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ABSTRACT 

 

The inherent intention and decision process of lane changes are complex and 

unobservable. Though the external environment and traffic conditions are changing 

along the traveling direction, the drivers’ characteristics and preferences may lead to 

persistence of preferable lane choices. Hidden Markov Model (HMM) method is used to 

model the system that involves unobservable factors, such as speech recognition and 

biological sequence problems. The hidden process are assumed to associate with 

observable outcomes.  

In this study, HMM is integrated into a two-stage lane-changing model to better 

represent the mandatory lane-changing behaviors on arterials. The lane-changing 

decision process is separated into two steps: decision to target a lane as the desire lane 

and acceptance of available gaps in the chosen direction. The outcome of the first step is 

unobservable and treated as the latent state in HMM. The second step, gap acceptance 

model, relates the outcome of the first step to observed vehicle trajectories. 

The proposed model is estimated and validated using detail Next Generation 

Simulation (NGSIM) vehicle trajectory data from Lankershim Boulevard. Comparison 

between generated lane position sequences and original trajectories validated the 

model’s capability of representing mandatory lane changes. There is an average 17% 

difference on predicted lane change locations compared to observed locations; while 

lane change locations to left turn lane and right turn lane show 10% and 13% difference 

respectively. The generated lane changes show a late tendency of movements among 
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through lanes. The results show that the model is fit for the purpose of representing 

mandatory lane change behaviors on arterials. The research highlights some future 

improvements of proposed lane-changing model on arterials. 

 

 



 

iv 

 

DEDICATION 

 

 

 

 

 

 

 

 

 

To my parents 



 

v 

 

TABLE OF CONTENTS 

 Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION .................................................................................................................. iv 

TABLE OF CONTENTS ................................................................................................... v 

LIST OF FIGURES ..........................................................................................................vii 

LIST OF TABLES ......................................................................................................... viii 

1. INTRODUCTION .......................................................................................................... 1 

1.1 Problem Statement ................................................................................................... 2 

1.2 Research Objective ................................................................................................... 3 
1.3 Thesis Organization.................................................................................................. 4 

2. LITERATURE REVIEW ............................................................................................... 5 

2.1 Previous Development of Lane Changing Model .................................................... 5 
2.2 Hidden Markov Model ............................................................................................. 9 

3. MODELING METHODOLOGY ................................................................................ 13 

3.1 Lane Changing Model ............................................................................................ 13 

3.2 Likelihood Function ............................................................................................... 19 
3.3 Data ........................................................................................................................ 20 

4. MODEL ESTIMATION .............................................................................................. 28 

4.1 Estimation Method ................................................................................................. 28 
4.2 Estimation Data ...................................................................................................... 29 
4.3 Estimation Result ................................................................................................... 31 

4.4 Discussion .............................................................................................................. 34 

5. MODEL VALIDATION .............................................................................................. 36 

5.1 Validation Data ...................................................................................................... 37 
5.2 Validation ............................................................................................................... 39 

6. CONCLUSION ............................................................................................................ 50 



 

vi 

 

REFERENCES ................................................................................................................. 52 

APPENDIX ...................................................................................................................... 55 

 

 

 



 

vii 

 

LIST OF FIGURES 

 Page 

Figure 1 Structure of Toledo’s Lane-changing Model ....................................................... 7 

Figure 2 Illustration of State Transition of Markov Process ............................................ 10 

Figure 3 Illustration of Lane-changing Process ............................................................... 14 

Figure 4 Hidden State and Observation of HMM ............................................................ 18 

Figure 5 Lankershim Dataset Collection Site .................................................................. 21 

Figure 6 Schematic Presentation of Selected Arterial Section ......................................... 22 

Figure 7 Schematic Presentation of Sections and Lanes .................................................. 23 

Figure 8 Distribution of Lane Changes Location over Sections ...................................... 31 

Figure 9 Lane Position of a Vehicle along the Traveling Direction ................................ 40 

Figure 10 Location of Lane Changes along Traveling Direction ..................................... 41 

Figure 11 Location Ratio among Lanes ........................................................................... 44 

Figure 12 Percentage of Predicted Lane Changes Occurred Preceding ........................... 45 

Figure 13 Distribution of Lane Change Location from Lane 2 to Lane 1 ....................... 46 

Figure 14 Distribution of Lane Change Location from Lane 3 to Lane 2 ....................... 46 

Figure 15 Distribution of Lane Change Location from Lane 2 to Lane 3 ....................... 47 

Figure 16 Distribution of Lane Change Location from Lane 3 to Lane 4 ....................... 47 

Figure 17 Distribution of Lane Change Location from Lane 4 to Lane 5 ....................... 48 

 



 

viii 

 

LIST OF TABLES 

 Page 

Table 1 Data Extracted from the Original file .................................................................. 25 

Table 2 Aggregate Statistics on Different Lanes from Estimation Data .......................... 30 

Table 3 General Estimation Information of Lane-changing Model ................................. 32 

Table 4 Best Solution of Parameters ................................................................................ 32 

Table 5 Definition of Variables in Lane-changing Model ............................................... 33 

Table 6 Aggregate Statistics on Different Lanes from Validation Data .......................... 38 

Table 7 Lane Changes Distribution among Sections in Validation Data ......................... 39 

Table 8 Lane Changes Distribution Comparison among Sections ................................... 42 

Table 9 Location Ratio among Lanes .............................................................................. 43 

 

 

 

 

 



 

1 

 

1. INTRODUCTION  

 

Lane changing movement has been regarded as one of the primary driving 

behaviors. While the adverse impact of lane changing movements on traffic capacity and 

traffic safety has drawn a significant amount of research attention in recent past. Lane 

changing movement has been defined as a driving maneuver that moves a vehicle from 

one lane to another while both lanes have the same direction of travel. According to Lee 

et al. (1), the first lateral movement and final straight-ahead point are viewed as the start 

and end point of lane change maneuvers. 

Lane changing models are developed to reflect vehicles’ lateral movements 

influenced by various external stimulants and individual driving experience; it establish 

a theoretical framework aim to estimate the probability of lane change movement under 

certain circumstance. Generally, lane changing models classified the lane change 

movements as mandatory lane change (MLC) or discretionary lane change (DLC) based 

on the stimuli of vehicle maneuvers (2). The discretionary lane changes are mostly made 

to bypass a slow vehicle and increase traveling speed while the mandatory lane changes 

usually occur when drivers want to maintain their desire path (3). While lane changing 

models have been widely used in driving behavior research as a vital component of 

microscopic traffic simulation, it is important to keep an accurate reproduction of lane 

changing behavior and its impact on surrounding traffic.  
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1.1 Problem Statement 

Lane changes are broadly defined as a three-stage decision in most existing 

models: choice of target lane, decision to accept available gaps and execution of lane 

change (4). The first two stages in decision process is latent since target lane choice and 

gap acceptance is unobservable. Drivers make lane changes to keep comfortable driving 

environment or gain access to desired travel path. The underlying desire of lane changes 

is influenced by both external and internal factors, as well as the execution process of 

lane changes. Factors such as geometric condition, surrounding traffic condition, 

acceleration/deceleration capability of vehicle, and drivers’ experience and preference 

that involve in the decision process are considered in lane-changing model. These factors 

are organized and considered with certain lane changes logic, constituting the theoretical 

framework of the lane-changing models. 

In most cases, the lane-changing model considers factors listed above in lane-

changing simulation models with addressing the surrounding traffic condition. However, 

some factors such as drivers’ characteristics have not received adequate attention in 

existing models. Further, individual preference on lane choice and driving experience may 

lead to driver persistence of their previous choice. The tendency that adhere to previous 

choice on lane change decision is concluded as state dependence. Hench, the complexity 

and randomness of drivers’ decision process behind the observed lane change behaviors 

need to be investigate, especially for lane changes in congested area. Hidden Markov 

Model (HMM) is a widely used tool in speech recognition systems and various other 



 

3 

 

areas, which gives the flexibility to model the stochastic lane change behavior with 

vehicle travel trajectories.  

On the other hand, the availability of detailed data of lane change movements is 

highly related to the accuracy of model. Most traffic simulations compute and update 

system and vehicle information every time step as well as the corresponding models. 

Detailed and disaggregate vehicle data are valuable in development and calibration of 

driver behavior model but not available for most early models. Thus, the complex 

inherent decision process and the lack of real world traffic data are two main causes for 

unstable performance of existing lane-changing models.  

There is also a need to investigate the difference between freeway analysis and 

arterial analysis. Most related models were developed based on freeway lane changes. 

Urban arterial traffic differs from freeway traffic in many respects: signalized 

intersection, high proportion of turning movements and shorter headway results in a 

great amount of lane changes and vehicle interactions. Specific lane-changing model is 

needed for quality driving behavior simulation on urban arterials.  

 

1.2 Research Objective 

This research is aimed to propose a lane-changing model within Hidden Markov 

Model (HMM) framework for the analysis of lane-changing behavior on urban arterial. 

For this purpose, the research objectives are: 

 To introduce the decision process of lane changes and specific factors on urban 

arterials. 
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 To develop an arterial lane-changing model with HMM that capture the influence 

of the real-time traffic and drivers’ personal traveling preference. 

 To calibrate the model with real-world traffic data and compare the predicted 

lane changes with real-world lane change behaviors. 

 

1.3 Thesis Organization  

The outline of the thesis, following the introduction, is as follows: previous 

researches on lane changes model and HMMs method are presented in section 2. The 

framework of the proposed model and its detail structure are proposed in section 3. This 

is followed by a general present of arterial dataset used in this study. Then the results of 

model estimation and validation are listed and summarized in section 4 and 5 

respectively. The last section concludes the major findings, limitations and provides 

suggested direction of further research. 
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2. LITERATURE REVIEW  

 

This section includes previous studies and findings regarding the lane change 

models, as well as the theory and application of HMM method. Firstly, various 

developments on lane-changing model especially microscopic models were introduced. 

Then it reviews the fundamental knowledge of HMM and some applications in driving 

behavior modeling. 

 

2.1 Previous Development of Lane Changing Model  

From the literature, a considerable amount of work has been present on driving 

behaviors and traffic simulation applications in latest decades. Several types of lane-

changing decision model was presented.  

Gipps (2) introduced the first rule-based lane-changing model in 1986, which 

constrained two intentions of lane change behaviors of vehicles: maintain a desire speed 

and being in the correct lane to following planned route. The lane-changing algorithm is 

rule-based: The lane-changing decision process is rule-based: the set of lanes were 

evaluate respectively and the model checks whether a series of related factors reach 

fixed conditions, lane changes only execute when all constrains meet the requirement. 

Factors considered includes safe gap existence, location of permanent obstructions, 

intended turning movement, presence of heavy vehicles and relative speed. Since the 

decision process follows predetermined sequence, this model did not consider driver 

randomness and the latent trade-offs among different factors. Many models have been 
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implemented following Gipps’ concept, including simulation package CORSIM (5), 

Zhang’s multi-regime model (3), Yang and Koutsopoulos (6) model in MITSIM. Lane 

changes are separated into MLC and DLC in these models. Concepts of mandatory 

(MLC) and discretionary lane change (DLC) was clearly classified. As defined in 

Zhang’s research, MLC occurs when drivers need to connect to next link to maintain 

their path, bypass a lane blockage downstream, avoid entering a restricted lane and 

respond to message signs; while DLC in order to increase travelling speed, bypass a 

slow or heavy vehicle and avoid the lane connected to a ramp. Yang’s model was 

implemented in MITSIM, which evaluated MLC and DLC respectively with different 

explanatory factors that helps captured the trade-offs between influential factors for lane 

changing decision.  

A three-stage dynamic discrete choice model was developed for lane-changing 

maneuvers analysis (3, 7). As mentioned, the three stages of lane changes decision 

process are as follow: choice of target lane; decision to accept available gaps and 

execution of lane change. For each vehicle, each lane has its corresponding utilities that 

represent the attractiveness of keeping or shifting to this lane; relative speed of and 

desire speed affects lane utilities. Gap acceptance model measures the possibility of lane 

changes execution. The parameters of MLC and DLC model were calibrated 

respectively. Ahmed also pointed out that in heavily congested traffic, the courtesy 

yielding of lag vehicle enable mandatory lane changes when acceptable gaps are not 

available.  
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Besides, Toledo’s research (8) adopted similar structure of Ahmed’s model. It 

integrated MLC and DLC in one utility function that balance the trade-offs between 

mandatory and discretionary by introducing a variable to represent the relative 

importance of mandatory and discretionary. Explanatory variables include neighborhood 

variables, path plan variables, network experience and driving preference are considered. 

Figure 1 shows the framework of his discrete choice lane-changing model. 

Figure 1 Structure of Toledo’s Lane-changing Model 

 

Moreover, cellular automaton (CA) models and Markov process have been 

applied in representing the lane changes behaviors in some researches (9, 10, 11, 12, 13, 

and 14). Lane changing behaviors are considered in multi-lane scenarios in cellular 

automata models, the incentive and safety criterion need to be satisfy for lane change 
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movements. The unnecessary complexity resulted from cell-structure and some 

unrealistic artifacts such as ping-pong phenomenon are two main challenges for CA lane 

changing models (9, 10). Applications of markov process on lane changes behavior is 

introduced in next section. 

Most studies focused on lane changes behaviors on freeways. Some studies have 

investigated lane-changing maneuvers on urban arterials and the related characteristics 

within congested condition (15, 16). Wei et al (17) addressed the influence of path plan 

on the lane choice decision and the lane change duration in their two-lane arterials lane-

changing model. Hidas (18) emphasized the interaction with surrounding vehicles and 

classified lane changes into three mode: free, forced and cooperative depending on 

traffic conditions. Sun et al. (19) proposed a model that classified drivers into four types 

with different background data and driving behaviors, which enhanced the ability to 

better replicate lane change behaviors and traffic steam in VISSIM.  

While many of them facilitated traffic flow studies and simulation, these models 

were developed for different purposes. Some of them have not been calibrated with real 

vehicle trajectory records due to of the scarcity of such data; trade-offs among various 

factors and drivers’ characteristics also contributed to the unstable performance of some 

existing lane-changing models. Since the relative short duration a driver spends in the 

mainstream traffic and geometric limitation approaching intersection, the consideration 

of MLC are expected to rule over other considerations in decision process. Moreover, 

heavy interactions between vehicles and stochastic driver behavior present challenges 

for lane-changing modeling.  
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2.2 Hidden Markov Model 

Hidden Markov model is a statistical model that models a system with discrete 

unobservable states as a Markov process (20). A Markov process is a sequence of 

stochastic state with a finite state set. It is assumed that the system at each time step has 

its corresponding transition probabilities from current state to next state.  

Some studies on lane changes using Markov process were conducted. Pentland 

and Liu (11) developed a Markov dynamic model for driving behavior includes lane 

changes. Lane change movement was separated into a series states: starting from 

centering car position in the current lane; checking available gaps in adjacent lane; 

initiating lane change; the change itself; steering to complete lane change; and re-

centering vehicle position in new lane. The results showed that acceleration and 

headway pattern defines the driving movement. Singh and Li (12) described the lane 

change behavior with a Markov chain. In their study, each lane was marked as a state of 

the process, the state transition probabilities reflected the vehicular movements between 

lanes. 

 HMM assumes the latent process that decides the behavior/movement can be 

measured by analyzing observable outcomes from associated system states. Every future 

decision is made conditionally dependent on the decision of every previous state; with 

assumption of initial state, the probability of an event at specific time can be calculated 

as a joint probability described in the next section. Hence, HMMs have been widely used 

in modeling sequence problem that involves unobservable factors, such as speech 

recognition and biological sequence problems. The observable outcome is associated 
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with a set of hidden states by corresponding probability distribution. The HMMs 

framework endows the model with the ability to handle a sequence of lane-changing 

behaviors comprised with various factors within finite time.  

Figure 2 Illustration of State Transition of Markov Process 

 

Figure 2 shows the state transitions of Markov process. The system can be 

described as being in one of a set of distinct states {𝑋𝑖} at any time. While the state of a 

HMM is unobservable, the change of states (or keep in particular state) is undergoes at 

every discrete time as Markov process. As shown, 𝑋𝑖 is the latent state of modeled 

system, and matrix A represents the state transition probabilities that represents the 

probabilities of move from state i to j (𝐴𝑖𝑗 = 𝑃(𝑋𝑗|𝑋𝑖)). Besides, a HMM is also defined 

by the following (20):  

(1) N represents the number of latent states in the model;  

(2) M is the number of distinct observation symbols correspond to the physical 

output of modeled system. 
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(3) The initial state distribution π = {𝜋𝑖} gives starting state of observed system, 

where 𝜋𝑖 = 𝑃[𝑞1 = 𝑋𝑖], 1 ≤ 𝑖 ≤ 𝑁; 

(4) The observation symbol probability distribution in state i, B =

{𝑏𝑖(k)}, where 1 ≤ 𝑘 ≤ 𝑀. 

 For a HMM with specification of above components, specific observation 

sequence can be generate. Hence, λ = (π, A, B) is generally used to indicate a complete 

HMM system. 

There are several applications of HMMs in driving behavior modeling. Zou and 

Levinson (21) proposed a cluster HMM approach to model driving behavior in conflicts. 

The driving style in conflicts are recognized as clusters in this model; it is also capable 

of recognizing driving styles and predicting behaviors based on previous vehicular data. 

In Kuge et al. (13) research, HMM were used to capture the unobservable internal states 

of lane changes intentions by connecting latent association with observable variables 

such as vehicle maneuvers. Toledo and Katz (14) integrating HMM with utility lane-

changing model they proposed in their previous work, developed a lane-changing model 

addressing drivers’ persistence in lane choice. The gap acceptance model connects 

hidden process and the observable outcome (e.g. vehicle maneuvers), which helps 

predict lane changes ahead and can be applied to traffic simulation. Not too much work 

of HMMs have been reported in the field of driving behavior modeling. 

It needs to be noted that factors that affect individual lane change behaviors can 

be classified as geometric conditions, traffic conditions, driver’s driving experience and 

preference. These factors interact and vary among individuals, and make the prediction 
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of lane changes complex and unreliable. HMMs assume behaviors are series of 

consecutive stochastic events, which helps deal with the uncertainty of latent decision 

process.  
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3. MODELING METHODOLOGY 

 

This section presents the methodology for modeling lane change behaviors with 

vehicle movement trajectory data. Same with some model discussed in previous section 

(8, 14 and 15), the concept of proposed model is to separate lane-changing movement 

into two decision steps: target lane choice and gap acceptance, the choice of each step 

determined the outcome of lane changes. During the decision process, the only 

observable action is the lateral movement of vehicle, other decision process such as 

target lane choice and available gap measure is unobservable. Consideration of this 

aspect, the proposed model introduces the Hidden Markov Model (HMM) which endows 

proposed model with ability to measure the latent consecutive decision of lane changes 

that largely dependent on individual characteristics. 

A brief structure of the section is listed as follows: a general framework of 

proposed lane-changing model is presented. Details on two sub-model of lane-changing 

process and the Hidden Markov model framework is given. Next two section introduce 

the likelihood function and dataset used in parameters estimation. Rules and limitation of 

data processing is illustrated roughly. The dataset used in this study is introduced and 

processed.  

 

3.1 Lane Changing Model 

The general framework of proposed lane-changing models is shown in Figure 3. 

The model involves two sub-model: target lane choice model and gap acceptance model. 
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For the first one, individuals are intend to search all lanes available in the subsequent 

section and target the lane perceived to be the best in following path. However, the 

action of vehicle lateral change to target lane may not executed immediately due to the 

limitation of the road environment and the conflicts with other vehicles.  

Figure 3 Illustration of Lane-changing Process 

 

For example, a driver traveling in lane 2 plans to turn right marks lane 5 as the 

target lane when approaching intersection; the vehicle needs make consecutive lane 

changes through lane 3, lane 4 then reaches the target lane. Besides, adjacent vehicles 

may delay driver’s action. The lateral movement of vehicle is the result from several 
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unobservable decision process, thus, the proposed model is developed on the immediate 

lane change actions and environment/driver variables related to the decision process.  

HMMs are used widely in modeling involves unobservable factors. The 

observable outcome is associated with a set of hidden states by corresponding 

probability distribution. The HMMs framework endows the model with ability to handle 

a sequence of lane-changing behaviors comprised with various factors within finite time. 

Details specification of proposed model are presented in following section. 

 

3.1.1 Target Lane Choice Model 

Firstly, drivers need to target a lane among all available lanes as the most 

desirable lane. The attractiveness of each lane is computed by a utility function; many 

factors would affect the value of the utility function. Variables associated with the 

desired path, the dynamic traffic conditions, and the driver’s consistency of lane change 

behavior involve in the utility function.  

The utility function for lane i at time t is given below: 

𝑈𝑖,𝑡 = 𝛽𝑖𝑋𝑖 + 𝜀𝑖 ,    i ∈ 𝐿𝑛, 𝑡 ∈ 𝑁                                                                           (1) 

Where, 

𝑋𝑖 = explanatory variables that affect the attractive utility of lane i 

𝛽𝑖 = corresponding vector of parameters 

𝜀𝑖 = random term associate with lane utility for lane i 

𝐿𝑛= choice set of available lane 

N = set of observation time 
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Besides, the mandatory lane changes are expected to dominate other 

considerations such as gaining speed due to the relative short duration that a driver 

travels in the mainstream. Hence, factors related to keeping desire travel path are 

considered as most important in the lane choice decision, which include distance to 

planned exit, the number of lane changes that needs to make to follow driver’s planned 

path and queue length to the back of queue of in each lane. 

The target lane choice probabilities are given by concept of multinomial logit 

model: 

p(TL𝑛,𝑡 = i) =
exp (𝑈𝑖,𝑡)

∑ exp (𝑈𝑗,𝑡)𝑗
,   i, j ∈  𝐿𝑛            (2) 

Where 𝑇𝐿𝑛,𝑡 is the target lane at time t. The lane with highest utility value will be chosen 

as the target lane. As mentioned, the relative lateral location between chosen lane and 

current lane of the vehicle would determine the direction of intended lane change: 

 If the chosen lane is the current lane, drivers would keep vehicle’s lateral 

location; 

 If the chosen lane is on the right side of the current lane, drivers would make a 

right lateral movement (change right); 

 If the chosen lane is on the left side of the current lane, drivers would make a left 

lateral movement (change left); 

 When the chosen lane is two (or more) lanes away from the current lane, the 

immediate lane change movement is the same as if the chosen lane is on the right 

adjacent to the current lane. 
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3.1.2 Critical Gaps Model 

The available gaps in this study is measured as the time difference between the 

preceding and following vehicles in the lane in which subject vehicle is traveling. The 

model compares the available gap with the critical gap; then, only gaps greater than or 

equal to the critical gap are accepted by the driver. The critical gap are computed as 

function of influential factors and individual-specific random term, the function is given 

as follow: 

𝐺𝑛,𝑡
𝑐𝑟 |𝑣𝑛 = 𝛽𝑛,𝑡𝑋𝑛,𝑡 + 𝜀𝑔             (3) 

Where, 

𝑋𝑛,𝑡 = explanatory variables that affect the critical gap 

𝛽𝑛,𝑡 = corresponding vector of parameters 

𝜀𝑔 = random term associate with critical gap, where 𝜀𝑖 ~N(0, 𝜎𝑔
2) 

Then the probability of accepting available gap is given: 

P(𝐺𝑛,𝑡 > 𝐺𝑛,𝑡
𝑐𝑟 ) = P(ln(𝐺𝑛,𝑡) − ln(𝐺𝑛,𝑡

𝑐𝑟 ) |𝑣𝑛) = Φ[
ln(𝐺𝑛,𝑡)−(𝛽𝑛,𝑡𝑋𝑛,𝑡+𝛼𝑔𝑣𝑛)

𝜎𝑔
]        (4) 

 

3.1.3 Hidden Markov Model 

As stated above, the decision process of lane changes is assumed to have two 

steps: target lane choice and acceptance of available gap. Within HMMs framework, the 

result of first step: the chosen target lane, is treated as the latent state; and the second 

step, gap acceptance model relates the outcome of first step to observed vehicle 

trajectories.  As demonstrated in Figure 4, the latent state 𝑋𝑖 are mapped to one of three 
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observations (𝑂𝑖), matrix A is the state transition probabilities that represents the 

probability of move from latent state i to j (𝑎𝑖𝑗 = 𝑃(𝑋𝑗|𝑋𝑖)), and B is the matrix that 

contains the probabilities of observing outcome (𝑂1, 𝑂2 𝑜𝑟 𝑂3) when the hidden system 

state is i, noted as𝑏𝑞𝑖 = 𝑃(𝑂𝑞|𝑋𝑖), q ∈ observation state set. For lane-changing model, 

the matrix A representing outcome of first step and matrix B can be viewed as results of 

second step. The observation sequence is the lane position sequence extracted from 

vehicle trajectories. 

Figure 4 Hidden State and Observation of HMM 

 

HMMs assume that the modeled system are consecutive stochastic events, which 

helps deal with the uncertainty of the latent decision process of lane changes. While, the 

probability of states at every moment is conditionally dependent on the decision of its 

previous state; with known initial state, the probability of an event at specific time can 

be calculated as a joint probability proving in next section. 
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3.2 Likelihood Function 

The probability of available gaps accepted by vehicle n at time t conditional on 

individual specific characteristics is given by: 

𝑃𝑛(𝑙𝑛,𝑡|𝑣𝑛) = 𝑃(𝐺𝑛,𝑡 > 𝐺𝑛,𝑡
𝑐𝑟 |𝑇𝐿𝑛,𝑡𝑣𝑛)            (5) 

The probability of individual vehicle n target i as chosen lane at time t 

conditional on individual specific characteristics is given: 

𝑃𝑛(𝑇𝐿𝑛,𝑡 = 𝑖|𝑣𝑛) = ∑ 𝑃(𝑗∈𝐿𝑛
𝑇𝐿𝑛,𝑡 = 𝑖|𝑇𝐿𝑛,𝑡−1 = 𝑗, 𝑣𝑛)𝑃(𝑇𝐿𝑛,𝑡−1 = 𝑗|𝑣𝑛)     (6) 

The joint probability that observe individual vehicle n make lane change from 

lane j to lane i at time t conditional on individual specific characteristics can be 

calculated recursively: 

P(𝑇𝐿𝑛,𝑡 = 𝑖, 𝑇𝐿𝑛,𝑡−1 = 𝑗|𝑣𝑛) =

𝑃(𝑇𝐿𝑛,𝑡 = 𝑖|𝑇𝐿𝑛,𝑡−1 = 𝑗, 𝑣𝑛)P(𝑙𝑛,𝑡|𝑣𝑛)𝑃(𝑇𝐿𝑛,𝑡−1 = 𝑗|𝑣𝑛)           (7) 

where i, j ∈ lane set  

Given the initial target lane probabilities𝑃(𝑇𝐿𝑛,1|𝑣𝑛), the probabilities given 

above can be calculated recursively for any t. The lane changing movement of vehicle n 

are observed over consecutive time steps T. With the assumption that conditional on 𝑣𝑛 

these observations are independent, the joint probability of sequence of observations of 

individual n is given by formula: 

P(𝐼𝑛|𝑣𝑛) = ∏ ∑ ∑ 𝑃(𝑇𝐿𝑛,𝑡 = 𝑖, 𝑇𝐿𝑛,𝑡−1 = 𝑗, 𝑙𝑛,𝑡|𝑣𝑛)𝑗𝑖
𝑇
𝑡=1             (8) 

Where, In represents the sequence of lane change movement outcomes. Given the 

initial condition 𝑃(𝑇𝐿𝑛,𝑡−1|𝑣𝑛), the joint probability can be calculated recursively using 

equation 8. 
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With the assumption that observations of different drivers are independent, the 

log-likelihood function for all N drivers in estimation dataset can be summed up as: 

L = ∑ ln (∫ P(𝐼𝑛|𝑣𝑛))𝑁
𝑛−1                          (9) 

The parameters of the model would be estimated by maximizing aggregated 

likelihood function.  

 

3.3 Data 

3.3.1 Site Description 

The proposed model is based on the assumption that state dependence and time 

persistence of consecutive lane choice and lane change behavior in urban area. For 

model estimation and calibration purposes, the dataset should include at least two 

sections of arterial that allows capturing the effect of desire travel path on lane-changing 

choice.  
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Figure 5 Lankershim Dataset Collection Site 

 

Source: Map Data @ 2015 Google 

The dataset used to estimate and evaluate model was recorded at Lankershim 

Boulevard in Los Angeles, California. Figure 5 provides an aerial image of the study 

area. The data was collected and processed as part of the FHWA’s NGSIM (Next 

Generation Simulation) program (22). Lankershim Boulevard is running primarily north-

south and selected segment is approximately 1600 feet in length, consists of five sections 

and four signalized intersections. The source data were collected over 32 minutes from 

8:28 a.m. to 9:00 a.m. on June 16, 2005, using five cameras mounted on the roof of a 36-

sroty building in the Universal City neighborhood. A schematic illustration of the arterial 

segment is shown in Figure 6. Details reference indices regards to each section and 

intersection also listed. 
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Figure 6 Schematic Presentation of Selected Arterial Section 

 

Source: Lankershim Boulevard Dataset Fact Sheet (23) 
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The study area covers a typical urban arterials with three to four through lanes on 

mainline in each direction, and almost every section has exclusive left turning bay 

approaching the intersection. Turning vehicles make lane change before turning 

movements, which provide a great number of mandatory lane-changing movements for 

model development.  

Figure 7 Schematic Presentation of Sections and Lanes 

 

3.3.2 Data Preprocessing 

For recording entering and exiting information of each vehicles, only trajectories 

on section 2, 3 and 4 are used in this studies. Schematic presentation of the selected 
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segment is shown in Figure 7, the reference indices for sections, intersections and lanes 

are marked respectively.  

The half-hour dataset was collected at a rate of 10 frame per second, containing 

detailed trajectory information such as the vehicle position, lane identification and speed 

of every vehicle on this section. The dataset have been divide into two periods: one 17-

minute period (8:28 a.m. to 8:45 a.m.) for model estimation and one 15-minute period 

(8:45 a.m. to 9:00 a.m.) for model validation. The first one records 705294 observations 

of total 1211 vehicles while the second one containing 902025 observations of 1231 

vehicles.  

The raw vehicle trajectory data is detailed in Appendix.  To extract vehicle 

information for modeling, the original data with given format were transformed to specified 

structure and more information was extracted using C++. Table 1 presents key information 

extracted from original dataset. 
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Table 1 Data Extracted from the Original file 

Name (Units) Description 

Local time (second) Start timing at 8:27:34 a.m., count start at 0 

Distance to exit (feet) 
Distance between the front-center of subject vehicle 

and center point of exit intersection 

Distance to back of queue (feet) 

Distance between the front-center of subject vehicle 

and the front-center of the last vehicle stopping in 

same section 

Available gap (second) 
Available gap in adjacent lane (left and right) of the 

subject vehicle 

Target lane (number) 
The final target lane of vehicle (1-left turn lane; 5-

right turn lane) 

Last section length (feet) 
The length of the last section that subject vehicle 

traveling on mainline 

Remaining distance ratio 

(number) 
The ratio of the distance to exit to last section length 

Front spacing ratio (number) 
The ratio of the distance to back of queue to last 

section length 

 

For a vehicle traveling north on the road and plans to make a left turn at 

intersection 3, the target lane of this vehicle would be 1 and the last section length would 

be the length of section 3 as 551 feet. 

As mentioned above, the available gap of adjacent lane in lane-changing model 

usually represents by relative lead speed and spacing in front or behind the subject 

vehicle. Then, the available gap used here is calculated as: 

gap = (𝐷𝑓 + 𝐷𝑤)/((𝑣𝑠 + 0.5 ∗ 𝑎𝑠𝑡𝑠 + 𝑣𝑓𝑡𝑠 + 0.5 ∗ 𝑎𝑓𝑡𝑠 + 𝑣𝑤 + 0.5 ∗ 𝑎𝑤𝑡𝑠)/3)      (10) 
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where 𝐷𝑓 and 𝐷𝑤are distance between subject vehicle and preceding/following vehicle 

of adjacent lane,𝑣𝑠 𝑣𝑓and 𝑣𝑤 are velocity of the subject, preceding and following 

vehicles respectively, 𝑎𝑠 𝑎𝑓and 𝑎𝑤  are velocity of the subject, preceding and following 

vehicles respectively, 𝑡𝑠 is the 0.5 second time step used in computation of this study. It 

should be noted that surrounding vehicles are defined as the closest vehicle in adjacent 

lanes within current section. The distance would be negative if surrounding vehicles 

overlap with the subject vehicle. If the subject vehicle do not interact with any 

surrounding vehicle, the distance (𝐷𝑓 and𝐷𝑤) would extend to the boundaries of current 

section. 

The remaining distance ratio and front spacing ratio is proposed to simply the 

computation in this study. The remaining distance ratio is defined as the ratio of 

remaining distance to the length of last section, and the front spacing ratio is defined as 

the ratio of distance to back of queue to the length of last section. The two ratios were 

computed using following equation: 

𝑟𝑒𝑥 = 𝑑𝑖𝑠𝑒𝑥/𝑙𝑠𝑒𝑐 (11) 

𝑟𝑞 = 𝑑𝑖𝑠𝑞/𝑙𝑠𝑒𝑐         (12) 

where 𝑑𝑖𝑠𝑒𝑥 represents the distance to the exit point, 𝑑𝑖𝑠𝑞 is the distance to the back of 

queue and 𝑙𝑠𝑒𝑐 is the length of the last section. 

Due to the large number of observation records, the raw dataset was filtered based 

on the following rules: 

 Only turning vehicles traveled on section 2, 3 and 4 were kept.
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 Sampling in the time dimension: the original 0.1 second resolution was converted to

a 0.5 second resolution. 

 Trajectory points outside the mainline section were excluded.

 Trajectory points with important missing information were removed.

Except for the 4 rules listed above, further filtering was applied using engineering 

judgment to remove erroneous trajectory points. From analyzing the coordinates and lane 

identification for selected sections in the study area, some outlier or erroneous trajectory 

points were discarded from the analysis. 

In summary, this section develops an integrated model for mandatory lane 

changes on urban arterials within HMM framework. Within HMMs framework, the 

result of target lane choice model is treated as the latent state; the gap acceptance model 

relates the unobservable state to observed vehicle trajectories. The proposed model 

emphasize the desire path factors as well as the consistency of drivers’ lane change 

behaviors using HMM structure. A brief introduction of detailed vehicle trajectory data 

used in this study and the pre-processing procedure are given. 
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4. MODEL ESTIMATION  

 

This section presents estimation process of proposed model. The method to 

maximizing aggregated log-likelihood function mentioned in previous section is 

descripted first. Then proposed lane-changing model is estimated using the processed 

estimation dataset. And the estimation results and its discussion is presented below. 

 

4.1 Estimation Method 

As illustrated in previous section, for each vehicle, there is a probability that its 

sequence of movement matched the sequence generated by proposed model. For data 

used for model estimation, the level of trajectory matches observation sequence can be 

aggregated into a likelihood function, as noted in section 3.2.  

The parameters of proposed model can be estimated by maximizing the 

likelihood function used to model the trajectory of the drivers, as mention previously, the 

calculate equation is given by: 

L = ∑ ln (∫ P(𝐼𝑛|𝑣𝑛))𝑁
𝑛−1            (13) 

Related calculating process is given in previous section. The initial hidden and 

observation states are unobservable, then the starting states of the sequence is also 

assumed to be dependent on individual specific terms. 

In this study, the maximum likelihood estimation is implemented through optim() 

function provided in statistical software R. The optimization method BFGS algorithm is 

chosen for its local convergence ability. Due to the fact that the optimization likelihood 
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function is not globally concave, different starting points need to be tested during 

optimization in order to avoid a local optimal solution. 

Hence, an important point noted is that the optimization likelihood function is not 

globally concave. Due to the individual specific term 𝑣𝑛 is assumed as a normal 

distribution, the optimal value of equation 13 may result from different sets of 

parameters. Different starting points need to be tested during optimization in order to 

avoid a local optimal solution. 

 

4.2 Estimation Data 

4.2.1 General Information 

The first 17-minute dataset was used for estimation. Due to the compute limit of 

parameters estimation, the vehicle trajectory data was randomly sampled at the rate of 1 

per every 5 vehicles. The reduced dataset contains 12837 observations of 115 vehicles. 

The trajectory data of the various drivers in selected segment of arterial and its speeds 

and accelerations were used to generate required variables. 

 

4.2.2 Data Characteristics 

Dataset used for estimation contains 115 vehicles, side street vehicles and 

vehicles traveling on mainline less than one section were previously excluded. The 

average trajectory observation duration is 55.81 seconds, with the maximum duration of 

observation being 133.50 seconds. Out of the 115 observation trajectories, 29 vehicles 

were (25.2%) traveling northbound and 86 (74.8%) vehicles were traveling southbound 
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on the arterial. Observed vehicles are mostly automobiles (111 out of 115, 96.5%) with 

only 4 trucks (3.5%) present in dataset. The number of vehicles exited from left turn lane 

is 68 and the number of vehicles exited from right turn lane is 47. 

The aggregate statistic of lane-specific data are given in Table 2. 

Table 2 Aggregate Statistics on Different Lanes from Estimation Data 

 Through lane Through & 

right-turn 

shared lane 

Exclusive 

right-turn 

lane 

Exclusive 

left-turn lane 

Average speed (ft./sec) 27.72 26.91 27.46 6.38 

Average queue ahead 

(number of vehicle) 
0.88 0.25 0.17 2.60 

Max queue 

(number of vehicle) 
15 3 3 12 

 

The presence of left turn bay and time conflict between left turn vehicles and 

opposing through vehicles provides reasonable explanation for the low average speed 

observed in exclusive left-turn lanes. While speed of right turn vehicles do not affected 

greatly by the presence of turning bay and its conflicts. The average queue length and 

maximum queue length values shows that vehicles traveling on right most lane 

encounter shorter queue at traffic signals compared to through vehicles and left-turn 

vehicles. The presence of the exclusive turn lanes and its influence on lane-changing 

behaviors of turning vehicles has been considered in proposed lane-changing model. 

There are a total of 147 lane changes observed in trajectory dataset, and the 

average lane changes is 1.28 lane changes per vehicle in study area; of these, 87 lane 
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changes (59.18%) were made from current lane to left lane and the rest were made to 

right lane. It should be noted that most of lane changes (110 out of 147, 74.83%) were 

made after vehicle reaching the last section, while 33 lane changes (22.45%) happened 

more than one section ahead the exit point and only 8 out 147 (5.44%) occurred two 

section away; most of these are discretionary lane changes that heading to the opposite 

direction of vehicles’ target lane. The section distribution of lane changes is given in 

Figure 8. 

Figure 8 Distribution of Lane Changes Location over Sections 

 

 

4.3 Estimation Result 

The calculating process and the whole set of parameters are described in previous 

section. Table 3 presents the summary of estimation results of the proposed model, while 

Table 4 presents the optimal set of parameters. 
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Table 3 General Estimation Information of Lane-changing Model 

Best log-likelihood -16105.83 

Initial log-likelihood -18326.04 

Number of drivers 115 

Number of observations 12837 

Number of parameters 8 

 

Table 4 Best Solution of Parameters 

Parameters Variables Optimized value 

Sob-model 1: Target lane choice model 

𝑑𝑖𝑠𝑒𝑥 Relative distance from exit point 0.37 

𝑑𝑖𝑠𝑞 Relative distance of queue 1.14 

𝑙𝑤 Lanes away from target lane -1.31 

𝑑𝑡𝑙 Target lane dummy 8.71 

𝑑𝑐𝑙 Current lane dummy 4.30 

Sob-model 2: Gap acceptance model 

𝑐𝑔𝑎𝑝 Gap constant -0.21 

𝑐𝑡𝑔𝑎𝑝 Available gaps (second) 0.79 

𝛼𝑔𝑎𝑝 Critical gaps mean 0.82 

𝜎𝑔𝑎𝑝 Critical gaps standard deviation  0.93 
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The definition of variable is given in Table 5. 

Table 5 Definition of Variables in Lane-changing Model 

Variables name Definition 

Relative distance from exit point 
The longitudinal distance remaining to reach the 

planned exit of vehicle 

Lanes away from target lane 
Number of lane changes needs to make to reach 

planed target lane 

Relative distance of queue 
The longitudinal distance to last front vehicle 

stops in lanes 

Target lane dummy 
1 if the lane is the planned target lane of vehicle, 

0 otherwise 

Current lane dummy 
1 if the lane is the current lane of vehicle, 0 

otherwise 

Gap constant Constant in mean of lead critical gap function 

Available gaps (second) 
Available time gaps between preceding and 

following vehicles in adjacent lane (left/ right) 

mean Heterogeneity term of mean of critical gap 

Critical gaps standard deviation  Standard deviation of critical gap 

 

Given the optimized parameters, the proposed model can be expressed as 

follows: 

𝑈𝑖,𝑡 = 0.37𝑑𝑖𝑠𝑒𝑥
−1𝑙𝑤 − 1.31𝑙𝑤 + 1.14𝑑𝑖𝑠𝑞 + 8.71𝑑𝑡𝑙 + 4.30𝑑𝑐𝑙 + 𝜀𝑖𝑛      (14) 

where, 𝑈𝑖,𝑡 is the utility of lane i at time t and 𝜀𝑖𝑛represents the generic random term 

associated with lanes utility. For variables of other parameter terms in above equation, 

refer to Table 4.  
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And the gap acceptance model can be presented as follow: 

𝐺𝑛,𝑡
𝑐𝑟 = exp [0.21 + 0.79𝑐𝑡𝑔𝑎𝑝 − 0.82𝑣𝑛 + 𝜀𝑔,𝑛𝑡]         (15) 

where 𝐺𝑛,𝑡
𝑐𝑟  is the critical gaps for lane changes behaviors, 𝑐𝑡𝑔𝑎𝑝 represents available gaps 

surrounding subject vehicles and 𝜀𝑔,𝑛𝑡~N(0, 0.932). 

 

4.4 Discussion 

The estimated parameters help predict the drivers’ desirable lane at every time 

interval during the entire period traveling on the mainline. As expected, the results 

indicate that drivers’ intention to travel in the target lane increases with the decrease of 

distance to the planned exit; the aggressiveness of lane change to the target lane is much 

larger when more than one lane change movement is needed. The current lane dummy 

and target lane dummy captures the driving tendency of keeping lateral location and 

following desire travel path respectively; the relative large value of these two variables 

reflect drivers’ strong preference to avoid unnecessary lateral movement on arterials (for 

example, a change to left while the target lane is on the right). The parameter of distance 

to back of queue captures the influence of intersections and signals. The result that lanes 

with short queue ahead having larger utility values indicates drivers’ tendency to avoid 

waiting in queue. The critical gap increases with the available gap. The critical gaps 

values fluctuated, with a lower limit value around 2 seconds.  

The estimation method, data and results of proposed model are present in this 

section. With the maximization of likelihood function, parameters of a set of variables 

are optimized; the results of parameters are consistent with the original hypothesis on 



 

35 

 

lane selection process. Next section will presents the validation process set to attempt to 

evaluate the ability of proposed model to forecast lane change behaviors. 
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5. MODEL VALIDATION  

 

In this section, the predicted lane changes movements from proposed model are 

compared against the real vehicle lane changes movements for validity. The general 

procedure of comparison includes: 

 Extracting lane changes information such as location and direction from vehicle 

trajectories, 

 Generating predicted lane position sequence using the proposed lane-changing 

model 

In the validation process, the trajectory data from the 15-minute dataset collected 

from the same site was used for forecasting lane change behaviors. The reduced vehicle 

trajectory dataset for validation contains 55253 observations of 433 vehicles, with all 

vehicles traveling on mainline of selected segment of arterial. Information such as 

vehicle speed and acceleration is extracted and used to generate aggregate statistics of 

the original data. Same with the estimation process, the validation is implemented 

through scripts written in statistical software R. Comparisons were made between the 

outcome from the proposed model and lane change movements recorded in dataset. The 

dataset used, and the validation process and results are presents below. 
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5.1 Validation Data 

5.1.1 General Information 

The second 15-minute dataset is used for model validation. After randomly 

sampling, the reduced vehicle trajectory data contains 55253 observations of 433 

vehicles, all vehicles traveling on mainline of selected segment of arterial. Information 

such as vehicle speeds and accelerations is extracted and used to generate aggregate 

statistics of original data. 

 

5.1.2 Data Characteristics 

The first 17-minute dataset was used for estimation. Due to the compute limit of 

parameters estimation, the vehicle trajectory data was randomly sampled at the rate of 1 

per every 5 vehicles. The reduced dataset contains 12837 observations of 115 vehicles.  

Dataset used for validation contains 433 vehicles, the average trajectory 

observation duration is 63.80 seconds, and the vehicle with longest observations during 

was recorded for 175.0 seconds. Out of the 433 observation trajectories, 172 vehicles 

(39.7%) traveling northbound and 261 (60.3%) vehicles traveling southbound on the 

arterial. Observed vehicles are mostly automobiles (427 out of 433, 98.6%) with only 6 

trucks (1.4%) present in dataset. The number of vehicles exited from left turn lane is 

241, reaches a higher proportion (55.7%) than vehicles exited from right turn lane (192 

vehicles, 44.3%). 

The aggregate statistic of lane-specific data are given in Table 6. 
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Table 6 Aggregate Statistics on Different Lanes from Validation Data 

 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 

Average speed (ft./sec) 6.34 13.35 26.11 17.84 13.36 

Average queue ahead 

(number of vehicle) 

2.11 2.94 0.87 2.41 0.67 

Max queue (number of vehicle) 15 17 9 11 6 

 

The aggregate statistic shows a big difference among lanes: the slower speed and 

longer queue on the left/right most lane and its adjacent lane is result from high volume 

of turning vehicle, which account for 30.2% of total volume. Due to the geometric 

limitation of turning bay (lane 1 and lane 5), the accumulated queue for turning has been 

transfer to adjacent through lane, with an average queue longer than two vehicles. While 

vehicles traveling on lane 3 encountered much shorter queue.  

There are a total of 683 lane changes observed in trajectory dataset, and the 

average number of lane changes is 1.58 per vehicle in this study area; of these, 301 lane 

changes (44.07%) were made from the current lane to left lanes and the rest were made 

to right lanes. It should be noted that most of lane changes (577 out of 683, 84.48%) 

were made after vehicle reaching the last section, out of these 95 lane changes occurred 

more than one section ahead the exit point and the rest two sections away. 

The section distribution of lane changes is given in Table 7. 
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Table 7 Lane Changes Distribution among Sections in Validation Data 

 Northbound Southbound All directions 

Section 2 153 2 155 

Section 3 80 280 360 

Section 4 60 84 144 

Outside 18 6 24 

Total 311 372 683 

Number of vehicles 172 261  

 

5.2 Validation 

In order to test proposed model, scripts written in R is used to implement the 

prediction of lane change behavior among observation period, with vehicle information 

and environment data extracted from original validation dataset. The probability of 

vehicle lane position are calculated every 0.5 second. And the predicted lane change 

point are determined by the time that the lane with the largest probability changed from 

previous time point. The validation process of traffic model establishes its validity by 

testing and comparing lane changes statistics obtained from proposed model and from 

the summaries of trajectory data presented in previous section, discretionary lane 

changes in original dataset is excluded as its behavior have not been emphasized in 

proposed model.  
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5.2.1 Result 

For every vehicle trajectory in the validation dataset, a corresponding predicted 

lane position sequence is generated. The following figure (Figure 9) shows the lane 

position outcome from the proposed lane change model for a single right turn vehicle 

(vehicle id: 77). As shown in figure, the horizontal axis indicates the distance to exit 

point, and the vertical axis presents the lateral position of lanes along the traveling 

direction. It presents lateral position of vehicle and location of its lane changes; the 

predict location from lane 3 to lane 4 is about 30 feet precede to the observed point while 

the location to the right most lane is a little behind. 

Figure 9 Lane Position of a Vehicle along the Traveling Direction 
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Figure 10 Location of Lane Changes along Traveling Direction 

 

The generated lane position sequence is compared to its corresponding lane 

change location of trajectory data, which was extracted and presented in previous 

section. The locations of lane change simulated by proposed model and extracted from 

trajectories is compared in Figure 10. As presented, the distribution of predicted lane 

change location is accord with the trajectory data. The observed lane change locations 

are more concentrate to certain segment of the road, while the predict lane change points 

0

10

20

30

40

50

60

70

80

00 . 10 . 20 . 30 . 40 . 50 . 60 . 7

N
U

M
B

E
R

 O
F

 L
A

N
E

 C
H

A
N

G
E

S

LANE CHANGE LOCATION: DISTANCE TO EXIT (FEET)

HUNDREDS

Observed Predict



 

42 

 

show a close tendency to exit: no lane changes is made 500 feet away from vehicles exit 

point. 

Table 8 Lane Changes Distribution Comparison among Sections 

 Total In section 2 In section 3 In section 4 
Outside the 

section 

Observed 683 157 359 144 23 

Mandatory 

observed 
597 150 332 94 21 

Predicted 597 144 340 110 5 

 

Table 8 presents the distribution of predicted mandatory lane changes and those 

from the observation from the trajectory data. Each vehicles makes an average of 1.58 

lane changes while traveling the whole section in the data and the predicted value from 

the model is 1.38 lane changes. There are 554 predicted lane changes, comparing to the 

actual observed lane changes of 683. The slightly low number of lane changes is due to 

the fact that our model is a mandatary lane change model that heavily penalizes lance 

changes away from the target lane. Such discretionary lane changes do happen in in the 

real-world but is not accounted for because the focus of our model is mandatary lane 

changing. The results indicate that overall the predicted lane change locations (in terms 

of sections) match well with the observed locations. It needs to be noted that the 

predicted lane change point are determined by the probability that the subject vehicle 

travels in certain lane. 

The ratio of observed lane change location to predicted lane change location 𝑟𝑐 is 

proposed as: 
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𝑟𝑐 = 𝑟𝑙𝑐/𝑟𝑝𝑙𝑐                           (16) 

where 𝑟𝑙𝑐 is the distance ratio of the observed lane change point, and 𝑟𝑝𝑙𝑐 represents the 

distance ratio of the predict lane change point. The location ratio is used here to identify 

relative lane change locations simulated by proposed model to observation data. Table 9 

presents the location ratio among 5 lane change scenarios. 

Table 9 Location Ratio among Lanes 

Lateral movement direction Ratio 
Number of lane 

changes 

Change to left 
From lane 3 to lane 2 1.91 30 

From lane 2 to lane 1 0.90 239 

Change to right 

From lane 2 to lane 3 2.06 20 

From lane 3 to lane 4 1.79 125 

From lane 4 to lane 5 0.87 184 

 Average 1.17  
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Figure 11 Location Ratio among Lanes 

 

As shown in Figure 11, the location ratio of predicted lane changes among all 

direction is 1.17, which indicates the predicted lane change location precedes to the 

observed location, especially for lane changes between through lanes (lane 2 through 4).  

However, the lane change location to turning lane (lane 1 and lane 5) only slightly 

behind the actual location observed in trajectory data.  

Figure 12 presents the percentage of predicted lane changes occurred preceding 

to the observed location. Most of lane changes among through lanes are behind its 

observation location (for lane changes from lane 3 to lane 2, from lane 2 to lane 3 and 

from lane 3 to lane 4 is 13.3%, 15.0% and 20% respectively). Thus, the prediction of 

lane changes to turning lane is more reliable compared to lane changes between through 

lanes. 
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Figure 12 Percentage of Predicted Lane Changes Occurred Preceding 

 

The distributions of lane change locations and its cumulative percentage of the 

three lane change movements are presented in Figure 13-17. Heavy lane change 

locations are identified if lane changes concentrate on a specific segments of the arterial. 

By comparing two distribution curves for lane changes from lane 2 to lane 1 (Figure 13), 

the observed and predicted cumulative curves match well, with more mandatory lane 

changes predicted closer to the exit point. Figure 14 presents the distribution from lane 3 

to lane 2. 
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Figure 13 Distribution of Lane Change Location from Lane 2 to Lane 1 

 

Figure 14 Distribution of Lane Change Location from Lane 3 to Lane 2
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Figure 15 Distribution of Lane Change Location from Lane 2 to Lane 3 

 

Figure 16 Distribution of Lane Change Location from Lane 3 to Lane 4 
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Figure 17 Distribution of Lane Change Location from Lane 4 to Lane 5 

 

Moreover, aggregated location of lane changes can be observed in Figure 15 and 

16 represents lane changes from lane 2 to lane 3 and lane 3 to lane 4 respectively. For 

lane changes from lane 3 to lane 4, the observed distribution shows two aggregate 

sections that located respectively at 180 and 400 feet precede to the intersection. 

However, 75% of predicted lane changes were made at a 150-feet section peak at 200 

feet before exit. Lane changes among lane 2 and lane 3 distributed among traveling 

segment and tend not accumulative a certain section. Thus, the predicted outcomes are 

not in accord with observed lane changes. 

For lane changes into the right-turning lane (from lane 4 to lane 5, presents in 

Figure 17), it can also be noted that the predicted mandatory lane changes tend to 
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concentrate towards the exit point. The results also shows that the predicted lane change 

point of right turn vehicle is not as precise as predictions for the left turn lane, which 

may be resulted from the geometric limitation of the exclusive turning bay. For lane 

changes from lane 4 to lane 5 in section 3 (exclusive turning bay available in both 

direction), the location ratio reaches 0.90, but this ratio is not as good when the exclusive 

right turning lane is not available. The interaction with through vehicles on shared 

through and right turn lanes likely have contributed to this inconsistency. 

The validation of proposed lane-changing model is presented in this section. The 

comparison of the lane change location ratio and location distribution of different 

movement directions were discussed. The results suggest that the model is fit for the 

purpose of representing mandatory lane change behaviors on arterials. 
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6. CONCLUSION 

 

This study develops a mandatory lane-changing model for urban arterials with 

HMM method. The decision process of lane changes is separated into two steps: lane 

choice and acceptance of available gaps. With the integration of the two steps into a 

HMM framework, the lane-changing model offers the prediction of lane identifications 

that emphasized the state dependence. The result of first step, target lane choice, is 

modeled as the latent state in HMM because the choice is unobservable. The second 

step, gap acceptance model relates the lane choice to observable vehicle trajectories. 

After identification of influential variables and parameters estimation, the proposed 

model is capable of generating lane position predictions and presenting lane changes 

locations.  

With the integration of two steps, the decisions of lane changes is assumed to 

determine by outcomes of two sub-mode; in addition, the HMM method emphasizing the 

state dependence of previous choices. Thus, the integrated lane-changing model offers 

the prediction of lane changes behaviors. The result of first step, target lane choice, is 

modeled as the latent state in HMM because the choice is unobservable. The second 

step, gap acceptance model related the lane choice to observable vehicle trajectories. 

After identification of influential variables and parameters estimation, the predictions of 

lane changes behavior are presented. 

The results of validation show an average 17% difference on location of lane 

changes when compared with real vehicle trajectory. And lane change locations to left 
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turn lane and right turn lane show 10% and 13% difference respectively. The generated 

lane changes show a late tendency of movements among through lanes. However, the 

location results should still be within a reasonable range of sections. 

There is still work to be done on this topic in the future. Future improvements of 

this research may include: deploying the proposed model in microscopic traffic 

simulation and comparing MOEs obtained from simulated traffics, checking the 

applicability of proposed model to different traffic scenarios if other suitable datasets are 

available. Additionally, it would be interesting and challenging to consider more factors 

such as vehicle classes and its acceleration ability. With considering more variables and 

balancing trade-offs between discretionary lane changes and mandatory lane changes, 

the future model might be able to representing the lane change behaviors in various 

traffic scenarios. 
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APPENDIX  

 

Table Information Structure in Original Dataset 

Column Name Description Units 

1 Vehicle ID Vehicle identification number Number 

2 Frame ID Frame Identification number 
1/10 of a 

second 

3 Total Frames 
Total number of frames in which the 

vehicle appears in this data set 

1/10 of a 

second 

4 Global Time Elapsed time since Jan 1, 1970 Milliseconds 

5 Local X 
Lateral coordinate of the front center of 

the vehicle 
Feet 

6 Local Y 

Longitudinal coordinate of the front 

center of the vehicle along the median of 

the Lankershim Boulevard 

Feet 

9 Vehicle Length Length of vehicle Feet 

10 Vehicle Width Width of vehicle Feet 

12 
Vehicle 

Velocity 
Instantaneous velocity of vehicle Feet/Second 

13 
Vehicle 

Acceleration 
Instantaneous acceleration of vehicle 

Feet/Second 

Square 

14 
Lane 

Identification 
Current lane position of vehicle Number 

15 Origin Zone Origin zones of the vehicles Number 

16 
Destination 

Zone 
Destination zones of vehicles Number 

17 Intersection 
Intersection in which the vehicle is 

traveling 
Number 
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Table Continued 

Column Name Description Units 

18 Section Section in which the vehicle is traveling Number 

19 Direction Moving direction of vehicle Number 

20 Movement 
Movement of vehicle. 1 – through, 2 – 

left turn, 3 – right turn. 
Number 

21 
Preceding 

vehicle 

Vehicle ID of the lead vehicle in the 

same lane. 
Number 

22 
Following 

vehicle 

Vehicle ID of the following vehicle in 

the same lane. 
Number 

23 Spacing 

Distance between front-center of the 

subject vehicle and front-center of its 

preceding vehicle 

Feet 

24 Headway 
Time to travel from subject vehicle to its 

preceding vehicle 
Seconds 

 


