  4

2 eff

eff

EI n
p

A L





 
  

 
 

2

2

p

Ae
q

I Ae



 

 

 

2

2

2

eff

eff p

n
GJ

L
r

I Ae





 
 
 


 

where n  is the nth natural mode of vibration and L  is the length of beam. 

 Eq.(17) gives two values of
2

j , corresponding to two possible modes of coupled 

bending-torsion vibration. 
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3.4. Structural Loads 

The loads acting on a submerged tunnel structure can be divided into Permanent 

Loads, Functional Loads, and Environmental Loads. The permanent loads are the loads 

due to dead weight of structure, the buoyant force acting on structure and the loads due to 

hydrostatic pressure of water. For traditional aquarium tunnels the external hydrostatic 

pressure governs the structural design of acrylic components that are used as viewports. 

While hydrostatic pressure is still an important component of permanent load for design 

of Floating Pedestrian Tunnels, it's the buoyancy-to-weight ratio (BWR) of the structure 

that acts as another important design parameter for Floating Tunnels. 

The functional load acting on structure depends on the area of application of 

tunnel. For this study a floating tunnel for pedestrian application is being investigated, 

hence the load due to pedestrian movement is considered as the functional load on the 

structure.  

For Floating Pedestrian Tunnels the environmental loads due to wave and current 

action is the most important parameter that governs the global behavior of structure. For 

accurate evaluation of wave and current loads on the structure, it is essential to determine 

site specific wave and current parameters.  

For the three load categories, the procedure followed to evaluate loads and some 

important design considerations have been discussed in detail in the following sections. 

3.5. Hydrostatic Pressure 

Hydrostatic pressure of water at a given submergence depth is a permanent load 

acting on the structure and is an important parameter in the structural design of submerged 
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structures. Especially, for structures at greater water depths the effect of hydrostatic 

pressure cannot be ignored. For acrylic tunnels, in particular, hydrostatic pressure is an 

important consideration while deciding the thickness of acrylic panels that act as primary 

load bearing sections. For a structure immersed below the free surface of water the 

hydrostatic pressure is given by 

 P gH   (18) 

where    is the density of water, g   is the acceleration due to gravity and H   is the 

depth below free surface. 

As seen from Eq.(18) hydrostatic pressure at a section of submerged cylinder 

depends on the depth of section from the water surface and acts in the direction 

perpendicular to the section as shown in Figure 13. 

 

Figure 13 Distribution of hydrostatic pressure on circular cylinder 

The hydrostatic pressure induces compressive stresses in the cross-section, which 

are resisted in the form of membrane stresses acting all over the surface. Under these 

compressive stresses the most critical modes of failure of circular cylindrical or elliptical 

cylindrical cross-sections are Axisymmetric Yield Failure, Shell Elastic Instability, Shell 

Inelastic Instability [24]. 
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Depending upon the mechanical properties of structural material used for tunnel, 

length-diameter ratio and the thickness-radius ratio of tunnel, the critical buckling pressure 

for each failure mode can be determined using analytical expressions given by Bryan [41], 

Southwell [42], Winderburg and Trilling [43]. 

For a thin-walled circular cylinder under uniform lateral pressure the failure due 

to axisymmetric yielding occurs at a critical buckling pressure given by [24] 

 
yp

cr

t
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   (19) 

where yp   is the safe working stress of material, t   is the wall thickness, a   is the mean 

radius of circular cylindrical shell. 

Under uniform external pressure, a thin-walled cylinder may buckle at a very small 

pressure as compared to pressure which causes axisymmetric yielding [24]. This failure 

mode of shell buckling is called the shell elastic instability. The critical buckling pressure 

for this mode of failure has been given by several authors. According to Bryan [41], the 

elastic instability pressure for an infinitely long cylinder is given by 
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where crP   is the critical buckling pressure, t   is the thickness of circular cylinder, a   is 

the mean radius of circular cylindrical shell, E   is the Young's Modulus,    is the Poisson's 

ratio. Winderburg and Trilling [43] state that Eq.(20) applies to long, thin, perfect shaped 

tubes with no out-of-roundness 

when 
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where l  is the length of tube. 

For shorter tubes supported at the ends, the buckling resistance is significantly 

increased. Winderburg and Trilling [43] summarized the analytical expression given by 

Von Mises for critical elastic instability pressure of short thin-walled circular cylinders 

under uniform lateral pressure given as 
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where D  is the diameter of cylinder, L  is the length of cylinder, t  is the wall thickness, 

crP  is the critical buckling pressure, E  is the modulus of elasticity,   is the Poisson’s 

ratio, n  is the number of lobes or waves in a complete circumferential belt at the time of 

collapse (Figure 14) 
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Figure 14 Circumferential wave patterns for buckling modes [24] 

Neglecting higher powers of   Eq.(21) can be approximated as 
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Southwell [42] using energy method came up with critical buckling pressure for shell 

instability as 
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For formulating each analytical expression for critical buckling pressure it was 

assumed that the cylinders have no initial out-of-roundness. However, Windenburg and 

Trilling [43] found that due to initial out-of-circularity/geometrical imperfections in 

cylinder, plasticity triggered off at some shell sections, lowering the critical buckling 

pressure than the value predicted by Eq.(21), Eq.(22), Eq.(23). To take into account the 

initial out-of-roundness Winderburg and Trilling [43] introduced their thinness ratio    
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which can be used to determine the plastic reduction factor (PKD) using the design chart 

given in Figure 15. 
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Once the plastic reduction factor is determined, the predicted buckling pressure can be 

evaluated using 

 cr
pred

P
P

PKD
   (25) 

 

 

Figure 15 Design chart for PKD [24] 
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Using analytical expressions for critical buckling pressure, a design curve is 

prepared for critical buckling pressure as a function of thickness-radius ratio of circular 

cylinder for a given length-diameter ratio. The design curve can further be used to decide 

the thickness of acrylic panels for submerged circular cylindrical tunnel cross-sections, 

effective to resist the hydrostatic pressure at a given depth of submergence. 

The critical buckling pressure discussed until now are for circular cylinders with 

no out-of-roundness or for cylinders with slight initial out-of-roundness. Winderburg and 

Trilling [43] showed that critical buckling pressure for tubes with slight initial 

imperfection is lower than that for a perfect circular cylinder. For case of tubes with initial 

ellipticity/ovality as shown in Figure 16 there is a further severe reduction in the critical 

buckling pressure.  

 

Figure 16 Tubes with an initial ellipticity 

This reduction in critical pressure depends on the magnitude of initial ovality with respect 

to mean radius of perfect circular cylinder. Timoshenko [44] has shown that the maximum 

stress acting on the wall of an elliptical cross-section is given by  



 

37 

 

 0

2max

6 1

1
cr

PRuPR

Pt t

P

  



  (26) 

where R  is the mean cylinder radius, t  is the wall thickness, crP  is the critical buckling 

pressure of perfect circular cylinder, 0u  is the initial ovality, P  is the external pressure, 

max
  is the maximum stress which for the limiting value of external pressure P  is the 

safe design working stress of material. Once the safe design working stress of material is 

known, Eq.(26) can used to determine the limiting pressure at which material yielding 

starts. Substituting,  
R

m
t
  and 0u

n
R
  in (26) we get 
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where LP is the limiting pressure corresponding to safe design stress s  of material and 

crP  is the critical buckling pressure for perfect circular cylinder. 

Solution of Eq.(27) gives the critical limiting pressure for elliptical cylinders 

corresponding to the safe design stress of material. 

3.6. Functional Loads 

The pedestrian movement on the tunnel causes both static and dynamic loads on 

the structure. For evaluating pedestrian loads guidelines of LRFD Specification for the 

Design of Pedestrian Bridges has been followed in this study. The pedestrian tunnel shall 

be designed for a uniform pedestrian loading of 90 psf with a load factor of 1.75, patterned 

to produce maximum load effects. Vibrations due to pedestrian movement shall also be 
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investigated as a service limit state. The fundamental frequency in a vertical mode of 

tunnel without live load shall be greater than 3Hz to avoid the first harmonic. For the 

lateral mode the fundamental frequency shall be greater than 1.3Hz. If the fundamental 

frequencies do not meet these limits, evaluation of dynamic performance shall be made 

3.7. Environmental Loads 

For evaluating environmental loads on a Submerged Floating Tunnel several 

approaches have been used until now. Of all the approaches, Morison's equation is the 

simplest one and has been used by several authors [8-10, 15]. The application of Morison's 

equation is valid for cases when the ratio of characteristic cross-section dimension of the 

structure and the wavelength is small, typically less than 0.1. For higher values of this 

ratio, diffraction effects have to be taken into account. Using the diffraction theory under 

potential flow regime, the inertial forces acting on a SFT has been evaluated by Kunisu et 

al. [15] and F. Ge et al. [14]. Both the studies adopted a numerical approach using 

Boundary Element Method for evaluating the diffraction/radiation potentials and the 

corresponding inertial forces acting on the structure.  

While the application of Boundary Element Method gives a good estimate of wave 

force, but its implementation takes a lot of time and computational effort. For this reason 

simplified analytical expressions based on Ogilvie's classical solution [45] has been used 

for evaluating the first-order forces on floating pedestrian tunnels in this study. The 

analytical expressions are valid under the assumption that the floating tunnel has a 

circular-cross section and is restrained from moving. First-order forces from Ogilvie's 
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solution are then compared with the force evaluated using Morison's equation under linear 

theory assumption for wave kinematics. 

Idealizing the Submerged Floating Tunnel as a circular cylinder of radius a , submerged 

at a depth h   below the free surface (Figure 17) in a water body of infinite depth.  

 

Figure 17 Tunnel cross-section under regular wave 

For incoming regular waves of amplitude A  , wave number K  , and frequency  

, the incident velocity potential in Cartesian coordinates, can be written as the real part of 
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For the case of a circular cylinder Eq.(28) can be written in a cylindrical coordinate 

system ( , , )r z  as 
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The free surface elevation is then given as 
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The total velocity potential of diffracted wave is obtained by summing up the 

contribution from incident potential and scattered velocity potential. The total first order 
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velocity potential of the diffracted wave field has been given by Arena [46] using 

multipole expansion as 

          exp , , sin , , cos tD

Ag
Kh P r t Q r      


        (31) 

where 

         2
1 1

1
, , sin cos

1
n n n n n

n n

P r D n S n n S A B
S

 



     
 

 

 
      

    (32) 

           2
1 1

1
Q , , 1 cos sin

1
n n n n n

n n

r D n S n n A S B
S

 



     
 

 

 
       

    (33) 

In Eq.(32) and Eq.(33) (Ka,Kh)n  are the solutions of equations given by 
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The functions , , ,n n nA B D S  in Eq.(32) and Eq.(33) are defined as 
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with 1n   and P  is the Cauchy’s principal value of the integral.  
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Using the velocity potential of diffracted wave field defined in Eq.(31) the pressure 

variation acting over the boundary of cylinder is evaluated using 

 Dp
t





  


  (39) 

Subsequently, the force acting on the cylinder is obtained by integrating the pressure 

variation over the boundary of the cylinder. 

The first-order component of force acting in x-direction is expressed as 
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Similarly, the first-order component of force acting in z-direction is expressed as 
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where 

 1tan S 
  

From Eq.(40) and Eq.(41) it is evident that the magnitude of force in horizontal 

direction (x-axis) is equal to the magnitude of force in vertical direction (z-axis). The only 

difference is that vertical force is 90  out-of-phase of the horizontal force.  

Once the total loading on the structure is determined, the response of the structure 

can be evaluated using suitable analytical approaches discussed in subsequent sections. 

3.8. Modal Superposition Method for Response Analysis 

For a floating tunnel under external excitation due to wave loading the governing 

equation describing the motion of tunnel is given by 
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The external excitation force due to wave loading can be described by Morison’s equation 

as, 
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          (43) 

where w  is the water mass density, D  is the outer diameter of the tunnel, DC  is the drag 

coefficient, MC  is the inertia coefficient, wv is fluid particles velocity vector, wa  is fluid 

particles acceleration vector, v  is structure velocity, v  is structure acceleration. 

From Eq.(43) it can been seen that the drag part of Morison’s equation is non-linear. Under 

the assumption that for a submerged floating tunnel, at a given depth below free surface, 

the structure velocity is small in comparison to the fluid particle velocity, the non-linear 

part of Eq.(43) can be linearized and equation can be rewritten as 
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           (44) 

where 
wv  is the time averaged fluid particle velocity. 

Substituting Eq.(44) in Eq.(42) and rearranging the terms on left hand side we get 
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Assuming that the tunnel is simply supported at the ends, the total displacement  ,v x t  

can be expanded into respective modal contributions as 

    
1

, sin n

n

n x
v x t q t

L





 
  

 
   (46) 

The excitation term on the right hand side of Eq.(45) can be written as 
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where 1F , 2F  and   depend on wave parameters (See Appendix-F) 

Substituting Eq.(46) and Eq.(47) in Eq.(45) we get 
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with 
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Multiplying both sides of Eq.(48) by
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 , integrating the resulting expression 

from 0 to L  and utilizing the property of orthogonality of modes we get 
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with  
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Eq.(49) is simplified and written as 
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From Eq.(50) we can see that the governing partial differential equation Eq.(45) 

for tunnel displacement  ,v x t  has been transformed in to infinite set of ordinary 

differential equation for each mode of beam vibration. The total displacement  ,v x t  is 

further obtained using Eq.(46) 

The damping term in Eq.(50) is the sum of structural damping and the 

hydrodynamic damping and is non-proportional in nature. This implies that, 

 2 n

t

C

M
   (51) 

Numerical integration of Eq.(50) is required to solve the ordinary differential equation. 

However, under the assumption that damping is very small and neglecting the damping 

component of Eq.(50), the steady state analytical solution of the resulting equation can be 

expressed as 
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where n  is the thn   natural frequency and   is the frequency of the forcing function. 

Using Eq.(52) and Eq.(46) the total steady state displacement  ,v x t  can be expressed as 
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3.9. Dynamic Stiffness Method for Time Domain Response Analysis 

For the three span continuous floating tunnel resting on tethered supports (Figure 

18), the governing equation of motion was formulated in 3.2 using dynamic stiffness 

matrix. 

 

Figure 18 Global model for dynamic stiffness matrix 

For a harmonically varying force acting at the nodes of beam, beam end displacements 

can be expressed as 
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or simply 



 

46 

 

      
1

global
D K F



      (55) 

where  D  is the gobal nodal displacement matrix,  
global

K     is the global dynamic 

stiffness matrix and  F  is the global force matrix. 

Now for the case of a submerged tunnel, the wave and current force acting on the 

structure is in the form of a uniformly distributed force evaluated using Morison’s 

equation or Ogilvie’s Classical Solution. As an approximation to this uniformly distributed 

force, the force can actually be converted to point loads acting at discrete locations along 

the length of the beam (at the location of discretized nodes used to formulate dynamic 

stiffness matrix). Once the force is converted to point loads, the displacement along the 

length of the beam can be easily determined solving equation Eq.(55). 

The advantage of using the dynamic stiffness approach is that, unlike modal 

superpostion method, the eigenvalue analysis is not required before carrying out the forced 

vibration analysis,. The dynamic stiffness matrix itself contains the mass and stiffness 

properties of the system. 
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4. PARAMETRIC INVESTIGATIONS 

 

Based on the mathematical formulations of previous section a parametric study is 

carried out to understand the effect of different structural parameters and wave parameters 

on the dynamic properties of tunnel and the resulting structural response due to wave 

excitation. For the purpose of analysis a submerged circular acrylic tunnel with internal 

diameter 4m and external diameter 3.5m has been considered, otherwise noted.  The 

properties of acrylic used for analysis have been summarized in Table 5 

Table 5 Structural properties of acrylic 

Elastic Modulus 3300 MPa 

Poisson's Ratio 0.37 

Safety Stress Permissible Water Side 3 MPa 

Safety Stress Permissible Air Side 5 MPa 

Density 1190kg/m3 

 

4.1. Effect of Tunnel Length on Natural Frequency for Freely Spanning Tunnel 

For a fully acrylic tunnel with internal and external diameters as 4m and 3.5m 

respectively, the change in natural frequency and time period with increasing length of 

tunnel is shown in Figure 19 and Figure 20. It is evident from figure that the natural 

frequency decreases with an increase in the tunnel length. This can be attributed to the 

overall decrease in the stiffness of the system as the tunnel length increases. Subsequently, 

the time period increases with an increase in the length of the tunnel. Also, the natural 

frequencies are very closely spaced for longer tunnel lengths due to greater reduction in 
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natural frequencies for higher modes. This shows that for longer tunnels the effect of 

higher modes can be significant while evaluating the overall response of the structure.  

 

Figure 19 Variation of natural frequency with tunnel length 

 

Figure 20 Variation of time period with tunnel length 
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4.2. Effect of Tether Stiffness and BWR ratio on Natural Frequency 

It is evident that the addition of tethers increases the overall stiffness of the system 

and will lead to increase in the natural frequency of system. Figure 21 shows the variation 

of first mode frequency of heave motion with increasing tunnel length for different tether 

stiffness’s. From Figure 21 it is clear that the natural frequency of mode 1 increases as the 

tether stiffness is increased from 0 to 2000kN/m/m. Another important point to note from 

Figure 21 is that for higher tether stiffness the natural frequency of vibration for first mode 

becomes constant for tunnel length >50m. This illustrates that tether stiffness greatly 

controls the lower mode frequencies and can significantly control the overall response of 

the tunnel. 

 

Figure 21 Variation of heave fundamental frequency with tunnel length for different 

tether stiffness values 

For the sway motion of vertically tethered tunnel, it is evident from (4) that tether 

tension controls the stiffness and the corresponding natural frequencies. The pre-tension 
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in tethers depends on the buoyancy-to-weight ratio (BWR) of the tunnel. Figure 22 

illustrates the effect of BWR on the natural frequencies of sway modes for different tunnel 

lengths. For L=50m it can be seen that the tunnel natural frequencies is unaffected by the 

change in BWR. However, as the tunnel length increases (L=100m, L=150m, L=200m) 

the natural frequencies shows an increasing trend with increasing BWR. This implies that 

for longer tunnels BWR significantly controls the natural frequencies for sway motion and 

can be used to control the tunnel response in sway motion. 

 

Figure 22 Variation of natural frequency for sway modes for different BWR ratios 
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4.3. Effect of Tether Inclination on Natural Frequency of Tunnel 

For the case when tethers are inclined, the stiffness provided by the tethers has 

both horizontal and vertical contribution depending on the tether inclination from vertical. 

This leads to a decrease in the natural frequency for heave modes and a significant increase 

in the natural frequency for sway modes as shown in Figure 23. 

 

Figure 23 Variation of heave and sway natural frequency with tether inclination 

Also, it can be seen from Figure 23 that for tether inclination 45 , the natural 

frequency for heave and sway modes are equal owing to equal tether stiffness in horizontal 

and vertical direction. 

4.4. Effect of Eccentricity on Sway Frequency for different Tunnel Lengths 

For tunnels made of acrylic-steel combination, the effect of eccentricity introduced 

on the natural frequency of vibration of tunnel is studied. To understand the effect of 

eccentricity three cases have been considered: 
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 Tunnel with cross-sectional dimension D=4m d=3.5m  

 Tunnel with cross-sectional dimension D=10m d=9m  

 Tunnel with cross-sectional dimension D=15m d=14m  

For each of the three cases the steel spine extends an arc of 120 degrees at the 

center of cross-section. For each case the variation of first natural frequency of vibration 

with increasing eccentricity has been studied for different tunnel lengths (L=25, L=50m, 

L=100m).  

 

Figure 24 Variation of sway natural frequency with tunnel eccentricty for tunnel 

with dimension D=4m and d=3.5m 

From Figure 24 it can be seen that for longer tunnels the natural frequency remains 

constant when the tunnel eccentricity is increased. However, for tunnel length L=25m 

slight reduction in natural frequency is observed with increasing tunnel eccentricity. 
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Figure 25 Variation of sway natural frequency with tunnel eccentricty for tunnel 

with dimension D=10m and d=9m 

Figure 25 again shows the same trend as Figure 24. Even for a larger diameter 

tunnel the natural frequency of vibration of longer tunnels remain unaffected by increasing 

eccentricity. However, the reduction in natural frequency for smaller tunnel L=25m is 

found to be significant with increasing eccentricity.  
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Figure 26 Variation of sway natural frequency with tunnel eccentricty for tunnel 

with dimension D=15m and d=14m 

Figure 26 shows the variation of natural frequency with eccentricity for tunnel with 

cross-sectional dimensions D=15m d=14m. It is evident from the figure that a significant 

reduction in natural frequency is observed for tunnel length L=25m. Also, for tunnel 

length L=50m, a very small reduction in natural frequency is observed. However, for 

length L=75m and L=100m, once again the natural frequency stays unaffected by tunnel 

eccentricity.  

From the trend shown by curves in Figure 24, Figure 25 and Figure 26 it can be 

concluded that for longer tunnels (L>50m) the effect of eccentricity on the natural 

frequency of vibration is negligible and can be ignored. However, for intermediate and 

smaller tunnels (25m<L<50m), a significant reduction in natural frequency is observed 

with increasing eccentricity. Also, the reduction is prominent for tunnels with large cross-

sectional dimensions.  
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4.5. Variation in Coupled Mode Shapes with Tunnel Eccentricity and Length 

Once the natural frequencies are known, the corresponding mode shapes of 

vibration are determined Figure 27, Figure 28 and Figure 29 shows the first five mode 

shapes for an acrylic-steel tunnel with cross-sectional dimensions D=4m and d=3.5m. The 

mode shapes have been plotted for three different tunnel lengths (L=25m, L=50m and 

L=100m). From Figure 27 it is evident that for tunnel length 25m, the bending modes 

dominate for first two modes. But strong coupling between bending and torsional modes 

can be seen from third mode onwards. However, as the tunnel length increases L=50m 

and L=100m, it can be seen from Figure 28 and Figure 29 that the coupling reduces 

significantly even for higher modes. This again shows that the bending modes are 

dominant for longer tunnels with very small torsional effects. 

 

Figure 27 Modes of vibration for tunnel length L=25m 
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Figure 28 Modes of vibrations for tunnel length L=50m 

 

Figure 29 Modes of vibration for tunnel length L=100m 

4.6. Variation in Critical Buckling Pressure for Circular Acrylic Tunnels 

Using analytical expressions for critical buckling pressure given by different 

formulas in Section 3.5 a design curve is prepared for critical buckling pressure as a 
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function of thickness-radius ratio of circular cylinder for a given length-diameter ratio. 

The design curve can further be used to decide the thickness of acrylic panels for 

submerged circular cylindrical tunnel cross-sections, effective to resist the hydrostatic 

pressure at a given depth of submergence.  

The critical pressure curves in Figure 30 have been generated for acrylic with safe 

design stress value of 5 MPa and modulus of elasticity 3300 MPa. From Figure 30 it can 

be seen that for 5-20m submergence depth of tunnel (0.05-0.2MPa hydrostatic pressure), 

the design of acrylic panel is governed by critical pressures for failure due to elastic 

instability of long tubes. Also, it is evident that for large values of /L D  ratio the critical 

pressure approaches the case of long tubes instability pressure.  

 

Figure 30 Variation of critical buckling pressure with L/D and t/a ratio for circular 

tunnels 
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4.7. Variation in Critical Buckling Pressure with Tunnel Ovality 

Figure 31 shows the change in the ratio of critical buckling pressure of cylinders 

with ellipticity to critical buckling pressure of perfectly circular cylinder with the increase 

in ovality of the system. From Figure 31 it is evident that with an increase in the ovality 

of tunnel cross-section, there is an exponential reduction in the critical buckling pressure 

of tunnel cross-section with respect to that of a perfect circular cylinder. Hence, use of 

elliptical cross-sections for submerged tunnels is preferable only for cases when the depth 

of submergence is not very large. 

 

Figure 31 Variation of buckling pressure with increasing tunnel ovality 

4.8. Variation in Critical Buckling Pressure for Elliptical Tunnel 

For a tunnel cross-section with ovality, the variation of critical buckling pressure 

with t/a ratio of the tunnel can be seen in Figure 32 
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Figure 32 Variation of critical buckling pressure with 0 /u R  and t/R ratio for 

elliptical cross-section tunnels 

The design curves of Figure 32 can be used to determine the wall thickness of 

elliptical cylindrical tunnel sections to be used at a given depth of submergence subjected 

to external hydrostatic pressure. 

4.9. Comparison of Wave Load by Morison’s Equation vs Ogilvie’s Solution 

Using the expression for total force on a submerged circular cylinder formulated 

in 3.7, force on a submerged circular tunnel has been evaluated and compared to the force 

given by Morison’s Equation with drag coefficient 1.2DC   and inertia coefficient

2.0MC   for three depths of submergence of tunnel (z=3m, z=5m, z=10m). The results 

of the comparison are shown in Figure 33, Figure 34 and Figure 35. For force evaluation 
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the wave parameters of AB Prototype for Qiandao Lake, China has been used ( 1sH m ,

2.3secpT  ). 

 

Figure 33 Force comparion Morison’s equation vs Ogilvie’s solution at z=3m 

 

Figure 34 Force comparion Morison’s equation vs Ogilvie’s solution at z=5m 
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Figure 35 Force comparions Morison’s equation vs Ogilvie’s solution at z=10m 

From Figure 33 it can be seen that for tunnel at depth 3z m   Morison’s equation 

gives a higher value of force than Ogilvie’s solution. Since the force given by Ogilvie 

solution is more exact in nature, it can be concluded that the value of MC parameter used 

in Morison’s equation is higher and can be adjusted to a lower value. Also, the drag 

contribution to the total force is very small when compared to inertial contribution. This 

can be attributed to the fact that the tunnel dimension is large enough that no separation 

of flow occurs. Furthermore, from Figure 34 and Figure 35 it is evident that as the depth 

of submergence increases both Morison’s equation and Ogilvie’s solution converge. The 

result that both the solutions converge at large water depths can be used to establish the 

fact that application of Morison’s equation for evaluating wave loads on submerged bodies 

at greater water depths is justified.  
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4.10. Variation of Wave Force with non-dimensional parameter Kh 

Using Ogilvie’s solution wave loads curves have been prepared for normalized 

force 
/ 2

F

gLH
 variation with the non-dimensional parameter Kh  for a range of values 

of non-dimensional parameter Ka  (Figure 36 and Figure 37). Based on the wave 

parameters at tunnel site and preliminary dimensions of tunnel, the curves can be easily 

used to evaluate the magnitude of wave loads on the tunnel. Also, from Figure 36 and 

Figure 37 it can be seen that the magnitude of wave force decreases exponentially with 

the increase in depth from the free surface. This reduction in the magnitude of force is 

more rapid for the range of Ka  parameter less than 1 than for range of Ka  greater than 

1. For values of ka  parameter close to Kh , it can be seen that the curves show a little 

peak. It is suggested that the left hand part of the curve must be interpreted with care as 

Ka Kh  indicates proximity to the free surface. In fact as suggested by Ogilvie [45], for 

linear theory to hold the incident wave amplitude must be smaller than the distance 

between cylinder top and undisturbed free surface. 
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Figure 36 Variation of wave loading with kh for 0.1<ka<1.1 

 

Figure 37 Variation of wave loading with kh for 1<ka<2 
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4.11. Variation in Wave Load with parameter K (Wave Number) 

Figure 38 shows that variation of wave loads with the wave number K  for 

different depth of submergence of floating tunnel. It is evident that the peak value of force 

decreases with the increase in depth from free surface. Also, the value of wave number 

parameter K at which the peak occurs shifts to a lower value as the depth of submergence 

of tunnel increases. This illustrates that not all the waves propagate to deeper water. Waves 

with low wave number cause peak force at greater water depths. 

 

Figure 38 Variation of wave loading with wave number for different water depths 
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5. NUMERICAL CASE STUDY  

 

For the purpose of numerical simulation the case of Daikokujima Floating Tunnel 

proposed in Japan is considered. The proposed tunnel will be located at a maximum water 

depth of 12m. The cross-section of the tunnel has an outer radius of 4m and thickness of 

0.3m. In addition, light weight concrete with exterior steel skin plate is considered as a 

suitable structural material for the proposed tunnel. However, for this study Acrylic and 

Acrylic-Steel combination is considered as the primary structural material for tunnel.  

Using several variations in length and cross-sectional shape of tunnel, the response 

behavior of tunnel is studied. The design wave conditions for the tunnel are relatively 

moderate and the main purpose of this tunnel is to serve as pedestrian walkways.  

The ends of the tunnel are restrained with two different support conditions. One 

end of the tunnel is hinged which restrains all translational degrees of freedom and at the 

other end a roller support is considered which restrains the degrees of freedom in 

transverse direction and allows only longitudinal and rotational degrees of freedom.  

  Circular cross-section as shown in Figure 39 is considered for the numerical case 

study purpose. Using the basic parameters summarized in Table 6 the behavior of 

different tunnel configurations is discussed in detail in the next few sections. 
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Figure 39 Cross-sectional configurations for numerical case study 

Table 6 Summary of base structural parameters 

  
Circular Cross-section 

Parameter Unit For Acrylic Only 
For Acrylic-Steel 

Combination 

Outer Dia. m 4 4 

Inner Dia. m 3.4 3.4 

Thickness m 0.3 0.3 

Area, csA   m2 3.49 3.49 

Moment of Inertia, Ixx 
(about x-x) m4 6.01 9.72 

Moment of Inertia, Iyy 
(about y-y) m4 6.01 5.89 

Polar Moment of Inertia , Ip m4 12.02 15.61 

Elastic Modulus Acrylic, Eacy N/m2 3.30E+09 3.30E+09 

Elastic Modulus Steel, Est N/m2 2.00E+11 2.00E+11 

Flexural Rigidity, EIxx N-m2 1.98E+10 1.59E+11 

Flexural Rigidity, EIyy N-m2 1.98E+10 1.86E+11 

Density Acrylic, acy   kg/m3 1190 1190 

Density Steel, st  kg/m3 7850 7850 
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5.1. Case-1 10m Long Acrylic Tunnel with Circular Cross-Section 

For this case a free spanning straight tunnel with no intermediate supports is 

analyzed. Under the assumption that the tunnel is located at a water depth of 10m, the 

maximum hydrostatic pressure acting on the tunnel is evaluated and is equal to 0.1 MPa. 

To prevent failure under hydrostatic pressure the critical buckling pressure of cross-

section should be greater than the maximum hydrostatic pressure. Using formulations of 

Section-3.5, the critical buckling pressure for each failure mode is determined and given 

as, 

For Failure due to Axisymmetric Yielding, Pcr = 0.8 MPa 

For Failure due to Elastic Instability, Pcr = 1.04 MPa (PKD=6) 

It is evident that axisymmetric yielding is the governing failure mode for this case and the 

critical buckling pressure for yielding is greater than 0.1 MPa. Hence, the cross-sectional 

shape is safe against hydrostatic pressure. 

Using the basic cross-sectional and material properties the mass per unit of the 

tunnel is determined as / acy csmass length A  and is equal to 4.15x103 kg/m. 

Assuming, a uniform load of 90 psf for pedestrians, the mass per unit length on tunnel due 

to pedestrian is 1.32x103 kg/m which makes the total weight of the tunnel along with 

pedestrian loading as 5.47x103 kg/m. The buoyant force acting per unit length of tunnel 

depends on the outer diameter of tunnel and is equal to 1.28x104 kg/m. Using the 

weight/per unit length and buoyancy, the buoyancy to weight ratio (BWR) of the tunnel is 

determined and is equal to 2.35. Since the tunnel is freely spanning the BWR ratio should 

be equal to 1.0 to ensure stability. Hence, additional ballast maybe required to balance the 
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self-weight with buoyancy. Taking into account the additional ballast, the equivalent 

density of acrylic required to balance the buoyant force is calculated as 

/eq csbuoyancy A   and is equal to 3694 kg/m3. 

Using the equivalent density of acrylic, the effective mass of tunnel is determined 

and is further used in the evaluation of natural modes of vibration of the tunnel. Apart 

from effective mass of tunnel, added mass of water is also required in the evaluation of 

natural modes. For this study the added mass is assumed to be constant for all modes of 

vibration and is evaluated as, 

 
2

1
4

add M

D
m C


   

where D   is the outer diameter of tunnel and MC  is the inertia coefficient equal to 2.0.  

Now, using the formulations of Section 3.1, the natural period of vibration of tunnel is 

determined and summarized in Table 7. 

Table 7 Natural period of vibration for acrylic tunnel L=10m 

Eigenvalue 

Number 

Period (sec) Frequency (Hz) Mode of Vibration 

1 0.0744 13.44 Heave/Sway 

2 0.0186 53.76 Heave/Sway 

3 0.0083 120.48 Heave/Sway 

4 0.0047 212.77 Heave/Sway 

5 0.003 333.33 Heave/Sway 
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From Table 7 it can be seen that the period of 1st mode of vibration of tunnel is very low 

and would not lie in the range of excitation due to wave loading. Also, fundamental 

frequency in vertical mode and horizontal mode is greater than 3Hz and 1.3 Hz 

respectively. This ensures no excitation due to pedestrian movement over the tunnel. 

Hence, the dynamic effects on the tunnel would be insignificant in this case. The static 

loads due to waves would determine the stresses and tunnel displacements. 

In Section-4.9 it was shown that wave loads given by Morison’s equation and 

Ogilvie’s solution converge at water depths > 5m. For this case since it is assumed that 

the tunnel is located at a water depth of 10m, hence either of Morison’s equation or 

Ogilvie’s solution can be used to get static wave loads. Since the design wave conditions 

are moderate, a regular wave of height H=1m and period T=2.5 seconds is considered for 

this case. The design wave conditions are similar to the one used for design of Qiandao 

Lake SFT prototype. Based on the wave parameters assumed, the resulting static values 

of drag and inertia horizontal and vertical components of wave load is w   0.14 kN/m.  

 Since the tunnel is assumed to be simply supported at the ends, the maximum 

bending moment acting at the mid span is given by, 

2

1.75
8

wl
M kN m    

Subsequent bending stress is determined as, 

2 4

max 582 / 5.82 10
Mc

N m MPa
I
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The allowable safe stress limit for Acrylic plastic is 5 MPa which is much greater than 

bending stress value obtained. Hence, the tunnel will be safe against bending due to wave 

action.  

The static displacement of tunnel under wave loads is evaluated as displacement of a 

simply supported beam under uniformly distributed load and given as 

4
75

9.2 10
384

static

wl
u m

EI

    

The static displacement of tunnel is very small and well within the allowable deflection 

limit L/500 for pedestrian bridges. 

The numerical calculations performed for the 10m circular acrylic tunnel shows 

that the tunnel meets required minimum allowable limits for both strength and 

serviceability and can be used as a viable underwater pedestrian walkway option. 

5.2. Case-2 30m Long Acrylic-Steel Tunnel with Circular Cross-Section 

Like previous case, the tunnel is again assumed to be located at a depth of 10m 

from the free surface. For a 30m long acrylic tunnel the critical buckling pressure for 

failure due to axisymmetric yielding or elastic instability is again evaluated using 

formulations of Section-3.5 and given as, 

For Failure due to Axisymmetric Yielding, Pcr = 0.8 MPa 

For Failure due to Elastic Instability, Pcr = 1.49 MPa (PKD=2.7) 

Axisymmetric yielding is once again the governing failure mode. The evaluated critical 

buckling pressure is greater than the hydrostatic pressure at 10m water depth. Hence, the 
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chosen cross-sectional dimension will be safe against hydrostatic pressure for a 30m long 

tunnel also. 

Since the cross-section dimension of tunnel are similar to the previous case the 

characteristic self-weight of tunnel, pedestrian load and buoyancy will be same as 

calculated before. These load values are summarized in Table 8. To ensure stability 

additional ballast would need to be added so that weight per unit length of tunnel becomes 

equal to buoyant force per unit length. 

Table 8 Summary of permanent loads on 30m long acrylic tunnel 

Tunnel Self-Weight (kg/m) 4.15x103 

Pedestrian Load (kg/m) 1.32x103 

Buoyancy, (kg/m) 1.28x104 

Buoyancy-weight ratio, BWR 2.34 

Equivalent Density Acrylic for BWR=1 (kg/m3) 3694 

 

Now, using the equivalent density of acrylic and the inertial mass of water the natural 

modes of vibration of the tunnel is determined and summarized in Table 9. 

Table 9 Natural period of vibration for acrylic tunnel L=30m 

Eigenvalue Number Period (sec) Frequency (Hz) Mode of Vibration 

1 0.6697 1.49 Heave/Sway 

2 0.1674 5.97 Heave/Sway 

3 0.0744 13.43 Heave/Sway 

4 0.0419 23.89 Heave/Sway 

5 0.0268 37.33 Heave/Sway 
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From Table 9 it is evident that although tunnel excitation due to wave induced load may 

not be significant, but dynamic effects due to pedestrian movement needs to be checked 

since the fundamental frequency for vertical mode of tunnel is less than 3 Hz and lies in 

the range of pedestrian excitation frequency. However, this issue can be addressed by 

increasing the stiffness of tunnel cross-section so that the fundamental frequency for 

vertical mode becomes greater than 3 Hz.  

In order to increase the stiffness of cross-section the tunnel can be stiffened by 

providing a steel spine at the bottom of cross-section in combination with acrylic. The 

effect of tunnel stiffening using steel spine is discussed separately in subsequent section.  

5.2.1. Acrylic-Steel Combination for Stiffening Tunnel 

For stiffening the tunnel a 0.2 m thick steel spine making an angle of 120 degrees 

at the center of tunnel is used in combination with acrylic at the bottom of cross-section 

(See Figure 39). Using the basic structural parameters defined in Table 6 for an Acrylic-

Steel Tunnel, the characteristic self-weight, pedestrian load and buoyancy per unit length 

on the tunnel is determined and summarized in Table 10. 

Table 10 Summary of permanent loads on 30m long acrylic-steel tunnel 

Tunnel Self-Weight (kg/m) 1.05x104 

Pedestrian Load (kg/m) 1.32x103 

Buoyancy, kg/m 1.28x104 

Buoyancy-weight ratio, BWR 1.08 

Equivalent Density Acrylic-Steel for BWR=1 (kg/m3) 3694 
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Addition of a steel spine to acrylic cross section leads to a significant improvement in the 

BWR ratio of the tunnel making it more stable. However, the buoyancy-weight ratio is 

still greater than 1, hence additional ballast is again required to balance the self-weight 

with buoyant force.  

Furthermore, addition of steel spine to the cross-section causes a shift in CG of 

cross-section towards the steel side. The location of new CG is calculated and found 0.72m 

below the horizontal axis through centroid of section. Using Roark’s Formula for Stress 

and Strain the flexural rigidity of tunnel cross-section is further evaluated about this new 

CG. Flexural rigidity of tunnel as calculated are, 

About horizontal axis through new CG, EIxx = 1.59x1011 m4 

About vertical axis through new CG, EIyy = 1.86x1011 m4 

Using the calculated flexural rigidities, equivalent density of Acrylic-Steel combination 

and added mass of water, the natural modes of vibration of tunnel is calculated and 

compared to those with Acrylic only section. The result of the comparison is summarized 

in Table 11. 

Table 11 Comparison of natural modes for acrylic only and acrylic-steel combination 

for tunnel with L=30m  

 Acrylic Only Acrylic-Steel Combination 

Eigenvalue 

Number 

Period 

(sec) 

frequency 

(Hz) 

Mode of 

Vibration 

Period 

(sec) 

frequency 

(Hz) 

Mode of 

Vibration 

       

1 0.670 1.49 Heave 0.230 4.35 Heave 

2 0.670 1.49 Sway 0.210 4.76 Sway 
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Table 11 Continued 

 Acrylic Only Acrylic-Steel Combination 

Eigenvalue 

Number 

Period 

(sec) 

frequency 

(Hz) 

Mode of 

Vibration 

Period 

(sec) 

frequency 

(Hz) 

Mode of 

Vibration 

3 0.167 5.97 Heave 0.057 17.54 Heave 

4 0.167 5.97 Sway 0.053 18.87 Sway 

5 0.074 13.44 Heave 0.026 39.06 Heave 

6 0.074 13.44 Sway 0.024 42.19 Sway 

7 0.042 23.87 Heave 0.014 69.44 Heave 

8 0.042 23.87 Sway 0.013 75.19 Sway 

9 0.027 37.31 Heave 0.009 108.70 Heave 

10 0.027 37.31 Sway 0.009 117.65 Sway 

 

An important point to be noted in natural frequency calculation of Acrylic-Steel 

section is that effect of CG shift or eccentricity is neglected. This stems from the 

parametric study done in Section-4.4 where it was shown that for intermediate tunnel 

lengths (25m<L<50m) a very small change in natural frequency is observed for 

eccentricity range of 0.5m-1.0m.   

It is evident from Table 11 that addition of steel spine leads to significant stiffening 

of cross-section as the natural frequency for first vertical and horizontal mode increases 

from 1.49 Hz to 4.35 Hz and 4.76 Hz respectively. Now, the fundamental frequency for 

both horizontal and vertical mode lies well outside the range of excitation by pedestrian 

movement. Furthermore, taking into account only the excitation due to wave loading the 

response of the tunnel under a regular wave of height H=1m and period Tp=2.5 sec is 
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determined using the formulations of Section-3.8. The dynamic response is shown in 

Figure 40. 

 

Figure 40 Vertical and horizontal displacement of 30m long acrylic-steel tunnel 

under regular wave H=1m and Tp=2.5sec 

From Figure 40 it can been seen that the mid-span displacement of tunnel is very 

small and lies in the range of 10-5 m. The tunnel thus meets the required serviceability 

limits of L/500 for pedestrian bridges. Also, the horizontal and vertical displacements are 

of the same order but they are 180 degrees out of phase with each other. This is attributed 

to the nature of wave loading in horizontal and vertical direction. 

From the numerical simulation results of a 30m long tunnel it is concluded that the 

use of acrylic-steel combination provides the necessary stiffness to the cross-section 

leading to substantial reduction in the dynamic effects due to pedestrian movement as well 
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as wave excitation. The steel spine also leads to improvement in the BWR ratio which is 

important from stability point of view. Acrylic-Steel tunnel thus presents a viable 

structural option for pedestrian walkways of intermediate lengths. 

5.3. Case-3 50m Long Acrylic-Steel Tunnel with Circular Cross-Section 

For a 50m long tunnel, the weight per unit length of tunnel along with pedestrian 

loading and the buoyant force will be same as that summarized in Table 10 for acrylic-

steel as primary structural material. As concluded in the previous case, use of acrylic-steel 

combination mitigated the vibration issues due to pedestrian movement. Hence, for a 50m 

long tunnel once again acrylic in combination with steel would be used as the tunnel 

structural material. The behavior of tunnel under hydrostatic pressure is similar to that of 

30m tunnel case as both of them fall under the category of long tubes. Axisymmetric 

yielding governs the failure mode and the critical buckling pressure for tunnel is 0.8 MPa, 

which is greater than the maximum hydrostatic pressure of 0.1 MPa at 10m of water depth. 

Hence, the cross-section is safe against failure under hydrostatic pressure. 

Once again using the characteristic weights summarized in Table 10, flexural 

rigidities calculated in previous case and the added mass of water the natural modes of 

vibration of the tunnel is evaluated and is reported in Table 12. 

Table 12 Natural period of vibration for acrylic-steel tunnel L=50m 

Eigenvalue 

Number 

Period (sec) Frequency (Hz) Mode of Vibration 

1 0.6393 1.56 Heave 

2 0.5923 1.68 Sway 

3 0.1598 6.25 Heave 
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Table 12 Continued 

Eigenvalue 

Number 

Period (sec) Frequency (Hz) Mode of Vibration 

4 0.1481 6.75 Sway 

5 0.0710 14.08 Heave 

6 0.0658 15.19 Sway 

7 0.0400 25 Heave 

8 0.0370 27.03 Sway 

9 0.0256 39.06 Heave 

10 0.0237 42.19 Sway 

 

For natural period values calculated in Table 12, the effect of CG shift is not taken 

into account. This is because it has already been shown through the parametric 

investigation in Section-4.4 that shift in CG has little effect on natural periods for longer 

tunnels. 

On observing the natural frequency value reported in Table 12, it is found that the 

fundamental frequency for the vertical mode falls below 3Hz even after tunnel stiffening 

using a steel spine. The tunnel may be subjected to pedestrian induced vibrations. Hence, 

additional measures are required to increase the overall stiffness of the system. Further 

stiffening of the tunnel is done by using vertical tethers which anchor the tunnel to the 

seabed.  The cross-sectional properties of vertical tethers depend on the buoyancy-to-

weight ratio of tunnel as the net buoyant force acting on the tunnel is taken by tethers as 

tension. For tunnel cross-section under consideration, the BWR ratio calculated excluding 

the pedestrian load is 1.22.  
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Assuming that the tunnel is anchored by tn   2 tethers and the tethers are equally spaced, 

the net tensile force carried by each tether can be determined 

( 1)
/ t

t

BWR L g m
Tension tether

n

   
  

where L is the length of tunnel, g  is the acceleration due to gravity, tm  is the total weight 

of tunnel with pedestrian load.  

Tension per tether as determined from equation above is 5.83x105 N. Assuming a safe 

allowable stress value of 70 N/mm2 for each tether, the required area of cross-section for 

each tether is 0.0083 m2. Based on the required area of cross-section of tether and the 

length of each tether, the available stiffness for tunnel displacement in horizontal and 

vertical direction is determined as per Section-3.1. 

Stiffness for Sway Motion of Tunnel, 
52

2.92 10 /o
x

t

T
K N m

L
    

Stiffness for Heave Motion of Tunnel, 
82

8.33 10 /z

t

AE
K N m

L
    

Once the tether stiffness is determined, the natural period of vibration of tunnel is 

evaluated taking into account tether stiffness and compared to the periods for case when 

no tethers were used. The results of the comparison are summarized in Table 13. 
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Table 13 Comparison of natural modes for 50m long free spaning and tethered 

tunnel 

 Acrylic-Steel Tunnel No Tethers Acrylic-Steel Tunnel With Tethers 

Eigenvalue 

Number 

Period 

(sec) 

frequency 

(Hz) 

Mode of 

Vibration 

Period 

(sec) 

frequency 

(Hz) 

Mode of 

Vibration 

1 0.6393 1.56 Heave 0.5626 1.77 Sway 

2 0.5923 1.68 Sway 0.1410 7.09 Sway 

3 0.1598 6.25 Heave 0.1326 7.54 Heave 

4 0.1481 6.75 Sway 0.1014 9.86 Heave 

5 0.0710 14.08 Heave 0.0627 15.94 Sway 

6 0.0658 15.19 Sway 0.0606 16.50 Heave 

7 0.0400 25 Heave 0.0367 27.24 Heave 

8 0.0370 27.03 Sway 0.0353 28.32 Sway 

9 0.0256 39.06 Heave 0.0240 41.66 Heave 

10 0.0237 42.19 Sway 0.0226 44.24 Sway 

 

On comparing the natural frequency values it is observed that addition of vertical 

tethers results in significant increase in the stiffness for heave motion, as the fundamental 

frequency value for heave mode jumps from 1.56 Hz to 7.54 Hz. For the sway motion the 

effect of tether addition is not so significant owing to small increase in the fundamental 

frequency for sway modes. The fundamental frequency for the sway mode can be 

increased by using inclined tethers with 45 degree inclination giving equal stiffness in both 

horizontal and vertical direction. 

For this case, however, the issue of pedestrian induced vibration due to 

fundamental frequency for vertical mode falling below 3 Hz has been resolved by addition 

of vertical tethers. Now, once the issue of pedestrian vibration is resolved, only the 
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dynamic effects due to wave excitation needs to be accounted for evaluating the response. 

In line with this the response analysis of tunnel under a regular wave of height H=1m and 

period Tp=2.5sec is carried out. Figure 41 shows the vertical and horizontal displacement 

of the mid-span of tunnel under the regular wave. The figure shows a significant reduction 

in response in the vertical direction due to the addition of tethers. However, the reduction 

is very slight in horizontal direction. This is attributed to the fact that the stiffness due to 

vertical tethers is very small in horizontal direction as compared to the vertical direction.  

 

Figure 41 Vertical and horizontal displacement of 50m long tethered acrylic-steel 

tunnel under regular wave H=1m and Tp=2.5sec 

The response behavior shown in Figure 41 is evaluated using the modal 

superposition approach applied to beam resting on continuous elastic foundation. A more 

realistic simulation of the tethered tunnel is carried out using the dynamic stiffness model 
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which treats the tunnel as a beam resting on discrete elastic supports. Figure 42 and Figure 

43 presents a comparison of vertical and horizontal displacement of tunnel computed using 

modal superposition and dynamic stiffness approach. It is evident from figure that 

displacement values obtained using both approaches are in good agreement with each 

other. 

 

Figure 42 Comparison of mid-span horizontal displacement for tethered tunnel 

evaluated using modal superposition approach and dynamic stiffness approach 
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Figure 43 Comparison of mid-span vertical displacement for tethered tunnel 

evaluated using modal superposition approach and dynamic stiffness approach 
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6. SUMMARY AND CONCLUSION 

 

To promote underwater tourism and recreational activities around the world a new 

category of submerged transparent tunnels is proposed in this study. The research study 

focused on the development of floating and fixed bottom concepts for these submerged 

tunnels. Assuming the tunnel behavior as an Euler-Bernoulli beam, different structural 

idealizations of the tunnel were created and subsequent dynamic behavior studied through 

pure bending and coupled bending-torsion models.  

The research also focused on the viability of using acrylic plastic in combination 

with a steel spine as the primary structural material for tunnel. Based on theoretical 

buckling pressure models for circular and elliptical cross-sections under external pressure, 

design charts have been prepared to understand the behavior of acrylic plastic under 

hydrostatic pressure for different cross-section dimensions. The results of the design charts 

showed that making the cross-section more elliptical leads to a drastic decrease in the 

buckling capacity of the cross-section.  

The hydrodynamic force resulting from ocean surface waves will be the primary 

external load on a submerged tunnel. Therefore, this research study examined the 

disturbance of the incident wave field by considering the importance of diffraction effects. 

To this end Ogilvie’s Classical Solution is used for evaluation of loads on the structure 

due to surface waves. The results given by Ogilvie’s solution were further compared with 

force computed using Morison’s equation to understand the efficacy of Morison’s force. 

The comparison showed that both Morison’s and Ogilvie’s force converge at greater water 
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depths and hence Morison’s equation can be effectively put to use for tunnel submerged 

at greater depths. In addition, parametric investigations done showed the variation of 

global loads with varying tunnel depth and wave parameters. 

Combining structural and hydrodynamic models the response behavior of tunnel 

was studied using purely analytical Modal Superposition approach and 

analytical/numerical Dynamic Stiffness Approach. Parametric investigations were also 

carried out to understand how variation in different structural parameters like tunnel 

length, tether stiffness, buoyancy-weight ratio and tunnel eccentricity affect the modal 

properties of tunnel. The results of the parametric investigation were helpful in 

understanding the effect of key structural properties regarding the tunnel response in the 

numerical case studies considered. The numerical studies demonstrated a step by step 

approach necessary for the design of submerged tunnels. Moreover, the numerical case 

studies showed the suitability of different tunnel concepts based on site specific conditions 

and serviceability requirements.  

This research focused on first principles for understanding the behavior of 

submerged tunnels with transparent acrylic plastic as the primary structural material, 

which was supported by a steel spine. The result of the study demonstrates the feasibility 

of this concept from the viewpoint of pedestrian application and aquatourism. However, 

with the increase in complexity of structural system necessary for actual tunnel designs 

more advanced finite element models would be required. These complexities may include 

consideration for tunnel curvature or use of better composite materials in place of steel 

spine. In addition, hydrodynamic models accounting for non-linear wave excitation and 
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stochastic load combination procedures can be used to get better estimate of global loads 

on the structure. Moreover, state-of-the-art CFD tools can be used to get better 

visualization of flow around the tunnel which will be helpful in developing more 

optimized and cost-effective tunnel designs. 
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APPENDIX-A 

Solution of Governing Equation for Pure Bending Behavior of Euler-Bernoulli Beam 

The governing partial differential equation for a Free Spanning Floating tunnel 

idealized as a simply supported Euler-Bernoulli beam is given by [29] 

 
   

 
4 2

4 2

, ,
,

v x t v x t
EI m F x t

x t

 
 

 
  (56) 

In order to understand the dynamic response behavior of the structure it is 

necessary to carry out the eigenvalue analysis and determine the natural frequencies of 

structure. For the free vibration analysis the excitation term in the right side of Eq.(56) is 

equated to zero. Using the method of separation of variables the governing partial 

differential equation is further reduced into two separate ordinary differential equations in 

space and time.  

The solution ( , )v x t can be assumed of the form 

      , n nv x t x V t    (57) 

Substituting Eq.(57) into Eq.(56) gives 

        '''' V m Vn n n nEI x t x t      (58) 

which leads to 
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EI x V t

m x V t



  


  (59) 

where n  is a constant  

Eq.(59) can be further written as two separate equations as 
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    2 0n n nV t V t    (60) 

    2'''' 0n n nEI x m x      (61) 

The solution of Eq.(60) and Eq.(61) is given as 

    sinn n nV t A t     (62) 

          1 2 3 4cosh sinh cos sinn n n n nx B x B x B x B x          (63) 

where 

2
4 n

n

m

EI


   

Eq.(63) has four constants which can be determined using the specified boundary 

conditions of the tunnel. For our case the tunnel has been considered as simple supported 

at the end supports and the boundary conditions are given as 

At 0x                            0n x                                                                      

                       '' 0nEI x   

At x L                           0n x   

                        '' 0nEI x   

On applying the given boundary conditions to Eq.(63) we get 

  4 sin 0nB L    (64) 

For non-trivial solutions of Eq.(64) 

 sin 0nL   



 

94 

 

 
n

n

L


    (65) 

 

which gives 
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nm n
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  (66) 

Eq.(66) gives the natural frequency of vibration of a freely spanning straight tunnel under 

the assumption that the shore connections are simply supported. The mode shapes of 

vibration of the tunnel is given by 

 4( ) sinn

n x
x B

L

 
   

 
  (67) 

Using the property of orthogonality of normal modes the nth normal mode can be 

normalized as 

  2

0

1

L

nm x dx    (68) 

Substituting Eq.(67) in Eq.(68) and solving for B4 we get 

 4

2
B

mL
   (69) 

The normal modes of vibration can then be written as 

 
2

( ) sinn

n x
x

mL L

 
   

 
  (70) 
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APPENDIX-B 

 

Determination of Tether Stiffness 

For small displacements of tunnel in horizontal and vertical direction, analytical 

expression for tether stiffness has been formulated in this appendix. For the analysis 

purpose the length of the tethers considered is L  , area of cross-section is A  , modulus of 

Elasticity of Steel is E  , angle of inclination of tethers is  and the initial pretension in the 

tethers is 0T . The displacement x  and z  of the structure in horizontal and vertical 

direction respectively is assumed to be very small. 

Case-1 Vertical Tethers Stiffness for Sway Motion 

In Figure 44 for the displacement of structure in horizontal direction, the change in tether 

tension can be written as 

  2 2

x x

AE
T L L

L
      (71) 

 

Figure 44 Sway motion of vertically tethered tunnel                

On applying the force equilibrium condition in horizontal direction we obtain, 

    02 sinx x xk T T     (72) 
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2 2

sin x

x L








  (73) 

Substituting Eq.(71) and Eq.(73)  in to Eq.(72) we get 

 0

2 2 2 2

2 2
1x

x x

T AE L
k

LL L 

 
   
   

  (74) 

For very small x  Eq.(74) can be simplified as 

 
2 o

x

T
k

L
   (75) 

Case-2 Vertical Tethers Stiffness for Heave Motion 

For the displacement of structure in vertical direction as shown in Figure 45, the change 

in tether tension can be expressed as 

 
z z

AE
T

L
    (76) 

 

Figure 45 Heave motion of vertically tethered tunnel 

Applying force equilibrium in vertical direction gives 

  0 02 2z z zk T T T      (77) 

Substituting zT  in Eq.(76) gives 
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2

z

AE
k

L
   (78) 

Case-3 Inclined Tether Stiffness for Sway Motion 

For inclined tethers for displacement in horizontal direction as shown in Figure 46, the 

change in tether tension can be written as 

 
x

AE
T L

L
     (79) 

 

Figure 46 Sway motion of inclined tethered tunnel 

Where L  is the change in the length of the tether and is related to horizontal 

displacement x  by 

  sinxL      (80) 

Applying force equilibrium in horizontal direction gives 

    0 0sin sinx x x xk T T T T        (81) 

Substituting Eq.(79) and Eq.(80) in Eq.(81) we get 

 22
sinx

AE
k

L
   (82) 

 



 

98 

 

Case-4 Inclined Tether Stiffness for Heave Motion 

For inclined tethers for displacement in horizontal direction as shown in Figure 47, the 

change in tether tension can be written as 

 
z

AE
T L

L
     (83) 

 

Figure 47 Heave motion for inclined tether tunnel 

Where L  is the change in the length of the tether and is related to horizontal 

displacement x  by 

  coszL      (84) 

Applying force equilibrium in horizontal direction gives 

  0 02 cos 2 cosz z zk T T T       (85) 

Substituting Eq.(83) and Eq.(84) in Eq.(85) we get 

 22
cosz

AE
k

L
   (86) 



 

99 

 

APPENDIX-C  

Solution of Governing Equation for Euler-Bernoulli Beam on Continuous Elastic 

Foundation 

For a beam resting on continuous elastic foundation the governing partial 

differential equation of motion can be written as [29, 31] 

 
   

   
4 2

4 2

, ,
, ,s

v x t v x t
EI m k v x t F x t

x t

 
  

 
  (87) 

For free vibration analysis the forcing term on right-hand side is equated to zero. Using 

the method of separation of variable the solution ( , )v x t  of the governing equation can be 

written in the form, 

      , n nv x t x V t    (88) 

Substituting Eq.(88) in to Eq.(87) gives 

            '''' V t m Vn n s n n n nEI x t k x V x t        (89) 

which can further be written as 

 
   

 

 

 
2

''''n s n n

n

n n

EI x k x V t

m x V t


  
  


  (90) 

where n is a constant. 

Eq.(90) can now be separated into two ordinary differential equations in ( )n x  and 

( )nV t and the equations are 

      2'''' 0n n s nEI x m k x       (91) 
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    2 0n n nV t V t    (92) 

Generalized solutions of Eq.(91) and Eq.(92) are 

    sinn n nV t A t     (93) 

          1 2 3 4cosh sinh cos sinn n n n nx C x C x C x C x          (94) 

where 

 

2
4 n s

n

m k

EI





  

Using the boundary conditions of a simply supported beam, the constants of Eq.(94) are 

determined and further simplified to get 

  4 sin 0nC L    (95) 

For Eq.(95) to have non-trivial solutions 

 sin 0nL   

 
n

n

L


    (96) 

Using solution of Eq.(94), the natural frequency of vibration of a beam resting on elastic 

foundation is determined and is given as 

 

4

s
n

kn EI

L m m




 
  

 
  (97) 

Furthermore, the natural modes of vibration of beam are found to be similar to the case of 

freely spanning tunnel without any intermediate support and are  
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   4 sinn

n x
x C

L

 
   

 
  (98) 

Furthermore, using the property of orthogonality of modes and normalizing the modes  

  
2

sinn

n x
x

mL L

 
   

 

  (99) 
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APPENDIX-D  

Dynamic Stiffness Formulation for Beam on Discrete Elastic Supports 

For Euler-Bernoulli beam the element dynamic stiffness matrix relating the nodal 

forces and displacement is given as [38, 39] 

 

 

 

 

 

1 1 2 4 5 1

1 2 3 5 6 1

4 5 1 2 22

5 6 2 3 22

fy d d d d y

m d d d d

d d d d yfy

d d d dm









     
     


     
      
     

    

  (100) 

where f  is the nodal force matrix, ( )K   is the frequency dependent dynamic stiffness 

matrix and   is the nodal displacement matrix.  

Using the element dynamic stiffness matrix ( )K  , the global stiffness matrix of a 

three span tethered SFT with tethers treated as discrete elastic supports, is assembled 

The multispan system is divided into three elements as shown in Figure 48 and 

Figure 49 and the dynamic stiffness matrix is formulated for each span. 

For element 1, 

 

1 1 2 4 5 1

1 2 3 5 6 1

4 5 1 2 22

5 6 2 3 22

fy d d d d y

m d d d d

d d d d yfy

d d d dm









     
     


     
      
     

    

  (101) 

 

1 1y yf  2 2y yf 

1 1m
2 2m 
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Figure 48 Global model of a three span floating tunnel 

 

Figure 49 Local degrees of freedom for three span floating tunnel 

For element 2, 

 

5 1 2 4 5 5

6 2 3 5 6 6

4 5 1 2 77

5 6 2 3 88

fy d d d d y

m d d d d

d d d d yfy

d d d dm
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For element 3, 

 

9 1 2 4 5 9

10 2 3 5 6 10

4 5 1 2 1111

5 6 2 3 1212

fy d d d d y

m d d d d

d d d d yfy

d d d dm
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For spring elements, 

 13 13[ ] [ ][ ]sfy k y   (104) 

 14 14[ ] [ ][ ]sfy k y   (105) 

Local element stiffness matrix of element 1, 2, 3 and spring elements is further assembled 

to get the global stiffness matrix, 

 

3 5 6

5 1 4 5

6 3 5 6

4 5 1 5

5 6 3 6

5 6 3

0 0 0

2 0 0

0 2 0
[ ( )]

0 2 0

0 0 2

0 0 0

s

global

s

d d d

d d k d d

d d d d
K

d d d k d

d d d d

d d d



 
 
 
 
 

  
  

 
 
  

  (106) 
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APPENDIX-E  

Solution of Governing Equations for Coupled Bending-Torsion behavior of Beam 

For the case of coupled bending-torsion vibration of tunnel cross-section, the 

governing partial differential equation of motion is given by [31] 

  
 

 
24

4 2

e
,effeff

vv
EI A f x t

x t




 
 

 
  (107) 

  
 

 
22 2

2 2 2
,eff p effeff

v e
GJ I Ae f x t e

x t t

 
 

  
   

  
  (108) 

For finding the mode shapes and natural frequency of vibration of structure, a free 

vibration analysis of structure is carried out using the method of separation of variable.  

Under the assumption that the beam is undergoing harmonic oscillations the 

solution ( , )v x t  and ( , )x t  of the governing differential equations is assumed of the form, 

      , sinv x t V x t   (109) 

      , sinx t x t    (110) 

Substituting ( , )v x t  and ( , )x t  in Eq.(107) and Eq.(108) gives, 

    
4

2

4 effeff

V
EI A V e

x
 


  


  (111) 

    
2

2 2

2 eff peff
GJ I Ae V e

x
   

 
     


  (112) 

Under the assumption that the tunnel is simply supported at the shores, the 

boundary conditions imposed on displacement and torsional rotation are, 

At 0x                       0V x                    0x   
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                                               '' 0
eff

EI V x          '' 0
eff

GJ x   

            At x L                      0V x                    0x   

                                              '' 0
eff

EI V x           '' 0
eff

GJ x   

The following functions can be seen to satisfy the boundary conditions, 

   sinn n

n x
V x A

L

 
  

 
  (113) 

   sinn n

n x
x B

L

 
   

 
  (114) 

Substituting Eq.(113) and Eq.(114) in Eq.(111) and Eq.(112) we obtain, 

    
4

2

n eff n n neff

n
EI A A A eB

L


 

 
  

 
  (115) 

    
2

2 2

n eff p n n eff n n neff

n
GJ B I B A e A eB

L


   

 
   

 
  (116) 

Eq.(115) and Eq.(116) can be rearranged and written as, 

    2 2 2A B 0n n n np e      (117) 

    2 2 2 2A 0n n n nq r B      (118) 

where 

  4

2 eff

eff

EI n
p

A L





 
  

 
 

2

2

p

Ae
q

I Ae
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2

2

2

eff

eff p

n
GJ

L
r

I Ae





 
 
 


  

For non-trivial solution of Eq.(117) and Eq.(118), the determinant of coefficient matrix 

must be equal to zero. This leads to 

  

 
 

2 2 2

2 2 2 2
0

n n

n n

p e

q r

 

 

 


 
  (119) 

On expanding Eq.(119) we get 

    4 2 2 2 2 2 21 0j jq e p r p r        (120) 

and 

 
     

 

2 2 2 2 2 2 2

2

2

4 1

2 1
j

p r p r p r q e

q e


   



  (121) 
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APPENDIX-F 

 

Regular Waves-First Order (Linear) Approximation 

Consider monochromatic (single frequency) regular (constant amplitude) waves 

propagating in water of constant depth h  in the positive x-direction. Assume there are no 

obstructions to the waves. 

Under the assumption that wave amplitude is small and wave steepness is low, the solution 

of the boundary value problem yields the first order velocity potential  expressed as 

     
 

 1
cosh

sin
2 cosh

k z hgH
kx t

kh
 




    (122) 

where H  is the wave height,   is the wave frequency, k  is the wave number and z  is the 

depth from free surface. 

The first order pressure is obtained from the first order Bernoulli equation for 0z    

    
    

 
 

1
1

cosh
, , cos

2 cosh

k z hH
p x z t g kx t

t kh


  


   


  (123) 

In deep water, kh  ,  cosh / 2khkh e  and, except near the vicinity of the bottom 

where z h  , 

  
 

cosh
2

k z h
e

k z h


   

So the first order dynamic pressure varies as 

    1
cos

2

kzH
p g e kx t     (124) 
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In shallow water, /10kh  ,  cosh 1kh   and   cosh 1k z h  , giving first order 

pressure as 

    1
cos

2

H
p g kx t g        (125) 

that is, the total dynamic pressure for shallow water is given by 

  p g z     (126) 

The first-order velocities and accelerations for fluid particles are 

  
    

 
 

1
1

sinh
sin

2 cosh
wz

k z hgH
v k kx t

z kh







  


  (127) 

  
    

 
 

1
1

cosh
cos

2 cosh
wx

k z hgH
v k kx t

x kh
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1
1

sinh
cos

2 cosh

wz
wz

k z hv gH
a k kx t

t kh



   


  (129) 

  
    

 
 

1
1

cosh
sin

2 cosh

wx
wx

k z hv gH
a k kx t

t kh



  


  (130) 

 

    

   

  

 

                                                           


