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ABSTRACT 

 

Interfacial properties in carbon fiber composites is one of the key parameters 

controlling their structural functionality. Here, we introduce a novel method to 

engineering carbon fiber-epoxy interfaces, via inclusion of nanofibers, towards higher 

interfacial strength and energy dissipation. In our method, thermally stabilized 

polyacrylonitrile (PAN) nanofibers are grafted onto carbon fibers via electro-spinning 

process, followed by nanofiber consolidation via solvent vapor and thermal treatment. 

These treatments partially dissolve nanofibers along the nanofiber-fiber interface and 

trigger entropic elasticity in nanofibers thus, increasing the nanofiber-fiber interactions. 

The hybridization of carbon fibers with PAN nanofibers increased the interfacial shear 

strength (IFSS) by ~48%, from 10.8 ±2.6 to 15.9 ±4.9 MPa. Postmortem fractography 

points to mechanical interlocking between nanofibers and epoxy and reinforcing effects 

of nanofibers in matrix as root causes of IFSS enhancement. As a result of adding 

nanofibers to carbon fiber, junction failure mode changes from a dominantly adhesive 

failure (at epoxy-fiber interface) to dominantly cohesive failure, and failure plane 

slightly shifts away from epoxy-fiber interface to within the epoxy. Compared to other 

types of whiskers grown on carbon fibers, such as CNTs, the method proposed here 

requires low temperatures (below 300°C), during which no surface damages are 

expected to accumulate on carbon fibers. 
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1. INTRODUCTION 

 

1.1. Background and Literature Review 

Carbon fibers are thin filaments largely (more than 90%) composed of carbon atoms 

with diameter ranging from 5 μm to 10 μm [1-3]. As promising materials for structural 

application and as the reinforcements in composite materials, the production and 

consumption of carbon fibers have steadily increased over the past few decades, and the 

growth is expected to continue in the next few decades [4].  

 

The reason of the rising attention given to the carbon fibers is that they have 

remarkable mechanical properties at relatively low density, chemical corrosion 

resistance, high thermal stability, and good thermal and electrical conductivities [4-8]. 

For instance, the specific strength and modulus of carbon fibers is several times that of 

engineering materials, such as alloys, glass fibers and polymers (Figure 1). Due to these 

excellent properties, the carbon fibers have been used in various industries, such as 

aerospace, military, automobile sector and even sporting goods [4, 7, 9-11].  

 

However, it is widely accepted that the mechanical properties of carbon fiber 

reinforced composites, such as in-plane and interlaminar strength, longitudinal and 

transverse strength and fracture toughness, are strongly and directly correlated with 

interfacial shear strength (IFSS) between the fiber and matrix [12-16].  
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On the other hand, as-carbonized fibers typically have defective surfaces, which is due 

to high furnace temperatures experienced during carbonization (>800°C) [15, 17]. As a 

result of this high temperature, the as-fabricated carbon fibers are coated with atomically 

thin layers of polycyclic hydrocarbons [18]. The surface defects and hydrocarbons act as 

week bonding sites and lubricants between fiber and matrix, leading to poor fiber-matrix 

interactions, characterized by IFSS of as low as ~20–60 MPa [15, 17, 19-21]. 

 
Figure 1. A comparison of strength and modulus of engineering materials. Carbon 

fibers appear on the top-right corner, with the high strength and modulus [Data taken 

from http://www-materials.eng.cam.ac.uk/mpsite/short/OCR/ropes/]. 

 

http://www-materials.eng.cam.ac.uk/mpsite/short/OCR/ropes/
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To enhance fiber-matrix interactions, several approaches have been proposed and 

implemented, many of which have been extensively used in industrial scale. For 

example, a common practice in aerospace industry is oxidative treatment of carbon fiber 

surfaces, by which weakly bonded coatings are removed and fiber surfaces are 

chemically functionalized [22]. The functional groups will form chemical/physical 

bonds with epoxy matrices during the epoxy curing process, leading to improved IFSS 

[15, 17, 19, 20]. In addition, the oxidative treatment of the fiber surfaces can improve the 

surface roughness of the fiber, and lead to improvements in IFSS via mechanical 

interlocking [20]. Interestingly, through pull out experiments on surface functionalized 

carbon fibers where the intensity of chemical bonds with epoxy was controlled through 

further chemical treatments, Drzal et al. demonstrated that mechanical interlocking can 

have a significant contribution to interfacial shear strength between fiber and matrix, 

which is roughly equal to the contribution of chemical bonds.  

 

Another approach to enhance fiber-matrix interactions is to grow or attach nanoscale 

whiskers with high aspect ratio and surface to volume ratio onto the surface of carbon 

fibers. The nanoscale whiskers substantially increase the load transfer area between the 

fibers and the matrix, leading to an enhancement in fiber-matrix interaction and effective 

IFSS [23, 24]. This approach is partly based on the inevitable increase in the surface of 

materials per unit volume/weight by reducing their characteristic length scale. 
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The composites reinforced with whiskerized (fuzzy) fibers may also be referred to as 

“hybrid composites”, pointing to the hierarchy in length scale of reinforcements [25, 26]. 

Recently and in the past decade or so, the research on hybrid composites has taken a new 

turn by the introduction of carbon nanotube (CNT) and carbon nanofiber (CNF) coated 

carbon fibers. Several studies have investigated the chemical vapor deposition (CVD) of 

CNTs on carbon fibers, in which carbon fibers serve as the substrate [27-31]. These 

methods of CNT growth often require relatively high temperatures, above 600°C-900°C, 

which is often mandated by the requirements to grow CNTs regardless of the substrate. 

 

Through single fiber pull out experiments, An et al. demonstrated that the CVD 

growth of CNTs on carbon fibers can improve IFSS by ~100%, from 65 MPa to 126 

MPa. It was demonstrated that the CNTs served as anchors inside the matrix, improving 

the load transfer between the fiber and the matrix. The improvement in IFSS was partly 

a result of a dramatic increase in the load-transfer area between them [31]. Also, Sager et 

al. studied the effect of two different morphologies of CNTs grown by CVD, such as 

radially aligned and randomly oriented CNTs on carbon fibers, on the interfacial 

adhesion between carbon fibers and epoxy matrix. The radially aligned CNT and 

randomly oriented CNT coated carbon fibers demonstrated a 71% and 11% increase in 

interfacial shear strength over untreated carbon fiber. This increase may be because of 

the improved adhesion between carbon fiber and matrix and an increase in interphase 

shear yield strength due to the presence of carbon nanotubes [29]. 
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However, as stated earlier, the CVD growth of CNTs on carbon fibers may lead to 

thermal degradation of the carbon fibers and catalyst diffusion inside carbon fibers, 

mainly due to high temperatures required for CNT growth, which will result in a 

considerable loss in mechanical strength of fibers [27, 29, 31]. The high temperatures 

will also remove the sizing, a proprietary polymer compound on the surface of carbon 

fibers, which serves as a protective layer to prevent carbon fiber wear and also to 

enhance carbon fiber wetting during resin infiltration.  

 

To minimize carbon fiber thermal degradation, alternative recipes of CNT growth at 

temperatures as low as 500°C have been carried out, with minimal damage to carbon 

fibers [32]. However, the CNTs formed at relatively low temperatures often are highly 

defective, and as such, the application of this method to improve IFSS is limited. To 

avoid fiber thermal degradation while maintaining high quality of CNTs, Garcia et al. 

transferred forests of CVF grown CNTs to prepreg carbon fibers at room temperature, 

which led to >100% increase in mode I and II fracture toughness [33].  

 

An alternative method to develop hybrid fibers is electrophoresis (EP). This method 

allows for the deposition of a wide range of nanoscale reinforcements, such as CNTs, 

CNFs, and graphite nano-particles on carbon fibers [34-39]. Even through significant 

improvement in the fiber-matrix IFSS has been reported via this method, the exposure of 

the carbon fiber to an electric field in the electrophoresis solution led to damage in the 

fiber surface, which resulted in a 15–40% reduction in fiber strength depending on the 
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initial condition of the fiber, such as the surface chemistry of the fibers and the duration 

of electrophoresis [37]. 

 

Therefore, current whiskerization methods are faced with several challenges, such as 

carbon fiber degradation. In addition, in all the above methods, no clear path to enhance 

nanofiber-fiber interaction is presented. This is a major shortcoming, as poor fiber-

nanofiber interaction will make the latter obsolete in terms of enhancing the interaction 

of the fiber with matrix. Moreover, the filler types are mainly limited to nanomaterials 

with high stiffness and strength (CNTs and CNFs), with no proposed method to extend 

them to more ductile nanomaterials such as polymeric nanofibers. The latter may be 

required to achieve strong and tough junctions in composites. Moreover, nanomaterials 

such as CNTs are often cost prohibitive for most composite applications. 

 

To determine parameters of interfacial shear interaction between fiber and matrix, 

various micromechanical test methods have been developed. The test methods can be 

categorized into two groups. In one group, the external load is directly applied to fibers, 

while in another group of experiments, matrix is loaded via external means through 

which the interface is loaded [40-42]. The first group includes pull-out test, microbond 

test, and push-out test. In the pull-out test, uncured matrix is put onto a substrate of a 

plate shape and a fiber is vertically embedded into matrix. After curing the matrix, the 

fiber is pulled out of the matrix such that the interface is mainly loaded in shear [42]. In 

the microbond test, droplets of resin in micro-size are mounted on a fiber and each 
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mounted droplet forms around the fiber in the shape of ellipsoid. After the droplets on 

the fiber are cured, they are pulled out of the fiber to measure shear strength [41]. For the 

push-out test, specimens with a thickness of several hundred micro-scale are prepared. 

During the preparation of the specimens, fibers are embedded into a matrix in the 

thickness direction of the specimens. Then a diamond indenter is positioned on each 

fiber, and the fiber is pushed out of the matrix of the specimen by moving the indenter in 

vertical direction to evaluate interface parameters [40]. Another approach to load the 

interface is the single fiber fragmentation test in which the load is applied to the matrix 

via external means [43, 44]. For the fragmentation test, a specimen of dog-bone shape 

where a single fiber is embedded is prepared. Elongating the specimen in tension results 

in fiber breakage. With increasing level of strain, the number of fiber breakage gradually 

increases, ultimately leading to smaller fragments of fiber, where the length of fiber 

breakage is equal to the critical length. The fragmented length of the fiber cannot be 

further broken into smaller portions due to insufficient interfacial stresses, which cannot 

overcome the fiber strength. The interfacial shear strength is calculated by a force 

balance equation [43, 44]. The major limitation of the fragmentation test is the limited 

properties of the available matrix materials that are commonly employed. If the matrix 

materials is brittle, the matrix will break before the critical fragmented length of the fiber 

is reached. In the context, the microbond test can be one of the option for evaluation of 

interfacial strength because brittle matrix (epoxy) is used in our research. Therefore, we 

choose the microbond test and here we will call it single fiber pull-out test.  
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1.2. Objectives and Outline of Present Work 

To overcome the aforementioned challenges in whiskerizing carbon fibers with 

nanomaterials as a means to enhance fiber-matrix interactions, we propose a new 

concept for hybrid composites, based on depositing thermally stable polymeric 

nanofibers on carbon fibers, in which the nanofiber-fiber interactions is controlled via 

exposure of nanofibers to vapor of the polymer solvent and temperatures below 300°C. 

This temperature is considerably below the thermal degradation of carbon fibers and 

sizing, thus, it prevents thermal degradation of carbon fibers. The polymeric nature of 

the nanofibers is expected to enhance the energy dissipation at the fiber-matrix interface, 

due to ductility of nanofibers [45], leading to strong and tough junctions.  

 

In Section 2 we present the experimental methodology used to develop hybrid carbon 

fibers. The novel method used for fabricating a hybridized carbon fiber will be described 

in details. In addition, the mechanical and morphological characterization methods will 

be described. Section 3 begins with the morphological characterization of the new 

hybridized carbon fiber created by our novel method. The wettability of bare carbon 

fibers and hybridized carbon fibers will be compared to investigate the effect of 

nanofibers in enhancing the affinity of carbon fibers to matrix. In addition, the 

mechanical behavior of fiber-matrix junctions in pull-out test mode will be presented. 

Post-mortem images of the pull out surfaces will then be compared to identify the 

interface failure modes. Finally, in Section 4 we will summarize the conclusions of this 

study, and recommend future work on developing carbon fiber composites.  



 

9 

 

 

2. PROCESSING HYBRID CARBON FIBERS* 

 

In this section, a new method to fabricate hybrid carbon fiber that are grafted with 

polymeric nanofibers is introduced. The nanofibers in this cases were polyacrylonitrile, 

with diameter ranging from about 50 nm to 300 nm. Our method to produce hybrid 

fibers includes 3 steps, electrospinning of nanofibers and attachment of nanofibers onto 

carbon fibers via solvent vapor and thermal treatments, followed by thermal stabilization 

of nanofibers. Through these step, hybrid carbon fiber have high roughness on their 

surfaces, with attachment of PAN nanofibers. The rough surfaces of the carbon fiber are 

observed by SEM images, and compared to those of carbon fibers. In addition, important 

factors which contributed to make the hybrid carbon fibers, especially the augmented 

entropic shrinkage of PAN nanofibers due to solvent and heat treatment and surface 

tension, is explained in details. 

 

2.1. Materials 

Single carbon fibers (SGP203CSDL), with average diameter of ~5.7 μm were 

purchased from Hexcel Corporation. Polyacrylonitrile (PAN) (MW=150,000) was 

purchased in powder form from Sigma-Aldrich. Dimethylformamide (DMF), purchased 

from Sigma-Aldrich, was used as the solvent to dissolve the PAN powder for nanofiber 

production via electrospinning process.  

                                                 
*Part of this section is reprinted with permission from “Controlling the 

Wettability and Adhesion of Carbon Fibers with Polymer Interfaces via Grafted 

Nanofibers” by Seokjin Hong, Majid Minary-Jolandan, and Mohammad Naraghi, 2015. 

Composites Science and Technology. 117, 130-138, Copyright 2015 by Elsevier Limited. 
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2.2. Fabrication of Hybridized Carbon Fiber 

Processing of hybridized carbon fibers was conducted in three steps, electrospinning a 

PAN solution onto a carbon fiber, exposing the electrospun PAN nanofibers grafted on 

the carbon fiber to DMF solvent, and thermally stabilizing the electrospun PAN 

nanofiber, as shown in Figure 2. In the first step, a single carbon fiber was fixed on to a 

copper frame, and the copper frame was placed and secured on the electrospinning drum 

collector. A PAN solution was made by mixing PAN powders of 2g with DMF solvent 

of 20.22g and stirring them at 80°C for 3 h to prepare a concentration of 9wt%. In 

addition, the air conditions in a chamber for electrospinning was made in relative 

humidity of 20% and at a temperature of 25°C. Then, the solution of PAN in a flow rate 

of 0.5ml/h was electrospun onto the single carbon fiber placed on the drum collector, 

under an applied voltage of 16kV, for 30 s. During the electrospinning, the distance 

between the tip of the syringe needle and the drum collector was 200mm. To ensure full 

coverage of the fiber surface, the solution of PAN was also electrospun onto the other 

side of the single carbon fiber for the same duration.  

 

Scanning electron microscope (SEM) images of the grafted carbon fibers revealed that 

the majority of the nanofibers at this stage were laid parallel to the carbon fiber, and 

loosely attached to it (Figure 3). Such loosely attached nanofibers are not expected to 

transfer load between matrix and carbon fiber. Therefore, further processing steps were 

employed to enhance the fiber-matrix interactions. These steps were mainly guided by 

the following principle. It was argued that droplets of PAN solvent (DMF) placed on 
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fiber surface and then thermally evaporated can potentially enhance the contact area 

between PAN and carbon fiber partly by dissolving the nanofibers at their interface with 

carbon fibers. Moreover, evaporation of the liquid can induce surface tension, further 

pulling nanofibers towards the fiber. However, excessive solvent at the interface can 

completely dissolve the nanofibers. 

 

Therefore, in step 2, to make the good adhesion between the carbon fiber and the 

electrospun PAN nanofibers, the saturated environment of DMF vapor was first set up 

by placing the DMF container on a hot plate at a temperature of 60°C inside the chamber, 

as shown in Figure 2 (step2). Then the carbon fibers which were coated with electrospun 

PAN nanofibers were placed into the chamber to expose the electrospun PAN nanofiber 

to DMF vapor. It was intended to partially dissolve PAN at the nanofiber-fiber interface, 

thus increase the contact area and interactions between carbon fibers and the nanofibers.  

 

Lastly (step 3), the PAN nanofibers electrospun on single carbon fibers were 

thermally stabilized in air, by exposing the carbon fiber to temperatures of as high as 

265°C for 2 h in an oven. During this process, several reactions take place in PAN 

nanofibers, including cyclization and de-hydrogenation, converting the molecular 

structure of the linear PAN into the ladder-like and more stable structure [46]. This step 

is critical in processing of hybrid fibers, since the as-fabricated PAN, unlike the 

stabilized PAN, will get dissolved in epoxy during the curing process (at temperatures of 

~150–175 °C). The steps are all shown in Figure 2. 
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Figure 2. Schematics of steps for fabrication of hybridized carbon fibers: Step 1. 

Electrospinning nanofibers on single carbon fibers, Step 2. Exposure of a single 

carbon fiber which was grafted with electrospun PAN nanofibers to a vapor of DMF 

solvent, Step 3. Thermal stabilization of PAN nanofibers electrospun on the carbon 

fiber at 265°C. 
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2.3. Morphology of Carbon Fibers 

The surface of carbon fibers, before and after nanofiber deposition, and before and 

after solvent vapor treatment were observed in Scanning Electron Microscope (SEM). 

SEM images of bare carbon fibers, and hybridized carbon fibers before and after solvent 

treatment, revealed the evolution of the fiber surface morphology during the 

hybridization process. As shown in Figure 3a, bare single carbon fibers have an average 

diameter of about 5.7 μm with smooth surfaces. In addition, as shown in Figure 3b, the 

as-electrospun nanofibers are mainly aligned with the axis of the fibers because of 

electrostatic attraction between the fibers and the nanofibers. On the other hand, it is 

evident in the figure that the majority of nanofibers are not directly connected to the 

carbon fiber. This arrangement of nanofibers is not likely to contribute to fiber matrix 

interactions due to poor fiber-nanofiber interactions.  

 

As discussed in the previous section, to overcome this problem, the carbon fibers 

which were coated with PAN nanofibers were exposed to DMF vapor, as 

aforementioned in Fabrication of hybridized carbon fiber. The DMF vapor was intended 

to condense on surface of the carbon fiber and partially dissolve PAN nanofibers at the 

nanofiber-fiber interface, leading to increased contact area between the nanofibers and 

the fiber. The success of this approach in enhancing the interactions between nanofibers 

and the host fiber is evident, as nanofibers become conformal to the surfaces of fibers as 

a result of exposure to DMF (Figure 3c).  
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The hybridized fibers were then heat treated at 265°C for 2 h to enhance thermal 

stability of PAN nanofibers in epoxy during the curing process, as discussed earlier. It is 

believed that part of the enhancement in fiber-nanofiber interface coverage is due to 

thermal treatment during which the solvent residues on the surface of carbon fiber is 

removed, In other words, as the menisci of solvent are evaporating, they generate a 

surface tension which pulls the nanofibers towards the fiber.  

 

2.4. Mechanism Influencing Fiber-Nanofiber Interactions 

It is evident from SEM images (Figure 3) that the contact area between nanofibers and 

carbon fibers increased drastically as a result of solvent vapor and heat treatment. There 

are two factors which contributed to the increased interaction between nanofibers and a 

carbon fiber during the solvent vapor treatment and thermal stabilization. First, as 

mentioned in Fabrication of hybridized carbon fiber, the DMF vapor condensates on 

carbon fiber surface, partially dissolving the PAN nanofibers near the fiber surface. The 

surface tension between DMF and PAN and also DMF and carbon fiber, as the DMF is 

being vaporized during PAN thermal stabilization, causes the nanofibers to collapse on 

the carbon fiber (Figure 4). As a result, nanofibers become conformal to fiber surface, 

and their contact is with carbon fiber increased (schematically shown in Figure 4). 
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Figure 3. Schematic illustration and corresponding SEM images of the formation of 

hybridized carbon fibers. (a) Bare carbon fiber. (b) Carbon fibers coated with as-

electrospun nanofibers. (c) Hybridized carbon fibers after solvent vapor treatment and 

thermal stabilization. 
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Figure 4. Schematic illustration of conformation of nanofibers to carbon fiber 

surface: solvent evaporation and surface tension contribute to the conformation. 
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The second cause is rooted in the molecular alignment and crystallinity of electrospun 

PAN nanofibers [47]. In other words, as electrospun PAN nanofbers contain chains that 

are partially aligned with nanofiber axis, caused by electrostatic stretching during 

electrospinning process. Due to chain alignment and order in chain arrangement, the 

entropy of the as electrospun PAN nanofibers is less than a maximum which can be 

achieved in the case of random alignment (Figure 5). This chain alignment is stable at 

room temperature due to low solvent content of the as electrospun nanofibers [47]. 

However, the diffusion of DMF to PAN nanofibers (step 2 in Figure 2) which had been 

deposited on carbon fibers acts as a plasticizer in PAN and increases the chain mobility 

[48, 49]. The chain mobility will be further enhanced during thermal stabilization (step 3 

in Figure 2), as the temperature of PAN is raised above its Tg (~90°C). The enhanced 

chain mobility will inherently relax the aligned chains and deform the fiber towards 

maximum entropy. Hence, chains retract and the nanofibers length will shrink. As a 

result, the PAN nanofibers which are partly conformal to fiber surface due to DMF 

surface tension will tightly wrap around the carbon fiber, further enhancing fiber-

nanofiber interaction (Figure 5).  
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Actuation

Electrospinning process

collector

----
-

-
-
-
-

-
-

- - -

+ +
+

+ +
+

+

+

+

+

+

+

+

+++

+

Randomly oriented
polymer chains in a
dilute solution

Electric field partially aligns
polymer chains, while solvent
loss suppresses their mobility

Polymer nanofibers with
partially aligned polymer
chains

Reduction in length

solvent & heat 

Reduction in length of the 

nanofibers on a carbon fiber
 

 

Figure 5. Schematic illustration of chain alignment and reduction in length of 

nanofibers; top figure: polymer chains are aligned via electrospinning process due to 

electric force and mechanical force, left figure: the mobility of the aligned chains is 

activated by solvent, right figure: nanofibers are conformal to the carbon fiber surface 

due to reduction in length of the nanofibers induced by solvent and heat  
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To study the magnitude of this length change, we exposed free standing electrospun 

ribbons of PAN to saturated environment of DMF solvent followed by thermal 

stabilization, and monitored their length change. The steps were similar to those applied 

to PAN nanofiber coatings of hybridized carbon fibers, as shown in Figure 2. The optical 

images of the PAN ribbon before and after solvent treatment and thermal stabilization 

are shown in  Figure 6a, pointing to a considerable change in length after each of the two 

steps. As shown in Figure 6b, the length of the ribbon of nanofibers reduced by ~20% 

after solvent vapor treatment, and the total change in length nearly tripled after thermal 

stabilization. The change in length is calculated relative to the final length of the ribbons 

as the reference length. This change in length, for the nanofibers that are conformal to 

the fiber surface (for instance via surface tension), will tighten the nanofibers around the 

carbon fiber, leading to enhanced friction and load transfer between them.  
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Figure 6. (a) Entropy driven shrinkage of electrospun PAN nanofiber yarns induced 

by solvent vapor and heat during stabilization. (b) Reduction in length normalized by 

the final length.  
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2.5. Conclusion 

The hybridized carbon fibers were well fabricated by using three steps, 

electrospinning technique, vapor condensation, and thermal stabilization. For the first 

step, a carbon fiber was fixed on a copper frame, and the copper frame was placed on a 

collector, and then a prepared PAN solution was electrospun onto the carbon fiber. It 

was observed that the electrospun nanofibers was loosely aligned along the carbon fiber 

indicating that a load applied cannot be transferred from matrix to the carbon fiber due to 

the incomplete adhesion between the carbon fiber and the nanofibers. The poor adhesion 

was very well improved by exposing the nanofibers to DMF vapor in a chamber. That is 

partly because the surface tension between DMF and PAN as well as DMF and carbon 

fiber pulled the nanofibers to the carbon fiber. Moreover, the PAN nanofibers were 

partly dissolved at their interface of carbon fiber, thus, the contact area between carbon 

fiber and nanofibers increased. Moreover, the diffused DMF solution into PAN 

nanofiber acted as plasticizer, thus, enhancing polymer chain mobility. As a result, the 

length of nanofibers was shrunk and they wrapped tightly around carbon fibers. After the 

solvent vapor treatment, the PAN nanofibers grafted on carbon fiber were thermally 

stabilized to make sure  that the nanofiber are thermally stable and they will not 

dissolved in the epoxy during the curing process. The well-made hybridized carbon 

fibers were expected to have good adhesion to epoxy matrix based on the increased high 

surface roughness of carbon fiber, as discussed in the following section. 
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3. AFFINITY OF CARBON FIBER-EPOXY CAUSED 

BY FIBER HYBRIDIZATION* 

 

In this section, two methods to evaluate the affinity of carbon fibers to epoxy as a 

result of hybridization of the fiber with nanofibers is incorporated. The first method is 

intended to indicate the wettability of carbon fibers by the epoxy matrix by measuring 

the contact angles between carbon fiber and epoxy matrix. Based on contact angle 

measurement, we found that hybridized carbon fiber shows better wettability with 

smaller contact angle compared to carbon fiber, which may imply an affinity between 

stabilized PAN nanofibers and carbon fiber. The higher contact angle of hybridized 

fibers is explained in terms of their higher surface roughness relative to bare fiber and 

physical interactions between nanofibers and matrix. The second method is to evaluate 

the interfacial shear strength (IFSS) between fiber and matrix through pulling out carbon 

fibers from epoxy microdroplets. From the results, it is revealed that the nanofibers 

grafted onto carbon fiber can change the failure mode from a brittle-like to ductile 

failure, as evident from the added roughness of the fracture surface, an indication of 

higher adhesion and energy dissipation. Also, the surface morphologies of the carbon 

fibers and the internal surface of the hole of microdroplets are observed with the 

postmortem SEM images. While the carbon fiber surface mostly has adhesive failures 

indicating weak adhesion, the hybridized carbon fiber surface mainly represents 

                                                 
*Part of this section is reprinted with permission from “Controlling the 

Wettability and Adhesion of Carbon Fibers with Polymer Interfaces via Grafted 

Nanofibers” by Seokjin Hong, Majid Minary-Jolandan, and Mohammad Naraghi, 2015. 

Composites Science and Technology. 117, 130-138, Copyright 2015 by Elsevier Limited. 
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cohesive failures with rough surfaces, which also corresponds to the internal surface of 

the hole of the microdroplet pulled out. The rough surface with grooves represents the 

increased failure surface which indicates more energy dissipation. Ultimately, the failure 

mechanism is proposed in the last discussion based on the observation.  

 

3.1. Materials 

Inspired by the wide-spread use of epoxy matrix in aerospace engineering, the matrix 

used in the experiments was EPON 826 and its curing agent was EPIKURE W. Epoxy 

resin and curing agent, (EPON 826 and EPIKURE W, respectively), were purchased 

from Miller-Stephenson Chemical Company, Inc., and were used to make epoxy micro-

droplets on carbon fibers and hybridized carbon fibers. 

 

3.2. Surface Wettability Measurement of Carbon Fibers 

The contact angle of the epoxy microdroplets embedded with bare and hybridized 

carbon fiber was measured via optical microscopy as shown in Figure 7. The hybridized 

carbon fiber/epoxy microdroplet composite has a markedly lower contact angle 

compared to bare carbon fiber/epoxy micro-droplet composite (56.6° compared to 73.4°), 

indicating a higher wettability between hybridized carbon fiber and the matrix. The 

higher wettability of hybridized fibers suggests an affinity between stabilized PAN and 

epoxy (Figure 7). Moreover, the increased surface roughness of the hybridized carbon 

fibers compared to bare fibers is partly responsible for the enhanced wettability of the 

former, as the interface between liquid epoxy (prior to curing) will follow the rougher 
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surface of hybridized fibers to minimize the surface energy. In other words, it can be 

argued that on the surface of hybridized carbon fibers, small pockets of epoxy wet the 

carbon fiber which are surrounded by nanofibers on the surface of carbon fibers. The 

contact angle of the rest of the epoxy droplet with this surface layer by definition is zero 

(epoxy-epoxy interface). However, at other areas on the carbon fiber, the epoxy droplet 

is in contact with the nanofibers or carbon fiber with higher contact angle. Therefore, the 

macroscopic contact angle will get some value in between zero (contact angle of the 

epoxy-epoxy interface) and a finite value which can be as high as the contact angle of 

epoxy to bare carbon fiber (Figure 8).  

 

 

 
 

Figure 7. Contact angles between epoxy with (a) bare and (b) hybridized carbon 

fiber. 
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3.3. Single Fiber Pull-out Test 

To evaluate the IFSS of carbon fibers and Epon 862 epoxy, single fiber pull out tests 

from cured epoxy droplets were carried out. To this end, epoxy micro-droplets were 

placed on single bare and hybrid carbon fibers. The epoxy was made by mixing 

resin/curing agent with a weight ratio of 1 to 0.264. The droplets, in liquid form and 

prior to curing, were placed on fibers by using a needle with a fine tip. The epoxy micro-

droplets were cured for 2 h at 125°C and then for 2 h at 175°C inside an oven. The 

Carbon fiber

epoxy

nanofibers

The macroscopic contact
angle observed in hybrid
fibers

Epoxy-epoxy interface
(zero contact angle)

Pockets of epoxy
trapped by nanofibers

Epoxy-carbon fiber interface
(with a local contact angle as 

the bare carbon fiber)

Contact angle of bare fibers

Contact angle of hybrid fibers

Figure 8. The mechanism of wettability induced by surface roughness. 
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diameter of the epoxy microdroplets ranged from about 45 μm to about 258 μm, fairly 

controllable based on the initial (prior to curing) size of the droplet. Larger droplet sizes 

were not suitable for IFSS measurements, simply because they led to fiber rupture 

instead of fiber pull out, since the interfacial forces were more than the strength of the 

fiber. Moreover, smaller droplets were avoided due to experimental limitations, 

including the relatively low magnitude of pull out force they can bear comparable to 

force measurement resolution and difficulties in mounting smaller droplet sizes on fibers. 

Examples of carbon fibers, partially embedded in cured epoxy droplets, are shown in 

Figure 10a and b.  

 

The pull out tests were performed on a Gatan MT10365 tensile testing device with 

modified grip. The grip was designed as shown in Figure 10a, then it was fixed on the 

Gatan tensile tester as shown in Figure 10b. 

 

To perform the pull out tests, the carbon fiber with the epoxy droplet was placed on 

the device, with its one end fixed to the load cell, while the epoxy micro-droplets were 

carefully placed across a channel with the width of ~20 μm. This width was sufficiently 

wider than the fiber diameter and narrower than the diameter of the droplet to allow for 

friction free sliding of the fiber while blocking the motion of the droplet when the device 

is actuated, thus loading the fiber-matrix interface in shear (Figure 10b). 
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The single fiber pull-out tests were carried out with a cross-head speed of 2 μm/min. 

The average value of the interfacial shear strength (IFSS) τIFSS was estimated as:  

 

(1) 

 

where Fmax, d, and l are the junction load capacity (the maximum load on the fiber and 

the junction at which the failure was initiated), diameter of single carbon fibers and the 

embedded length of the fibers in epoxy droplet, respectively. A minimum of 13 

experiments were performed for each type of fibers (bare or hybridized).  

 

 

(a) (b)

movable grip Fixed grip Load cell

A single carbon fiber

Epoxy microdroplets

(d)

20.5 um

Designed grip for pull-out test

(c)

 
 

Figure 9. Optical microscope images of (a) an epoxy micro-droplet on a bare and (b) 

hybridized carbon fiber. 
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A single carbon fiber

Epoxy microdroplets

(b)

20.5 um

Designed grip for pull-out test

(a)

 
 

Figure 10. Device for pull out test: (a) Grip designed. (b) Schematic of the modified 

tensile tester machine to perform the pull out experiment. 
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3.4. The Results of Single Fiber Pull-Out Test 

Pull-out experiments were carried out to evaluate the effect of carbon fiber 

hybridization on interfacial shear strength between fiber and epoxy matrix. During each 

pull out test, the force applied on the junction was increased until the junction failed. The 

maximum force on the fiber, which is equal to the total force carried by the fiber-matrix 

interface (due to force equilibrium of carbon fiber), was recorded as a function of the 

cross head displacement.  

 

An example of the force vs. cross head displacement for the two cases of bare and 

hybridized carbon fibers is shown in Figure 11a and b, respectively. As shown in the 

Figure 11, the force initially increases linearly in both types of fibers, until the force 

capacity of the junction is reached and the junction fails. However, the post-peak 

mechanical behavior of the junctions is markedly different between the two types of 

fibers. In the case of bare fibers, the junction failure was catastrophic, and subsequent to 

reaching the peak force, the junction lost nearly its entire load bearing capacity. In 

contrast, in hybrid fibers, the junction failure was not catastrophic. Instead, subsequent 

to reaching the peak load, junction retained a considerable portion of its load bearing 

capacity, with significant energy being dissipated in the post-peak sliding. More 

interestingly, in a few hybrid fibers, a second force peak, higher than the first peak was 

observed. This post-peak residual load capacity is caused by mechanical interlocking at 

the interface of nanofiber coated fibers and epoxy droplet. Therefore, our proposed 

approach for carbon fiber hybridization offers great potential to enhance both junction 
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strength (load bearing capacity) and toughness (post-peak energy dissipation). However, 

it is to be pointed out that more research is needed here to characterize the post-peak 

behavior, as this residual load capacity showed a considerable scatter between different 

samples, likely due to variations in surface roughness of hybridized carbon fibers along 

their length. 

Cross head displacement (mm)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

P
u

ll
 o

u
t 

fo
rc

e
 (

m
N

)

0

5

10

15

20

25

30

35

   
(a) 

Cross head displacement (mm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

P
u

ll
 o

u
t 

fo
rc

e
 (

m
N

)

0

10

20

30

40

50

 
(b) 

Figure 11. Pull out force vs. cross-head displacement curves of (a) bare and (b) 

hybridized carbon fibers from epoxy microdroplets. 
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To investigate the effect of carbon fiber hybridization on load bearing capacity of 

junctions, the pull out tests were interpreted in terms of effective IFSS, calculated based 

on Equation (1). As shown in Figure 12, hybridization of carbon fibers with thermally 

stabilized PAN nanofibers increased the IFSS on average by ~48%, from 10.8 ± 2.6 MPa 

to 15.9 ± 4.9 MPa. The uncertainties in the measurements are the standard deviations of 

a minimum of 13 measurements. Higher uncertainty in the IFSS of hybridized fibers is 

potentially rooted in non-uniformities in the nanofiber coatings between samples and/or 

along each sample. 
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Figure 12. Comparison of IFSS of bare and hybridized carbon fiber/epoxy micro-

droplet.  
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3.5. Effect of Exposure of Fibers to DMF and Heat Treatment 

In addition to comparisons made between IFSS of hybridized carbon fibers and as-

received bare fibers, to investigate the possibility of sizing removal and accumulation of 

surface damages on carbon fibers as a result of DMF vapor and heat treatments, we 

exposed a few bare carbon fibers to 265°C and DMF vapor, following the protocol that 

was used to coat carbon fibers with PAN nanofibers. The treated bare carbon fibers 

revealed an IFSS of 9.9 ± 2.2 MPa and wetting angle of 70.2° with the epoxy, very close 

to the corresponding values of the as-received (untreated) bare carbon fibers,  10.8 ± 2.6 

MPa and 73.4°, respectively. Hence, the adhesion and interactions between the epoxy 

and the carbon fibers – in the absence of nanofibers – is not influenced by our proposed 

treatments. As such, it is concluded that surface of the carbon fiber remains unchanged, 

ruling out the possibility of sizing removal. Moreover, since the sizing removal is the 

prelude to the accumulation of damage on carbon fibers, the possibility of the latter is 

also excluded.  

 

3.6. Fractography and Interfacial Failure Mechanism 

More insight into the origin of IFSS enhancement via nanofiber hybridization was 

obtained by postmortem SEM imaging of pulled out fibers and their epoxy holes. 

Typical images of fibers and holes for both bare and hybridized fibers are shown side by 

side in Figure 13. Postmortem images of bare carbon fibers points to a dominantly 

adhesive junction failure, along the fiber-matrix interface, evident from the clean 

surfaces of the pulled out fibers (no or insignificant epoxy residues). For instance, the 
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portions of the fiber shown with rectangles (1) and (2) in Figure 13a, and their zoomed 

in views in Figure 13b point to a dominantly clean fiber surface after pull out (rupture 

along the fiber-epoxy interface). The boundaries of the epoxy droplet prior to pull out 

are shown with broken lines in Figure 13a for clarity. It is to be noted that cohesive 

failure (within the matrix) of the bare fiber-epoxy junction along a surface parallel to the 

fiber surface was also observed with lower frequency than adhesive failure, as it is 

evident from the epoxy residues in some portions of the fiber, e.g., shown in Figure 13b.  
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Figure 13. Postmortem SEM images of surface morphology of (a & b) bare and (d & 

e) hybridized carbon fiber. In (a) and (d), the boundaries of epoxy microdroplets prior 

to failure is shown with broken lines. The inner surface morphologies of the micro-

droplet holes for the two cases of (c) bare and (f) hybridized fibers. The insets in (c) 

and (f) are SEM images of pulled out droplets. The pull out hole can be discerned in 

the inset.  
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In contrast to bare fibers, post failure SEM images of the hybridized fibers, along the 

initial embedded length, suggests that their junction failure is mostly cohesive. The 

epoxy residues on the pulled out fibers, shown in Figure 13d and e, are indications of 

cohesive failure of the junction within the epoxy near the fiber-epoxy interface. Rare 

cases of adhesive failure were also observed, such as the portions of the fiber with no 

apparent epoxy residue in rectangle 2 of Figure 13d and the zoomed out view in Figure 

13e. These cases have likely occurred at locations where the local density of the PAN 

nanofibers was low, as this type of failure is similar to dominant failure mode of bare 

fibers. In addition, the diameter of epoxy holes for the case of bare fiber pull out is close 

to the fiber diameter, while for hybridized fibers, the holes are slightly larger than the 

diameter of the bare fibers, consistent with the adhesive and cohesive junction failures of 

bare and hybridized fibers, respectively. 

 

Moreover, a comparison between the surface morphology of the epoxy holes for the 

two cases of fibers reveals that the postmortem surfaces of the holes have a considerably 

higher roughness in case of hybridized fibers compared to bare ones (compare Figure 

13c and f). The rough surfaces of the former can be explained based on mechanical 

interactions between the epoxy and PAN nanofibers, such as reinforcing effect of the 

latter, which prevented the propagation of the interfacial debonding along the fiber-

matrix interface, consistent with the predominantly cohesive junction failure of epoxy-

hybridized fibers (Figure 13e). 
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Assuming that the cohesive failure leading to pull out is stress-driven, higher 

roughness of fracture surface in the epoxy droplet of hybrid fibers compared to bare ones 

suggests a more complex state of stress with considerable local variations of the 

direction of principal stresses along the fiber surface. The source of local stress 

variations can be the inhomogeneity of the matrix surrounding the hybrid fibers, due to 

reinforcing effect of nanofibers. The occurrence of this effect can also be inferred from 

the sub-micron diameter holes, observed in the SEM images of the epoxy coatings of 

pulled out hybrid fibers (Figure 13e). These holes are likely where individual nanofibers 

are pulled out of the epoxy during carbon fiber during junction failure. In other words, 

prior to nanofiber pull out, the nanofibers were carrying axial load and thus reinforcing 

the matrix. Therefore, because of reinforcing effect of nanofibers and mechanical 

interlocking between them and epoxy, the “weakest plane”, where the junction failure is 

most likely, is pushed further away from the fiber, leading  to cohesive failure. Hence, 

the fracture surface is expanded, demanding a larger force to initiate junction failure. 

The larger junction load capacity (~48%) manifests itself as increased IFSS (Figure 12). 

The above mentioned failure mechanism is schematically shown in Figure 14. 

 

The proposed cohesive failure in epoxy-hybrid fiber junctions requires sufficiently 

strong bonding between PAN nanofibers and carbon fibers, without which a propagating 

interface crack could cause debonding between PAN and carbon fiber (adhesive failure) 

a scenario which was rarely observed (Figure 13b). The origin of this sufficiently strong 

bond, although expected to be primarily via physical bonds such as van der Waals forces, 
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is likely rooted in two causes: (i) the conformation of nanofibers to carbon fiber by 

vaporized surface tension between DMF and PAN as well as DMF and carbon fiber, and 

(ii) shrinkage of PAN nanofibers due to the combined plasticizing effect of the solvent 

vapor and heat which increases entropic forces within the fiber, as discussed in Section 2. 

 

3.7. Conclusion 

To evaluate the adhesion between carbon fiber and matrix, the two characterization, 

contact angle measurement and interfacial shear strength (IFSS) measurement, were 

 
 

Figure 14. Schematics of fiber-epoxy junction failure mechanism: (a) a bare or 

hybridized carbon fiber embedded in epoxy micro-droplets. (b) Crack growth, leading 

to pull out, is dominantly along the bare fiber-epoxy interface, and mostly adhesive, 

as observed in SEM images of Figure 13. (c) In hybrid fibers, the junction failure is 

dominantly cohesive, with the junction crack being deflected away from fiber-epoxy 

interface, likely as a result of reinforcing effect of nanofibers and interlocking 

between nanofibers and matrix.  

 

 



 

38 

 

 

used. To measure contact angle, epoxy droplets were placed onto bare carbon fiber and 

hybridized carbon fiber by using a fine tip and then the contact angles were measured to 

compare the wettability of carbon fiber and hybridized carbon fiber. The result shows 

that the contact angle on hybridized carbon fiber is lower than that on bare carbon fiber, 

which indicates the better wettability of the hybridized carbon fiber. The increased 

wettability may be attributed to high rough surface as well as an affinity between 

nanofibers grafted on carbon fiber and epoxy matrix.  

 

To measure the IFSS, the prepared carbon fiber and hybridized carbon fiber, where 

the epoxy microdroplets were placed, were pulled out from microdroplets by using a 

modified device. Pull-out test results shows that not only the interfacial shear strength of 

hybridized carbon fiber/epoxy microdroplets increased by ~48% compared to that of 

bare carbon fiber/epoxy microdroplets, but also the failure mode of the hybridized 

carbon fiber involved higher energy dissipation. In addition, postmortem SEM images 

were taken to observe the surface morphology of both carbon fiber and internal hole of 

microdroplet. The observation proves that hybridized carbon fiber can lead to cohesive 

failure by moving the failure plane away from carbon fiber surface to nanofiber-epoxy 

matrix interface.  The failure of hybridized carbon fiber caused groove-like rough 

surface in the internal surface of droplets which means increased failure area that may 

lead to higher energy dissipation.  
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4. CONCLUSION AND FUTURE DIRECTIONS 

 

4.1. Conclusion 

The primary objective in this thesis was to enhance carbon fiber-matrix adhesion 

through developing a novel methodology which will overcome the challenges associated 

with the proposed methods, mainly surface functionalization of carbon fibers with 

functional groups which can form chemical and physical bonds with matrix and 

whiskerization of carbon fibers with nanofibers which can act as anchors inside matrix 

and increase the effective contact area between fiber and matrix.  

 

In the functionalization, the fiber-matrix interface lies in 2 dimensions leading to a 

limited area to bear the applied load and dissipate mechanical energy, while the 

whiskerization can increase the load-bearing area via nanoparticles grown on the carbon 

fiber surface. The common whiskers are CNTs and CNFs which are bonded/grown on 

carbon fibers via a variety of methods, including CVD and electrophoresis. However, the 

whiskerization is commonly implemented at high temperature at least over 500°C (CVD 

process) or in electrochemically corrosive environments (electrophoresis), thereby 

leading to thermal degradation of carbon fiber and decreased fiber strength.  

 

To overcome the challenges, a new concept of hybrid carbon fiber was developed in 

this step through which polymeric nanofibers are deposited, with sufficient adhesion, on 

the surface of carbon fibers with no detectable damage to the carbon fiber, sizing or the 
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fiber itself. This novel whiskerization is through three steps, electrospinning process, 

solvent condensation, and stabilization. To demonstrate the feasibility of the method, 

PAN (polyacrylonitrile) nanofibers was grafted onto carbon fiber via electrospinning. 

Then, the adhesion between the PAN nanofibers and the carbon fiber was enhanced by 

exposing the nanofibers to the vapor of DMF solvent. Finally, the PAN nanofibers on 

the carbon fiber was thermally stabilization which will prevent the nanofibers from 

being dissolved in epoxy during epoxy curing process. Our studies led to the conclusion 

that the adhesion of nanofibers to carbon fibers was significantly enhanced via solvent 

vapor and thermal treatments through a combination of surface tension of DMF menisci 

condensed on the carbon fiber and the thermal activation of PAN chain mobility which 

led to shrinkage of nanofibers on carbon fibers, as a result of which nanofibers became 

tightly wrapped around carbon fiber. 

 

We measured the affinity of carbon fibers to epoxy and its changes as a result of our 

whiskerization approach via epoxy-carbon fiber contact angle measurements and pull 

out experiments. The wettability studies, measuring contact angle of carbon fiber and 

epoxy microdroplets shows that the contact angle on hybridized carbon fiber is lower 

than that on bare carbon fiber, which indicates the better wettability of the hybridized 

carbon fiber. While the contact of the bare carbon fiber was 73.45°, that of the 

hybridized carbon fiber was 56.5°.  The increased wettability may be attributed to high 

rough surface as well as an affinity between nanofibers grafted on carbon fiber and 

epoxy matrix. In other words, surface roughness can reduce the contact angle in surfaces 
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that are philic to each other. Pull-out test results shows that not only the interfacial shear 

strength of hybridized carbon fiber/epoxy microdroplets increased by ~48% compared to 

that of bare carbon fiber/epoxy microdroplets, but also the failure mode of the 

hybridized carbon fiber involved higher energy dissipation. In addition, Postmortem 

SEM images were taken to observe the surface morphology of both carbon fiber and 

internal hole of microdroplet. The observation proves that hybridized carbon fiber can 

lead to cohesive failure by moving the failure plane away from carbon fiber surface to 

nanofiber-epoxy matrix interface.  Also, the nanofibers on the carbon fiber may act as 

reinforcements based on the evidence of many holes on the interface where cohesive 

failure occurs. The failure of hybridized carbon fiber caused groove-like rough surface in 

the internal surface of droplets which means increased failure area that may lead to 

higher energy dissipation.  

 

4.2. Proposed Future Directions 

In fiber reinforced composites, interlaminar cracks from within individual layers. The 

interlaminar cracking can give rise to separation of laminae in fiber reinforced composite, 

which is called delamination. When the interlaminar cracking faces carbon fiber, shear 

stress concentrates, thereby leading to debonding between carbon fiber and matrix. The 

delamination is substantially important in composites because it can reduce the role of 

strong fibers and finally can adversely affect the structural strength of composites.  
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To reduce the risk of delamination, the application of our method to carbon fiber mats 

is proposed for future direction. The proposed work is to deposit electrospun PAN 

nanofibers on carbon fiber mats, expose the nanofibers grafted on carbon fiber mats to 

the vapor of DMF solvent, and thermally stabilize them, similar to what was applied to 

individual nanofibers (Figure 15). Through this work, the nanofibers are expected to be 

well bonded onto carbon fiber via mechanisms such as surface tension of condensed 

solvent vapor and nanofiber thermal shrinkage, based on the results shown in the single 

hybridized carbon. 

 

 
 

Figure 15. Schematic illustration of electrospun nanofibers deposited on carbon fiber.  
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The deposition of nanofibers onto carbon fiber mats may delay the delamination 

through moving the failure plane from carbon fiber-nanofiber interface to nanofiber-

matrix interface. Ultimately, the change in failure plane will lead to cohesive failure with 

rough failure area indicating ductile behavior and high energy dissipation (Figure 16).  

This material processing should be followed up by mechanical characterization of the 

composites, including the double cantilever beam (DCB) test (mode I fracture 

toughness), the end notch flexure (ENF) test (pure mode II fracture toughness), and the 

edge crack torsion (ECT) test (pure mode III fracture toughness). A delamination may be 

loaded in those three modes, or a combination of the modes. Delamination and their 

growth are characterized by strain energy released rate (G).   
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Figure 16. Schematic illustration of developed interface between laminates: the 

deposited nanofibers will change adhesive failure to cohesive as explained in Section 

3. 
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